WO2021000203A1 - 天线校准网络单元、天线校准网络及mimo天线 - Google Patents

天线校准网络单元、天线校准网络及mimo天线 Download PDF

Info

Publication number
WO2021000203A1
WO2021000203A1 PCT/CN2019/094103 CN2019094103W WO2021000203A1 WO 2021000203 A1 WO2021000203 A1 WO 2021000203A1 CN 2019094103 W CN2019094103 W CN 2019094103W WO 2021000203 A1 WO2021000203 A1 WO 2021000203A1
Authority
WO
WIPO (PCT)
Prior art keywords
combiner
network
group
stage
directional coupler
Prior art date
Application number
PCT/CN2019/094103
Other languages
English (en)
French (fr)
Inventor
褚庆臣
韩莉
岳月华
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/094103 priority Critical patent/WO2021000203A1/zh
Priority to CN201910591560.1A priority patent/CN110278012B/zh
Priority to US16/993,306 priority patent/US10826625B1/en
Publication of WO2021000203A1 publication Critical patent/WO2021000203A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems

Definitions

  • the present invention relates to the field of communication technology, in particular to an antenna calibration network unit, an antenna calibration network and a MIMO antenna.
  • MIMO Multiple-input multiple-output Multiple-Output
  • the MIMO array antenna is mainly composed of an antenna element, a feed network board, and a calibration network board.
  • the calibration network board uses a four-layer laminated multi-layer board, which accounts for nearly half of the cost of the MIMO array antenna. Therefore, by reducing the calibration network board Use can effectively reduce costs.
  • the calibration network is generally composed of a line composed of a directional coupler 101 and a multi-stage combiner 102.
  • the lines of the directional coupler 101 and the multi-stage combiner 102 on the traditional calibration network board are vertical. Setting, the circuit is relatively scattered in space, the utilization rate of the calibration network board is low, and the cost is high.
  • the purpose of the present invention is to provide an antenna calibration network unit, an antenna calibration network and a MIMO antenna, which can improve the space utilization rate of the calibration network board, reduce the size of the calibration network board, and reduce the antenna cost.
  • an antenna calibration network unit for monitoring and comparing the amplitude and phase of a plurality of radio frequency signal ports.
  • the calibration network unit includes a substrate and multiple sets of directional coupler groups arranged on the substrate.
  • the multi-stage combiner network at the front end of the directional coupler group;
  • Each group of the directional coupler group includes two directional couplers arranged mirrored in the vertical direction, and each of the directional couplers includes an input terminal connected to a radio frequency signal port and a coupling connected to a multi-stage combiner network end;
  • Each of the directional couplers is a parallel coupling line directional coupler, and the parallel coupling lines of each directional coupler are arranged in a horizontal direction, and the groups of directional couplers are arranged in the horizontal direction;
  • the multi-stage combiner network includes a first-stage combiner and a second-stage combiner, and two input ends of each of the first-stage combiners are respectively connected to two of the directional coupler groups in each group.
  • the coupling end of the directional coupler, the first-stage combiner is arranged on one side of the multiple sets of directional coupler groups; the second-stage combiner and the first-stage combiner are cascaded, and each The two input ends of the two-stage combiner are respectively connected to the output ends of the two adjacent one-stage combiners, and the two sets of directional couplers corresponding to the two first-stage combiners To the other side of the directional coupler group.
  • two adjacent primary combiners are symmetrically arranged on both sides of the secondary combiner connected to them.
  • the multi-stage combiner network further includes a plurality of combiners above the second level, and the plurality of combiners above the second level are cascaded with the second-level combiner.
  • the multiplexers are arranged on the same side of the multiple groups of directional coupler groups, and each adjacent same-level combiner is symmetrically arranged on both sides of the higher-level combiner connected to it.
  • an antenna calibration network includes at least two groups of antenna calibration network units as described above and a calibration port.
  • the first group of antenna calibration network units includes a first group of multi-stage combiner networks
  • the second group of antenna calibration network units includes a second group of multi-stage combiner networks
  • the first group of multi-stage combiner networks and the second group of multi-stage combiner networks are mirrored with respect to the horizontal line where the calibration port is located;
  • the antenna calibration network also includes a final stage combiner arranged in the first group of multistage combiner network and the second group of multistage combiner network, and two input ends of the final stage combiner Are respectively connected to the output terminal of the highest-level combiner of the first group of multi-stage combiner network and the output terminal of the highest-level combiner of the second group of multi-stage combiner network, the final combiner The output terminal of is connected to the calibration port.
  • the final stage combiner includes a first input terminal, a second input terminal, and an output terminal, and the first input terminal and the first group of the multistage combiner network
  • the connecting line of the output end of the advanced combiner is arranged in the vertical direction; the connecting line of the second input end and the output end of the highest-level combiner of the second group of multi-stage combiner network is arranged in the vertical direction; the output end
  • the connection line with the calibration port is arranged in a horizontal direction.
  • a MIMO antenna which includes a feed network board, a reflector board, a dielectric board, a calibration network board, and a feed core that are sequentially stacked;
  • the feeding network board includes a feeding substrate and a plurality of groups of power dividing circuits arranged on a surface of the feeding substrate on a side away from the reflecting plate;
  • the calibration network board includes a calibration substrate and the above-mentioned antenna calibration network provided on the side surface of the calibration substrate facing the dielectric plate.
  • the coupling end of each directional coupler of the antenna calibration network is connected to the feeder.
  • the input end of each group of power division circuits on the network board is connected through the feeder core.
  • the input ends of each group of directional couplers on the calibration network board are respectively connected to a radio frequency connector.
  • each directional coupler of the calibration network board is arranged close to the radio frequency connector, and the input end of each group of power division circuits on the feed network board is close to the radio frequency Connector settings.
