WO2023201935A1 - 带隔离的三等分功率分配器及微波发射系统 - Google Patents

带隔离的三等分功率分配器及微波发射系统 Download PDF

Info

Publication number
WO2023201935A1
WO2023201935A1 PCT/CN2022/111604 CN2022111604W WO2023201935A1 WO 2023201935 A1 WO2023201935 A1 WO 2023201935A1 CN 2022111604 W CN2022111604 W CN 2022111604W WO 2023201935 A1 WO2023201935 A1 WO 2023201935A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
ring
power divider
mixing
mixing ring
Prior art date
Application number
PCT/CN2022/111604
Other languages
English (en)
French (fr)
Inventor
顾占彪
高洪民
张之梁
任小永
陈乾宏
王书杰
谭超
徐森锋
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to US18/196,809 priority Critical patent/US11843158B2/en
Publication of WO2023201935A1 publication Critical patent/WO2023201935A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the present application relates to the field of microwave technology, and in particular to an isolated three-section power divider and a microwave transmitting system.
  • a power combiner is a circuit that combines multiple input signal energy into one signal energy output.
  • a circuit that divides one signal energy into multiple signal energy outputs is called a power divider.
  • Power divider/combiner is an extremely important component in microwave systems. Whether in microwave communications, telemetry and remote sensing, radar or electronic warfare systems, signal power distribution/combining is extremely important.
  • Embodiments of the present application provide an isolated three-equal power divider and a microwave transmission system to solve the problem that the current three-equal power divider/combiner has poor performance and cannot meet the needs of the microwave transmission system.
  • embodiments of the present application provide an isolated three-section power divider, including: a first mixing ring with a distribution ratio of 1:2 and a second mixing ring with a distribution ratio of 1:1;
  • the first port of the first hybrid ring is a signal input port
  • the second port of the first hybrid ring is connected to the first port of the second hybrid ring, the second port and the third port of the second hybrid ring and the third port of the first hybrid ring.
  • the three ports are respectively the three signal output terminals of the three-part power divider;
  • the second port of the first hybrid ring is a high-power port, and the fourth port of the first hybrid ring and the fourth port of the second hybrid ring are both isolated ports.
  • both the first mixing ring and the second mixing ring are circular mixing rings.
  • the first mixing ring is formed into a closed mixing ring by two symmetrically arranged arcs and two parallel sides connected between the two arcs; the second port of the first mixing ring and the third port are respectively arranged on two parallel sides and perpendicular to the corresponding parallel side; and/or the second mixing ring consists of two symmetrically arranged arcs and two connecting arcs between the two arcs.
  • the parallel sides form a closed mixing ring; the second port and the third port of the second mixing ring are respectively provided on the two parallel sides and perpendicular to the corresponding parallel sides.
  • the first port of the first mixing ring is arranged on one of the arcs and is located on the symmetry axis of the corresponding arc; the second port and the third port of the first mixing ring are arranged symmetrically with respect to the first port; And/or, the first port of the second mixing ring is arranged on one of the arcs and is located on the symmetry axis of the corresponding arc; the second port and the third port of the second mixing ring are arranged symmetrically with respect to the first port.
  • the fourth port and the third port of the first mixing ring are on the same parallel side, and/or the fourth port and the third port of the second mixing ring are on the same parallel side.
  • the second port and the third port of the first hybrid ring, and the second port and the third port of the second hybrid ring are directly connected to microstrip lines, and one end of the microstrip line is perpendicular to the corresponding parallel side. The other end is smoothly bent away from the corresponding first port.
  • the first port and the fourth port of the first hybrid ring and the first port and the fourth port of the second hybrid ring are externally connected to 50 ⁇ microstrip lines.
  • the second port and the third port of the first hybrid ring are respectively connected to 50 ⁇ microstrip lines of the same length perpendicular to the parallel side; the second port and the third port of the second hybrid ring are respectively connected to the 50 ⁇ microstrip line perpendicular to the parallel side. 50 ⁇ microstrip lines with the same side length.
  • the second port and the third port of the first hybrid ring, and the second port and the third port of the second hybrid ring are externally connected to 50 ⁇ microstrip lines of the same length respectively.
  • embodiments of the present application provide a microwave transmission system, including the three-section power divider with isolation according to any one of the first aspect.
  • the embodiment of the present application provides an isolated three-equal power divider and a microwave transmission system.
  • a hybrid ring with isolation to replace the commonly used Wilkinson power divider, the isolation of the three-equal power divider is guaranteed. , ensuring that the device can work stably, and the three-section power divider with isolation has a simple structure and high performance.
  • Figure 1 is a schematic structural diagram of a commonly used hybrid ring
  • Figure 2 is a schematic structural diagram of a circular mixing ring provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a new type of mixing ring provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an isolated three-section power divider provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an isolated three-section power divider provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a simulation model of an isolated three-section power divider provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the simulation results of the insertion loss of an isolated three-section power divider provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the simulation results of the isolation degree of an isolated three-section power divider provided by an embodiment of the present application.
  • the first hybrid ring 11-first port, 12-second port, 13-third port, 14-fourth port;
  • the second hybrid ring 21-first port, 22-second port, 23-third port, 24-fourth port;
  • the three output ports of a three-way power divider are not isolated from each other.
  • the imbalance in amplitude and phase between the three output ports can easily cause unstable operation of the device, and
  • the three output ports will also interfere with each other due to the influence of layout and wiring.
  • embodiments of the present application provide an isolated three-section power divider and a microwave transmission system.
  • the following first introduces the three-section power divider with isolation provided by the embodiment of the present application.
  • a commonly used hybrid ring is currently used.
  • the hybrid ring is a four-port network and can be made of microstrip lines.
  • the circumference of the entire ring is 1.5 ⁇ , and four branch lines are connected in parallel on the ring, dividing the ring into four segments.
  • port 2 of the hybrid ring When a signal is input from port 2 of the hybrid ring, the signal is inverted and output from ports 1 and 4 according to a certain power distribution ratio, while port 3 theoretically has no output and is an isolated end.
  • ports 2 and 3 will output in phase according to a certain power distribution ratio, and port 4 will have no output. Therefore, ports 1 and 4 are isolated from each other, and similarly, ports 2 and 3 are also isolated from each other.
  • embodiments of the present application provide an isolated three-section power divider and a microwave transmission system.
  • the following first introduces the three-section power divider with isolation provided by the embodiment of the present application. It can be understood that when the power divider is used as a power combiner, the roles of the signal input end and the signal output end can be replaced, and the isolation principles of the power divider and the power combiner are the same.
  • the embodiment of the present application provides an isolated three-section power divider, including a first mixing ring with a distribution ratio of 1:2 and a second mixing ring with a distribution ratio of 1:1.
  • the first port of the first hybrid ring is a signal input port
  • the second port of the first hybrid ring is connected to the first port of the second hybrid ring
  • the second port and the third port of the second hybrid ring and the first hybrid ring The third ports are respectively the three signal output terminals of the three-part power divider.
  • the second port of the first hybrid ring is a port with high power.
  • the fourth ports of the first mixing ring and the second mixing ring are isolation ends.
  • the first port is provided between the second port and the third port
  • the fourth port is also provided between the second port and the third port.
  • the first port and the fourth port are provided on different sides, that is, the port surrounding sequence of the first mixing ring and the second mixing ring is the first port, the second port, the fourth port, and the third port in the clockwise direction.
  • Figure 2 shows a circular mixing ring used in the embodiment of the present application.
  • a first mixing ring with a distribution ratio of 1:2 and a second mixing ring with a distribution ratio of 1:1 can be used.
  • the first mixing ring and the second mixing ring are both circular mixing rings.
  • the circular mixing ring includes a first port 1, a second port 2, a third port 3 and a fourth port 4 arranged in a clockwise direction.
  • the microstrip lines drawn from the second port and the third port will have a certain included angle, and the included angle is an irregular angle.
  • the phases of the three-section power divider/combiner are required to be consistent, layout and wiring are difficult.
  • embodiments of the present application also provide a racetrack-shaped hybrid ring, with a structure as shown in Figure 3, which consists of two symmetrically arranged
  • the arc 5 and the two parallel sides 6 connected between the two arcs 5 form a closed mixing ring.
  • the output ports of the first mixing ring that is, the corresponding second ports 12 and third ports 13 are respectively arranged on two parallel sides 6 and are arranged perpendicularly to the corresponding parallel sides 6.
  • the output port of the second mixing ring that is, the corresponding second port 22 and the third port 23 are respectively arranged on the two parallel sides 6 and are arranged perpendicularly to the corresponding parallel sides 6 .
  • the first port 11 of the first mixing ring is set on one of the arcs 5 and is located on the symmetry axis of the corresponding arc 5; and/or , the first port 21 of the second mixing ring is arranged on one of the arcs 5 and is located on the symmetry axis of the corresponding arc 5 .
  • the second port 12 and the third port 13 of the first hybrid ring are symmetrically arranged relative to the first port 11; and/or the second port 22 and the third port 23 of the second hybrid ring are symmetrically arranged relative to the first port 21, That is, the symmetry axes of the second port (12, 22) and the third port (13, 23) pass through the first port (11, 21).
  • the fourth port 14 and the third port 13 of the first mixing ring are on the same parallel side 6
  • the fourth port 24 and the third port 23 of the second mixing ring are on the same parallel side 6 .
  • an isolated three-section power divider as shown in Figures 4 and 5 includes: a first mixing ring with a distribution ratio of 1:2 and a third mixing ring with a distribution ratio of 1:1. Two mixed rings.
  • the first port 11 of the first hybrid ring is a signal input port
  • the second port 12 of the first hybrid ring is connected to the first port 21 of the second hybrid ring
  • the second port 22 and the third port 23 of the second hybrid ring are and the third port 13 of the first hybrid ring are respectively three signal output terminals of the three-section power divider.
  • the second port 12 of the first hybrid ring is a port with high power.
  • the fourth port 14 of the first mixing ring and the fourth port 24 of the second mixing ring are isolated ends.
  • the first mixing ring and the second mixing ring are both enclosed by two symmetrically arranged arcs 5 and two parallel sides 6 connected between the two arcs 5.
  • the second port 12 and the third port 13 of the first mixing ring are respectively arranged on the two parallel sides 6 and perpendicular to the corresponding parallel sides 6, and the second port 22 and the third port 23 of the second mixing ring are They are also respectively arranged on two parallel sides 6 and are arranged perpendicularly to the corresponding parallel sides 6 .
  • the first port 11 of the first mixing ring is disposed on one of the arcs 5 and is located on the symmetry axis of the corresponding arc 5.
  • the first port 21 of the second mixing ring is also disposed on one of the arcs 5 and is located on the symmetry axis of the corresponding arc 5. on the axis of symmetry of the corresponding arc 5.
  • the second port 12 and the third port 13 of the first mixing ring are arranged symmetrically with respect to the first port 11
  • the second port 22 and the third port 23 of the second mixing ring are arranged symmetrically with respect to the first port 21 .
  • the fourth port 14 is an isolated end
  • the fourth port 14 and the third port 13 are on the same parallel side 6
  • the fourth port 24 is also an isolated end
  • the fourth port 14 is an isolated end.
  • Port 24 and third port 23 are also on the same parallel side 6 .
  • the phases of the three signal output ports can be made consistent, thereby improving the performance of the isolated three-section power divider.
  • External 50 ⁇ microstrip lines can be connected to the four ports of the first hybrid ring and the second hybrid ring.
  • the first The second port 12 and the third port 13 of the hybrid ring are respectively externally connected to 50 ⁇ microstrip lines of the same length perpendicular to the corresponding parallel side 6 , that is, at least one end is perpendicular to the corresponding parallel side 6 .
  • the second port 22 and the third port 23 of the second hybrid ring are respectively externally connected to 50 ⁇ microstrip lines of the same length perpendicular to the parallel side 6 , that is, at least one end is perpendicular to the corresponding parallel side 6 .
  • the second port (12, 22) and the third port (13, 23) of the first hybrid ring and the second hybrid ring can be connected to 50 ⁇ microstrip lines with the same length respectively. , that is, the lengths of the 50 ⁇ microstrip lines at the four ports are all the same.
  • the second port 12 of the first hybrid ring is connected to the first port 21 of the second hybrid ring through an external 50 ⁇ microstrip line, and the microstrip line connected to the second port 12 is perpendicular to the corresponding parallel side 6, and the other end is toward Smoothly bend away from the first port 11 .
  • the third port 13 of the first hybrid ring is externally connected to a 50 ⁇ microstrip line, and one end of the microstrip line is perpendicular to the corresponding parallel side 6, and the other end is smoothly bent in a direction away from the first port 11, forming an isolated three-section The first output port 31 of the power divider.
  • the first port 11 of the first hybrid ring is externally connected to a 50 ⁇ microstrip line to form a signal input port of the isolated three-section power divider. And the microstrip lines connected to the second port 12 and the third port 13 of the first hybrid ring have the same length.
  • the microstrip line connected to the second port 22 of the second hybrid ring is perpendicular to the corresponding parallel side 6, and the other end is smoothly bent away from the first port 21 to form the second output port of the isolated three-section power divider. 32.
  • the third port 23 of the second hybrid ring is externally connected to a 50 ⁇ microstrip line, and one end of the microstrip line is perpendicular to the corresponding parallel side 6, and the other end is smoothly bent away from the first port 21 to form an isolated three-section
  • the microstrip lines connected to the second port 22 and the third port 23 of the second hybrid ring have the same length.
  • the impedance of the microstrip line can also be other values, such as 60 ⁇ , 75 ⁇ , 100 ⁇ , etc., which can be designed according to actual design requirements. Parameters such as the shape and length of the microstrip lines can also be adjusted according to actual design requirements, and the shapes of each microstrip line can be the same or different, and the lengths of each microstrip line can be the same or different.
  • This application provides a three-equal power divider with isolation.
  • a hybrid ring with isolation to replace the commonly used Wilkinson power divider, the isolation of the three-part power divider is guaranteed and the device can be stable.
  • the three-section power divider with isolation has a simple structure, high performance, and is easy to layout and wire.
  • the following takes a three-way power divider/synthesizer with an X-band simulation frequency of 9-10GHz as an example.
  • the structural diagram of the simulation model is shown in Figure 6.
  • Er 3.66 is set, and the plate thickness is 0.508mm.
  • Er is the dielectric constant of the selected microwave dielectric plate.
  • Port 1 is a common signal input port, and port 2, port 3, and port 4 are three signal output ports respectively.
  • the input and output impedances are both 50 ohms.
  • Ang(S21), Ang(S31), and Ang(S41) are the phases of the three signal output ports, and the phase deviation of the entire frequency band is ⁇ 4°.
  • Such phase deviation has a low impact on the power combining efficiency and can be ignored.
  • Such a power divider/synthesizer has good amplitude and phase consistency among the three channels, high isolation between the three outputs, and easy layout and wiring.
  • this application also provides a microwave transmitting system.
  • the isolated three-section power combiner or three-section power divider based on the above principle can be used.

Landscapes

  • Transmitters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种带隔离的三等分功率分配器及微波发射系统,其中,带隔离的三等分功率分配器,包括:一个分配比为1:2的第一混合环和一个分配比为1:1的第二混合环;第一混合环的第一端口为信号输入端,第一混合环的第二端口连接第二混合环的第一端口,第二混合环的第二端口和第三端口以及第一混合环的第三端口分别为三等分功率分配器的三个信号输出端;其中,第一混合环的第二端口为功率大的端口。本申请提供的带隔离的三等分功率分配器结构简单、性能较高、且具有良好的隔离度。

Description

带隔离的三等分功率分配器及微波发射系统
本专利申请要求于2022年4月21日提交的中国专利申请No.CN202210423845.6的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及微波技术领域,尤其涉及一种带隔离的三等分功率分配器及微波发射系统。
背景技术
功率合成器是一种将多路输入信号能量合成一路信号能量输出的电路,反之将一路信号能量分成多路信号能量输出的电路称为功率分配器。功率分配器/合成器是微波系统中极为重要的组成部件,无论是在微波通信、遥测遥感、雷达还是电子战系统中,信号的功率分配/合成都是极为重要的。
在微波发射系统中,经常会遇到单只微波有源器件的输出功率无法满足需求,必须进行多路功率合成才能满足需求。在大功率平面功率合成时,要综合考虑整体的功率、效率和尺寸,奇数路合成尤其是三路功率合成有着广泛应用。反过来,在功率分配时也会面临同样的问题。
然而,目前三等分微带功率合成器/分配器的性能较差,无法满足微波发射系统的需求。
技术问题
本申请实施例提供了一种带隔离的三等分功率分配器及微波发射系统,以解决目前三等分功率分配器/合成器性能较差、无法满足微波发射系统需求的问题。
技术解决方案
第一方面,本申请实施例提供了一种带隔离的三等分功率分配器,包括:一个分配比为1:2的第一混合环和一个分配比为1:1的第二混合环;
第一混合环的第一端口为信号输入端,第一混合环的第二端口连接第二混合环的第一端口,第二混合环的第二端口和第三端口以及第一混合环的第三端口分别为三等分功率分配器的三个信号输出端;
其中,第一混合环的第二端口为功率大的端口,所述第一混合环的第四端口和所述第二混合环的第四端口均为隔离端。
在一种可能的实现方式中,第一混合环和第二混合环均为圆形的混合环。
在一种可能的实现方式中,第一混合环由两个对称设置的圆弧及连接在两个圆弧之间的两个平行边围成封闭的混合环;第一混合环的第二端口和第三端口分别设置在两个平行边上、并与对应的平行边垂直设置;和/或,第二混合环由两个对称设置的圆弧及连接在两个圆弧之间的两个平行边围成封闭的混合环;第二混合环的第二端口和第三端口分别设置在两个平行边上、并与对应的平行边垂直设置。
可选的,第一混合环的第一端口设置在其中一个圆弧上、并位于相应圆弧的对称轴上;第一混合环的第二端口和第三端口相对于第一端口对称设置;和/或,第二混合环的第一端口设置在其中一个圆弧上、并位于相应圆弧的对称轴上;第二混合环的第二端口和第三端口相对于第一端口对称设置。
可选的,第一混合环的第四端口与第三端口在同一个平行边上,和/或,第二混合环的第四端口与第三端口在同一个平行边上。
可选的,第一混合环的第二端口和第三端口,以及第二混合环的第二端口和第三端口均直接连接有微带线,微带线的一端与对应的平行边垂直、另一端向远离对应的第一端口方向圆滑折弯。
在一种可能的实现方式中,第一混合环的第一端口和第四端口,以及第二混合环的第一端口和第四端口处均外接50Ω微带线。
可选的,第一混合环的第二端口和第三端口处分别外接垂直于平行边的长度相同的50Ω微带线;第二混合环的第二端口和第三端口处分别外接垂直于平行边的长度相同的50Ω微带线。
可选的,第一混合环的第二端口和第三端口,以及第二混合环的第二端口和第三端口处分别外接长度相同的50Ω微带线。
第二方面,本申请实施例提供了一种微波发射系统,包括第一方面中的任一项的带隔离的三等分功率分配器。
有益效果
本申请实施例提供一种带隔离的三等分功率分配器及微波发射系统,通过采用带有隔离度的混合环代替常用的威尔金森功率分配器,保证三等分功率分配器的隔离度,保证器件能够稳定工作,且带隔离的三等分功率分配器结构简单、性能较高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是目前常用的混合环的结构示意图;
图2是本申请实施例提供的一种圆形混合环的结构示意图;
图3是本申请实施例提供的一种新型混合环的结构示意图;
图4是本申请实施例提供的一种带隔离的三等分功率分配器的结构示意图;
图5是本申请实施例提供的一种带隔离的三等分功率分配器的结构示意图;
图6是本申请实施例提供的一种带隔离的三等分功率分配器的仿真模型结构示意图;
图7是本申请实施例提供的一种带隔离的三等分功率分配器的插入损耗的仿真结果示意图;
图8是本申请实施例提供的一种带隔离的三等分功率分配器的隔离度的仿真结果示意图。
附图标记说明:
在图2和图3中,1-第一端口,2-第二端口,3-第三端口,4-第四端口,5-圆弧,6-平行边;
在图4和图5中,第一混合环:11-第一端口,12-第二端口,13-第三端口,14-第四端口;
在图4和图5中,第二混合环:21-第一端口,22-第二端口,23-第三端口,24-第四端口;
在图4和图5中,31-第一输出端口,32-第二输出端口,33-第三输出端口;
在图6中,1-信号输入端口、2、3、4-信号输出端口。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。本文中,“和/或”指的是可以是特征A,可以是特征B,也可以是特征A和特征B的组合。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
正如背景技术中所描述的,三路功率分配器在一般情况下,三个输出端口之间相互没有隔离,三个输出端口之间的幅度和相位的不平衡极易引起器件不稳定工作,且三个输出端口也会受到排版布线的影响相互干扰。
为了解决现有技术问题,本申请实施例提供了一种带隔离的三等分功率分配器及微波发射系统。下面首先对本申请实施例所提供的带隔离的三等分功率分配器进行介绍。
发明人在长期的工作中发现,目前采用功率分配比为1:2和1:1的威尔金森组成的功率分配器/合成器,隔离度非常差,影响器件的正常工作。
如图1所示的目前常用的混合环,混合环是四端口网络,可以由微带线制成。整个环的周长为1.5λ,四个分支线并联在环上,将环分为4段。当信号自混合环的端口②输入时,信号从端口①和④按一定的功率分配比反相输出,而端口③从理论上来说是没有输出的,为隔离端。反之,若信号自端口①输入,则端口②和③按一定的功率分配比同相输出,而端口4无输出。因此端口①和④是彼此隔离的,同样的,端口②和③也是互相隔离的。
为了解决现有技术问题,本申请实施例提供了一种带隔离的三等分功率分配器及微波发射系统。下面首先对本申请实施例所提供的带隔离的三等分功率分配器进行介绍。可以理解的是,当该功率分配器作为功率合成器时,信号输入端和信号输出端的角色替换即可,功率分配器和功率合成器的隔离原理是相同的。
本申请实施例提供了一种带隔离的三等分功率分配器,包括一个分配比为1:2的第一混合环和一个分配比为1:1的第二混合环。
其中,第一混合环的第一端口为信号输入端,第一混合环的第二端口连接第二混合环的第一端口,第二混合环的第二端口和第三端口以及第一混合环的第三端口分别为三等分功率分配器的三个信号输出端。具体的,第一混合环的第二端口为功率大的端口。第一混合环和第二混合环的第四端口为隔离端。
需要说明的是,如图2至图5所示,第一端口设于第二端口和第三端口之间,第四端口也设于第二端口和第三端口之间,但是,第一端口和第四端口设于不同侧,即,第一混合环和第二混合环的端口环绕顺序均为沿顺时针方向的第一端口、第二端口、第四端口、第三端口。
图2示出了本申请实施例使用的一种圆形混合环,可以采用一个分配比为1:2的第一混合环和一个分配比为1:1的第二混合环。其中,第一混合环和第二混合环均为圆形的混合环。该圆形的混合环包括沿顺时针方向排列的第一端口1、第二端口2、第三端口3和第四端口4。如图4和图5所示,通过改变第一混合环的第一端口11到第二端口12和第三端口13的变换节阻抗,以及第二混合环的第一端口21到第二端口22和第三端口23的变换节阻抗,即输入端口到输出端口的变换节阻抗,即可形成两个输出功率比不相同的混合环。
但是,当第一混合环和第二混合环均为圆形的混合环时,第二端口和第三端口引出的微带线会存在一定的夹角,且该夹角为非规则的角度,当要求的三等分功率分配器/合成器的相位需保持一致时,排版布线较困难。
为了保证三等分功率分配器/合成器的相位一致、且易于排版布线,本申请实施例还提供了一种类似跑道形的混合环,如图3所示的结构,即由两个对称设置的圆弧5及连接在两个圆弧5之间的两个平行边6围成封闭的混合环。结合如4和图5所示的结构,第一混合环的输出端口,即对应的第二端口12和第三端口13分别设置在两个平行边6上、并与对应的平行边6垂直设置;和/或,第二混合环的输出端口,即对应的第二端口22和第三端口23分别设置在两个平行边6上、并与对应的平行边6垂直设置。
为了保证相位一致,且易于排版,如图3至图5所示,第一混合环的第一端口11设置在其中一个圆弧5上、并位于相应圆弧5的对称轴上;和/或,第二混合环的第一端口21设置在其中一个圆弧5上、并位于相应圆弧5的对称轴上。第一混合环的第二端口12以及第三端口13相对于第一端口11对称设置;和/或,第二混合环的第二端口22以及第三端口23相对于第一端口21对称设置,即,第二端口(12,22)和第三端口(13,23)的对称轴线经过第一端口(11,21)。第一混合环的第四端口14与第三端口13在同一个平行边6上,和/或,第二混合环的第四端口24与第三端口23在同一个平行边6上。
在一些实施例中,如图4和5所示的一种带隔离的三等分功率分配器,包括:一个分配比为1:2的第一混合环和一个分配比为1:1的第二混合环。
其中,第一混合环的第一端口11为信号输入端,第一混合环的第二端口12连接第二混合环的第一端口21,第二混合环的第二端口22和第三端口23以及第一混合环的第三端口13分别为三等分功率分配器的三个信号输出端。第一混合环的第二端口12为功率大的端口。第一混合环的第四端口14和第二混合环的第四端口24为隔离端。
结合图3至图5所示的结构,第一混合环和第二混合环均由两个对称设置的圆弧5及连接在两个圆弧5之间的两个平行边6围成封闭的混合环。并且,第一混合环的第二端口12和第三端口13分别设置在两个平行边6上、并与对应的平行边6垂直设置,第二混合环的第二端口22和第三端口23也分别设置在两个平行边6上、并与对应的平行边6垂直设置。第一混合环的第一端口11设置在其中一个圆弧5上、并位于相应圆弧5的对称轴上,第二混合环的第一端口21也设置在其中一个圆弧5上、并位于相应圆弧5的对称轴上。第一混合环的第二端口12以及第三端口13相对于第一端口11对称设置,第二混合环的第二端口22以及第三端口23相对于第一端口21对称设置。在第一混合环中,第四端口14为隔离端,第四端口14和第三端口13在同一个平行边6上;在第二混合环中,第四端口24也为隔离端,第四端口24和第三端口23也在同一个平行边6上。
通过调整第一混合环和第二混合环之间的微带线的长度,即可以使三个信号输出端口的相位趋于一致,从而提高带隔离的三等分功率分配器的性能。
在第一混合环以及第二混合环的四个端口处均可以外接50Ω微带线,为了保证第二端口(12,22)和第三端口(13,23)的相位一致,可以在第一混合环的第二端口12和第三端口13处分别外接垂直于对应平行边6的长度相同的50Ω微带线,即至少一端垂直于对应的平行边6。第二混合环的第二端口22和第三端口23处分别外接垂直于平行边6的长度相同的50Ω微带线,即至少一端垂直于对应的平行边6。根据三等分功率分配器性能的需求,可以将第一混合环以及第二混合环的第二端口(12,22)和第三端口(13,23)处分别外接长度相同的50Ω微带线,即四个端口的50Ω微带线的长度均相同。
第一混合环的第二端口12通过外接50Ω微带线后与第二混合环的第一端口21连接,且与第二端口12连接的微带线与对应的平行边6垂直,另一端向远离第一端口11方向圆滑折弯。第一混合环的第三端口13外接50Ω微带线,且该微带线的一端与对应的平行边6垂直、另一端向远离第一端口11方向圆滑折弯,形成带隔离的三等分功率分配器的第一输出端口31。第一混合环的第一端口11外接50Ω微带线后形成带隔离的三等分功率分配器的信号输入端口。且第一混合环的第二端口12和第三端口13连接的微带线长度相同。
第二混合环的第二端口22连接的微带线与对应的平行边6垂直,另一端向远离第一端口21方向圆滑折弯,形成带隔离的三等分功率分配器的第二输出端口32。第二混合环的第三端口23外接50Ω微带线,且该微带线的一端与对应的平行边6垂直、另一端向远离第一端口21方向圆滑折弯,形成带隔离的三等分功率分配器的第三输出端口33。且第二混合环的第二端口22和第三端口23连接的微带线长度相同。
为了使得带隔离的三等分功率分配器的相位一致性较好,可以在第一混合环以及第二混合环的第二端口(12,22)和第三端口(13,23)处分别外接长度相同的50Ω微带线。
当然,可以理解的是,对于微带线的阻抗还可以是其他数值,例如,60Ω,75Ω,100Ω等,根据实际设计需求进行设计即可。对于微带线的形状、长度等参数也可以根据实际设计需求进行调整,且各个微带线的形状可以相同,也可以不同,各个微带线的长度可以相同,也可以不同,上述实施例仅用于举例说明,并不限定本申请的保护范围。
本申请提供的一种带隔离的三等分功率分配器,通过采用带有隔离度的混合环代替常用的威尔金森功率分配器,保证三等分功率分配器的隔离度,保证器件能够稳定工作,且带隔离的三等分功率分配器结构简单、性能较高,且易于排版布线。
下面以X波段仿真频率9-10GHz的三路功率分配器/合成器为例,仿真模型的结构示意图如图6所示。
其中,设定Er=3.66,板厚为0.508mm。其中Er为所选用的的微波介质板的介电常数。端口1为公共的信号输入端口,端口2、端口3、端口4分别为三个信号输出端口,输入、输出均为50欧姆阻抗。对插入损耗和相位进行仿真,插入损耗仿真结果如图7所示,相位仿真如表一所示,隔离度的仿真结果如图8所示。
从图7的插入损耗仿真结果可以看出:三个信号输出端口的插入损耗S21、S31、S41均在4.72dB-4.83dB之间,仿真结果与理论值(-4.77dB)相仿。S21、S41与S31略有差别,从图7中可以看出,端口2和端口3的输出比端口4多了一次功率分配,功率分配会带来损耗,如果不采取其他措施,S21和S31会比S41小。在仿真时,为了保证三个端口的输出特性尽可能一致,在优化参数时,优化了1:2混合环的功率分配比,使其功率分配比不是1:2,而是略微偏离,这样会修正端口2和端口3因功率分配带来的损耗,最终使三个端口的幅度特性尽可能趋于一致。
表一
FREQ [GHz] Ang(S21) [deg] Ang(S31) [deg] Ang(S41) [deg]
   9.00   61.81   60.51   56.89
   9.10   48.31   47.68   44.97
   9.20   34.80   34.86   33.05
   9.30   21.29   22.03   21.14
   9.40    7.77    9.19    9.21
   9.50   -5.77   -3.65   -2.72
   9.60  -19.33  -16.52  -15.67
   9.70  -32.91  -29.40  -28.64
   9.80  -46.53  -42.32  -40.66
   9.90  -60.18  -55.27  -53.72
  10.00  -73.87  -68.26  -65.88
Ang(S21)、Ang(S31)、Ang(S41)为三个信号输出端口的相位,整个频带的相位偏差≤±4°。根据矢量合成法则计算,在幅度一致的前提下,因相位偏差引起的合成功率效率为cos(θ/2)=99.75%,这样的相位偏差对功率合成效率影响较低,可以忽略不计。
从图8的隔离度的仿真结果可以看出,整个频带内三个信号输出端口间的隔离度均在25dB以上,取得了良好的路间隔离效果。
这样的功率分配器/合成器三路幅度和相位一致性好,三路输出间隔离度高,排版布线易于实现。
此外,本申请还提供了一种微波发射系统,当微波发射系统中遇到单只微波有源器件的输出功率不能满足需求的情况下,需要进行多路功率合成,或者单路功率分配,且在对隔离度要求较高的情况下,可以使用上述原理的带隔离的三等分功率合成器或者三等分功率分配器。通过采用本申请提供的三等分功率分配器组成的微波发射系统,其隔离度较好,且三路输出相位一致性好,结构紧凑,易于排版,可以使整个微波发射系统的性能更加优良。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种带隔离的三等分功率分配器,其特征在于,包括:一个分配比为1:2的第一混合环和一个分配比为1:1的第二混合环;
    所述第一混合环的第一端口为信号输入端,所述第一混合环的第二端口连接所述第二混合环的第一端口,所述第二混合环的第二端口和第三端口以及所述第一混合环的第三端口分别为所述三等分功率分配器的三个信号输出端;
    其中,所述第一混合环的第二端口为功率大的端口,所述第一混合环的第四端口和所述第二混合环的第四端口均为隔离端。
  2. 如权利要求1所述的三等分功率分配器,其特征在于,所述第一混合环和所述第二混合环均为圆形的混合环。
  3. 如权利要求1所述的三等分功率分配器,其特征在于,所述第一混合环由两个对称设置的圆弧及连接在两个所述圆弧之间的两个平行边围成封闭的混合环;所述第一混合环的第二端口和第三端口分别设置在两个所述平行边上、并与对应的所述平行边垂直设置;
    和/或,所述第二混合环由两个对称设置的圆弧及连接在两个所述圆弧之间的两个平行边围成封闭的混合环;所述第二混合环的第二端口和第三端口分别设置在两个所述平行边上、并与对应的所述平行边垂直设置。
  4. 如权利要求3所述的三等分功率分配器,其特征在于,所述第一混合环的第一端口设置在其中一个所述圆弧上、并位于相应所述圆弧的对称轴上;所述第一混合环的第二端口和第三端口相对于第一端口对称设置;
    和/或,所述第二混合环的第一端口设置在其中一个所述圆弧上、并位于相应所述圆弧的对称轴上;所述第二混合环的第二端口和第三端口相对于第一端口对称设置。
  5. 如权利要求4所述的三等分功率分配器,其特征在于,所述第一混合环的第四端口与第三端口在同一个所述平行边上;和/或,所述第二混合环的第四端口与第三端口在同一个所述平行边上。
  6. 如权利要求4所述的三等分功率分配器,其特征在于,所述第一混合环的第二端口和第三端口,以及所述第二混合环的第二端口和第三端口均直接连接有微带线;所述微带线的一端与对应的所述平行边垂直、另一端向远离对应的第一端口方向圆滑折弯。
  7. 如权利要求6所述的三等分功率分配器,其特征在于,所述第一混合环的第一端口和第四端口,以及所述第二混合环的第一端口和第四端口处均外接50Ω微带线。
  8. 如权利要求7所述的三等分功率分配器,其特征在于,所述第一混合环的第二端口和第三端口处分别外接垂直于对应所述平行边的长度相同的50Ω微带线;所述第二混合环的第二端口和第三端口处分别外接垂直于对应所述平行边的长度相同的50Ω微带线。
  9. 如权利要求6或8所述的三等分功率分配器,其特征在于,所述第一混合环的第二端口和第三端口,以及所述第二混合环的第二端口和第三端口处分别外接长度相同的50Ω微带线。
  10. 一种微波发射系统,其特征在于,包括如权利要求1-9任一项所述的带隔离的三等分功率分配器。
PCT/CN2022/111604 2022-04-21 2022-08-11 带隔离的三等分功率分配器及微波发射系统 WO2023201935A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/196,809 US11843158B2 (en) 2022-04-21 2023-05-12 Trisection power divider with isolation and microwave transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210423845.6A CN114824717B (zh) 2022-04-21 2022-04-21 带隔离的三等分功率分配器及微波发射系统
CN202210423845.6 2022-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/196,809 Continuation US11843158B2 (en) 2022-04-21 2023-05-12 Trisection power divider with isolation and microwave transmission system

Publications (1)

Publication Number Publication Date
WO2023201935A1 true WO2023201935A1 (zh) 2023-10-26

Family

ID=82505050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111604 WO2023201935A1 (zh) 2022-04-21 2022-08-11 带隔离的三等分功率分配器及微波发射系统

Country Status (2)

Country Link
CN (1) CN114824717B (zh)
WO (1) WO2023201935A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824717B (zh) * 2022-04-21 2024-06-21 中国电子科技集团公司第十三研究所 带隔离的三等分功率分配器及微波发射系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201229549A (en) * 2011-01-07 2012-07-16 Finetek Co Ltd Range radar device with improved power divider
US20120293274A1 (en) * 2011-05-17 2012-11-22 City University Of Hong Kong Multiple-way ring cavity power combiner and divider
CN103762408A (zh) * 2014-02-14 2014-04-30 大连海事大学 一种端口无交叉的微带混合环
CN107959097A (zh) * 2017-11-21 2018-04-24 西南应用磁学研究所 路间隔离型宽带大功率径向式功率分配器
KR102046408B1 (ko) * 2018-07-23 2019-11-19 광운대학교 산학협력단 선택도 특성이 향상된 전력 분배기
CN114824717A (zh) * 2022-04-21 2022-07-29 中国电子科技集团公司第十三研究所 带隔离的三等分功率分配器及微波发射系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321978A (en) * 1971-03-31 1973-07-04 Mullard Ltd Hybrid ring
GB1340304A (en) * 1972-03-10 1973-12-12 Mullard Ltd Hybrid ring
GB1529776A (en) * 1977-06-16 1978-10-25 Standard Telephones Cables Ltd Transmission line power divider
US6891446B2 (en) * 2003-04-29 2005-05-10 Raytheon Company Compact broadband balun
US7187251B2 (en) * 2005-03-16 2007-03-06 International Business Machines Corporation DC isolated phase inverter and a ring hybrid coupler including the DC isolated phase inverter
CN102931462B (zh) * 2012-11-20 2015-04-22 北京遥测技术研究所 宽频带高精度四馈网络
KR101604722B1 (ko) * 2014-11-12 2016-03-22 순천향대학교 산학협력단 의도된 미스매칭을 이용한 하이브리드 커플러
CN205122742U (zh) * 2015-11-12 2016-03-30 四川九洲电器集团有限责任公司 一种功率分配器
JP6669352B2 (ja) * 2016-01-21 2020-03-18 国立大学法人広島大学 ラットレース回路
CN208849055U (zh) * 2018-08-08 2019-05-10 南京汉瑞微波通信有限公司 C波段低回损的三等分的功率分配器
CN109066043A (zh) * 2018-08-30 2018-12-21 南京理工大学 一种x波段一分三功分器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201229549A (en) * 2011-01-07 2012-07-16 Finetek Co Ltd Range radar device with improved power divider
US20120293274A1 (en) * 2011-05-17 2012-11-22 City University Of Hong Kong Multiple-way ring cavity power combiner and divider
CN103762408A (zh) * 2014-02-14 2014-04-30 大连海事大学 一种端口无交叉的微带混合环
CN107959097A (zh) * 2017-11-21 2018-04-24 西南应用磁学研究所 路间隔离型宽带大功率径向式功率分配器
KR102046408B1 (ko) * 2018-07-23 2019-11-19 광운대학교 산학협력단 선택도 특성이 향상된 전력 분배기
CN114824717A (zh) * 2022-04-21 2022-07-29 中国电子科技集团公司第十三研究所 带隔离的三等分功率分配器及微波发射系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAIHUI HAN, YAO AITIAN, YU HAI: "Design and Analysis of Binary Wide-band MMW Combiner", FIRE CONTROL RADAR TECHNOLOGY, vol. 45, no. 2, 25 June 2016 (2016-06-25), pages 67 - 72, XP093098224, DOI: 10.19472/j.cnki.1008-8652.2016.02.016 *
PENGJU LU, ZHAO LI: "Design and Implementation of Broadband", GANSU SCIENCE AND TECHNOLOGY, vol. 30, no. 22, 30 November 2014 (2014-11-30), pages 20 - 23, XP093098222 *

Also Published As

Publication number Publication date
CN114824717B (zh) 2024-06-21
CN114824717A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US10644375B1 (en) Branch-line coupler
Fan et al. Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde's CPW-slot couplers
CN207559072U (zh) 一种2×3宽频巴特勒矩阵板、巴特勒矩阵及多波束天线
WO2023201935A1 (zh) 带隔离的三等分功率分配器及微波发射系统
CN104134842A (zh) 毫米波多路空间波导功率分配合成器及方法
WO2021000203A1 (zh) 天线校准网络单元、天线校准网络及mimo天线
CN204180029U (zh) 一种x波段的和差网络电路及器件
CN110233323A (zh) 用于承受1000W的3dB Lange耦合器及制备方法
CN109066043A (zh) 一种x波段一分三功分器
CN109672012B (zh) 应用在毫米波频段的宽带rwg与siw的差分过渡结构
WO2022227598A1 (zh) 矩形波导微带0°相差高隔离度宽带功分器
WO2018171229A1 (zh) 带桥架结构天线的巴伦电路结构
US5075647A (en) Planar slot coupled microwave hybrid
CN107069172A (zh) 一种超宽带新型平面魔t
KR101529749B1 (ko) 광대역 발룬
CN113224494B (zh) 基于微带-槽线耦合线的双频带功率不等分定向耦合器
US11843158B2 (en) Trisection power divider with isolation and microwave transmission system
CN216850278U (zh) 一种三路功率合成装置
CN115955215A (zh) 改进型Marchand巴伦结构及奇、偶模统一分析法
CN108493562A (zh) 一种基于矩形波导的Gysel型功分器及其组件
CN202121048U (zh) 功率分配器、电子器件、射频前端装置
CN210744125U (zh) 一种3×3 Butler矩阵
CN109149045B (zh) 一种波导h-t结及毫米波波导平面功率分配合成网络
CN210744127U (zh) 一种2×4 Butler矩阵
CN202759010U (zh) 一种具有谐波抑制功能的Gysel型功分器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938160

Country of ref document: EP

Kind code of ref document: A1