WO2023201943A1 - 一种高反射耐磨超疏水涂层及其制备方法 - Google Patents
一种高反射耐磨超疏水涂层及其制备方法 Download PDFInfo
- Publication number
- WO2023201943A1 WO2023201943A1 PCT/CN2022/113951 CN2022113951W WO2023201943A1 WO 2023201943 A1 WO2023201943 A1 WO 2023201943A1 CN 2022113951 W CN2022113951 W CN 2022113951W WO 2023201943 A1 WO2023201943 A1 WO 2023201943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- wear
- highly reflective
- resistant
- superhydrophobic
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 251
- 239000011248 coating agent Substances 0.000 title claims abstract description 206
- 230000003075 superhydrophobic effect Effects 0.000 title claims abstract description 112
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000725 suspension Substances 0.000 claims abstract description 21
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 38
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 34
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 239000004408 titanium dioxide Substances 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 11
- 239000004636 vulcanized rubber Substances 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 5
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- 239000011147 inorganic material Substances 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 239000004568 cement Substances 0.000 abstract description 22
- 238000002310 reflectometry Methods 0.000 abstract description 21
- 238000004140 cleaning Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 12
- 230000005855 radiation Effects 0.000 abstract description 10
- 238000005507 spraying Methods 0.000 abstract description 7
- 238000012986 modification Methods 0.000 abstract description 6
- 230000004048 modification Effects 0.000 abstract description 6
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 4
- 239000002105 nanoparticle Substances 0.000 abstract description 4
- 239000004945 silicone rubber Substances 0.000 abstract description 4
- 239000002245 particle Substances 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 2
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 22
- 239000007788 liquid Substances 0.000 description 14
- 206010040844 Skin exfoliation Diseases 0.000 description 11
- 239000002585 base Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000008014 freezing Effects 0.000 description 9
- 238000007710 freezing Methods 0.000 description 9
- 230000002209 hydrophobic effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000003344 environmental pollutant Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 231100000719 pollutant Toxicity 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 230000006750 UV protection Effects 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000004134 energy conservation Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 230000004224 protection Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 231100000086 high toxicity Toxicity 0.000 description 2
- 235000012907 honey Nutrition 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 235000008960 ketchup Nutrition 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012430 stability testing Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- -1 acid rain Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 235000015113 tomato pastes and purées Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/004—Reflecting paints; Signal paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
Definitions
- the invention belongs to coating technology, and specifically relates to a highly reflective and wear-resistant super-hydrophobic coating and a preparation method thereof.
- the invention proposes a simple, environmentally friendly and easy-to-prepare method, using heavy calcium carbonate (GCC) as the main raw material, titanium dioxide (TiO 2 ) as the solar reflection enhancement filler, and room temperature vulcanized silicone rubber (RTV) and orthosilicic acid.
- GCC heavy calcium carbonate
- TiO 2 titanium dioxide
- RTV room temperature vulcanized silicone rubber
- TEOS Tetraethyl ester
- a high-reflective wear-resistant super-hydrophobic coating was prepared on the cement surface by spraying. The coating was mechanically and chemically stabilized. Through tests such as resistance to UV rays and frost resistance, the coating shows excellent wear resistance and durability and has potential application value.
- the present invention adopts the following technical solution: a highly reflective and wear-resistant super-hydrophobic coating, which is obtained by drying a modified GCC/TiO 2 suspension; the modified GCC/TiO 2 suspension includes heavy calcium carbonate, titanium dioxide, and room temperature vulcanized rubber. and tetraethyl orthosilicate.
- a highly reflective and wear-resistant super-hydrophobic material consisting of a substrate and a coating located on the substrate.
- the coating is the above-mentioned highly reflective and wear-resistant super-hydrophobic coating, which is obtained by drying a modified GCC/TiO 2 suspension;
- the modified GCC/ TiO suspension includes heavy calcium carbonate, titanium dioxide, room temperature vulcanized rubber, and tetraethyl orthosilicate.
- titanium dioxide powder, heavy calcium carbonate powder, room temperature vulcanized rubber, tetraethyl orthosilicate, ammonia and water are mixed to obtain a modified GCC/TiO 2 suspension; preferably, titanium dioxide powder is added to water, and then added Heavy calcium carbonate powder, then add tetraethyl orthosilicate, room temperature vulcanized rubber and ammonia water to obtain a modified GCC/TiO 2 suspension.
- the mass ratio of heavy calcium carbonate to titanium dioxide is (1-10):1, preferably (1.5-7):1, and more preferably (2-5):1.
- Superhydrophobic coatings have attracted widespread attention from scientific researchers because of their unique properties such as oil-water separation, self-cleaning, anti-corrosion, and antibacterial properties. Research has found that the excellent hydrophobicity of superhydrophobic coatings is due to the special micro-nano rough structure and low surface energy substances on its surface. At present, most superhydrophobic coatings have problems such as expensive raw materials, complex preparation processes, and high toxicity of chemical reagents. The poor durability and insufficient stability of superhydrophobic coatings have seriously restricted the practical application of superhydrophobic coatings. In response to the above problems, this paper uses heavy calcium carbonate (GCC) as the main raw material to design and develop a durable superhydrophobic coating with low cost, simple preparation process and environmental protection, capable of mass production and with different functional properties.
- GCC heavy calcium carbonate
- the mass sum of heavy calcium carbonate and titanium dioxide, the dosage ratio of tetraethyl orthosilicate, room temperature vulcanized rubber, and ammonia water is 8g: (1-3) mL: (1-3) mL: (0.2-0.8) mL, preferably 8g: (1.5-2.5) mL: (1.5-2.5) mL: (0.3-0.6) mL.
- the base is a conventional material, which can be an inorganic material or an organic material.
- the base is a cement base.
- the present invention tests and analyzes various properties of the superhydrophobic coating, explores in detail the practical use of the durable superhydrophobic coating, and provides certain reference and guidance for realizing the industrialization of the superhydrophobic coating.
- the modified GCC/TiO 2 suspension is sprayed on the substrate and dried to obtain a highly reflective and wear-resistant superhydrophobic material.
- Specific spraying and drying are conventional techniques.
- a highly reflective wear-resistant super-hydrophobic coating can be obtained on the surface of the substrate by placing it at room temperature.
- the thickness of the highly reflective and wear-resistant superhydrophobic coating is in the micron range, such as 100 to 500 microns, and further preferably 200 to 400 microns.
- the preparation methods of superhydrophobic surfaces have made great progress and development. However, there is still a long way to go to achieve large-scale production and widespread application. The main reason is that the durability of superhydrophobic surfaces is poor, the preparation process is complex, and chemical reagents are expensive. And there are problems such as high toxicity.
- the present invention uses cheap heavy calcium carbonate (GCC) as the main raw material, adds auxiliary raw materials with different components, and uses a simple, environmentally friendly, and easy-to-industrial method to prepare two durable superhydrophobic coatings with different functional properties.
- GCC heavy calcium carbonate
- the various properties of the superhydrophobic coating were tested and analyzed, and the practical uses of the durable superhydrophobic coating were explored in detail, providing certain reference and guidance for the industrialization of superhydrophobic coatings.
- the present invention mixes GCC and TiO 2 in a certain proportion, and performs surface modification with room temperature vulcanized silicone rubber (RTV) and tetraethyl orthosilicate (TEOS) to obtain a modified GCC/TiO 2 suspension, using a simple
- RTV room temperature vulcanized silicone rubber
- TEOS tetraethyl orthosilicate
- the prepared highly reflective and wear-resistant superhydrophobic coating exhibits excellent superhydrophobicity, with a static contact angle (CA) of 158° and a rolling angle (SA) of 5.6°, achieving a solar reflectivity of up to 89.2%.
