WO2023201854A1 - 抗菌pvc木塑多层复合材料及其制备方法 - Google Patents

抗菌pvc木塑多层复合材料及其制备方法 Download PDF

Info

Publication number
WO2023201854A1
WO2023201854A1 PCT/CN2022/096371 CN2022096371W WO2023201854A1 WO 2023201854 A1 WO2023201854 A1 WO 2023201854A1 CN 2022096371 W CN2022096371 W CN 2022096371W WO 2023201854 A1 WO2023201854 A1 WO 2023201854A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
wood
plastic
pvc wood
layer
Prior art date
Application number
PCT/CN2022/096371
Other languages
English (en)
French (fr)
Inventor
叶润露
袁森林
冯金平
Original Assignee
安徽科居新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽科居新材料科技有限公司 filed Critical 安徽科居新材料科技有限公司
Publication of WO2023201854A1 publication Critical patent/WO2023201854A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Definitions

  • the invention relates to the technical field of composite materials, and in particular to antibacterial PVC wood-plastic multi-layer composite materials and preparation methods thereof.
  • PVC wood-plastic composite material is a new type of environmentally friendly composite material that uses wood fiber or plant fiber as reinforcing material or filler and is compounded with polyvinyl chloride.
  • PVC wood-plastic composite material combines well and brings into play the advantages of wood and PVC polymer materials. It not only overcomes the inherent shortcomings of wood such as easy deformation, cracking, non-waterproof, and non-corrosion, but also overcomes the easy aging of plastic polymer materials. , not heat-resistant, and difficult to process later.
  • PVC wood-plastic composite products used in the field of interior decoration account for an increasing proportion of the total. Their products include floors, building formwork, doors and windows, decorative panels, wall panels, guardrails, etc.
  • PVC wood-plastic composite material itself has the disadvantage of poor antibacterial properties, which limits its application in the field of interior decoration.
  • the present invention provides an antibacterial PVC wood-plastic multi-layer composite material and a preparation method thereof, which solves the defect of insufficient antibacterial properties of the existing PVC wood-plastic composite material.
  • the antibacterial PVC wood-plastic composite multi-layer material includes a PVC wood-plastic composite layer.
  • the PVC wood-plastic composite layer includes the following components by weight: 80 to 120 parts of PVC resin, 15 to 35 parts of wood powder, and 15 to 35 parts of calcium carbonate. parts, 8 to 20 parts of negative ion powder, 6 to 16 parts of zinc borate, 8 parts of ACR4015, 4 to 6 parts of stabilizer, 1 to 4 parts of lubricant, 1 to 3 parts of calcium bicarbonate and 1 to 1 part of zirconium coupling agent 2 servings.
  • the negative ion powder is modified before being put into the preparation of the PVC wood-plastic composite layer.
  • the modification method is: 1) Grind the negative ion powder and ceramic powder separately for later use; 2) Combine the ground negative ion powder and ceramic powder. After mixing, disperse it in ethyl acetate, add aluminate and conduct ultrasonic vibration to prepare a suspension; 3) Heat the polyacrylate to a molten state, and add the suspension into the molten polyacrylate to blend evenly; 4) The blended materials are cooled, granulated, and ground to obtain modified negative ion powder.
  • the mass ratio of the negative ion powder to the ceramic powder is 1: (0.1-0.3).
  • the mass ratio of the total weight of the ethyl acetate, the aluminate ester, the negative ion powder and the ceramic powder is (3.2 ⁇ 3.6): (0.2 ⁇ 0.4):1.
  • the added amount of the polyacrylate is 4.6 to 5.4 times the mass of the negative ion powder.
  • the lubricant includes 1 to 3 parts of PE wax and 0.5 to 1 part of stearic acid.
  • the stabilizer is one or a mixture of two of calcium zinc stabilizers or organotin stabilizers.
  • the SBS polyethylene composite layer includes the following components by weight: 55 to 65 parts of high density polyethylene, 45 to 55 parts of SBS, 15 to 20 parts of ethylene propylene diene rubber, 2 to 6 parts of maleic anhydride, 2 to 6 parts of stabilizer and 1 to 3 parts of compatibilizer.
  • the compatibilizer is an acrylic compatibilizer or a maleic anhydride graft compatibilizer.
  • the preparation method of antibacterial PVC wood-plastic multilayer composite material includes the following preparation steps:
  • Wood flour pre-treatment Dry the wood flour for 6 to 7.5 hours at a temperature of 75 to 80°C, then raise the temperature to 85 to 90°C and dry for 9 to 9.5 hours. During the drying process, air and water are removed every 3.2 to 3.6 hours;
  • Preparation of PVC wood-plastic composite layer Weigh the above materials in proportion, first mix PVC and wood powder evenly, then put them into an open mill preheated to 210 ⁇ 230°C to mix, then add other materials in order, and mix for 6 After ⁇ 8 minutes, the lower roller is cooled into sheets;
  • SBS polyethylene composite layer Heat SBS, high-density polyethylene, and EPDM rubber until they are completely molten, mix the three evenly, add maleic anhydride, stabilizer, and compatibilizer and mix for 5 to 7 minutes , the lower roller is cooled into sheets;
  • Preparation of multi-layer composite materials SBS polyethylene composite sheet is used as the inner core layer, and the upper and lower layers are wrapped with PVC wood-plastic composite sheets, and then placed in the mold. First, preheat on a flat vulcanizer at 180 to 200°C for 4 to 6 minutes. Close the flat vulcanizing machine, use the residual temperature to hot press under a pressure of 10 to 12MPa for 4 to 6 minutes, and finally cold press and shape it at room temperature to produce an antibacterial PVC wood-plastic multi-layer composite material.
  • the invention provides antibacterial PVC wood-plastic multi-layer composite materials and preparation methods thereof. Compared with existing technology, it has the following beneficial effects:
  • the present invention improves the antibacterial performance of the PVC wood-plastic composite material by adding negative ion powder to the PVC wood-plastic composite layer formula system.
  • the negative ions in the formula system are continuously released into the air. , to inhibit bacteria in the air.
  • embodiments of the present invention solve the problem of existing PVC wood-plastic composite multi-layer materials that limit their application in the field of interior decoration due to poor antibacterial properties, and realize the improvement of PVC Effect of antibacterial properties of wood-plastic composites.
