WO2023201764A1 - 一种活塞轴可旋转的气动振动装置 - Google Patents

一种活塞轴可旋转的气动振动装置 Download PDF

Info

Publication number
WO2023201764A1
WO2023201764A1 PCT/CN2022/088765 CN2022088765W WO2023201764A1 WO 2023201764 A1 WO2023201764 A1 WO 2023201764A1 CN 2022088765 W CN2022088765 W CN 2022088765W WO 2023201764 A1 WO2023201764 A1 WO 2023201764A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
shaft
air inlet
ventilation
groove
Prior art date
Application number
PCT/CN2022/088765
Other languages
English (en)
French (fr)
Inventor
王中
周劲松
Original Assignee
深圳市速航科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速航科技发展有限公司 filed Critical 深圳市速航科技发展有限公司
Publication of WO2023201764A1 publication Critical patent/WO2023201764A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B47/00Constructional features of components specially designed for boring or drilling machines; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0042Devices for removing chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/043Accessories for spindle drives

Definitions

  • the present invention relates to a vibration device, and in particular to a pneumatic vibration device with a rotatable piston shaft.
  • Chinese patent CN108213508A a bearing-powered ultrasonic hand drill, uses a needle roller bearing to power the ultrasonic vibrator.
  • the ultrasonic vibrator is set on the rotating axis of rotation.
  • Such a design can achieve a good combination of rotating motion and vibration motion, but it must make the rotating axis and the tool it carry produce good vibration.
  • the piezoelectric ultrasonic generator needs to have a larger size, which results in the mechanism being too bulky and making it impossible to miniaturize the structure.
  • Chinese patent CN113057744A a root canal treatment device with dual drive modes of mechanical vibration and rotation, discloses an eccentric shaft and lever ring structure to achieve vibration of the rotating shaft, and the rotation of the eccentric shaft drives the lever ring to vibrate.
  • this structure when this structure is working, mechanical friction will occur between the eccentric shaft and the lever ring, causing the friction pair to wear easily, which requires high materials and makes manufacturing difficult.
  • the present invention discloses a pneumatic vibration device with a rotatable piston shaft.
  • a pneumatic vibration device with a rotatable piston shaft which includes a piston body and a gas commutator;
  • the piston body includes a piston shaft, an input shaft and a piston barrel.
  • the piston shaft is located in the piston barrel.
  • the piston shaft includes a hollow main shaft. Both ends of the main shaft are connected to the first piston and the second piston through connecting bearings respectively.
  • Piston connection, the first piston and the second piston are connected through an inner sleeve located outside the main shaft, the main shaft is connected to a rotary connection member, the rotary connection member is located between the first piston and the second piston, and is located inside In the sleeve; the input shaft passes through the piston barrel, the inner sleeve and the rotating connection member in sequence;
  • the side walls of the first piston and the second piston are in sliding and sealing connection with the piston cylinder, and a first piston chamber and a second piston chamber are respectively formed between the side walls of the first piston and the second piston and the piston cylinder.
  • the piston barrel is provided with a first air hole connected to the first piston chamber, and the piston barrel is provided with a second air hole connected to the second piston chamber;
  • the gas diverter includes a first ventilation port and a second ventilation port, and the first ventilation port and the second ventilation port are respectively connected with the first air hole and the second air hole.
  • first piston, the second piston and the main shaft are dynamically sealed, so that the piston movement is realized and the main shaft can rotate relative to the piston.
  • the hollow part of the main shaft is used to install tools such as drilling tools.
  • the first ventilation port and the second ventilation port are alternately supplied with air through the gas commutator, which can promote the up and down vibration of the piston shaft and drive the drill.
  • the cutting tool vibrates, and at the same time, the input shaft drives the piston shaft to rotate, so that the piston shaft can rotate, that is, the drilling tool is driven to rotate. In this way, rotation and vibration of the drilling tool are achieved.
  • the vibration frequency of the piston shaft is determined by the rotation speed of the ventilation shaft of the gas commutator.
  • the vibration frequency of the piston shaft can be controlled.
  • the piston shaft can vibrate at a higher frequency, such as 60,000 times/minute.
  • the vibration and impact force of the piston shaft depends on the input external pressure pneumatic pressure.
  • the vibration impact force of the piston shaft can be controlled.
  • the rotation speed and torque of the piston shaft are determined by the driving mechanism connected to the input shaft; by controlling the driving mechanism, the rotation speed and torque of the piston shaft can be controlled.
  • the input shaft includes a transmission shaft and an input shaft sleeve.
  • the transmission shaft is located in the input shaft sleeve and is rotationally connected to the input shaft sleeve.
  • One end of the transmission shaft is provided with the input shaft sleeve.
  • the rotation connection member is a transmission connection member that is matched with the transmission connection member, and the other end of the transmission shaft is connected to the driving mechanism.
  • the front end of the input shaft sleeve is tightly connected to the opening on the inner sleeve, so that the transmission connection member at the front end of the transmission shaft can interact with the rotation connection member on the main shaft. Fitting, when the piston shaft vibrates, the input shaft will vibrate together.
  • the other end of the transmission shaft is connected to the driving mechanism through a power input shaft head; the transmission shaft is connected to the input shaft sleeve through a transmission connection bearing.
  • the driving mechanism is a motor.
  • the rotation connecting member and the transmission connecting piece are bevel gears.
  • the first piston is provided with a first center hole
  • the second piston is provided with a second center hole
  • both ends of the main shaft extend through the first center hole and the second center hole respectively.
  • the first piston and the second piston are respectively provided with a first step and a second step, and the two ends of the inner sleeve are tightly connected with the first step and the second step respectively, so that the first piston and the second step
  • the pistons are integrated, so that the main shaft can rotate relative to the first piston and the second piston, but cannot move axially.
  • the inner ring of the connecting bearing is tightly matched with the main shaft, and the outer ring of the connecting bearing is tightly matched with the first piston and the second piston respectively.
  • the main shaft is provided with shock absorbing pads on the outer sides of the first piston and the second piston respectively.
  • the piston barrel includes a piston barrel, a first end cover and a second end cover.
  • the first end cover and the second end cover are tightly connected to both ends of the piston barrel, and the The first end cover is provided with a first end cover center hole, the second end cover is provided with a second end cover center hole, and the two ends of the spindle pass through the first end cover center hole and the second end cover center hole respectively.
  • the two ends of the main shaft are dynamically sealed with the center hole of the first end cover and the center hole of the second end cover, and the main shaft of the piston shaft can slide in the center hole of the first end cover and the second end cover;
  • the first piston, the second piston and the piston cylinder are dynamically sealed.
  • a hole is provided on the side wall of the piston barrel for the input shaft to pass through.
  • the gas diverter includes a ventilation shaft and a casing, the ventilation shaft is located in the casing and is rotationally connected to the casing, and the end of the ventilation shaft is connected to a rotational driving mechanism;
