WO2023201907A1 - 一种evs像素工作方法及相关装置 - Google Patents

一种evs像素工作方法及相关装置 Download PDF

Info

Publication number
WO2023201907A1
WO2023201907A1 PCT/CN2022/104983 CN2022104983W WO2023201907A1 WO 2023201907 A1 WO2023201907 A1 WO 2023201907A1 CN 2022104983 W CN2022104983 W CN 2022104983W WO 2023201907 A1 WO2023201907 A1 WO 2023201907A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
evs
moment
output
change value
Prior art date
Application number
PCT/CN2022/104983
Other languages
English (en)
French (fr)
Inventor
查颖云
邓坚
Original Assignee
深圳锐视智芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳锐视智芯科技有限公司 filed Critical 深圳锐视智芯科技有限公司
Publication of WO2023201907A1 publication Critical patent/WO2023201907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/749Circuitry for compensating brightness variation in the scene by influencing the pick-up tube voltages

Definitions

  • the present application relates to the field of sensor technology, and in particular to an EVS pixel working method and related devices.
  • EVS Event-based Vision Sensor
  • Embodiments of the present application provide an EVS pixel working method and related devices, which can at least solve the problem of poor accuracy of event signal output by EVS image sensors provided by related technologies.
  • the first aspect of the embodiment of the present application provides an EVS pixel working method, which is applied to EVS pixels.
  • the EVS pixel working method includes:
  • the voltage change value is compared with a preset voltage threshold range, and an event signal is output when the voltage change value exceeds the voltage threshold range.
  • the second aspect of the embodiment of the present application provides an EVS pixel, including: an input unit, a sampling unit, an integration unit, a comparison unit and an output unit; wherein,
  • the input unit is configured to generate an output voltage in response to incident light intensity
  • the sampling unit is used to record the output voltage at the first moment as a first voltage
  • the integrating unit is configured to use the first voltage as a reference voltage, integrate the output voltage within a preset integration time period after the first moment, and obtain a voltage change value;
  • the comparison unit is used to compare the voltage change value with a preset voltage threshold range
  • the output unit is configured to output an event signal when the voltage change value exceeds the voltage threshold range.
  • the third aspect of the embodiment of the present application provides a terminal device, including: a memory and a processor, wherein the processor is used to execute a computer program stored in the memory.
  • the processor executes the computer program, the first embodiment of the present application is implemented.
  • the fourth aspect of the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, each of the above-mentioned EVS pixel working methods provided by the first aspect of the embodiment of the present application is implemented. step.
  • the output voltage generated by the EVS pixel in response to the incident light intensity is recorded at the first moment to obtain the first voltage; the first voltage is used as the reference voltage.
  • the output voltage is integrated within the preset integration period after the first moment to obtain the voltage change value; the voltage change value is compared with the preset voltage threshold range, and an event signal is output when the voltage change value exceeds the voltage threshold range.
  • the voltage change value generated by the EVS pixel in response to the light intensity change is integrated within a certain period of time to amplify the voltage change value, which can more clearly indicate whether the voltage change is increasing in a forward direction or in a reverse direction. reduction, effectively ensuring the accuracy of the event signal output by the EVS image sensor.
  • Figure 1 is a basic flow diagram of an EVS pixel working method provided by the first embodiment of the present application
  • Figure 2 is a schematic diagram of a step signal provided by the first embodiment of the present application.
  • Figure 3 is a schematic structural diagram of an EVS pixel provided in the second embodiment of the present application.
  • Figure 4 is a schematic diagram of signal changes provided by the second embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a terminal device provided by the third embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of this application, “plurality” means two or more, unless otherwise explicitly and specifically limited.
  • connection In the embodiments of this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a removable connection. Disassembly and connection, or integration; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • Disassembly and connection, or integration it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • the first embodiment of the present application provides an EVS pixel working method, which is applied to EVS pixels.
  • the EVS image sensor includes multiple EVS pixels.
  • the composed pixel array is as shown in Figure 1, which is a basic flow diagram of the EVS pixel working method provided in this embodiment.
  • the EVS pixel working method includes the following steps:
  • Step 101 Record the output voltage generated by the EVS pixel in response to the incident light intensity at the first moment to obtain the first voltage.
  • each EVS pixel in the EVS pixel array is an integrated circuit.
  • the photodiode can be integrated with a capacitor that collects charges, and the photodiode generates electricity in response to the incident light intensity.
  • the electrical signal includes a current signal or a voltage signal. If it is a current signal, the current/voltage conversion unit further converts the photocurrent into a logarithmic voltage, that is, the conversion of the current signal into a voltage signal is achieved.
  • Step 102 Using the first voltage as a reference voltage, integrate the output voltage within a preset integration time period after the first moment to obtain a voltage change value.
  • the voltage change value is usually obtained by directly comparing the voltage at the next moment with the voltage sampled at the previous moment.
  • the numerical accuracy of the voltage change value is usually limited. Therefore, this method
  • the embodiment uses an integration method to obtain the amplified voltage change value to improve the numerical accuracy of the voltage change value.
  • the step before the step of using the first voltage as a reference voltage, integrating the output voltage within a preset integration time period after the first moment to obtain the voltage change value, the step further includes: obtaining Image quality requirement index of EVS image sensor; set the integration time based on the image quality requirement index.
  • the integration time in this embodiment may depend on actual usage requirements.
  • the above image quality requirement indicators include at least one of the following: image output frame rate, image resolution, etc.
  • the longer the integration time means the longer it takes to output a single-frame event image, resulting in a lower image output frame rate.
  • the resulting event image has richer image details, that is, the higher the resolution.
  • the integration time is negatively related to the image output frame rate, and the integration time is positively related to the image resolution. This embodiment can effectively ensure different image quality requirements and response speed requirements by flexibly setting the integration time.
