WO2023201779A1 - 磁随机存储单元及其制备方法 - Google Patents

磁随机存储单元及其制备方法 Download PDF

Info

Publication number
WO2023201779A1
WO2023201779A1 PCT/CN2022/090980 CN2022090980W WO2023201779A1 WO 2023201779 A1 WO2023201779 A1 WO 2023201779A1 CN 2022090980 W CN2022090980 W CN 2022090980W WO 2023201779 A1 WO2023201779 A1 WO 2023201779A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
spin
providing layer
orbit moment
moment providing
Prior art date
Application number
PCT/CN2022/090980
Other languages
English (en)
French (fr)
Inventor
李州
孟皓
石以诺
冯向
Original Assignee
中电海康集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中电海康集团有限公司 filed Critical 中电海康集团有限公司
Publication of WO2023201779A1 publication Critical patent/WO2023201779A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to the technical field of magnetic memories, and in particular to a magnetic random access memory unit and a preparation method thereof.
  • SOT-MRAM Spin-orbit-moment magnetic memory
  • the SOT-MRAM device unit is composed of a magnetic tunnel junction (MTJ) and a spin orbit moment providing layer (or spin Hall effect layer, SHE layer).
  • MTJ includes free layer, barrier layer and reference layer.
  • the magnetization direction of the reference layer is fixed, and the magnetization direction of the free layer is variable.
  • the spin orbit moment providing layer generally uses heavy metals (HM).
  • the magnetic random memory unit and its preparation method provided by the present invention can generate different spin Hall angles through different interface effects in the first region and the second region, break the symmetry, and realize the spin Hall angle without external magnetic field.
  • the free layer of the magnetic tunnel junction flips.
  • the present invention provides a magnetic random access memory unit, including:
  • the first spin-orbit moment providing layer includes two or more regions, and the two or more regions have at least a first region and a second region; wherein the first region has a first doping characteristic, and the second region Having second doping characteristics;
  • a magnetic tunnel junction is provided on the spin-orbit moment providing layer, and the magnetic tunnel junction covers at least a part of each area.
  • the material of the spin orbit moment providing layer includes W, Ta, Pt, Pd, Au, Cu, Ru, Hf, Mo, Ti, Ir, Mn, Bi x Se (1-x) , Sb x Any one or a combination of two or more of Te (1-x) and Bi x Te (1-x) .
  • the doping concentration of the first region is smaller than the doping concentration of the second region.
  • the doping concentration of the first region is 0.
  • the first region is doped with a first doping element
  • the second region is doped with a second doping element
  • the first region and/or the second region are doped with any one or a combination of two or more of N, O, P and S.
  • a second spin orbit moment providing layer is disposed below the first spin orbit moment providing layer and in contact with the first spin orbit moment providing layer.
  • the present invention also provides a method for preparing a magnetic random access memory unit, including:
  • a magnetic tunnel junction is formed on the spin orbit moment providing layer, and the magnetic tunnel junction is patterned.
  • the patterned magnetic tunnel junction covers part of the first region and part of the second region.
  • doping the second region of the spin orbit moment providing layer includes doping the second region of the spin orbit moment providing layer by oxidation or ion implantation.
  • the method further includes: :
  • a protective layer is formed on the spin orbit moment providing layer, so that the protective layer protects the surface of the spin orbit moment providing layer during the doping process.
  • doping the second region of the spin-orbit moment providing layer includes:
  • the second region is doped to a thickness smaller than the thickness of the spin-orbit moment providing layer.
  • the first region and the second region are set to have different doping characteristics, so that the first region and the second region are provided with different doping characteristics.
  • Different interface effects occur when the first region and the second region are in contact with the magnetic tunnel junction. Due to different interface effects, the spin Hall angles of the first region and the second region are different, breaking the symmetry, thereby achieving flipping of the free layer of the magnetic tunnel junction without an external magnetic field.
  • Figure 1 is a schematic structural diagram of a magnetic random access memory unit according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a magnetic random access memory unit connected to a peripheral circuit according to another embodiment of the present invention
  • Figure 3 is a schematic diagram of mask formation in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 4 is a schematic diagram of the formation of an oxide layer in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 5 is a schematic diagram of removing the mask in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 6 is a schematic diagram of a magnetic tunnel junction formed in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 7 is a schematic diagram of a magnetic tunnel junction pattern in a method for preparing a magnetic random access memory unit according to an embodiment of the present invention.
  • Figure 8 is a schematic diagram of the logical division of the first spin orbit moment providing layer and the second spin orbit moment providing layer in the method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 9 is a schematic diagram of mask formation in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention.
