WO2023201896A1 - 一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法 - Google Patents

一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法 Download PDF

Info

Publication number
WO2023201896A1
WO2023201896A1 PCT/CN2022/103285 CN2022103285W WO2023201896A1 WO 2023201896 A1 WO2023201896 A1 WO 2023201896A1 CN 2022103285 W CN2022103285 W CN 2022103285W WO 2023201896 A1 WO2023201896 A1 WO 2023201896A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
underwater robot
voltage
control
thruster
Prior art date
Application number
PCT/CN2022/103285
Other languages
English (en)
French (fr)
Inventor
殷宝吉
王子威
叶福民
张建
成诗豪
颜静
徐文星
辛伯彧
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to KR1020247014463A priority Critical patent/KR20240083869A/ko
Publication of WO2023201896A1 publication Critical patent/WO2023201896A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth

Definitions

  • the invention relates to underwater exploration and underwater operation equipment and supporting technologies. Specifically, it relates to a control system, a control method and a vector angle selection method for an underwater robot vector thruster.
  • the patent application with publication number CN113002744A discloses a four-rotor underwater vehicle.
  • This patent application discloses a center of gravity adjustment device and a driving device for driving the center of gravity adjustment device.
  • the movement changes the position of the center of gravity of the quad-rotor underwater vehicle, thereby improving the working efficiency of the quad-rotor underwater vehicle; however, it requires the cooperation of the center of gravity adjustment device and the propeller to complete multi-degree-of-freedom movements.
  • the attitude of the vehicle body will vary greatly. Rotation greatly reduces the overall stability of the aircraft, which is not conducive to underwater detection and underwater operations.
  • the four-rotor underwater vehicle motion control and visual simulation disclosed in the journal "Industrial Control Computer” discloses an underwater robot with four thrusters projected on two plumb bob planes to form two "V" shapes, which is called The V-shaped thruster can drive the robot to complete movements with six degrees of freedom, thereby improving the maneuverability of the underwater robot; however, during its movement, some thrust components of the thruster cancel each other out, increasing energy consumption.
  • the present invention provides a vector thruster control system that improves the motion stability of underwater robots.
  • the invention also provides a method for controlling a vector thruster of an underwater robot and a method for selecting a vector angle of the vector thruster.
  • the present invention adopts a control system for an underwater robot's vector thruster, which includes a vector thruster for driving the movement of the underwater robot, a number of voltage sensors for detecting the state of the underwater robot, a host computer, Control module, the host computer is used to send control voltage signals, the control module includes a signal acquisition module, a signal receiving module, a signal output module and a control signal adjustment module, the signal acquisition module is used to collect the voltage of the voltage sensor Voltage output signal, the signal receiving module is used to receive the control voltage signal sent by the host computer and the voltage output signal collected by the signal acquisition module, and the control signal adjustment module is used to perform voltage PID closed-loop calculation based on the signal received by the signal receiving module.
  • the closed-loop output control voltage is used, and the control signal adjustment module is used to adjust the output speed of the closed-loop output control voltage; the signal output module is used to convert the closed-loop output control voltage adjusted by the control signal adjustment module into a control signal for the vector thruster, and Control the vector thruster.
  • the underwater robot includes an outer frame and an electronic cabin fixed in the outer frame.
  • Four vector thrusters are symmetrically arranged on both sides of the outer frame.
  • the voltage sensor, signal acquisition module, and control module are all arranged on Inside the electronic cabin.
  • the vector thruster includes an underwater thruster and an underwater steering gear.
  • the output end of the underwater steering gear is connected to the side of the underwater thruster.
  • the underwater steering gear adjusts the propulsion angle of the underwater thruster.
  • the present invention also adopts a control method for a vector thruster, which includes the following steps:
  • Step 1 Collect the status information of the underwater robot and upload it to the host computer;
  • Step 2 The host computer sends a control voltage signal based on the status information of the underwater robot
  • Step 3 Based on the control voltage signal sent by the host computer and the voltage signal of the collected underwater robot status information, perform voltage PID closed-loop calculation to obtain the closed-loop output control voltage;
  • Step 4 Adjust the output speed of the closed-loop output control voltage
  • Step 5 Convert the adjusted closed-loop output control voltage into the control signal of the vector thruster, and control the vector thruster.
  • step 3 the voltage PID closed-loop calculation formula in step 3 is:
  • u O (k) is the closed-loop output control voltage
  • e (k) is the error
  • e (k) u I (k)-u R (k)
  • u I (k) is the control voltage signal sent by the host computer
  • the voltage value of u R (k) is the collected voltage value
  • T 1 is the update period of u O (k)
  • K P , K I , and K D are the PID closed-loop adjustment parameters.
  • step 4 the closed-loop output control voltage u O (k) is substituted into the control voltage ramp-up adjustment function, and the output speed adjustment of the closed-loop output control voltage is realized by adjusting the ramp-up parameter k A.
  • the voltage ramp-up adjustment function is :
  • u S (j+1) is the digital quantity of the control voltage output after slow-change adjustment
  • k A is the slow-change parameter
  • T 2 is the update period of u S (j)
  • T 2 1/k A and T 1 ⁇ 10T 2 .
  • the present invention also adopts a vector angle selection method of the vector thruster, and obtains the influence of the selection of the vector angle of the vector thruster on the movement of the underwater robot through analysis, and selects the vector angle that meets the movement requirements of the underwater robot; specifically including:
  • Theoretical calculations analyze the control of the vector angle and thrust of the vector thruster on the motion of each degree of freedom of the underwater robot;
  • the pool experiment of underwater movement of the underwater robot includes a fixed value tracking experiment and a dynamic tracking experiment;
  • the fixed value tracking experiment is to change the vector angle of the vector thruster and collect the initial values of the underwater robot at each vector angle.
  • the dynamic tracking experiment is to change the vector angle of the vector thruster and collect the parameters in the process of the underwater robot maintaining periodic motion at each vector angle.
  • the parameters of the underwater robot collected in the fixed-value tracking experiment include response time, overshoot, steady-state error and average power;
  • the response time is the actual angle or depth of the underwater robot from the initial state to the first The time required for a peak value;
  • the overshoot is the difference between the maximum actual angle or depth of the underwater robot and the target value;
  • the steady-state error is the difference between the actual angle or depth of the underwater robot after stabilization
  • the average power is the ratio of the sum of squares of the control voltages of the underwater thrusters in the vector thruster to time.
  • the dynamic tracking experiment includes a target tracking trajectory constant frequency dynamic tracking experiment and a target tracking trajectory frequency changing dynamic tracking experiment; in the target tracking trajectory constant frequency dynamic tracking experiment, the underwater robot parameters collected include average error, average Power; in the target tracking trajectory frequency change dynamic tracking experiment, the collected parameters of the underwater robot include amplitude ratio and average power; the average error is the difference between the actual angle or depth value of the underwater robot and the target value within several cycles.
  • the amplitude ratio is the ratio of the current value of the actual angle or depth of the underwater robot at the same time in a cycle to the target maximum value.
  • the significant advantage of this invention is that it uses a vector thruster to realize that the thrust direction along the X-axis rotates around the Y-axis and changes the direction of the thrust of the thruster, thereby easily realizing the surge and heave of the underwater robot. , five degrees of freedom motion of heeling, pitching and yaw, equipment flexibility and thruster utilization are improved, and energy consumption is reduced.
  • the output voltage digital quantity is stable through voltage PID closed-loop calculation; by adjusting the output speed of the closed-loop output control voltage, it prevents the underwater steering gear from burning due to large changes in the control voltage, improves the stability of the output control voltage, and enhances the operational stability of the underwater robot.
  • the vector angle is optimized for the specific movement mode of the underwater robot, thereby improving the operational stability of the underwater robot while reducing the overall energy consumption.
  • Figure 1 shows a schematic diagram of the overall structure of the vector propulsion four-rotor underwater robot in the present invention
  • Figure 2 shows a front view of the electronic cabin in the present invention
  • Figure 3 shows a cross-sectional view of the electronic cabin in the present invention
  • Figure 4 shows a schematic structural diagram of the connection between the vector thruster and the outer frame in the present invention
  • Figure 5 shows a schematic diagram of the layout direction of four underwater propellers in the present invention
  • Figure 6 shows a schematic structural diagram of the interior of the electronic cabin in the present invention
  • Figure 7 shows a top view of the internal structure of the electronic cabin in the present invention.
  • Figure 8 shows a bottom view of the internal structure of the electronic cabin in the present invention.
  • FIG. 9 shows a structural block diagram of the control system of the present invention.
  • Figure 10 shows a flow chart of the control method of the present invention
  • Figure 11 shows a flow chart of the vector thruster control voltage closed-loop/slow-change adjustment method of the present invention
  • Figure 12 shows a comparison chart of the output speed of the control voltage with and without adjustment in the present invention
  • Figure 13 shows a comparison diagram of the control voltage closed-loop/slow-change adjustment method with and without the present invention
  • Figure 14 shows a flow chart of the vector angle selection method of the vector thruster in the present invention
  • Figure 15 shows the variation pattern of the force/moment of each degree of freedom with the vector angle when the thrust of the propeller in the present invention is maximum
  • Figure 16(a) shows the relationship between the thruster control voltage changing with time in the horizontal plane motion fixed value tracking experiment of the present invention
  • Figure 16(b) shows the vertical plane of the fixed value tracking experiment of the present invention. The relationship diagram of the thruster control voltage changing with time in the motion fixed value tracking experiment
