WO2023201879A1 - 具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用 - Google Patents

具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用 Download PDF

Info

Publication number
WO2023201879A1
WO2023201879A1 PCT/CN2022/101161 CN2022101161W WO2023201879A1 WO 2023201879 A1 WO2023201879 A1 WO 2023201879A1 CN 2022101161 W CN2022101161 W CN 2022101161W WO 2023201879 A1 WO2023201879 A1 WO 2023201879A1
Authority
WO
WIPO (PCT)
Prior art keywords
root canal
disinfectant
anhydrous
paste
high fluidity
Prior art date
Application number
PCT/CN2022/101161
Other languages
English (en)
French (fr)
Inventor
张磊
孙宇
陆可望
吴拓江
史晓军
Original Assignee
昆明青橙医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明青橙医疗科技有限公司 filed Critical 昆明青橙医疗科技有限公司
Publication of WO2023201879A1 publication Critical patent/WO2023201879A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/52Cleaning; Disinfecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/61Cationic, anionic or redox initiators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/69Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers

Definitions

  • the present invention relates to the technical field of oral care, and in particular to an anhydrous root canal disinfectant matrix with high fluidity and a disinfectant and application using the same.
  • Root canal treatment also known as endodontic treatment, is a dental surgery to treat pulp necrosis and root infection. The main goal is to remove bacteria and biofilm, seal the root canal to prevent infection, and promote the healing of periapical tissues.
  • Root canal treatment consists of three stages: root canal preparation, disinfection and filling. Due to the complexity of the root canal system, conventional mechanical preparation can only remove most of the infected tissue and cannot achieve complete removal. However, the bacteria and toxins remaining in the deep dentinal tubules and lateral root canals rely solely on manual instruments or mechanical nickel-titanium instruments. Still difficult to remove. Therefore, root canal disinfection plays a key role, so a disinfectant is needed to effectively penetrate and sterilize root canals.
  • Calcium hydroxide is the most commonly used root canal sealant. Invented by Hermann in 1920, it has now become a widely used routine sealing agent in root canals. Calcium hydroxide, as a slow disinfectant for root canals, mainly forms an alkaline environment through the dissociation of Ca 2+ and OH - , which has the effect of inhibiting and killing bacteria. Different preparations have different release rates of Ca 2+ and OH - due to differences in their physical and chemical properties, the ability of OH - to penetrate into dentinal tubules, and the maintenance time of ion release, thus affecting the antibacterial effect of calcium hydroxide paste. In vitro direct contact experiments show that 24 hours of contact time is required to completely kill enterococci.
  • calcium hydroxide in addition to killing bacteria, calcium hydroxide also has the ability to hydrolyze the lipid portion of bacterial lipopolysaccharide, thereby inactivating lipopolysaccharide biological activity and reducing its effects. The cell wall of bacteria still exists after the bacteria are killed, and can continue to stimulate periapical tissues. Calcium hydroxide not only has the ability to hydrolyze the lipid part of bacterial lipopolysaccharide, but also destroys endotoxin, thereby reducing inflammation of periapical tissues. reaction.
  • Calcium hydroxide has a variety of pharmacological effects and good bactericidal properties. It can induce root tip closure, kill microorganisms in infected root canals, eliminate root canal inflammation, and has little toxicity to periapical tissues; it can also promote root tip closure. Differentiation of the surrounding connective tissue promotes alkaline phosphatase activity and deposits cementum and osteoid on the root canal wall, which has the effect of extending the tooth root and sealing the apical foramen. Therefore, calcium hydroxide has become the most popular root canal disinfectant at present.
  • the clinical use of calcium hydroxide has the following problems: 1.
  • the two-component calcium hydroxide paste commonly used in clinical practice is not easy for doctors to prepare; 2. It is not easy to disperse and is often difficult to completely remove or flush out after root canal filling; 3 , easily absorbs carbon dioxide to form calcium carbonate that is ineffective for root canal treatment, and is difficult to remove; 4.
  • Most clinically used calcium hydroxide pastes need to be prepared with water. Although they can quickly form a high pH environment in the root canal, they are difficult to maintain. Some products are not ideal for prolonged periods of high pH in the root canal.
  • the object of the present invention is to: in view of the above existing problems, provide a highly fluid anhydrous root canal disinfectant matrix and a disinfectant and application thereof.
  • the present invention uses polyvinylpyrrolidone, nonionic or cationic surfactants Agents and polyethylene glycol of a specific molecular weight are used to form a matrix, and then alkaline earth metal hydroxides are added to form a highly fluid anhydrous root canal disinfectant paste. It is easy to be flushed out quickly before filling; at the same time, the disinfectant paste can effectively control the diffusion of OH - for a long time, avoiding the combination of calcium hydroxide and CO 2 generated in the root canal environment or tissue decomposition, thereby maintaining the strong alkalinity of the root canal. environment, thereby achieving the effect of maintaining the antibacterial properties in the root canal for a long time, overcoming the shortcomings in the application process of the existing technology.
  • an anhydrous root canal disinfectant matrix with high fluidity Based on the total mass percentage of anhydrous root canal disinfectant, the matrix includes the following components: polyvinylpyrrolidone 0.5-5.0% , nonionic or cationic surfactant 0.1-5.0%, polyethylene glycol with a molecular weight of 200-600 32.0-85.0%.
  • the mass fraction of polyvinylpyrrolidone (PVP) can be 0.5%, 0.6%, 0.7%, 0.9%, 1.0%, 1.2%, 1.3%, 1.5%, 1.6%, 1.9%, 2.0%, 2.5 %, 3.0%, 3.5%, 3.6%, 3.7%, 5.0%, etc., which can be selected according to actual needs.
  • the mass fraction of the nonionic or cationic surfactant can be 0.1%, 0.2%, 0.25%, 0.3%, 0.5%, 0.6%, 0.7%, 0.8%, 1.0%, 1.1%, 1.2%, 1.3 %, 1.5%, 1.6%, 1.9%, 2.0%, 2.5%, 3.0%, 3.5%, 3.6%, 3.7%, 4.0%, 4.3%, 4.6%, 5.0%, etc., which can be selected according to actual needs.
  • the polyethylene glycol requires a molecular weight of 200-600, that is, a polyethylene glycol that is liquid at room temperature is selected.
  • the mass fraction of polyethylene glycol is generally not specifically limited. It is mainly used as a solvent and is distributed with other components. When used as a paste, the dosage range is generally within the range of 32.0-85.0%, and the specific dosage is appropriately adjusted during preparation.