  • the above antenna calibration network unit, antenna calibration network and MIMO antenna by arranging multiple sets of directional coupler groups in the antenna calibration network along the horizontal direction, the first level combiners in the multi-stage combiner network are arranged in multiple directional groups On one side of the coupler group, the two-stage combiner in the multi-stage combiner network is interspersed between each group of directional coupler groups, and is arranged on the other side of each group of directional coupler group relative to the first-stage combiner. Side; can reduce the space occupied by the directional coupler, and make full use of the free space between each group of directional coupler groups, and improve the utilization of line space. Therefore, using the antenna calibration network provided by the above-mentioned embodiments can effectively reduce antenna costs and improve product competitiveness.
  • Figure 1 is a schematic diagram of the structure of a traditional antenna calibration network
  • FIG. 2 is a schematic diagram of the logical structure of an antenna calibration network unit in an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of an antenna calibration network in an embodiment of the present invention.
  • Fig. 4 is a partial enlarged schematic diagram of Fig. 3;
  • FIG. 5 is a schematic diagram of a part of the structure of a MIMO antenna in an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an antenna calibration network unit in an embodiment.
  • the antenna calibration network unit is used to monitor and compare the amplitude and phase of multiple radio frequency signal ports, which can improve the space utilization of the calibration network board and reduce the cost of the calibration network board. Size, reduce antenna cost.
  • the antenna calibration network unit includes a substrate, multiple sets of directional coupler groups arranged on the substrate and a multi-stage combiner network arranged at the front end of the directional coupler group.
  • the directional coupler 201 refers to a microwave/millimeter wave component used for signal isolation, separation, and mixing.
  • a plurality of directional couplers 201 can be cascaded to form a group of directional coupler groups, such as two adjacent ones on a substrate.
  • the directional coupler 201 is cascaded to form a group of directional coupler groups, and the antenna calibration network in this embodiment includes multiple groups of directional coupler groups.
  • a combiner refers to a device that combines the energy of multiple input signals into one output energy.
  • the multi-stage combiner network is composed of multi-stage combiners cascaded, for example, the first-stage combiner and the second-stage combiner are cascaded, the second-stage combiner and the third-stage combiner are cascaded, and so on, Form a multi-level combiner network.
  • each directional coupler group includes two directional couplers 201 that are mirrored in the vertical direction.
  • Each directional coupler 201 includes an input terminal connected to a radio frequency signal port 204 and a multi-stage combiner. The coupling end of the network connection.
  • Each directional coupler 201 is a parallel coupling line directional coupler, and the parallel coupling line of each directional coupler 201 is arranged along the horizontal direction, and multiple groups of directional couplers are arranged along the horizontal direction.
  • the multi-stage combiner network includes a first-stage combiner 202 and a second-stage combiner 203.
  • the two input ends of each first-stage combiner 202 are respectively connected to the two directional couplers of each group of the directional coupler group.
  • the first-level combiner 202 is arranged on one side of the multiple sets of directional coupler groups; the second-level combiner 203 and the first-level combiner 202 are cascaded, and two of each second-level combiner 203
  • the input ends are respectively connected to the output ends of two adjacent first-level combiners 202, and pass between the two directional coupler groups corresponding to the two first-level combiners 202 to multiple groups of directional coupler groups On the other side of the directional coupler, and adjacent to the two sets of directional couplers.
  • the directional coupler 201 is arranged on the substrate on the same horizontal surface to reduce the thickness of the calibration network board.
  • the multi-stage combiner network includes a multi-stage two-in-one combiner network.
  • the input end of the first-level combiner 202 is the coupling end of each group of directional coupler groups
  • the first-level combiner 202 is arranged on one side of the directional coupler 201, and two adjacent ones are
  • the two-stage combiner 202 is connected to the two-stage combiner 203 after being connected.
  • the two-stage combiner 203 includes two input terminals and one output terminal. The two input terminals of the two-stage combiner 203 are respectively connected to two adjacent ones.
  • the output end of the first-level combiner 202 is connected, and its connecting line is arranged between the two sets of directional couplers and is mirrored in the vertical direction; the output end of the second-level combiner 203 is connected to the higher-level combiner
  • the input terminal is connected, and its connection line is set on the same side of the second-level combiner 203 and the higher-level combiner.
  • the higher-level combiner refers to a combiner that is one level higher than the second-level combiner.
  • the router is also a three-stage combiner.
  • two adjacent primary combiners 202 are symmetrically arranged on both sides of the secondary combiner 203 connected to them.
  • the directional coupler and the combiner are set from the conventional vertical layout to the horizontal layout, which can reduce the space occupied by the calibration network; the multi-stage combiner at the front end of the directional coupler coupling end is inserted into the directional coupler. Between the couplers, the free space between each group of directional couplers can be fully utilized to increase the line occupancy rate. Therefore, using the antenna calibration network provided in this embodiment can effectively reduce antenna costs and improve product competitiveness.
  • each directional coupler group is composed of two directional couplers 201 adjacent to each other in a cascade connection on the substrate.
  • Two directional couplers 201 are symmetrically arranged on both sides of the radio frequency signal port 204 adjacent to the directional coupler 201 on the substrate.
  • the other groups of directional coupler groups are arranged in the same horizontal array.
  • the substrate is also provided with the input terminal 205 of the power dividing circuit on the feed network board connected to, for example, the antenna device, the input terminal 205 of the power dividing circuit on the feeding network board is connected to the radio frequency signal port 204, and the feeding network board
  • the input terminal 205 of the power divider circuit is located close to the radio frequency signal interface 204.