  • the above-mentioned step of using the first voltage as a reference voltage, integrating the output voltage within a preset integration time period after the first moment to obtain the voltage change value includes: using a preset The first integral calculation formula uses the first voltage as the reference voltage, integrates the output voltage within a preset integration time after the first moment, and obtains the voltage change value.
  • an operational amplifier is provided in the integrating unit that performs the integrating operation.
  • the currents at the input terminal and the output terminal of the operational amplifier are equal, the following formula is satisfied:
  • V out represents the voltage change value
  • V A (t) represents the output voltage at time t
  • V 1 represents the first voltage
  • t1 represents the first moment
  • t2 represents the second moment arrived after the integration time from the first moment
  • R and C are time constants.
  • the above-mentioned step of using the first voltage as the reference voltage, integrating the output voltage within a preset integration time period after the first moment to obtain the voltage change value includes: if the first If the voltage is a step signal of the second voltage, the preset second integral calculation formula is used, the first voltage is used as the reference voltage, and the output voltage is integrated within the preset integration time after the first moment to obtain the voltage change value;
  • FIG. 2 is a schematic diagram of a step signal provided in this embodiment, indicating that the output voltage at the first moment is a step signal with an amplitude of V 2 .
  • the second integral calculation formula is expressed as:
  • V out V 1 -(V 2 -V 1 ) ⁇ t/RC
  • V out represents the voltage change value
  • V 1 represents the first voltage
  • V 2 represents the second voltage at moment t2
  • t1 represents the first moment
  • t2 represents the second moment arrived after the integration time has elapsed since the first moment
  • R C is the time constant
  • ⁇ t represents the integration time
  • ⁇ t t2-t1.
  • the EVS pixel working method also includes: making statistics on the event signal generation rate of the EVS pixel within the unit time period before the current moment; based on the event signal generation rate exceeding the preset generation rate threshold range, the time constant is adjusted accordingly according to the event signal generation rate.
  • the event signal generation rate in this embodiment is the level of the event amount output by the EVS pixel within a specific period of time.
  • the historical event signal output level is evaluated in real time to determine whether the event signal output behavior is normal. If not, the time of the above integral model is adjusted. Constants R and/or C are used to correct the integral operation to ensure accurate output of event signals.
  • Step 103 Compare the voltage change value with the preset voltage threshold range, and output an event signal when the voltage change value exceeds the voltage threshold range.
  • the event signal of each EVS pixel is a binary vector (ie, a 2-bit vector), and the 2-bit vector is used to represent whether the incident light becomes stronger or weaker.
  • the voltage threshold range of this embodiment is limited by the first voltage threshold and the second voltage threshold.
  • the first voltage threshold is greater than 0 and the second voltage threshold is less than 0.
  • the first voltage threshold and the second voltage threshold are They can be opposite numbers to each other. For example, if the value of the first voltage threshold is 0.1V, then the value of the second voltage threshold is -0.1V, and the voltage threshold range defined by the two is [-0.1, 0.1].
  • the situation where the voltage change value exceeds the voltage threshold range includes the following two situations: When the above voltage change value is greater than the first voltage threshold, it indicates that the image sensor detects that the light intensity has become stronger and outputs a 2-bit vector [1, 0]. That is, the UP event signal; when the above-mentioned voltage change value is less than the second voltage threshold, it indicates that the image sensor detects that the light intensity has weakened and outputs a 2-bit vector [0, 1], which is the DN event signal.
  • the above step of comparing the voltage change value with the preset voltage threshold range it also includes: if the voltage change value does not exceed the voltage threshold range, then the EVS pixel before the current moment is The event signal generation rate within the unit duration is counted; when the event signal generation rate is lower than the preset first generation rate threshold, the reference voltage is updated.
  • the reference voltage needs to be updated, for example, the reference voltage is updated to the output voltage at the second moment, that is, The recorded first voltage is updated to the second voltage. If the event signal is not output at the second moment, you may choose not to update the reference voltage.
  • EVS pixels may be unable to generate event signals for a long time, and the normal output of event images cannot be guaranteed. In this scenario, this embodiment can determine the long-term inability to generate event signals based on the statistical results of the event signal generation rate.
  • the reference voltage is actively selected to be updated to adjust the voltage change value for threshold comparison during subsequent sensor operation, and dynamically increase the sensitivity of EVS pixels to changes in light intensity to increase the event signal generation rate.
  • this embodiment can also use the method of updating the voltage threshold range to improve the event signal generation rate. This embodiment is not uniquely limited to this. .
  • the above-mentioned step of outputting an event signal when the voltage change value exceeds the voltage threshold range it also includes: counting the event signal generation rate of the EVS pixels within the unit time period before the current moment. ; When the event signal generation rate is higher than the preset second generation rate threshold, the reference voltage is updated.
  • the data generated by the EVS image sensor is an asynchronous event stream, rather than the traditional image frame stream.
  • the event stream has the advantage of high time resolution, errors may occur due to event stream data transmission. Or data overload, causing the event camera to read slowly or even incorrectly.
  • the reference voltage can also be updated and the EVS pixels can be dynamically lowered. Sensitivity to light intensity changes to filter low-frequency signals, limit the occurrence rate of subsequent events per unit time, and achieve the effect of controlling bandwidth.
  • the output voltage generated by the EVS pixel in response to the incident light intensity is recorded at the first moment to obtain the first voltage; using the first voltage as the reference voltage, the preset value after the first moment The output voltage is integrated within the integration time to obtain the voltage change value; the voltage change value is compared with the preset voltage threshold range, and an event signal is output when the voltage change value exceeds the voltage threshold range.
  • the voltage change value generated by the EVS pixel in response to the light intensity change is integrated within a certain period of time to amplify the voltage change value, which can more clearly indicate whether the voltage change is increasing in a forward direction or in a reverse direction. reduction, effectively ensuring the accuracy of the event signal output by the EVS image sensor.
  • FIG 3 is a schematic structural diagram of an EVS pixel provided in the second embodiment of the present application.
  • This EVS pixel can be used to implement the EVS pixel working method in the previous embodiment.
