CN114030579B - 一种无人船稳定控制方法及推进装置 - Google Patents

一种无人船稳定控制方法及推进装置 Download PDF

Info

Publication number
CN114030579B
CN114030579B CN202111484432.0A CN202111484432A CN114030579B CN 114030579 B CN114030579 B CN 114030579B CN 202111484432 A CN202111484432 A CN 202111484432A CN 114030579 B CN114030579 B CN 114030579B
Authority
CN
China
Prior art keywords
propeller
ship body
resultant force
thrust
propulsion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111484432.0A
Other languages
English (en)
Other versions
CN114030579A (zh
Inventor
彭章明
李罗换
田晓庆
陈慧鹏
龚友平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202111484432.0A priority Critical patent/CN114030579B/zh
Publication of CN114030579A publication Critical patent/CN114030579A/zh
Application granted granted Critical
Publication of CN114030579B publication Critical patent/CN114030579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/007Unmanned surface vessels, e.g. remotely controlled autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H2021/216Control means for engine or transmission, specially adapted for use on marine vessels using electric control means

Abstract

本发明公开了一种无人船稳定控制方法及推进装置;无人船推进装置包括推进装置一、推进装置二、三向力传感器和控制器;推进装置二装配在船体尾部;推进装置一装配在船体底部。本发明通过多个三向力传感器检测船体所受沿X方向、Y方向和Z方向的冲击合力信号,控制器判断船体所受X方向和Z方向冲击合力是否超过各自方向的预设值,再根据X方向和Z方向冲击合力超过预设值的具体情况来控制推进装置二中尾部推进电机和推进装置一中的双输出轴电机以及发动机,从而通过改变螺旋桨一自转转速、螺旋桨二自转转速或调整螺旋桨一的角度来抵消船身的横摇或纵摇。本发明能有效提高无人船自动航行时的稳定性,且具有高精确、高效调节的优点。