  • Figure 17(a) shows the relationship between the angle of the underwater robot changing with time in the horizontal plane motion fixed value tracking experiment of the present invention
  • Figure 17(b) shows the vertical plane of the fixed value tracking experiment of the present invention.
  • Figure 18 shows the relationship between the response time, overshoot, steady-state error, and average power of the underwater robot as a function of the vector angle in the fixed-value tracking experiment of the present invention
  • Figure 19(a) shows the relationship between the thruster control voltage changing with time in the horizontal plane motion dynamic tracking experiment of the dynamic tracking experiment of the present invention
  • Figure 19(b) shows the vertical plane motion dynamic tracking of the dynamic tracking experiment of the present invention. The relationship diagram of the thruster control voltage changing with time during the experiment;
  • Figure 20(a) shows the relationship between the angle of the underwater robot changing with time in the horizontal plane motion dynamic tracking experiment of the dynamic tracking experiment of the present invention
  • Figure 17(b) shows the vertical plane motion dynamic tracking of the dynamic tracking experiment of the present invention.
  • Figure 21(a) and (b) respectively show the relationship between the average error and average power of the underwater robot in the dynamic tracking experiment of the present invention with constant target tracking trajectory frequency and vector angle;
  • Figure 22(a)(b) shows the relationship between the amplitude ratio and the average power of the underwater robot in the horizontal motion dynamic tracking experiment of the dynamic tracking experiment of the present invention as the target tracking trajectory frequency changes in the dynamic tracking experiment, and the changes in the vector angle;
  • Figure 23 (a) and (b) show the relationship between the amplitude ratio and the average power of the underwater robot in the dynamic tracking experiment of the present invention as a function of the vector angle in the dynamic tracking experiment of the vertical motion dynamic tracking experiment of the target tracking trajectory of the present invention.
  • the underwater robot includes an outer frame 1 and an electronic cabin 2.
  • the outer frame 1 is made of aluminum profiles, and the electronic cabin 2 is an aluminum round Cylindrical, fixedly installed inside the outer frame 1.
  • four vector thrusters 3 are symmetrically fixed on both sides of the outer frame 1, and the vector thrusters are arranged near the middle of the outer frame 1 in the vertical direction.
  • the four vector thrusters The thrusters are respectively the left front vector thruster 3a, the right front vector thruster 3b, the left rear vector thruster 3c, and the right rear vector thruster 3d.
  • the electronic cabin 2 is cylindrical.
  • the outer shell of the electronic cabin 2 includes a cylindrical shell main body 2a, a front end cover 4a, a stepped end cover 4b, and a rear end cover 4c. It is located at the head of the electronic cabin 2.
  • a knob switch 13 is installed on the outside of the front end cover 4a, which is used to turn on and off the power of the underwater robot as a whole.
  • the rear end cover 4c of the electronic cabin 2 is provided with a watertight plug 14.
  • the watertight plug 14 is used to connect the upper and lower computer communication cables.
  • a first sealing ring 5a, a second sealing ring 5b, and a third sealing ring 5c are respectively embedded in the sealing grooves of the front end cover 4a, the stepped end cover 4b, and the rear end cover 4c to complete the end face sealing of the electronic cabin 2 and realize the electronic cabin 2
  • this sealing method has high integrity and good waterproof sealing, and can effectively protect the internal energy system, control system and sensor system of the electronic cabin 2.
  • the vector thruster 3 is composed of an underwater thruster 21 and an underwater steering gear 19.
  • the underwater thruster 21 is fixedly installed on the output end of the underwater steering gear 19 through a thruster mounting plate 20.
  • the lower steering gear 19 is fixedly installed on the outer frame 1 through the vector thruster mounting plate 18; the power supply line and the signal line are connected to the watertight plug 14 at the rear of the electronic cabin 2, and the control system completes the vector angle adjustment and speed control of the vector thruster 3 , when the underwater steering gear 19 rotates, it will rotate together with the underwater propeller 21, thereby adjusting the thrust vector angle of the underwater robot.
  • the four vector thrusters of the vector propulsion quad-rotor underwater robot can be controlled independently.
  • the center of mass of the robot is defined as the origin, and the OX, OY, and OZ axes are determined through the right-hand rule.
  • the OX axis points as In the forward direction of the underwater robot, the OY axis points to the forward lateral movement direction of the underwater robot, and the OZ axis points to the diving direction of the underwater robot.
  • Four vector thrusters 3 are symmetrically distributed on both sides of the robot, and the vector thrusters 3 revolve around the OY axis. Rotation, the thrust direction is the X-axis direction, forward and reverse thrust are achieved by adjusting the propeller steering of the propeller 21, and the central axis of the underwater robot forms a vector angle with the central axis of the underwater propeller 21.
  • the electronic cabin 2 includes an electronic compass 6, a battery pack 7, an analog acquisition module (A/D module) 8, an analog output module (D/A module) 9, a slave computer 10, Attitude sensor 11, split depth sensor 12 (including sensor 12a and sensor 12b), relay group 15 (including relay 15a and relay 15b), vector thruster driver (A-PWM module) 16 and voltage regulation system 17, according to their functions It can be divided into energy system, sensor system and control system.
  • the underwater robot energy system includes a battery pack 7, a relay group 15 and a voltage regulation system 17, which can provide the underwater robot with a wide voltage of 5v-12v.
  • the input signal determines whether the switch is on or off to control whether the vector thruster 3 is powered or not.
  • the underwater robot sensor system includes an electronic compass 6, an attitude sensor 11 and a split depth sensor 12.
  • the electronic compass 6 is installed at the front end of the electronic cabin 2 and can be used as a compass to find absolute angles and transmit point angle information to the lower computer through the serial port. 10;
  • the attitude sensor 11 monitors the movement attitude of the underwater robot in real time and transmits the attitude signal to the lower computer 10 through the serial port;
  • the split depth sensor 12 obtains the depth data of the underwater robot and outputs it in the form of an analog voltage signal.
  • the quantitative voltage signal is converted into a digital signal through the analog acquisition module (A/D module) 8 and transmitted to the lower computer 10.
  • the underwater robot control system includes a slave computer 10, an analog acquisition module (A/D module) 8, an analog output module (D/A module) 9 and a vector thruster driver (A-PWM module) 16.
  • the lower computer 10 is the core controller of the underwater robot. It is responsible for collecting serial sensor data signals, such as the electronic compass 6 and the attitude sensor 11, and connects the watertight plug 14 to communicate with the upper computer through the communication cable.
  • the upper computer is responsible for sensor parameter display and movement. Control instructions are sent.
  • the lower computer 10 contains signal reception, adjustment and output modules.
  • the acquisition module (A/D module) 8 is responsible for collecting the voltage output signal of the voltage sensor, such as the split depth sensor 12, and converts the collected voltage analog signal into a digital signal and transmits it to the slave computer 10;
  • analog output Module (D/A module) 9 is responsible for outputting 0v-5v analog voltage and voltage switching signals.
  • the analog voltage output port is connected to the vector thruster driver (A-PWM module) 16, and the vector thruster is adjusted by changing the output voltage.
  • the driver (A-PWM module) 16 outputs the PWM control signal to complete the vector angle and speed adjustment of the vector thruster 3, and the voltage switching quantity is used as the input signal of the relay group 15; the vector thruster driver (A-PWM module) 16 It is a vector thruster control unit that adjusts the change of the output PWM control signal through changes in input voltage to adjust the vector angle and speed of the vector thruster 3.
  • the electronic components in the electronic cabin 2 are all installed in a stack manner, which greatly improves the utilization of the internal space of the electronic cabin 2 and improves the heat dissipation performance of the electronic components to ensure the stable operation of the vector propulsion quad-rotor underwater robot.
  • the closed-loop controller in the host computer sends the control voltage value to the slave computer 10 in real time through the RS232 communication cable.
  • the slave computer 10 compresses the received control signal value and the collected voltage output signal voltage value of the voltage sensor. , perform closed-loop calculation of voltage P]D to obtain the closed-loop output control voltage, and adjust the output speed of the closed-loop output control voltage.
  • the digital control voltage is output, and the digital control voltage is sent to the analog output module (D/A module) in real time 9 , convert the control voltage digital quantity into the control voltage analog quantity, and then output the PWM control signal to the underwater thruster 21 and underwater steering gear 19 through the vector thruster driver (A-PWM module) 16 to complete the vector thruster 3 speed and vector angle control to complete the motion control of the four-rotor underwater robot; at this time, the lower machine 10 collects various data of the underwater robot in real time through the sensor system, and sends the collected data to the closed-loop controller of the upper machine to complete the vector thruster control.
  • D/A module analog output module
  • A-PWM module vector thruster driver
  • a method for controlling the vector thruster of an underwater robot in this embodiment is used to improve the control stability of the underwater steering gear 19 and includes the following steps:
  • Step 1 Collect the status information of the underwater robot and upload it to the host computer;
  • Step 2 The host computer sends a control voltage signal based on the status information of the underwater robot
  • Step 3 As shown in the dotted box A in Figure 11, the slave computer 10 converts the control voltage value into a closed-loop input voltage u I (k) after receiving it.
  • the voltage is based on the closed-loop input voltage u I (k) and the collected underwater robot status information.
  • Signal u R (k) the voltage PID closed-loop calculation is performed to obtain the closed-loop output control voltage u O (k); the voltage PID closed-loop calculation is performed through the voltage closed-loop adjustment function, and the calculation formula is:
  • u O (k) is the closed-loop output control voltage
  • e (k) is the error
  • e (k) u I (k)-u R (k)
  • u I (k) is the control voltage signal sent by the host computer
  • the voltage value of u R (k) is the collected voltage value
  • T 1 is the update period of u O (k)
  • K P , K I , and K D are the PID closed-loop adjustment parameters.
  • Step 4 Adjust the output speed of the closed-loop output control voltage. As shown in the dotted box B in Figure 11, substitute the closed-loop output control voltage u O (k) into the control voltage slow-change adjustment function, and realize closed-loop output control by adjusting the slow-change parameter k
