WO2023200047A1 - 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 rc 기둥의 자가 휨 보강 공법 및 구조 - Google Patents

탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 rc 기둥의 자가 휨 보강 공법 및 구조 Download PDF

Info

Publication number
WO2023200047A1
WO2023200047A1 PCT/KR2022/012727 KR2022012727W WO2023200047A1 WO 2023200047 A1 WO2023200047 A1 WO 2023200047A1 KR 2022012727 W KR2022012727 W KR 2022012727W WO 2023200047 A1 WO2023200047 A1 WO 2023200047A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
reinforcement
pillar
carbon fiber
gypsum board
Prior art date
Application number
PCT/KR2022/012727
Other languages
English (en)
French (fr)
Inventor
최성모
한슬기
이호정
김환진
박지혜
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220046286A external-priority patent/KR102485138B1/ko
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority claimed from KR1020220106760A external-priority patent/KR102644028B1/ko
Publication of WO2023200047A1 publication Critical patent/WO2023200047A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Definitions

  • the present invention relates to a method and structure for self-bending reinforcement of piloti RC columns.
  • carbon fiber panels and reinforcement are installed on the top of the column to form a closed cross-section with a reinforcement cap at the upper edge of the column to improve bending resistance against earthquake loads.
  • This relates to the self-bending reinforcement method and structure of piloti RC columns assembled with hardware and gypsum board.
  • Methods for improving the seismic performance of conventional piloti building columns are largely divided into two methods: conventional methods and methods using other steel frames and damping devices.
  • Existing conventional methods include cross-sectional expansion, aramid and carbon fiber reinforcement, and steel plate reinforcement.
  • This conventional construction method has the problem that the construction method is wet construction (reinforced concrete pouring, etc.), which requires more steps and complicates the construction method.
  • the steel plate bonding method is difficult to construct, raises problems with corrosion and fire resistance, uses anchor bolts, etc., so it does not look good when exposed, and requires continuous maintenance and increases the load burden on the foundation due to the large cross-sectional area of the pillar.
  • the carbon fiber reinforcement method is a method of attaching wallpaper-shaped carbon fiber sheets to the surface of a column in multiple layers, the worker's work stage and fatigue are increased, and the reinforcement effect varies depending on the worker's skill level when attaching the fiber sheets. , if sufficient attachment is not achieved, there is a disadvantage that foreign substances and moisture are added to the attachment surface, resulting in no reinforcement effect at all. Therefore, there is a need for a method in which shear reinforcement can be constructed simply and easily by simply attaching and assembling without requiring any worker's skill level.
  • the technology behind the present invention is Korean Patent Registration No. 10-1502517 (fiber-reinforced panel for structural reinforcement and seismic reinforcement method for structures using the same), which involves installing a fiber-reinforced panel using a fixing member in the reinforced part of the structure.
  • a method of strengthening the earthquake resistance of a structure by attaching it has been proposed.
  • the above background technology is a method of forming holes in the fiber-reinforced panel and fixing them with bolts, not only is there a risk of destruction of the fiber-reinforced panel when tightening the bolts, but no method is provided to reinforce the top of the column.
  • Korean Patent Registration No. 10-1694790 Concrete structure reinforcement device using carbon fiber reinforced plates
  • This is reinforcement consisting of a carbon fiber reinforced plate with multiple round bars formed on the inner surface, a fixing clip that is fixed to the concrete surface and secures the carbon fiber reinforced plate by inserting and fixing the round bars, and epoxy resin filled between the concrete surface and the carbon fiber reinforced plate.
  • the device enables repair and reinforcement of concrete structures.
  • this technology has the disadvantage that the reinforcement structure is complicated and a wet method due to epoxy injection is applied, requiring skilled workers.
  • the present invention is a self-bending reinforcement method for piloti RC columns assembled with carbon fiber panels, reinforcing steel, and gypsum board to improve bending resistance against earthquake loads by installing a reinforcement cap at the upper edge of the column on the top of the column to form a closed cross-section.
  • the purpose is to provide structure and structure.
  • the self-bending reinforcement method of a piloti RC column assembled with carbon fiber panels, reinforcing steel, and gypsum board is performed by removing foreign substances attached to the circumference of the RC column, and then forming a constant line from the bottom of the RC column.
  • the reinforcement caps at the upper corners of the columns are at right angles to each other, such as an angle vertical reinforcement wall that contacts the RC column at a right angle, an upper flange for slab binding that is integrated with the top of the angle vertical reinforcement wall and connected to the upper slab, and reinforcement of the upper corners of neighboring columns. It is characterized by having a flange for combining the reinforcing caps to connect the caps to each other, and a cap reinforcing rib for connecting and reinforcing the angle vertical reinforcing wall and the upper flange for slab bonding.
  • the pillar upper edge reinforcement cap is made of casting, and corner reinforcement steel made of steel is further installed on the inner corner of the pillar for reinforcement.
  • connection fixing support is characterized in that it is composed of a square pipe or square bar made of steel.
  • carbon fiber panels are installed around the RC column at a reinforcing angle from the bottom of the RC column to a certain height, and four upper parts of the RC column
  • the column upper edge reinforcement caps are interconnected and arranged with coupling bolts at the corners of the column, and at the same time, the four column upper edge reinforcement caps are fixed to the RC column and the upper slab through anchor bolts and installed in a closed structure. .
  • a carbon fiber panel is installed from the bottom of the column to a certain height, and a carbon fiber panel is installed at the top of the column and surrounds the upper part of the column.
  • the bending resistance against earthquake loads is improved by installing the reinforcing cap at the upper edge of the column to form a closed cross section.
  • it has the economic advantage of being simple to construct, even by unskilled people, thanks to the dry construction method.
  • Figure 1 is a reinforcement state diagram of a piloti RC column according to an embodiment of the present invention.
  • Figure 2 is a front view of Figure 1.
  • FIG. 3A is a cross-sectional view taken along line A-A of FIG. 2.
  • Figure 3b is a modified plan view of the upper corner reinforcement cap of the pillar shown in Figure 3a.
  • Figure 4 is a cross-sectional view taken along line B-B in Figure 2.
  • Figure 5a is a perspective view of the upper corner reinforcement cap of the pillar applied in Figure 1.
  • Figure 5b is a perspective view of the inner side of Figure 5a.
  • Figure 6 is a state diagram of a carbon fiber panel installed on a piloti RC pillar according to an embodiment of the present invention.
  • Figure 7 is a diagram showing a state in which a pillar upper edge reinforcement cap is disposed around the upper end of a piloti RC pillar according to an embodiment of the present invention.
  • Figure 8 is a perspective view of a carbon fiber panel and a gypsum board fixedly installed on an RC pillar according to an embodiment of the present invention.