  • Figure 10 is a schematic diagram of the formation of an oxide layer in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention.
  • Figure 11 is a schematic diagram of removing the mask in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 12 is a schematic diagram of the formation of a magnetic tunnel junction in a method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention
  • Figure 13 is a schematic diagram of a magnetic tunnel junction pattern in a method for preparing a magnetic random access memory unit according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of the logical division of the first spin orbit moment providing layer and the second spin orbit moment providing layer in the method for manufacturing a magnetic random access memory unit according to an embodiment of the present invention.
  • An embodiment of the present invention provides a magnetic random access memory unit, as shown in Figure 1, including:
  • the first spin-orbit moment providing layer includes two or more regions, and the two or more regions have at least a first region and a second region; wherein the first region has a first doping characteristic, and the second region Having a second doping characteristic; in some embodiments, the first doping characteristic and the second doping characteristic may refer to two doping concentration characteristics formed using different doping concentrations, or may refer to using different doping elements. Characteristics of the two doping elements formed. For two doping concentration characteristics with different concentrations, one of the doping concentrations can be 0.
  • a magnetic tunnel junction is provided on the spin-orbit moment providing layer, and the magnetic tunnel junction covers at least a part of each region.
  • the magnetic tunnel junction may be bisected by the boundary of the first region and the second region, or may be disposed on the boundary biased toward one of the sides.
  • the magnetic tunnel junction includes a free layer, a barrier layer and a reference layer.
  • the magnetic tunnel junction can be bisected by the axis of the middle region and cover two regions on both sides. part of the area. It can also be set up on the axis of the middle area toward one side and cover the two areas on both sides.
  • the first spin-orbit moment providing layer may also have more areas.
  • the magnetization directions of the free layer and the reference layer may be in-plane magnetization or perpendicular magnetization.
  • the shape of the magnetic tunnel junction can be circular, oval, rectangular, rhombus or triangular.
  • the materials of the free layer and the reference layer can be any one or an alloy of two or more of Co, Fe, Ni, and B, as well as the above elements or alloys with Co, Fe, Ni, Pt, Pd, One or several combinations of multilayer films composed of Mo, W, Ir, Ta, Ru, Nb, and Hf.
  • the material of the barrier layer can be MgO, MgAl 2 O 4 , Al 2 O 3 , Gd 2 O 3 , Any one or a combination of two or more of HfO 2 .
  • the first region and the second region are set to have different doping characteristics, thereby, This causes different interface effects to occur when the first region and the second region are in contact with the magnetic tunnel junction. Due to different interface effects, the spin Hall angles of the first region and the second region are different, breaking the symmetry, thereby achieving flipping of the free layer of the magnetic tunnel junction without an external magnetic field.
  • the magnetic random access memory unit provided by the embodiment of the present invention and the peripheral circuit can be electrically connected in the manner shown in FIG. 2 .
  • the material of the spin orbit moment providing layer includes W, Ta, Pt, Pd, Au, Cu, Ru, Hf, Mo, Ti, Ir, Mn, BixSe (1-x) , any one or a combination of two or more of SbxTe(1-x) and BixTe(1-x).
  • the doping concentration of the first region is smaller than the doping concentration of the second region.
  • the first region and the second region are set to different doping concentrations, thereby producing different interface effects.
  • the first region is set to a lightly doped region
  • the second region is set to a heavily doped region. complex area.
  • the doping concentration of the first region is 0.
  • the first region when the second region is doped, the first region can produce a different interface effect from the second region without being doped. Therefore, in order to simplify the preparation process, the first doping concentration can be set to 0.
  • the first region is doped with a first doping element
  • the second region is doped with a second doping element.
  • doping with different elements can produce different interface effects. Therefore, in this embodiment, this can be achieved by doping the first region and the second region with different elements.
  • the first region and/or the second region are doped with any one or a combination of two or more of N, O, P and S.
  • the method further includes: a second spin orbit moment providing layer, which is disposed below the first spin orbit moment providing layer and in contact with the first spin orbit moment providing layer.
  • the processing thickness may be smaller than the already prepared spin orbit moment providing layer.
  • the processed thickness portion may be used as the first spin orbit moment providing layer, and the unprocessed thickness portion may be used as the second spin orbit moment providing layer.
  • the magnetic random access memory unit does not have a second spin orbital moment providing layer. A layer with only the first spin-orbit moment is provided.
  • An embodiment of the present invention also provides a method for preparing a magnetic random access memory unit, as shown in Figures 3-7, including:
  • the spin orbit moment providing layer may be formed of heavy metal, for example, tungsten or tantalum may be used.