  • a Voltage output speed adjustment, voltage slow change adjustment function is:
  • u S (j+1) is the digital quantity of the control voltage output after slow-change adjustment
  • k A is the slow-change parameter
  • T 2 is the update period of u S (j)
  • T 2 1/k A and T 1 ⁇ 10T 2 .
  • Step 5 The adjusted closed-loop output control voltage is converted into a control voltage digital quantity u S (j), and the control voltage digital quantity u S (j) is input to the analog output module (D/A module) 9, and passes through the vector thruster driver (A-PWM module) 16 completes the underwater steering gear 19 action.
  • the stability of the output control voltage can be enhanced through the closed-loop slow change adjustment method of the control voltage to avoid sudden changes in the angle of the underwater steering gear 19 due to sudden changes in the control voltage, thereby achieving stable movement of the underwater robot and protecting the underwater rudder.
  • Machine 19 is safe.
  • the two ports of the analog output module (D/A module) 9 are used for testing.
  • the target voltage is adjusted from 2.55v to 4.55v, and the voltage is adjusted when the operation reaches 2.5s.
  • the adjusted voltage responds quickly, and the underwater steering gear responds quickly. Rotate to 75°, and the voltage after adjustment is stable at about 4.55v.
  • the voltage curve forms a step. Due to the too fast response speed, the internal working current of the underwater servo 19 will surge, and there is a certain probability of burning the water. Lower the servo 19.
  • the voltage slow-change adjustment function When using the voltage slow-change adjustment function to adjust the control voltage output speed, set the slow-change parameter k A to 0.01 at this time. Use the voltage slow-change adjustment function to obtain the optimized voltage curve. Start adjusting the voltage when it runs to 3.5s. At this time, under the action of the voltage slowly changing adjustment function, the adjustment voltage slowly rises, and the underwater steering gear slowly rotates to 75°. At the 17th second, the adjustment voltage stabilizes at about 4.55v. At this time, the voltage curve forms a parabola. When the voltage slowly changing adjustment function is adopted, the control voltage can be increased steadily and slowly to avoid burning the underwater steering gear 19 due to large adjustment of the control voltage.
  • the unoptimized control voltage surges and then drops sharply, resulting in an error of 2.083v.
  • the underwater servo 19 will rotate significantly and cause Vector angle distortion causes the underwater robot to shake significantly due to vector angle distortion, which greatly affects the stability of the underwater robot's operation. Due to sudden changes in the control voltage, it will cause great distortion in the internal current of the underwater steering gear 19, so it exists There is a certain chance of burning the underwater servo19; the optimized control voltage will produce an error of 0.081v under the influence of wild points, and the voltage will be slowly adjusted under the action of the voltage slowly changing adjustment function, gradually reducing to 0.417v.
  • the stability of the output control voltage can be improved, the operational stability of the underwater robot can be enhanced, and the vector thruster can be avoided from being burned due to communication wild spots.
  • a vector angle selection method for a vector thruster is analyzed to obtain the influence of the selection of the vector angle of the vector thruster on the movement of the underwater robot, and the vector angle that meets the movement requirements of the underwater robot is selected; including theoretical calculations , simulation analysis and pool experiment.
  • the control of each degree of freedom of each underwater robot is analyzed through theoretical calculation; through simulation analysis, when the propeller thrust is the same, the force/moment of each degree of freedom changes with the vector angle; in the pool experiment, the test method is by adjusting the vector angle ⁇ of the vector thruster Complete the pool experiment, adjust the vector angle ⁇ and collect the real-time attitude and depth data of the underwater robot in real time.
  • the pool experiment can be divided into a fixed value tracking experiment and a dynamic tracking experiment.
  • the fixed value tracking experiment can be further divided into a fixed value tracking experiment for horizontal motion and a fixed value tracking experiment for vertical motion.
  • the dynamic tracking experiment can be divided into the target tracking trajectory constant frequency dynamic tracking experiment and the target tracking trajectory frequency changing dynamic tracking experiment.
  • the target tracking trajectory constant frequency dynamic tracking experiment can be divided into the horizontal plane motion dynamic tracking experiment and In the vertical plane motion dynamic tracking experiment, the average error and average power change with the vector angle can be obtained; the target tracking trajectory frequency change dynamic tracking experiment can be divided into a horizontal plane motion dynamic tracking experiment and a vertical plane motion dynamic tracking experiment, and the amplitude ratio can be obtained , the average power changes with the vector angle; when optimizing the vector angle, combine each parameter and the vector angle change law with the movement needs, and select the vector angle that meets the movement needs.
  • the vector propulsion four-rotor underwater robot analyzed in this embodiment has the same structure as the underwater robot in Embodiment 1, which will not be described in detail here.
  • the underwater robot can complete forward and backward motion, vertical motion, rolling motion, For pitching motion and heading motion, since the propeller thrust has no component on the OY axis, lateral motion cannot be achieved.
  • the control analysis of each degree of freedom is as follows:
  • F vertical -F 1 ⁇ cos( ⁇ )-F 2 ⁇ cos( ⁇ )+F 3 ⁇ cos( ⁇ )+F 4 ⁇ cos( ⁇ ) ⁇ 0
  • M roll -F 1 ⁇ Y 0 ⁇ sin( ⁇ )-F 2 ⁇ Y 0 ⁇ sin( ⁇ )-F 3 ⁇ Y 0 ⁇ sin( ⁇ )-F 4 ⁇ Y 0 ⁇ sin( ⁇ ) ⁇ 0
  • M pitch -F 1 ⁇ [Z 0 ⁇ cos( ⁇ )+X 0 ⁇ sin( ⁇ )]-F 2 ⁇ [Z 0 ⁇ cos( ⁇ )-X 0 ⁇ sin( ⁇ )]+F 3 ⁇ [ Z 0 ⁇ cos( ⁇ )+X 0 ⁇ sin( ⁇ )]-F 4 ⁇ [Z 0 ⁇ cos( ⁇ )-X 0 ⁇ sin( ⁇ )] ⁇ 0
  • MHeading -F 1 ⁇ Y 0 ⁇ cos( ⁇ )+F 2 ⁇ Y 0 ⁇ cos( ⁇ )+F 3 ⁇ Y 0 ⁇ cos( ⁇ )-F 4 ⁇ Y 0 ⁇ cos( ⁇ ) ⁇ 0
  • M pitch -F 1 ⁇ [Z 0 ⁇ cos( ⁇ )+X 0 ⁇ sin( ⁇ )]-F 2 ⁇ [Z 0 ⁇ cos( ⁇ )-X 0 ⁇ sin( ⁇ )]+F 3 ⁇ [ Z 0 ⁇ cos( ⁇ )+X 0 ⁇ sin( ⁇ )]-F 4 ⁇ [Z 0 ⁇ cos( ⁇ )-X 0 ⁇ sin( ⁇ )] ⁇ 0
  • MHeading -F 1 ⁇ Y 0 ⁇ cos( ⁇ )+F 2 ⁇ Y 0 ⁇ cos( ⁇ )+F 3 ⁇ Y 0 ⁇ cos( ⁇ )-F 4 ⁇ Y 0 ⁇ cos( ⁇ ) ⁇ 0
  • the vector angle of the vector thruster is adjusted from 0° to 90°.
  • the vector thruster four-rotor underwater robot is put into the pool.
  • the host computer reads and saves the control voltage of the thruster 21, the angle data of the attitude sensor 11 and the split type in real time. Depth data from depth sensor 12.
  • the acquisition parameters in the fixed value tracking experiment include response time, overshoot, steady-state error, and average power.
  • the response time is the time required for the actual angle/depth curve to reach the first peak from 0; the overshoot is the actual angle/depth.
  • the difference between the maximum value of the curve and the target curve value; the steady-state error is the difference between the actual angle/depth curve after it stabilizes and the target curve value, and the absolute value is taken and accumulated to get the average value;
  • the average power is defined as the left front thruster control
  • the sum of the squares of the voltage (the control voltage of the underwater thruster 21 in the vector thruster 3a) is divided by the time.
  • the vector angle is 75° as an example.
  • the vector angle is 25° as an example.
  • the thruster control voltage is 2.5v. boundary, the propeller rotates forward if it is greater than 2.5v, and the propeller rotates reverse if it is less than 2.5v.
  • the parameters collected at this time are shown in Figures 16(a), 16(b), 17(a), and 17(b).
  • Figure 18(a) analyzes the change of response time with vector angle during fixed value tracking.
  • the vector angle is 53°, there will be The intersection point of the curve; therefore, from the analysis of the response time of the underwater robot, when the vector angle is less than 53°, the motion performance in the horizontal plane is good and the motion performance in the vertical plane is poor; when the vector angle is greater than 53°, the motion performance in the horizontal plane is poor and the motion performance in the vertical plane is good; When the vector angle is 53°, it is the comprehensive point of sports performance.
  • the acquisition parameters in the dynamic tracking experiment include dynamic error (average error), average power and amplitude ratio.
  • the dynamic error is the difference between the actual angle/depth curve value and the target curve value within three cycles.
  • the absolute value is taken and accumulated to obtain the average. value;
  • the average power is defined as the square sum of the left front thruster control voltage (the control voltage of the underwater thruster 21 in the vector thruster 3a) divided by the time;
  • the amplitude ratio is the current value of the actual angle/depth curve at the same time within a cycle Ratio to the maximum value of the target curve.
  • the vector angle in the horizontal plane motion dynamic tracking experiment, the vector angle is 75° as an example.
  • the vector angle is 25° as an example.
  • the thruster control voltage is bounded by 2.5v. , the propeller rotates forward when it is greater than 2.5v, and the propeller rotates reversely when it is less than 2.5v.
  • the parameters collected at this time are shown in Figures 19(a), 19(b), 20(a), and
  • the horizontal motion dynamic tracking amplitude ratio changes with the vector angle when the frequency of the target tracking trajectory is analyzed.
  • the amplitude ratio is 1, it means that the actual value can keep up with the target value.
  • the heading dynamic tracking amplitude ratio curve rises slowly from 1/90Hz to 1/20Hz, indicating that when the frequency is accelerated, the underwater robot can respond quickly and reach the target value. , but there is overshoot, causing the amplitude ratio curve to be generally greater than 1.
  • it reaches 1/10Hz there is a thruster performance limit. At this time, it will not be close to the target value, but when the vector angle is small, the amplitude ratio is closer At 1.
  • the vertical motion dynamic tracking amplitude ratio changes with the vector angle when the target tracking trajectory frequency changes.
  • the amplitude ratio curve decreases slowly from 1/90Hz to 1/20Hz when the vector angle is 45° to 75°, and when the vector angle is 35°, the amplitude ratio curve is at 1/ It is relatively stable at 90Hz ⁇ 1/20Hz.
  • the amplitude ratio curve rises slowly at 1/90Hz ⁇ 1/20Hz.
  • the underwater robot can respond quickly and reach the target value, but there is a super Adjustment causes the amplitude ratio curve to be generally greater than 1.
  • it reaches 1/10Hz, there is a thruster performance limit, and it will not be close to the target value.
  • the amplitude ratio is closer to 1.
  • the vector thruster is preferably at a vector angle less than 45° at this time; when the underwater robot is required to operate stably and with less overshoot, and the response speed and average power of the underwater robot are not required, the vector propulsion at this time is
  • the vector thruster preferably has a vector angle greater than 55°; if each parameter needs to be relatively average, the vector thruster preferably has a vector angle of 45° to 55°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