  • FIG. 9A is a cross-sectional view taken along line C-C of FIG. 8.
  • Figure 9b is an enlarged view of portion 'D' of Figure 9a.
  • Figure 10 is a perspective view of a carbon fiber panel and a connecting support pillar arranged on an RC pillar according to an embodiment of the present invention.
  • FIG. 11A is a diagram showing a hybrid fixing member arranged on the connection fixing support of FIG. 10.
  • Figure 11b is a front view of Figure 8.
  • Figure 12 is a perspective view of a fixed connection support applied to an embodiment of the present invention.
  • the carbon fiber panel (12) is from the bottom of the RC pillar (10) to a certain height.
  • ) is installed around the RC column (10) as a reinforcement angle (14).
  • the pillar upper edge reinforcement caps 20 are interconnected and arranged at the four upper corners of the RC pillar 10 with coupling bolts 30.
  • the four pillar upper edge reinforcement caps 20 are fixed to the RC pillar 10 and the upper slab 100 through anchor bolts 40 and 42 and installed in a closed structure.
  • the RC column 10 since the RC column 10 has a square cross-section, four reinforcement caps 20 at the upper corners of the column are used to surround the circumference of the RC column 10 to implement reinforcement in a closed structure.
  • the pillar upper edge reinforcement cap 20 is at right angles to each other and is integrated with the upper end of the angle vertical reinforcement walls 201 and 201 and the angle vertical reinforcement walls 201 and 201, which are in contact with the RC pillar 10 at right angles.
  • the reinforcing cap coupling flange (203 and 203) is interviewed and 4 around the RC column (10) through the coupling bolt (30).
  • the two pillar upper edge reinforcement caps 20 are coupled to each other.
  • the cap reinforcement rib 204 has an arch shape to structurally reinforce the reinforcement cap 20 at the upper edge of the column, but may also be formed in a triangular shape.
  • the pillar upper corner reinforcement cap 20 is made of casting in consideration of cost and ease of manufacture, but in this case, a corner reinforcement iron 24 made of steel as shown in FIG. 5b is installed at the inner corner for reinforcement. It can be further installed and configured.
  • the upper flange 202 for slab bonding is configured to form an L shape whose circumference is in the shape of the corner of the RC column 10.
  • the upper flange 202 for slab bonding is designed in consideration of aesthetics.
  • the circumference may be formed in an arc shape with a constant radius of curvature (R) with respect to the center of the RC pillar 10.
  • the carbon fiber panel 12 is attached to the RC pillar 10 as a reinforcement angle 14 from the bottom of the RC pillar 10 to a certain height. Installed around the perimeter.
  • abrasives or brushes installed on a known grinder can be used to remove foreign substances.
  • the pillar upper edge reinforcement caps 20 are placed on the four upper corners of the RC pillar 10 as shown in FIG. 7 and fastened to each other using coupling bolts 30.
  • the column upper edge reinforcement cap 20 is fixed to the RC column 10 and the upper slab 100 through anchor bolts 40 and 42.
  • the shear reinforcement method of the RC column involves mutual bolting between the column upper edge reinforcement caps (20 and 20) and subsequently using anchor bolts (40, 42) on the RC column (10) and the upper slab (100).
  • anchor bolts 40, 42
  • the shear reinforcement method of the RC column involves mutual bolting between the column upper edge reinforcement caps (20 and 20) and subsequently using anchor bolts (40, 42) on the RC column (10) and the upper slab (100).
  • the shear reinforcement method of the RC column according to the present invention is another embodiment, and after removing foreign substances attached to the circumference of the RC column 10 having a constant cross section and height as shown in FIGS. 9 and 9, the RC column 10 ) Place the carbon fiber panel (12) from the bottom to the top height.
  • the carbon fiber panel 12 is manufactured with a certain width and height.
  • the carbon fiber panel 12 is attached to the RC pillar 10 to reinforce the shear cross section of the RC pillar 10.
  • the RC column 10 may be an RC column in which shear reinforcement is placed in concrete.
  • connection fixing support 50 is composed of a square pipe made of steel, but the present invention is not limited to this form.
  • an X-shaped brace 601 and a hybrid fixing member 60 are connected to the upper and lower ends of the And, this hybrid fixing member 60 is placed in contact with the fixing wings 501 and 501.
  • the hybrid fixing member 60 is made of engineering plastic with excellent strength, elasticity, and heat resistance.
  • the fixed wing 501 is provided on the connecting support post 50 so that it is located at a place where adjacent carbon fiber panels 12 and 12 come into contact.
  • the connection fixing support 50 is composed of a square bar made of steel, but the present invention is not limited thereto.
  • the gypsum board 70 is placed around the outermost circumference of the RC pillar 10 and placed in contact with the hybrid fixing member 60.
  • the frame 80 for fixing the gypsum board position is brought into contact with the outer surface of each gypsum board 70 so that it is placed in the horizontal direction, and then the frame 80 for fixing the gypsum board position 80 and the plaster are installed through the fastening means 90.
  • the positions of the carbon fiber panel 12 and the gypsum board 70 are fixed by fastening the board 70 and the hybrid fixing member 60 to each other.
  • the frame 80 for fixing the gypsum board position is made of engineering plastic with excellent strength, elasticity, and heat resistance.
  • the fastening means 90 may be an anchor bolt or a headless bolt.
  • the Hybrido fixing member 60 and the frame for fixing the gypsum board position are used without using an adhesive such as epoxy.
  • (80) is made of engineering plastic material and assembled using a dry method, improving constructability and economic feasibility when applied to aged buildings or earthquake-resistant reinforcement columns.
  • the structure attached to the circumference of the RC pillar 10 with a certain cross-section and height is After removing foreign substances, the RC pillar 10 is provided with a carbon fiber panel 12 disposed from the bottom to the top of the RC pillar 10 and a pair of perpendicular fixed wings 501 and 501 at regular intervals in the height direction.
  • a gypsum board 70 located on the outermost circumference of the RC column 10 and placed in contact with the hybrid fixing member 60, and each gypsum board ( 70), the gypsum board position fixing frame 80, which is arranged in the transverse direction in contact with the outer surface of the gypsum board position fixing frame 80, the gypsum board 70, and the hybrid fixing member 60 are connected to each other to form a carbon fiber It has a fixing structure including fastening means 90 that fixes the positions of the panel 12 and the gypsum board 70.
  • the RC pillar 10 can be an RC pillar, and it is preferable that the fixed wing 501 is provided on the fixed connection pillar 50 so that it is located at a place where the adjacent carbon fiber panels 12 and 12 are in contact.
  • the connection support post 50 is preferably made of a square pipe made of steel, and the connection support support 50 may be made of a square bar made of steel.
  • the fastening means 90 uses a headless bolt that does not require a nut. This structure has the advantage that the carbon fiber panel 12 and the gypsum board 70 can be easily fixed by fastening them with headless bolts.
  • a carbon fiber panel is installed from the bottom of the column to a certain height, and a carbon fiber panel is installed at the top of the column and surrounds the upper part of the column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