- Hydrophobic coating under direct sunlight with an outdoor ambient temperature of 35°C, this coating can reduce the surface temperature by up to 10°C compared with ordinary cement coatings.
- the coating shows excellent wear resistance and durability. It can load a 500 g weight and rub it on the surface of 800-grit sandpaper for 200 cm or the tape can be peeled off and stuck 50 times. It can also withstand long-term strong acid and alkali solution erosion and 168 hours of ultraviolet rays.
- the coating shows excellent self-cleaning properties and frost resistance, and is repellent to common liquids in life such as cola, coffee, mud and water. In addition, it can maintain superhydrophobicity for a long time in low-temperature and harsh environments.
- Figure 1 shows the SEM morphology of the coating surface with different mass ratios of GCC and TiO 2 : (a) S1, (b) coating S2, (c) coating S3, (d) coating S4 and (e) Coating S5; (f) are the CA and SA diagrams of coatings S1-S5.
- Figure 2 shows (a) FT-IR spectra of TiO 2 , GCC and modified GCC/TiO 2 coatings; (b) XPS spectra of GCC and modified GCC/TiO 2 coatings.
- Figure 3 shows (a) the reflection spectra of different coatings; (b) the ultraviolet region, visible light region, near-infrared region and average reflectance of sunlight of different coatings; (c) the sunlight of different coatings under outdoor conditions. Light radiation diagram; (d) Surface temperature changes of different coatings as a function of solar radiation time.
- Figure 4 shows (a) a schematic diagram of the tape peeling test; (b) a diagram of the hydrophobic effect of the coating surface after 10 peeling cycles; (c) the effect of the number of peeling cycles on the CA and SA of the coating surface.
- Figure 5 shows (a) the schematic diagram of the wear test; (b) the hydrophobic effect of the coating surface after 10 wear cycles; (c) the effect of the number of wear cycles on the CA and SA of the coating surface.
- Figure 6 shows SEM images at different magnifications before and after the highly reflective and wear-resistant superhydrophobic coating is worn: (a), (b) and (c) are before the coating is worn; (d), (e) and (f) are after the coating is worn. After the layer wears off.
- Figure 7 is (a) a schematic diagram of droplets of different pH on the surface of the coating; (b) a CA diagram of the lower surface of the coating in contact with droplets of different pH; (c) a schematic diagram of the coating's resistance to ultraviolet radiation; (d) ultraviolet light Effect of irradiation period on CA and SA of coating.
- Figure 8 shows the self-cleaning process of (a) a mixture of soil, lime and gravel and (b) tomato paste on the surface of a highly reflective wear-resistant superhydrophobic coating; (c) the response of the highly reflective wear-resistant superhydrophobic coating to various common liquids The repulsive effect of drops (blue ink, honey, muddy water, salt water, coffee, cola).
- Figure 9 shows the freezing process of water droplets on the surface of (a) ordinary cement coating and (b) highly reflective wear-resistant superhydrophobic coating; (c) highly reflective wear-resistant superhydrophobic coating during the icing-deicing test cycle
- Superhydrophobic surfaces have many unique properties and have attracted the attention of scientific researchers. In recent decades, with the continuous advancement of scientific research, superhydrophobic surfaces have shown outstanding performance in many fields such as self-cleaning, corrosion resistance, oil-water separation, and antibacterial. It has huge application prospects and new uses will be developed in more fields in the future.
- the significance of the present invention is to make the preparation process of the superhydrophobic coating simpler, more environmentally friendly, lower in cost, more durable in performance, and can be widely used in various industries.
- the present invention uses a combination of GCC microparticles and TiO2 nanoparticles as a solar reflection enhancement filler, combined with an environmentally friendly hydrophobic modification preparation method, and uses a simple spraying method to prepare a high-reflection wear-resistant super-hydrophobic coating.
- a superhydrophobic coating with high solar reflectivity was obtained, and the coating can effectively reduce the surface temperature of the cement coating.
- a strong cement base material is used as a bridge between the bonding coating and the substrate to improve the wear resistance of the coating.
- the coating has low preparation cost, can be mass-produced, and can be widely used in building exterior walls.
- Sample testing and characterization temperature change testing.
- An infrared thermometer (DM-5002, China) was used to measure the temperature changes on the coating surface. The temperature of each sample was measured at six different locations on the surface. The results were taken as an arithmetic average and the difference between the single measurement value and the average value was kept within 3°C.
- the mechanical stability of the superhydrophobic coating was evaluated through sandpaper abrasion experiments and tape peeling experiments.
- sandpaper abrasion experiment place the 800-grit sandpaper horizontally on the table, then place the superhydrophobic coating side of the sample face down on the sandpaper, and put a 500 g weight on the sample to push the sample in a straight line.
- the moving speed of the sample is 5 cm/s and the moving distance is 20 cm, and then the CA and SA of the coating surface are measured.
- the special test tape was adhered to the surface of the superhydrophobic coating and a 1 kg weight was placed on the tape for 5 min. The weight was removed and the tape was peeled off, and the CA and SA of the coating surface were measured.
- UV resistance test A portable UV detection lamp is used as the ultraviolet radiation source.
- the output ultraviolet wavelength is 365 nm and the power is 8 W.
- the sample was irradiated for 12 h as a cycle, and the distance between the sample and the UV light source was 5 cm vertically.
- the CA and SA of the coating were measured after each irradiation cycle.
- the prepared superhydrophobic coating was placed in a glass vessel at an angle ( ⁇ 10°), and a mixture of soil, lime and gravel was sprinkled on the surface of the coating, and then deionized water was dropped from above the coating. The water flow will take away the contaminants on the surface of the coating, and you can observe with the naked eye whether the contaminants on the surface of the superhydrophobic coating have been removed.
- Example 1 Preparation of highly reflective and wear-resistant superhydrophobic coating: According to Table 1, weigh TiO 2 powder into a beaker, add 15 mL of deionized water, magnetically stir at 500 rpm/min for 10 minutes, and then add GCC powder Continue magnetic stirring for 10 min; then add 2 mL TEOS, 2 mL RTV and 0.5 mL ammonia water and continue magnetic stirring for 1 h at a stirring speed of 600 rpm/min. Finally, a modified GCC/TiO 2 suspension was prepared. Brush cement (P.O52.5) evenly on a clean acrylic plate. After the surface is dry, use a spray gun to spray the modified GCC/TiO 2 suspension on the cement base. The spray thickness is 300 ⁇ m, and then place it at room temperature. 12 h until completely cured, a highly reflective and wear-resistant superhydrophobic coating was successfully prepared, corresponding to S2 to S5 in Table 1.
- Comparative Example 1 Weigh 8 g GCC powder, add 15 mL deionized water, stir magnetically at 500 rpm/min for 20 After min, add 2 mL TEOS, 2 mL RTV and 0.5 mL ammonia solution were continuously stirred magnetically for 1 h at a stirring speed of 600 rpm/min, and a modified GCC suspension was finally prepared.
- Brush cement P.O52.5 evenly on a clean acrylic plate. After the surface is dry, spray the modified GCC suspension on the cement base with a spray gun. The spray thickness is 300 ⁇ m, and then leave it at room temperature for 12 hours. Until complete curing, a reflective wear-resistant superhydrophobic coating was successfully prepared, corresponding to S1 in Table 1.
- Comparative Example 2 Based on Example 1 (S3), without adding RTV, the obtained coating is a hydrophilic coating.
- the chemical composition of the coating surface has a strong influence on hydrophobicity. Therefore, the chemical composition of TiO 2 , GCC and the GCC/TiO 2 coating (S3) modified by RTV modification was analyzed by FT-IR and XPS, and the results are shown in Figure 2(a).