  • a mask is formed at a position corresponding to the first region of the spin orbit moment providing layer; in some embodiments, a mask is formed at a position corresponding to the first region, so that during the doping process of the second region, the mask can be The first region is protected to prevent the doping process in the second region from affecting the first region.
  • the structure after this step is completed is shown in Figure 3.
  • the second region of the spin orbit moment providing layer is doped; in some embodiments, the process of doping the second region may be, for example, an oxidation process or an ion implantation process.
  • Figure 4 schematically shows the structure of the sampling oxidation process.
  • the mask is removed, and the spin orbit moment providing layer is planarized; in some embodiments, the mask may be a photoresist or a hard mask formed of a dielectric material. In the process of removing the hard mask, etching or grinding can be used to remove it. The process of removing photoresist includes processes such as stripping and cleaning. The planarization process can provide a good plane for the subsequent magnetic tunnel junction formation process. The structure after processing in this step is shown in Figure 5.
  • a magnetic tunnel junction is formed on the spin orbit moment providing layer, and the magnetic tunnel junction is patterned.
  • the patterned magnetic tunnel junction covers part of the first region and part of the second region.
  • the magnetic tunnel junction covers part of the first region and part of the second region, so that different interface effects can be generated between the magnetic tunnel junction and the first region and the second region.
  • the first region in this embodiment may or may not be doped. When the first region is doped, the doping of the first region may be performed in the second region. before the doping treatment of the second doped region, or after the doping treatment of the second doped region.
  • the processing process for the first doped region may be as follows: forming a mask at a position corresponding to the second region of the spin orbit moment providing layer; doping the first region of the spin orbit moment providing layer; removing all The mask is used to planarize the spin orbit moment providing layer.
  • the first region and the second region can be used as the first spin orbit moment providing layer, and the portion below the first region and the second region can be used as the first spin orbit moment providing layer.
  • the second spin-orbit moment providing layer its structure is shown in Figure 8.
  • the dotted line in Figure 8 is a logical division of the first region and the second spin orbit moment providing layer.
  • the first region and the second region are set to have different doping characteristics, thereby, This causes different interface effects to occur when the first region and the second region are in contact with the magnetic tunnel junction. Due to different interface effects, the spin Hall angles of the first region and the second region are different, breaking the symmetry, thereby achieving flipping of the free layer of the magnetic tunnel junction without an external magnetic field.
  • doping the second region of the spin orbit moment providing layer includes: doping the second region of the spin orbit moment providing layer using oxidation or ion implantation. .
  • a mask is formed at a position corresponding to the first region of the spin orbit moment providing layer.
  • a mask is formed at a position corresponding to the first region of the spin orbit moment providing layer.
  • it also includes: forming a protective layer on the spin orbit moment providing layer, so that the protective layer protects the surface of the spin orbit moment providing layer during the doping process.
  • the ion implantation process may cause damage to the surface of the spin orbit moment providing layer.
  • a protective layer is provided to protect the surface of the spin-orbit moment providing layer.
  • the material of the protective layer may be one of magnesium oxide or aluminum oxide, or a combination of two or more.
  • the first region in this embodiment may or may not be doped.
  • the doping of the first region may be performed in the second region. before the doping treatment of the second doped region, or after the doping treatment of the second doped region.
  • the processing process for the first doped region may be as follows: forming a mask on the protective layer at a position corresponding to the second region of the spin orbit moment providing layer; doping the first region of the spin orbit moment providing layer Impurity; remove the mask and protective layer, and planarize the spin orbit moment providing layer.
  • the first region and the second region can be used as the first spin orbit moment providing layer, and the portion below the first region and the second region can be used as the first spin orbit moment providing layer.
  • the second spin-orbit moment providing layer its structure is shown in Figure 14.
  • the dotted line in Figure 8 is a logical division of the first region and the second spin orbit moment providing layer.