  • the multi-stage combiner network further includes a plurality of combiners above the second level, and the plurality of combiners above the second level are cascaded and the two-level combiners are arranged in the multiple groups of directional coupler groups.
  • the same side, and each adjacent same-level combiner is symmetrically arranged on both sides of the higher-level combiner connected to it.
  • the same-level combiner refers to the same-level combiner, for example, two second-level combiners belong to the same-level combiner; the higher-level combiner can be understood as one level higher than the same-level combiner
  • the combiner for example, the three-stage combiner is the higher-level combiner of two two-stage combiners, and the four-stage combiner is the higher-level combiner of the three-stage combiner.
  • FIG. 3 is a schematic diagram of the structure of the antenna calibration network in an embodiment.
  • the multi-stage combiner network includes a first-stage combiner 309, a second-stage combiner 301, a third-stage combiner 302, and a fourth-stage combiner 303.
  • the cascade combiner 301, the three-stage combiner 302, and the four-stage combiner 303 are cascaded and arranged on the same side of the multiple directional coupler groups.
  • each stage of the combiner makes full use of the spare positions between each group of directional couplers for line layout, with compact structure and high utilization rate.
  • the antenna calibration network includes at least two groups of antenna calibration network units as described in the above embodiment and a calibration port 304.
  • the first group of antenna calibration network units includes a first group of multi-stage combination circuits.
  • the second group of antenna calibration network units includes a second group of multi-stage combiner networks, the first group of multi-stage combiner networks, and the second group of multi-stage combiner networks mirror settings on the horizontal line where the calibration port 304 is located.
  • the antenna calibration network also includes a final stage combiner 305 arranged in the first group of multistage combiner network and the second group of multistage combiner network.
  • the two input ends of the final stage combiner 305 are connected to the first group of
  • the output terminal of the highest level combiner of the multi-stage combiner network is connected to the output terminal of the highest level combiner of the second group of multi-stage combiner network, and the output terminal of the final stage combiner 305 is connected to the calibration port 304 .
  • the highest-level combiner can be understood as the highest-level combiner in the multi-level combiner network.
  • the multi-level combiner network contains four levels of combiners, and the four-level combiner is the highest. Advanced combiner.
  • the final stage combiner can be understood as the last stage combiner connected to the calibration port, which is connected to the highest stage combiner in the multi-stage combiner network.
  • the highest-level combiner of the first group of multi-level combiner network is a four-level combiner 303
  • the highest-level combiner of the second group of multi-level combiner network is a four-level combiner 313
  • the final stage combiner 305 includes a first input terminal 3051, a second input terminal 3052, and an output terminal 3053.
  • the connection line between the first input terminal 3051 and the output terminal 3031 of the four-stage combiner 303 is arranged in a vertical direction; the second input The connection line between the terminal 3052 and the output terminal 3131 of the four-stage combiner 313 is arranged in the vertical direction; the connection line between the output terminal 3053 and the calibration port 304 is arranged in the horizontal direction.
  • the antenna calibration network provided by this implementation can reduce the occupied space of the directional coupler, and make full use of the free space between each group of directional coupler groups, and improve the utilization of line space. Therefore, using the antenna calibration network provided by this embodiment can effectively reduce antenna costs and improve product competitiveness.
  • the MIMO antenna includes a feed network board 410, a reflector 440, and a medium stacked in sequence. Board 450, calibration network board 420, and feed core 430;
  • the feeding network board 410 includes a feeding substrate and a plurality of groups of power dividing circuits arranged on a surface of the feeding substrate away from the reflecting plate 440.
  • the calibration network board 420 includes a calibration substrate and the antenna calibration network as described in the above embodiment provided on the side surface of the calibration substrate facing the dielectric plate 450.
  • the coupling end and the feeder of each directional coupler of the antenna calibration network are The input terminals of each group of power division circuits on the network board 410 are connected through the feed core 430.
  • each directional coupler 308 on the calibration network board 420 is respectively connected to the radio frequency signal interface 306, and the radio frequency signal interface 306 is connected to a radio frequency connector.
  • the device can be a radio frequency coaxial connector of the SMP series to further reduce the volume of the calibration network board.
  • each directional coupler 308 on the calibration network board 420 is arranged close to the radio frequency connector, and the port 307 connecting the directional coupler 308 and the input end of each group of power division circuits on the feed network board 410 is close to the radio frequency connection ⁇ Settings.
  • the input end of each group of power division circuits on the feed network is set near the RF signal interface, which can reduce the line length from the directional coupler to the output end, improve the space utilization rate of the calibration network board, and reduce Calibrate the size of the network board, thereby reducing antenna costs.
  • the above antenna calibration network unit, antenna calibration network and MIMO antenna by arranging multiple sets of directional coupler groups in the antenna calibration network along the horizontal direction, the first level combiners in the multi-stage combiner network are arranged in multiple directional groups On one side of the coupler group, the two-stage combiner in the multi-stage combiner network is interspersed between each group of directional coupler groups, and is arranged on the other side of each group of directional coupler group relative to the first-stage combiner. Side; can reduce the space occupied by the directional coupler, and make full use of the free space between each group of directional coupler groups, and improve the utilization of line space. Therefore, using the antenna calibration network provided by the above-mentioned embodiments can effectively reduce antenna costs and improve product competitiveness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线校准网络单元、天线校准网络及MIMO天线,该天线校准网络单元包括基板和设置于所述基板上的多组定向耦合器组和设于所述定向耦合器组前端的多级合路器网络;每个所述定向耦合器的平行耦合线沿水平方向设置,所述多组定向耦合器沿水平方向排布;所述多级合路器网络包括一级合路器和二级合路器,所述一级合路器设置于所述多组定向耦合器组的一侧;所述二级合路器与所述一级合路器进行级联,每个所述二级合路器从该两个一级合路器所对应的两组定向耦合器组之间穿越至所述多组定向耦合器组的另一侧。通过上述天线校准网络单元,可以提高校准网络板的空间利用率,减小校准网络板的尺寸,降低天线成本。