  • Antibacterial PVC wood-plastic composite multi-layer material including PVC wood-plastic composite layer and SBS polyethylene composite layer;
  • the PVC wood-plastic composite layer includes the following components by weight: 80 parts of PVC resin, 15 parts of wood powder, 15 parts of calcium carbonate, 8 parts of negative ion powder, 6 parts of zinc borate, 4 parts of ACR4015, 4 parts of calcium zinc stabilizer, and PE wax 1 part, 0.5 part stearic acid, 1 part calcium bicarbonate and 1 part zirconium coupling agent.
  • the SBS polyethylene composite layer includes the following components by weight: 55 parts of high-density polyethylene, 45 parts of SBS, 15 parts of EPDM rubber, 2 parts of maleic anhydride, 2 parts of calcium-zinc stabilizer and 1 part of acrylic compatibilizer share.
  • the preparation method of antibacterial PVC wood-plastic multilayer composite material includes the following preparation steps:
  • Wood powder pre-treatment dry the wood powder at 75°C for 6 hours, then raise the temperature to 85°C and dry for 9 hours. During the drying process, gas and water are removed every 3.2 hours;
  • Preparation of PVC wood-plastic composite layer Weigh the above materials in proportion, mix PVC and wood powder evenly, then put them into an open mill preheated to 210°C to mix, then add other materials in order, and mix for 6 minutes. The lower roller is cooled into sheets;
  • SBS polyethylene composite layer Heat SBS, high-density polyethylene, and EPDM rubber until they are completely molten, mix the three evenly, and then add maleic anhydride, calcium zinc stabilizer, and acrylic compatibilizer. Knead for 5 minutes, then cool on the lower roller to form a sheet;
  • Preparation of multi-layer composite materials SBS polyethylene composite sheet is used as the inner core layer, and the upper and lower layers are wrapped with PVC wood-plastic composite sheets, and then placed in the mold. First, preheat on the flat vulcanizing machine at 180°C for 4 minutes, and then close the flat vulcanizing machine. , use the residual temperature to hot press under a pressure of 10MPa for 4 minutes, and finally cold press and shape at room temperature to obtain an antibacterial PVC wood-plastic multi-layer composite material.
  • Antibacterial PVC wood-plastic composite multi-layer material including PVC wood-plastic composite layer and SBS polyethylene composite layer;
  • the PVC wood-plastic composite layer includes the following components by weight: 100 parts of PVC resin, 25 parts of wood powder, 25 parts of calcium carbonate, 14 parts of negative ion powder, 11 parts of zinc borate, 16.5 parts of ACR40, 5 parts of organotin stabilizer, 2 parts of PE wax, 0.75 parts of stearic acid, 2 parts of calcium bicarbonate and 1.5 parts of zirconium coupling agent.
  • the SBS polyethylene composite layer includes the following components by weight: 60 parts of high-density polyethylene, 50 parts of SBS, 17.5 parts of EPDM rubber, 4 parts of maleic anhydride, 4 parts of calcium-zinc stabilizer and maleic anhydride graft type 2 parts compatibilizer.
  • the preparation method of antibacterial PVC wood-plastic multilayer composite material includes the following preparation steps:
  • Wood powder pre-treatment dry the wood powder at 80°C for 7 hours, then raise the temperature to 85°C and dry for 9 hours. During the drying process, gas and water are removed every 3.6 hours;
  • Preparation of PVC wood-plastic composite layer Weigh the above materials in proportion, mix PVC and wood powder evenly, then put them into an open mill preheated to 220°C to mix, then add other materials in order, and mix after 7 minutes. The lower roller is cooled into sheets;
  • SBS polyethylene composite layer Heat SBS, high-density polyethylene, and EPDM rubber until they are completely molten, mix the three evenly, add maleic anhydride, stabilizer and compatibilizer, and mix for 6 minutes. The roller is cooled into sheets;
  • Preparation of multi-layer composite materials SBS polyethylene composite sheet is used as the inner core layer, and the upper and lower layers are wrapped with PVC wood-plastic composite sheets, and then placed in the mold. First, preheat on the flat vulcanizing machine at 190°C for 5 minutes, and then close the flat vulcanizing machine. , use the residual temperature to hot press under a pressure of 11MPa for 5 minutes, and finally cold press and shape at room temperature to obtain an antibacterial PVC wood-plastic multi-layer composite material.
  • Antibacterial PVC wood-plastic composite multi-layer material including PVC wood-plastic composite layer and SBS polyethylene composite layer;
  • the PVC wood-plastic composite layer includes the following components by weight: 120 parts of PVC resin, 35 parts of wood powder, 35 parts of calcium carbonate, 20 parts of negative ion powder, 16 parts of zinc borate, 18 parts of ACR4018, 6 parts of organotin stabilizer, and PE wax 3 parts, 1 part stearic acid, 3 parts calcium bicarbonate and 2 parts zirconium coupling agent.
  • the SBS polyethylene composite layer includes the following components by weight: 65 parts of high-density polyethylene, 55 parts of SBS, 20 parts of EPDM rubber, 6 parts of maleic anhydride, 6 parts of calcium-zinc stabilizer and maleic anhydride graft type 3 parts compatibilizer.
  • the preparation method of antibacterial PVC wood-plastic multilayer composite material includes the following preparation steps:
  • Wood powder pre-treatment dry the wood powder at 75°C for 7.5 hours, then raise the temperature to 90°C and dry for 9.5 hours. During the drying process, gas and water are removed every 3.6 hours;
  • Preparation of PVC wood-plastic composite layer Weigh the above materials in proportion, mix PVC and wood powder evenly, then put them into an open mill preheated to 230°C to mix, then add other materials in order, and mix after 8 minutes. The lower roller is cooled into sheets;
  • SBS polyethylene composite layer Heat SBS, high-density polyethylene, and EPDM rubber until completely molten, mix the three evenly, and then add maleic anhydride, calcium zinc stabilizer, and maleic anhydride graft type The compatibilizer is mixed for 7 minutes, and the lower roller is cooled into sheets;
  • Preparation of multi-layer composite materials SBS polyethylene composite sheet is used as the inner core layer, and the upper and lower layers are wrapped with PVC wood-plastic composite sheets, and then placed in the mold. First, preheat on the flat vulcanizing machine at 200°C for 6 minutes, and then close the flat vulcanizing machine. , use residual temperature to hot press for 6 minutes under a pressure of 12MPa, and finally cold press and shape at room temperature to obtain an antibacterial PVC wood-plastic multi-layer composite material.