  • an alkaline earth metal hydroxide is added to the matrix to prepare a paste, and the paste is an anhydrous root canal disinfectant.
  • the alkaline earth metal hydroxide is calcium hydroxide.
  • the nonionic surfactant is polyoxyethylene ether hydrogenated castor oil, and the cationic surfactant is preferably chlorhexidine.
  • the present invention also includes an anhydrous root canal disinfectant with high fluidity.
  • the anhydrous root canal disinfectant includes the above-mentioned anhydrous root canal disinfectant matrix and an alkaline earth metal hydroxide.
  • the alkaline earth metal The dosage of hydroxide is 10-60% of the total mass of the anhydrous root canal disinfectant.
  • the amount of alkaline earth metal hydroxide can be selected according to the actual situation, for example, it can be 10%, 11%, 15%, 16%, 18%, 19%, 20%, 21%, 23%, 25%, 27 %, 29%, 30%, 32%, 35%, 36%, 38%, 40%, 42%, 45%, 47%, 50%, 52%, 55%, 56%, 58%, 60%, etc.
  • the dosage of alkaline earth metal hydroxide can reach more than 35% or even 60%.
  • anhydrous root canal disinfectant also contains an X-ray radiopaque agent, and the X-ray radiopaque agent is preferably zirconium oxide.
  • anhydrous root canal disinfectant also contains an antibacterial agent, and the antibacterial agent is a single-chain or/and double-chain cationic quaternary ammonium salt or/and chlorhexidine.
  • the anhydrous root canal disinfectant includes the following components: polyvinylpyrrolidone 0.5-5.0%, polyoxyethylene ether hydrogenated castor oil 0.1-5.0%, calcium hydroxide 10-60%, zirconium oxide 15-35%, the balance is polyethylene glycol with a molecular weight of 200-600 and other additives.
  • the present invention also includes a method for preparing a highly fluid anhydrous root canal disinfectant, which includes the following steps:
  • the present invention also includes the application of a highly fluid anhydrous root canal disinfectant in dental root canal treatment.
  • the anhydrous root canal disinfectant is prepared by the above preparation method.
  • the waterless root canal disinfectant is injected into the deep part of the root canal through a 25G root canal irrigation needle for disinfection, and then rinsed with water or root canal irrigation solution.
  • the anhydrous root canal disinfectant of the present invention can be used directly without the need to prepare it before use, thus avoiding troublesome problems in use;
  • the anhydrous root canal disinfectant of the present invention is easily dispersed in water and can be easily flushed out before root canal filling, thus avoiding the problems of existing products that are difficult to disperse and flush out;
  • the anhydrous root canal disinfectant of the present invention can effectively control the diffusion of OH - for a long time, and can avoid the combination of calcium hydroxide with CO 2 in the environment or generated by tissue decomposition, thereby maintaining a strong alkaline environment in the root canal and achieving long-term disinfection. Maintain the antibacterial effect in the root canal for a long time;
  • the anhydrous root canal disinfectant of the present invention can penetrate into the dentinal tubules, achieve the purpose of deep disinfection and remineralization, and has excellent disinfection, antibacterial and desensitization effects;
  • the anhydrous root canal disinfectant of the present invention has high radiolucency, and its X-ray radiolucency value is ⁇ (300%) Al.
  • Figure 1 shows the dispersion test results of paste A in the water dispersion experiment
  • Figure 2 is a graph showing the dispersion test results of Paste B in the water dispersion experiment
  • Figure 3 is a graph showing the dispersibility test results of Paste C in the water dispersion experiment
  • Figure 4 is a graph showing the dispersibility test results of paste D in the water dispersion experiment
  • Figure 5 is a graph showing the dispersibility test results of paste E in the water dispersion experiment
  • Figure 6 is a graph showing the dispersibility test results of paste F in the water dispersion test
  • Figure 7 is a graph showing the dispersibility test results of paste G in the water dispersion test.
  • Figure 8 is a graph showing the dispersibility test results of paste H in the water dispersion test.
  • Figure 9 is a graph showing the dispersibility test results of paste A1 in the water dispersion test.
  • Figure 10 is a graph showing the dispersibility test results of paste A2 in the water dispersion test
  • Figure 11 is a graph showing the dispersibility test results of paste A3 in the water dispersion test.
  • Figure 12 is a graph showing the dispersibility test results of paste A4 in the water dispersion test
  • Figure 13 is a graph showing the dispersibility test results of paste A5 in the water dispersion test
  • Figure 14 is a graph showing the dispersibility test results of paste A6 in the water dispersion test
  • Figure 15 is a graph showing the dispersibility test results of paste A7 in the water dispersion test.
  • Figure 16 is a graph showing the dispersibility test results of paste A8 in the water dispersion test
  • Figure 17 is a graph showing the dispersibility test results of paste A9 in the water dispersion test.
  • Figure 18 is a graph showing the dispersibility test results of paste A10 in the water dispersion test.
  • Figure 19 is a graph showing the dispersibility test results of paste A11 in the water dispersion test.
  • Figure 20 is a graph showing the dispersibility test results of paste A12 in the water dispersion test
  • Figure 21 is a graph showing the dispersibility test results of paste A13 in the water dispersion test.
  • Figure 22 is a graph showing the dispersibility test results of paste A14 in the water dispersion test.
  • Figure 23 is a graph showing the dispersibility test results of paste A15 in the water dispersion test.
  • Figure 24 is a comparison of the fluidity experiments of the formula 3 paste and the commercial products LQC and APC.
  • the serial number 1 is the lamination chart of the formula 3 paste
  • the serial number 2 is the lamination chart of LQC
  • the serial number 3 is the lamination chart of APC;
  • serial numbers 1-4 indicate the sequence of paste diffusion in water
  • Figure 25 is a comparison of the effects of formula 3 squeezed into the 3D printed tooth root canal and taken with a camera before and after flushing with water.
  • the left picture shows the state of the tooth root canal before water flushing, and the right picture shows the tooth root canal after flushing. State diagram.
  • Paste A Calcium hydroxide is 25%, zirconium oxide is 27%, polyoxyethylene ether (40) hydrogenated castor oil is 0.5%, polyvinylpyrrolidone is 0.5%, and polyethylene glycol 200 is the balance.