  • doping the second region of the spin orbit moment providing layer includes doping the second region to a thickness smaller than the thickness of the spin orbit moment providing layer. As shown in Figures 8 and 13, when the doping depth of the first region and the second region is less than the layer providing the spin orbit moment, the thickness portion outside the first region and the second region forms the second spin orbit. The first region and the second region form a first spin-orbit moment providing layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

一种磁随机存储单元,包括:第一自旋轨道矩提供层,具有两个以上的区域,两个以上的区域至少具有第一区域和第二区域;其中,第一区域具有第一掺杂特性,第二区域具有第二掺杂特性;磁性隧道结,设置在自旋轨道矩提供层上,磁性隧道结至少覆盖每个区域的一部分。磁随机存储单元能够通过第一区域和第二区域的不同界面效应,产生不同的自旋霍尔角,打破了对称性,实现在无外磁场的条件下对磁性隧道结的自由层进行翻转。

Description

磁随机存储单元及其制备方法 技术领域
本发明涉及磁性存储器技术领域,尤其涉及一种磁随机存储单元及其制备方法。
背景技术
自旋轨道矩磁性存储器(SOT-MRAM)具有非易失性,擦写速度快且功耗低的优点。SOT-MRAM器件单元由磁性隧道结(MTJ)和自旋轨道矩提供层(或称自旋霍尔效应层、SHE层)组成。MTJ包括自由层、势垒层、参考层。参考层磁化方向固定,自由层磁化方向可变。当自由层和参考层平行,低阻态;当自由层和参考层反平行,高阻态。自旋轨道矩提供层一般采用重金属(HM),当电流流经重金属,通过外磁场的辅助,打破对称性,实现自由层磁矩的确定性翻转,但外磁场的辅助会增加操作的复杂度。现有技术中,为了降低操作的复杂度,通过设置磁性偏置层来实现自由层的翻转,但是,设置磁性偏置层的方式不利于集成度的提升。
发明内容
本发明提供的磁随机存储单元及其制备方法,能够通过第一区域和第二区域的不同界面效应,产生不同的自旋霍尔角,打破了对称性,实现在无外磁场的条件下对磁性隧道结的自由层进行翻转。
第一方面,本发明提供一种磁随机存储单元,包括:
第一自旋轨道矩提供层,包括两个以上的区域,所述两个以上的区域至少具有第一区域和第二区域;其中,第一区域具有第一掺杂特性,所述第二区域具有第二掺杂特性;
磁性隧道结,设置在所述自旋轨道矩提供层上,所述磁性隧道结至少覆盖 每个区域的一部分。
可选地,所述自旋轨道矩提供层的材料包括W、Ta、Pt、Pd、Au、Cu、Ru、Hf、Mo、Ti、Ir、Mn、Bi xSe (1-x)、Sb xTe (1-x)和Bi xTe (1-x)中的任意一种或者两种以上的组合。
可选地,所述第一区域掺杂浓度小于所述第二区域的掺杂浓度。
可选地,所述第一区域的掺杂浓度为0。
可选地,所述第一区域采用第一掺杂元素进行掺杂,所述第二区域采用第二掺杂元素进行掺杂。
可选地,所述第一区域和/或所述第二区域采用N、O、P和S中的任意一种或两种以上的组合进行掺杂。
可选地,还包括:
第二自旋轨道矩提供层,设置在所述第一自旋轨道矩提供层下方,并与所述第一自旋轨道矩提供层接触。
第二方面,本发明还提供一种磁随机存储单元的制备方法,包括:
形成自旋轨道矩提供层;
在所述自旋轨道矩提供层的第一区域对应位置形成掩膜;
对所述自旋轨道矩提供层的第二区域进行掺杂;
去除所述掩膜,并对所述自旋轨道矩提供层进行平坦化;
在所述自旋轨道矩提供层上形成磁性隧道结,对所述磁性隧道结进行图形化处理,图形化处理后的磁性隧道结覆盖部分第一区域和部分第二区域。
可选地,对所述自旋轨道矩提供层的第二区域进行掺杂包括:采用氧化或者离子注入的方式对所述自旋轨道矩提供层的第二区域进行掺杂。
可选地,当采用离子注入的方式对所述自旋轨道矩提供层的第二区域进行 掺杂时,在所述自旋轨道矩提供层的第一区域对应位置形成掩膜之前,还包括:
在所述自旋轨道矩提供层上形成保护层,以使所述保护层在掺杂过程中保护所述自旋轨道矩提供层表面。
可选地,对所述自旋轨道矩提供层的第二区域进行掺杂包括:
对所述第二区域进行掺杂的厚度小于所述自旋轨道矩提供层的厚度。