  • the first ventilation port and the second ventilation port are provided on the outer cover, and the outer cover is also provided with an air inlet, a first exhaust port and a second exhaust port;
  • the ventilating shaft is provided with a first air inlet groove, a second air inlet groove, a first exhaust groove and a second exhaust groove, and the first air inlet groove and the second air inlet groove are located on the ventilating shaft. Both sides are staggered up and down along the axis of the ventilation shaft.
  • the first air inlet grooves and the second exhaust grooves are arranged correspondingly up and down along the axis of the ventilation shaft.
  • On the opposite side of the ventilation shaft the The first exhaust groove and the second air inlet groove are arranged correspondingly up and down along the axis of the ventilation shaft; when the rotation driving mechanism drives the ventilation shaft to rotate, the air inlet is alternately connected with the first air intake groove and the second air intake groove.
  • the air inlet groove is connected; and the first air inlet groove is connected with the first air exchange port, the first exhaust groove is connected with the second air exchange port and the second exhaust port, and then the second air inlet groove is connected with the second air exchange port.
  • the two ventilation ports are connected, and the second exhaust slot is connected with the first ventilation port and the first exhaust port.
  • the air inlet of the gas commutator is connected to the external pressure gas
  • the first air exchange port is connected to the first piston chamber
  • the second air exchange port is connected to the second piston chamber
  • the first exhaust port is connected to the external pressure gas.
  • the second exhaust port is connected to the outside atmosphere.
  • the external pressure gas is continuously supplied from the air inlet, and the pressure gas enters the first piston chamber through the first air inlet groove, the first ventilation port, and the first air hole of the gas commutator.
  • the pressure in the first piston chamber is increased; at this time, the gas in the second piston chamber is discharged through the second air hole of the piston body, the first exhaust groove of the gas commutator, and the first exhaust port on the gas commutator jacket. , causing the pressure in the second piston chamber to decrease. Driven by the pressure difference between the first piston chamber and the second piston chamber, the piston body moves downward.
  • the gas commutator includes a ventilation shaft and a casing, the ventilation shaft is located in the casing and is rotationally connected to the casing, and the end of the ventilation shaft is connected to a rotational driving mechanism;
  • the first ventilation port and the second ventilation port are provided on the outer cover, and the outer cover is also provided with an air inlet, a first exhaust port and a second exhaust port;
  • the ventilation shaft is provided with a first air inlet groove, a second air inlet groove and an exhaust groove.
  • the first air inlet groove and the second air inlet groove are located on both sides of the ventilation shaft and along the ventilation shaft.
  • the axes of the ventilation shaft are staggered up and down, and the first air inlet grooves and exhaust grooves are arranged correspondingly up and down along the axis of the ventilation shaft; when the rotation drive mechanism drives the ventilation shaft to rotate, the air inlet is alternately connected with the first The air inlet groove and the second air inlet groove are connected, the first air inlet groove is connected with the first ventilation port, the exhaust groove is connected with the second ventilation port and the second exhaust port, and then the second air intake groove is switched to make the second air ventilation port connected.
  • the air groove is connected with the second ventilation port. Wherein, the first exhaust port and the second exhaust port are connected to the outside atmosphere.
  • the second exhaust groove is eliminated.
  • this structure works, as the ventilation shaft of the gas commutator rotates, the pressure in the first piston chamber increases periodically without releasing the pressure. , and the second piston chamber undergoes periodic pressurization and pressure relief.
  • Such a design can make the downward impact force larger when the piston shaft vibrates, while the upward impact force is weaker.
  • the ventilation shaft is installed in the outer casing through a bearing, and the ventilation shaft can rotate in the outer casing. There is a dynamic seal clearance fit between the ventilation shaft shaft and the outer casing.
  • the gas commutator may also be electromagnetic, and its function is to alternately supply external pressure gas to the first piston chamber and the second piston chamber of the piston body at a certain frequency.
  • the structure of the electromagnetic gas commutator is not limited, and its replacement gas frequency can be adjusted.
  • an annular groove is provided on the side of the first piston and the second piston, and an elastic diaphragm is embedded in the annular groove.
  • the first piston and the second piston respectively pass through the corresponding elastic diaphragm.
  • the piece is sealed with the piston cylinder.
  • the material of the elastic diaphragm is polymer material or metal material.
  • the device has a compact structure, strong adaptability, controllable vibration frequency, and adjustable vibration impact force.
  • the rotation speed and torque are controllable, which can effectively improve the chip removal ability of the drilling tool, reduce cutting resistance and cutting temperature, effectively improve the surface quality of deep hole processing, and extend the service life of the drilling tool; it can be used in deep and fine holes. Drilling processing can also be used to connect and drive medical equipment such as orthopedics and dentistry.
  • Figure 1 is a schematic structural diagram of a piston body of a pneumatic vibration device with a rotatable piston shaft according to Embodiment 1 of the present invention.
  • Figure 2 is a schematic structural diagram of the gas commutator in Embodiment 1 of the present invention
  • (a) is a schematic structural diagram of the gas commutator
  • (b) is a cross-sectional view along the A-A direction in Figure (a).
  • Figure 3 is a schematic structural diagram of the piston shaft in Embodiment 1 of the present invention.
  • Figure 4 is a schematic structural diagram of the input shaft in Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural diagram of the piston cylinder in Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram of the working principle of Embodiment 1 of the present invention.
  • Figure 7 is a schematic structural diagram of a gas diverter with only one exhaust slot according to Embodiment 2 of the present invention.
  • Figure 8 is a schematic structural diagram of the piston body in Embodiment 3 of the present invention.
  • 201-ventilation shaft 202-jacket, 203-bearing, 204-first air inlet groove, 205-second air inlet groove, 206-first exhaust groove, 207-second exhaust groove, 208-connecting shaft Head, 209-air inlet, 210-first piston chamber air supply hole, 211-first piston chamber exhaust hole, 212-second piston chamber air supply hole, 213-second piston chamber exhaust hole.
  • a pneumatic vibration device with a rotatable piston shaft includes a piston body 1 and a gas commutator 2.
  • the piston body 1 includes a piston shaft A1, an input shaft A2 and a piston cylinder A3.
  • the piston shaft A1 includes a hollow main shaft 101, and a through hole 102 is provided in the main shaft 101 so that a drilling tool can be installed therein.
  • a bevel gear 103 is fastened in the middle of the main shaft 101, and connecting bearings 104 are installed at the upper and lower ends of the main shaft 101.
  • the inner ring of the connecting bearing 104 is tightly matched with the main shaft 101; the upper and lower connecting bearings 104
  • a first piston 106 and a second piston 107 are installed respectively.
  • the first piston 106 and the second piston 107 are tightly matched with the outer ring of the connecting bearing 104.
  • the first piston 106 and the second piston 107 are respectively provided with a first piston center hole 106-1 and a second piston center hole 107-1.
  • the main shaft 101 passes through the first piston center hole 106-1 and the second piston center hole 107-1.
  • the first piston center hole 106-1, the second piston center hole 107-1 and the main shaft 101 are dynamically sealed, so The relative rotation of the first piston 106, the second piston 107 and the main shaft 101 is realized.
  • a first piston step 106-2 and a second piston step 107-2 are provided outside the first piston center hole 106 and the second piston center hole 107.
  • the inner sleeve 108 is connected with the first piston step 106-2 and the second piston step 106-2.
  • the steps 107-2 are tightly connected so that the first piston 106 and the second piston 107 are integrated, so that the main shaft 101 can rotate relative to the first piston 106 and the second piston 107, but cannot move axially.
  • Shock absorbing pads 109 are respectively provided at the upper and lower ends of the main shaft 101.
  • the shock absorbing pads 109 are respectively located on the outer surfaces of the first piston 106 and the second piston 107.
  • the inner sleeve 108 is provided with an opening 105 for the input shaft A2 to pass through.
  • the input shaft A2 includes a transmission shaft 110.
  • a transmission bevel gear 111 meshing with the bevel gear 103 is fixedly installed at the front end of the transmission shaft 110.
  • a power input is provided at the rear end of the transmission shaft 110.
  • Shaft head 112 to cooperate with the motor.
  • the transmission shaft 110 is installed in the input shaft sleeve 114 through a bearing 113 .
  • the front end of the input shaft sleeve 114 is tightly connected to the opening 105 on the inner sleeve 108 so that the bevel gear 103 and the transmission bevel gear 111 mesh with each other, as shown in Figure 1 .
  • the input shaft sleeve 114 of the input shaft A2 is fixedly connected to the inner sleeve 108 of the piston shaft A1, when the piston shaft A1 vibrates, the input shaft A2 will vibrate together.
  • the piston cylinder A3 includes a piston cylinder 115 , a first end cap 116 and a second end cap 117 .
  • the first end cover 116 and the second end cover 117 are installed in close cooperation with the piston barrel 115.
  • the first end cover 116 and the second end cover 117 are respectively provided with a first end cover center hole 118 and a second end cover center hole 119.
  • the upper and lower ends of the main shaft 101 pass through the first end cover center hole 118 and the second end cover center hole 119 respectively.
  • the spindle 101 can slide in the first end cap center hole 118 and the second end cap center hole 119 .
  • a first piston chamber 120 is formed between the first piston 106 and the first end cover 116 , and a first air hole 121 is opened on the side wall of the piston barrel 115 at a position corresponding to the first piston chamber 120 .
  • a second piston chamber 122 is formed between the second piston 107 and the second end cap 117 .
  • a second air hole 123 is opened on the side wall of the piston barrel 115 at a position corresponding to the second piston chamber 122 .
  • the gas diverter 2 includes a ventilation shaft 201 and a casing 202.
  • the ventilation shaft 201 is installed in the casing 202 through a bearing 203.
  • the ventilation shaft 201 can rotate in the casing 202.
  • the ventilation shaft 201 is provided with a first air inlet groove 204 and a second air inlet groove 205, as well as a first air inlet groove 206 and a second air inlet groove 207.
  • the first air inlet groove 204 and the second air inlet groove 205 is located on both sides of the ventilation shaft 201 and is staggered up and down along the axis of the ventilation shaft 201.
  • the first air inlet groove 204 and the second exhaust groove 207 are arranged correspondingly up and down along the axis of the ventilation shaft 201.
  • the first exhaust groove 206 and the second air inlet groove 205 are arranged correspondingly up and down along the axis of the ventilation shaft 201 .
  • Figure 2(b) is a cross-sectional view along the A-A direction in Figure 2(a). It can be seen from this cross-sectional view that the cross-sections of the first air inlet groove 204 and the second air inlet groove 205 are arranged axially symmetrically.
  • the end of the ventilation shaft 201 is provided with a connecting shaft head 208 for connection with the driving motor.
  • the outer sleeve 202 is provided with an air inlet 209, a first piston cavity air supply hole 210 and a first piston cavity exhaust hole 211, as well as a second piston cavity air supply hole 212 and a second piston cavity exhaust hole 213.
  • the air inlet 209 of the gas commutator 2 is connected to the external pressure gas; the first piston chamber air supply hole 210 is connected to the first air hole 121 of the piston barrel A3; the second piston chamber air supply hole 212 Connected to the second air hole 123 of the piston cylinder A3; the first piston chamber exhaust hole 211 and the second piston chamber exhaust hole 213 are connected to the outside atmosphere.
  • the external pressure gas is continuously supplied from the air inlet 209, and the pressure gas enters the first piston chamber 120 from the first air hole 121 through the first air inlet groove 204 through the first piston chamber air supply hole 210, so that the first piston chamber 120 is in The pressure increases; at the same time, the gas in the second piston chamber 122 enters the second exhaust groove 207 through the second air hole 123 and the second piston chamber air supply hole 212; the second exhaust groove 207 and the second piston chamber exhaust hole 213 In communication, the second piston chamber exhaust hole 213 is connected to the atmosphere, so the gas in the second piston chamber 122 is discharged into the atmosphere, and the second piston chamber 122 is in a pressure relief state.
  • the first piston chamber 120 is in a pressure increasing state and the second piston chamber 122 is in a pressure relief state, a pressure difference is formed between the first piston chamber 120 and the second piston chamber 122, driving the piston shaft A1 to move downward.
  • the ventilation shaft 201 of the gas diverter 2 rotates driven by an external motor, so that the second air inlet groove 205 and the air inlet 209 communicate with the second piston cavity air supply hole 212, at the same time, the first exhaust groove 206 It is connected with the first piston chamber air supply hole 210 and the first piston chamber exhaust hole 211; at this time, the first piston chamber 120 is in a pressure relief state, and the second piston chamber 122 is in a pressurization state.
  • the device of this embodiment has the advantages of controllable vibration frequency, adjustable vibration impact force, controllable piston shaft speed and torque, etc. It can effectively improve the chip removal ability of the drilling tool, reduce cutting resistance and cutting temperature, and effectively improve deep hole processing. It has excellent surface quality and service life of drilling tools, and is especially suitable for connecting and driving medical devices such as orthopedics and dentistry.
  • the gas commutator 2 may be electromagnetic, and its function is to alternately supply external pressure gas to the first piston chamber and the second piston chamber of the piston body at a certain frequency.
  • the structure of the electromagnetic gas commutator is not limited, and its replacement gas frequency can be adjusted.
  • the first piston 106 and the second piston 107 may also include a diaphragm structure, for example, an annular groove 106 is provided on the side of the first piston 106. -3, an elastic diaphragm 106-4 is embedded in the annular groove 106-3, and the elastic diaphragm 106-4 plays the functions of support and sealing. When the piston axis A1 vibrates, the elastic diaphragm 106-4 may deform. The same is true for the second piston 107 .
  • the elastic diaphragm 106-4 can be made of polymer material or metal material, and its structure and installation method are not limited.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明提供了一种活塞轴可旋转的气动振动装置,其包括活塞体和气体换向器;所述活塞体包括活塞轴、输入轴和活塞筒体,所述活塞轴包括中空的主轴,所述主轴的两端分别通过连接轴承与第一活塞、第二活塞连接,所述第一活塞、第二活塞通过内套筒连接,所述主轴与转动连接构件连接;所述输入轴伸入内套筒与转动连接构件配合连接;所述第一活塞、第二活塞的侧壁与活塞筒体之间分别形成第一活塞腔和第二活塞腔,所述第一活塞腔、第二活塞腔分别连接第一气孔、第二气孔;所述气体换向器包括第一换气口和第二换气口,所述第一换气口、第二换气口分别与第一气孔、第二气孔连通。采用本发明的技术方案,结构紧凑、适应性强,实现了钻削工具的旋转和振动。

Description

一种活塞轴可旋转的气动振动装置 技术领域
本发明涉及一种振动装置,尤其涉及一种活塞轴可旋转的气动振动装置。
背景技术
在进行细深孔钻削加工时,如果给钻削工具施加以微小的轴向振动,可以实现非连续切削,有利于切屑的排出,显著降低切削力,有效防止刀具的断裂,提高孔内表面质量。目前,公开的关于振动加旋转运动的加工装置的技术信息有很多,如中国专利CN107104514A适用于超声加工中心自动换刀的环绕式无线电能传输系统中公开了将压电陶瓷振子布置于电机回转轴上与回转轴一起转动,通过线圈耦合的无接触方式给换能器供电,实现了刀具的旋转加振动。中国专利CN108213508A一种轴承供电的超声手钻中,采用了通过滚针轴承对超声振子进行供电的方式。上述两篇公开文献中,超声振子均设置在旋转运动的回转轴上,如此的设计可以很好的实现旋转运动和振动运动的复合,但要使回转轴及所带的刀具产生很好的振动,就需要压电超声发生器具有较大的尺寸,因而导致机构的体积过于庞大,无法实现结构的小型化。
技术问题
中国专利CN113057744A一种机械振动加旋转双驱动模式的根管治疗装置中,公开了以偏心轴和拨杆环结构实现了旋转轴的振动,偏心轴的旋转带动拨杆环振动。但是该结构工作时,偏心轴和拨杆环之间会产生机械摩擦,导致摩擦副容易磨损,对材料的要求较高,给制造带来困难。
技术解决方案
针对以上技术问题,本发明公开了一种活塞轴可旋转的气动振动装置。
对此,本发明采用的技术方案为:
一种活塞轴可旋转的气动振动装置,其包括活塞体和气体换向器;
所述活塞体包括活塞轴、输入轴和活塞筒体,所述活塞轴位于活塞筒体内,所述活塞轴包括中空的主轴,所述主轴的两端分别通过连接轴承与第一活塞、第二活塞连接,所述第一活塞、第二活塞通过位于主轴外侧的内套筒连接,所述主轴与转动连接构件连接,所述转动连接构件位于第一活塞、第二活塞之间,且位于内套筒内;所述输入轴依次穿过活塞筒体、内套筒与转动连接构件配合连接;
所述第一活塞、第二活塞的侧壁与活塞筒体滑动密封连接,所述第一活塞、第二活塞的侧壁与活塞筒体之间分别形成第一活塞腔和第二活塞腔,所述活塞筒体设有与第一活塞腔连通的第一气孔,所述活塞筒体设有与第二活塞腔连通的第二气孔;
所述气体换向器包括第一换气口和第二换气口,所述第一换气口和第二换气口分别与第一气孔、第二气孔连通。
其中,所述第一活塞、第二活塞与主轴之间为动密封配合,如此实现了活塞运动,并使得主轴可以相对于活塞转动。
采用上述技术方案,主轴的中空部分用于安装工具如钻削工具,通过气体换向器交替给第一换气口和第二换气口供气,可以推动活塞轴的上下振动,可以带动钻削工具振动,同时通过输入轴驱动活塞轴转动,从而实现活塞轴可旋转,即带动钻削工具旋转。如此,实现了钻削工具的旋转和振动。
其中,活塞轴的振动频率由气体换向器的换气轴的转速决定的,调节气体换向器,就可以控制活塞轴的振动频率,如此,可以实现活塞轴以较高的频率振动,如60000次/分钟。另外,活塞轴的振动冲击力取决于输入的外接压力气动的气压的大小,调节外接压力气动的气压,就可以控制活塞轴的振动冲击力。最后,活塞轴的转动速度和扭矩,由与输入轴连接的驱动机构决定;通过控制驱动机构,就可以实现对活塞轴的转动速度和扭矩的控制。
作为本发明的进一步改进,所述输入轴包括传动轴和输入轴套筒,所述传动轴位于输入轴套筒内,并与输入轴套筒转动连接,所述传动轴的一端设有与所述转动连接构件配合连接的传动连接件,所述传动轴的另一端与驱动机构连接。
作为本发明的进一步改进,所述输入轴套筒的前端与所述内套筒上的开孔紧固连接,以便所述的传动轴前端的传动连接件能与所述主轴上转动连接构件相互配合,当活塞轴振动时,输入轴将一起振动。
作为本发明的进一步改进,所述传动轴的另一端通过动力输入轴头与驱动机构连接;所述传动轴通过传动连接轴承与输入轴套筒连接。进一步的,所述驱动机构为马达。采用此技术方案,通过输入轴头与驱动机构配合,可以通过驱动机构驱动传动轴转动,从而带动活塞轴旋转,如此实现了活塞轴的旋转和动振动。
作为本发明的进一步改进,所述转动连接构件和传动连接件为伞形齿轮。
作为本发明的进一步改进,所述第一活塞设有第一中心孔,所述第二活塞设有第二中心孔,所述主轴的两端分别穿过第一中心孔、第二中心孔伸出;所述第一活塞、第二活塞分别设有第一台阶和第二台阶,所述内套筒的两端分别与第一台阶和第二台阶紧固连接,使第一活塞、第二活塞构成一体,如此实现了主轴相对于第一活塞、第二活塞可以相对转动,但不能轴向窜动。
作为本发明的进一步改进,所述连接轴承的内圈与主轴紧固配合,所述连接轴承的外圈分别与第一活塞、第二活塞紧固配合。
作为本发明的进一步改进,所述主轴在位于第一活塞和第二活塞的外侧分别设有减震垫。
作为本发明的进一步改进,所述活塞筒体包括活塞筒、第一端盖和第二端盖,所述第一端盖和第二端盖分别与活塞筒的两端紧密配合连接,所述第一端盖设有第一端盖中心孔,所述第二端盖设有第二端盖中心孔,所述主轴的两端分别穿过第一端盖中心孔、第二端盖中心孔,所述主轴的两端与第一端盖中心孔、第二端盖中心孔之间为动密封配合,活塞轴的主轴可以在第一端盖中心孔、第二端盖中心孔中滑动;所述第一活塞、第二活塞与活塞筒之间为动密封配合。其中,所述活塞筒的侧壁上开设有孔,以便所述的输入轴穿过。
作为本发明的进一步改进,所述气体换向器包括换气轴和外套,所述换气轴位于外套内,且与外套转动连接,所述换气轴的末端与转动驱动机构连接;
所述第一换气口和第二换气口设在所述外套上,所述外套上还设有进气口、第一排气口和第二排气口;
所述换气轴上设有第一进气槽、第二进气槽、第一排气槽和第二排气槽,所述第一进气槽、第二进气槽位于换气轴的两侧,并沿换气轴的轴向上下交错设置,所述第一进气槽、第二排气槽沿换气轴的轴向上下对应设置,在换气轴相对的另一侧,所述第一排气槽、第二进气槽沿换气轴的轴向上下对应设置;所述转动驱动机构驱动换气轴转动过程中,使进气口交替与第一进气槽、第二进气槽连通;而且使第一进气槽与第一换气口连通,第一排气槽与第二换气口、第二排气口连通,然后切换为使第二进气槽与第二换气口连通,第二排气槽与第一换气口、第一排气口连通。其中,所述气体换向器的进气口与外接压力气体相联,第一换气口与第一活塞腔连通,第二换气口与第二活塞腔连通,所述第一排气口、第二排气口与外界大气相通。
采用此技术方案,工作时,外接压力气体由进气口持续供给,压力气体经由所述的气体换向器的第一进气槽、第一换气口、第一气孔进入第一活塞腔,使得第一活塞腔压力增加;此时,第二活塞腔的气体经由活塞体的第二气孔、气体换向器的第一排气槽,以及气体换向器外套上的第一排气口排出,使得第二活塞腔的压力降低。在第一活塞腔、第二活塞腔的压力差的驱动下,活塞体向下运动。随着气体换向器的换气轴的转动,当第一进气槽与第二换气口相通、第二排气槽与第一换气口相通时,气体反向,使得第二活塞腔的压力增加,第一活塞腔的压力降低,所述活塞体向上运动。随着换气轴的周期性转动,实现了活塞体的振动。
作为本发明的进一步改进,所述气体换向器包括换气轴和外套,所述换气轴位于外套内,且与外套转动连接,所述换气轴的末端与转动驱动机构连接;所述第一换气口和第二换气口设在所述外套上,所述外套上还设有进气口、第一排气口和第二排气口;
所述换气轴上设有第一进气槽、第二进气槽和排气槽,所述第一进气槽、第二进气槽位于换气轴的两侧,并沿换气轴的轴向上下交错设置,所述第一进气槽、排气槽沿换气轴的轴向上下对应设置;所述转动驱动机构驱动换气轴转动过程中,使进气口交替与第一进气槽、第二进气槽连通,并使第一进气槽与第一换气口连通,排气槽与第二换气口、第二排气口连通,然后切换为使第二进气槽与第二换气口连通。其中,所述第一排气口、第二排气口与外界大气相通。
采用此技术方案,即取消了第二排气槽,这种结构工作时,随着所述的气体换向器换气轴的转动,第一活塞腔内的压力发生周期性增加而不泄压,而第二活塞腔发生周期性增压和泄压,如此的设计,可以使得活塞轴振动时向下的冲击力较大,而向上的冲击力较弱。
作为本发明的进一步改进,所述换气轴通过轴承安装于外套内,换气轴可以在外套内转动,换气轴轴与外套之间为动密封间隙配合。
作为本发明的进一步改进,所述气体换向器,也可以是电磁式的,其功能是将外接压力气体以一定的频率交替地供给所述的活塞体的第一活塞腔、第二活塞腔。电磁式气体换向器的结构不限,其交替换气频率是可以调节的。
作为本发明的进一步改进,所述第一活塞和第二活塞的侧面设有环形槽,所述环形槽内嵌有弹性膜片,所述第一活塞和第二活塞分别通过各自对应的弹性膜片与活塞筒体密封连接。采用此技术方案,在活塞轴振动时,弹性膜片可以发生变形实现小幅度的振动,这样的设计对于小振幅的振动是有效的,同时也使得活塞体的加工难度大大降低。
进一步的,所述弹性膜片的材质为高分子材料或金属材料。
有益效果
现有技术相比,本发明的有益效果为:
采用本发明的技术方案,在实现活塞轴振动的同时,还实现了活塞轴的旋转,使用更加方便;该装置结构紧凑、适应性强,且振动频率可控、振动冲击力可调,活塞轴转速和扭矩可控,可有效提高钻削工具的排屑能力,降低切削阻力和切削温度,有效的提高深孔加工的表面质量,提高了钻削工具的使用寿命;可应用于深细孔的钻削加工,也可应用于与骨科、牙科等医疗器械的连接和驱动。
附图说明
图1为本发明实施例1一种活塞轴可旋转的气动振动装置的活塞体的结构示意图。
图2为本发明实施例1的气体换向器的结构示意图;其中(a)为气体换向器的结构示意图,(b)为图(a)中A-A向的剖面图。
图3为本发明实施例1的活塞轴的结构示意图。
图4为本发明实施例1的输入轴的结构示意图。
图5为本发明实施例1的活塞筒体的结构示意图。
图6为本发明实施例1的工作原理示意图。
图7为本发明实施例2的只有一个排气槽的气体换向器的结构示意图。
图8为本发明实施例3的活塞体的结构示意图。
附图标记包括:
1-活塞体,2-气体换向器;
A1-活塞轴,101-主轴,102-通孔,103-伞形齿轮,104-连接轴承,105-开孔,106-第一活塞,107-第二活塞,108-内套筒,109-减震垫,106-1 第一活塞中心孔,106-2 第一活塞台阶,106-3环形槽,106-4弹性膜片;107-1 第二活塞中心孔,107-2 第二活塞台阶;
A2-输入轴,110-传动轴,111-传动伞形齿轮,112-动力输入轴头,113-轴承,114-输入轴套筒;
A3-活塞筒体,115-活塞筒,116-第一端盖,117-第二端盖,118-第一端盖中心孔,119-第二端盖中心孔;
120-第一活塞腔,121-第一气孔,122-第二活塞腔,123-第二气孔,124-孔;
201-换气轴,202-外套,203-轴承,204-第一进气槽,205-第二进气槽,206-第一排气槽,207-第二排气槽,208-连接轴头,209-进气口,210-第一活塞腔供气孔,211-第一活塞腔排气孔,212-第二活塞腔供气孔,213-第二活塞腔排气孔。
本发明的实施方式
下面结合附图说明及具体实施方式对本发明作进一步说明。
如图1~图6所示,一种活塞轴可以旋转的气动振动装置,其包括活塞体1、气体换向器2。所述活塞体1包括活塞轴A1、输入轴A2和活塞筒体A3。
如图3所示,所述活塞轴A1包括中空的主轴101,主轴101内设有通孔102,以便钻削工具安装其中。在主轴101的中部紧固安装有伞形齿轮103,在主轴101的上、下两端安装有连接轴承104,连接轴承104的内圈与主轴101紧固配合;在上、下的连接轴承104上,分别安装有第一活塞106和第二活塞107,第一活塞106、第二活塞107与连接轴承104的外圈紧固配合。在第一活塞106、第二活塞107上分别设有第一活塞中心孔106-1、第二活塞中心孔107-1。主轴101穿过第一活塞中心孔106-1和第二活塞中心孔107-1,第一活塞中心孔106-1、第二活塞中心孔107-1与主轴101之间为动密封配合,如此实现了第一活塞106、第二活塞107与主轴101的相对转动。在第一活塞中心孔106和第二活塞中心孔107 的外侧设有第一活塞台阶106-2和第二活塞台阶107-2,内套筒108与第一活塞台阶106-2、第二活塞台阶107-2紧固连接,使第一活塞106、第二活塞107构成一体,如此实现了主轴101相对于第一活塞106、第二活塞107可以相对转动,但不能轴向窜动。在主轴101的上下两端分别设有减震垫109,所述减震垫109分别位于第一活塞106、第二活塞107的外表面。内套筒108上设有开孔105,以便输入轴A2穿过。
如图3所示,所述的输入轴A2包括传动轴110,在传动轴110的前端固定安装有与伞形齿轮103啮合的传动伞形齿轮111,在传动轴110的后端设置有动力输入轴头112,以便与马达配合。传动轴110通过轴承113安装于输入轴套筒114内。输入轴套筒114的前端与内套筒108上的开孔105紧固连接,以便伞形齿轮103和传动伞形齿轮111相互啮合,如图1所示。同时,由于输入轴A2的输入轴套筒114与活塞轴A1的内套筒108固定连接,当活塞轴A1振动时,输入轴A2将一起振动。
如图1和图5所示,所述活塞筒体A3包括活塞筒115、第一端盖116和第二端盖117。第一端盖116、第二端盖117与活塞筒115紧密配合安装,在第一端盖116、第二端盖117分别设置有第一端盖中心孔118和第二端盖中心孔119,主轴101的上、下端分别穿过第一端盖中心孔118和第二端盖中心孔119,主轴101与第一端盖中心孔118、第二端盖中心孔119之间为动密封配合,主轴101可以在第一端盖中心孔118、第二端盖中心孔119中滑动。
第一活塞106和第一端盖116之间形成第一活塞腔120,在活塞筒115的侧壁与第一活塞腔120对应的位置,开设有第一气孔121。第二活塞107和第二端盖117之间形成第二活塞腔122,在活塞筒115侧壁与第二活塞腔122对应的位置,开设有第二气孔123。第一活塞106和第二活塞107与活塞筒115之间为动密封配合,在第一活塞腔120和第二活塞腔122存在压力差时,活塞轴A1在活塞筒115内可以被驱动上、下运动。在活塞筒115的侧壁开设有孔124,以便输入轴A2穿过。
如图2所示,所述的气体换向器2包括由换气轴201和外套202,换气轴201通过轴承203安装于外套202内,换气轴201可以在外套202内转动,换气轴201与外套202之间为动密封间隙配合。换气轴201上设有第一进气槽204和第二进气槽205,以及第一排气槽206、第二排气槽207,所述第一进气槽204、第二进气槽205位于换气轴201的两侧,并沿换气轴201的轴向上下交错设置,所述第一进气槽204、第二排气槽207沿换气轴201的轴向上下对应设置,在换气轴201相对的另一侧,所述第一排气槽206、第二进气槽205沿换气轴201的轴向上下对应设置。图2(b)为图2(a)A-A向的剖面图,可见在该剖面图上,第一进气槽204、第二进气槽205的截面为轴对称设置。换气轴201的末端设有连接轴头208,以便与驱动马达相连。外套202上设有进气口209、第一活塞腔供气孔210和第一活塞腔排气孔211,以及第二活塞腔供气孔212、第二活塞腔排气孔213。
如图6所示,气体换向器2的进气口209与外接压力气体相联;第一活塞腔供气孔210与活塞筒体A3的第一气孔121相联;第二活塞腔供气孔212与活塞筒体A3的第二气孔123相联;第一活塞腔排气孔211和第二活塞腔排气孔213与外界大气相通。
工作时,外接压力气体由进气口209持续供给,压力气体经第一进气槽204通过第一活塞腔供气孔210由第一气孔121进入第一活塞腔120,使得第一活塞腔120处于压力增加状态;同时,第二活塞腔122的气体经过由第二气孔123、第二活塞腔供气孔212进入第二排气槽207;第二排气槽207与第二活塞腔排气孔213相通,第二活塞腔排气孔213又与大气相联,因而第二活塞腔122的气体排入大气,第二活塞腔122处于泄压状态。此时,由于第一活塞腔120处于压力增加状态,而第二活塞腔122处于泄压状态,在第一活塞腔120和第二活塞腔122之间形成压力差,驱动活塞轴A1向下运动。当气体换向器2的换气轴201在外接马达的驱动下发生转动,使得第二进气槽205和进气口209和第二活塞腔供气孔212相通时,同时第一排气槽206与第一活塞腔供气孔210和第一活塞腔排气孔211相通;此时,第一活塞腔120处于泄压状态,而第二活塞腔122处于增压状态,在第二活塞腔122和第一活塞腔120之间形成压力差,驱动活塞轴A1向上运动。随着气体换向器2的换气轴201的周期性转动,上述过程如此往复,实现了塞轴A1的上、下振动。
本实施例的装置具有振动频率可控、振动冲击力可调、活塞轴转速和扭矩可控等优点,可有效提高钻削工具的排屑能力、降低切削阻力和切削温度,有效提高深孔加工的表面质量和钻削工具的使用寿命,特别适用于骨科、牙科等医疗器械的连接和驱动。
实施例2
如图7所示,在实施例1的基础上,本实施例中没有第一排气槽206,这样,所述的机构在工作时,随着气体换向器2的换气轴201的转动,第一活塞腔120内的压力发生周期性增加而没有泄压发生,而第二活塞腔122发生周期性增压和泄压;如此的设计,会导致活塞轴A1振动时向下的冲击力较大,而向上的冲击力较弱。
进一步的,所述气体换向器2可以是电磁式的,其功能是将外接压力气体以一定的频率交替地供给所述的活塞体的第一活塞腔和第二活塞腔。电磁式气体换向器的结构不限,其交替换气频率是可以调节的。