  • the EVS pixel 30 mainly includes: an input unit 31, a sampling unit 32, an integration unit 33, a comparison unit 34 and an output unit 35; wherein,
  • the input unit 31 is configured to generate an output voltage in response to the incident light intensity
  • the sampling unit 32 is used to record the output voltage at the first moment as the first voltage
  • the integrating unit 33 is configured to use the first voltage as a reference voltage to integrate the output voltage within a preset integration time period after the first moment to obtain a voltage change value;
  • the comparison unit 34 is used to compare the voltage change value with the preset voltage threshold range
  • the output unit 35 is configured to output an event signal when the voltage change value exceeds the voltage threshold range.
  • the input unit includes a photoelectric conversion device, which may be a photodiode, a phototransistor, a clamped photodiode, or any other similar device, and the input unit may also include a current/voltage conversion unit configured as Convert the photocurrent corresponding to the incident light into a logarithmic voltage.
  • a sampling capacitor is provided in the sampling unit. The sampling unit samples the output voltage generated by the input unit at the last moment and stores it in the sampling capacitor.
  • the EVS pixel may further include a voltage buffer, which is connected to the input unit and the integrating unit respectively, and is configured to transmit the voltage of the input unit to the integrating unit.
  • a first switch 36 is provided between the input unit 31 and the sampling unit 32.
  • the integrating unit 33 includes a feedback capacitor 331 and an operational amplifier 332.
  • the operational amplifier includes The first input terminal, the second input terminal and the output terminal, the first input terminal is connected to the input unit 31, the second input terminal is connected to the sampling unit 32, the output terminal is connected to the comparison unit 34, between the first input terminal and the output terminal A second switch 37 is provided, and the comparison unit 34 is connected to the output unit 35; before the first moment, the first switch 36 and the second switch 37 are both in a closed state; at the first moment, the first switch 36 enters an open state. state; after the first moment, the second switch 37 enters the open state, and when the integration time is reached, the second switch 37 enters the closed state.
  • the first switch is turned off, and the voltage V 1 is stored in the sampling unit;
  • the second switch is turned off immediately, the integrating unit begins to integrate V A , and the amplification factor of the operational amplifier 332 is large enough
  • the input terminal is virtual short, and the voltage at point B and point C is V 1 ;
  • the second switch is closed, the integrating unit stops integrating and resets it , the integration unit compares the integrated voltage V out with the preset voltage threshold range, and outputs an event according to the comparison result.
  • EVS image sensors usually compare the comparison result directly with a set threshold to output an event signal (i.e., UP event or DN event). This method will result in insufficient accuracy of the output event due to insufficient numerical accuracy of the comparison result. .
  • the original comparison result will be integrated through the second switch, and the integration time can be set according to requirements. Since integration can amplify the comparison result, the accuracy of the output event can be improved.
  • V out V 1 -(V 2 -V 1 ) ⁇ t/RC
  • V out represents the voltage change value
  • V A (t) represents the output voltage at time t
  • V 1 represents the first voltage
  • V 2 represents the second voltage at time t2
  • t1 represents the first time
  • t2 represents the time since the first time.
  • the second moment reached after the integration time, R and C are time constants
  • ⁇ t represents the integration time
  • ⁇ t t2-t1.
  • FIG. 4 is a schematic diagram of signal changes provided in this embodiment.
  • the second integral calculation formula it can be known that when V 2 > V 1 , V out ⁇ V 1 , the UP event is output; and when V 2 ⁇ V 1 , V out > V 1 , the DN event is output. It can be understood that after the integration time t, the second switch is closed, the voltage of the feedback capacitor is reset, and then the voltage change at the next moment is continued to be integrated. The time of each integration can be set according to requirements.
  • EVS pixel working method in the first embodiment can be implemented based on the EVS pixel provided in this embodiment.
  • EVS pixel provided in this embodiment.
  • Those of ordinary skill in the art can clearly understand that for the convenience and simplicity of description, in this embodiment
  • the output voltage generated by the EVS pixel in response to the incident light intensity is recorded at the first moment to obtain the first voltage; using the first voltage as the reference voltage, the preset voltage after the first moment The output voltage is integrated within the integration time to obtain the voltage change value; the voltage change value is compared with the preset voltage threshold range, and an event signal is output when the voltage change value exceeds the voltage threshold range.
  • the voltage change value generated by the EVS pixel in response to the light intensity change is integrated within a certain period of time to amplify the voltage change value, which can more clearly indicate whether the voltage change is increasing in a forward direction or in a reverse direction. reduction, effectively ensuring the accuracy of the event signal output by the EVS image sensor.
  • Figure 5 is a terminal device provided by the third embodiment of the present application.
  • the terminal device can be used to implement the EVS pixel working method in the aforementioned embodiment, which mainly includes:
  • the memory 501, the processor 502 and the computer program 503 stored on the memory 501 and executable on the processor 502 are connected through communication.
  • the processor 502 executes the computer program 503 the method in the first embodiment is implemented.
  • the number of processors may be one or more.
  • the memory 501 can be a high-speed random access memory (RAM, Random Access Memory) memory, or a non-volatile memory (non-volatile memory), such as a disk memory.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the memory 501 is used to store executable program codes, and the processor 502 is coupled to the memory 501 .
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium may be provided in the electronic device in the above-mentioned embodiments.
  • the computer-readable storage medium may be the computer-readable storage medium shown in FIG. 5 . memory in the illustrated embodiment.
  • the computer readable storage medium stores a computer program, and when the program is executed by the processor, the EVS pixel working method in the aforementioned embodiment is implemented.
  • the computer storage medium can also be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), RAM, a magnetic disk or an optical disk, and other media that can store program codes.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, which may be in electrical, mechanical or other forms.
  • Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • Integrated modules can be stored in a computer-readable storage medium if they are implemented in the form of software function modules and sold or used as independent products. Based on this understanding, the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a readable storage.
  • the medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Studio Devices (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