  • Embodiment 4 The difference between Embodiment 4 and Embodiment 2 is that,
  • the negative ion powder is modified before being put into the PVC wood-plastic composite layer.
  • the modification method is: 1) Grind the negative ion powder and ceramic powder respectively at 40°C for 2 hours and set aside. The mass ratio of negative ion powder to ceramic powder is 1:0.2 ; 2) Blend the ground negative ion powder and ceramic powder and disperse them in ethyl acetate. Add aluminate and conduct ultrasonic vibration to prepare a suspension.
  • the total of ethyl acetate, aluminate, negative ion powder and ceramic powder The mass ratio of the weight is 3.4:0.3:1; 3) Heat the polyacrylate with a mass 5 times the mass of the negative ion powder to a molten state, add the suspension to the molten polyacrylate and blend evenly, the blending speed is 450r/min ; 4) Cool, granulate, and grind the blended materials to prepare modified negative ion powder.
  • Embodiment 5 The difference between Embodiment 5 and Embodiment 4 is that,
  • No ceramic powder is used to modify the negative ion powder.
  • Embodiment 6 The difference between Embodiment 6 and Embodiment 4 is that,
  • the mass ratio of negative ion powder to ceramic powder is 1:0.1.
  • Embodiment 7 The difference between Embodiment 7 and Embodiment 4 is that,
  • the mass ratio of negative ion powder to ceramic powder is 1:0.3.
  • Embodiment 8 The difference between Embodiment 8 and Embodiment 4 is that,
  • the mass ratio of the total weight of ethyl acetate, aluminate ester, negative ion powder and ceramic powder is 3.2:0.2:1.
  • Embodiment 9 The difference between Embodiment 9 and Embodiment 4 is that,
  • the mass ratio of the total weight of ethyl acetate, aluminate ester, negative ion powder and ceramic powder is 3.6:0.4:1.
  • Embodiment 10 differs from Embodiment 4 in that,
  • the mass ratio of the total weight of ethyl acetate, aluminate ester, negative ion powder and ceramic powder is 3:0.3:1.
  • Embodiment 11 The difference between Embodiment 11 and Embodiment 4 is that,
  • the mass ratio of the total weight of ethyl acetate, aluminate ester, negative ion powder and ceramic powder is 3.8:0.3:1.
  • Embodiment 12 The difference between Embodiment 12 and Embodiment 4 is that,
  • the mass ratio of the total weight of ethyl acetate, aluminate ester, negative ion powder and ceramic powder is 3.4:0.1:1.
  • Embodiment 13 The difference between Embodiment 13 and Embodiment 4 is that,
  • the mass ratio of the total weight of ethyl acetate, aluminate ester, negative ion powder and ceramic powder is 3.4:0.5:1.
  • Embodiment 14 The difference between Embodiment 14 and Embodiment 4 is that,
  • the mass of polyacrylate is 4.6 times that of negative ion powder.
  • Embodiment 15 The difference between Embodiment 15 and Embodiment 4 is that,
  • the mass of polyacrylate is 5.4 times that of negative ion powder.
  • Embodiment 16 differs from Embodiment 2 in that,
  • test was carried out according to QB/T 2591-2003 (Antibacterial Plastics - Antibacterial Performance Test Methods and Antibacterial Effect), and the test results are recorded in Table 1.
  • Example 1 Evenly dispersed, with 1 to 2 small-scale agglomerations and 4 to 5 extremely small-scale agglomerations.
  • Example 2 Dispersed evenly, with 1 to 2 small-scale agglomerations and 2 to 3 extremely small-scale agglomerations.
  • Example 3 Dispersed evenly, with 1 to 2 small-scale agglomerations and 3 to 4 extremely small-scale agglomerations.
  • Example 4 Evenly dispersed with almost no agglomeration
  • Example 8 Evenly dispersed, with 1 to 2 very small areas of agglomeration.
  • Example 9 Evenly dispersed, with 1 to 2 very small areas of agglomeration.
  • Example 10 Evenly dispersed, with 3 to 4 very small areas of agglomeration.
  • Example 11 Evenly dispersed, with 3 to 4 very small areas of agglomeration.
  • Example 12 Evenly dispersed, with 2 to 3 very small areas of agglomeration.
  • Example 13 Evenly dispersed, with 2 to 3 very small areas of agglomeration.
  • Example 14 Evenly dispersed, with 1 to 2 very small areas of agglomeration.
  • Example 15 Evenly dispersed, with 1 to 2 very small areas of agglomeration.
  • Impact performance test The samples were subjected to a pendulum impact test according to GB/T1043.1-2008.
  • Example 1 35.3
  • Example 2 36.5
  • Example 3 35.8
  • Example 4 40.4
  • Example 5 39.0
  • Example 6 38.4 Example 7 37.5 Example 8 38.2 Example 9 37.3 Example 10 37.0 Example 11 36.7 Example 12 36.7 Example 13 36.5 Example 14 37.4 Example 15 37.6 Example 16 36.1 Comparative example 1 30.2
  • the present invention has the following beneficial effects:
  • the present invention improves the antibacterial performance of PVC wood-plastic composite materials by adding negative ion powder to the PVC wood-plastic composite layer formula system.
  • the negative ions in the formula system are continuously released to in the air to inhibit bacteria in the air.
  • the negative ion powder is first ground to improve the surface activity of the negative ion powder, thereby improving its dispersion in ethyl acetate and the uniformity of blending with polyacrylate; ceramics
  • the quartz component in the powder generates far-infrared rays through interference of light. Far-infrared rays also have a good bactericidal effect and can be continuously released.
  • the present invention uses ceramic powder to further improve the antibacterial performance of PVC wood-plastic composite materials; uses aluminate ester to treat negative ion powder
  • the hydroxyl groups on the surface are modified to improve its polymer-philic properties, thereby improving its dispersion in polyacrylate; the reason for blending negative ion powder, ceramic powder and polyacrylate is because polyacrylate and polyvinyl chloride It has good compatibility and is helpful to improve the defect of poor dispersion of negative ion powder and ceramic powder added to PVC wood-plastic composite materials.
  • the SBS polyethylene composite layer is blended with high-density polyethylene, SBS and EPDM rubber.
  • SBS and EPDM rubber are mainly used to toughen high-density polyethylene and improve its heat resistance;
  • Maleic anhydride is used to increase the surface activity of high-density polyethylene, thereby improving the bonding between SBS and EPDM rubber, thereby improving the compatibility of the SBS polyethylene composite system, thereby improving the SBS polyethylene The overall performance of the composite layer.
  • the present invention uses an SBS polyethylene composite layer as the inner core layer, and the outer layer is covered with a PVC wood-plastic composite layer to form a "sandwich" structure, which has better mechanical properties than a single-layer PVC wood-plastic composite layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

提供一种抗菌PVC木塑多层复合材料及其制备方法,PVC木塑复合层包括以下重量份的组分:PVC树脂80~120份、木粉15~35份、碳酸钙15~35份、负离子粉8~20份、硼酸锌6~16份、ACR40 15~8份、稳定剂4~6份、润滑剂1~4份、碳酸氢钙1~3份以及锆类偶联剂1~2份。制备方法包括以下制备步骤:木粉前处理;PVC木塑复合层制备;SBS聚乙烯复合层制备;多层复合材料制备。该PVC木塑多层复合材料解决了现有技术中木塑板材抗菌性不佳的问题。

Description

抗菌PVC木塑多层复合材料及其制备方法
相关申请
本专利申请要求申请日为2022年4月19日、专利申请号为2022104086970、专利名称为抗菌PVC木塑多层复合材料及其制备方法的中国专利申请的优先权,专利申请号为2022104086970的中国专利申请的公开内容以引用方式全文并入于此。
技术领域
本发明涉及复合材料技术领域,具体涉及抗菌PVC木塑多层复合材料及其制备方法。
背景技术
PVC木塑复合材料是以木纤维或植物纤维作为增强材料或填料,与聚氯乙烯复合而成的一种新型环保复合材料。PVC木塑复合材料很好的结合和发挥了木材和PVC高分子材料的优点,既克服了木材易变形、易开裂、不防水、不防腐等先天性缺点,也克服了塑料高分子材料易老化、不耐热、不易后期加工的缺陷。应用在室内装饰领域的PVC木塑复合材料制品占其总量的比重越来越高,其制品包括地板、建筑模板、门窗、装饰板、墙板、护栏等。
由于空气中漂浮着大量人们用肉眼观测不到的细菌,尤其在室内环境较为封闭的情况下,细菌很容易对人体造成侵害。而PVC木塑复合材料本身存在抗菌性不佳的缺陷,这就限制了其在室内装饰领域的应用。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了抗菌PVC木塑多层复合材料 及其制备方法,解决了现有PVC木塑复合材料抗菌性不足的缺陷。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
抗菌PVC木塑复合多层材料,包括PVC木塑复合层,所述PVC木塑复合层包括以下重量份的组分:PVC树脂80~120份、木粉15~35份、碳酸钙15~35份、负离子粉8~20份、硼酸锌6~16份、ACR4015~8份、稳定剂4~6份、润滑剂1~4份、碳酸氢钙1~3份以及锆类偶联剂1~2份。
优选的,所述负离子粉在投入制备PVC木塑复合层前先进行改性处理,改性方法为:1)分别研磨负离子粉与陶瓷粉备用;2)将研磨完成的负离子粉与陶瓷粉共混后分散在乙酸乙酯中,加入铝酸酯后进行超声震荡,制得悬浮液;3)将聚丙烯酸酯加热至熔融状态,并将悬浮液加入熔融聚丙烯酸酯中共混均匀;4)对共混材料进行冷却、造粒、研磨处理,制得改性负离子粉。
优选的,所述负离子粉与所述陶瓷粉的质量比为1:(0.1~0.3)。
优选的,所述乙酸乙酯、所述铝酸酯、所述负离子粉与所述陶瓷粉总重的质量比为(3.2~3.6):(0.2~0.4):1。
优选的,所述聚丙烯酸酯的添加量是所述负离子粉质量的4.6~5.4倍。
优选的,所述润滑剂包括PE蜡1~3份、硬脂酸0.5~1份。
优选的,所述稳定剂为钙锌稳定剂或有机锡稳定剂中的一种或两种的混合物。
优选的,还包括SBS聚乙烯复合层,所述SBS聚乙烯复合层包括以下重量份的组分:高密度聚乙烯55~65份、SBS45~55份、三元乙丙橡胶15~20份、马来酸酐2~6份、稳定剂2~6份以及相容剂1~3份。
优选的,所述相容剂为丙烯酸型相容剂或马来酸酐接枝型相容剂。
抗菌PVC木塑多层复合材料的制备方法,包括以下制备步骤:
木粉前处理:在75~80℃温度下,对木粉干燥6~7.5h,再升温至85~90℃干燥9~9.5h,干燥过程中每隔3.2~3.6h进行放气除水;
PVC木塑复合层制备:按比例称取上述材料,先将PVC和木粉混合均匀,再放入预热至210~230℃的开炼机内混合,再按次序加入其他材料,混炼6~8min后,下辊冷却成片;
SBS聚乙烯复合层制备:分别将SBS、高密度聚乙烯、三元乙丙橡胶加热直至完全熔融状态,再将三者混合均匀后加入马来酸酐、稳定剂与相容剂混炼5~7min,下辊冷却成片;
多层复合材料制备:将SBS聚乙烯复合片作为内芯层,上层与下层用PVC木塑复合片包裹,再放置于模具中,先在180~200℃的平板硫化机上预热4~6min,闭合平板硫化机,在10~12MPa压力下利用余温热压4~6min,最后在室温下冷压定型,制得抗菌PVC木塑多层复合材料。
(三)有益效果
本发明提供了抗菌PVC木塑多层复合材料及其制备方法。与现有技术相比,具备以下有益效果:
本发明通过向PVC木塑复合层配方体系中加入负离子粉以提升PVC木塑复合材料的抗菌性能,当PVC木塑复合材料应用在室内装饰领域时,其配方体系中的负离子不断释放至空气中,以对空气中的细菌起到抑制作用。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例通过提供抗菌PVC木塑多层复合材料及其制备方 法,解决了现有PVC木塑复合多层材料因抗菌性不佳限制了其在室内装饰领域应用的问题,实现了提升PVC木塑复合材料抗菌性能的效果。
为了更好的理解上述技术方案,下面将结合具体的实施方式对上述技术方案进行详细的说明。
实施例1
抗菌PVC木塑复合多层材料,包括PVC木塑复合层与SBS聚乙烯复合层;
PVC木塑复合层包括以下重量份的组分:PVC树脂80份、木粉15份、碳酸钙15份、负离子粉8份、硼酸锌6份、ACR4015份、钙锌稳定剂4份、PE蜡1份、硬脂酸0.5份、碳酸氢钙1份以及锆类偶联剂1份。
SBS聚乙烯复合层包括以下重量份的组分:高密度聚乙烯55份、SBS45份、三元乙丙橡胶15份、马来酸酐2份、钙锌稳定剂2份以及丙烯酸型相容剂1份。
抗菌PVC木塑多层复合材料的制备方法,包括以下制备步骤:
木粉前处理:在75℃温度下,对木粉干燥6h,再升温至85℃干燥9h,干燥过程中每隔3.2h进行放气除水;
PVC木塑复合层制备:按比例称取上述材料,先将PVC和木粉混合均匀,再放入预热至210℃的开炼机内混合,再按次序加入其他材料,混炼6min后,下辊冷却成片;
SBS聚乙烯复合层制备:分别将SBS、高密度聚乙烯、三元乙丙橡胶加热直至完全熔融状态,再将三者混合均匀后加入马来酸酐、钙锌稳定剂与丙烯酸型相容剂混炼5min,下辊冷却成片;
多层复合材料制备:将SBS聚乙烯复合片作为内芯层,上层与下层用PVC木塑复合片包裹,再放置于模具中,先在180℃的平板硫化机上预热4min,闭合平板硫化机,在10MPa压力下利用余温热压4min,最后在室温下冷压定型,制得抗菌PVC木塑多层复合材料。
实施例2
抗菌PVC木塑复合多层材料,包括PVC木塑复合层与SBS聚乙烯复合层;
PVC木塑复合层包括以下重量份的组分:PVC树脂100份、木粉25份、碳酸钙25份、负离子粉14份、硼酸锌11份、ACR4016.5份、有机锡稳定剂5份、PE蜡2份、硬脂酸0.75份、碳酸氢钙2份以及锆类偶联剂1.5份。
SBS聚乙烯复合层包括以下重量份的组分:高密度聚乙烯60份、SBS50份、三元乙丙橡胶17.5份、马来酸酐4份、钙锌稳定剂4份以及马来酸酐接枝型相容剂2份。
抗菌PVC木塑多层复合材料的制备方法,包括以下制备步骤:
木粉前处理:在80℃温度下,对木粉干燥7h,再升温至85℃干燥9h,干燥过程中每隔3.6h进行放气除水;
PVC木塑复合层制备:按比例称取上述材料,先将PVC和木粉混合均匀,再放入预热至220℃的开炼机内混合,再按次序加入其他材料,混炼7min后,下辊冷却成片;
SBS聚乙烯复合层制备:分别将SBS、高密度聚乙烯、三元乙丙橡胶加热直至完全熔融状态,再将三者混合均匀后加入马来酸酐、稳定剂与相容剂混炼6min,下辊冷却成片;
多层复合材料制备:将SBS聚乙烯复合片作为内芯层,上层与下层用PVC木塑复合片包裹,再放置于模具中,先在190℃的平板硫化机上预热5min,闭合平板硫化机,在11MPa压力下利用余温热压5min,最后在室温下冷压定型,制得抗菌PVC木塑多层复合材料。
实施例3
抗菌PVC木塑复合多层材料,包括PVC木塑复合层与SBS聚乙烯复合层;
PVC木塑复合层包括以下重量份的组分:PVC树脂120份、木粉35份、碳酸钙35份、负离子粉20份、硼酸锌16份、ACR4018份、有机锡稳定剂6份、PE蜡3份、硬脂酸1份、碳酸氢钙3份以及锆类 偶联剂2份。
SBS聚乙烯复合层包括以下重量份的组分:高密度聚乙烯65份、SBS55份、三元乙丙橡胶20份、马来酸酐6份、钙锌稳定剂6份以及马来酸酐接枝型相容剂3份。
抗菌PVC木塑多层复合材料的制备方法,包括以下制备步骤:
木粉前处理:在75℃温度下,对木粉干燥7.5h,再升温至90℃干燥9.5h,干燥过程中每隔3.6h进行放气除水;
PVC木塑复合层制备:按比例称取上述材料,先将PVC和木粉混合均匀,再放入预热至230℃的开炼机内混合,再按次序加入其他材料,混炼8min后,下辊冷却成片;
SBS聚乙烯复合层制备:分别将SBS、高密度聚乙烯、三元乙丙橡胶加热直至完全熔融状态,再将三者混合均匀后加入马来酸酐、钙锌稳定剂与马来酸酐接枝型相容剂混炼7min,下辊冷却成片;
多层复合材料制备:将SBS聚乙烯复合片作为内芯层,上层与下层用PVC木塑复合片包裹,再放置于模具中,先在200℃的平板硫化机上预热6min,闭合平板硫化机,在12MPa压力下利用余温热压6min,最后在室温下冷压定型,制得抗菌PVC木塑多层复合材料。
实施例4,与实施例2的区别之处在于,
负离子粉在投入制备PVC木塑复合层前先进行改性处理,改性方法为:1)在40℃下分别研磨负离子粉与陶瓷粉2h备用,负离子粉与陶瓷粉的质量比为1:0.2;2)将研磨完成的负离子粉与陶瓷粉共混后分散在乙酸乙酯中,加入铝酸酯后进行超声震荡,制得悬浮液,乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.4:0.3:1;3)将质量为负离子粉质量5倍的聚丙烯酸酯加热至熔融状态,并将悬浮液加入熔融聚丙烯酸酯中共混均匀,共混转速为450r/min;4)对共混材料进行冷却、造粒、研磨处理,制得改性负离子粉。
实施例5,与实施例4的区别之处在于,
不使用陶瓷粉对负离子粉进行改性。
实施例6,与实施例4的区别之处在于,
负离子粉与陶瓷粉的质量比为1:0.1。
实施例7,与实施例4的区别之处在于,
负离子粉与陶瓷粉的质量比为1:0.3。
实施例8,与实施例4的区别之处在于,
乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.2:0.2:1。
实施例9,与实施例4的区别之处在于,
乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.6:0.4:1。
实施例10,与实施例4的区别之处在于,
乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3:0.3:1。
实施例11,与实施例4的区别之处在于,
乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.8:0.3:1。
实施例12,与实施例4的区别之处在于,
乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.4:0.1:1。
实施例13,与实施例4的区别之处在于,
乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.4:0.5:1。
实施例14,与实施例4的区别之处在于,
聚丙烯酸酯的质量是负离子粉质量的4.6倍。
实施例15,与实施例4的区别之处在于,
聚丙烯酸酯的质量是负离子粉质量的5.4倍。
实施例16,与实施例2的区别之处在于,
删除SBS聚乙烯复合层材料中的马来酸酐组分。
对比例1
删除PVC木塑复合层材料中的负离子粉组分。
性能检测试验
对由实施例1~16以及对比例1制备的PVC木塑复合多层材料进行取样,并对样品进行以下性能检测试验。
1、抗菌性测试
根据QB/T 2591-2003(抗菌塑料-抗菌性能试验方法和抗菌效果》进行检测,检测结果记录在表1中。
表1-样品抑菌性能检测数据
Figure PCTCN2022096371-appb-000001
2、负离子粉分散性测试
通过扫描电镜法对实施例1~3、实施例8~15试样中负离子粉的分散情况进行观察,检测结果记录在表2中。
表2-样品中负离子粉分散情况观察结果
样品 负离子分散情况
实施例1 分散均匀,有1~2处小范围团聚,4~5处极小范围团聚
实施例2 分散均匀,有1~2处小范围团聚,2~3处极小范围团聚
实施例3 分散均匀,有1~2处小范围团聚,3~4处极小范围团聚
实施例4 分散均匀,几乎没有团聚
实施例8 分散均匀,有1~2处极小范围团聚
实施例9 分散均匀,有1~2处极小范围团聚
实施例10 分散均匀,有3~4处极小范围团聚
实施例11 分散均匀,有3~4处极小范围团聚
实施例12 分散均匀,有2~3处极小范围团聚
实施例13 分散均匀,有2~3处极小范围团聚
实施例14 分散均匀,有1~2处极小范围团聚
实施例15 分散均匀,有1~2处极小范围团聚
3、力学性能测试
冲击性能测试:根据GB/T1043.1-2008对样品进行摆锤冲击试验。
试验结果记录在表3中。
表3-样品力学性能检测数据
样品 冲击强度/(kJ/m 2)
实施例1 35.3
实施例2 36.5
实施例3 35.8
实施例4 40.4
实施例5 39.0
实施例6 38.4
实施例7 37.5
实施例8 38.2
实施例9 37.3
实施例10 37.0
实施例11 36.7
实施例12 36.7
实施例13 36.5
实施例14 37.4
实施例15 37.6
实施例16 36.1
对比例1 30.2
由实施例1~3结合实施例4并结合表1、表2、表3可知:在将负离子粉投入PVC木塑复合层配方体系之前对其进行改性处理,不仅可提升其抗菌性能,还可改善其在体系中的分散稳定性,将其添加至体系中制备的PVC木塑复合材料的力学性能也有一定的提升。
由实施例1~3结合实施例4、5并结合表1、表2、表3可知:由于陶瓷粉中的石英成分具有远红外性能,在改性负离子粉时添加陶瓷粉组分,有利于提升改性后的负离子粉的抗菌性能。由于陶瓷粉添加量有限,因此,其添加对PVC木塑复合材料的力学性能改善效果不大。
由实施例1~3结合实施例4、6、7并结合表1、表2、表3可知:负离子粉与陶瓷粉的质量比控制在一定的范围内,有利于确保陶瓷粉对负离子粉抗菌性能的改善促进作用,尤其当负离子粉与陶瓷粉的质量比为1:0.2时,其改善负离子粉抗菌性的作用效果发挥最好。
由实施例1~3结合实施例4、8~13并结合表1、表2、表3可知:乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比控制在(3.2~3.6):(0.2~0.4):1的范围内时,改性后的负离子粉投入体系后制备的复 合材料具有优越的抑菌性与力学性能,且负离子粉在体系内只有1~2处极小范围团聚,说明负离子粉具有良好的分散稳定性,尤其当乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比为3.4:0.3:1,其分散性能最佳。当乙酸乙酯、铝酸酯、负离子粉与陶瓷粉总重的质量比超出上述范围时,由表中数据可知,负离子粉的体系分散稳定性呈下降趋势,且力学性能也出现下降趋势。
由实施例1~3结合实施例4、14、15并结合表1、表2、表3可知:聚丙烯酸酯的添加量控制在一定的范围内,有利于确保陶瓷粉对负离子粉抗菌性能的改善促进作用,尤其当聚丙烯酸酯的添加量是负离子粉的5倍时,其改善负离子粉抗菌性、力学性能的作用效果发挥最好。
由实施例1~3结合实施例4、16并结合表1、表2、表3可知:删除SBS聚乙烯复合层材料中的马来酸酐组分对PVC木塑复合多层材料的抗菌性能影响不大,主要影响其力学性能,由于负离子粉经上述改性后对复合多层材料的力学性能具有一定的提升作用,因此,从数据上看,删除马来酸酐后,PVC木塑复合多层材料的力学性能并未下降至实施例1~3的数据之下,但实际上,马来酸酐组分的删除对PVC木塑复合多层材料力学性能产生了负面影响。
由实施例1~3结合对比例1并结合表1、表2、表3可知:删除PVC木塑复合层配方体系中的负离子粉材料主要影响了其抗菌性能,其对金黄色葡萄球菌与大肠杆菌的抑制能力明显下降,说明使用本发明的负离子粉对PVC木塑复合多层材料抗菌性能的提升具有显著的促进作用。
综上所述,与现有技术相比,本发明具备以下有益效果:
1、本发明通过向PVC木塑复合层配方体系中加入负离子粉以提升PVC木塑复合材料的抗菌性能,当PVC木塑复合材料应用在室内装饰领域时,其配方体系中的负离子不断释放至空气中,以对空气中的细菌起到抑制作用。
2、本发明在制备负离子粉的过程中,先对负离子粉进行研磨,以提高负离子粉的表面活性,从而提升其在乙酸乙酯中的分散性以及与聚丙烯酸酯的共混均匀度;陶瓷粉中的石英成分,通过干涉光产生远红外线,远红外线同样具有良好的杀菌作用,且可以不断释放,本发明使用陶瓷粉进一步提升PVC木塑复合材料的抗菌性能;使用铝酸酯对负离子粉表面的羟基进行改性,以提升其亲聚合物的性能,从而提升其在聚丙烯酸酯中的分散性;将负离子粉、陶瓷粉与聚丙烯酸酯共混,是因为聚丙烯酸酯与聚氯乙烯具有良好的相容性,有利于改善负离子粉与陶瓷粉添加至PVC木塑复合材料中分散性不佳的缺陷。
3、本发明中SBS聚乙烯复合层选用高密度聚乙烯、SBS与三元乙丙橡胶共混,SBS、三元乙丙橡胶主要用于为高密度聚乙烯增韧并提升其耐热性能;马来酸酐用于提升高密度聚乙烯的表面活性,从而提高SBS、三元乙丙橡胶三者之间的结合性,以此提高SBS聚乙烯复合材料体系的相容性,从而提升SBS聚乙烯复合层的整体性能。
4、本发明将SBS聚乙烯复合层作为内芯层,外层使用PVC木塑复合层覆盖,形成“三明治”型结构,相较于单层PVC木塑复合层具有更优异的力学性能。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 抗菌PVC木塑复合多层材料,其特征在于,包括PVC木塑复合层,所述PVC木塑复合层包括以下重量份的组分:PVC树脂80~120份、木粉15~35份、碳酸钙15~35份、负离子粉8~20份、硼酸锌6~16份、ACR4015~8份、稳定剂4~6份、润滑剂1~4份、碳酸氢钙1~3份以及锆类偶联剂1~2份。
  2. 如权利要求1所述的抗菌PVC木塑多层复合材料,其特征在于,所述负离子粉在投入制备PVC木塑复合层前先进行改性处理,改性方法为:1)分别研磨负离子粉与陶瓷粉备用;2)将研磨完成的负离子粉与陶瓷粉共混后分散在乙酸乙酯中,加入铝酸酯后进行超声震荡,制得悬浮液;3)将聚丙烯酸酯加热至熔融状态,并将悬浮液加入熔融聚丙烯酸酯中共混均匀;4)对共混材料进行冷却、造粒、研磨处理,制得改性负离子粉。
  3. 如权利要求2所述的抗菌PVC木塑多层复合材料,其特征在于,所述负离子粉与所述陶瓷粉的质量比为1:(0.1~0.3)。
  4. 如权利要求2所述的抗菌PVC木塑多层复合材料,其特征在于,所述乙酸乙酯、所述铝酸酯、所述负离子粉与所述陶瓷粉总重的质量比为(3.2~3.6):(0.2~0.4):1。
  5. 如权利要求2所述的抗菌PVC木塑多层复合材料,其特征在于,所述聚丙烯酸酯的添加量是所述负离子粉质量的4.6~5.4倍。
  6. 如权利要求1所述的抗菌PVC木塑多层复合材料,其特征在于,所述润滑剂包括PE蜡1~3份、硬脂酸0.5~1份。
  7. 如权利要求1所述的抗菌PVC木塑多层复合材料,其特征在于,所述稳定剂为钙锌稳定剂或有机锡稳定剂中的一种或两种的混合物。
  8. 如权利要求1所述的抗菌PVC木塑多层复合材料,其特征在于,还包括SBS聚乙烯复合层,所述SBS聚乙烯复合层包括以下重量份的组分:高密度聚乙烯55~65份、SBS 45~55份、三元乙丙橡胶15~ 20份、马来酸酐2~6份、稳定剂2~6份以及相容剂1~3份。
  9. 如权利要求8所述的抗菌PVC木塑多层复合材料,其特征在于,所述相容剂为丙烯酸型相容剂或马来酸酐接枝型相容剂。
  10. 权利要求1~9任一项所述的抗菌PVC木塑多层复合材料的制备方法,其特征在于,包括以下制备步骤:
    木粉前处理:在75~80℃温度下,对木粉干燥6~7.5h,再升温至85~90℃干燥9~9.5h,干燥过程中每隔3.2~3.6h进行放气除水;
    PVC木塑复合层制备:按比例称取上述材料,先将PVC和木粉混合均匀,再放入预热至210~230℃的开炼机内混合,再按次序加入其他材料,混炼6~8min后,下辊冷却成片;
    SBS聚乙烯复合层制备:分别将SBS、高密度聚乙烯、三元乙丙橡胶加热直至完全熔融状态,再将三者混合均匀后加入马来酸酐、稳定剂与相容剂混炼5~7min,下辊冷却成片;
    多层复合材料制备:将SBS聚乙烯复合片作为内芯层,上层与下层用PVC木塑复合片包裹,再放置于模具中,先在180~200℃的平板硫化机上预热4~6min,闭合平板硫化机,在10~12MPa压力下利用余温热压4~6min,最后在室温下冷压定型,制得抗菌PVC木塑多层复合材料。
PCT/CN2022/096371 2022-04-19 2022-05-31 抗菌pvc木塑多层复合材料及其制备方法 WO2023201854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210408697.0 2022-04-19
CN202210408697.0A CN114670519B (zh) 2022-04-19 2022-04-19 抗菌pvc木塑多层复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2023201854A1 true WO2023201854A1 (zh) 2023-10-26

Family

ID=82077583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096371 WO2023201854A1 (zh) 2022-04-19 2022-05-31 抗菌pvc木塑多层复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114670519B (zh)
WO (1) WO2023201854A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670519B (zh) * 2022-04-19 2023-03-24 安徽科居新材料科技有限公司 抗菌pvc木塑多层复合材料及其制备方法
CN115366512A (zh) * 2022-08-08 2022-11-22 浙江亚厦装饰股份有限公司 一种高硬度抗菌木塑的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895285A (zh) * 2015-05-29 2015-09-09 桐城市诚信木塑科技材料有限公司 一种pvc木塑复合地板
CA2856385A1 (en) * 2014-07-10 2016-01-10 Zhejiang Yongyu Bamboo Joint-Stock Co., Ltd. A composite floor and manufacturing method thereof
CN108501482A (zh) * 2018-03-22 2018-09-07 合肥伊只门窗有限公司 一种新型复合层木塑复合材料及其制备方法
CN110466221A (zh) * 2019-08-28 2019-11-19 安徽中科达美新材料科技有限公司 一种耐火性木塑材料及其制备方法
CN114670519A (zh) * 2022-04-19 2022-06-28 安徽科居新材料科技有限公司 抗菌pvc木塑多层复合材料及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3778881B2 (ja) * 2002-07-26 2006-05-24 独立行政法人産業技術総合研究所 抗菌性木質系複合成形体の製造方法
CN102732999B (zh) * 2012-07-14 2014-03-26 张家港市安顺科技发展有限公司 一种负离子远红外复合功能纤维
CN102922838B (zh) * 2012-11-17 2015-03-18 江苏润聚新材料科技有限公司 三层共挤pvc木塑复合发泡板及其制备方法
CN103289169A (zh) * 2013-06-21 2013-09-11 苏州新区佳合塑胶有限公司 改性高密度聚乙烯复合材料
CN104804128B (zh) * 2015-02-23 2017-08-22 泉州市奈斯材料科技有限公司 一种纳米负离子‑聚丙烯酸酯复合粒子的制备方法
CN108003646A (zh) * 2018-01-08 2018-05-08 安徽以诺木塑板材科技有限公司 一种环保木塑材料及其制备方法
CN110512830A (zh) * 2019-08-28 2019-11-29 安徽中科达美新材料科技有限公司 一种释放负离子的木塑地板
WO2021128102A1 (zh) * 2019-12-25 2021-07-01 宁波禾隆新材料股份有限公司 一种阻燃木塑表层复合物及具有该阻燃木塑表层复合物的木塑复合材料的制备方法
CN111138716B (zh) * 2019-12-31 2020-12-04 安徽科居新材料科技有限公司 阻燃剂及木塑复合材料
CN114031832A (zh) * 2021-11-02 2022-02-11 宁波禾隆新材料股份有限公司 木塑型材用表层材料及具有该表层材料的木塑型材复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2856385A1 (en) * 2014-07-10 2016-01-10 Zhejiang Yongyu Bamboo Joint-Stock Co., Ltd. A composite floor and manufacturing method thereof
CN104895285A (zh) * 2015-05-29 2015-09-09 桐城市诚信木塑科技材料有限公司 一种pvc木塑复合地板
CN108501482A (zh) * 2018-03-22 2018-09-07 合肥伊只门窗有限公司 一种新型复合层木塑复合材料及其制备方法
CN110466221A (zh) * 2019-08-28 2019-11-19 安徽中科达美新材料科技有限公司 一种耐火性木塑材料及其制备方法
CN114670519A (zh) * 2022-04-19 2022-06-28 安徽科居新材料科技有限公司 抗菌pvc木塑多层复合材料及其制备方法

Also Published As

Publication number Publication date
CN114670519A (zh) 2022-06-28
CN114670519B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2023201854A1 (zh) 抗菌pvc木塑多层复合材料及其制备方法
KR100680822B1 (ko) 비할로겐계 난연성 폴리올레핀 수지조성물
KR102152066B1 (ko) 액상 및 분말을 포함하는 하이브리드 타입 pvc용 복합 안정제 및 이를 포함하는 pvc 수지 조성물
CN108659263A (zh) 一种改性碳酸钙及其在pvc木塑复合板的应用
CN104530546B (zh) 一种农用棚膜专用增透增强母粒及其制备方法
Chen et al. Natural rubber composites reinforced with basic magnesium oxysulfate whiskers: Processing and ultraviolet resistance/flame retardant properties
CN105153681A (zh) 一种新型防虫防霉室外用电力电缆护套料及其制备方法
CN105802040A (zh) 一种耐寒电缆用材料及其制备方法
CN105385070A (zh) 基于纳米碳酸钙的电线电缆皮的加工工艺
KR101465227B1 (ko) 고강성을 보유한 경량 합성수지관 조성물 및 그 제조방법
KR101731279B1 (ko) 고난연성과 윤활성을 갖는 마스터배치와 이를 이용한 폴리올레핀 가요관과 그 제조방법
CN108641383A (zh) 一种隔热保温沥青瓦及其制备方法
CN107189221A (zh) 一种环保无卤阻燃聚丙烯色母粒及其制备方法
WO2018137320A1 (zh) Mt插芯原材料及其制备方法
CN111410505A (zh) 一种隔热板及其制备方法
JPWO2016098343A1 (ja) 熱可塑性樹脂組成物、熱可塑性樹脂成形体及びその製造方法、並びに、積層体
JP2020069659A (ja) 農業用ポリオレフィン系多層フィルム
KR101465225B1 (ko) 고강성 및 경량성을 보유한 항균 합성수지관 조성물 및 그 제조방법
CN108690293A (zh) 一种耐高低温高力学强度pvc电缆料
CN108659514A (zh) 一种聚氨酯高效抑烟剂的制备及应用
KR101465228B1 (ko) 내충격성을 보유한 단열 합성수지관 조성물 및 그 제조방법
CN110776731A (zh) 一种表面划痕自修复地板革
CN106496699A (zh) 一种丁苯橡胶电缆料及其制造方法
KR20160033331A (ko) 목분을 함유하는 폴리머 조성물
KR102459557B1 (ko) 열충격 저항성이 우수한 합성목재, 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938084

Country of ref document: EP

Kind code of ref document: A1