  • Paste B Calcium hydroxide is 25%, zirconium oxide is 27%, polyoxyethylene ether (40) hydrogenated castor oil is 0.5%, polyvinylpyrrolidone is 0.5%, and propylene glycol is the balance.
  • Paste C Calcium hydroxide is 25%, zirconium oxide is 27%, polyoxyethylene ether (40) hydrogenated castor oil is 0.5%, polyvinylpyrrolidone is 0.5%, and glycerol is the balance.
  • Paste D calcium hydroxide is 25%, zirconium oxide is 27%, polyoxyethylene ether (40) hydrogenated castor oil is 0.5%, polyvinylpyrrolidone is 0.5%, and water is the balance.
  • Preparation of pastes A, B, C, and D refer to the method described in "Example 1", and replace polyethylene glycol 200 with propylene glycol, glycerol, and water according to different formulas.
  • Test result 1 A 1g weight is placed into pastes A, B, C, and D, and the weights stand on the surface of the paste.
  • Test result 2 Put a 2g weight into paste A, and the weight will sink into the paste; put a 2g weight into pastes B, C, and D, and the weights will all stand on the surface of the paste.
  • Test Result 3 During the preparation process of Paste C, the paste quickly became viscous, emitted heat, and had an odor, which was significantly different from the phenomena that occurred during the preparation process of the other three pastes. In order to make the paste thinner , add twice the amount of glycerol to achieve dilution, so the actual formula is: 13.2% calcium hydroxide, 19.9% zirconium oxide, 0.3% polyoxyethylene ether (40) hydrogenated castor oil, and 0.3% polyvinylpyrrolidone , propylene glycol is the balance.
  • Test result 4 After the preparation of the paste is completed, carbon dioxide is introduced, and a hard shell can be quickly observed to form on the surface.
  • A Calcium hydroxide is 20%, zirconium oxide is 30%, polyvinylpyrrolidone is 0.5%, and polyethylene glycol 200 is the balance.
  • B Calcium hydroxide is 20%, zirconium oxide is 30%, polyvinylpyrrolidone is 0.5%, and propylene glycol is the balance.
  • C Calcium hydroxide is 20%, zirconium oxide is 30%, polyvinylpyrrolidone is 0.5%, and water is the balance.
  • D Calcium hydroxide is 20%, zirconium oxide is 30%, hydroxypropyl methylcellulose is 0.5%, and polyethylene glycol 200 is the balance.
  • pastes A, B, and C Prepare according to the method described in "Embodiment 1", but do not add polyoxyethylene ether (60) hydrogenated castor oil.
  • Color change means the formula is unstable
  • pastes A, B, and C it can be concluded that the difference between pastes A, B, and C is the different solvents.
  • Paste C using water as the solvent has no dispersion in water at all; paste using propylene glycol as the solvent B and paste A using polyethylene glycol 200 as the solvent have a short diffusion time in water and do not sink into the water. However, they can only disperse unevenly and to a limited extent on the water surface, and paste B appears to fade. This shows that polyethylene glycol is the most suitable solvent for the paste. If water or other solvents are used, problems of poor dispersion or poor stability of the paste may easily occur.
  • Paste D uses hydroxypropyl methylcellulose
  • Paste A uses polyvinylpyrrolidone.
  • the test results are: : Paste D using hydroxypropyl methylcellulose is easier to sink into water than paste A using polyvinylpyrrolidone. Therefore, it can be concluded that it is better to use polyvinylpyrrolidone as the skeleton system of the paste.
  • cationic/anionic/nonionic/zwitterionic surfactants have different effects on the dispersion of the paste in water.
  • the addition of cationic surfactants will generally improve the dispersibility of the paste in water and shorten the dispersion time, but only adding some types of cationic surfactants can simultaneously reflect non-sinking and high diffusion. , rapid dispersion and stability.
  • pastes added with some types of cationic surfactants have unstable fading phenomena, and pastes added with CHX have the best effect.
  • anionic surfactants shows the characteristics of sinking to the bottom, poor diffusion, and slow dispersion speed.
  • anionic surfactants are not suitable for introduction.
  • the addition of non-ionic surfactants will improve the dispersibility of the paste in water as a whole, but only adding some types of non-ionic surfactants can reflect different effects at the same time. Due to the characteristics of bottom sinking and high diffusion, the paste added with AEO-9 has a negative impact, and the paste added with RH60 has the best effect.
  • the addition of zwitterionic surfactants shows the characteristics of sinking to the bottom, poor diffusion, and slow dispersion speed. This shows that zwitterionic surfactants are not suitable for introduction.
  • Formula 3 paste in Table 3 G: commercially available domestic calcium hydroxide paste (LQC), H: commercially available imported calcium hydroxide paste (APC).
  • the average diameter of the paste lamination of formula 3 is 40.0mm (measured 6 times in different directions and the average is taken)
  • the diameter of the LQC lamination is 15.3mm (measured 6 times in different directions and the average is taken)
  • the APC lamination The average diameter of the membrane is 20.5mm (measured 6 times in different directions and averaged).
  • the fluidity of the paste of the present invention is significantly better than the fluidity of existing related products and has the characteristics of high fluidity.
  • Figure 25 is a comparison of the effects of taking pictures with a camera before and after rinsing with 3 mL of water after formula 3 is squeezed into the 3D printed tooth root canal.
  • the left picture is the state diagram of the tooth root canal before water flushing, and the right picture is The picture shows the state of the tooth after root canal irrigation. Through comparison, it can be seen that the root canal is very clean after irrigation, and there is no residual formula 3 paste.
  • Table 3 lists the raw materials of 8 formulas and their mass proportions. For each formula, the raw materials are taken according to the mass proportions, and a homogeneous paste is prepared according to the preparation method of Example 1.
  • Recipe 2 20.0 30.0 0.5 1.0 48.5 Recipe 3 25.0 27.0 0.5 1.0 46.5 Recipe 4 30.0 25.0 0.5 1.0 43.5 Recipe 5 15.0 35.0 1.0 0.5 48.5 Recipe 6 20.0 30.0 1.5 1.5 47.0 Recipe 7 25.0 27.0 2.0 2.0 44.0 Recipe 8 30.0 25.0 0.5 0.5 44.0 Recipe 9 60.0 — 5.0 3.0 32.0 Recipe 10 10.0 — 0.1 5.0 84.9 Recipe 11 35.0 15.0 3.0 3.0 44.0 Recipe 12 35.0 15.0 1.5 2.0 46.5
  • RH60 polyoxyethylene ether (60) hydrogenated castor oil
  • PVP polyvinylpyrrolidone
  • PEG-200 polyethylene glycol 200.
  • PEG-200 in the formula can be replaced by PEG-400 or PEG-600.
  • RH60 can be replaced by other polyoxyethylene ether hydrogenated castor oil with different molecular weights, such as polyoxyethylene ether (40) hydrogenated castor oil.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dental Preparations (AREA)