Description

一种无人船稳定控制方法及推进装置
技术领域
本发明属于无人船动力推进技术领域,具体涉及一种无人船稳定控制方法及推进装置。
背景技术
无人船是一种无需遥控,通过借助精确卫星定位和自身传感即可按照预设任务在水面航行的一种智能型水上交通工具;它结合了船体设计、互联网通信、自动化控制等专业技术,可以根据不同的应用,搭载不同的功能模块。无人船可以在航道测绘、水上救援、反潜侦察等方面发挥巨大作用。
然而无人船在航行时很容易受外界环境影响,在有风浪条件下会出现纵摇和横摇,导致无人船稳定性下降;纵摇和横摇对船舶造成多方面的不利影响,是无人船失速、砰击、上浪的主要原因之一,在复杂水域航行甚至会遇到倾覆的情况,导致无人船工作效率下降甚至损毁。
基于上述情况,急需一种能够减轻无人船在水面航行时纵摇、横摇现象的方法及设备,保证无人船在航行时的稳定性,以提高无人船的工作效率。
发明内容
为解决现有技术中存在的问题,本发明提供一种无人船稳定控制方法及推进装置,以减轻无人船在水面航行时由纵摇和横摇导致无人船行驶不稳的问题。
本发明一种无人船稳定控制方法,具体如下:
步骤一:在航行过程中,船体受到来自各个方向的水浪的冲击,装配在船体四周且等高设置的多个三向力传感器接收冲击信号,并将冲击信号转化为X方向、Y方向和Z方向的力信号,再将三向力信号传输至控制器,经控制器处理后得到船体所受X方向冲击合力、Y方向冲击合力和Z方向冲击合力;
步骤二:控制器判断船体所受X方向冲击合力和Z方向冲击合力是否超过各自方向的预设值,并对船体所受X方向冲击合力和Z方向冲击合力进行分析,得到X方向冲击合力在船体上作用点位置和力臂以及Z方向冲击合力在船体上作用点位置和力臂;由于推进装置二中置于船尾,推进装置一置于船体重心与船头之间,若控制器判断出Z方向冲击合力超过预设值,则继续判断船体所受Z方向冲击合力在船体上的作用点位置在船头或船尾,若作用点处在船头与船体重心之间,则在不改变推进装置一中螺旋桨一的自转转速情况下,控制器通过船体纵摇力矩平衡公式计算获得抵消船体纵摇所需推进装置二中螺旋桨二的自转转速n2,若作用点处在船尾与船体重心之间,则在不改变螺旋桨二的自转转速情况下,控制器通过船体纵摇力矩平衡公式计算获得抵消船体纵摇所需的螺旋桨一的自转转速n1;然后,若控制器判断出X方向冲击合力超过预设值,则在保持螺旋桨一的自转转速n1和螺旋桨二的自转转速n2前提下,通过船体横摇力矩平衡公式计算获得船体抵消横摇所需推进装置一中双输出轴电机的偏转角度α;
步骤三:推进装置一中的双输出轴电机接收到来自控制器的执行信号,使得双输出轴电机偏转角度α,带动螺旋桨一偏转α的角来改变螺旋桨一推力方向,使螺旋桨一推力对船体的力矩抵消X方向冲击合力对船体的力矩,从而抵消船体的横摇;
步骤四:当Z方向冲击合力作用点处在船头与船体重心之间时,推进装置二接收到来自控制器的执行信号,使得螺旋桨二的自转转速调节至步骤二中计算得到的n2大小,使螺旋桨二推力对船体的力矩与螺旋桨一推力对船体的力矩的差值抵消Z方向冲击合力对船体的力矩,从而抵消船体的纵摇;当Z方向冲击合力作用点处在船尾与船体重心之间时,推进装置一接收到来自控制器的执行信号,使得螺旋桨一的自转转速调节至步骤二中计算得到的n1大小,使螺旋桨二推力对船体的力矩与螺旋桨一推力对船体的力矩的差值抵消Z方向冲击合力对船体的力矩,从而抵消船体的纵摇;
步骤五:实时重复步骤一至步骤四,使得控制器对推进装置一中螺旋桨一的自转转速和偏转角度及推进装置二中螺旋桨二的自转转速进行实时调整,以抵消船身的横摇和纵摇;且当船体所受X方向和Z方向冲击合力小于预设值时,控制器控制推进装置一中螺旋桨一的自转转速和偏转角度及推进装置二的自转转速回复至初始值。
优选地,所述的双输出轴电机带动螺旋桨一偏转角度α的计算过程,具体如下:
所述螺旋桨一的推力F2在X方向的分力F3、X方向冲击合力F1、F3的力臂h2和F1的力臂h1满足船体横摇力矩平衡公式,船体横摇力矩平衡公式如下:
F3*h2=F1*h1
又根据螺旋桨推力计算公式,螺旋桨一的推力F2、液体密度ρ、螺旋桨一自转转速n1、螺旋桨一叶片直径D1以及螺旋桨一推力系数kT1满足如下关系式:
Figure BDA0003396929370000031
则得到如下公式:
Figure BDA0003396929370000032
因此,在船身受到F1的冲击时,螺旋桨一需要偏转的角度α满足如下公式:
Figure BDA0003396929370000033
优选地,所述螺旋桨二的自转转速n2的计算过程具体如下:
所述螺旋桨二产生的推力F5在Z方向的分力FV、Z方向冲击合力F4、螺旋桨一产生的推力F2在垂直于XZ平面的分力、FV的力臂l1、F4的力臂l2和F2的力臂l3满足船体纵摇力矩平衡公式,船体纵摇力矩平衡公式如下:
FV*l1-F2*cosα*l3=F4*l2 (1)
又根据螺旋桨推力计算公式,螺旋桨二的推力F5、液体密度ρ、螺旋桨二自转转速n2、螺旋桨二叶片直径D2以及螺旋桨二推力系数kT2满足如下关系式:
Figure BDA0003396929370000034
由于螺旋桨二的中心轴线与水平面的夹角为(90°-β);螺旋桨二的推力F5在Z方向的分力FV满足如下关系式:
Figure BDA0003396929370000035
则螺旋桨二自转转速n2满足如下关系式:
Figure BDA0003396929370000041
最终得到螺旋桨二自转转速n2的数值,且该n2数值为仅采用一个螺旋桨二时的自转转速,若螺旋桨二采用关于船体中心轴线对称的两个,则每个螺旋桨二的自转转速为0.5n2
更优选地,所述螺旋桨一的自转转速n1计算过程具体如下:
所述螺旋桨一的推力F2、液体密度ρ、螺旋桨一自转转速n1、螺旋桨一叶片直径D1以及螺旋桨一推力系数kT1满足如下关系式:
Figure BDA0003396929370000042
结合式(1)、式(2)和(3),得:
Figure BDA0003396929370000043
其中,n2为螺旋桨二采用一个时的取值,若螺旋桨二采用关于船体中心轴线对称的两个,则n2取值为单个螺旋桨二自转转速的两倍。
一种无人船推进装置,包括推进装置二、电池组、控制器、三向力传感器、推进装置一和电子调速器;一个或两个推进装置二装配在船体的尾部,当推进装置二为两个时,两个推进装置二平行布置;所述的推进装置二置于船体重心与船头之间,且位于船体底部;所述的推进装置一和推进装置二均经电子调速器与控制器电连接;多个三向力传感器均布且等高设置在船体上;所述三向力传感器的信号输出端与控制器电连接;所述的控制器、三向力传感器、推进装置二、推进装置一和电子调速器均由电池组供电。
所述的推进装置一包括发动机、双输出轴电机、传动机构、连接箱、连接轴和螺旋桨一;所述的发动机固定在发动机固定架上;所述的双输出轴电机的一个输出轴与发动机固定架固定,另一个输出轴与连接轴的一端固定;所述连接轴的另一端与连接箱固定连接;所述发动机的输出轴与传动机构的动力输入端固定连接;所述螺旋桨一固定在传动机构的动力输出端上;所述的双输出轴电机与传动箱通过连接架固定连接,且连接架固定在船体上。
所述的推进装置二包括尾部推进电机、倾斜轴和螺旋桨二;所述的倾斜轴与水平面成一夹角,并与尾部推进电机的输出轴固定;所述的尾部推进电机固定在船体上;所述的螺旋桨二固定在倾斜轴上。
优选地,所述的传动机构包括传动轴、输出轴、锥齿轮一和锥齿轮二;所述的传动轴与连接轴平行布置,并与连接箱构成转动副;所述传动轴的顶端与发动机的输出轴固定连接;所述锥齿轮二固定在传动轴的底端;所述的输出轴与齿轮箱构成转动副;所述的锥齿轮一固定在输出轴上,并与锥齿轮二构成齿轮副;所述的螺旋桨一固定在输出轴上。
本发明具有的有益效果是:
本发明通过安装在船体上的多个三向力传感器检测船体所受沿X方向、Y方向和Z方向的冲击合力信号,并将X方向、Y方向和Z方向的冲击合力信号传输至控制器,再由控制器判断船体所受X方向冲击合力和Z方向冲击合力是否超过各自方向的预设值;控制器根据X方向和Z方向冲击合力超过预设值的具体情况来控制推进装置二中尾部推进电机和推进装置一中的双输出轴电机以及发动机,从而通过改变螺旋桨一自转转速、螺旋桨二自转转速或调整螺旋桨一的角度来抵消船身的横摇或纵摇。本发明能有效避免无人船在航行时的横摇或纵摇,有效提高无人船自动航行时的稳定性,且具有高精确、高效调节的优点。