본 발명은 기둥의 상부에 기둥 상부모서리 보강캡을 폐합단면이 이루어지도록 설치하여 지진 하중에 대한 휨 내력이 향상되도록 한 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법 및 구조를 제공한다. 본 발명의 적절한 실시 형태에 따르면, 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법은, 상기 RC 기둥의 둘레에 부착된 이물질을 제거한 후, RC 기둥의 하단부터 일정 높이까지 탄소섬유패널을 보강앵글로 RC 기둥의 둘레에 설치하는 단계와; 상기 RC 기둥의 상단부 4곳의 모서리에 각기 기둥 상부모서리 보강캡을 배치해가며 상호간에 결합볼트를 이용하여 결속하는 단계와; 상기 기둥 상부모서리 보강캡을 앵커볼트를 통해 RC 기둥과 상부슬래브에 고정시키는 단계;를 포함하여 시공되는 것을 특징으로 한다.

Description

탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법 및 구조
본 발명은 필로티 RC 기둥의 자가 휨 보강 공법 및 구조에 관한 것으로, 특히 기둥의 상부에 기둥 상부모서리 보강캡을 폐합단면이 이루어지도록 설치하여 지진 하중에 대한 휨 내력이 향상되도록 한 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법 및 구조에 관한 것이다.
종래의 필로티 건축물 기둥의 내진성능향상 공법은 크게 재래식 공법과, 기타 철골 및 감쇠장치를 이용하는 두 가지 방법으로 나누어진다. 기존 재래식 공법은 단면의 증설, 아라미드 및 탄소섬유 보강, 철판 보강이 있다. 이러한 재래식 공법은 공사방법이 습식공사(철근 콘크리트 타설 등)로 공정이 많아지고 시공방법이 복잡하다는 문제점이 있다.
예로 강판 접착 공법은 시공이 어렵고, 부식 및 내화성능에 문제가 제기되고 있으며, 앵커볼트 등을 사용하게 되므로 노출 마감일 경우 미관이 좋지 않으며, 지속적인 관리의 필요성과 기둥 단면적이 커져 기초부의 하중부담이 커지는 단점이 있다. 탄소섬유 보강 공법은 벽지 모양의 탄소섬유시트를 여러겹 기둥표면에 부착하는 공법이기 때문에 작업자의 작업 단계와 이로인한 피로도가 증가되고, 섬유시트 부착 시 부착하는 인부의 숙련도에 따라 보강효과가 다르게 나타나며, 충분한 부착이 이루어지지 않을 경우, 부착면에 이물질 및 습기가 투입되어 전혀 보강효과가 나타나지 않는다는 단점이 있다. 따라서 인부의 숙련도가 필요없고 부착 조립만으로도 간단 용이하게 전단 보강이 시공될 수 있는 방안이 요구된다.
기타 철골보강 및 감쇠장치를 활용한 보강공법의 경우에는 공장제작으로 인해 현장작업 공정 및 공기는 줄어들었으나, 여전히 철골 보강 및 감쇠장치를 현장에 설치하는데 어려움이 존재했으며, 공간의 활용도 떨어질뿐만 아니라 미관도 좋지 못하다. 시공비용도 재래식 공법에 비하여 고가라는 문제가 있다.
본 발명의 배경이 되는 기술로는 한국 등록특허 등록번호 제10-1502517호(구조물 보강용 섬유보강패널 및 이를 이용한 구조물 내진보강공법)로서, 구조물의 보강부위에 고정부재를 이용하여 섬유보강패널을 부착하여 구조물의 내진을 보강하는 방법이 제안되어 있다. 그러나 상기 배경기술은 섬유보강패널에 구멍을 형성해서 볼트로 고정시키는 방법이기 때문에 볼트 조임시 섬유보강패널의 파괴가 발생할 우려가 있을 뿐만 아니라 기둥의 상단을 보강할 수 있는 방안이 제시되어 있지 않다.
본 발명의 다른 배경기술로는 한국 등록특허 등록번호 제10-1694790호(탄소섬유보강판을 이용한 콘크리트 구조물 보강장치)가 제안되어 있다. 이는 내면에 다수의 환봉이 형성된 탄소섬유보강판과 콘크리트 표면에 고정되어 환봉의 삽입 고정을 통해 탄소섬유보강판을 고정시키는 고정클립 및 콘크리트 표면과 탄소섬유보강판 사이에 충진되는 에폭시수지로 이루어진 보강장치를 통해 콘크리트 구조물을 보수 보강할 수 있도록 한 것이다. 그러나 상기 기술은 보강 구조가 복잡하고, 에폭시 주입으로 인한 습식 방법이 적용되어 숙련된 작업자가 필요한 단점을 갖는다.
본 발명은 기둥의 상부에 기둥 상부모서리 보강캡을 폐합단면이 이루어지도록 설치하여 지진 하중에 대한 휨 내력이 향상되도록 한 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법 및 구조를 제공함에 그 목적이 있다.
본 발명의 적절한 실시 형태에 따르면, 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법은, 상기 RC 기둥의 둘레에 부착된 이물질을 제거한 후, RC 기둥의 하단부터 일정 높이까지 탄소섬유패널을 보강앵글로 RC 기둥의 둘레에 설치하는 단계와; 상기 RC 기둥의 상단부 4곳의 모서리에 각기 기둥 상부모서리 보강캡을 배치해가며 상호간에 결합볼트를 이용하여 결속하는 단계와; 상기 기둥 상부모서리 보강캡을 앵커볼트를 통해 RC 기둥과 상부슬래브에 고정시키는 단계;를 포함하여 시공되는 것을 특징으로 한다.
또한, 기둥 상부모서리 보강캡은 상호 직각을 이루어 RC 기둥에 직각 상태로 접하는 앵글수직보강벽, 앵글수직보강벽의 상단에 일체되어 상부슬래브에 결합되는 슬래브결착용 상부플랜지, 이웃한 기둥 상부모서리 보강캡을 상호 결합시키기 위한 보강캡 결합용 플랜지, 앵글수직보강벽과 슬래브결착용 상부플랜지를 연결 보강하는 캡 보강리브를 갖는 것을 특징으로 한다.
또한, 상기 기둥 상부모서리 보강캡은 주물로 제작되되, 보강을 위해 그의 내측 모서리에 강재로 제작된 모서리 보강철물이 더 설치되어 있는 것을 특징으로 한다.
또한, 상기 RC 기둥의 둘레에 부착된 이물질을 제거한 후, RC 기둥의 하단부터 상단 높이까지 탄소섬유패널을 배치하는 단계와; 상기 RC 기둥의 모서리에 직각을 이루는 한 쌍의 고정날개를 높이 방향으로 일정 간격마다 갖는 연결고정지주를 접하도록 위치시켜 놓는 단계와; X형 브레이스와 X형 브레이스의 상단과 하단에 탄소섬유패널 고정용 수평연결대가 연결되어 있는 하이브리드 고정부재를 구비하고, 이 하이브리드 고정부재를 고정날개에 접하도록 배치하는 단계와; 상기 RC 기둥의 최외측 둘레에 석고보드를 위치시켜 하이브리드 고정부재에 접하도록 배치하는 단계와; 각각의 석고보드의 외면에 석고보드위치 고정용 프레임을 접하여 횡방향으로 배치되도록 한 후, 체결수단을 통해 석고보드위치 고정용 프레임, 석고보드, 하이브리드 고정부재를 상호 체결시켜 탄소섬유패널 및 석고보드의 위치가 고정되는 단계;를 더 포함한 것을 특징으로 한다.
또한, 상기 연결고정지주는 강재로 제작된 각관 또는 사각봉으로 구성된 것을 특징으로 한다.
한편, 본 발명에 따른 상부슬래브를 지지하는 RC 기둥을 보강하기 위한 구조는, RC 기둥의 하단부터 일정 높이까지 탄소섬유패널이 보강앵글로 RC 기둥의 둘레에 설치되고, 상기 RC 기둥의 상단부 4곳의 모서리에 결합볼트로 기둥 상부모서리 보강캡이 상호 연결되어 배치됨과 동시에, 앵커볼트를 통해 4개의 기둥 상부모서리 보강캡이 RC 기둥과 상부슬래브에 고정되어 폐합된 구조로 설치되어 있는 것을 특징으로 한다.
본 발명의 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법 및 구조에 따르면, 기둥의 하단부터 일정 높이까지 탄소섬유패널이 설치되고, 그 상단에 기둥의 상부를 둘레로 감싸는 기둥 상부모서리 보강캡을 폐합단면이 이루어지도록 설치하여 지진 하중에 대한 휨 내력이 향상된다. 또한 건식 공법으로 비숙련자도 간단하게 시공할 수 있는 경제적 이점을 갖는다.
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시 예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 첨부한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니 된다.
도 1은 본 발명의 실시 예에 따른 필로티 RC 기둥의 보강상태도.
도 2는 도 1의 정면도.
도 3a는 도 2의 A-A선에서 본 단면도.
도 3b는 도 3a에 도시된 기둥 상부모서리 보강캡의 변형된 평면도.
도 4는 도 2의 B-B선에서 본 단면도.
도 5a는 도 1에 적용된 기둥 상부모서리 보강캡의 사시도.
도 5b는 도 5a의 내측면 사시도.
도 6은 본 발명의 실시 예에 따른 필로티 RC 기둥에 탄소섬유패널이 설치된 상태도.
도 7은 본 발명의 실시 예에 따른 필로티 RC 기둥의 상단부 둘레에 기둥 상부모서리 보강캡이 배치된 상태도.
도 8은 본 발명의 실시 예에 따른 RC 기둥에 탄소섬유패널과 석고보드가 고정 설치된 사시도.
도 9a는 도 8의 C-C선에서 본 단면도.
도 9b는 도 9a의 'D'부 확대도.
도 10은 본 발명의 실시 예에 따른 RC 기둥에 탄소섬유패널과 연결고정지주를 배치시킨 사시도.
도 11a는 도 10의 연결고정지주에 하이브리드 고정부재를 배치시킨 상태도.
도 11b는 도 8의 정면도.
도 12는 본 발명의 실시 예에 적용되는 연결고정지주의 사시도.
아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 되지만 제시된 실시 예는 본 발명의 명확한 이해를 위한 예시적인 것으로 본 발명은 이에 제한되지 않는다.
본 발명에 따른 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 구조를 살펴보면, 도 1 내지 도 4와 같이 RC 기둥(10)의 하단부터 일정 높이까지 탄소섬유패널(12)이 보강앵글(14)로 RC 기둥(10)의 둘레에 설치된다. 또한 RC 기둥(10)의 상단부 4곳의 모서리에 결합볼트(30)로 기둥 상부모서리 보강캡(20)이 상호 연결되어 배치된다. 또한 4개의 기둥 상부모서리 보강캡(20)은 앵커볼트(40,42)를 통해 RC 기둥(10)과 상부슬래브(100)에 고정되어 폐합된 구조로 설치된다.
본 실시 예에서 RC 기둥(10)은 사각 단면을 이루기 때문에 기둥 상부모서리 보강캡(20)은 4개가 사용되어 RC 기둥(10)의 둘레를 감싸 폐합된 구조로 보강을 구현한다.
여기서, 도 5와 같이 기둥 상부모서리 보강캡(20)은 상호 직각을 이루어 RC 기둥(10)에 직각 상태로 접하는 앵글수직보강벽(201,201), 앵글수직보강벽(201,201)의 상단에 일체되어 상부슬래브(100)에 결합되는 슬래브결착용 상부플랜지(202), 이웃한 기둥 상부모서리 보강캡(20과 20)을 상호 볼트로 결합시키기 위해 볼트체결공(203a)을 갖는 보강캡 결합용 플랜지(203), 앵글수직보강벽(201,201)과 슬래브결착용 상부플랜지(202)를 연결 보강하는 캡 보강리브(204)를 갖는다.
따라서 앵글수직보강벽(201,201)이 RC 기둥(10)의 상부 모서리에 접한 상태에서 보강캡 결합용 플랜지(203과 203)이 면접되어 결합볼트(30)를 통해 RC 기둥(10)의 둘레로 4개의 기둥 상부모서리 보강캡(20)이 상호 결합된다.
캡 보강리브(204)는 본 실시 예에서 아치형태를 이루어 기둥 상부모서리 보강캡(20)를 구조적으로 보강하고 있으나 삼각 모양으로 형성될 수도 있다.
한편, 기둥 상부모서리 보강캡(20)은 비용과 제작 용이성을 고려하여 주물로 제작됨이 바람직하나, 이 경우 보강을 위해 그의 내측 모서리에 도 5b와 같이 강재로 제작된 모서리 보강철물(24)이 더 설치되어 구성될 수 있다.
또한 본 실시 예에서 슬래브결착용 상부플랜지(202)는 둘레가 RC 기둥(10)의 모서리 형태인 L자 형태를 이루도록 구성하였으나, 도 3b와 같이 슬래브결착용 상부플랜지(202)는 미관을 고려하여 그 둘레가 RC 기둥(10)의 중심에 대하여 일정한 곡률반경(R)에 의해 원호형으로 형성될 수도 있다.
이와 같은 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 방법을 설명한다.
먼저, 도 6과 같이 RC 기둥(10)의 둘레에 부착된 이물질을 제거한 후, RC 기둥(10)의 하단부터 일정 높이까지 탄소섬유패널(12)을 보강앵글(14)로 RC 기둥(10)의 둘레에 설치한다. 여기서 이물질 제거는 주지의 그라인더에 설치된 연마재 또는 브러쉬가 사용될 수 있다.
그 다음, RC 기둥(10)의 상단부 4곳의 모서리에 도 7과 같이 각기 기둥 상부모서리 보강캡(20)을 배치해가며 상호간에 결합볼트(30)를 이용하여 결속한다.
그 다음, 도 1과 같이 기둥 상부모서리 보강캡(20)을 앵커볼트(40,42)를 통해 RC 기둥(10)과 상부슬래브(100)에 고정시킨다.
이와 같이 본 발명에 따른 RC 기둥의 전단 보강 방법은 기둥 상부모서리 보강캡(20과 20)간의 상호 볼트 결합과 후속으로 RC 기둥(10) 및 상부슬래브(100)에 앵커볼트(40,42)로 고정시키는 간단한 과정을 통해 신속하게 RC 기둥(10)의 상단부까지 내진 보강을 구현함으로써 지진 하중에 대한 휨 저항력을 향상시킬 수 있다.
한편, 본 발명에 따른 RC 기둥의 전단 보강 방법은 다른 실시 예로서, 도 9 및 도 9와 같이 일정한 단면과 높이를 갖는 RC 기둥(10)의 둘레에 부착된 이물질을 제거한 후, RC 기둥(10)의 하단부터 상단 높이까지 탄소섬유패널(12)을 배치한다. 탄소섬유패널(12)은 일정 폭과 높이를 갖고 제작되어 있다. 탄소섬유패널(12)은 RC 기둥(10)에 부착되어 RC 기둥(10)의 전단 단면을 보강한다.
여기서 RC 기둥(10)는 콘크리트에 전단철근이 배근된 RC 기둥이 될 수 있다.
그 다음, 도 10과 같이 RC 기둥(10)의 모서리에 직각을 이루는 한 쌍의 고정날개(501,501)를 높이 방향으로 일정 간격마다 갖는 연결고정지주(50)를 접하도록 위치시켜 놓는다. 연결고정지주(50)는 강재로 제작된 각관으로 구성됨이 바람직하나 본 발명은 이러한 형태에 제한되는 것은 아니다.
그 다음, 도 11a 및 도 11b와 같이 X형 브레이스(601)와 X형 브레이스(601)의 상단과 하단에 탄소섬유패널 고정용 수평연결대(602)가 연결되어 있는 하이브리드 고정부재(60)를 구비하고, 이 하이브리드 고정부재(60)를 고정날개(501,501)에 접하도록 배치한다. 하이브리드 고정부재(60)는 강도와 탄성 및 내열성이 우수한 엔지니어링 플라스틱으로 제작된다. 고정날개(501)는 이웃한 탄소섬유패널(12과 12)이 접하는 곳에 위치되도록 연결고정지주(50)에 구비된다. 연결고정지주(50)는 강재로 제작된 사각봉으로 구성되어 있으나 이에 본 발명이 한정되는 것은 아니다.
그 다음, 도 8 및 도 11b와 같이 RC 기둥(10)의 최외측 둘레에 석고보드(70)를 위치시켜 하이브리드 고정부재(60)에 접하도록 배치한다.
그 다음, 각각의 석고보드(70)의 외면에 석고보드위치 고정용 프레임(80)을 접하여 횡방향으로 배치되도록 한 후, 체결수단(90)을 통해 석고보드위치 고정용 프레임(80), 석고보드(70), 하이브리드 고정부재(60)를 상호 체결시켜 탄소섬유패널(12) 및 석고보드(70)의 위치가 고정되도록 한다. 석고보드위치 고정용 프레임(80)은 강도와 탄성 및 내열성이 우수한 엔지니어링 플라스틱으로 제작된다. 체결수단(90)은 앵커볼트 또는 무두부볼트가 적용될 수 있다.
이와 같이 콘크리트에 탄소섬유패널(12)과 석고보드(70)의 위치를 고정하기 위한 고정 방법을 사용하면, 에폭시 등의 접착제를 사용하지 않고 하이브리고 고정부재(60)와 석고보드위치 고정용 프레임(80)을 엔지니어링 플라스틱 소재로 제작하여 건식 공법으로 조립이 진행되어 노후화된 건축물 또는 내진 보강 기둥에 적용되어 시공성과 경제성이 향상된다.
이와 같은 공법으로 이루어진 RC 기둥(10)에 탄소섬유패널(12)과 석고보드(70)의 위치를 고정하기 위한 고정 구조를 살펴보면, 일정한 단면과 높이를 갖는 RC 기둥(10)의 둘레에 부착된 이물질을 제거한 후, RC 기둥(10)의 하단부터 상단 높이까지 배치된 탄소섬유패널(12)과, 직각을 이루는 한 쌍의 고정날개(501,501)를 높이 방향으로 일정 간격마다 갖고 상기 RC 기둥(10)의 모서리에 접하여 위치되는 연결고정지주(50)와, X형 브레이스(601)와 X형 브레이스(601)의 상단과 하단에 탄소섬유패널 고정용 수평연결대(602)가 연결되어 상기 고정날개(501,501)에 접하도록 배치되는 하이브리드 고정부재(60)와, RC 기둥(10)의 최외측 둘레에 위치되어 하이브리드 고정부재(60)에 접하도록 배치되는 석고보드(70)와, 각각의 석고보드(70)의 외면에 접하여 횡방향으로 배치되는 석고보드위치 고정용 프레임(80)과, 석고보드위치 고정용 프레임(80), 석고보드(70), 하이브리드 고정부재(60)를 상호 체결시켜 탄소섬유패널(12) 및 석고보드(70)의 위치를 고정시키는 체결수단(90)을 포함한 고정 구조를 갖게 된다.
물론, RC 기둥(10)는 RC 기둥이 될 수 있고, 고정날개(501)는 이웃한 탄소섬유패널(12과 12)이 접하는 곳에 위치되도록 연결고정지주(50)에 구비됨이 바람직하다. 또한 연결고정지주(50)는 강재로 제작된 각관으로 구성됨이 바람직하고, 연결고정지주(50)는 강재로 제작된 사각봉으로 구성될 수 있다. 또한 체결수단(90)은 너트가 불필요한 무두부볼트를 적용함이 바람직하다. 이같은 구조는 탄소섬유패널(12)과 석고보드(70)를 무두부볼트로 조임하여 쉽게 고정이 가능한 장점을 갖는다.
지금까지 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되었지만 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예를 참조하여 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이와 같은 변형 및 수정 발명에 의하여 제한되지 않으며 다만 아래에 첨부된 청구범위에 의하여 제한된다.
본 발명의 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 RC 기둥의 자가 휨 보강 공법 및 구조에 따르면, 기둥의 하단부터 일정 높이까지 탄소섬유패널이 설치되고, 그 상단에 기둥의 상부를 둘레로 감싸는 기둥 상부모서리 보강캡을 폐합단면이 이루어지도록 설치하여 지진 하중에 대한 휨 내력이 향상되고, 또한 건식 공법으로 비숙련자도 간단하게 시공할 수 있는 경제적 이점을 갖는 매우 유용한 발명이다.
(이 발명을 지원한 국가연구개발사업)
과제고유번호 1711158635
과제번호 2021R1A4A1031201
부처명 과학기술정보통신부
과제관리(전문)기관명 한국연구재단
연구사업명 집단연구지원
연구과제명 탄소복합체 보강 건축구조물의 실화재 기반 복합재난 Big Data 연구실
기여율 1/1
과제수행기관명 서울시립대학교
연구기간 2022.03.01 ~ 2023.02.28

Claims (10)

  1. 상부슬래브(100)를 지지하는 RC 기둥(10)을 보강하기 위한 공법에 있어서,
    상기 RC 기둥(10)의 둘레에 부착된 이물질을 제거한 후, RC 기둥(10)의 하단부터 일정 높이까지 탄소섬유패널(12)을 보강앵글(14)로 RC 기둥(10)의 둘레에 설치하는 단계와;
    상기 RC 기둥(10)의 상단부 4곳의 모서리에 각기 기둥 상부모서리 보강캡(20)을 배치해가며 상호간에 결합볼트(30)를 이용하여 결속하는 단계와;
    상기 기둥 상부모서리 보강캡(20)을 앵커볼트(40,42)를 통해 RC 기둥(10)과 상부슬래브(100)에 고정시키는 단계;를 포함하여 시공되는 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 공법.
  2. 제 1항에 있어서,
    기둥 상부모서리 보강캡(20)은 상호 직각을 이루어 RC 기둥(10)에 직각 상태로 접하는 앵글수직보강벽(201,201), 앵글수직보강벽(201,201)의 상단에 일체되어 상부슬래브(100)에 결합되는 슬래브결착용 상부플랜지(202), 이웃한 기둥 상부모서리 보강캡(20과 20)을 상호 결합시키기 위한 보강캡 결합용 플랜지(203), 앵글수직보강벽(201,201)과 슬래브결착용 상부플랜지(202)를 연결 보강하는 캡 보강리브(204)를 갖는 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 공법.
  3. 제 2항에 있어서,
    상기 기둥 상부모서리 보강캡(20)은 주물로 제작되되, 보강을 위해 그의 내측 모서리에 강재로 제작된 모서리 보강철물(24)이 더 설치되어 있는 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 공법.
  4. 제 1항에 있어서,
    상기 RC 기둥(10)의 둘레에 부착된 이물질을 제거한 후, RC 기둥(10)의 하단부터 상단 높이까지 탄소섬유패널(12)을 배치하는 단계와;
    상기 RC 기둥(10)의 모서리에 직각을 이루는 한 쌍의 고정날개(501,501)를 높이 방향으로 일정 간격마다 갖는 연결고정지주(50)를 접하도록 위치시켜 놓는 단계와;
    X형 브레이스(601)와 X형 브레이스(601)의 상단과 하단에 탄소섬유패널 고정용 수평연결대(602)가 연결되어 있는 하이브리드 고정부재(60)를 구비하고, 이 하이브리드 고정부재(60)를 고정날개(501,501)에 접하도록 배치하는 단계와;
    상기 RC 기둥(10)의 최외측 둘레에 석고보드(70)를 위치시켜 하이브리드 고정부재(60)에 접하도록 배치하는 단계와;
    각각의 석고보드(70)의 외면에 석고보드위치 고정용 프레임(80)을 접하여 횡방향으로 배치되도록 한 후, 체결수단(90)을 통해 석고보드위치 고정용 프레임(80), 석고보드(70), 하이브리드 고정부재(60)를 상호 체결시켜 탄소섬유패널(12) 및 석고보드(70)의 위치가 고정되는 단계;를 더 포함한 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 공법.
  5. 제 4항에 있어서,
    상기 연결고정지주(50)는 강재로 제작된 사각봉으로 구성된 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 공법.
  6. 상부슬래브(100)를 지지하는 RC 기둥(10)을 보강하기 위한 구조에 있어서,
    RC 기둥(10)의 하단부터 일정 높이까지 탄소섬유패널(12)이 보강앵글(14)로 RC 기둥(10)의 둘레에 설치되고, 상기 RC 기둥(10)의 상단부 4곳의 모서리에 결합볼트(30)로 기둥 상부모서리 보강캡(20)이 상호 연결되어 배치됨과 동시에, 앵커볼트(40,42)를 통해 4개의 기둥 상부모서리 보강캡(20)이 RC 기둥(10)과 상부슬래브(100)에 고정되어 폐합된 구조로 설치되어 있는 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 구조.
  7. 제 6항에 있어서,
    기둥 상부모서리 보강캡(20)은 상호 직각을 이루어 RC 기둥(10)에 직각 상태로 접하는 앵글수직보강벽(201,201), 앵글수직보강벽(201,201)의 상단에 일체되어 상부슬래브(100)에 결합되는 슬래브결착용 상부플랜지(202), 이웃한 기둥 상부모서리 보강캡(20과 20)을 상호 볼트 결합시키기 위한 볼트체결공(203a)을 갖는 보강캡 결합용 플랜지(203), 앵글수직보강벽(201,201)과 슬래브결착용 상부플랜지(202)를 연결 보강하는 캡 보강리브(204)를 갖는 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 구조.
  8. 제 6항에 있어서,
    상기 기둥 상부모서리 보강캡(20)은 주물로 제작되되, 보강을 위해 그의 내측 모서리에 강재로 제작된 모서리 보강철물(24)이 더 설치되어 있는 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 구조.
  9. 제 6항에 있어서,
    RC 기둥(10)의 둘레에 부착된 이물질을 제거한 후, RC 기둥(10)의 하단부터 상단 높이까지 배치된 탄소섬유패널(12)과;
    직각을 이루는 한 쌍의 고정날개(501,501)를 높이 방향으로 일정 간격마다 갖고 상기 RC 기둥(10)의 모서리에 접하여 위치되는 연결고정지주(50)와;
    X형 브레이스(601)와 X형 브레이스(601)의 상단과 하단에 탄소섬유패널 고정용 수평연결대(602)가 연결되어 상기 고정날개(501,501)에 접하도록 배치되는 하이브리드 고정부재(60)와;
    상기 RC 기둥(10)의 최외측 둘레에 위치되어 하이브리드 고정부재(60)에 접하도록 배치되는 석고보드(70)와;
    각각의 석고보드(70)의 외면에 접하여 횡방향으로 배치되는 석고보드위치 고정용 프레임(80)과;
    고정용 프레임(80), 석고보드(70), 하이브리드 고정부재(60)를 상호 체결시켜 탄소섬유패널(12) 및 석고보드(70)의 위치를 고정시키는 체결수단(90)을 포함한 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 구조.
  10. 제 6항에 있어서,
    상기 체결수단(90)은 무두부볼트를 적용한 것을 특징으로 하는 탄소섬유패널과 보강철물 및 석고보드를 조립한 RC 기둥의 자가 휨 보강 구조.
PCT/KR2022/012727 2022-04-14 2022-08-25 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 rc 기둥의 자가 휨 보강 공법 및 구조 WO2023200047A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220046286A KR102485138B1 (ko) 2022-04-14 2022-04-14 탄소섬유패널과 보강철물을 조립한 필로티 rc 기둥의 자가 휨 보강 공법 및 구조
KR10-2022-0046286 2022-04-14
KR10-2022-0106760 2022-08-25
KR1020220106760A KR102644028B1 (ko) 2022-08-25 2022-08-25 콘크리트에 탄소섬유패널과 석고보드의 위치를 고정하기 위한 고정 방법 및 그 구조

Publications (1)

Publication Number Publication Date
WO2023200047A1 true WO2023200047A1 (ko) 2023-10-19

Family

ID=88329707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012727 WO2023200047A1 (ko) 2022-04-14 2022-08-25 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 rc 기둥의 자가 휨 보강 공법 및 구조

Country Status (1)

Country Link
WO (1) WO2023200047A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169645B2 (ja) * 2008-09-03 2013-03-27 株式会社大林組 補強を施した柱の仕上げ方法、補強を施した柱の仕上げ材の取付構造、柱の補強方法
KR101705833B1 (ko) * 2015-12-03 2017-02-10 (주)동양구조엔지니어링 콘크리트 구조물의 내진보강구조
KR20180121345A (ko) * 2017-04-28 2018-11-07 (주)에스엘씨티 3d 섬유강화복합체, 이를 이용한 콘크리트 기둥의 보강구조 및 보강방법
KR102012486B1 (ko) * 2019-03-29 2019-08-20 (주)에이엠에스엔지니어링 필로티 구조 건물에 가변적인 설치가 가능한 내진 보강 구조체와 그 내진 보강 구조체를 이용한 내진 보강 공법
KR20210103837A (ko) * 2020-02-14 2021-08-24 서울시립대학교 산학협력단 다가구 필로티 기둥의 diy 보강용 내진보강 공법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169645B2 (ja) * 2008-09-03 2013-03-27 株式会社大林組 補強を施した柱の仕上げ方法、補強を施した柱の仕上げ材の取付構造、柱の補強方法
KR101705833B1 (ko) * 2015-12-03 2017-02-10 (주)동양구조엔지니어링 콘크리트 구조물의 내진보강구조
KR20180121345A (ko) * 2017-04-28 2018-11-07 (주)에스엘씨티 3d 섬유강화복합체, 이를 이용한 콘크리트 기둥의 보강구조 및 보강방법
KR102012486B1 (ko) * 2019-03-29 2019-08-20 (주)에이엠에스엔지니어링 필로티 구조 건물에 가변적인 설치가 가능한 내진 보강 구조체와 그 내진 보강 구조체를 이용한 내진 보강 공법
KR20210103837A (ko) * 2020-02-14 2021-08-24 서울시립대학교 산학협력단 다가구 필로티 기둥의 diy 보강용 내진보강 공법

Similar Documents

Publication Publication Date Title
WO2016129826A1 (ko) 안전성이 강화된 피씨 트러스 벽체 구조물 및 이를 이용한 지하구조물 시공방법
EP2430250B1 (en) Precast wall panels and method of erecting a high-rise building using these panels
WO2017188721A1 (ko) 거푸집 선조립형 보 구조물
CZ289321B6 (cs) Stavební konstrukce
WO2018174375A1 (ko) 웨브 연결형 강합성콘크리트 기둥-보 접합 구조
WO2018074814A1 (ko) 프리캐스트 보와 기둥의 연결구조 및 이를 이용한 보와 기둥을 연결하는 공법
CN209941912U (zh) 一种装配式框架结构建筑用梁柱连接结构
CN111456222B (zh) 装配式钢结构集成绿色建筑及其设计安装工艺
KR102310267B1 (ko) 유닛블록 시스템
CN109853744B (zh) 一种装配式钢结构框架支撑体系及安装方法
WO2023200047A1 (ko) 탄소섬유패널과 보강철물 및 석고보드를 조립한 필로티 rc 기둥의 자가 휨 보강 공법 및 구조
SK161099A3 (en) Building framework
CN210032128U (zh) 一种装配式框架结构建筑用角柱与梁的干法施工连接结构
EP0183698B1 (en) Building panels
CN210395626U (zh) 一种钢结构建房用的骨架装置
KR102644028B1 (ko) 콘크리트에 탄소섬유패널과 석고보드의 위치를 고정하기 위한 고정 방법 및 그 구조
WO2017047834A1 (ko) 철근 선조립 기둥
WO2023243961A1 (ko) Pc 보 접합용 선조립기둥조립체 일체형 선조립브래킷조립체
CN112196117A (zh) 一种装配式建筑单元体及构造体
WO2023171889A1 (ko) 프리캐스트 벽체구조물
CN220035845U (zh) 一种装配式楼面板
CN217538101U (zh) 集成软钢阻尼器的耗能节点
CN216305073U (zh) 一种组合式塔架的组合楼板与角柱的连接结构
CN211286803U (zh) 多功能组合构件及由组合构件组合的移动平台、板房
CN219825611U (zh) 一种装配式免拆型楼承板与混凝土梁的连接构造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937560

Country of ref document: EP

Kind code of ref document: A1