Abstract

一种具有高流动性的无水根管消毒剂基质及其消毒剂和应用。以无水根管消毒剂总质量百分数计,所述基质包括以下组分:聚乙烯吡咯烷酮0.5-5.0%、非离子或阳离子表面活性剂0.1-5.0%、分子量为200-600的聚乙二醇32.0-85.0%。所述基质中加入碱土金属的氢氧化物制成无水根管消毒糊剂。所述消毒剂可以在水中快速分散,用于牙齿根管治疗。

Description

具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用 技术领域
本发明涉及口腔护理技术领域,特别涉及一种具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用。
背景技术
牙齿根管治疗术又称牙髓治疗,是牙医学中治疗牙髓坏死和牙根感染的手术,主要目标是清除细菌、生物膜、密封根管防止感染以及促进根尖周组织的愈合。根管治疗术包括根管预备、消毒和充填三个阶段。由于根管系统的复杂性,常规机械预备只能清除大部分感染组织,无法实现彻底清除,而残存在深层牙本质小管以及侧枝根管内的细菌、毒素单纯依靠手动器械或者机用镍钛器械仍很难清除。所以根管消毒起到关键作用,因此需要一种消毒剂对根管进行有效渗透杀菌。
氢氧化钙是最常用的根管内封药。1920年,Hermann首创,目前已成为了一种广泛使用的常规根管内诊间封药。氢氧化钙作为用于根管的缓慢消毒剂,主要是通过Ca 2+和OH 解离形成碱性环境使其具有抑制和杀灭细菌的作用。不同的制剂由于其理化性质的差异导致Ca 2+和OH 释放速率、OH 渗入牙本质小管的能力、离子释放的维持时间不同从而影响氢氧化钙糊剂的抗菌效果。体外直接接触实验显示,完全杀死肠球菌需要24小时接触时间。而氢氧化钙根管内封药1周,可使细菌减少92.5%,这远比用NaClO消毒根管的消毒效率高。所以使用氢氧化钙消毒根管,可以获得更可靠、更稳定、更持久的消毒效果。除了杀灭细菌外,氢氧化钙还具有水解细菌脂多糖脂质部分的能力,从而钝化脂多糖生物活性并降低其作用。细菌的细胞壁在细菌被杀死后仍然存在, 并且可以继续刺激根尖周围组织,氢氧化钙不但具有水解细菌脂多糖脂质部分的能力,而且可破坏内毒素,从而降低根尖周围组织的炎症反应。
氢氧化钙具有多种药理作用及良好的杀菌性,可诱导根尖闭合,杀灭感染根管内的微生物,消除根管内炎症,且对根尖周组织的毒性小;还可促进根尖周结缔组织分化,促进碱性磷酸酶活性,使根管壁沉积类牙骨质和类骨质,具有延长牙根、封闭根尖孔的作用。故氢氧化钙成为当前最受关注的根管消毒剂。
临床使用氢氧化钙存在以下问题:①、普通临床使用的两组分氢氧化钙糊剂,医生不太容易调制;②、不易分散,根管填充后常不太容易完全取出或冲出;③、容易吸收二氧化碳形成对根管治疗无效的碳酸钙,且难以取出;④、大多数临床使用的氢氧化钙糊剂需要用水调制,虽能在根管内快速形成高pH值环境,但在维持根管内长时间高pH值环境有些产品不太理想。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用,本发明以聚乙烯吡咯烷酮、非离子或阳离子表面活性剂、特定分子量的聚乙二醇组成基质,然后加入碱土金属的氢氧化物制成一种具有高流动性的无水根管消毒糊剂,该消毒糊剂在水中极易分散,在根管填充前容易被快速冲出;同时,该消毒糊剂可以通过长时间有效控制OH 的扩散,避免氢氧化钙与根管环境中或组织分解产生的CO 2结合从而维持根管的强碱性环境,进而达到长时间维持根管内抗菌性的效果,克服了现有技术应用过程中所存在的不足。
本发明采用的技术方案如下:一种具有高流动性的无水根管消毒剂基质,以无水根管消毒剂总质量百分数计,所述基质包括以下组分:聚乙烯吡咯烷酮0.5-5.0%、非离子或阳离子表面活性剂0.1-5.0%、分子量为200-600的聚乙二醇 32.0-85.0%。
在本发明中,聚乙烯吡咯烷酮(PVP)的质量分数可以为0.5%、0.6%、0.7%、0.9%、1.0%、1.2%、1.3%、1.5%、1.6%、1.9%、2.0%、2.5%、3.0%、3.5%、3.6%、3.7%、5.0%等,其根据实际需要进行选择。进一步,所述非离子或阳离子表面活性剂的质量分数可以为0.1%、0.2%、0.25%、0.3%、0.5%、0.6%、0.7%、0.8%、1.0%、1.1%、1.2%、1.3%、1.5%、1.6%、1.9%、2.0%、2.5%、3.0%、3.5%、3.6%、3.7%、4.0%、4.3%、4.6%、5.0%等,其根据实际需要进行选择。进一步,所述聚乙二醇要求分子量在200-600,即选择常温下为液体状的聚乙二醇,聚乙二醇的质量分数一般不作具体限定,其主要作为溶剂,并与其他组分配制成糊剂使用,其用量范围一般在32.0-85.0%范围内,具体用量根据配制时适当调整得到。
进一步,向所述基质中加入碱土金属的氢氧化物制备成糊剂,所述糊剂即为无水根管消毒剂。
作为优选,所述碱土金属的氢氧化物为氢氧化钙。
作为优选,所述非离子表面活性剂优选为聚氧乙烯醚氢化蓖麻油,所述阳离子表面活性剂优选为氯已定。
进一步,本发明还包括一种具有高流动性的无水根管消毒剂,所述无水根管消毒剂包括上述的无水根管消毒剂基质以及碱土金属的氢氧化物,所述碱土金属的氢氧化物的用量为所述无水根管消毒剂总质量的10-60%。碱土金属的氢氧化物的用量可以根据实际情况来选择,例如其可以为10%、11%、15%、16%、18%、19%、20%、21%、23%、25%、27%、29%、30%、32%、35%、36%、38%、40%、42%、45%、47%、50%、52%、55%、56%、58%、60%等,一般情况下,当无水根管消毒剂中加入的其他助剂越少,碱土金属的氢氧化物的用 量就越高,例如当无水消毒剂中不添加X射线阻射剂时,碱土金属的氢氧化物的用量可以达到35%以上,甚至达到60%。