附图说明
图1为本发明的结构示意图;
图2为本发明中推进装置一的结构示意图;
图3为本发明中船体横摇力矩平衡的受力分析图;
图4为本发明中螺旋桨一推力的分解图;
图5为本发明中船体纵摇力矩平衡的受力分析图;
图6为本发明中双输出轴电机、传动轴和连接箱的装配示意图;
图7为本发明中传动机构的传动示意图。
具体实施方式
以下结合附图对本发明作进一步说明。
本发明一种无人船稳定控制方法,具体如下:
步骤一:在航行过程中,船体受到来自各个方向的水浪的冲击,装配在船体1四周且等高设置的多个三向力传感器5接收冲击信号,并将冲击信号转化为X方向(垂直于船体1前进方向)、Y方向(沿船体1前进方向)和Z方向(重力方向)的力信号,再将三向力信号传输至控制器4,经控制器4处理后得到船体1所受X方向冲击合力、Y方向冲击合力(不对船体1的横摇或纵摇产生影响,且船体1所受推力远大于Y方向冲击合力)和Z方向冲击合力;
步骤二:控制器4判断船体1所受X方向冲击合力和Z方向冲击合力是否超过各自方向的预设值,并对船体所受X方向冲击合力和Z方向冲击合力进行分析,得到X方向冲击合力在船体上作用点位置和力臂以及Z方向冲击合力在船体上作用点位置和力臂;由于推进装置二2中置于船尾,推进装置一6置于船体重心与船头之间,若控制器4判断出Z方向冲击合力超过预设值,则继续判断船体所受Z方向冲击合力在船体上的作用点位置在船头或船尾,若作用点处在船头与船体重心之间,则在不改变推进装置一6中螺旋桨一15的自转转速情况下,控制器4通过船体纵摇力矩平衡公式计算获得抵消船体纵摇所需推进装置二2中螺旋桨二20的自转转速n2,若作用点处在船尾与船体重心之间,则在不改变螺旋桨二20的自转转速情况下,控制器4通过船体纵摇力矩平衡公式计算获得抵消船体纵摇所需的螺旋桨一15的自转转速n1;然后,若控制器4判断出X方向冲击合力超过预设值,则在保持螺旋桨一15的自转转速n1和螺旋桨二20的自转转速n2前提下,通过船体横摇力矩平衡公式计算获得船体抵消横摇所需推进装置一6中双输出轴电机9的偏转角度α;
步骤三:推进装置一6中的双输出轴电机9接收到来自控制器4的执行信号,使得双输出轴电机9偏转角度α,带动螺旋桨一15偏转α的角来改变螺旋桨一15推力方向,使螺旋桨一15推力对船体1的力矩抵消X方向冲击合力对船体1的力矩,从而抵消船体1的横摇;
步骤四:当Z方向冲击合力作用点处在船头与船体重心之间时,推进装置二2接收到来自控制器4的执行信号,使得螺旋桨二20的自转转速调节至步骤二中计算得到的n2大小,使螺旋桨二20推力对船体1的力矩M1与螺旋桨一15推力对船体1的力矩的差值抵消Z方向冲击合力对船体1的力矩M2,从而抵消船体1的纵摇;当Z方向冲击合力作用点处在船尾与船体重心之间时,推进装置一6接收到来自控制器4的执行信号,使得螺旋桨一15的自转转速调节至步骤二中计算得到的n1大小,使螺旋桨二20推力对船体1的力矩与螺旋桨一15推力对船体1的力矩的差值抵消Z方向冲击合力对船体1的力矩,从而抵消船体1的纵摇;
步骤五:实时重复步骤一至步骤四,使得控制器4对推进装置一中螺旋桨一15的自转转速和偏转角度及推进装置二中螺旋桨二20的自转转速进行实时调整,以抵消船身的横摇和纵摇;且当船体1所受X方向和Z方向冲击合力小于预设值时,控制器4控制推进装置一中螺旋桨一15的自转转速和偏转角度及推进装置二的自转转速回复至初始值。
作为一个优选实施例,双输出轴电机9带动螺旋桨一15偏转角度α的计算过程,具体如下:
如图3和图4所示,螺旋桨一15的推力F2的在X方向的分力F3、X方向冲击合力F1、F3的力臂h2和F1的力臂h1满足船体横摇力矩平衡公式,船体横摇力矩平衡公式如下:
F3*h2=F1*h1
又根据螺旋桨推力计算公式,螺旋桨一15的推力F2、液体密度ρ、螺旋桨一15自转转速n1、螺旋桨一15叶片直径D1以及螺旋桨一15推力系数kT1满足如下关系式:
Figure BDA0003396929370000071
则得到如下公式:
Figure BDA0003396929370000072