在本发明提供的技术方案中,通过在第一自旋轨道矩提供层上设置第一区域和第二区域,将第一区域和第二区域设置为具有不同的掺杂特性,从而,使得第一区域和第二区域与磁隧道结接触时产生不同的界面效应。由于不同的界面效应,第一区域和第二区域的自旋霍尔角不同,打破了对称性,从而实现在无外磁场的条件下对磁性隧道结的自由层进行翻转。
附图说明
图1为本发明一实施例磁随机存储单元的结构示意图;
图2为本发明另一实施例磁随机存储单元连接外围电路的示意图;
图3为本发明一实施例磁随机存储单元制备方法中形成掩膜的示意图;
图4为本发明一实施例磁随机存储单元制备方法中形成氧化层的示意图;
图5为本发明一实施例磁随机存储单元制备方法中去除掩膜的示意图;
图6为本发明一实施例磁随机存储单元制备方法中形成磁隧道结的示意图;
图7为本发明一实施例磁随机存储单元制备方法中磁隧道结图形化示意图;
图8为本发明一实施例磁随机存储单元制备方法中第一自旋轨道矩提供层与第二自旋轨道矩提供层的逻辑划分示意图;
图9为本发明一实施例磁随机存储单元制备方法中形成掩膜的示意图;
图10为本发明一实施例磁随机存储单元制备方法中形成氧化层的示意图;
图11为本发明一实施例磁随机存储单元制备方法中去除掩膜的示意图;
图12为本发明一实施例磁随机存储单元制备方法中形成磁隧道结的示意图;
图13为本发明一实施例磁随机存储单元制备方法中磁隧道结图形化示意图;
图14为本发明一实施例磁随机存储单元制备方法中第一自旋轨道矩提供层与第二自旋轨道矩提供层的逻辑划分示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种磁随机存储单元,如图1所示,包括:
第一自旋轨道矩提供层,包括两个以上的区域,所述两个以上的区域至少具有第一区域和第二区域;其中,第一区域具有第一掺杂特性,所述第二区域具有第二掺杂特性;在一些实施例中,第一掺杂特性和第二掺杂特性可以指利用不同的掺杂浓度形成的两种掺杂浓度特性,也可以指利用不同的掺杂元素形成的两种掺杂元素特性。对于不同浓度的两种掺杂浓度特性中,其中一种掺杂浓度可以为0。
磁性隧道结,设置在所述自旋轨道矩提供层上,所述磁性隧道结至少覆盖每个区域的一部分。在一些实施例中,当第一自旋轨道矩提供层包括两个区域 时,磁性隧道结可以被第一区域和第二区域的边界平分,也可以设置在边界上偏向其中一侧。磁性隧道结包括自由层、势垒层和参考层。在另一些实施例中,当第一自旋轨道矩提供层包括两个以上的区域时,例如,当具有三个区域时,磁性隧道结可以被中间区域的轴线平分,并覆盖两侧两个区域的部分。也可以设置在中间区域轴线上偏向其中一侧,并覆盖两侧两个区域的部分。当然,第一自旋轨道矩提供层还可以具有更多的区域。其中,自由层和参考层的磁化方向可以为面内磁化,也可以为垂直磁化。磁性隧道结的形状可以为圆形、椭圆形、矩形、菱形或者三角形。在磁性隧道结中,自由层和参考层的材料可以为Co、Fe、Ni、B中的任意一种或两种以上的合金,以及上述元素或合金与Co、Fe、Ni、Pt、Pd、Mo、W、Ir、Ta、Ru、Nb、Hf组成的多层膜的一种或几种组合,势垒层的材料可以为MgO、MgAl 2O 4、Al 2O 3、Gd 2O 3、HfO 2中的任意一种或两种以上的组合。
在本发明实施例提供的技术方案中,通过在第一自旋轨道矩提供层上设置第一区域和第二区域,将第一区域和第二区域设置为具有不同的掺杂特性,从而,使得第一区域和第二区域与磁隧道结接触时产生不同的界面效应。由于不同的界面效应,第一区域和第二区域的自旋霍尔角不同,打破了对称性,从而实现在无外磁场的条件下对磁性隧道结的自由层进行翻转。在采用本发明实施例提供的技术方案制备存储器时,可以将本发明实施例提供的磁随机存储单元与外围电路按照图2所示的方式进行电连接。
作为一种可选的实施方式,所述自旋轨道矩提供层的材料包括W、Ta、Pt、Pd、Au、Cu、Ru、Hf、Mo、Ti、Ir、Mn、BixSe(1-x)、SbxTe(1-x)和BixTe(1-x)中的任意一种或者两种以上的组合。
作为一种可选的实施方式,所述第一区域掺杂浓度小于所述第二区域的掺 杂浓度。在一些实施例中,将第一区域和第二区域设置为不同掺杂浓度,从而产生不同的界面效应,例如,将第一区域设置为轻掺杂的区域,将第二区域设置为重掺杂的区域。
作为一种可选的实施方式,所述第一区域的掺杂浓度为0。在一些实施例中,当第二区域进行掺杂后,第一区域不进行掺杂也能够产生与第二区域不同的界面效应,因此,为了简化制备工艺,可以将第一掺杂浓度设置为0。
作为一种可选的实施方式,所述第一区域采用第一掺杂元素进行掺杂,所述第二区域采用第二掺杂元素进行掺杂。在一些实施例中,不同的元素进行掺杂能够产生不同的界面效应,因此,在本实施方式中,可以通过对第一区域和第二区域进行不同元素的掺杂来实现。
作为一种可选的实施方式,所述第一区域和/或所述第二区域采用N、O、P和S中的任意一种或两种以上的组合进行掺杂。
作为一种可选的实施方式,还包括:第二自旋轨道矩提供层,设置在所述第一自旋轨道矩提供层下方,并与所述第一自旋轨道矩提供层接触。在一些实施例中,由于掺杂过程通常是在已经制备的自旋轨道矩提供层上进行氧化或者离子注入等方式进行的,因此,当氧化或者离子注入等处理过程中,处理厚度可以小于已经形成的自旋轨道矩提供层时,可以将被处理的厚度部分作为第一自旋轨道矩提供层,未处理的厚度部分作为第二自旋轨道矩提供层。本领域技术人员应当能够理解,在进行氧化或者离子注入等处理过程时,可以将已形成的自选轨道矩提供层整个厚度进行处理,此时,磁随机存储单元不具备第二自旋轨道矩提供层,仅具有第一自旋轨道矩提供层。
本发明实施例还提供一种磁随机存储单元的制备方法,如图3-7所示,包括:
形成自旋轨道矩提供层;在一些实施例中,自旋轨道矩提供层可以采用重金属形成,例如,可以采用钨或钽形成。
在所述自旋轨道矩提供层的第一区域对应位置形成掩膜;在一些实施例中,在第一区域对应位置形成掩膜,从而能够在第二区域进行掺杂处理的过程中,对第一区域进行保护,避免第二区域的掺杂过程对第一区域形成影响。本步骤完成后的结构如图3所示。
对所述自旋轨道矩提供层的第二区域进行掺杂;在一些实施例中,对第二区域进行掺杂的过程例如可以为氧化过程或者离子注入过程。图4中示例性的展示了采样氧化过程进行处理的结构。
去除所述掩膜,并对所述自旋轨道矩提供层进行平坦化;在一些实施例中,掩膜可以为光刻胶,也可以为介质材料形成的硬掩膜。对于硬掩膜进行去除的过程中,可以采用刻蚀或者研磨的方式进行去除。对光刻胶进行去除的过程则包括对去胶和清洗等过程。平坦化处理能够为后续的磁隧道结形成过程提供良好的平面。本步骤处理后的结构如图5所示。
在所述自旋轨道矩提供层上形成磁性隧道结,对所述磁性隧道结进行图形化处理,图形化处理后的磁性隧道结覆盖部分第一区域和部分第二区域。在一些实施例中,图形化处理后,使得磁性隧道结覆盖部分第一区域和部分第二区域,从而,使得磁性隧道结与第一区域和第二区域之间能够产生不同的界面效应。在一些实施例中,本实施方式中的第一区域进行掺杂处理,也可以不进行掺杂处理,当第一区域进行掺杂处理时,对第一区域的掺杂处理可以在第二区域的掺杂处理之前,也可以在第二掺杂区域的掺杂处理之后。对第一掺杂区域的处理过程可以如下:在所述自旋轨道矩提供层的第二区域对应位置形成掩膜;对所述自旋轨道矩提供层的第一区域进行掺杂;去除所述掩膜,并对所述 自旋轨道矩提供层进行平坦化。本领域技术人员应当能够理解,无论第一区域是否进行掺杂处理,都可以将第一区域和第二区域作为第一自旋轨道矩提供层,将第一区域和第二区域之下的部分作为第二自旋轨道矩提供层,其结构如图8所示。图8中的虚线,是对第一区域与第二自旋轨道矩提供层的逻辑划分,当第一区域进行掺杂处理时,第一区域与第二自旋轨道矩提供层之间具有性质上的差异,当第一区域不进行掺杂处理时,第一区域与第二自旋轨道矩提供层无性质差异的一体结构。
在本发明实施例提供的技术方案中,通过在第一自旋轨道矩提供层上设置第一区域和第二区域,将第一区域和第二区域设置为具有不同的掺杂特性,从而,使得第一区域和第二区域与磁隧道结接触时产生不同的界面效应。由于不同的界面效应,第一区域和第二区域的自旋霍尔角不同,打破了对称性,从而实现在无外磁场的条件下对磁性隧道结的自由层进行翻转。
作为一种可选的实施方式,对所述自旋轨道矩提供层的第二区域进行掺杂包括:采用氧化或者离子注入的方式对所述自旋轨道矩提供层的第二区域进行掺杂。
作为一种可选的实施方式,当采用离子注入的方式对所述自旋轨道矩提供层的第二区域进行掺杂时,在所述自旋轨道矩提供层的第一区域对应位置形成掩膜之前,如图9-13所示,还包括:在所述自旋轨道矩提供层上形成保护层,以使所述保护层在掺杂过程中保护所述自旋轨道矩提供层表面。在一些实施例中,通过离子注入的方式对自旋轨道矩提供层进行掺杂时,离子注入过程可能会对自旋轨道矩提供层表面形成损伤,为了减缓自旋轨道矩提供层的表面损伤,本实施方式中通过设置保护层来对自旋轨道矩提供层的表面进行保护。保护层的材料可以为氧化镁或者氧化铝中的一种或者两种以上的组合。在一些实 施例中,本实施方式中的第一区域进行掺杂处理,也可以不进行掺杂处理,当第一区域进行掺杂处理时,对第一区域的掺杂处理可以在第二区域的掺杂处理之前,也可以在第二掺杂区域的掺杂处理之后。对第一掺杂区域的处理过程可以如下:在所述保护层上与自旋轨道矩提供层的第二区域对应位置形成掩膜;对所述自旋轨道矩提供层的第一区域进行掺杂;去除所述掩膜和保护层,并对所述自旋轨道矩提供层进行平坦化。本领域技术人员应当能够理解,无论第一区域是否进行掺杂处理,都可以将第一区域和第二区域作为第一自旋轨道矩提供层,将第一区域和第二区域之下的部分作为第二自旋轨道矩提供层,其结构如图14所示。图8中的虚线,是对第一区域与第二自旋轨道矩提供层的逻辑划分,当第一区域进行掺杂处理时,第一区域与第二自旋轨道矩提供层之间具有性质上的差异,当第一区域不进行掺杂处理时,第一区域与第二自旋轨道矩提供层无性质差异的一体结构。
作为一种可选的实施方式,对所述自旋轨道矩提供层的第二区域进行掺杂包括:对所述第二区域进行掺杂的厚度小于所述自旋轨道矩提供层的厚度。如图8和图13所示,当第一区域和第二区域的掺杂深度小于自旋轨道矩的提供层时,第一区域和第二区域之外的厚度部分即形成第二自旋轨道矩提供层,第一区域和第二区域则形成第一自旋轨道矩提供层。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种磁随机存储单元,其特征在于,包括:
    第一自旋轨道矩提供层,包括两个以上的区域,所述两个以上的区域至少具有第一区域和第二区域;其中,第一区域具有第一掺杂特性,所述第二区域具有第二掺杂特性;
    磁性隧道结,设置在所述自旋轨道矩提供层上,所述磁性隧道结至少覆盖每个区域的一部分。
  2. 根据权利要求1所述磁随机存储单元,其特征在于,所述自旋轨道矩提供层的材料包括W、Ta、Pt、Pd、Au、Cu、Ru、Hf、Mo、Ti、Ir、Mn、Bi xSe (1-x)、Sb xTe (1-x)和Bi xTe (1-x)中的任意一种或者两种以上的组合。
  3. 根据权利要求1所述磁随机存储单元,其特征在于,所述第一区域掺杂浓度小于所述第二区域的掺杂浓度。
  4. 根据权利要求3所述磁随机存储单元,其特征在于,所述第一区域的掺杂浓度为0。
  5. 根据权利要求1所述磁随机存储单元,其特征在于,所述第一区域采用第一掺杂元素进行掺杂,所述第二区域采用第二掺杂元素进行掺杂。
  6. 根据权利要求1所述磁随机存储单元,其特征在于,所述第一区域和/或所述第二区域采用N、O、P和S中的任意一种或两种以上的组合进行掺杂。
  7. 根据权利要求1所述磁随机存储单元,其特征在于,还包括:
    第二自旋轨道矩提供层,设置在所述第一自旋轨道矩提供层下方,并与所述第一自旋轨道矩提供层接触。
  8. 一种磁随机存储单元的制备方法,其特征在于,包括:
    形成自旋轨道矩提供层;
    在所述自旋轨道矩提供层的第一区域对应位置形成掩膜;
    对所述自旋轨道矩提供层的第二区域进行掺杂;
    去除所述掩膜,并对所述自旋轨道矩提供层进行平坦化;
    在所述自旋轨道矩提供层上形成磁性隧道结,对所述磁性隧道结进行图形化处理,图形化处理后的磁性隧道结覆盖部分第一区域和部分第二区域。
  9. 根据权利要求8所述磁随机存储单元的制备方法,其特征在于,对所述自旋轨道矩提供层的第二区域进行掺杂包括:采用氧化或者离子注入的方式对所述自旋轨道矩提供层的第二区域进行掺杂。
  10. 根据权利要求9所述磁随机存储单元的制备方法,其特征在于,当采用离子注入的方式对所述自旋轨道矩提供层的第二区域进行掺杂时,在所述自旋轨道矩提供层的第一区域对应位置形成掩膜之前,还包括:
    在所述自旋轨道矩提供层上形成保护层,以使所述保护层在掺杂过程中保护所述自旋轨道矩提供层表面。
PCT/CN2022/090980 2022-04-22 2022-05-05 磁随机存储单元及其制备方法 WO2023201779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210437129.3A CN116997241A (zh) 2022-04-22 2022-04-22 磁随机存储单元及其制备方法
CN202210437129.3 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023201779A1 true WO2023201779A1 (zh) 2023-10-26

Family

ID=88418964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090980 WO2023201779A1 (zh) 2022-04-22 2022-05-05 磁随机存储单元及其制备方法

Country Status (2)

Country Link
CN (1) CN116997241A (zh)
WO (1) WO2023201779A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100014347A1 (en) * 2008-07-18 2010-01-21 Seagate Technology Llc Diode assisted switching spin-transfer torque memory unit
CN110323330A (zh) * 2018-03-30 2019-10-11 英特尔公司 高阻挡温度自旋轨道转矩电极
US20200098410A1 (en) * 2018-09-25 2020-03-26 Inte Corporation Perpendicular spin injection via spatial modulation of spin orbit coupling
CN111508992A (zh) * 2019-01-31 2020-08-07 三星电子株式会社 磁阻随机存取存储器装置及其制造方法