一种水下机器人矢量推进器(3)的控制系统、控制方法及矢量角度选择方法,控制系统包括矢量推进器(3)、电压型传感器、上位机、信号采集模块、信号接收模块、信号输出模块和控制信号调节模块,信号采集模块采集传感器的电压输出信号,信号接收模块接收控制电压信号以及电压输出信号,控制信号调节模块对接收的信号进行电压PID闭环计算,且调节控制电压的输出速度;信号输出模块将调节之后的闭环输出控制电压转换成矢量推进器(3)的控制信号。

Description

一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法 技术领域
本发明涉及水下勘探与水下作业设备及配套技术,具体是涉及一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法。
背景技术
随着目前对海洋进行合理的地开发,可以极大缓解当前面临的资源短缺问题。当需要进行水下探测与水下作业时,水下机器人的优势就得以体现,尤其是在人类无法到达的深水领域。但由于水下环境恶劣,故而对水下机器人的运行稳定性以及控制性能提出了很高的要求。
现有技术中,如公开号为CN113002744A的专利申请公开了一种四旋翼水下航行器,该专利申请公开了一种重心调节装置和用于驱动重心调节装置的驱动装置,通过驱动重心调节装置运动改变四旋翼水下航行器重心位置,从而提高四旋翼水下航行器的工作效率;但其需要通过重心调节装置与推进器配合完成多自由度运动,此时航行器本体姿态会产生大幅度转动,使航行器整体稳定性大大降低,不利于水下探测与水下作业。如期刊“工业控制计算机”中公开的四旋翼水下航行器运动控制及可视化仿真,其公开了一种水下机器人四个推进器投影在两个铅锤平面形成两个“V”形状,称V形推进器,能够驱动机器人完成六个自由度的运动,从而提高水下机器人机动性;但其在运动过程中,存在推进器部分推力分量相互抵消,增加能量消耗的问题。
再如公开号为CN110065606A的专利申请公开了一种矢量推进的流线型四旋翼水下航行器,其公开了一种水下航行器推进器转动机构,将推进器安装在外壳端盖,外壳端盖与转动机构中的防水导电滑环连接,通过防水导电滑环转动以带动推进器旋转,从而完成水下航行器运动或者姿态保持,该装置相较于传统四旋翼航行器,其推力方向灵活性可变,可实现纵荡、升沉、横倾、纵倾、偏航等五个自由度运动,但是四个推进器固定安装于转动机构上,难以实现推进器单独方向调节,且多自由度运动时,航行器姿态发生改变,导致稳定性降低,不适合水下作业。
发明内容
发明目的:针对以上缺点,本发明提供一种提高水下机器人运动稳定性的矢量推进器控制系统。
本发明还提供一种水下机器人矢量推进器的控制方法以及矢量推进器矢量角度的选择方法。
技术方案:为解决上述问题,本发明采用一种水下机器人矢量推进器的控制系统,包括用于驱动水下机器人运动的矢量推进器、若干检测水下机器人状态的电压型传感器、上位机、控制模块,所述上位机用于发送控制电压信号,所述控制模块包括信号采集模块、信号接收模块、信号输出模块和控制信号调节模块,所述信号采集模块用于采集所述电压型传感器的电压输出信号,所述信号接收模块用于接收上位机发送的控制电压信号以及信号采集模块采集的电压输出信号,所述控制信号调节模块用于根据信号接收模块接收的信号进行电压PID闭环计算得到闭环输出控制电压,且控制信号调节模块用于调节闭环输出控制电压的输出速度;所述信号输出模块用于将控制信号调节模块调节之后的闭环输出控制电压转换成矢量推进器的控制信号,并对矢量推进器进行控制。
进一步的,所述水下机器人包括外框架、固定于外框架内的电子舱,所述外 框架两侧对称设置四个矢量推进器,所述电压型传感器、信号采集模块、控制模块均设置于电子舱内。
进一步的,所述矢量推进器包括水下推进器和水下舵机,所述水下舵机输出端与水下推进器侧面连接,水下舵机调节水下推进器的推进角度。
本发明还采用一种矢量推进器的控制方法,包括以下步骤:
步骤1:采集水下机器人的状态信息并上传至上位机;
步骤2:上位机根据水下机器人的状态信息发送控制电压信号;
步骤3:根据上位机发送的控制电压信号以及采集的水下机器人状态信息的电压信号,进行电压PID闭环计算得到闭环输出控制电压;
步骤4:调节闭环输出控制电压的输出速度;
步骤5:将调节之后的闭环输出控制电压转换成矢量推进器的控制信号,并对矢量推进器进行控制。
进一步的,所述步骤3中电压PID闭环计算公式为:
Figure PCTCN2022103285-appb-000001
其中,u O(k)为闭环输出控制电压;e(k)为误差,e(k)=u I(k)-u R(k),u I(k)为上位机发送的控制电压信号的电压值,u R(k)为采集的电压值;T 1为u O(k)的更新周期,K P、K I、K D为PID闭环调节参数。
进一步的,所述步骤4中将闭环输出控制电压u O(k)代入至控制电压缓变调节函数,通过调节缓变参数k A实现闭环输出控制电压的输出速度调节,电压缓变调节函数为:
u S(j+1)=u S(j)+k A[u O(k)-u S(j)]
其中,u S(j+1)为缓变调节后输出的控制电压数字量;k A为缓变参数,T 2为u S(j)的更新周期,T 2=1/k A且T 1≥10T 2
本发明还采用一种矢量推进器的矢量角度选择方法,通过分析得到矢量推进器矢量角度的选择对水下机器人运动的影响规律,选取满足水下机器人运动需求的矢量角度;具体包括:
理论计算分析矢量推进器矢量角度及推力对水下机器人各自由度运动的控制;
仿真分析矢量推进器在推力相同、矢量角度变化时,水下机器人各自由度运动的变化规律;
进行水下机器人水下运动的水池实验,并通过实验结果分析矢量推进器在矢量角度变化时,水下机器人各参数的变化规律。
进一步的,所述水下机器人水下运动的水池实验包括定值跟踪实验和动态跟踪实验;所述定值跟踪实验为改变矢量推进器的矢量角度,并采集每个矢量角度 下水下机器人由初始状态运动至目标状态过程中的参数;所述动态跟踪实验为改变矢量推进器的矢量角度,并采集每个矢量角度下水下机器人保持周期性运动过程中的参数。
进一步的,所述定值跟踪实验中采集的水下机器人参数包括响应时间、超调量、稳态误差和平均功率;所述响应时间为水下机器人的实际角度或深度由初始状态到达第一个峰值所需要的时间;所述超调量为水下机器人的实际角度或深度的最大值与目标值的差值;所述稳态误差为水下机器人的实际角度或深度稳定后的值与目标值之间差值的平均值;所述平均功率为矢量推进器中水下推进器的控制电压的平方和与时间的比值。
进一步的,所述动态跟踪实验包括目标跟踪轨迹频率恒定动态跟踪实验和目标跟踪轨迹频率变化动态跟踪实验;所述目标跟踪轨迹频率恒定动态跟踪实验中,采集的水下机器人参数包括平均误差、平均功率;所述目标跟踪轨迹频率变化动态跟踪实验中,采集的水下机器人参数包括幅值比、平均功率;所述平均误差为若干周期内水下机器人的实际角度或深度的值与目标值之间差值的平均值;所述幅值比为一个周期内同一时间下水下机器人实际角度或深度的当前值与目标最大值的比值。
有益效果:本发明相对于现有技术,其显著优点是采用矢量推进器实现推力方向沿X轴的推进器绕Y轴转动,改变推进器推力方向,从而轻松实现水下机器人纵荡、升沉、横倾、纵倾和偏航的五自由度运动,设备灵活性和推进器利用率提高、能耗降低。通过电压PID闭环计算实现输出电压数字量平稳;通过调节闭环输出控制电压的输出速度,防止因控制电压大幅度变化而烧毁水下舵机,提高输出控制电压稳定性,增强水下机器人的运行稳定性,同时避免因通讯野点而烧毁矢量推进器。根据分析得到的矢量角度对水下机器人控制性能的影响规律,在水下机器人特定运动方式时优选矢量角度,从而在提高水下机器人运行稳定性的同时降低整体能耗。
附图说明
图1所示为本发明中矢量推进式四旋翼水下机器人的整体结构示意图;
图2所示为本发明中电子舱的主视图;
图3所示为本发明中电子舱的剖视图;
图4所示为本发明中矢量推进器与外框架连接的结构示意图;
图5所示为本发明中四个水下推进器布置方向的示意图;
图6所示为本发明中电子舱内部的结构示意图;
图7所示为本发明中电子舱内部结构的俯视图;
图8所示为本发明中电子舱内部结构的仰视图;
图9所示为本发明控制系统的结构框图;
图10所示为本发明控制方法的流程图;
图11所示为本发明矢量推进器控制电压闭环/缓变调节方法流程图;
图12所示为本发明中调节与不调节控制电压输出速度的对比图;
图13所示为本发明中采用与不采用控制电压闭环/缓变调节方法的对比图;
图14所示为本发明中矢量推进器矢量角度选择方法的流程图;
图15所示为本发明中推进器推力最大时各自由度力/力矩随矢量角度变化规律图;
图16(a)所示为本发明定值跟踪实验的水平面运动定值跟踪实验中推进器控制电压随时间变化的关系图;图16(b)所示为本发明定值跟踪实验的垂直面 运动定值跟踪实验中推进器控制电压随时间变化的关系图;
图17(a)所示为本发明定值跟踪实验的水平面运动定值跟踪实验中水下机器人角度随时间变化的关系图;图17(b)所示为本发明定值跟踪实验的垂直面运动定值跟踪实验中水下机器人深度随时间变化的关系图;
图18(a)(b)(c)(d)所示分别为本发明定值跟踪实验中水下机器人响应时间、超调量、稳态误差、平均功率随矢量角度变化的关系图;
图19(a)所示为本发明动态跟踪实验的水平面运动动态跟踪实验中推进器控制电压随时间变化的关系图;图19(b)所示为本发明动态跟踪实验的垂直面运动动态跟踪实验中推进器控制电压随时间变化的关系图;
图20(a)所示为本发明动态跟踪实验的水平面运动动态跟踪实验中水下机器人角度随时间变化的关系图;图17(b)所示为本发明动态跟踪实验的垂直面运动动态跟踪实验中水下机器人深度随时间变化的关系图;
图21(a)(b)所示分别为本发明动态跟踪实验的目标跟踪轨迹频率恒定动态跟踪实验中水下机器人平均误差、平均功率随矢量角度变化的关系图;
图22(a)(b)所示分别为本发明动态跟踪实验的目标跟踪轨迹频率变化动态跟踪实验中水平运动动态跟踪实验的水下机器人幅值比、平均功率随矢量角度变化的关系图;
图23(a)(b)所示分别为本发明动态跟踪实验的目标跟踪轨迹频率变化动态跟踪实验中垂直运动动态跟踪实验的水下机器人幅值比、平均功率随矢量角度变化的关系图。
具体实施方式
实施例1
如图1所示,本实施例中的一种水下机器人矢量推进器的控制系统,水下机器人包括外框架1、电子舱2,外框架1采用铝型材搭建,电子舱2为铝制圆筒形,固定安装于外框架1的内部,在本实施例中外框架1两侧对称固定四个矢量推进器3,且矢量推进器设置于靠近外框架1竖直方向的中部,四个矢量推进器分别为左前矢量推进器3a、右前矢量推进器3b、左后矢量推进器3c、右后矢量推进器3d。
如图2和图3所示,电子舱2为圆筒型,电子舱2外壳体包括圆筒形外壳主体2a、前端盖4a、阶梯端盖4b、后端盖4c,位于电子舱2头部前端盖4a外侧装旋钮开关13,用于水下机器人整体通断电,电子舱2尾部后端盖4c上设有水密插头14,水密插头14用于与上下位机通讯线缆连接。前端盖4a、阶梯端盖4b、后端盖4c的密封槽内分别嵌入有第一密封圈5a、第二密封圈5b、第三密封圈5c,以完成电子舱2端面密封,实现电子舱2整体防水,此密封方式整体性高,防水密封性好,可有效地保护电子舱2内部能源系统、控制系统和传感器系统。
如图4所示,矢量推进器3由水下推进器21和水下舵机19组合而成,水下推进器21通过推进器安装板20固定安装于水下舵机19的输出端,水下舵机19通过矢量推进器安装板18固定安装于外框架1上;供电线与信号线与电子舱2尾部的水密插头14连接,由控制系统完成矢量推进器3的矢量角度调节与转速控制,当水下舵机19旋转时,会连带水下推进器21一起转动,从而调整水下机器人的推力矢量角度。
如图5所示,本实施例中矢量推进式四旋翼水下机器人四个矢量推进器可独立控制,定义机器人质量中心为原点,通过右手定则确定OX、OY、OZ轴,OX 轴指向为水下机器人前进方向,OY轴指向为水下机器人正向横移方向,OZ轴指向为水下机器人下潜方向,四个矢量推进器3对称分布于机器人两侧,矢量推进器3绕OY轴转动,推力方向为X轴方向,通过调节推进器21螺旋桨转向实现正向与反向推力,水下机器人中轴线与水下推进器21中轴线形成矢量角度。
如图6至图9所示,电子舱2内包括电子罗盘6、电池组7、模拟量采集模块(A/D模块)8、模拟量输出模块(D/A模块)9、下位机10、姿态传感器11,分体式深度传感器12(包括传感器12a和传感器12b)、继电器组15(包括继电器15a和继电器15b)、矢量推进器驱动器(A-PWM模块)16和电压调节系统17,按其功能可分为能源系统、传感器系统和控制系统。水下机器人能源系统包括电池组7、继电器组15和电压调节系统17,可以为水下机器人提供5v-12v的宽幅电压,通过继电器组15与矢量推进器3相连,为矢量推进器3提供12v供电电压;通过保险丝与控制系统相连,为控制系统各电子元件提供5v-12v供电电压;通过与传感器系统相连,为各传感器提供12v供电电压;继电器组15作水下机器人的电子开关,通过输入信号判断开关通断,以控制矢量推进器3得电与否。
水下机器人传感器系统包括电子罗盘6、姿态传感器11和分体式深度传感器12,电子罗盘6设置于电子舱2前端,可作罗盘使用,寻求绝对角度,并将点角度信息通过串口传输给下位机10;姿态传感器11实时监测水下机器人的运动姿态,并将姿态信号通过串口传输给下位机10;分体式深度传感器12获取水下机器人的深度数据,以模拟量电压信号形式输出,此时模拟量电压信号通过模拟量采集模块(A/D模块)8转换为数字量信号传输至下位机10中。
水下机器人控制系统(控制模块)包括下位机10、模拟量采集模块(A/D模块)8、模拟量输出模块(D/A模块)9和矢量推进器驱动器(A-PWM模块)16,下位机10为水下机器人核心控制器,负责采集串口型传感器数据信号,如电子罗盘6和姿态传感器11,并通过通信线缆连接水密插头14与上位机通讯,上位机负责传感器参数显示与运动控制指令发送,下位机10中包含信号的接收、调节和输出模块,下位机10接收到上位机指令后对控制信号进行调节,然后将调节的控制信号输送至各个系统,完成运动控制;模拟量采集模块(A/D模块)8负责采集电压型传感器的电压输出信号,如分体式深度传感器12,并将采集到的电压模拟量信号转换为数字量信号传送至下位机10中;模拟量输出模块(D/A模块)9负责输出0v-5v模拟量电压和电压开关量信号,模拟量电压输出端口与矢量推进器驱动器(A-PWM模块)16连接,通过改变输出电压量调节矢量推进器驱动器(A-PWM模块)16输出PWM控制信号量,以完成对矢量推进器3的矢量角度与转速调节,电压开关量作继电器组15的输入信号;矢量推进器驱动器(A-PWM模块)16为矢量推进器控制单元,通过输入电压变化调节输出PWM控制信号变化,以调节矢量推进器3的矢量角度与转速。电子舱2内的电子元件均采用栈式安装方式,极大提高电子舱2内部空间的利用率,同时提升电子元器件散热性能,以保证矢量推进式四旋翼水下机器人运行稳定。
如图10所示,上位机内闭环控制器通过RS232通讯线缆实时发出控制电压数值给下位机10,下位机10将接收到的控制信号压数值以及采集的电压型传感器的电压输出信号电压数值,进行电压P]D闭环计算得到闭环输出控制电压,并调节闭环输出控制电压的输出速度,调节后输出控制电压数字量,控制电压数字量实时发送至模拟量输出模块(D/A模块)9中,将控制电压数字量转化为控制电压模拟量,然后通过矢量推进器驱动器(A-PWM模块)16输出PWM控制 信号至水下推进器21和水下舵机19,完成矢量推进器3转速与矢量角度控制,进而完成四旋翼水下机器人运动控制;此时下位机10通过传感器系统实时采集水下机器人各项数据,并将采集数据发送至上位机闭环控制器内,以完成矢量推进器控制。
实施例2
如图11所示,本实施例中的一种水下机器人矢量推进器的控制方法,用于提高水下舵机19控制稳定性,包括以下步骤:
步骤1:采集水下机器人的状态信息并上传至上位机;
步骤2:上位机根据水下机器人的状态信息发送控制电压信号;
步骤3:如图11虚线框A中,下位机10接收后将控制电压数值转变为闭环输入电压u I(k),根据闭环输入电压u I(k)以及采集的水下机器人状态信息的电压信号u R(k),进行电压PID闭环计算得到闭环输出控制电压u O(k);通过电压闭环调节函数进行电压PID闭环计算,计算公式为:
Figure PCTCN2022103285-appb-000002
其中,u O(k)为闭环输出控制电压;e(k)为误差,e(k)=u I(k)-u R(k),u I(k)为上位机发送的控制电压信号的电压值,u R(k)为采集的电压值;T 1为u O(k)的更新周期,K P、K I、K D为PID闭环调节参数。
步骤4:调节闭环输出控制电压的输出速度,如图11虚线框B中,将闭环输出控制电压u O(k)代入至控制电压缓变调节函数,通过调节缓变参数k A实现闭环输出控制电压的输出速度调节,电压缓变调节函数为:
u S(j+1)=u S(j)+k A[u O(k)-u S(j)]
其中,u S(j+1)为缓变调节后输出的控制电压数字量;k A为缓变参数,T 2为u S(j)的更新周期,T 2=1/k A且T 1≥10T 2
步骤5:调节之后的闭环输出控制电压转换为控制电压数字量u S(j),将控制电压数字量u S(j)输入模拟量输出模块(D/A模块)9,经过矢量推进器驱动器(A-PWM模块)16完成水下舵机19动作。当产生通讯野点时,通过控制电压闭环缓变调节方法,可增强输出控制电压稳定性,避免因控制电压突变而导致水下舵机19角度突变,从而实现水下机器人稳定运动,保护水下舵机19安全。
如图12所示,为验证电压缓变调节函数在控制水下舵机19时的有效性,采用模拟量输出模块(D/A模块)9的两个端口进行测试。首先不采用电压缓变调 节函数对控制电压输出速度进行调节时,将目标电压由2.55v调节至4.55v,在运行至2.5s时开始调节电压,此时调节电压响应迅速,水下舵机迅速旋转至75°,调节后电压稳定在4.55v左右,如图12所示,电压曲线形成阶跃,由于响应速度过快,会导致水下舵机19内部工作电流猛增,存在一定几率烧毁水下舵机19。
采用电压缓变调节函数对控制电压输出速度进行调节时,此时设定缓变参数k A为0.01,采用电压缓变调节函数得到优化后电压曲线,在运行至3.5s时开始调节电压,此时在电压缓变调节函数作用下,调节电压量缓慢上升,水下舵机缓慢旋转至75°,在第17s时调节电压稳定在4.55v左右,此时电压曲线形成抛物线。采用电压缓变调节函数时,可使控制电压稳定缓慢上升,以避免因大幅度调节控制电压而烧毁水下舵机19的现象。
如图13所示,为验证矢量推进器控制电压闭环缓变调节方法在控制水下舵机19时的有效性,采用模拟量输出模块(D/A模块)9的两个端口进行测试。将目标电压设定为0.417v,前6.3s中,使用电压闭环调节函数优化后,控制电压输出较为平稳,方差为1×10 -6,平均误差为0.000625v,而未使用电压闭环调节函数优化时,控制电压输出会存在抖动,方差为4.5×10 -6,平均误差为0.00175v。在运行至6.3s时,出现通讯数据野点,形成电压突变,此时未优化的控制电压猛增后骤降,产生了2.083v的误差,此时水下舵机19会产生大幅度转动而使矢量角度畸变,因矢量角度畸变而使水下机器人产生大幅度晃动,极大影响水下机器人运行的稳定性,由于控制电压突变,会导致水下舵机19内部电流产生极大畸变,故而存在一定几率烧毁水下舵机19;优化后的控制电压在野点的影响下,会产生0.081v的误差,并步在电压缓变调节函数作用下缓慢调节电压,逐步减至0.417v。采用矢量推进器控制电压闭环/缓变调节方法后,可提高输出控制电压稳定性,增强水下机器人的运行稳定性,同时避免因通讯野点而烧毁矢量推进器。
实施例3
如图14所示,一种矢量推进器的矢量角度选择方法,通过分析得到矢量推进器矢量角度的选择对水下机器人运动的影响规律,选取满足水下机器人运动需求的矢量角度;包括理论计算、仿真分析与水池实验。通过理论计算分析各水下机器人各自由度控制;通过仿真分析得推进器推力相同时,各自由度力/力矩随矢量角度变化规律;水池实验中,通过调节矢量推进器矢量角度β的测试方法完成水池实验,调节矢量角度β并实时采集水下机器人的实时姿态、深度数据。
水池实验可分为定值跟踪实验和动态跟踪实验,定值跟踪实验又可分为水平面运动定值跟踪实验和垂直面运动定值跟踪实验,可得响应时间、超调量、稳态误差、平均功率随矢量角度变化规律;动态跟踪实验可分为目标跟踪轨迹频率恒定动态跟踪实验和目标跟踪轨迹频率变化动态跟踪实验,目标跟踪轨迹频率恒定动态跟踪实验又可分为水平面运动动态跟踪实验和垂直面运动动态跟踪实验,可得平均误差、平均功率随矢量角度变化规律;目标跟踪轨迹频率变化动态跟踪实验又可分为水平面运动动态跟踪实验和垂直面运动动态跟踪实验,可得幅值比、平均功率随矢量角度变化规律;在矢量角度优选时,将各参数与矢量角度变化规律同运动需求相结合,选取满足运动需求的矢量角度。
(一)理论计算
本实施例中进行分析的矢量推进式四旋翼水下机器人与实施例1中的水下机器人结构一致,在此不再赘述,该水下机器人可完成前后运动、垂向运动、横摇运动、俯仰运动和艏向运动,由于推进器推力在OY轴上无分力,因此无法实现横移运动,各自由度控制分析如下:
1)纵向运动
令推进器推力F 1=F 2=-F 3=-F 4,此时
F 纵向=-F 1·cos(β)-F 2·cos(β)+F 3·cos(β)+F 4·cos(β)≠0
F 垂向=F 1·sin(β)-F 2·sin(β)+F 3·sin(β)-F 4·sin(β)=0
M 横摇=-F 1·Y 0·sin(β)-F 2·Y 0·sin(β)-F 3·Y 0·sin(β)-F 4·Y 0·sin(β)=0
M 俯仰=-F 1·[Z 0·cos(β)+X 0·sin(β)]-F 2·[Z 0·cos(β)-X 0·sin(β)]+F 3·[Z 0·cos(β)+X 0·sin(β)]-F 4·[Z 0·cos(β)-X 0·sin(β)]=0
M 艏向=-F 1·Y 0·cos(β)+F 2·Y 0·cos(β)+F 3·Y 0·cos(β)-F 4·Y 0·cos(β)=0
当F 1<0,F 纵向>0,此时水下机器人将完成前进运动;反之,当F 1>0,F 纵向<0时,水下机器人将完成后退运动。
2)垂向运动
令推进器推力-F 1=F 2=-F 3=F 4,此时
F 纵向=-F 1·cos(β)-F 2·cos(β)+F 3·cos(β)+F 4·cos(β)=0
F 垂向=F 1·sin(β)-F 2·sin(β)+F 3·sin(β)-F 4·sin(β)≠0
M 横摇=-F 1·Y 0·sin(β)-F 2·Y 0·sin(β)-F 3·Y 0·sin(β)-F 4·Y 0·sin(β)=0
M 俯仰=-F 1·[Z 0·cos(β)+X 0·sin(β)]-F 2·[Z 0·cos(β)-X 0·sin(β)]+F 3·[Z 0·cos(β)+X 0·sin(β)]-F 4·[Z 0·cos(β)-X 0·sin(β)]=0
M 艏向=-F 1·Y 0·cos(β)+F 2·Y 0·cos(β)+F 3·Y 0·cos(β)-F 4·Y 0·cos(β)=0
当F 1<0,F 垂向>0,此时水下机器人将完成下潜运动;反之,当F 1>0,且F 垂向<0时,水下机器人将完成上升运动。
3)横摇运动
令推进器推力F 1=F 2=F 3=F 4,此时
F 纵向=-F 1·cos(β)-F 2·cos(β)+F 3·cos(β)+F 4·cos(β)=0
F 垂向=F 1·sin(β)-F 2·sin(β)+F 3·sin(β)-F 4·sin(β)=0
M 横摇=-F 1·Y 0·sin(β)-F 2·Y 0·sin(β)-F 3·Y 0·sin(β)-F 4·Y 0·sin(β)≠0
M 俯仰=-F 1·[Z 0·cos(β)+X 0·sin(β)]-F 2·[Z 0·cos(β)-X 0·sin(β)]+F 3·[Z 0·cos(β)+X 0·sin(β)]-F 4·[Z 0·cos(β)-X 0·sin(β)]=0
M 艏向=-F 1·Y 0·cos(β)+F 2·Y 0·cos(β)+F 3·Y 0·cos(β)-F 4·Y 0·cos(β)=0
当F 1<0,M 横摇>0,此时水下机器人将完成正向横摇运动;反之,当F 1>0, M 横摇<0时,水下机器人将完成负向横摇运动。
4)俯仰运动
令推进器推力F 1=-F 2=-F 3=F 4,此时
F 纵向=-F 1·cos(β)-F 2·cos(β)+F 3·cos(β)+F 4·cos(β)=0
F 垂向=F 1·sin(β)-F 2·sin(β)+F 3·sin(β)-F 4·sin(β)=0
M 横摇=-F 1·Y 0·sin(β)-F 2·Y 0·sin(β)-F 3·Y 0·sin(β)-F 4·Y 0·sin(β)=0
M 俯仰=-F 1·[Z 0·cos(β)+X 0·sin(β)]-F 2·[Z 0·cos(β)-X 0·sin(β)]+F 3·[Z 0·cos(β)+X 0·sin(β)]-F 4·[Z 0·cos(β)-X 0·sin(β)]≠0
M 艏向=-F 1·Y 0·cos(β)+F 2·Y 0·cos(β)+F 3·Y 0·cos(β)-F 4·Y 0·cos(β)≠0
当F 1<0,M 俯仰>0,此时水下机器人将完成正向俯仰运动;反之,当F 1>0,M 俯仰<0时,水下机器人将完成负向俯仰运动。
5)艏向运动
令推进器推力F 1=-F 2=-F 3=F 4,此时
F 纵向=-F 1·cos(β)-F 2·cos(β)+F 3·cos(β)+F 4·cos(β)=0
F 垂向=F 1·sin(β)-F 2·sin(β)+F 3·sin(β)-F 4·sin(β)=0
M 横摇=-F 1·Y 0·sin(β)-F 2·Y 0·sin(β)-F 3·Y 0·sin(β)-F 4·Y 0·sin(β)=0
M 俯仰=-F 1·[Z 0·cos(β)+X 0·sin(β)]-F 2·[Z 0·cos(β)-X 0·sin(β)]+F 3·[Z 0·cos(β)+X 0·sin(β)]-F 4·[Z 0·cos(β)-X 0·sin(β)]≠0
M 艏向=-F 1·Y 0·cos(β)+F 2·Y 0·cos(β)+F 3·Y 0·cos(β)-F 4·Y 0·cos(β)≠0
当F 1<0,M 艏向>0,此时水下机器人将完成正向艏向运动;反之,当F 1>0,M 艏向<0时,水下机器人将完成负向艏向运动。
(二)仿真分析
仿真分析矢量推进器在推力相同、矢量角度变化时,水下机器人各自由度运动的变化规律;本实施例中采用矢量推进器最大推力4.5N为例,且推力降低变化规律与最大推力规律相同,仿真时将矢量推进器矢量角度由0°调整至90°,通过仿真分析可得推进器推力最大时各自由度力/力矩随矢量角度变化规律:如图15所示,当矢量角度小于42°时,水下机器人受到的纵向推力大于其余力,艏向力矩大于其余力矩,说明此角度范围将有利于水下机器人水平面(XOY面)运动;当矢量角度大于52°时,水下机器人受到垂向推力、横摇力矩与俯仰力矩大于纵向推力和艏向力矩,说明此角度范围将有利于水下机器人垂直面(XOZ和YOZ面)运动;当矢量角度为42°~52°时,此角度范围为力与力矩过渡区。
(三)水池实验
首先将矢量推进器式四旋翼水下机器人放入水池中,当机器人入水后,进行各项实现时,上位机实时读取并保存推进器21的控制电压、姿态传感器11的角度数据和分体式深度传感器12的深度数据。
(1)定值跟踪实验
定值跟踪实验中采集参数包括响应时间、超调量、稳态误差、平均功率,响应时间为实际角度/深度曲线从0到达第一个峰值所需的时间;超调量为实际角度/深度曲线的最大值与目标曲线值差;稳态误差为实际角度/深度曲线趋于稳定后的值与目标曲线值做差,取绝对值并累加后得平均值;平均功率定义为左前推进器控制电压(矢量推进器3a中水下推进器21的控制电压)平方和再除时间。本实施例中,在水平面运动定值跟踪实验时,取矢量角度为75°为例,在垂直面运动定值跟踪实验时,取矢量角度为25°为例,推进器控制电压以2.5v为界,大于2.5v推进器正向旋转,小于2.5v推进器反向旋转,此时采集的参数如图16(a)、16(b)、17(a)、17(b)所示。
1)水平面运动定值跟踪实验
首先对水下机器人设定一个目标角度,并从一个固定初始角度开始实验,水下机器人将从初始角度水平面运动至目标角度并趋于稳定,实验过程中调节矢量推进器的矢量角度β,调节范围为0°~75°,每间隔3°完成一组实验,共计26组实验,实时记录这26组实验的时间、推进器控制电压和矢量角度数据;
2)垂直面运动定值跟踪实验
首先对水下机器人设定一个目标深度,并从深度为0cm开始实验,水下机器人将垂直面(下潜)运动至目标深度并趋于稳定,实验过程中调节矢量推进器的矢量角度β,调节范围为25°~75°,每间隔2°完成一组实验,共计26组实验,实时记录这26组实验的时间、推进器控制电压和深度数据。
实验结果如图18(a)(b)(c)(d)所示,如图18(a)从定值跟踪时响应时间随矢量角度变化规律中分析,矢量角度在53°时,会存在曲线交点;因此从水下机器人响应时间分析,当矢量角度小于53°时,水平面运动性能好,垂直面运动性能差;当矢量角度大于53°时,水平面运动性能差,垂直面运动性能好;当矢量角度取53°时,为运动性能综合点。
如图18(b)从定值跟踪时超调量随矢量角度变化规律中分析,矢量角度在59°时,会存在曲线交点;因此从水下机器人超调量分析,当矢量角度小于59°时,水平面运动性能差,垂直面运动性能好;当矢量角度大于59°时,水平面运动性能好,垂直面运动性能差;当矢量角度取59°时,为运动性能综合点。
如图18(c)从定值跟踪时稳态误差随矢量角度变化规律中分析,矢量角度在59°时,会存在曲线交点;因此从水下机器人稳态误差分析,当矢量角度小于59°时,水平面运动性能差,垂直面运动性能好;当矢量角度大于59°时,水平面运动性能好,垂直面运动性能差;当矢量角度取59°时,为运动性能综合点。
如图18(d)从定值时跟踪平均功率随矢量角度变化规律率中分析,矢量角度在51°时,会存在曲线交点;因此从水下推进器的平均功率分析,当矢量角度小于51°时,水平面运动性能好,垂直面运动性能差;当矢量角度大于51°时,水平面运动性能差,垂直面运动性能好;当矢量角度取51°时,为运动性能综合点。
(2)动态跟踪实验
动态跟踪实验中采集参数包括动态误差(平均误差)、平均功率和幅值比,动态误差为三个周期内实际角度/深度曲线的值与目标曲线值做差,取绝对值并累加后得平均值;平均功率定义为左前推进器控制电压(矢量推进器3a中水下推进器21的控制电压)平方和再除时间;幅值比为一个周期内同一时间下实际角度/深度曲线的当前值与目标曲线最大值的比。在本实施例中,在水平面运动动态跟踪实验中,取矢量角度为75°为例,在垂直面运动动态跟踪实验中,取矢量角度为25°为例,推进器控制电压以2.5v为界,大于2.5v推进器正向旋转, 小于2.5v推进器反向旋转,此时采集的参数如图19(a)、19(b)、20(a)、20(b)所示.
1)目标跟踪轨迹频率恒定动态跟踪实验
①首先设定一个定频率周期信号作目标量,从目标量初始角度开始实验,水下机器人将持续运动以跟踪周期信号直至信号截止,实验过程中调节矢量推进器的矢量角度β,调节范围为0°~75°,每间隔3°完成一组水平面动态跟踪实验,共计26组实验,实时记录这26组实验的时间、推进器控制电压和矢量角度数据;
②首先设定一个定频率周期信号作目标量,从目标量初始深度开始实验,水下机器人将持续运动以跟踪周期信号直至信号截止,实验过程中调节矢量推进器的矢量角度β,调节范围为25°~75°,每间隔2°完成一组垂直面动态跟踪实验,共计26组实验,实时记录这26组实验的时间、推进器控制电压和深度数据。
2)目标跟踪轨迹频率变化动态跟踪实验
①采用输入频率为1/90Hz~1/10Hz的周期信号作目标量,每间隔10Hz做一组实验,共计9组,实验过程中调节矢量推进器的矢量角度β,调节范围为0°~75°,每间隔3°完成一组水平面动态跟踪实验,共计9×26组实验,实时记录这9×26组实验的时间、推进器控制电压和矢量角度数据;
②采用输入频率为1/90Hz~1/10Hz的周期信号作目标量,每间隔10Hz做一组实验,共计9组,实验过程中调节矢量推进器的矢量角度β,调节范围为25°~75°,每间隔2°完成一组垂直面动态跟踪实验,共计9×26组实验,实时记录这9×26组实验的时间、推进器控制电压和深度数据。
实验结果如图21(a)(b)、22(a)(b)、23(a)(b)所示,如图21(a)从目标跟踪轨迹频率恒定动态跟踪平均误差随矢量角度变化规律中分析,矢量角度在58°时,会存在曲线交点;因此从平均误差分析,当矢量角度小于58°时,水平面运动性能差,垂直面运动性能好;当矢量角度大于58°时,水平面运动性能好,垂直面运动性能差;当矢量角度取58°时,为运动性能综合点。
如图21(b)从目标跟踪轨迹频率恒定动态跟踪平均功率随矢量角度变化规律中分析,矢量角度在46°时,会存在曲线交点;因此从平均功率分析,当矢量角度小于46°时,水平面运动性能好,垂直面运动性能差;当矢量角度大于46°时,水平面运动性能差,垂直面运动性能好;当矢量角度取46°时,为运动性能综合点。
如图22(a)从目标跟踪轨迹频率变化时水平运动动态跟踪幅值比随矢量角度变化规律中分析,当幅值比为1时,说明实际值可以跟上目标值。输入频率从1/90Hz逐步调整至1/10Hz时,艏向动态跟踪幅值比曲线在1/90Hz~1/20Hz时缓慢上升,说明当频率加快时,水下机器人能够快速响应,达到目标值,但存在超调,导致幅值比曲线呈现总体大于1的现象,当达到1/10Hz时,存在推进器性能限制,此时将无法接近目标值,但矢量角度较小时,幅值比更接近于1。
如图22(b)从目标跟踪轨迹频率变化时水平运动动态跟踪平均功率随矢量角度变化规律中分析,当矢量角度从0°调整至75°时,频率1/90Hz~1/40Hz时平均涨幅缓慢,频率1/30Hz且矢量角度为0°~45°时平均功率涨幅不明显,当大于45°时功率急剧增加,频率1/20Hz~1/10Hz的功率较大且涨幅明显;结合图22(a)分析,在频率1/90Hz~1/20Hz范围内,频率越大,幅值比越低且趋近于1,整体运动性能更优,在频率1/20Hz~1/10Hz范围内,可通过减小矢量角度,来获得更良好的运动性能,综合分析发现当矢量角度45°以内且频率为1/90Hz~1/30Hz范围时,平均功率较低且涨幅平缓,为运动性能综合区间。
如图23(a)从目标跟踪轨迹频率变化时垂直运动动态跟踪幅值比随矢量角度变化规律中分析。输入频率从1/90Hz逐步调整至1/10Hz时,矢量角度45°~75°时幅值比曲线在1/90Hz~1/20Hz时缓慢下降,矢量角度35°时幅值比曲线在1/90Hz~1/20Hz时较为平稳,矢量角度25°时幅值比曲线在1/90Hz~1/20Hz时缓慢上升,综上当频率加快时,水下机器人能够快速响应,达到目标值,但存在超调,导致幅值比曲线呈现总体大于1的现象,当达到1/10Hz时,存在推进器性能限制,此时将无法接近目标值,但矢量角度较大时,幅值比更接近于1.
如图23(b)从目标跟踪轨迹频率变化时垂直运动动态跟踪平均功率随矢量角度变化规律中分析,当矢量角度从25°调整至75°时,频率1/90Hz~1/10Hz的功率总体呈现下降趋势,当矢量角度小于35°时,频率为1/20Hz~1/10Hz时平均功率明显大于其他频率时平均功率,所有角度中频率为1/90Hz~1/30Hz时平均功率较为集中;结合图23(a)分析,在频率1/90Hz~1/20Hz范围内,减小矢量角度后,幅值比降低且趋近于1,整体运动性能更优,在频率1/20Hz~1/10Hz范围内,可通过增大矢量角度,来获得更良好的运动性能,综合分析发现在矢量角度为35°~55°时,平均功率伴随角增大而降低,为运动性能综合区间。
在实际应用中,当需要水下机器人进行水平面定值回转运动,且回转目标角度为70°时,在考虑要求水下机器人快速响应、平均功率较低,但不要求水下机器人的超调量及稳态误差时,此时矢量推进器优选小于45°的矢量角度;在考虑要求水下机器人运行稳定且较少超调,不要求水下机器人的响应速度及平均功率时,此时矢量推进器优选大于55°的矢量角度;如需各参数较为平均时,矢量推进器优选45°~55°的矢量角度。

Claims (10)

  1. 一种水下机器人矢量推进器的控制系统,其特征在于,包括用于驱动水下机器人运动的矢量推进器(3)、若干检测水下机器人状态的电压型传感器、上位机、控制模块,所述上位机用于发送控制电压信号,所述控制模块包括信号采集模块、信号接收模块、信号输出模块和控制信号调节模块,所述信号采集模块用于采集所述电压型传感器的电压输出信号,所述信号接收模块用于接收上位机发送的控制电压信号以及信号采集模块采集的电压输出信号,所述控制信号调节模块用于根据信号接收模块接收的信号进行电压PID闭环计算得到闭环输出控制电压,且控制信号调节模块用于调节闭环输出控制电压的输出速度;所述信号输出模块用于将控制信号调节模块调节之后的闭环输出控制电压转换成矢量推进器(3)的控制信号,并对矢量推进器(3)进行控制。
  2. 根据权利要求1所述的矢量推进器控制系统,其特征在于,所述水下机器人包括外框架(1)、固定于外框架(1)内的电子舱(2),所述外框架(1)两侧对称设置四个矢量推进器(3),所述电压型传感器、信号采集模块、控制模块均设置于电子舱(2)内。
  3. 根据权利要求2所述的矢量推进器控制系统,其特征在于,所述矢量推进器(3)包括水下推进器(21)和水下舵机(19),所述水下舵机(19)输出端与水下推进器(21)侧面连接,水下舵机(19)调节水下推进器(21)的推进角度。
  4. 一种如权利要求1至3任意一项矢量推进器控制系统的控制方法,其特征在于,包括以下步骤:
    步骤1:采集水下机器人的状态信息并上传至上位机;
    步骤2:上位机根据水下机器人的状态信息发送控制电压信号;
    步骤3:根据上位机发送的控制电压信号以及采集的水下机器人状态信息的电压信号,进行电压PID闭环计算得到闭环输出控制电压;
    步骤4:调节闭环输出控制电压的输出速度;
    步骤5:将调节之后的闭环输出控制电压转换成矢量推进器(3)的控制信号,并对矢量推进器(3)进行控制。
  5. 根据权利要求4所述的控制方法,其特征在于,所述步骤3中电压PID闭环计算公式为:
    Figure PCTCN2022103285-appb-100001
    其中,u O(k)为闭环输出控制电压;e(k)为误差,e(k)=u I(k)-u R(k),u I(k)为上位机发送的控制电压信号的电压值,u R(k)为采集的电压值;T 1为u O(k)的更新周期,K P、K I、K D为PID闭环调节参数。
  6. 根据权利要求5所述的控制方法,其特征在于,所述步骤4中将闭环输出控制电压u O(k)代入至控制电压缓变调节函数,通过调节缓变参数k A实现闭环输出控制电压的输出速度调节,电压缓变调节函数为:
    u S(j+1)=u S(j)+k A[u O(k)-u S(j)]
    其中,u S(j+1)为缓变调节后输出的控制电压数字量;k A为缓变参数,T 2为u S(j)的更新周期,T 2=1/k A且T 1≥10T 2
  7. 一种应用权利要求1至3任意一项矢量推进器控制系统的矢量角度选择方法,其特征在于,通过分析得到矢量推进器矢量角度的选择对水下机器人运动的影响规律,选取满足水下机器人运动需求的矢量角度;具体包括:
    理论计算分析矢量推进器矢量角度及推力对水下机器人各自由度运动的控制;
    仿真分析矢量推进器在推力相同、矢量角度变化时,水下机器人各自由度运动的变化规律;
    进行水下机器人水下运动的水池实验,并通过实验结果分析矢量推进器在矢量角度变化时,水下机器人各参数的变化规律。
  8. 根据权利要求7所述的矢量角度选择方法,其特征在于,所述水下机器人水下运动的水池实验包括定值跟踪实验和动态跟踪实验;所述定值跟踪实验为改变矢量推进器的矢量角度,并采集每个矢量角度下水下机器人由初始状态运动至目标状态过程中的参数;所述动态跟踪实验为改变矢量推进器的矢量角度,并采集每个矢量角度下水下机器人保持周期性运动过程中的参数。
  9. 根据权利要求8所述的矢量角度选择方法,其特征在于,所述定值跟踪实验中采集的水下机器人参数包括响应时间、超调量、稳态误差和平均功率;所述响应时间为水下机器人的实际角度或深度由初始状态到达第一个峰值所需要的时间;所述超调量为水下机器人的实际角度或深度的最大值与目标值的差值;所述稳态误差为水下机器人的实际角度或深度稳定后的值与目标值之间差值的平均值;所述平均功率为矢量推进器中水下推进器的控制电压的平方和与时间的比值。
  10. 根据权利要求8所述的矢量角度选择方法,其特征在于,所述动态跟踪实验包括目标跟踪轨迹频率恒定动态跟踪实验和目标跟踪轨迹频率变化动态跟踪实验;所述目标跟踪轨迹频率恒定动态跟踪实验中,采集的水下机器人参数包括平均误差、平均功率;所述目标跟踪轨迹频率变化动态跟踪实验中,采集的水下机器人参数包括幅值比、平均功率;所述平均误差为若干周期内水下机器人的实际角度或深度的值与目标值之间差值的平均值;所述幅值比为一个周期内同一时间下水下机器人实际角度或深度的当前值与目标最大值的比值。
PCT/CN2022/103285 2022-04-19 2022-07-01 一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法 WO2023201896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247014463A KR20240083869A (ko) 2022-04-19 2022-07-01 수중 로봇 벡터 추진기의 제어 시스템, 제어 방법 및 벡터 각도 선택 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210409116.5A CN114771787B (zh) 2022-04-19 2022-04-19 一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法
CN202210409116.5 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023201896A1 true WO2023201896A1 (zh) 2023-10-26

Family

ID=82431076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103285 WO2023201896A1 (zh) 2022-04-19 2022-07-01 一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法

Country Status (3)

Country Link
KR (1) KR20240083869A (zh)
CN (1) CN114771787B (zh)
WO (1) WO2023201896A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117762152A (zh) * 2024-02-22 2024-03-26 陕西欧卡电子智能科技有限公司 无人船矢量入库控制方法、系统、无人船及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234665A (zh) * 2008-03-03 2008-08-06 中国科学院光电技术研究所 一种小型水下观测机器人
CN105620654A (zh) * 2016-02-25 2016-06-01 西北工业大学 一种混合推进水下航行器
CN107117276A (zh) * 2017-04-18 2017-09-01 西北工业大学 一种便携式自主水下航行器的推进与操纵一体化控制装置
CN110745220A (zh) * 2019-11-07 2020-02-04 江苏科技大学 带有断电保护的微小型水下机器人及断电控制方法
WO2022058555A1 (en) * 2020-09-18 2022-03-24 Eelume As Underwater snake robot with extreme length

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143238A (ja) * 2008-12-16 2010-07-01 Hitachi-Ge Nuclear Energy Ltd 水中移動体の制御装置
CN104802971B (zh) * 2015-05-05 2017-04-12 哈尔滨工程大学 一种深海作业型rov推进器系统
CN107499476B (zh) * 2017-08-21 2019-06-21 江苏科技大学 水下机器人控制系统及运动控制方法
CN107697244A (zh) * 2017-11-07 2018-02-16 哈尔滨工程大学 基于矢量推进的球形水下机器人
CN109515651A (zh) * 2018-11-12 2019-03-26 西安交通大学 一种基于集成式矢量推进器的模块化水下机器人
CN112793741A (zh) * 2020-09-30 2021-05-14 北京机电工程研究所 一种基于rs485总线的八推进器水下机器人控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234665A (zh) * 2008-03-03 2008-08-06 中国科学院光电技术研究所 一种小型水下观测机器人
CN105620654A (zh) * 2016-02-25 2016-06-01 西北工业大学 一种混合推进水下航行器
CN107117276A (zh) * 2017-04-18 2017-09-01 西北工业大学 一种便携式自主水下航行器的推进与操纵一体化控制装置
CN110745220A (zh) * 2019-11-07 2020-02-04 江苏科技大学 带有断电保护的微小型水下机器人及断电控制方法
WO2022058555A1 (en) * 2020-09-18 2022-03-24 Eelume As Underwater snake robot with extreme length

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117762152A (zh) * 2024-02-22 2024-03-26 陕西欧卡电子智能科技有限公司 无人船矢量入库控制方法、系统、无人船及可读存储介质
CN117762152B (zh) * 2024-02-22 2024-05-10 陕西欧卡电子智能科技有限公司 无人船矢量入库控制方法、系统、无人船及可读存储介质

Also Published As

Publication number Publication date
KR20240083869A (ko) 2024-06-12
CN114771787A (zh) 2022-07-22
CN114771787B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN108674613B (zh) 一种水下机器人重心辅助调节系统及控制方法
CN110282129A (zh) 一种十字型共轴倾转旋翼两栖无人机
CN107651143B (zh) 一种水下帆动力智能球形机器人
CN112810782A (zh) 一种水下仿生机器人及其运动控制系统
CN201010037Y (zh) 带尾翼控制的双体布局拖体
CN113359785B (zh) 一种微小型auv水下运动和悬停控制方法
CN106527133A (zh) 一种船舶多桨协调控制分配方法
WO2023201896A1 (zh) 一种水下机器人矢量推进器的控制系统、控制方法及矢量角度选择方法
CN111745658B (zh) 一种检测大型油浸式变压器的机器人及智能控制方法
CN100540395C (zh) 潜器全方位推进器控制装置
CN111319738B (zh) 一种新型超机动水下直升机及其控制方法
CN109540575B (zh) 深海自主姿态调节取样系统及其姿态调节方法
CN109606577A (zh) 一种海洋环境监测绿色能源小水线面双体无人艇
Zhou et al. Dynamic modeling and motion control of a novel conceptual multimodal underwater vehicle for autonomous sampling
CN109591984A (zh) 水下无人机
CN113093737B (zh) 水空两栖式全方位自主搜救舰队
CN211943686U (zh) 一种水下仿生机器人及其运动控制系统
CN201849654U (zh) 一种多自由度推进自主稳定水下机器人
Gao et al. Design, fabrication, and testing of a maneuverable underwater vehicle with a hybrid propulsor
Liu et al. Design and preliminary evaluation of a biomimetic underwater robot with undulating fin propulsion
CN207731158U (zh) 一种水下机器人
CN114030579B (zh) 一种无人船稳定控制方法及推进装置
Wang et al. Controlling the depth of a gliding robotic dolphin using dual motion control modes
CN115352603A (zh) 一种可实现海空切换的仿企鹅型水下机器人
CN219904704U (zh) 一种多功能智能仿生机器鱼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938122

Country of ref document: EP

Kind code of ref document: A1