Description

天线校准网络单元、天线校准网络及MIMO天线 技术领域
本发明涉及通讯技术领域,特别是涉及一种天线校准网络单元、天线校准网络及MIMO天线。
背景技术
随着下一代移动通信技术对大规模阵列天线的应用以及逐渐商用,由于相比传统的4G天线,5G天线的端口更多、站点布置更为密集,对天线的成本有了更苛刻的要求。多入多出(Multiple-Input Multiple-Output,MIMO)技术作为提高数据传输率的重要手段得到人们的极大关注,MIMO技术被认为是新一代通信(5G)技术的备选关键技术之一。
MIMO阵列天线主要由天线振子、馈电网络板、校准网络板等组成,其中校准网络板由于采用四层压合多层板,占MIMO阵列天线近一半的成本,因此,通过减少校准网络板的使用可有效降低成本。
技术问题
如图1所示,校准网络一般是由定向耦合器101和多级合路器102级联组成的线路构成,传统的校准网络板上的定向耦合器101和多级合路器102的线路垂直设置,其线路在空间上比较分散,校准网络板利用率低,成本偏高。
技术解决方案
本发明的目的在于提供一种天线校准网络单元、天线校准网络及MIMO天线,可以提高校准网络板的空间利用率,减小校准网络板的尺寸,降低天线成本。
一方面,提供一种天线校准网络单元,用于监测对比多个射频信号端口的幅度和相位,所述校准网络单元包括基板和设置于所述基板上的多组定向耦合器组和设于所述定向耦合器组前端的多级合路器网络;
每组所述定向耦合器组包括两个关于竖直方向镜像设置的定向耦合器,每个所述定向耦合器包括与一射频信号端口连接的输入端以及与多级合路器网络连接的耦合端;
每个所述定向耦合器为平行耦合线定向耦合器,且每个所述定向耦合器的平行耦合线沿水平方向设置,所述多组定向耦合器沿水平方向排布;
所述多级合路器网络包括一级合路器和二级合路器,每个所述一级合路器的两个输入端分别连接每组所述定向耦合器组的两个所述定向耦合器的耦合端,所述一级合路器设置于所述多组定向耦合器组的一侧;所述二级合路器与所述一级合路器进行级联,每个所述二级合路器的两个输入端分别与相邻的两个所述一级合路器的输出端连接,并从该两个一级合路器所对应的两组定向耦合器组之间穿越至所述多组定向耦合器组的另一侧。
可选的,在其中一个实施例中,两个相邻的一级合路器对称设置于与其连接的所述二级合路器的两侧。
可选的,在其中一个实施例中,所述多级合路器网络还包括多个二级以上的合路器,所述多个二级以上的合路器级联与所述二级合路器设置于所述多组定向耦合器组的同一侧,且每个相邻的同级合路器对称设置于与其连接的高一级合路器的两侧。
另一方面,提供一种天线校准网络,所述天线校准网络包括至少两组如上述的天线校准网络单元及一校准口,第一组天线校准网络单元包括第一组多级合路器网络,第二组天线校准网络单元包括第二组多级合路器网络,所述第一组多级合路器网络、第二组多级合路器网络关于所述校准口所在的水平线镜像设置;
所述天线校准网络还包括设于所述第一组多级合路器网络和所述第二组多级合路网络的终级合路器,所述终级合路器的两个输入端分别与所述第一组多级合路器网络的最高级合路器的输出端和第二组多级合路器网络的最高级合路器的输出端连接,所述终级合路器的输出端与所述校准口连接。
可选的,在其中一个实施例中,所述终级合路器包括第一输入端、第二输入端和输出端,所述第一输入端与第一组多级合路器网络的最高级合路器的输出端的连接线沿垂直方向设置;所述第二输入端与第二组多级合路器网络的最高级合路器的输出端的连接线沿垂直方向设置;所述输出端与所述校准口的连接线沿水平方向设置。
另一方面,提供一种MIMO天线,包括依次叠设的馈电网络板、反射板、介质板、校准网络板以及馈电芯;
所述馈电网络板包括馈电基板和设于所述馈电基板远离所述反射板一侧表面的多组功分电路;
所述校准网络板包括校准基板和设于所述校准基板面向所述介质板一侧表面的如上述的天线校准网络,所述天线校准网络的每个定向耦合器的耦合端与所述馈电网络板上的每组功分电路的输入端通过所述馈电芯连接。
可选的,在其中一个实施例中,所述校准网络板上的每组定向耦合器的输入端分别连接至一射频连接器。
可选的,在其中一个实施例中,所述校准网络板的每个定向耦合器靠近所述射频连接器设置,所述馈电网络板上的每组功分电路的输入端靠近所述射频连接器设置。
有益效果
实施本发明实施例,将具有如下有益效果:
上述天线校准网络单元、天线校准网络及MIMO天线,通过将天线校准网络中的多组定向耦合器组沿水平方向设置,将多级合路器网络中的一级合路器设置于多组定向耦合器组的一侧,将多级合路器网络中的二级合路器穿插于每组定向耦合器组之间,设置于每组定向耦合器组相对于一级合路器的另一侧;可以减少定向耦合器的占用空间,并且充分利用每组定向耦合器组间的空余空间,提高线路空间利用率。因此,采用上述实施例提供的天线校准网络,可以有效降低天线成本,提高产品竞争力。
附图说明
图1为传统的天线校准网络的结构示意图;
图2为本发明一个实施例中天线校准网络单元的逻辑结构示意图;
图3为本发明一个实施例中天线校准网络的结构示意图;
图4为图3的局部放大示意图;
图5为本发明一个实施例中MIMO天线的部分结构示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
图2为一个实施例中天线校准网络单元的结构示意图,该天线校准网络单元用于监测对比多个射频信号端口的幅度和相位,可以提高校准网络板的空间利用率,减小校准网络板的尺寸,降低天线成本。如图2所示,该天线校准网络单元包括基板和设置于该基板上的多组定向耦合器组和设于定向耦合器组前端的多级合路器网络。其中,定向耦合器201指的是用于信号的隔离、分离和混合的微波/毫米波部件,多个定向耦合器201可以级联为一组定向耦合器组,如两个在基板上邻近的定向耦合器201级联为一组定向耦合器组,本实施例中天线校准网络包括多组定向耦合器组。合路器指的是将多路输入信号能量合成一路输出能量的器件。多级合路器网络由多级合路器级联组成,例如,一级合路器与二级合路器级联,二级合路器与三级合路器级联,以此类推,组成多级合路器网络。
本实施例中,每组定向耦合器组包括两个关于竖直方向镜像设置的定向耦合器201,每个定向耦合器201包括与一射频信号端口204连接的输入端以及与多级合路器网络连接的耦合端。每个定向耦合器201为平行耦合线定向耦合器,且每个定向耦合器201的平行耦合线沿水平方向设置,多组定向耦合器沿水平方向排布。
多级合路器网络包括一级合路器202和二级合路器203,每个一级合路器202的两个输入端分别连接每组所述定向耦合器组的两个定向耦合器201的耦合端,一级合路器202设置于多组定向耦合器组的一侧;二级合路器203与一级合路器202进行级联,每个二级合路器203的两个输入端分别与相邻的两个一级合路器202的输出端连接,并从该两个一级合路器202所对应的两组定向耦合器组之间穿越至多组定向耦合器组的另一侧,且紧邻该两组定向耦合器组设置。
具体的,定向耦合器201在基板上在基板上设置于同一水平面上,以降低校准网络板的厚度。多级合路器网络包括多级二合一合路器网络。其中,请继续参阅图2,一级合路器202的输入端为每组定向耦合器组的耦合端,一级合路器202设置于定向耦合器201的一侧,两个相邻的一级合路器202相连后与二级合路器203连接,二级合路器203包括两个输入端和一个输出端,二级合路器203的两个输入端分别与相邻的两个一级合路器202的输出端连接,其连接线设置于两组定向耦合器组之间、且关于竖直方向镜像设置;二级合路器203的输出端与高一级合路器的输入端连接,其连接线设置在二级合路器203与高一级合路器的同一侧,在此处,高一级合路器指的是比二级合路器高一级别的合路器,也即是三级合路器。可选的,两个相邻的一级合路器202对称设置于与其连接的二级合路器203的两侧。
本实施例提供的天线校准网络,将定向耦合器和合路器由常规的垂直布局设置为水平布局,可以减少校准网络的占用空间;将定向耦合器耦合端前端的多级合路器穿插于定向耦合器之间,可充分利用每组定向耦合器间的空余空间,提高线路占用率。因此,采用本实施例提供的天线校准网络可以有效降低天线成本,提高产品竞争力。
在一个实施例中,请继续参阅图2,基板上还设置有射频信号端口204,本实施例中每组定向耦合器组由两个在基板上位置相邻的定向耦合器201级联组成,两个定向耦合器201对称设置于基板上与该定向耦合器201位置邻近的射频信号端口204两侧。其他每组定向耦合器组相同地按水平阵列设置。基板上还设置有与例如天线装置连接的馈电网络板上的功分电路的输入端205,馈电网络板上的功分电路的输入端205与射频信号端口204连接,馈电网络板上的功分电路的输入端205靠近射频信号接口204设置。
在一个实施例中,多级合路器网络还包括多个二级以上的合路器,多个二级以上的合路器级联与二级合路器设置于多组定向耦合器组的同一侧,且每个相邻的同级合路器对称设置于与其连接的高一级合路器的两侧。其中同级合路器指的是同一级别的合路器,如两个二级合路器属于同级合路器;高一级合路器可以理解为比同级合路器高一个级别的合路器,如三级合路器为两个二级合路器的高一级合路器,四级合路器为三级合路器的高一级合路器。
图3为一个实施例中天线校准网络的结构示意图,多级合路器网络包括一级合路器309、二级合路器301、三级合路器302和四级合路器303,二级合路器301、三级合路器302和四级合路器303级联设置于多组定向耦合器组的同一侧。
可见,本实施例提供的天线校准网络,每一级合路器充分利用每组定向耦合器之间的空余位置进行线路布局,结构紧凑,利用率高。
请继续参阅图3,并结合图4,天线校准网络包括至少两组如上述实施例所述的天线校准网络单元及一校准口304,第一组天线校准网络单元包括第一组多级合路器网络,第二组天线校准网络单元包括第二组多级合路器网络,第一组多级合路器网络、第二组多级合路器网络关于校准口304所在的水平线镜像设置。
该天线校准网络还包括设于第一组多级合路器网络和第二组多级合路网络的终级合路器305,终级合路器305的两个输入端分别与第一组多级合路器网络的最高级合路器的输出端和第二组多级合路器网络的最高级合路器的输出端连接,终级合路器305的输出端与校准口304连接。其中,最高级合路器可以理解为多级合路器网络中的最高一级合路器,例如多级合路器网络中共包含四个级别的合路器,则四级合路器为最高级合路器。终级合路器可以理解为与校准口连接的最后一级合路器,其与多级合路器网络中的最高级合路器连接。
本实施例中,第一组多级合路器网络的最高级合路器为四级合路器303,第二组多级合路器网络的最高级合路器为四级合路器313。终级合路器305包括第一输入端3051、第二输入端3052和输出端3053,第一输入端3051与四级合路器303的输出端3031的连接线沿垂直方向设置;第二输入端3052与四级合路器313的输出端3131的连接线沿垂直方向设置;输出端3053与校准口304的连接线沿水平方向设置。
本实施提供的天线校准网络,可以减少定向耦合器的占用空间,并且充分利用每组定向耦合器组间的空余空间,提高线路空间利用率。因此,采用本实施例提供的天线校准网络,可以有效降低天线成本,提高产品竞争力。
基于相同的发明构思,以下提供一种MIMO天线,如图5所示,为一个实施例中MIMO天线的部分结构示意图,该MIMO天线包括依次叠设的馈电网络板410、反射板440、介质板450、校准网络板420以及馈电芯430;
馈电网络板410包括馈电基板和设于所述馈电基板远离反射板440一侧表面的多组功分电路。校准网络板420包括校准基板和设于所述校准基板面向介质板450一侧表面的如上述实施例所述的天线校准网络,所述天线校准网络的每个定向耦合器的耦合端与馈电网络板410上的每组功分电路的输入端通过馈电芯430连接。
进一步的,请结合图4、图5所示,校准网络板420上的每个定向耦合器308的输入端分别连接至射频信号接口306,射频信号接口306连接至一射频连接器,该射频连接器可以是SMP系列的射频同轴连接器,以进一步减小校准网络板的体积。可选的,校准网络板420上的每个定向耦合器308靠近射射频连接器设置,定向耦合器308与馈电网络板410上的每组功分电路的输入端连接的端口307靠近射频连接器设置。
本实施提供的MIMO天线,将馈电网络上每组功分电路输入端设置在射频信号接口附近,可减少定向耦合器到输出端的线路长度,提高校准网络板的线路的空间利用率,减小校准网络板的尺寸,进而降低天线成本。
上述天线校准网络单元、天线校准网络及MIMO天线,通过将天线校准网络中的多组定向耦合器组沿水平方向设置,将多级合路器网络中的一级合路器设置于多组定向耦合器组的一侧,将多级合路器网络中的二级合路器穿插于每组定向耦合器组之间,设置于每组定向耦合器组相对于一级合路器的另一侧;可以减少定向耦合器的占用空间,并且充分利用每组定向耦合器组间的空余空间,提高线路空间利用率。因此,采用上述实施例提供的天线校准网络,可以有效降低天线成本,提高产品竞争力。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (8)

  1. 一种天线校准网络单元,用于监测对比多个射频信号端口的幅度和相位,其特征在于,所述校准网络单元包括基板和设置于所述基板上的多组定向耦合器组和设于所述定向耦合器组前端的多级合路器网络;
    每组所述定向耦合器组包括两个关于竖直方向镜像设置的定向耦合器,每个所述定向耦合器包括与一射频信号端口连接的输入端以及与多级合路器网络连接的耦合端;
    每个所述定向耦合器为平行耦合线定向耦合器,且每个所述定向耦合器的平行耦合线沿水平方向设置,所述多组定向耦合器沿水平方向排布;
    所述多级合路器网络包括一级合路器和二级合路器,每个所述一级合路器的两个输入端分别连接每组所述定向耦合器组的两个所述定向耦合器的耦合端,所述一级合路器设置于所述多组定向耦合器组的一侧;所述二级合路器与所述一级合路器进行级联,每个所述二级合路器的两个输入端分别与相邻的两个所述一级合路器的输出端连接,并从该两个一级合路器所对应的两组定向耦合器组之间穿越至所述多组定向耦合器组的另一侧。
  2. 根据权利要求1所述的天线校准网络单元,其特征在于,两个相邻的一级合路器对称设置于与其连接的所述二级合路器的两侧。
  3. 根据权利要求1所述的天线校准网络单元,其特征在于,所述多级合路器网络还包括多个二级以上的合路器,所述多个二级以上的合路器级联与所述二级合路器设置于所述多组定向耦合器组的同一侧,且每个相邻的同级合路器对称设置于与其连接的高一级合路器的两侧。
  4. 一种天线校准网络,其特征在于,所述天线校准网络包括至少两组如权利要求1-3所述的天线校准网络单元及一校准口,第一组天线校准网络单元包括第一组多级合路器网络,第二组天线校准网络单元包括第二组多级合路器网络,所述第一组多级合路器网络、第二组多级合路器网络关于所述校准口所在的水平线镜像设置;
    所述天线校准网络还包括设于所述第一组多级合路器网络和所述第二组多级合路网络的终级合路器,所述终级合路器的两个输入端分别与所述第一组多级合路器网络的最高级合路器的输出端和第二组多级合路器网络的最高级合路器的输出端连接,所述终级合路器的输出端与所述校准口连接。
  5. 根据权利要求1所述的天线校准网络,其特征在于,所述终级合路器包括第一输入端、第二输入端和输出端,所述终级合路器的第一输入端与第一组多级合路器网络的最高级合路器的输出端的连接线沿垂直方向设置;所述终级合路器的第二输入端与第二组多级合路器网络的最高级合路器的输出端的连接线沿垂直方向设置;所述终级合路器的输出端与所述校准口的连接线沿水平方向设置。
  6. 一种MIMO天线,其特征在于,包括依次叠设的馈电网络板、反射板、介质板、校准网络板以及馈电芯;
    所述馈电网络板包括馈电基板和设于所述馈电基板远离所述反射板一侧表面的多组功分电路;
    所述校准网络板包括校准基板和设于所述校准基板面向所述介质板一侧表面的如权利要求4-5任一项所述的天线校准网络,所述天线校准网络的每个定向耦合器的耦合端与所述馈电网络板上的每组功分电路的输入端通过所述馈电芯连接。
  7. 根据权利要求6所述的MIMO天线,其特征在于,所述校准网络板上的每组定向耦合器的输入端分别连接至一射频连接器。
  8. 根据权利要求7所述的MIMO天线,其特征在于,所述校准网络板的每个定向耦合器靠近所述射频连接器设置,所述馈电网络板上的每组功分电路的输入端靠近所述射频连接器设置。
PCT/CN2019/094103 2019-06-30 2019-06-30 天线校准网络单元、天线校准网络及mimo天线 WO2021000203A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/094103 WO2021000203A1 (zh) 2019-06-30 2019-06-30 天线校准网络单元、天线校准网络及mimo天线
CN201910591560.1A CN110278012B (zh) 2019-06-30 2019-07-02 天线校准网络单元、天线校准网络及mimo天线
US16/993,306 US10826625B1 (en) 2019-06-30 2020-08-14 Antenna calibration network system, antenna calibration network and MIMO antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094103 WO2021000203A1 (zh) 2019-06-30 2019-06-30 天线校准网络单元、天线校准网络及mimo天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/993,306 Continuation US10826625B1 (en) 2019-06-30 2020-08-14 Antenna calibration network system, antenna calibration network and MIMO antenna