CN111640769A (zh) * 2019-03-01 2020-09-08 中电海康集团有限公司 自旋轨道矩磁性存储器单元及磁性存储器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100014347A1 (en) * 2008-07-18 2010-01-21 Seagate Technology Llc Diode assisted switching spin-transfer torque memory unit
CN110323330A (zh) * 2018-03-30 2019-10-11 英特尔公司 高阻挡温度自旋轨道转矩电极
US20200098410A1 (en) * 2018-09-25 2020-03-26 Inte Corporation Perpendicular spin injection via spatial modulation of spin orbit coupling
CN111508992A (zh) * 2019-01-31 2020-08-07 三星电子株式会社 磁阻随机存取存储器装置及其制造方法
CN111640769A (zh) * 2019-03-01 2020-09-08 中电海康集团有限公司 自旋轨道矩磁性存储器单元及磁性存储器

Also Published As

Publication number Publication date
CN116997241A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US10797230B2 (en) Techniques for MRAM MTJ top electrode to metal layer interface including spacer
US11462584B2 (en) Insulation layer arrangement for magnetic tunnel junction device
US12029046B2 (en) Magnetic tunneling junction (MTJ) element with an amorphous buffer layer and its fabrication process
US10483460B2 (en) Method of manufacturing a magnetoresistive stack/ structure using plurality of encapsulation layers
JP5836163B2 (ja) 磁気メモリセル、磁気メモリセルの製造方法
US20220367789A1 (en) Mram structure with high tmr and high pma
KR100809597B1 (ko) 미세 패턴 형성 방법 및 이를 이용한 반도체 메모리 장치의형성 방법
US20120315707A1 (en) Magnetic patterns and methods of forming magnetic patterns
US10211396B2 (en) Semiconductor device having magnetic tunnel junction structure and method of fabricating the same
KR20160021377A (ko) 자기 메모리 장치 및 그의 형성방법
KR20170027925A (ko) 패턴 형성 방법 및 이를 이용한 자기 메모리 장치의 제조 방법
KR20210157323A (ko) 메모리 디바이스 및 그 형성 방법
US20240062794A1 (en) Crystal seed layer for magnetic random access memory (mram)
CN110061029B (zh) 一种磁性随机存储器记忆单元及其制造方法
CN107924993A (zh) 自旋转移矩存储器(sttm)、使用易失性化合物形成元素来形成其的方法以及包括其的设备
WO2023201779A1 (zh) 磁随机存储单元及其制备方法
US9691457B2 (en) Magnetic memory device
CN111490151B (zh) 一种制作超小型磁性随机存储器阵列的方法
JP2005268252A (ja) 磁気記憶装置の製造方法
CN107968150B (zh) 制造磁存储器件的方法
US20190165261A1 (en) Magnetic memory device and method of fabricating the same
CN116997242A (zh) 磁随机存储单元及其制备方法
WO2018182697A1 (en) Magnetic tunnel junction (mtj) devices with a sidewall passivation layer and methods to for the same
CN111490152B (zh) 一种制作超小型磁性随机存储器阵列的方法
CN118555896A (zh) 自旋轨道矩磁性存储器的制备方法