因此,在船身受到F1的冲击时,螺旋桨一15需要偏转的角度α满足如下公式:
Figure BDA0003396929370000073
则计算得到螺旋桨一15以及双输出轴电机9需要偏转的角度α。
作为一个优选实施例,螺旋桨二20的自转转速n2的计算过程具体如下:
如图5所示,螺旋桨二20产生的推力F5在Z方向的分力FV、Z方向冲击合力F4、螺旋桨一15产生的推力F2在垂直于XZ平面(Y轴)的分力、FV的力臂l1、F4的力臂l2、和F2的力臂l3满足船体纵摇力矩平衡公式,船体纵摇力矩平衡公式如下(F5的水平分力FH设计为与船体重心等高):
FV*l1-F2*cosα*l3=F4*l2 (1)
又根据螺旋桨推力计算公式,螺旋桨二20的推力F5、液体密度ρ、螺旋桨二20自转转速n2、螺旋桨二20叶片直径D2以及螺旋桨二20推力系数kT2满足如下关系式:
Figure BDA0003396929370000081
由于船尾侧面与水平面的夹角为β,因此螺旋桨二20的中心轴线与水平面的夹角为(90°-β);螺旋桨二20的推力F5在Z方向的分力FV满足如下关系式:
Figure BDA0003396929370000082
则螺旋桨二20自转转速n2满足如下关系式:
Figure BDA0003396929370000083
最终得到螺旋桨二20自转转速n2的数值,且该n2数值为仅采用一个螺旋桨二20时的自转转速,若螺旋桨二20采用关于船体中心轴线对称的两个,则每个螺旋桨二20的自转转速为0.5n2即可。
作为一个更优选实施例,螺旋桨一15的自转转速n1计算过程具体如下:
螺旋桨一15的推力F2、液体密度ρ、螺旋桨一15自转转速n1、螺旋桨一15叶片直径D1以及螺旋桨一15推力系数kT1满足如下关系式:
Figure BDA0003396929370000084
结合式(1)、式(2)和(3),得:
Figure BDA0003396929370000085
其中,n2为螺旋桨二20采用一个时的取值,若螺旋桨二20采用关于船体中心轴线对称的两个,则n2取值应为单个螺旋桨二20自转转速(各螺旋桨二20自转转速相等)的两倍。
如图1所示,一种无人船推进装置,包括推进装置二2、电池组3、控制器4、三向力传感器5、推进装置一6和电子调速器7;一个或两个推进装置二2装配在船体1的尾部,当推进装置二2为两个时,两个推进装置二2平行布置;推进装置二2置于船体重心与船头之间,且位于船体底部;推进装置一6和推进装置二2均经电子调速器7与控制器4电连接;多个三向力传感器5均布且等高设置在船体上,能够实时监测船体各个部位所受冲击力;三向力传感器5的信号输出端与控制器4电连接;控制器4、三向力传感器5、推进装置二2、推进装置一6和电子调速器7均由电池组3供电;电池组3和控制器4均置于船体1内部。
如图2和图6所示,推进装置一6包括发动机8、双输出轴电机9、传动机构、连接箱13、连接轴17和螺旋桨一15;发动机8固定在发动机固定架上;双输出轴电机9的一个输出轴与发动机固定架固定,另一个输出轴与连接轴17的一端固定;连接轴17的另一端与连接箱13固定连接;发动机8的输出轴与传动机构的动力输入端固定连接;螺旋桨一15固定在传动机构的动力输出端上;双输出轴电机9与传动箱11通过连接架10固定连接,且连接架10固定在船体上;发动机8和双输出轴电机9均经电子调速器7与控制器4电连接。
如图1所示,推进装置二2包括尾部推进电机22、倾斜轴21和螺旋桨二20;倾斜轴21与水平面成一夹角,并与尾部推进电机22的输出轴固定;尾部推进电机22固定在船体1上;螺旋桨二20固定在倾斜轴21上;尾部推进电机22经电子调速器7与控制器4电连接。
作为一个优选实施例,如图7所示,传动机构包括传动轴12、输出轴16、锥齿轮一18和锥齿轮二;传动轴12与连接轴17平行布置,并与连接箱13构成转动副;传动轴12的顶端与发动机8的输出轴固定连接;锥齿轮二固定在传动轴12的底端;输出轴16与齿轮箱14构成转动副;锥齿轮一18固定在输出轴16上,并与锥齿轮二构成齿轮副;螺旋桨一15固定在输出轴16上。