进一步,所述无水根管消毒剂中还含有X射线阻射剂,所述X射线阻射剂优选为氧化锆。
进一步,所述无水根管消毒剂中还含有抗菌剂,所述抗菌剂为单链或/和双链阳离子季铵盐或/和氯己定。
进一步,以无水根管消毒剂总质量百分数计,所述无水根管消毒剂包括如下组分:聚乙烯吡咯烷酮0.5-5.0%、聚氧乙烯醚氢化蓖麻油0.1-5.0%、氢氧化钙10-60%、氧化锆15-35%,余量为分子量为200-600的聚乙二醇以及其他助剂。
进一步,本发明还包括一种具有高流动性的无水根管消毒剂的制备方法,包括以下步骤:
S1、将聚乙烯吡咯烷酮放入聚乙二醇中充分溶胀,得到均质溶液A;
S2、向均质溶液A中加入剩余其他组分,均质分散后即得。
进一步,本发明还包括一种具有高流动性的无水根管消毒剂在牙齿根管治疗中的应用,所述无水根管消毒剂通过上述制备方法制备得到,在牙齿根管治疗中,所述无水根管消毒剂通过25G根管冲洗针头注射到根管深部进行消毒,然后用水或根管冲洗液进行冲洗。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明的无水根管消毒剂可直接使用,无需在使用前进行调制,避免了使用麻烦的问题;
2、本发明的无水根管消毒剂在水中极易分散,根管填充前容易被冲出,避免了现有产品不易分散,难于冲出的问题;
3、本发明的无水根管消毒剂可以长时间有效控制OH 的扩散,能够避免 氢氧化钙与环境中或组织分解产生的CO 2结合,从而维持根管的强碱性环境,达到长时间维持根管内抗菌性的效果;
4、本发明的无水根管消毒剂可以向牙本质小管渗透,能够达到深度消毒及再矿化的目的,消毒抗菌及脱敏效果优异;
5、本发明的无水根管消毒剂具有高阻射性,其X线阻射值≥(300%)Al。
附图说明
图1为水中分散实验中的糊剂A的分散性试验结果图;
图2为水中分散实验中的糊剂B的分散性试验结果图;
图3为水中分散实验中的糊剂C的分散性试验结果图;
图4为水中分散实验中的糊剂D的分散性试验结果图;
图5为水中分散实验中的糊剂E的分散性试验结果图;
图6为水中分散实验中的糊剂F的分散性试验结果图;
图7为水中分散实验中的糊剂G的分散性试验结果图;
图8为水中分散实验中的糊剂H的分散性试验结果图;
图9为水中分散实验中的糊剂A1的分散性试验结果图;
图10为水中分散实验中的糊剂A2的分散性试验结果图;
图11为水中分散实验中的糊剂A3的分散性试验结果图;
图12为水中分散实验中的糊剂A4的分散性试验结果图;
图13为水中分散实验中的糊剂A5的分散性试验结果图;
图14为水中分散实验中的糊剂A6的分散性试验结果图;
图15为水中分散实验中的糊剂A7的分散性试验结果图;
图16为水中分散实验中的糊剂A8的分散性试验结果图;
图17为水中分散实验中的糊剂A9的分散性试验结果图;
图18为水中分散实验中的糊剂A10的分散性试验结果图;
图19为水中分散实验中的糊剂A11的分散性试验结果图;
图20为水中分散实验中的糊剂A12的分散性试验结果图;
图21为水中分散实验中的糊剂A13的分散性试验结果图;
图22为水中分散实验中的糊剂A14的分散性试验结果图;
图23为水中分散实验中的糊剂A15的分散性试验结果图;
图24为配方3糊剂与市售产品LQC、APC流动性实验对比,其中序号1为配方3糊剂的压膜图、序号2为LQC的压膜图、序号3为APC的压膜图;
其中,在图1-23中,序号1-4表示糊剂在水中扩散的先后情况;
图25为配方3挤入3D打印牙齿根管后,用水冲洗前、后用相机拍照的效果对比图,其中左图为牙齿根管用水冲洗前的状态图,右图为牙齿根管冲洗后的状态图。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一、不同溶剂对二氧化碳的隔离性
1、糊剂制备
糊剂甲:氢氧化钙为25%,氧化锆为27%,聚氧乙烯醚(40)氢化蓖麻油0.5%,聚乙烯吡咯烷酮为0.5%,聚乙二醇200为余量。
糊剂乙:氢氧化钙为25%,氧化锆为27%,聚氧乙烯醚(40)氢化蓖麻油0.5%,聚乙烯吡咯烷酮为0.5%,丙二醇为余量。
糊剂丙:氢氧化钙为25%,氧化锆为27%,聚氧乙烯醚(40)氢化蓖麻油0.5%,聚乙烯吡咯烷酮为0.5%,丙三醇为余量。
糊剂丁:氢氧化钙为25%,氧化锆为27%,聚氧乙烯醚(40)氢化蓖麻油0.5%,聚乙烯吡咯烷酮为0.5%,水为余量。
糊剂甲、乙、丙、丁制备:参照“实施列1”所述方法制备,按不同配方把聚乙二醇200分别改为丙二醇、丙三醇、水。
2、二氧化碳制备
在二氧化碳发生器中按1:1加入柠檬酸和碳酸氢钠,制得二氧化碳气体。
3、试验方法
S1、将上述制得的四个糊剂各取5g,装入20mL的可密封的透明玻璃样品瓶中,每个糊剂装四瓶;
S2、将上述制得的二氧化碳通入透明玻璃瓶中,每瓶通气30秒,并盖紧瓶盖,每1小时通二氧化碳一次,共通3次;
S3、放置24小时后,分别用同一个1g、2g重的砝码,轻轻放入瓶中,每个瓶子重复放置一次,观察砝码是否会沉入糊剂中。
4、试验结果
试验结果1:1g重的砝码放入糊剂甲、乙、丙、丁中,砝码均立于糊剂表面。
试验结果2:2g重的砝码放入糊剂甲中,砝码沉入糊剂;2g重的砝码放入糊剂乙、丙、丁中,砝码均立于糊剂表面。
试验结果3:糊剂丙在制备过程中,糊剂迅速变粘稠,并发出热量,并有异味产生,与其它三个糊剂在制备过程中发生的现象明显不同,为了使糊剂变稀,加入两倍的丙三醇达到稀释的目的,所以实际配方为:氢氧化钙为13.2%,氧化锆为19.9%,聚氧乙烯醚(40)氢化蓖麻油0.3%,聚乙烯吡咯烷酮为0.3%,丙二醇为余量。
试验结果4:糊剂丁在制备完成后通入二氧化碳,可迅速观察到表面形成一层硬壳。
5、试验结论
结论1:通过砝码承重实验和现象观察可以得出,四种液体溶剂对二氧化碳的阻隔性由强到弱依次是:聚乙二醇>丙二醇>水>丙三醇。
结论2:聚乙二醇能更有效地阻止二氧化碳与氢氧化钙反应产生碳酸钙,且丙三醇不适合加入氢氧化钙糊剂中。
二、水中分散试验
1、糊剂制备
A:氢氧化钙为20%,氧化锆为30%,聚乙烯吡咯烷酮为0.5%,聚乙二醇200为余量。
B:氢氧化钙为20%,氧化锆为30%,聚乙烯吡咯烷酮为0.5%,丙二醇为余量。
C:氢氧化钙为20%,氧化锆为30%,聚乙烯吡咯烷酮为0.5%,水为余量。
D:氢氧化钙为20%,氧化锆为30%,羟丙基甲基纤维素为0.5%,聚乙二醇200为余量。
E:氢氧化钙为25%,氧化锆为27%,聚乙烯吡咯烷酮为0.5%,聚氧乙烯醚(60)氢化蓖麻油0.5%,聚乙二醇200为余量
F:氢氧化钙为25%,氧化锆为27%,聚乙烯吡咯烷酮为0.5%,聚氧乙烯醚(60)氢化蓖麻油0.5%,丙二醇为余量
G:市售国产氢氧化钙糊剂(LQC)
H:市售进口氢氧化钙糊剂(APC)
糊剂A、B、C制备:参照“实施列1”所述方法制备,但不加聚氧乙烯醚(60)氢化蓖麻油。
以糊剂A为基础,分别加入质量分数0.5%的以下类型表面活性剂,得到表1中的糊剂:
表1糊剂配方及编号
Figure PCTCN2022101161-appb-000001
Figure PCTCN2022101161-appb-000002
向上述糊剂中加入适当食品级胭脂红色素,用均质机将其充分均质,使每个糊剂都能从25G根管冲洗针头中挤出,并分装到注射器中待用。市售国产氢氧化钙糊剂(LQC)和进口氢氧化钙糊剂(APC)不加颜色,直接使用,因无法从25G根管冲洗头中挤出,所以选用普通蝴蝶冲洗头。
2、试验方法
S1、准备23个150mL杯子直径基本一致的烧杯,分别装满水,将23个糊剂(A、B、C、D、E、F、G、H、A1-A15)装入注射器中,通过25G根管冲洗针头(除G、H外)向每个烧瓶中挤入一滴(每滴约0.01g),拍摄视频,观察现象,每段视频截取4张图片作为流动画面,如图1-23所示;
S2、配制完成后立即观察色素变化。
3、试验结果
试验结果如表2所示:
表2水中分散性结果
Figure PCTCN2022101161-appb-000003
Figure PCTCN2022101161-appb-000004
Figure PCTCN2022101161-appb-000005
注:①.“○○○”代表在分散过程中无糊剂沉入水中,能分散于水面;“○○”代表在分散过程中有部分糊剂沉入水中;“○”代表不能分散于水面,全部糊剂沉入水中。
②.“++++”代表均匀扩散并均匀分布于整个水面上;“+++”代表可以扩散并均匀分布于部分水面上;“++”代表仅能有限扩散,不能均匀分布于水面上。“+”代表在水中不能扩散。
③.颜色变化代表配方不稳定;
④.总体评判标准为:“○”、“+”越多;“扩散时间”越短;颜色“无变化”,代表配方最优。
4、试验结论
1、通过对比糊剂A、B、C可以得到,糊剂A、B、C的区别为溶剂不同,以水为溶剂的糊剂C完全不具备水中的分散性;用丙二醇为溶剂的糊剂B和用聚乙二醇200为溶剂的糊剂A,在水中的扩散时间短,没有沉入水中,但在水面上只能不均匀的有限分散,且糊剂B出现褪色现象。由此说明,糊剂的溶剂选用聚乙二醇最为合适,如果选用水或者其他溶剂,则容易出现分散性差或者糊剂稳定性差的问题。
2、将糊剂D与糊剂A对比得到,糊剂A与糊剂D区别在于糊剂骨架不同,糊剂D选用羟丙基甲基纤维素,糊剂A选用聚乙烯吡咯烷酮,试验结果为:选用羟丙基甲基纤维素的糊剂D比选用聚乙烯吡咯烷酮的糊剂A更容易沉入水中。因此可以得到,糊剂的骨架系统选用聚乙烯吡咯烷酮更优。
3、由表2的实验结果可以得到,阳离子/阴离子/非离子/两性离子表面活 性剂对糊剂在水中的分散性影响不尽相同。对于阳离子表面活性剂来说,阳离子表面活性剂的加入整体上会提高糊剂在水中的分散性以及缩短分散时间,但只是加入部分种类的阳离子表面活性剂能同时体现出不沉底、高扩散、快速分散、稳定的特点,其中添加了部分种类的阳离子表面活性剂的糊剂出现了不稳定褪色的现象,添加CHX的糊剂效果最佳。对于添加阴离子表面活性剂的糊剂来说,阴离子表面活性剂的加入表现出沉底、扩散不佳、分散速度不快的特点,由此说明,阴离子表面活性剂不适宜引入。对于添加非离子型表面活性剂的糊剂来说,非离子型表面活性剂的加入整体上会提高糊剂在水中的分散性,但只是加入部分种类的非离子表面活性剂能同时体现出不沉底、高扩散的特点,其中添加AEO-9的糊剂出现了负面影响,添加RH60的糊剂效果最佳。对于添加两性离子表面活性剂的糊剂来说,两性离子表面活性剂的加入表现出沉底、扩散不佳、分散速度不快的特点,由此说明,两性离子表面活性剂不适宜引入。
三、与现有产品的流动性对比
1、试验材料
表3中的配方3糊剂、G:市售国产氢氧化钙糊剂(LQC)、H:市售进口氢氧化钙糊剂(APC)。
2、试验方法
按ISO6876方法进行。
3、试验结果
如图24所示,配方3糊剂压膜平均直径为40.0mm(在不同方向测量6次取平均值),LQC压膜直径为15.3mm(在不同方向测量6次取平均值),APC压膜平均直径为20.5mm(在不同方向测量6次取平均值)。
由此可得,本发明的糊剂的流动性显著优于现有相关产品的流动性,具有高流动性特点。
如图25所示,图25为配方3挤入3D打印牙齿根管后,用3mL水冲洗前、后用相机拍照的效果对比图,其中左图为牙齿根管用水冲洗前的状态图,右图为牙齿根管冲洗后的状态图。通过对比得到,冲洗后根管内很干净,没有残留的配方3糊剂。
四、具体实施例
实施例1
用下列原料按质量百分比进行配制:氢氧化钙为10-60%,氧化锆为15-35%,聚氧乙烯醚(60)氢化蓖麻油0.1-5.0%,聚乙烯吡咯烷酮为0.5-5.0%,聚乙二醇200为余量。
制备方法:
①、按质量配比取上述原料,先将聚乙烯吡咯烷酮放入聚乙二醇200中充分溶胀,得到不高于20%的聚乙烯吡咯烷/聚乙二醇200均质溶液A;
②、在均质溶液A中加入氢氧化钙、氧化锆、聚氧乙烯醚(60)氢化蓖麻油用均质机充分均质分散,即得。
实施例2
表3中列出了8个配方的原料及其质量配比,对每一个配方分别按质量配比取其原料,按实施例1的制备方法制得均质糊剂。
表3配方原料及其质量百分配比
  Ca(OH) 2 ZrO 2 RH60 PVP PEG-200
配方1 15.0 35.0 0.5 1.0 48.5
配方2 20.0 30.0 0.5 1.0 48.5
配方3 25.0 27.0 0.5 1.0 46.5
配方4 30.0 25.0 0.5 1.0 43.5
配方5 15.0 35.0 1.0 0.5 48.5
配方6 20.0 30.0 1.5 1.5 47.0
配方7 25.0 27.0 2.0 2.0 44.0
配方8 30.0 25.0 0.5 0.5 44.0
配方9 60.0 5.0 3.0 32.0
配方10 10.0 0.1 5.0 84.9
配方11 35.0 15.0 3.0 3.0 44.0
配方12 35.0 15.0 1.5 2.0 46.5
表3中,RH60:聚氧乙烯醚(60)氢化蓖麻油;PVP:聚乙烯吡咯烷酮;PEG-200:聚乙二醇200。
配方中的PEG-200可以选用PEG-400或PEG-600代替。RH60可选用其它分子量不同的聚氧乙烯醚氢化蓖麻油代替,如聚氧乙烯醚(40)氢化蓖麻油。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有高流动性的无水根管消毒剂基质,其特征在于,以无水根管消毒剂总质量百分数计,所述基质包括以下组分:聚乙烯吡咯烷酮0.5-5.0%、非离子或阳离子表面活性剂0.1-5.0%、分子量为200-600的聚乙二醇32.0-85.0%。
  2. 如权利要求1所述的具有高流动性的无水根管消毒剂基质,其特征在于,向所述基质中加入碱土金属的氢氧化物制备成糊剂,所述糊剂即为无水根管消毒剂。
  3. 如权利要求2所述的具有高流动性的无水根管消毒剂基质,其特征在于,所述碱土金属的氢氧化物为氢氧化钙。
  4. 如权利要求1-3任一所述的具有高流动性的无水根管消毒剂基质,其特征在于,所述非离子表面活性剂为聚氧乙烯醚氢化蓖麻油,所述阳离子表面活性剂为氯已定。
  5. 一种具有高流动性的无水根管消毒剂,其特征在于,所述无水根管消毒剂包括权利要求1-4任一所述的无水根管消毒剂基质以及碱土金属的氢氧化物,所述碱土金属的氢氧化物的用量为所述无水根管消毒剂总质量的10-60%。
  6. 如权利要求5所述的具有高流动性的无水根管消毒剂,其特征在于,所述无水根管消毒剂中还含有X射线阻射剂,所述X射线阻射剂为氧化锆。
  7. 如权利要求5所述的具有高流动性的无水根管消毒剂,其特征在于,所述无水根管消毒糊剂还含有抗菌剂,所述抗菌剂为单链或/和双链阳离子季铵盐或/和氯己定。
  8. 如权利要求5-7任一所述的具有高流动性的无水根管消毒剂,其特征在于,以无水根管消毒剂总质量百分数计,所述无水根管消毒剂包括如下组分:聚乙烯吡咯烷酮0.5-5.0%、聚氧乙烯醚氢化蓖麻油0.1-5.0%、氢氧化钙10-60%、氧化锆15-35%,余量为分子量为200-600的聚乙二醇以及其他助剂。
  9. 一种如权利要求5-8任一所述的具有高流动性的无水根管消毒剂的制备方法,其特征在于,包括以下步骤:
    S1、将聚乙烯吡咯烷酮放入聚乙二醇中充分溶胀,得到均质溶液A;
    S2、向均质溶液A中加入剩余其他组分,均质分散后即得。
  10. 一种具有高流动性的无水根管消毒剂在牙齿根管治疗中的应用,其特征在于,所述无水根管消毒剂通过权利要求9所述的制备方法制备得到,在牙齿根管治疗中,所述无水根管消毒剂通过25G根管冲洗针头注射到根管深部进行消毒,然后用水或根管冲洗液进行冲洗。
PCT/CN2022/101161 2022-04-21 2022-06-24 具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用 WO2023201879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210420813.0A CN114767548A (zh) 2022-04-21 2022-04-21 具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用
CN202210420813.0 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023201879A1 true WO2023201879A1 (zh) 2023-10-26

Family

ID=82430791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101161 WO2023201879A1 (zh) 2022-04-21 2022-06-24 具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用

Country Status (2)

Country Link
CN (1) CN114767548A (zh)
WO (1) WO2023201879A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104644A1 (en) * 2007-02-09 2011-05-05 Primus Carolyn M Methods of treatment of the dental pulp and filling root canals using water-based material
JP2012167033A (ja) * 2011-02-10 2012-09-06 Nippon Shika Yakuhin Kk 歯科治療用組成物
CN105796370A (zh) * 2016-04-15 2016-07-27 中山大学 用于根管消毒的溶致液晶前体及其制备方法和应用
CN108785105A (zh) * 2018-06-28 2018-11-13 吉林省登泰克牙科材料有限公司 一种氢氧化钙根管填充组合物及其制备方法
CN109820748A (zh) * 2019-03-25 2019-05-31 昆明蓝橙口腔医院有限责任公司 一种用于口腔产品的无水分基质及其应用
CN110051541A (zh) * 2019-06-06 2019-07-26 四川涑爽医疗用品有限公司 一种氢氧化钙根管消毒糊剂及其制备方法
US20190321267A1 (en) * 2016-11-21 2019-10-24 Maruchi Composition for single-paste type hydraulic endodontic filling material comprising dimethyl sulfoxide
CN113795236A (zh) * 2019-05-10 2021-12-14 日本齿科药品株式会社 齿根管填充材料组合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359817B (en) * 2000-02-04 2003-08-20 Gc Kk Calcium hydroxide-based root canal filling material
RU2197940C1 (ru) * 2001-08-09 2003-02-10 Общество с ограниченной ответственностью "Радуга-Р" Материал для пломбирования корневых каналов зуба

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104644A1 (en) * 2007-02-09 2011-05-05 Primus Carolyn M Methods of treatment of the dental pulp and filling root canals using water-based material
JP2012167033A (ja) * 2011-02-10 2012-09-06 Nippon Shika Yakuhin Kk 歯科治療用組成物
CN105796370A (zh) * 2016-04-15 2016-07-27 中山大学 用于根管消毒的溶致液晶前体及其制备方法和应用
US20190321267A1 (en) * 2016-11-21 2019-10-24 Maruchi Composition for single-paste type hydraulic endodontic filling material comprising dimethyl sulfoxide
CN108785105A (zh) * 2018-06-28 2018-11-13 吉林省登泰克牙科材料有限公司 一种氢氧化钙根管填充组合物及其制备方法
CN109820748A (zh) * 2019-03-25 2019-05-31 昆明蓝橙口腔医院有限责任公司 一种用于口腔产品的无水分基质及其应用
CN113795236A (zh) * 2019-05-10 2021-12-14 日本齿科药品株式会社 齿根管填充材料组合物
CN110051541A (zh) * 2019-06-06 2019-07-26 四川涑爽医疗用品有限公司 一种氢氧化钙根管消毒糊剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANRU QI, BAI YUHONG; YU YANGYANG: "In vitro study of the apical sealing ability of root canal sealing paste in different wettability ", LABORATORY MEDICINE AND CLINIC, vol. 13, no. 16, 28 August 2016 (2016-08-28), pages 2270 - 2271, 2275, XP093101139 *

Also Published As

Publication number Publication date
CN114767548A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Holland et al. Factors affecting the periapical healing process of endodontically treated teeth
Sabeti et al. Healing of apical periodontitis after endodontic treatment with and without obturation in dogs
Heling et al. The antimicrobial effect within dentinal tubules of four root canal sealers
Arı et al. In vitro comparison of different types of sodium perborate used for intracoronal bleaching of discoloured teeth
Lim et al. Light and scanning electron microscopic evaluation of Glyde™ File Prep in smear layer removal
Hernandez et al. Effect of ProRoot® MTA mixed with chlorhexidine on apoptosis and cell cycle of fibroblasts and macrophages in vitro
Siqueira Jr Strategies to treat infected root canals
US6566418B2 (en) Calcium hydroxide-based root canal filling material
Jena et al. Root canal irrigants: a review of their interactions, benefits, and limitations.
Nabeshima et al. Effectiveness of different chemical agents for disinfection of gutta‐percha cones
Lin et al. Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy
Kovac et al. Effect of irrigating solutions in endodontic therapy
CN109982680B (zh) 根管糊剂组合物
Torres et al. Minimally invasive techniques used for caries management in dentistry. A review
ES2557354T3 (es) Composición y método para irrigación de un conducto radicular dental preparado
Mohammadi et al. One‐visit versus multiple‐visit endodontic therapy—a review
Yadav et al. Efficacy of etidronic acid, BioPure MTAD and SmearClear in removing calcium ions from the root canal: An in vitro study
Huang et al. Biocompatibility of various formula root filling materials for primary teeth
WO2023201879A1 (zh) 具有高流动性的无水根管消毒剂基质及应用其的消毒剂和应用
Barkhordar et al. An evaluation of sealing ability of calcium hydroxide sealers
US20210145827A1 (en) Antibiotic gel formulation and methods of preparing the antibiotic gel formulation
JP2566676B2 (ja) 歯科用組成物
JP2023518701A (ja) 洗浄、消毒、および/または殺菌するための改良型液体組成物
De-Carli et al. Antimicrobial activity of tt-farnesol associated with an endodontic sealer against Enterococcus faecalis
CN108721121A (zh) 一种根管治疗用润滑剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938108

Country of ref document: EP

Kind code of ref document: A1