实施例3
如图8所示,在实施例1的基础上,本实施例中,所述第一活塞106和第二活塞107也可以包含膜片结构,比如在第一活塞106的侧面开设有环形槽106-3,在环形槽106-3中套嵌有弹性膜片106-4,弹性膜片106-4起到支撑和密封的功能。在活塞轴A1振动时,弹性膜片106-4可以发生变形。同样,对于第二活塞107也是如此。
这样的设计对于小振幅的振动是有效的,同时也使得活塞的加工难度大大降低。进一步的,所述弹性膜片106-4,可以是高分子材料或金属材料的,其结构和安装方式不限。
在本发明的描述中,需要理解的是,术语诸如 “上”、“下”、“前”、“后”、 “左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上, 除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种活塞轴可旋转的气动振动装置,其特征在于:其包括活塞体和气体换向器;
    所述活塞体包括活塞轴、输入轴和活塞筒体,所述活塞轴位于活塞筒体内,所述活塞轴包括中空的主轴,所述主轴的两端分别通过连接轴承与第一活塞、第二活塞连接,所述第一活塞、第二活塞通过位于主轴外侧的内套筒连接,所述主轴与转动连接构件连接,所述转动连接构件位于第一活塞、第二活塞之间;所述输入轴依次穿过活塞筒体、内套筒与转动连接构件配合连接;
    所述第一活塞、第二活塞的侧壁与活塞筒体滑动密封连接,所述第一活塞、第二活塞的侧壁与活塞筒体之间分别形成第一活塞腔和第二活塞腔,所述活塞筒体设有与第一活塞腔连通的第一气孔,所述活塞筒体设有与第二活塞腔连通的第二气孔;
    所述气体换向器包括第一换气口和第二换气口,所述第一换气口和第二换气口分别与第一气孔、第二气孔连通。
  2. 根据权利要求1所述的活塞轴可旋转的气动振动装置,其特征在于:所述输入轴包括传动轴和输入轴套筒,所述传动轴位于输入轴套筒内,并与输入轴套筒转动连接,所述传动轴的一端设有与所述转动连接构件配合连接的传动连接件,所述传动轴的另一端与驱动机构连接。
  3. 根据权利要求2所述的活塞轴可旋转的气动振动装置,其特征在于:所述传动轴的另一端通过动力输入轴头与驱动机构连接;所述传动轴通过传动连接轴承与输入轴套筒连接。
  4. 根据权利要求3所述的活塞轴可旋转的气动振动装置,其特征在于:所述转动连接构件和传动连接件为伞形齿轮。
  5. 根据权利要求4所述的活塞轴可旋转的气动振动装置,其特征在于:所述第一活塞设有第一中心孔,所述第二活塞设有第二中心孔,所述主轴的两端分别穿过第一中心孔、第二中心孔伸出;所述第一活塞、第二活塞分别设有第一台阶和第二台阶,所述内套筒的两端分别与第一台阶和第二台阶紧固连接,使第一活塞、第二活塞构成一体。
  6. 根据权利要求5所述的活塞轴可旋转的气动振动装置,其特征在于:所述连接轴承的内圈与主轴紧固配合,所述连接轴承的外圈分别与第一活塞、第二活塞紧固配合。
  7. 根据权利要求5所述的活塞轴可旋转的气动振动装置,其特征在于:所述主轴在位于第一活塞和第二活塞的外侧分别设有减震垫。
  8. 根据权利要求1所述的活塞轴可旋转的气动振动装置,其特征在于:所述活塞筒体包括活塞筒、第一端盖和第二端盖,所述第一端盖和第二端盖分别与活塞筒的两端紧密配合连接,所述第一端盖设有第一端盖中心孔,所述第二端盖设有第二端盖中心孔,所述主轴的两端分别穿过第一端盖中心孔、第二端盖中心孔,所述主轴的两端与第一端盖中心孔、第二端盖中心孔之间为动密封配合;所述第一活塞、第二活塞与活塞筒之间为动密封配合。
  9. 根据权利要求1所述的活塞轴可旋转的气动振动装置,其特征在于:所述气体换向器包括换气轴和外套,所述换气轴位于外套内,且与外套转动连接,所述换气轴的末端与转动驱动机构连接;
    所述第一换气口和第二换气口设在所述外套上,所述外套上还设有进气口、第一排气口和第二排气口;
    所述换气轴上设有第一进气槽、第二进气槽、第一排气槽和第二排气槽,所述第一进气槽、第二进气槽位于换气轴的两侧,并沿换气轴的轴向上下交错设置,所述第一进气槽、第二排气槽沿换气轴的轴向上下对应设置,在换气轴相对的另一侧,所述第一排气槽、第二进气槽沿换气轴的轴向上下对应设置;所述转动驱动机构驱动换气轴转动过程中,使进气口交替与第一进气槽、第二进气槽连通;而且使第一进气槽与第一换气口连通,第一排气槽与第二换气口、第二排气口连通,然后切换为使第二进气槽与第二换气口连通,第二排气槽与第一换气口、第一排气口连通;
    或者所述换气轴上设有第一进气槽、第二进气槽和排气槽,所述第一进气槽、第二进气槽位于换气轴的两侧,并沿换气轴的轴向上下交错设置,所述第一进气槽、排气槽沿换气轴的轴向上下对应设置;所述转动驱动机构驱动换气轴转动过程中,使进气口交替与第一进气槽、第二进气槽连通,并使第一进气槽与第一换气口连通,排气槽与第二换气口、第二排气口连通,然后切换为使第二进气槽与第二换气口连通。
  10. 根据权利要求1~9任意一项所述的活塞轴可旋转的气动振动装置,其特征在于:所述第一活塞和第二活塞的侧面设有环形槽,所述环形槽内套嵌有弹性膜片,所述第一活塞和第二活塞分别通过各自对应的弹性膜片与活塞筒体密封连接。
PCT/CN2022/088765 2022-04-21 2022-04-24 一种活塞轴可旋转的气动振动装置 WO2023201764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210425451.4A CN114669781B (zh) 2022-04-21 2022-04-21 一种活塞轴可旋转的气动振动装置
CN202210425451.4 2022-04-21

Publications (1)

Publication Number Publication Date
WO2023201764A1 true WO2023201764A1 (zh) 2023-10-26

Family

ID=82079208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088765 WO2023201764A1 (zh) 2022-04-21 2022-04-24 一种活塞轴可旋转的气动振动装置

Country Status (2)

Country Link
CN (1) CN114669781B (zh)
WO (1) WO2023201764A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH524756A (de) * 1969-10-07 1972-06-30 Demag Drucklufttechnik Gmbh Druckluftbetriebener Schlagbohrlochhammer
CN101259543A (zh) * 2008-04-22 2008-09-10 南京众杰工贸有限公司 气控电动动力头
CN201618992U (zh) * 2009-11-13 2010-11-03 魏冰阳 通用机床超声振动工具头
CN202824756U (zh) * 2012-08-29 2013-03-27 杭州速捷机械有限公司 一种空压动力头
CN103128339A (zh) * 2011-11-22 2013-06-05 徐州联宝科技有限公司 一种振动电锤
CN103691992A (zh) * 2013-12-11 2014-04-02 浙江工业大学 集成化的振动台钻
US20150308421A1 (en) * 2014-04-29 2015-10-29 Heraeus Medical Gmbh Compressed gas motor for operation of a lavage system
CN211866675U (zh) * 2020-03-04 2020-11-06 浙江巨伯自动化设备有限公司 一种气动立式钻床
CN213189917U (zh) * 2020-08-06 2021-05-14 天津海奥斯科技有限公司 骨科手术用电动骨钻
CN215318496U (zh) * 2021-07-29 2021-12-28 台州蓝鲸清洗机械股份有限公司 一种带有减震功能的电锤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1430116A1 (ru) * 1987-03-02 1988-10-15 Ленинградский механический институт им.Маршала Советского Союза Устинова Д.Ф. Гидродинамический вибровозбудитель
DE102009019081A1 (de) * 2009-04-22 2010-11-11 Biax-Maschinen Gmbh Handwerkzeug mit einem Linear-Schwingantrieb
CN102785865A (zh) * 2011-05-19 2012-11-21 常州凯普自动化设备有限公司 活塞式激振器
CN104493603B (zh) * 2014-12-11 2016-09-14 宁波海天精工股份有限公司 一种主轴浮动打刀结构
CN107309498A (zh) * 2017-08-24 2017-11-03 南通理工智能制造技术有限公司 一种轴向及径向浮动一体式表面光整执行系统
CN107716259A (zh) * 2017-10-18 2018-02-23 佛山市特亚菲科技有限公司 一种行程可调型气动直线振动器
CN109201442A (zh) * 2018-11-09 2019-01-15 张盼 一种气动高频激振设备及系统
CN212599140U (zh) * 2020-04-14 2021-02-26 安徽伟晔机械有限公司 一种内旋式气流驱动钻头
CN213670302U (zh) * 2020-11-03 2021-07-13 宁波市爱托普气动液压有限公司 一种活塞式振动器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH524756A (de) * 1969-10-07 1972-06-30 Demag Drucklufttechnik Gmbh Druckluftbetriebener Schlagbohrlochhammer
CN101259543A (zh) * 2008-04-22 2008-09-10 南京众杰工贸有限公司 气控电动动力头
CN201618992U (zh) * 2009-11-13 2010-11-03 魏冰阳 通用机床超声振动工具头
CN103128339A (zh) * 2011-11-22 2013-06-05 徐州联宝科技有限公司 一种振动电锤
CN202824756U (zh) * 2012-08-29 2013-03-27 杭州速捷机械有限公司 一种空压动力头
CN103691992A (zh) * 2013-12-11 2014-04-02 浙江工业大学 集成化的振动台钻
US20150308421A1 (en) * 2014-04-29 2015-10-29 Heraeus Medical Gmbh Compressed gas motor for operation of a lavage system
CN211866675U (zh) * 2020-03-04 2020-11-06 浙江巨伯自动化设备有限公司 一种气动立式钻床
CN213189917U (zh) * 2020-08-06 2021-05-14 天津海奥斯科技有限公司 骨科手术用电动骨钻
CN215318496U (zh) * 2021-07-29 2021-12-28 台州蓝鲸清洗机械股份有限公司 一种带有减震功能的电锤

Also Published As

Publication number Publication date
CN114669781B (zh) 2024-01-30
CN114669781A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
EP3075951B1 (en) Surgical pneumatic motor
EP2182242A3 (en) Piezoelectric liquid inertia vibration eliminator
JP4230081B2 (ja) 多連式プランジャポンプ
JPH0710491B2 (ja) 偏心式研削器
CN105381843B (zh) 低速大转矩永磁电机直驱式球磨机系统
JPH09277094A (ja) 変動トルク相殺装置
WO2023201764A1 (zh) 一种活塞轴可旋转的气动振动装置
CN113719439A (zh) 传动结构、传动连接机构及空压机
AU2003203223B2 (en) Concrete drill
WO2019210625A1 (zh) 新型波发生器的谐波传动机构
CA2377861A1 (en) Dual high pressure rotary union for mechanical power press
CN110242535A (zh) 压缩机及换热设备
CN108413006A (zh) 一种振动波发生器的谐波传动器
CN107999809B (zh) 机械制造专用的气流驱动式钻孔设备
CN107842589B (zh) 液压控制装置以及动力传递控制装置
JPH10309659A (ja) バリ取り装置
CN112247196B (zh) 一种基于弹性支撑的轴向振动加工装置
JPS6343549B2 (zh)
CN213284224U (zh) 一种负压式按摩器
KR102608591B1 (ko) 초음파 진동 지원 연마장치
CN214162604U (zh) 电机行星式抛釉磨头
CN219317576U (zh) 一种双定位行星部件结构偏航变桨减速器
CN220378936U (zh) 高速气动脉冲阀及医疗器械
CN217827997U (zh) 一种骨科用钻孔装置
JPS61226578A (ja) 油圧ポンプ・モ−タ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938000

Country of ref document: EP

Kind code of ref document: A1