Publications (1)

Publication Number Publication Date
WO2021000203A1 true WO2021000203A1 (zh) 2021-01-07

Family

ID=67962853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094103 WO2021000203A1 (zh) 2019-06-30 2019-06-30 天线校准网络单元、天线校准网络及mimo天线

Country Status (3)

Country Link
US (1) US10826625B1 (zh)
CN (1) CN110278012B (zh)
WO (1) WO2021000203A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111130658A (zh) * 2019-12-05 2020-05-08 瑞声科技(新加坡)有限公司 天线校准网络装置以及mimo天线
CN114696055B (zh) * 2022-04-02 2023-10-27 京信射频技术(广州)有限公司 多路同频合路器
CN116192293A (zh) * 2022-12-27 2023-05-30 江苏亨鑫科技有限公司 一种新型智能天线校准网络

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856275A (zh) * 2013-12-11 2014-06-11 京信通信系统(广州)有限公司 天线及其校准装置
CN105375118A (zh) * 2015-11-30 2016-03-02 深圳市华讯方舟科技有限公司 一种智能天线校准装置
WO2016101501A1 (zh) * 2014-12-25 2016-06-30 中兴通讯股份有限公司 天线耦合校准系统
WO2017157087A1 (en) * 2016-03-14 2017-09-21 Corbett Rowell Hybrid beam-forming antenna array using selection matrix for antenna phase calibration

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237823B4 (de) * 2002-08-19 2004-08-26 Kathrein-Werke Kg Antennen-Array mit einer Kalibriereinrichtung sowie Verfahren zum Betrieb eines derartigen Antennen-Arrays
US7280612B2 (en) * 2003-07-25 2007-10-09 Zarbana Digital Fund Llc Digital branch calibrator for an RF transmitter
CN2755871Y (zh) * 2004-11-17 2006-02-01 大唐移动通信设备有限公司 直线排列智能天线阵的耦合校准网络装置
CN102013929B (zh) * 2010-11-26 2014-01-29 广东通宇通讯股份有限公司 一种包含rcu控制电路的新型智能天线耦合校准网络
CN105356052A (zh) * 2015-11-24 2016-02-24 京信通信技术(广州)有限公司 一种天线校准装置
WO2018013922A1 (en) * 2016-07-15 2018-01-18 Ping Liang Mimo coupler array with high degrees of freedom
CN107706512B (zh) * 2016-08-09 2019-09-27 广东通宇通讯股份有限公司 一种用于大规模mimo天线的馈电网络系统
CN106229685B (zh) * 2016-09-22 2023-03-31 京信通信技术(广州)有限公司 波束成形网络及双极化五波束天线
US10578740B2 (en) * 2017-08-23 2020-03-03 Mezmeriz Inc. Coherent optical distance measurement apparatus and method
CN108696322B (zh) * 2018-04-20 2024-01-30 京信通信技术(广州)有限公司 天线校准网络装置
CN109888509B (zh) * 2019-01-22 2020-09-04 武汉虹信通信技术有限责任公司 大规模阵列天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103856275A (zh) * 2013-12-11 2014-06-11 京信通信系统(广州)有限公司 天线及其校准装置
WO2016101501A1 (zh) * 2014-12-25 2016-06-30 中兴通讯股份有限公司 天线耦合校准系统
CN105375118A (zh) * 2015-11-30 2016-03-02 深圳市华讯方舟科技有限公司 一种智能天线校准装置
WO2017157087A1 (en) * 2016-03-14 2017-09-21 Corbett Rowell Hybrid beam-forming antenna array using selection matrix for antenna phase calibration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRUEPOSITION ET AL.: "3GPP TSG-RAN WG4 Meeting #67 R4-132333", ARCHITECTURE DISCUSSION FOR NBPS, 25 May 2013 (2013-05-25), DOI: 20200312175318A *

Also Published As

Publication number Publication date
US10826625B1 (en) 2020-11-03
CN110278012B (zh) 2021-12-14
CN110278012A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
US10826625B1 (en) Antenna calibration network system, antenna calibration network and MIMO antenna
US8941448B2 (en) M-way coupler
US11158934B2 (en) Base station antenna
WO2008145037A1 (fr) Dispositif de réseau d'alimentation, sous-système d'alimentation aérien et système de stations de base
CN108110425A (zh) 2×4宽频巴特勒矩阵板、巴特勒矩阵及多波束天线
CN207852927U (zh) 3×3Butler矩阵馈电网络及天线
CN104134842B (zh) 毫米波多路空间波导功率分配合成器及方法
CN104505569A (zh) 一种平面多端口功分器
CN110474142A (zh) 一种端接频变复数阻抗的双频威尔金森功分器
CN109672012B (zh) 应用在毫米波频段的宽带rwg与siw的差分过渡结构
CN114221103A (zh) 一种带热切换功能的4路功率合成器及4路功率合成方法
CN103094718B (zh) Ka频段小型化宽频带多模自跟踪馈源网络
US7061315B2 (en) Auxiliary amplifier network
WO2023201935A1 (zh) 带隔离的三等分功率分配器及微波发射系统
CN114639934B (zh) 太赫兹分支波导定向耦合器
CN113556138B (zh) 传感器馈电系统、传感器、无线电信号发射装置和电子设备
WO2021109091A1 (zh) 天线校准网络装置以及 mimo 天线
CN110995167B (zh) 一种应用优化合成网络的内匹配功率管
WO2013102311A1 (zh) 功分移相器
CN111130658A (zh) 天线校准网络装置以及mimo天线
CN112701435A (zh) 基于角向周期匹配的同轴te01模功率合成/分配器
CN110635207A (zh) 一种3×3 Butler矩阵
CN219246904U (zh) 一种调频Gysel功率合成器
CN217823208U (zh) 一种2.45GHz Gysel多路径功率合成器
CN218215639U (zh) 耦合器、校准装置和基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936533

Country of ref document: EP

Kind code of ref document: A1