Claims (6)

1.一种无人船稳定控制方法,其特征在于:该方法具体如下:
步骤一:在航行过程中,船体受到来自各个方向的水浪的冲击,装配在船体四周且等高设置的多个三向力传感器接收冲击信号,并将冲击信号转化为X方向、Y方向和Z方向的力信号,再将三向力信号传输至控制器,经控制器处理后得到船体所受X方向冲击合力、Y方向冲击合力和Z方向冲击合力;
步骤二:控制器判断船体所受X方向冲击合力和Z方向冲击合力是否超过各自方向的预设值,并对船体所受X方向冲击合力和Z方向冲击合力进行分析,得到X方向冲击合力在船体上作用点位置和力臂以及Z方向冲击合力在船体上作用点位置和力臂;由于推进装置二中置于船尾,推进装置一置于船体重心与船头之间,若控制器判断出Z方向冲击合力超过预设值,则继续判断船体所受Z方向冲击合力在船体上的作用点位置在船头或船尾,若作用点处在船头与船体重心之间,则在不改变推进装置一中螺旋桨一的自转转速情况下,控制器通过船体纵摇力矩平衡公式计算获得抵消船体纵摇所需推进装置二中螺旋桨二的自转转速n2,若作用点处在船尾与船体重心之间,则在不改变螺旋桨二的自转转速情况下,控制器通过船体纵摇力矩平衡公式计算获得抵消船体纵摇所需的螺旋桨一的自转转速n1;然后,若控制器判断出X方向冲击合力超过预设值,则在保持螺旋桨一的自转转速n1和螺旋桨二的自转转速n2前提下,通过船体横摇力矩平衡公式计算获得船体抵消横摇所需推进装置一中双输出轴电机的偏转角度α;
步骤三:推进装置一中的双输出轴电机接收到来自控制器的执行信号,使得双输出轴电机偏转角度α,带动螺旋桨一偏转α的角度来改变螺旋桨一推力方向,使螺旋桨一推力对船体的力矩抵消X方向冲击合力对船体的力矩,从而抵消船体的横摇;
步骤四:当Z方向冲击合力作用点处在船头与船体重心之间时,推进装置二接收到来自控制器的执行信号,使得螺旋桨二的自转转速调节至步骤二中计算得到的n2大小,使螺旋桨二推力对船体的力矩与螺旋桨一推力对船体的力矩的差值抵消Z方向冲击合力对船体的力矩,从而抵消船体的纵摇;当Z方向冲击合力作用点处在船尾与船体重心之间时,推进装置一接收到来自控制器的执行信号,使得螺旋桨一的自转转速调节至步骤二中计算得到的n1大小,使螺旋桨二推力对船体的力矩与螺旋桨一推力对船体的力矩的差值抵消Z方向冲击合力对船体的力矩,从而抵消船体的纵摇;
步骤五:实时重复步骤一至步骤四,使得控制器对推进装置一中螺旋桨一的自转转速和偏转角度及推进装置二中螺旋桨二的自转转速进行实时调整,以抵消船身的横摇和纵摇;且当船体所受X方向和Z方向冲击合力小于预设值时,控制器控制推进装置一中螺旋桨一的自转转速和偏转角度及推进装置二的自转转速回复至初始值。
2.根据权利要求1所述的一种无人船稳定控制方法,其特征在于:所述的双输出轴电机带动螺旋桨一偏转角度α的计算过程,具体如下:
所述螺旋桨一的推力F2在X方向的分力F3、X方向冲击合力F1、F3的力臂h2和F1的力臂h1满足船体横摇力矩平衡公式,船体横摇力矩平衡公式如下:
F3*h2=F1*h1
又根据螺旋桨推力计算公式,螺旋桨一的推力F2、液体密度ρ、螺旋桨一自转转速n1、螺旋桨一叶片直径D1以及螺旋桨一推力系数kT1满足如下关系式:
Figure FDA0003827331810000023
则得到如下公式:
Figure FDA0003827331810000022
因此,在船身受到F1的冲击时,螺旋桨一需要偏转的角度α满足如下公式:
Figure FDA0003827331810000021
3.根据权利要求1所述的一种无人船稳定控制方法,其特征在于:所述螺旋桨二的自转转速n2的计算过程,具体如下:
所述螺旋桨二产生的推力F5在Z方向的分力FV、Z方向冲击合力F4、螺旋桨一产生的推力F2在垂直于XZ平面的分力、FV的力臂l1、F4的力臂l2和F2的力臂l3满足船体纵摇力矩平衡公式,船体纵摇力矩平衡公式如下:
FV*l1-F2*cisα*l3=F4*l2 (1)
又根据螺旋桨推力计算公式,螺旋桨二的推力F5、液体密度ρ、螺旋桨二自转转速n2、螺旋桨二叶片直径D2以及螺旋桨二推力系数kT2满足如下关系式:
Figure FDA0003827331810000031
由于螺旋桨二的中心轴线与水平面的夹角为(90°-β),船尾侧面与水平面的夹角为β;螺旋桨二的推力F5在Z方向的分力FV满足如下关系式:
Figure FDA0003827331810000032
则螺旋桨二自转转速n2满足如下关系式:
Figure FDA0003827331810000033
最终得到螺旋桨二自转转速n2的数值,且该n2数值为仅采用一个螺旋桨二时的自转转速,若螺旋桨二采用关于船体中心轴线对称的两个,则每个螺旋桨二的自转转速为0.5n2
4.根据权利要求3所述的一种无人船稳定控制方法,其特征在于:所述螺旋桨一的自转转速n1计算过程具体如下:
所述螺旋桨一的推力F2、液体密度ρ、螺旋桨一自转转速n1、螺旋桨一叶片直径D1以及螺旋桨一推力系数kT1满足如下关系式:
Figure FDA0003827331810000035
结合式(1)、式(2)和式(3),得:
Figure FDA0003827331810000034
其中,n2为螺旋桨二采用一个时的取值,若螺旋桨二采用关于船体中心轴线对称的两个,则n2取值为单个螺旋桨二自转转速的两倍。
5.一种无人船推进装置,包括电池组、控制器和电子调速器,其特征在于:还包括推进装置二、三向力传感器和推进装置一;一个或两个推进装置二装配在船体的尾部,当推进装置二为两个时,两个推进装置二平行布置;所述的推进装置一置于船体重心与船头之间,且位于船体底部;所述的推进装置一和推进装置二均经电子调速器与控制器电连接;多个三向力传感器均布且等高设置在船体上;所述三向力传感器的信号输出端与控制器电连接;所述的控制器、三向力传感器、推进装置二、推进装置一和电子调速器均由电池组供电;所述的电池组和控制器均置于船体内部;
所述的推进装置一包括发动机、双输出轴电机、传动机构、连接箱、连接轴和螺旋桨一;所述的发动机固定在发动机固定架上;所述的双输出轴电机的一个输出轴与发动机固定架固定,另一个输出轴与连接轴的一端固定;所述连接轴的另一端与连接箱固定连接;所述发动机的输出轴与传动机构的动力输入端固定连接;所述螺旋桨一固定在传动机构的动力输出端上;所述的双输出轴电机与传动箱通过连接架固定连接,且连接架固定在船体上;
所述的推进装置二包括尾部推进电机、倾斜轴和螺旋桨二;所述的倾斜轴与水平面成一夹角,并与尾部推进电机的输出轴固定;所述的尾部推进电机固定在船体上;所述的螺旋桨二固定在倾斜轴上。
6.根据权利要求5所述的一种无人船推进装置,其特征在于:所述的传动机构包括传动轴、输出轴、锥齿轮一和锥齿轮二;所述的传动轴与连接轴平行布置,并与连接箱构成转动副;所述传动轴的顶端与发动机的输出轴固定连接;所述锥齿轮二固定在传动轴的底端;所述的传动机构的输出轴与齿轮箱构成转动副;所述的锥齿轮一固定在传动机构的输出轴上,并与锥齿轮二构成齿轮副;所述的螺旋桨一固定在传动机构的输出轴上。
CN202111484432.0A 2021-12-07 2021-12-07 一种无人船稳定控制方法及推进装置 Active CN114030579B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111484432.0A CN114030579B (zh) 2021-12-07 2021-12-07 一种无人船稳定控制方法及推进装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111484432.0A CN114030579B (zh) 2021-12-07 2021-12-07 一种无人船稳定控制方法及推进装置