本申请提供了一种EVS像素工作方法及相关装置,该方法包括:在第一时刻对EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压;以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值;将电压变化值与预设电压阈值范围进行比较,并在电压变化值超出电压阈值范围时输出事件信号。通过本申请方案的实施,在一定时长内对EVS像素响应于光强变化所产生的电压变化值进行积分,以对电压变化值进行放大处理,能够更清楚的表示电压变化是正向增加还是反向减小,有效保证了EVS图像传感器输出事件信号的准确性。

Description

一种EVS像素工作方法及相关装置 技术领域
本申请涉及传感器技术领域,尤其涉及一种EVS像素工作方法及相关装置。
背景技术
随着科学技术的不断发展,计算机视觉技术也越来越成熟。事件型图像传感器(EVS,Event-based Vision Sensor)的出现,在视觉领域引来了越来越多的关注。它模拟人类的视网膜,响应由于运动产生的亮度变化的像素点脉冲,因此它能够以极高的帧率捕获场景的亮度变化,记录特定时间点和图像中特定位置的事件,形成事件流而不是帧流,从而解决了传统相机信息冗余、大量数据存储和实时处理等问题。然而,目前的EVS图像传感器出于电路之间存在噪声、失调等因素会导致电压变化量的精度较为有限,进而可能导致事件信号输出错误。
技术问题
本申请实施例提供了一种EVS像素工作方法及相关装置,至少能够解决相关技术所提供的EVS图像传感器输出事件信号的准确性较差的问题。
技术解决方案
本申请实施例第一方面提供了一种EVS像素工作方法,应用于EVS像素,所述EVS像素工作方法包括:
在第一时刻对所述EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压;
以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值;
将所述电压变化值与预设电压阈值范围进行比较,并在所述电压 变化值超出所述电压阈值范围时输出事件信号。
本申请实施例第二方面提供了一种EVS像素,包括:输入单元、采样单元、积分单元、比较单元以及输出单元;其中,
所述输入单元用于响应于入射光强度生成输出电压;
所述采样单元用于将第一时刻的所述输出电压记录为第一电压;
所述积分单元用于以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值;
所述比较单元用于将所述电压变化值与预设电压阈值范围进行比较;
所述输出单元用于在所述电压变化值超出所述电压阈值范围时输出事件信号。
本申请实施例第三方面提供了一种终端设备,包括:存储器及处理器,其中,处理器用于执行存储在存储器上的计算机程序,处理器执行计算机程序时,实现上述本申请实施例第一方面提供的EVS像素工作方法中的各步骤。
本申请实施例第四方面提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时,实现上述本申请实施例第一方面提供的EVS像素工作方法中的各步骤。
有益效果
由上可见,根据本申请方案所提供的EVS像素工作方法及相关装置,在第一时刻对EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压;以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值;将电压变化值与预设电压阈值范围进行比较,并在电压变化值超出电压阈值范围时输 出事件信号。通过本申请方案的实施,在一定时长内对EVS像素响应于光强变化所产生的电压变化值进行积分,以对电压变化值进行放大处理,能够更清楚的表示电压变化是正向增加还是反向减小,有效保证了EVS图像传感器输出事件信号的准确性。
附图说明
图1为本申请第一实施例提供的一种EVS像素工作方法的基础流程示意图;
图2为本申请第一实施例提供的一种阶跃信号的示意图;
图3为本申请第二实施例提供的一种EVS像素的结构示意图;
图4为本申请第二实施例提供的一种信号变化示意图;
图5为本申请第三实施例提供的终端设备的结构示意图。
本发明的实施方式
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指 示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本发明,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
为了解决相关技术中所提供的EVS图像传感器输出事件信号的准确性较差的问题,本申请第一实施例提供了一种EVS像素工作方法,应用于EVS像素,EVS图像传感器包括多个EVS像素组成的像素阵列,如图1为本实施例提供的EVS像素工作方法的基础流程示意图,该EVS像素工作方法包括以下的步骤:
步骤101、在第一时刻对EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压。
具体的,在本实施例中,EVS像素阵列中每个EVS像素均为集成电路,在该集成电路中,光电二极管可与集聚电荷的电容器集成,其响应于入射光强度而由光电二极管生成电信号,该电信号包括电流信号或电压信号,若为电流信号,则进一步由电流/电压转换单元将光电流转换为对数电压,也即实现电流信号至电压信号的转换。
步骤102、以第一电压为参考电压,在第一时刻之后的预设积分 时长内对输出电压进行积分,得到电压变化值。
具体的,在相关技术中,通常是将下一时刻的电压直接与前一时刻所采样的电压直接进行作差而得到电压变化值,该电压变化值的数值精度通常较为有限,由此,本实施例采用积分方式来获取放大后的电压变化值,以提高电压变化值的数值精度。
在本实施例一种可选实施方式中,上述以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值的步骤之前,还包括:获取EVS图像传感器的图像质量需求指标;基于图像质量需求指标设定积分时长。
具体的,本实施例的积分时长可视实际使用需求而定,上述图像质量需求指标包括以下至少一种:图像输出帧率、图像分辨率等。在实际应用中,积分时长越长意味着输出单帧事件图像的耗时越长,从而图像输出帧率越低,与此同时,所得事件图像的图像细节愈发丰富,也即分辨率越高,由此可见,积分时长与图像输出帧率负相关,且积分时长与图像分辨率正相关。本实施例通过灵活设定积分时长,可有效保证不同图像质量需求以及响应速度需求。
在本实施例一种可选实施方式中,上述以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值的步骤,包括:采用预设第一积分计算公式,以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值。
应当说明的是,执行积分操作的积分单元中设置有运算放大器,当运算放大器输入端与输出端电流相等时,满足如下公式:
Figure PCTCN2022104983-appb-000001
进一步地,可以根据上式推理得到第一积分计算公式:
Figure PCTCN2022104983-appb-000002
其中,V out表示电压变化值,V A(t)表示t时刻的输出电压,V 1表示第一电压,t1表示第一时刻,t2表示自第一时刻经过积分时长之后到达的第二时刻,R、C为时间常数。
本实施例另一种可选实施方式中,上述以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值的步骤,包括:若第一电压为第二电压的阶跃信号,则采用预设第二积分计算公式,以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值;如图2所示为本实施例提供的一种阶跃信号的示意图,表示在第一时刻的输出电压是幅度为V 2的阶跃信号。
具体的,第二积分计算公式表示为:
V out=V 1-(V 2-V 1)Δt/RC,
其中,V out表示电压变化值,V 1表示第一电压,V 2表示t2时刻的第二电压,t1表示第一时刻,t2表示自第一时刻经过积分时长之后到达的第二时刻,R、C为时间常数,Δt表示积分时长,Δt=t2-t1。
进一步地,本实施例一种可选实施方式中,该EVS像素工作方法还包括:对EVS像素在当前时刻之前单位时长内的事件信号产生率进行统计;根据事件信号产生率超出预设产生率阈值范围,则根据事件信号产生率对时间常数进行相应调整。
具体的,本实施例的事件信号产生率也即EVS像素在特定时长内输出的事件量的水平,在本实施例中,考虑到积分参数设置不合理可能导致电压变化量放大倍数不够或放大倍数过大,而导致事件信号输出的准确性依旧得不到保证,基于此,实时对历史事件信号输出水平进行评估,以确定事件信号输出行为是否正常,若否,则通过调整上 述积分模型的时间常数R和/或C,以对积分操作进行修正,以保证事件信号准确输出。
步骤103、将电压变化值与预设电压阈值范围进行比较,并在电压变化值超出电压阈值范围时输出事件信号。
具体的,在本实施例中,每个EVS像素的事件信号均为一个二值向量(即2bit向量),该2bit向量用于表征入射光是变强还是变弱。应当说明的是,本实施例的电压阈值范围由第一电压阈值和第二电压阈值限定,第一电压阈值大于0,第二电压阈值小于0,优选的,第一电压阈值与第二电压阈值可以互为相反数,例如第一电压阈值的取值为0.1V,那么第二电压阈值的取值则为-0.1V,两者所限定的电压阈值范围为[-0.1,0.1]。在实际应用中,电压变化值超出电压阈值范围的情况包括一下两种:当上述电压变化值大于第一电压阈值时,表明图像传感器检测到光强变强,输出2bit向量[1,0],也即UP事件信号;当上述电压变化值小于第二电压阈值时,表明图像传感器检测到光强变弱,输出2bit向量[0,1],也即DN事件信号。
在本实施例一种可选实施方式中,上述将电压变化值与预设电压阈值范围进行比较的步骤之后,还包括:若电压变化值未超出电压阈值范围,则对EVS像素在当前时刻之前单位时长内的事件信号产生率进行统计;当事件信号产生率低于预设第一产生率阈值时,对参考电压进行更新。
具体的,在实际应用中,若在第一时刻经过积分时长后所到达的第二时刻输出事件信号,则需要对参考电压进行更新,例如将参考电压更新为第二时刻的输出电压,也即将记录的第一电压更新为第二电压,若在第二时刻未输出事件信号,则可以选择不更新参考电压。然而,若在实际应用场景下EVS像素可能存在长时间无法生成事件信号的情况,无法保证事件图像正常输出,在这种场景下,本实施例可以在根据事件信号产生率统计结果确定长时无事件信号生成时,主动选 择更新参考电压,以在后续传感器工作过程中调整进行阈值比较的电压变化值,动态调高EVS像素对光强变化的敏感度,以提高事件信号产生率。另外,还应当说明的是,在实际应用中,除了采用前述更新参考电压的方式,本实施例还可以采用更新电压阈值范围的方式以提高事件信号产生率,本实施例对此不做唯一限定。
在本实施例另一种可选实施方式中,上述在电压变化值超出电压阈值范围时输出事件信号的步骤之后,还包括:对EVS像素在当前时刻之前单位时长内的事件信号产生率进行统计;当事件信号产生率高于预设第二产生率阈值时,对参考电压进行更新。
具体的,在实际应用中,EVS图像传感器产生的数据是一种异步事件流,而不是传统图像的帧流,事件流虽然有着高时间分辨率的优点,但也可能由于事件流数据传输出现错误或数据过载,导致事件相机读出缓慢甚至错误,从而在一种解决方案中,当历史时长内事件产生率较大而可能出现数据过载时,也可以对参考电压进行更新,动态调低EVS像素对光强变化的敏感度,以过滤低频信号,限制后续单位时间内事件的产生率,达到控制带宽的效果。
基于上述本申请实施例的技术方案,在第一时刻对EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压;以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值;将电压变化值与预设电压阈值范围进行比较,并在电压变化值超出电压阈值范围时输出事件信号。通过本申请方案的实施,在一定时长内对EVS像素响应于光强变化所产生的电压变化值进行积分,以对电压变化值进行放大处理,能够更清楚的表示电压变化是正向增加还是反向减小,有效保证了EVS图像传感器输出事件信号的准确性。
图3为本申请第二实施例提供的一种EVS像素的结构示意图。该 EVS像素可用于实现前述实施例中的EVS像素工作方法。如图3所示,该EVS像素30主要包括:输入单元31、采样单元32、积分单元33、比较单元34以及输出单元35;其中,
输入单元31用于响应于入射光强度生成输出电压;
采样单元32用于将第一时刻的输出电压记录为第一电压;
积分单元33用于以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值;
比较单元34用于将电压变化值与预设电压阈值范围进行比较;
输出单元35用于在电压变化值超出电压阈值范围时输出事件信号。
具体的,在本实施例中,输入单元包括光电转换器件,其可以为光电二极管、光电晶体管、钳位光电二极管或任何其他类似器件,输入单元还可以包括电流/电压转换单元,其被配置为将入射光对应的光电流转换成对数电压。采样单元内设置有采样电容,采样单元对输入单元上一时刻生成的输出电压进行采样并存储在采样电容中。另外,EVS像素还可以包括电压缓冲器,其分别与输入单元和积分单元连接,被配置为将输入单元的电压传输至积分单元。
请再次参阅图3,在本实施例的一种可选实施方式中,输入单元31与采样单元32之间设置有第一开关36,积分单元33包括反馈电容331以及运算放大器332,运算放大器包括第一输入端、第二输入端以及输出端,第一输入端与输入单元31连接,第二输入端与采样单元32连接,输出端与比较单元34连接,第一输入端与输出端之间设置有第二开关37,比较单元34与输出单元35连接;其中,在第一时刻之前,第一开关36以及第二开关37均处于闭合状态;在第一时刻,第一开关36进入断开状态;在第一时刻之后,第二开关37进入断开状态,以及在积分时长到达时,第二开关37进入闭合状态。
具体的,假设在t1时刻之前,第一开关和第二开关都闭合,反馈电容被短路,积分单元处于复位状态;在t1时刻,像素进行采样,假设对入射光进行光电转换在A点形成电压为V 1,即V A=V 1,第一开关断开,电压V 1被存入采样单元中;第二开关随即被断开,积分单元开始对V A积分,运算放大器332放大倍数足够大导致输入端虚短,满足B点和C点的电压为V 1;t2时刻,入射光对应的电压为V 2,即V A=V 2,第二开关闭合,积分单元停止积分并将其复位,积分单元将积分所得电压V out与预设电压阈值范围进行比较,根据比较结果输出事件。传统的EVS图像传感器通常将该比较结果直接与设定的阈值进行比较,从而输出事件信号(即,UP事件或DN事件),这种方法会由于比较结果的数值精度不够造成输出事件的精度不够。而在本实施例中,将通过第二开关对原始比较结果进行积分,积分时间可以根据需求设置,由于积分能够将该比较结果进行放大,从而可以提高输出事件的精度。
在本实施例中,根据运算放大器332左右两端的电流相等,可满足下列公式:
Figure PCTCN2022104983-appb-000003
进一步地,可以根据上式推理得到第一积分计算公式:
Figure PCTCN2022104983-appb-000004
若在第一时刻的输出电压是幅度为V 2的阶跃信号,则上述第一积分计算公式可以转换为第二积分计算公式:
V out=V 1-(V 2-V 1)Δt/RC,
其中,V out表示电压变化值,V A(t)表示t时刻的输出电压,V 1表示第一电压,V 2表示t2时刻的第二电压,t1表示第一时刻,t2表示 自第一时刻经过积分时长之后到达的第二时刻,R、C为时间常数,Δt表示积分时长,Δt=t2-t1。
如图4所示为本实施例提供的一种信号变化示意图,t1时刻,EVS像素进行采样,假设入射光对应的电压为V 1,输出单元的输出电压记为V A,V A=V 1,第一开关断开,电压V 1被存入采样单元中;第二开关随即被断开,积分单元开始对V A积分,运算放大器放大倍数足够大导致输入端虚短,满足V+=V-=V 1(即,B点和C点的电压为V 1);t2时刻,入射光对应的电压为V 2,且V A=V 2,第二开关闭合,积分单元停止积分并将其复位,积分时间为t(即,t2-t1),根据第一积分计算公式输出V out,将V out与预先设定的阈值通过比较器进行比较,并根据比较结果输出相应的事件信号,若V A(t)>V 1,即V out<V 1,则输出UP事件;若V A(t)<V 1,V out>V 1,则输出DN事件。根据第二积分计算公式可以知道,当V 2>V 1时,V out<V 1,输出UP事件;而当V 2<V 1时,V out>V 1,输出DN事件。可以理解的是,积分时间t后,第二开关闭合,复位反馈电容的电压,再继续对下一时刻的电压变化量进行积分,每次积分的时间可以根据需求设定。
应当说明的是,第一实施例中的EVS像素工作方法均可基于本实施例提供的EVS像素实现,所属领域的普通技术人员可以清楚的了解到,为描述的方便和简洁,本实施例中所描述的EVS像素的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
根据本实施例所提供的EVS像素,在第一时刻对EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压;以第一电压为参考电压,在第一时刻之后的预设积分时长内对输出电压进行积分,得到电压变化值;将电压变化值与预设电压阈值范围进行比较,并在电压变化值超出电压阈值范围时输出事件信号。通过本申请方案的实施,在一定时长内对EVS像素响应于光强变化所产生的电压变化值进行积分,以对电压变化值进行放大处理,能够更清楚的表示电压变化是正向增加还是反向减小,有效保证了EVS图像传感器输出事件信号 的准确性。
图5为本申请第三实施例提供的一种终端设备。该终端设备可用于实现前述实施例中的EVS像素工作方法,主要包括:
存储器501、处理器502及存储在存储器501上并可在处理器502上运行的计算机程序503,存储器501和处理器502通过通信连接。处理器502执行该计算机程序503时,实现前述实施例一中的方法。其中,处理器的数量可以是一个或多个。
存储器501可以是高速随机存取记忆体(RAM,Random Access Memory)存储器,也可为非不稳定的存储器(non-volatile memory),例如磁盘存储器。存储器501用于存储可执行程序代码,处理器502与存储器501耦合。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是前述图5所示实施例中的存储器。
该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述实施例中的EVS像素工作方法。进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其 它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本申请所提供的EVS像素工作方法及相关装置的描述,对于 本领域的技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (11)

  1. 一种EVS像素工作方法,应用于EVS像素,其特征在于,所述EVS像素工作方法包括:
    在第一时刻对所述EVS像素响应于入射光强度生成的输出电压进行记录,得到第一电压;
    以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值;
    将所述电压变化值与预设电压阈值范围进行比较,并在所述电压变化值超出所述电压阈值范围时输出事件信号。
  2. 根据权利要求1所述的EVS像素工作方法,其特征在于,所述以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值的步骤,包括:
    采用预设第一积分计算公式,以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值;所述第一积分计算公式表示为:
    Figure PCTCN2022104983-appb-100001
    其中,V out表示所述电压变化值,V A(t)表示t时刻的所述输出电压,V 1表示所述第一电压,t1表示所述第一时刻,t2表示自所述第一时刻经过所述积分时长之后到达的第二时刻,R、C为时间常数。
  3. 根据权利要求1所述的EVS像素工作方法,其特征在于,所述以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值的步骤,包括:
    若所述第一电压为第二电压的阶跃信号,则采用预设第二积分计算公式,以所述第一电压为参考电压,在所述第一时刻之后的预设积 分时长内对所述输出电压进行积分,得到电压变化值;所述第二积分计算公式表示为:
    V out=V 1-(V 2-V 1)Δt/RC,
    其中,V out表示所述电压变化值,V 1表示所述第一电压,V 2表示t2时刻的所述第二电压,t1表示所述第一时刻,t2表示自所述第一时刻经过所述积分时长之后到达的第二时刻,R、C为时间常数,Δt表示所述积分时长。
  4. 根据权利要求1所述的EVS像素工作方法,其特征在于,所述以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值的步骤之前,还包括:
    获取所述EVS图像传感器的图像质量需求指标;
    基于所述图像质量需求指标设定所述积分时长。
  5. 根据权利要求2或3所述的EVS像素工作方法,其特征在于,还包括:
    对所述EVS像素在当前时刻之前单位时长内的事件信号产生率进行统计;
    根据所述事件信号产生率超出预设产生率阈值范围,则根据所述事件信号产生率对所述时间常数进行相应调整。
  6. 根据权利要求1至4中任意一项所述的EVS像素工作方法,其特征在于,所述将所述电压变化值与预设电压阈值范围进行比较的步骤之后,还包括:
    若所述电压变化值未超出所述电压阈值范围,则对所述EVS像素在当前时刻之前单位时长内的事件信号产生率进行统计;
    当所述事件信号产生率低于预设第一产生率阈值时,对所述参考电压进行更新。
  7. 根据权利要求1至4中任意一项所述的EVS像素工作方法,其特征在于,所述在所述电压变化值超出所述电压阈值范围时输出事件信号的步骤之后,还包括:
    对所述EVS像素在当前时刻之前单位时长内的事件信号产生率进行统计;
    当所述事件信号产生率高于预设第二产生率阈值时,对所述参考电压进行更新。
  8. 一种EVS像素,其特征在于,包括:输入单元、采样单元、积分单元、比较单元以及输出单元;其中,
    所述输入单元用于响应于入射光强度生成输出电压;
    所述采样单元用于将第一时刻的所述输出电压记录为第一电压;
    所述积分单元用于以所述第一电压为参考电压,在所述第一时刻之后的预设积分时长内对所述输出电压进行积分,得到电压变化值;
    所述比较单元用于将所述电压变化值与预设电压阈值范围进行比较;
    所述输出单元用于在所述电压变化值超出所述电压阈值范围时输出事件信号。
  9. 根据权利要求8所述的EVS像素,其特征在于,所述输入单元与所述采样单元之间设置有第一开关,所述积分单元包括第一输入端、第二输入端以及输出端,所述第一输入端与所述输入单元连接,所述第二输入端与所述采样单元连接,所述输出端与所述比较单元连接,所述第一输入端与所述输出端之间设置有第二开关,所述比较单元与所述输出单元连接;其中,
    在所述第一时刻之前,所述第一开关以及所述第二开关均处于闭合状态;在所述第一时刻,所述第一开关进入断开状态;在所述第一 时刻之后,所述第二开关进入断开状态,以及在所述积分时长到达时,所述第二开关进入闭合状态。
  10. 一种终端设备,其特征在于,包括存储器及处理器,其中:
    所述处理器用于执行存储在所述存储器上的计算机程序;
    所述处理器执行所述计算机程序时,实现权利要求1至7中任意一项所述方法中的步骤。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现权利要求1至7中的任意一项所述方法中的步骤。
PCT/CN2022/104983 2022-04-18 2022-07-11 一种evs像素工作方法及相关装置 WO2023201907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210401678.5 2022-04-18
CN202210401678.5A CN114500868B (zh) 2022-04-18 2022-04-18 一种evs像素工作方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023201907A1 true WO2023201907A1 (zh) 2023-10-26

Family

ID=81489522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104983 WO2023201907A1 (zh) 2022-04-18 2022-07-11 一种evs像素工作方法及相关装置

Country Status (3)

Country Link
CN (1) CN114500868B (zh)
TW (1) TWI820863B (zh)
WO (1) WO2023201907A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500868B (zh) * 2022-04-18 2022-07-12 深圳锐视智芯科技有限公司 一种evs像素工作方法及相关装置
CN115022621A (zh) * 2022-06-27 2022-09-06 深圳锐视智芯科技有限公司 一种事件相机测试方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182468A1 (en) * 2006-11-23 2010-07-22 Austrian Research Centers Gmbh-Arc Method for the generation of an image in electronic form, picture element (pixel) for an image sensor for the generation of an image as well as image sensor
CN110971792A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 一种动态视觉传感器
CN111770245A (zh) * 2020-07-29 2020-10-13 中国科学院长春光学精密机械与物理研究所 一种类视网膜图像传感器的像素结构
CN113812142A (zh) * 2019-05-10 2021-12-17 索尼高级视觉传感股份公司 使用接通/关断事件和灰度检测斜坡的基于事件的视觉传感器
CN114500868A (zh) * 2022-04-18 2022-05-13 深圳锐视智芯科技有限公司 一种evs像素工作方法及相关装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578795B2 (en) * 2001-08-07 2009-08-25 Diopsys, Inc. System and method for vision examination utilizing fault detection
US7474345B2 (en) * 2001-10-24 2009-01-06 Texas Instruments Incorporated System and method to facilitate time domain sampling for solid state imager
US10348994B2 (en) * 2017-04-06 2019-07-09 Samsung Electronics Co., Ltd. Intensity image acquisition from dynamic vision sensors
CN111713101B (zh) * 2017-12-11 2022-05-13 普罗菲西公司 基于事件的图像传感器及其操作方法
JP7449663B2 (ja) * 2018-10-30 2024-03-14 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、撮像装置、および、固体撮像素子の制御方法
GB2579846A (en) * 2018-12-18 2020-07-08 Univ Bristol Improvements in or relating to tactile sensing
CN112399032B (zh) * 2019-08-13 2022-05-31 天津大学青岛海洋技术研究院 一种基于检测器的脉冲式图像传感器的光流获取方法
CN111510651B (zh) * 2020-04-26 2022-09-06 Oppo广东移动通信有限公司 一种图像传感电路、图像传感器及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182468A1 (en) * 2006-11-23 2010-07-22 Austrian Research Centers Gmbh-Arc Method for the generation of an image in electronic form, picture element (pixel) for an image sensor for the generation of an image as well as image sensor
CN110971792A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 一种动态视觉传感器
CN113812142A (zh) * 2019-05-10 2021-12-17 索尼高级视觉传感股份公司 使用接通/关断事件和灰度检测斜坡的基于事件的视觉传感器
CN111770245A (zh) * 2020-07-29 2020-10-13 中国科学院长春光学精密机械与物理研究所 一种类视网膜图像传感器的像素结构
CN114500868A (zh) * 2022-04-18 2022-05-13 深圳锐视智芯科技有限公司 一种evs像素工作方法及相关装置

Also Published As

Publication number Publication date
CN114500868A (zh) 2022-05-13
TW202344039A (zh) 2023-11-01
CN114500868B (zh) 2022-07-12
TWI820863B (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2023201907A1 (zh) 一种evs像素工作方法及相关装置
WO2021017766A1 (zh) 一种像素采集电路、动态视觉传感器以及图像采集设备
WO2020063332A1 (zh) 一种动态视觉传感器
WO2023173634A1 (zh) 一种图像输出方法、图像传感器及其应用
EP3443741B1 (en) Digital unit cell with analog counter element
JP2001285721A (ja) 広いダイナミックレンジを達成するための時間インデックス付け方法を用いた多サンプリング方法
US20200033482A1 (en) Image sensor and image capturing apparatus
US11363219B2 (en) Information processing apparatus, image sensor, image capturing apparatus, and information processing method
US20190014281A1 (en) Solid-state image sensor, image capturing apparatus and image capturing method
CN214756626U (zh) 图像感测装置
CN115967864B (zh) 图像传感器中光信号的采集方法、电路、设备和介质
McReynolds et al. Exploiting alternating DVS shot noise event pair statistics to reduce background activity
CN114339089A (zh) 一种事件图像输出方法、装置、设备及可读存储介质
US10250824B2 (en) Camera sensor with event token based image capture and reconstruction
US7659931B2 (en) Apparatus for imaging objects of changing luminance
WO2021138838A1 (zh) 一种图像读取电路、图像传感器以及终端设备
US11336858B2 (en) Image capturing device and method that control an exposure period of a photon-counting type of an image sensor
WO2024093240A1 (zh) 亮度变化检测装置及方法、电子设备
TWI489865B (zh) 曝光調整裝置、影像均化裝置及影像均化方法
JP4439651B2 (ja) Cmosイメージセンサにおける露出時間を調節するための装置及び方法
CN113873142A (zh) 多媒体处理芯片、电子设备和动态图像处理方法
CN220570631U (zh) 光电传感器及其像素单元、脉冲相机和电子设备
CN221151493U (zh) 脉冲序列式传感器像素单元、脉冲序列式传感器及设备
CN113873143B (zh) 多媒体处理芯片和电子设备
CN220570632U (zh) 光电传感器及其像素单元、脉冲相机和电子设备