- absorption peaks located at 1394, 873 and 712 cm -1 appear, representing the asymmetric stretching vibration, in-plane bending vibration and out-of-plane bending vibration of the CO bond respectively.
- the absorption peak at 2964 cm -1 is the stretching vibration peak of the CH bond.
- the absorption peak at 1259 cm-1 is caused by the Si-CH stretching vibration on the RTV.
- the absorption peak at 1020 cm -1 is caused by Si-O-Si asymmetric stretching.
- the absorption peak at 798 cm -1 is the characteristic peak of Si(CH3)2.
- solar radiation can be divided into ultraviolet region, visible light region and near-infrared region.
- visible light region and near-infrared region radiate energy account for more than 90%.
- Figure 3(a) the reflection spectrum curves of different coatings in the wavelength range from 300 nm to 2500 nm were measured. The results show that the solar reflectivity of coating S0 is much lower than the other five coatings.
- the reflectivity of different coatings in the ultraviolet region (300 nm-400 nm) and visible light region (400 nm-780 nm) was calculated.
- the reflectivity of coating S0 in the visible and near-infrared regions is 44.2% and 40.8% respectively, while the reflectances of coatings S1, S2, S3, S4 and S5 are greater than 80% and 75% respectively.
- the solar reflectance of coatings S0, S1, S2, S3, S4 and S5 are 41.4%, 81.7%, 87.2%, 89.5%, 82.4% and 78.9% respectively.
- the solar reflectance of building reflective insulation coatings is required to be greater than or equal to 65%, and the near-infrared region reflectivity is greater than or equal to 80%.
- Coating S3 has the highest near-infrared region and solar reflectivity, which are 89.2% and 89.5% respectively. Therefore, coating S3 has the best solar reflectivity compared to other coatings.
- Coating S0 is an ordinary cement coating that has not been sprayed with a highly reflective, wear-resistant, super-hydrophobic coating.
- the solar reflectivity is not high, and the surface temperature is very high under solar radiation.
- coating S3 has a high solar reflectivity and can reflect radiant energy in the visible and near-infrared regions, and its maximum temperature is reduced by about 10°C. The above results show that the highly reflective and wear-resistant superhydrophobic coating has excellent heat reflection effect.
- Coating S3 was selected for the following experiments.
- tape peel test is to check the adhesion of the coating material to the substrate surface.
- the experimental schematic is shown in Figure 4(a). During the test, place the 3M tape tightly on the surface of the superhydrophobic coating, load a 1 kg weight on the tape and keep it there for 5 minutes to ensure that the surface of the coating and the tape are in complete contact, then remove the weight and peel off the tape. .
- FIG 5(a) is a schematic diagram of the experiment of sandpaper wearing coating. Place 800-grit sandpaper horizontally on the table, then attach the surface containing the superhydrophobic coating to the sandpaper, and push the sample in a straight line under the load of 500 g weight. The moving speed of the sample is 5 cm/s and the moving distance is 20 cm, and then the CA and SA of the coating surface are measured, and this process is regarded as a wear cycle. The results of the coating after 10 abrasion cycles are shown in Figure 5(b).
- the coating has excellent corrosion resistance, and the CA measured on the surface of the coating is greater than 150°.
- the coating is tilted slightly, spherical droplets roll off the surface easily, and no traces of corrosion are found on the surface of the coating, which shows that the prepared highly reflective and wear-resistant superhydrophobic coating has good chemical stability. .
- FIG. 7(c) is a schematic diagram of the UV resistance experiment of the coating.
- the prepared superhydrophobic coating was irradiated under ultraviolet light with a power of 8 W.
- the coating was irradiated for an irradiation cycle every 12 hours.
- the CA and SA of the coating were tested after each irradiation cycle.
- Figure 7(d) shows the effect of UV light irradiation period on the wettability of the coating. It can be seen from the figure that the wettability of the coating did not change significantly after 14 UV irradiation cycles (168 h).
- the CA of the coatings are all above 150°, and the SAs are below 10°. The results show that the prepared coatings have excellent UV resistance.
- the white solar reflective coating is easily contaminated by dust, liquid and other pollutants.
- the pollutants covering the coating surface will cause the solar reflectivity to drop sharply. Therefore, superhydrophobic coatings with self-cleaning capabilities prevent contaminants from accumulating on surfaces.
- a mixture of soil, lime and gravel was sprinkled on the surface of the highly reflective and wear-resistant superhydrophobic coating to simulate real-life pollutants, and the self-cleaning ability of the coating was tested by simulating natural rainfall through continuous water droplet impact. As shown in Figure 8(a), after continuously dropping a small amount of tap water, it can be observed that the pollutants on the coating surface are completely taken away by the water droplets, indicating that the coating has good self-cleaning properties under natural rainfall conditions.
- the water droplets on the surface of the superhydrophobic coating are generally spherical and the contact area between the water droplets and the surface is small.
- the rough structure on the surface of the superhydrophobic coating has a large number of gaps, which can trap some air. Because the air between the water droplets and the coating surface hinders heat transfer between the two, the superhydrophobic coating can effectively extend the freezing time of the water droplets.
- frost resistance tests were conducted on the highly reflective and wear-resistant superhydrophobic coating and the ordinary cement coating. As can be seen from Figure 9(a), water droplets completely freeze in ordinary cement coatings after 60 s.
- Superhydrophobic surfaces can delay the freezing time of water droplets, but they cannot prevent water droplets from freezing. In cold winter environments, ice and snow are prone to accumulate, and they may even undergo the process of melting and refreezing of ice for a long time and the passage of ice cubes. Large and spontaneous falls will cause irreparable damage to the micro-nano structure on the surface of the superhydrophobic coating.
- an ice bead peeling cycle test was conducted on the coating surface. As shown in Figure 9(c), after 40 cycles of repeated icing- After the de-icing process, the hydrophobic performance of the coating surface was not greatly affected.
- CA basically remained at 155°, and SA increased to a certain extent, but it was less than 10°.
- the test results show that the highly reflective and wear-resistant superhydrophobic coating has good frost resistance in severe cold conditions, shows good durability, and can be widely used in extremely harsh environments.
- the invention uses heavy calcium carbonate (GCC) as the main raw material, titanium dioxide (TiO 2 ) as the solar reflection enhancement filler, and uses room temperature vulcanized silicone rubber (RTV) and tetraethyl orthosilicate (TEOS) to treat hydrophilic GCC micron particles.
- GCC heavy calcium carbonate
- TiO 2 titanium dioxide
- RTV room temperature vulcanized silicone rubber
- TEOS tetraethyl orthosilicate
- the near-infrared reflectivity of building reflective insulation coatings is required to be greater than or equal to 0.80, and the solar reflectivity is greater than or equal to 65%.
- the near-infrared region and solar reflectivity of the highly reflective wear-resistant superhydrophobic coating prepared by the present invention can reach 89.5% and 89.2% respectively, showing excellent solar reflection characteristics.
- outdoor heat reflection performance tests were also conducted. The results showed that the high-reflection and wear-resistant super-hydrophobic coating can effectively reduce the surface temperature by about 10°C compared with ordinary cement coatings.
- the highly reflective wear-resistant super-hydrophobic coating of the present invention also has excellent wear resistance.
- the highly reflective and wear-resistant super-hydrophobic coating of the present invention is prepared by spraying, and the process is simple and can be produced on a large scale.
- the coating has excellent self-cleaning ability, can remove surface dust and other pollutants, and has a repellent effect on common liquids such as ink, cola, and coffee. It also shows frost resistance in low-temperature environments and can effectively Extend the freezing time of water droplets.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
本发明公开了一种高反射耐磨超疏水涂层及其制备方法。使用室温硫化硅橡胶(RTV)和正硅酸四乙酯(TEOS)对GCC微米粒子和TiO 2纳米粒子进行表面修饰,获得了改性GCC/TiO 2悬浮液,采用简单的喷涂工艺在水泥表面制备了高反射耐磨超疏水涂层,具有出色的超疏水性,其静态接触角(CA)为158°,滚动角(SA)为5.6°,表现出优异的太阳光反射特性,反射率高达89.2%。此外,该涂层还具备优异的耐磨耐久性,可负载500 g砝码在800目的砂纸表面摩擦200 cm或经受胶带剥离50次仍保持超疏水性。涂层不仅可以承受酸碱溶液腐蚀和长时间的紫外线辐射(168 h),还展现出优异的自清洁性能和耐霜冻性能。
Description
本发明属于涂层技术,具体涉及一种高反射耐磨超疏水涂层及其制备方法。
在炎热的夏季,太阳光辐射会使建筑物的温度升高,导致建筑制冷的能源消耗需求急剧增加,从而使得全球能源被大量消耗。同时,过度使用一次能源会导致温室效应加重,破坏全球的生态环境。因此,降低建筑物制冷的能源消耗对于节能减排有重要的意义。目前,大量的实验研究证明高反射率涂层可以降低建筑物外墙和屋顶的温度,现有技术通过精心设计的白色涂层的太阳光反射率高达87.9%,能够有效降低水泥表面的温度,然而,室外使用的白色涂层很容易被环境中的灰尘或土壤污染,导致其太阳光反射率急剧下降。虽然人工清洗后可以恢复涂层的太阳光反射率,但是人工清洗的成本较高且不安全,还会磨损太阳光反射涂层的表面。因此,开发具有自清洁功能的太阳光反射涂层很有必要。
研究表明,超疏水涂层的微纳米级粗糙结构在户外环境中很容易受到破坏。为了提高超疏水涂层的机械稳定性,学者们做了大量深入细致的研究工作。Shen等通过喷涂法将1H,1H,2H,2H-全氟癸基三乙氧基硅烷改性的碳纳米管和二氧化硅填料喷涂在含聚氨酯的铝基板上,制备了具有优异机械稳定性的超疏水涂层。Yu等通过两步喷涂法先将聚多巴胺(PDA)溶液喷涂到各种材料的基底上,再将疏水纳米二氧化硅粒子喷涂到PDA上,制备了具有化学稳定性和自修复的耐磨超疏水涂层。目前,虽然在制备耐磨超疏水涂层方面已经取得了较大的进展,但是具有太阳光反射特性的耐磨超疏水涂层还研究较少。
本发明提出了一种简单环保、易制备的方法,以重质碳酸钙(GCC)为主要原料,以二氧化钛(TiO
2)为太阳光反射增强填料,使用室温硫化硅橡胶(RTV)和正硅酸四乙酯(TEOS)对亲水的GCC微米粒子和TiO
2纳米粒子进行表面修饰,采用喷涂法在水泥表面制备了高反射耐磨超疏水涂层,对涂层进行了机械稳定性、化学稳定性、抗紫外线、耐霜冻等测试,该涂层表现出优异的耐磨耐久性,具有潜在的应用价值。
本发明采用如下技术方案:一种高反射耐磨超疏水涂层,由改性GCC/TiO
2悬浮液干燥得到;所述改性GCC/TiO
2悬浮液包括重质碳酸钙、二氧化钛、室温硫化橡胶以及正硅酸四乙酯。
一种高反射耐磨超疏水材料,由基底及位于所述基底上的涂层组成,所述涂层为上述高反射耐磨超疏水涂层,由改性GCC/TiO
2悬浮液干燥得到;所述改性GCC/TiO
2悬浮液包括重质碳酸钙、二氧化钛、室温硫化橡胶以及正硅酸四乙酯。
本发明中,将二氧化钛粉末、重质碳酸钙粉末、室温硫化橡胶、正硅酸四乙酯、氨水与水混合,得到改性GCC/TiO
2悬浮液;优选的,将二氧化钛粉末加入水中,再加入重质碳酸钙粉末,然后加入正硅酸四乙酯、室温硫化橡胶和氨水,得到改性GCC/TiO
2悬浮液。
本发明中,重质碳酸钙、二氧化钛的质量比为(1~10)∶1,优选(1.5~7)∶1,进一步优选(2~5)∶1。超疏水涂层因其具有油水分离、自清洁、防腐蚀、抗菌等诸多独特的性能而受到科研人员的广泛关注。研究发现,超疏水涂层所表现出优异的憎水性是由于其表面特殊的微纳粗糙结构和低表面能物质共同决定的。目前,大多数超疏水涂层存在原材料价格昂贵、制备工艺复杂、化学试剂毒性大等问题,而超疏水涂层耐久性差、稳定性不足更是严重制约了超疏水涂层的实际应用。针对上述问题,本文选用重质碳酸钙(GCC)作为主要原料,设计开发出成本低廉、制备工艺简单环保、能够大规模生产且具有不同功能特性的耐久性超疏水涂层。
本发明中,重质碳酸钙与二氧化钛的质量和、正硅酸四乙酯、室温硫化橡胶、氨水的用量比例为8g∶(1~3)mL∶(1~3)mL∶(0.2~0.8)mL,优选为8g∶(1.5~2.5)mL∶(1.5~2.5)mL∶(0.3~0.6)mL。
本发明中,基底为常规材料,可以为无机材料或者有机材料,优选的,基底为水泥基底。本发明对超疏水涂层的各项性能进行测试分析,详细探究了耐久性超疏水涂层的实际用途,为实现超疏水涂层走向工业化提供一定的借鉴与指导意义。
本发明中,将改性GCC/TiO
2悬浮液喷涂在基底上,干燥,得到高反射耐磨超疏水材料。具体喷涂、干燥为常规技术,比如室温放置即可在基底表面得到高反射耐磨超疏水涂层。优选的,高反射耐磨超疏水涂层的厚度为微米级,比如100~500微米,进一步选择200~400微米。
超疏水表面的制备方法已经取得了很大的进步与发展,然而实现大规模生产制备并广泛应用还有很长的一段距离,主要原因是超疏水表面的耐久性差,制备工艺复杂,化学试剂昂贵且毒性大等问题。本发明选用廉价的重质碳酸钙(GCC)作为主要原料,通过添加不同成分的辅助原料,采用简单环保、易工业化的方法制备出两款具有不同功能特性的耐久性超疏水涂层。并且对超疏水涂层的各项性能进行测试分析,详细探究了耐久性超疏水涂层的实际用途,为实现超疏水涂层走向工业化提供一定的借鉴与指导意义。本发明将GCC与TiO
2按一定比例混合,通过室温硫化硅橡胶(RTV)和正硅酸四乙酯(TEOS)对其进行表面改性,获得了改性GCC/TiO
2悬浮液,采用简单的喷涂工艺在水泥表面制备了高反射耐磨超疏水涂层。所制备的高反射耐磨超疏水涂层表现出优异的超疏水性,其静态接触角(CA)为158°,滚动角(SA)为5.6°,获得了太阳光反射率高达89.2%的超疏水涂层,在室外环境温度为35℃的太阳光直射下,该涂层与普通水泥涂层相比,能够降低表面温度高达10℃。该涂层表现出优异的耐磨耐久性,可负载500 g砝码在800目的砂纸表面摩擦200 cm或胶带重复撕粘50次,还可以承受长时间强酸、强碱溶液侵蚀和168 h的紫外线辐射,其仍然保持良好的超疏水性。涂层表现出优异的自清洁性能和耐霜冻性能,对可乐、咖啡、泥水等生活中常见的液体均有排斥作用,此外,在低温恶劣的环境中,能够长时间保持超疏水性。
图1为不同GCC与TiO
2质量比的涂层表面SEM形貌图涂层:(a) S1、(b) 涂层S2、(c) 涂层S3、(d) 涂层S4和 (e) 涂层S5; (f) 为涂层S1-S5的CA和SA图。
图2为(a) TiO
2、GCC和改性GCC/TiO
2涂层的FT-IR谱图 ;(b)GCC和改性GCC/TiO
2涂层的XPS谱图。
图3为(a) 不同涂层的反射光谱图;(b) 不同涂层的紫外区、可见光区、近红外区和太阳光平均反射率图;(c) 不同涂层在室外条件下的太阳光辐射图;(d) 不同涂层表面温度变化随太阳辐射时间的变化图。
图4为(a) 胶带剥离测试示意图;(b) 10次剥离循环后的涂层表面疏水效果图;(c) 剥离循环次数对涂层表面CA 和 SA 的影响。
图5为(a) 磨损测试示意图;(b) 10次磨损循环后的涂层表面疏水效果图;(c) 磨损循环次数对涂层表面CA 和 SA 的影响。
图6为高反射耐磨超疏水涂层磨损前后不同放大倍率的SEM图:(a)、(b)和(c)为涂层磨损前;(d)、(e)和(f)为涂层磨损后。
图7为(a) 不同PH的液滴在涂层表面示意图;(b) 涂层与不同PH液滴接触下表面的CA图;(c) 涂层抗紫外线照射的示意图;(d) 紫外光的照射周期对涂层的 CA 和SA的影响。
图8为(a) 土壤、石灰和砂砾的混合物和 (b) 番茄酱在高反射耐磨超疏水涂层表面的自清洁过程;(c) 高反射耐磨超疏水涂层对各种常见液滴(蓝墨水、蜂蜜、泥水、盐水、咖啡、可乐)的排斥作用。
图9为水滴在 (a) 普通水泥涂层和 (b) 高反射耐磨超疏水涂层表面的结冰过程;(c) 高反射耐磨超疏水涂层在结冰-除冰测试循环周期中的CA和SA的变化图。
超疏水表面具有许多独特的性能而备受科研人员的关注,近几十年来,随着科学研究不断地向前推进,超疏水表面在自清洁、耐腐蚀、油水分离、抗菌等诸多领域展现出巨大的应用前景,未来将会在更多领域开发出新的用途。目前制备超疏水表面的方法已经有很多,例如静电纺丝法、光刻法、溶胶凝胶法、刻蚀法、化学气相沉积法等,所制备的超疏水表面性能也有了长足的进步。然而,要想实现超疏水表面大规模的工业化生产还有一定的距离,主要原因是因为制备工艺复杂、成本高昂、环境污染等,大多数情况下只能局限于实验室制备,并且所制备的超疏水表面耐久性差,若长时间暴露在腐蚀性环境中或者紫外线辐射下,超疏水表面的超疏水性就会降低甚至丧失。此外,超疏水表面的机械稳定性、自清洁性和颜色单调性也影响了超疏水涂层的实际应用。针对以上问题,本发明的意义就是使超疏水涂层的制备工艺更简单、环保,成本更低,性能更加耐久,能够广泛地应用于各行各业。
本发明以GCC微米粒子和TiO
2纳米粒子的组合作为太阳光反射增强填料,结合环保的疏水改性制备方法,采用简单的喷涂方法制备出高反射耐磨超疏水涂层。获得了高太阳光反射率的超疏水涂层,并且涂层能有效降低水泥涂层的表面温度。以坚固的水泥基材作为粘结涂层与基底之间的桥梁,提高了涂层的耐磨性。此外,该涂层制备成本低,能够大规模生产,可广泛应用于建筑外墙。
。
样品测试与表征:温度变化测试。采用红外测温仪(DM-5002, 中国)测量涂层表面的温度变化。每个样品选取表面六个不同的位置测量温度,其结果取算术平均值并且单次测量值与平均值的差值保持在3℃ 范围内。
机械稳定性测试。通过砂纸磨损实验和胶带剥离实验来评估超疏水涂层的机械稳定性。在砂纸磨损实验中,将800目的砂纸水平放置在桌面上,然后把样品表面有超疏水涂层的一面朝下紧贴在砂纸上,并在样品上负重500 g砝码沿直线推动样品。样品的移动速度为5 cm/s,移动距离为20 cm,然后测量涂层表面的CA和SA。在胶带剥离实验中,将专用测试胶带粘在超疏水涂层表面并在胶带上放置1 kg砝码保持5 min,取下砝码并揭开胶带,测量涂层表面的CA和SA。
化学稳定性测试。选用盐酸(HCL)和氢氧化钠(NaOH)溶液来配置PH值为2-12的腐蚀性水溶液,将不同PH值的腐蚀性液体滴在涂层表面,静置12 h,然后清除涂层表面的液体并干燥一段时间后,测量涂层表面的CA和SA。
抗紫外线测试。采用手提式紫外检测灯为紫外线辐射光源,输出的紫外线波长为365 nm,功率为8 W。样品以辐射12 h为一个周期,样品距离紫外灯光源垂直为5 cm,在每个辐照周期后测量涂层的CA和SA。
自清洁测试。首先将所制备的超疏水涂层倾斜一定的角度(<10°)放置在玻璃器皿中,并在涂层表面洒上土壤、石灰和砂砾的混合物,然后将去离子水从涂层上方滴下,水流会带走涂层表面的污染物,通过肉眼观察超疏水涂层表面污染物是否被清除干净。
耐霜冻测试。将所制备的超疏水涂层样品放置于温度为 -15℃ 的冷冻室内,并往样品表面滴加约500 µL的水珠,每隔一段时间拍下水珠在低温环境下结冰过程中的形貌,通过样品上的水珠形貌变化来分析其延缓结冰的性能。将所制备的超疏水涂层放入冷冻室内,水珠含水量约50 µL,当涂层表面的水珠完全结冰后,取出样品并除去结冰的水珠,然后测量涂层表面疏水性的变化,以此表征样品结冰-除冰过程的机械稳定性。
实施例一 高反射耐磨超疏水涂层的制备:按表1,称取TiO
2粉末于烧杯中,加入15 mL去离子水,在500 rpm/min下磁力搅拌10 min后,再加入GCC粉末继续磁力搅拌10 min;然后加入2 mL TEOS、2 mL RTV和0.5 mL氨水继续磁力搅拌1 h,搅拌速度为600 rpm/min,最终制备了改性GCC/TiO
2悬浮液。将水泥(P.O52.5)均匀地刷涂在干净的亚克力板上,表干后用喷枪将改性GCC/TiO
2悬浮液喷涂在水泥基底上,喷涂厚度为300μm,然后室温条件下放置12 h,直至完全固化,成功地制备了高反射耐磨超疏水涂层,对应表1中S2至S5。
对比例一:称取8 g GCC粉末加入15 mL去离子水,在500 rpm/min下磁力搅拌20
min后,加入2 mL TEOS、2 mL
RTV和0.5 mL氨水继续磁力搅拌1 h,搅拌速度为600 rpm/min,最终制备了改性GCC悬浮液。将水泥(P.O52.5)均匀地刷涂在干净的亚克力板上,表干后用喷枪将改性GCC悬浮液喷涂在水泥基底上,喷涂厚度为300μm,然后室温条件下放置12 h,直至完全固化,成功地制备了反射耐磨超疏水涂层,对应表1中S1。
。
对比例二:在实施例一(S3)的基础上,不加入RTV,得到的涂层为亲水涂层。
GCC与TiO
2质量比对超疏水涂层润湿性有着很大地影响,图1中,(a)-(e) 为不同GCC与TiO
2质量比的涂层表面SEM形貌图,(f) 为S1-S5涂层的接触角和滚动角的变化图。从图中可以看出,S2、S3、S4和S5涂层的超疏水性要优于S1涂层,涂层S4和S5中TiO2含量占比增大,涂层的接触角反而降低,滚动角缓慢增高,GCC与TiO
2质量比为3∶1的涂层S3疏水效果最好,其CA为158°,SA为5.6°。
涂层表面的化学组成对于疏水性有着很大影响。因此,通过FT-IR和XPS对TiO
2、GCC以及经过RTV修饰改性的GCC/TiO
2涂层(S3)进行了化学组成分析,其结果如图2中(a) 所示。在GCC的红外吸收光谱中,出现位于1394、873和712cm
-1处的吸收峰,分别代表C-O键的不对称伸缩振动、面内弯曲振动和面外弯曲振动。在改性的GCC/TiO
2涂层的红外吸收光谱中,2964 cm
-1处的吸收峰是C-H键的伸缩振动峰。在1259 cm-1处的吸收峰是由RTV上的Si-CH
3伸缩振动引起的。在1020
cm
-1处的吸收峰是由Si-O-Si 不对称拉伸引起的。798 cm
-1处的吸收峰是Si(CH3)2的特征峰。如图2中(b) 所示的XPS谱图中,可以清晰地观察到原始GCC中有O、C和Ca三种元素出现。相比于GCC,经过RTV修饰改性的GCC/TiO2的涂层谱图中在结合能为154和102 eV 处出现两个新的强吸收峰,分别为Si 2s和Si 2p,其中结合能位于285eV的碳峰明显增强,这是由于RTV中含有大量硅元素和甲基基团,上述分析表明TiO
2、GCC成功的被RTV修饰改性。
太阳光反射特性及热反射性能分析。根据波长的不同,太阳光辐射可分为紫外区、可见光区和近红外区,在太阳辐射出的能量中,可见光区和近红外区辐射能量占90%以上。如图3(a) 所示,测量了300 nm 至2500 nm波长范围内不同涂层的反射光谱曲线。结果表明,涂层S0太阳光反射率要远远低于其他五种涂层,同时,计算了不同涂层的紫外区反射率(300 nm-400 nm)、可见光区(400 nm-780 nm)反射率、近红外区(780
nm-2500 nm)反射率和太阳光(300 nm-2500 nm)反射率的平均值,结果如图3(b) 所示。涂层S0的可见光区和近红外区反射率分别为44.2%和40.8%,而涂层S1、S2、S3、S4和S5的可见光区和近红外区反射率分别大于80%和75%。此外,涂层S0、S1、S2、S3、S4和S5 的太阳光反射率分别为41.4%、81.7%、87.2%、89.5%、82.4%和78.9%。根据中国建筑节能标准(JG/T 235-2014),要求建筑反射隔热涂料的太阳光反射率大于或等于65%,近红外区反射率大于或等于80%。涂层S3的近红外区和太阳光反射率最高,分别为89.2%和89.5%,因此,涂层S3相比于其他涂层的太阳光反射率最优。
为了研究涂层在太阳辐射下的实际热反射性能,如图3(c) 所示,将六种不同涂层悬空放置在室外,该实验于2021年5月16日在苏州进行,天气晴朗,最高气温为35℃。实验从上午9:00开始,下午 17:00结束,每隔1 h用红外测温仪测量并计算各个涂层表面的平均温度。涂层表面的平均温度随时间的变化如图3(d) 所示,结果表明,涂层S0在12:00至14:00时的表面平均温度分别为54.68℃、55.22℃和53.00℃,而涂层S3在12:00至14:00时的表面平均温度分别为46.00℃、45.58℃和45.65℃。涂层S0是没有喷涂过高反射耐磨超疏水涂层的普通水泥涂层,太阳光反射率不高,在太阳光辐射下表面温度很高。相反,涂层S3具有很高的太阳光反射率,能够反射可见光和近红外区的辐射能量,其最高温度降低了约10℃。以上结果表明了高反射耐磨超疏水涂层具有优异的热反射效果。选择涂层S3进行以下实验。
胶带剥离测试。超疏水涂层在日常使用过程中,不可避免地会与外界物质接触,表面会产生摩擦、碰撞和粘附等行为。在接触过程中,超疏水涂层表面脆弱的微观结构和低表面能材料都会被破坏,从而导致涂层失去超疏水性。胶带剥离测试是为了检验涂层材料对基底表面的粘结力。实验示意图如图4(a) 所示。测试过程中,将3M胶带紧贴在超疏水涂层表面,在胶带上负载1 kg的砝码并保持5 min,以确保涂层的表面和胶带完全接触,然后取下砝码,揭开胶带。重复五次上述操作后,测量涂层表面的CA和SA,将这一过程视为一次剥离循环。涂层经过10次剥离循环(50次胶带剥离)后的结果如图4(b) 所示,水滴在涂层表面维持良好的球形状态。从图4(c) 中可以看出,涂层在整个剥离测试过程中,CA稍有减小,SA稍有增加,但整体依然保持着超疏水性,表现出优异的稳定性。
磨损测试。目前,用砂纸磨损超疏水涂层的表面来评价超疏水涂层的耐磨性是最常用的方法之一。图5(a) 为砂纸磨损涂层的实验示意图。将800目的砂纸水平放置在桌面上,然后将含有超疏水涂层的表面贴在砂纸上,并在500 g砝码的负载下沿直线推动样品。样品的移动速度为5 cm/s,移动距离为20 cm,然后测量涂层表面的CA和SA,将这一过程视为一次磨损循环。涂层经过10次磨损循环后的结果如图5(b) 所示,可以看出,涂层未丧失超疏水性。经过10次磨损循环后,涂层的表面CA仍高于150°,SA仍小于10°(图5(c)),结果表明涂层依然保持优异的超疏水性。另外使用400和1200目的砂纸进行磨损测试,其结果与图5(c) 基本相同。
图6中,(a)-(c) 为涂层摩擦前的SEM图,从图中可以看出,涂层表面的微纳粗糙结构清晰可见,而图6中,(d)-(f) 为涂层摩擦后的SEM图,在低倍率下(图6(d))观察发现,涂层表面出现大量划痕,这是砂纸摩擦涂层表面留下的痕迹,进一步在高倍率下(图6中,(e)-(f))观察发现涂层表面仍然粗糙,其微纳结构未被破坏。涂层摩擦前后的微观形貌没有明显改变,这是由于水泥基底本身比较粗糙,涂层能很好的附着在基底上,并且水泥基底固化后十分坚硬,能够为涂层提供有效保护,避免涂层被砂纸完全摩擦掉。以上结果表明,所制备的超疏水涂层具有优异的机械稳定性。
化学稳定性和抗紫外线性能。超疏水涂层在户外环境中使用时,会受到酸雨、碱性溶液、有机溶剂等腐蚀性液体的侵蚀,导致表面疏水性变差。因此,对所制备的高反射耐磨超疏水涂层的化学稳定性进行了测定。如图7(a) 所示,选用HCL和NaOH溶液来配置PH值为2-12的腐蚀性溶液,将腐蚀性液体滴在涂层表面,然后静置12 h,测量涂层表面的CA。图7(b) 为不同pH值涂层表面的CA。从pH值的测试结果中可以看出涂层具有优异的抗腐蚀性,涂层的表面所测得的CA均大于150°。将涂层微微地倾斜时,球形的液滴很容易从表面滚落,涂层表面也没有发现被腐蚀的痕迹,这表明了所制备的高反射耐磨超疏水涂层具有良好的化学稳定性。
超疏水涂层的抗紫外线性能也是一个非常重要的指标。图7(c) 为涂层抗紫外线实验的示意图。将所制备好的超疏水涂层放置在功率为8w的紫外光下照射,涂层每照射 12 h为一次照射周期,在每次照射周期后测试涂层的 CA 和 SA。图7(d) 显示了紫外光照射周期对涂层的润湿性影响。从图中可以看出,涂层在经过14次紫外光照射周期(168 h)后,其润湿性没有发生明显的变化。涂层的CA均在 150°以上,SA均低于10°,结果表明所制备的涂层具有优异的抗紫外线性能。
自清洁测试。白色的太阳光反射涂层容易被灰尘、液体等污染物所沾染,覆盖在涂层表面的污染物会导致太阳光反射率急剧下降。因此,具有自清洁能力的超疏水涂层可防止污染物在表面堆积。将土壤、石灰和砂砾的混合物洒在高反射耐磨超疏水涂层表面来模拟实际生活中的污染物,并通过连续水滴冲击模拟自然降雨来测试涂层的自清洁能力。如图8(a) 所示,在连续滴下少量的自来水后,可以观察到涂层表面污染物完全被水滴带走,说明涂层在自然降雨条件下具有良好的自清洁性。如图8(b) 所示,将番茄酱滴在涂层上,然后缓缓地抬起涂层,可以看到番茄酱顺势滚落,没有沾染在涂层表面,结果表明该超疏水涂层对粘性液体也具有一定的自清洁能力。此外,在日常生活中经常使用的各种液体,尤其是液体食品,很容易溅到太阳光反射涂层的表面,从而破坏涂层表面的反射率。图8(c) 显示了各种液体(蓝墨水、蜂蜜、泥水、盐水、咖啡、可乐)在涂层表面呈现出球形形状。将这些液体滴在涂层表面上时,倾斜一定角度后,这些液体会迅速从表面滚落,没有任何残留物。实验表明,高反射耐磨超疏水涂层的表面难以被灰尘和液体等污染物附着,表现出优异的自清洁性能。
耐霜冻性能。超疏水涂层表面的水滴一般成球形且水滴与表面的接触面积较小,此外,超疏水涂层表面的粗糙结构存在大量缝隙,能够困住一部分空气。由于水滴与涂层表面之间存在空气阻碍了两者之间的热量传递,因而超疏水涂层能够有效延长水滴的结冰时间。为了探究涂层的耐霜冻能力,对高反射耐磨超疏水涂层和普通水泥涂层进行了耐霜冻测试。从图9(a) 中可以看出,水滴在普通水泥涂层经过60 s就完全结冰,水滴完全失去了球形的形状并牢固冻结在水泥涂层表面很难除去。而同样的条件下,高反射耐磨超疏水涂层表面的水滴需要经过360 s才完全结冰(图9(b)),并且超疏水涂层表面的水滴依然保持球形且轻轻触碰就会掉落。结果表明,超疏水涂层不仅可以延长结冰时间,还能有效降低冰与涂层表面间的附着力。
超疏水表面可以延缓水滴结冰的时间,但不能阻止水滴结冰,在冬季寒冷环境中容易出现结冰积雪的现象,甚至还会经受长时间结冰融化再结冰的过程以及冰块过大而自发掉落的情形,这会对超疏水涂层表面的微纳结构造成不可修复性的破坏。为了探究高反射耐磨超疏水涂层在低温环境中的耐久性,对该涂层表面进行了冰珠剥离循环测试,如图9(c) 所示,经过40次循环周期的反复结冰-除冰过程后,该涂层表面的疏水性能并未受到较大的影响,CA基本上保持在155°,SA有一定的上升,但也小于10°。测试结果表明高反射耐磨超疏水涂层对于严寒条件有较好的耐霜冻能力,表现出良好的耐久性,可广泛应用于极端恶劣的环境中。
本发明以重质碳酸钙(GCC)为主要原料、二氧化钛(TiO
2)为太阳光反射增强填料,利用室温硫化硅橡胶(RTV)和正硅酸四乙酯(TEOS)对亲水的GCC微米粒子和TiO
2纳米粒子进行表面修饰,通过简单环保的方法在水泥基底表面上制备了高反射耐磨超疏水涂层。探究了不同GCC和TiO
2质量比对涂层润湿性以及太阳光反射特性的影响,同时,还测试分析了涂层的化学组成、微观形貌、机械稳定性、化学稳定性、自清洁性能和耐霜冻性能等。通过分析TiO
2、GCC和改性GCC/TiO
2涂层的FT-IR、XPS发现,亲水的TiO
2、GCC成功被RTV修饰改性;所制备的高反射耐磨超疏水涂层中GCC和TiO
2质量比为3∶1时,疏水效果最好,此时,CA和SA分别为158°和5.6°;所制备的高反射耐磨超疏水涂层具有优异的耐久性,在酸碱溶液侵蚀12 h后依然中维持超疏水状态;在紫外线下连续辐射168 h后,超疏水性基本没有变化。根据中国建筑节能标准(JG/T
235-2014),要求建筑反射隔热涂料的近红外区反射率大于或等于0.80,太阳光反射率大于或等于65%。而本发明所制备的高反射耐磨超疏水涂层的近红外区和太阳光反射率分别能够达到89.5%和89.2%,表现出优异的太阳光反射特性。同时,还对其进行了户外热反射性能测试,结果表明,高反射耐磨超疏水涂层与普通水泥涂层相比,能够有效降低表面温度约10℃。本发明高反射耐磨超疏水涂层还具有出色的耐磨性,可负载500 g砝码在800目的砂纸表面摩擦200 cm或经受胶带剥离50次,仍然可以保持150°以上的CA以及10°以下的SA。这得益于粗糙坚固的水泥基底为其提供保护,增强了涂层与基底之间的粘结力,从而保证了超疏水涂层的机械稳定性。本发明高反射耐磨超疏水涂层采用喷涂法制备,工艺简单、可大规模生产。该涂层具有优异的自清洁能力,能够清除表面灰尘等污染物,并对墨水、可乐、咖啡等生活中常见的液体均有排斥作用,还表现出在低温环境下的耐霜冻能力,能有效延长水滴结冰时间。
Claims (10)
- 一种高反射耐磨超疏水涂层,由改性GCC/TiO 2悬浮液干燥得到,其特征在于,所述改性GCC/TiO 2悬浮液包括重质碳酸钙、二氧化钛、室温硫化橡胶以及正硅酸四乙酯。
- 根据权利要求1所述高反射耐磨超疏水涂层,其特征在于,将二氧化钛粉末、重质碳酸钙粉末、室温硫化橡胶、正硅酸四乙酯、氨水与水混合,得到改性GCC/TiO 2悬浮液。
- 根据权利要求2所述高反射耐磨超疏水涂层,其特征在于,重质碳酸钙、二氧化钛的质量比为(1~10)∶1。
- 根据权利要求2所述高反射耐磨超疏水涂层,其特征在于,重质碳酸钙与二氧化钛的质量和、正硅酸四乙酯、室温硫化橡胶、氨水的用量比例为8g∶(1~3)mL∶(1~3)mL∶(0.2~0.8)mL。
- 权利要求1所述高反射耐磨超疏水涂层的制备方法,其特征在于,将二氧化钛粉末加入水中,再加入重质碳酸钙粉末,然后加入正硅酸四乙酯、室温硫化橡胶和氨水,得到改性GCC/TiO 2悬浮液;干燥所述改性GCC/TiO 2悬浮液得到高反射耐磨超疏水涂层。
- 一种高反射耐磨超疏水材料,由基底及位于所述基底上的涂层组成,其特征在于,所述涂层由改性GCC/TiO 2悬浮液干燥得到;所述改性GCC/TiO 2悬浮液包括重质碳酸钙、二氧化钛、室温硫化橡胶以及正硅酸四乙酯。
- 根据权利要求6所述高反射耐磨超疏水材料,其特征在于,重质碳酸钙、二氧化钛的质量比为(1~10)∶1。
- 根据权利要求6所述高反射耐磨超疏水材料,其特征在于,基底为无机材料或者有机材料。
- 权利要求6所述高反射耐磨超疏水材料的制备方法,其特征在于,将改性GCC/TiO 2悬浮液喷涂在基底上,干燥,得到高反射耐磨超疏水材料。
- 权利要求1所述高反射耐磨超疏水涂层在制备高反射耐磨超疏水材料中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210412869.1 | 2022-04-19 | ||
CN202210412869.1A CN114752236B (zh) | 2022-04-19 | 2022-04-19 | 一种高反射耐磨超疏水涂层及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023201943A1 true WO2023201943A1 (zh) | 2023-10-26 |
Family
ID=82332136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/113951 WO2023201943A1 (zh) | 2022-04-19 | 2022-08-22 | 一种高反射耐磨超疏水涂层及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114752236B (zh) |
WO (1) | WO2023201943A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114752236B (zh) * | 2022-04-19 | 2022-12-20 | 苏州大学 | 一种高反射耐磨超疏水涂层及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050222325A1 (en) * | 2004-04-06 | 2005-10-06 | Brotzman Richard W Jr | Surface treatment of nanoparticles to control interfacial properties and method of manufacture |
CN103748179A (zh) * | 2011-08-31 | 2014-04-23 | 陶氏环球技术有限责任公司 | 太阳能反射涂料 |
CN109651920A (zh) * | 2018-11-18 | 2019-04-19 | 东北石油大学 | 一种超疏水粉末涂料及其制备方法 |
CN109689813A (zh) * | 2016-08-25 | 2019-04-26 | 道康宁东丽株式会社 | 制备水性大尺寸且稳定的硅橡胶悬浮液的方法以及由此制备的优异感官消光涂层 |
CN110016318A (zh) * | 2017-12-26 | 2019-07-16 | 纳米及先进材料研发院有限公司 | 用于硅酮密封剂的可室温固化的组合物及其制备方法 |
CN113773750A (zh) * | 2021-10-08 | 2021-12-10 | 四川大学 | 一种水溶性阻燃超双疏涂料、制备方法及涂层 |
CN114752236A (zh) * | 2022-04-19 | 2022-07-15 | 苏州大学 | 一种高反射耐磨超疏水涂层及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69711054T2 (de) * | 1997-11-25 | 2002-10-17 | Agfa-Gevaert N.V., Mortsel | Verfahren zur Herstellung einer positiv arbeitenden Druckplatte, von einem lithographischen Träger mit einem vernetzten hydrophilen Substrat ausgehend |
CN104448374A (zh) * | 2014-12-03 | 2015-03-25 | 南昌航空大学 | 一种室温硫化硅橡胶超疏水表面的制备方法 |
CN104761743A (zh) * | 2015-04-24 | 2015-07-08 | 南昌航空大学 | 一种硅橡胶超疏水表面的简易通用制备方法 |
-
2022
- 2022-04-19 CN CN202210412869.1A patent/CN114752236B/zh active Active
- 2022-08-22 WO PCT/CN2022/113951 patent/WO2023201943A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050222325A1 (en) * | 2004-04-06 | 2005-10-06 | Brotzman Richard W Jr | Surface treatment of nanoparticles to control interfacial properties and method of manufacture |
CN103748179A (zh) * | 2011-08-31 | 2014-04-23 | 陶氏环球技术有限责任公司 | 太阳能反射涂料 |
CN109689813A (zh) * | 2016-08-25 | 2019-04-26 | 道康宁东丽株式会社 | 制备水性大尺寸且稳定的硅橡胶悬浮液的方法以及由此制备的优异感官消光涂层 |
CN110016318A (zh) * | 2017-12-26 | 2019-07-16 | 纳米及先进材料研发院有限公司 | 用于硅酮密封剂的可室温固化的组合物及其制备方法 |
CN109651920A (zh) * | 2018-11-18 | 2019-04-19 | 东北石油大学 | 一种超疏水粉末涂料及其制备方法 |
CN113773750A (zh) * | 2021-10-08 | 2021-12-10 | 四川大学 | 一种水溶性阻燃超双疏涂料、制备方法及涂层 |
CN114752236A (zh) * | 2022-04-19 | 2022-07-15 | 苏州大学 | 一种高反射耐磨超疏水涂层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114752236B (zh) | 2022-12-20 |
CN114752236A (zh) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications | |
Fillion et al. | A review of icing prevention in photovoltaic devices by surface engineering | |
US10131802B2 (en) | Nanosilica based compositions, structures and apparatus incorporating same and related methods | |
CN108299869B (zh) | 高强度超疏水自清洁涂层和高强度减反增透超疏水自清洁涂层以及它们的制备方法 | |
Boostani et al. | Review of nanocoatings for building application | |
CN107746677B (zh) | 一种强效抗污自洁喷涂液及其制备方法和应用 | |
Tan et al. | Facile fabrication of a mechanical, chemical, thermal, and long‐term outdoor durable fluorine‐free superhydrophobic coating | |
Xi et al. | A facile strategy to form three-dimensional network structure for mechanically robust superhydrophobic nanocoatings with enhanced transmittance | |
Wang et al. | Facilely constructing micro-nanostructure superhydrophobic aluminum surface with robust ice-phobicity and corrosion resistance | |
Zhang et al. | A systematic laboratory study on an anticorrosive cool coating of oil storage tanks for evaporation loss control and energy conservation | |
CN111875337A (zh) | 一种无机降温涂层及其制备方法 | |
WO2023201943A1 (zh) | 一种高反射耐磨超疏水涂层及其制备方法 | |
CN113896430A (zh) | 一种胶黏剂复合耐磨超疏水涂层及其制备方法 | |
Liu et al. | Thermochromic superhydrophobic coatings for building energy conservation | |
Liu et al. | Large-area fabrication of colorful superhydrophobic coatings with high solar reflectivity | |
CN110681552A (zh) | 一种耐磨擦超疏水涂层的制备方法 | |
Wu et al. | Preparation and characterization of perfluorine-SiO2 nanoparticles and superhydrophobic fluorosilicone/silica hybrid composite coating | |
Wang et al. | A three-layer superhydrophobic coatings inspired by human scalp structure with excellent anti-reflection and durable effects for photovoltaic applications | |
CN103232168A (zh) | 利用疏水或疏油的纳米颗粒实现玻璃表面自清洁的方法 | |
Wei et al. | Fluorine-free photothermal superhydrophobic copper oxide micro-/nanostructured coatings for anti-icing/de-icing applications | |
Li et al. | Construction of transparent, robust and haze-selectable superhydrophobic coatings with honeycomb structure | |
Liu et al. | Fabrication of polydimethylsiloxane superhydrophobic coatings with self-healing properties using the template method | |
Yuan et al. | Mechanism of photovoltaic module soiling in the presence of dew | |
Cheng et al. | Fabrication and properties of thermochromic superhydrophobic coatings | |
CN115011155B (zh) | 一种彩色耐久性超疏水涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22938168 Country of ref document: EP Kind code of ref document: A1 |