Publications (2)

Publication Number Publication Date
CN114030579A CN114030579A (zh) 2022-02-11
CN114030579B true CN114030579B (zh) 2022-10-18

Family

ID=80146295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111484432.0A Active CN114030579B (zh) 2021-12-07 2021-12-07 一种无人船稳定控制方法及推进装置

Country Status (1)

Country Link
CN (1) CN114030579B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116968949A (zh) * 2023-09-19 2023-10-31 北京航空航天大学杭州创新研究院 一种高稳定性的水空两栖无人载具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095433C (zh) * 1999-05-13 2002-12-04 张庆柳 可调节动力矢量方向的船舶推进方法
DE102008013212A1 (de) * 2007-03-09 2008-09-11 Continental Teves Ag & Co. Ohg Automatische Stabilisierungseinheit für Wasserfahrzeuge
JP5215452B2 (ja) * 2011-12-06 2013-06-19 ヤマハ発動機株式会社 小型船舶
CN108563234A (zh) * 2018-05-09 2018-09-21 深圳市吉影科技有限公司 一种水下无人机自平衡控制方法及系统
CN110579959A (zh) * 2018-06-07 2019-12-17 深圳市吉影科技有限公司 一种三推水下无人机的闭环运动控制方法及其系统
CN110182344A (zh) * 2019-05-28 2019-08-30 杭州电子科技大学 一种小型无人船的自主推进装置及控制方法
CN111301650A (zh) * 2020-03-12 2020-06-19 大连海洋大学 一种全回转舵桨无人船
CN112278176B (zh) * 2020-11-05 2022-03-18 中国船舶工业集团公司第七0八研究所 一种船舶姿态控制拓扑结构及控制系统
CN112685840A (zh) * 2021-01-15 2021-04-20 上海海事大学 一种适用于可回转多桨无人船的运动建模方法

Also Published As

Publication number Publication date
CN114030579A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN109799064B (zh) 一种船舶操纵性水动力测试装置及方法
CN100431918C (zh) 混合型水下航行器
CN108860454B (zh) 一种全天候长航程无人帆船设计方法
JP2000211585A (ja) 風力利用船
CN109606579B (zh) 一种攻角可调水翼前部小体的小水线面双体无人船艇
CN103640675A (zh) 水面三体两栖无人艇
CN111319738B (zh) 一种新型超机动水下直升机及其控制方法
CN114030579B (zh) 一种无人船稳定控制方法及推进装置
CN112591059B (zh) 水下航行器控制方法
Aage et al. Hydrodynamic manoeuvrability data of a flatfish type AUV
CN108762289B (zh) 一种水下地震波检测飞行节点的姿态控制方法
CN209433202U (zh) 无人艇转速差动减摇增稳系统
CN212047837U (zh) 新型超机动水下直升机
CN209327875U (zh) 无人艇滚转-航向协调增稳控制系统
EP1127002A4 (en) HYDROPTERE
CN109358495A (zh) 无人艇桨距-转速差动减摇增稳系统及方法
CN109669469A (zh) 无人艇滚转-航向协调增稳控制系统及方法
CN114771831A (zh) 一种水、空两栖无人飞行器及其控制方法
CN111332424B (zh) 一种升阻联用模式的水面机器人全航速减摇增稳方法
CN108973559A (zh) 一种水空两栖五体无人艇
CN103640445A (zh) 前置斜侧双体水面三体两栖无人艇
CN109669347B (zh) 无人艇转速差动减摇增稳系统及方法
CN113086143A (zh) 一种扇翼推进水下航行器及其航行方法
CN113772038A (zh) 无人艇的航行控制方法、计算机可读存储介质及无人艇
Xie et al. Design and analysis of an autonomous controlled four wheeled land yacht

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant