WO2023199709A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2023199709A1
WO2023199709A1 PCT/JP2023/011173 JP2023011173W WO2023199709A1 WO 2023199709 A1 WO2023199709 A1 WO 2023199709A1 JP 2023011173 W JP2023011173 W JP 2023011173W WO 2023199709 A1 WO2023199709 A1 WO 2023199709A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
magnet
orientation point
armature
rotor
Prior art date
Application number
PCT/JP2023/011173
Other languages
French (fr)
Japanese (ja)
Inventor
鈴音 水野
裕樹 高橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023199709A1 publication Critical patent/WO2023199709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets

Definitions

  • the disclosure in this specification relates to a rotating electrical machine.
  • Patent Document 1 Conventionally, in order to make the surface magnetic flux density of a magnet approximate to a sine wave, various efforts have been made to the orientation state of the magnet (for example, Patent Document 1).
  • the axis of easy magnetization of the magnet is oriented such that the closer it gets to the d-axis, which is the center of the magnetic pole, the more parallel it becomes to the d-axis.
  • the closer the magnetic flux is to the d-axis the more the magnetic flux can be concentrated, and the surface magnetic flux density of the magnet can be made closer to a sine wave shape.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to provide a high-torque rotating electrical machine.
  • a first means for solving the above problem includes a field element having a magnet portion including a plurality of magnetic poles with alternating polarities in the circumferential direction, and an armature disposed facing the magnet portion in the radial direction.
  • a rotating electrical machine comprising either the field element or the armature as a rotor, wherein the axis of easy magnetization in the magnets constituting the magnet section is the q-axis whose direction is the magnetic pole boundary.
  • the magnets are oriented parallel to the d-axis, which is the magnetic pole center, on the d-axis side, which is the magnetic pole center, compared to the side of the rotor.
  • the axis of easy magnetization is oriented so as to concentrate toward a predetermined orientation point or to spread radially from the orientation point, and the orientation point is aligned with the d-axis.
  • the gist is that the magnet portion is set closer to the armature than the magnet portion.
  • the magnet magnetic flux on the d-axis is strengthened, and changes in the magnetic flux near the q-axis are suppressed. Therefore, it is possible to suitably realize a magnet portion in which the surface magnetic flux changes gradually from the q-axis to the d-axis in each magnetic pole. At the same time, it becomes possible to achieve high torque.
  • the orientation point is set to be located within a region of the armature on the d-axis.
  • the orientation point is set to be located closer to the field element than the center of the region of the armature in the radial direction of the rotor.
  • the armature in the second means, includes a conducting wire portion and an armature core to which the conducting wire portion is fixed, and the orientation point is on the d-axis and the conducting wire portion in the radial direction. is set at the center of
  • the magnets constituting the magnet portion are composed of a plurality of layers in the radial direction of the rotor, and the first magnet is arranged on the armature side in the radial direction.
  • the orientation point of the easy axis of magnetization in the d-axis and the orientation point of the easy axis of magnetization in the second magnet disposed on the opposite armature side than the first magnet in the radial direction are different on the d-axis.
  • the magnet portion includes a plurality of magnets arranged side by side in the circumferential direction, and a scattering prevention member made of a non-magnetic material that covers the surfaces of the plurality of magnets.
  • the magnet section includes a plurality of magnets arranged side by side in the circumferential direction, the magnets are divided on the q-axis side, and the magnets adjacent on the q-axis A soft magnetic material is placed in the gap between them.
  • the magnet magnetic paths between circumferentially adjacent magnets can be connected via the q-axis. This makes it possible to improve magnetic flux density and achieve high torque.
  • FIG. 1 is a perspective view showing the entire rotating electrical machine in the first embodiment
  • FIG. 2 is a plan view of the rotating electric machine
  • FIG. 3 is a longitudinal cross-sectional view of the rotating electric machine
  • FIG. 4 is a cross-sectional view of the rotating electric machine
  • FIG. 5 is an exploded cross-sectional view of the rotating electric machine
  • FIG. 6 is a cross-sectional view of the rotor
  • FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit
  • FIG. 8 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit of the second embodiment
  • FIG. 1 is a perspective view showing the entire rotating electrical machine in the first embodiment
  • FIG. 2 is a plan view of the rotating electric machine
  • FIG. 3 is a longitudinal cross-sectional view of the rotating electric machine
  • FIG. 4 is a cross-sectional view of the rotating electric machine
  • FIG. 5 is an exploded cross-sectional view of the rotating electric machine
  • FIG. 9 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit of the third embodiment
  • FIG. 10 is a partial cross-sectional view showing a cross-sectional structure of a magnet unit of a modified example
  • FIG. 11 is a partial cross-sectional view showing the cross-sectional structure of a modified magnet unit.
  • the rotating electrical machine in this embodiment is used, for example, as a vehicle power source.
  • rotating electric machines can be widely used for industrial purposes, vehicles, aircraft, home appliances, OA equipment, game machines, and the like. Note that in each of the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the explanations thereof will be referred to for the parts with the same reference numerals.
  • the rotating electric machine 10 is a synchronous multiphase AC motor, and has an outer rotor structure (external rotation structure).
  • An outline of the rotating electric machine 10 is shown in FIGS. 1 to 5.
  • 1 is a perspective view showing the entire rotating electrical machine 10
  • FIG. 2 is a plan view of the rotating electrical machine 10
  • FIG. 3 is a longitudinal sectional view of the rotating electrical machine 10 (a sectional view taken along line 3-3 in FIG. )
  • FIG. 4 is a cross-sectional view (cross-sectional view taken along the line 4--4 in FIG. 3) of the rotating electrical machine 10
  • FIG. 5 is an exploded sectional view showing the components of the rotating electrical machine 10 in an exploded manner.
  • the direction in which the rotating shaft 11 extends is referred to as the axial direction
  • the direction extending radially from the center of the rotating shaft 11 is referred to as the radial direction
  • the direction extending circumferentially around the rotating shaft 11 as the center is referred to as the circumferential direction. direction.
  • the rotating electrical machine 10 is roughly divided into a rotating electrical machine main body having a rotor 20, a stator unit 50, and a busbar module 200, and a housing 241 and a housing cover 242 provided to surround the rotating electrical machine main body. All of these members are arranged coaxially with respect to the rotating shaft 11 that is integrally provided to the rotor 20, and are assembled in the axial direction in a predetermined order to configure the rotating electrical machine 10.
  • the rotating shaft 11 is supported by a pair of bearings 12 and 13 provided in the stator unit 50 and the housing 241, respectively, and is rotatable in this state.
  • the bearings 12 and 13 are, for example, radial ball bearings having an inner ring, an outer ring, and a plurality of balls arranged between them.
  • the rotation of the rotating shaft 11 causes, for example, the axle of the vehicle to rotate.
  • the rotating electrical machine 10 can be mounted on a vehicle by fixing the housing 241 to a vehicle body frame or the like.
  • the stator unit 50 is provided so as to surround the rotating shaft 11, and the rotor 20 is arranged on the radially outer side of the stator unit 50.
  • the stator unit 50 includes a stator 60 and a stator holder 70 assembled inside the stator 60 in the radial direction.
  • the rotor 20 and the stator 60 are arranged to face each other in the radial direction with an air gap in between, and as the rotor 20 rotates together with the rotating shaft 11, the rotor 20 rotates on the outside of the stator 60 in the radial direction. Rotate.
  • the rotor 20 corresponds to a "field element" and the stator 60 corresponds to an "armature.”
  • the stator 60 has a stator winding 61 and a stator core 62. Note that the stator winding 61 corresponds to the "armature winding". In this embodiment, the stator 60 has a slotless structure that does not have teeth for forming slots, but teeth may be provided.
  • FIG. 6 is a longitudinal cross-sectional view of the rotor 20.
  • the rotor 20 includes a substantially cylindrical rotor carrier 21 and an annular magnet unit 22 fixed to the rotor carrier 21.
  • the rotor carrier 21 has a cylindrical portion 23 having a cylindrical shape and an end plate portion 24 provided at one end in the axial direction of the cylindrical portion 23, and is configured by integrating these parts.
  • a magnet unit 22 is fixed to the radially inner side of the cylindrical portion 23 in an annular shape.
  • a through hole 24a is formed in the end plate portion 24, and the rotating shaft 11 is fixed to the end plate portion 24 by a fastener 25 such as a bolt while being inserted into the through hole 24a.
  • the rotating shaft 11 has a flange 11a extending in a direction intersecting (orthogonal to) the axial direction, and the rotor carrier 21 is attached to the rotating shaft 11 in a state where the flange 11a and the end plate portion 24 are surface-joined. is fixed.
  • the magnet unit 22 includes a cylindrical magnet holder 31, a plurality of magnets 32 fixed to the inner circumferential surface of the magnet holder 31, and a magnet holder 31 on the opposite side from the end plate portion 24 of the rotor carrier 21 on both sides in the axial direction. It has a fixed end plate 33.
  • the magnet holder 31 corresponds to a "magnet holder”.
  • the end plate 33 is formed in an annular shape and is configured to cover part or all of the axial end surface of the magnet 32 to prevent the magnet 32 from falling off.
  • Each magnet 32 is fixed to the inner peripheral surface of the magnet holder 31 with an adhesive or the like.
  • the magnet holder 31 has the same length dimension as the magnet 32 in the axial direction.
  • the magnet 32 is surrounded by the magnet holder 31 from the outside in the radial direction.
  • the magnet holder 31 and the magnet 32 are fixed in contact with an end plate 33 at one end in the axial direction.
  • the magnet unit 22 corresponds to a "magnet section".
  • FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit 22.
  • the magnets 32 are arranged in parallel along the circumferential direction of the rotor 20 so that their polarities alternate. Thereby, the magnet unit 22 has a plurality of magnetic poles in the circumferential direction.
  • the magnet 32 is a polar anisotropic permanent magnet, using a sintered neodymium magnet having an intrinsic coercive force of 400 [kA/m] or more and a residual magnetic flux density Br of 1.0 [T] or more. It is configured.
  • These plurality of magnets 32 each have a split surface on the q-axis, and the magnets 32 are arranged in contact with or close to each other. That is, in the magnet 32, one magnet constitutes one magnetic pole.
  • one magnetic pole may be composed of a plurality of magnets.
  • one magnetic pole may be configured by a combination of two magnets with split surfaces on the d-axis and the q-axis.
  • the radially inner circumferential surface (on the stator 60 side) of the magnet 32 is a magnetic flux acting surface 34 where magnetic flux is transferred.
  • the magnet unit 22 is configured to generate magnetic flux intensively in a region near the d-axis, which is the center of the magnetic pole, on the magnetic flux acting surface 34 of the magnet 32.
  • the axis of easy magnetization in each magnet 32 of this embodiment is a linear easy axis of magnetization, and the angle (inclination angle ⁇ ) with respect to the radial direction gradually changes depending on the position in the circumferential direction.
  • the axis of easy magnetization of the magnet 32 of this embodiment is oriented so that it is concentrated toward the orientation point P1 set on the d-axis, or so as to spread radially from the orientation point P1. has been done.
  • the direction of the axis of easy magnetization (magnetization direction, magnetization vector) is shown to be concentrated at the orientation point P1, but since the polarity is different in the magnets 32 adjacent to the magnet 32, It shows how the magnetization direction spreads radially from the orientation point P1.
  • this orientation point P1 is set to be located within the region of the stator 60 on the d-axis.
  • the region of the stator 60 is defined as the area from the inner circumferential surface of the stator winding 61 (the surface closest to the rotor 20) to the outer circumferential surface of the stator core 62 (the farthest side from the rotor 20) in the radial direction. It is within the area between the two surfaces.
  • the orientation point P1 is set to be located closer to the rotor 20 than the center of the region of the stator 60 in the radial direction of the rotor 20. Note that, as in this embodiment, it is more preferable that the orientation point P1 is set at the center of the stator winding 61 in the radial direction on the d-axis.
  • each axis of easy magnetization is oriented, as shown in FIG.
  • the inclination angle ⁇ of each axis of easy magnetization is set to be small with respect to the radial direction so as to be parallel to the central d-axis. It can also be said that the axis of easy magnetization of the magnet 32 is oriented so that the orientation thereof is more parallel to the d-axis on the d-axis side, which is the magnetic pole center, than on the q-axis side, which is the magnetic pole boundary. A magnet magnetic path is formed along this axis of easy magnetization.
  • the magnet magnetic path is formed in a straight line, but has an inclination with respect to the radial direction, so the length of the magnet magnetic path is longer than the radial thickness of the magnet 32. is getting longer. This increases the permeance of the magnet 32, making it possible to exhibit the same ability as a magnet with a larger amount of magnets, even though the amount of magnets is the same.
  • the magnet 32 has a magnet magnetic path as described above, and the N and S poles of circumferentially adjacent magnets 32 face each other on the q-axis. Therefore, permeance near the q-axis can be improved. Furthermore, since the magnets 32 on both sides of the q-axis attract each other, these magnets 32 can maintain contact with each other. Therefore, it also contributes to improving permeance.
  • magnetic flux flows between adjacent N and S poles of each magnet 32, so the magnet magnetic path is longer than, for example, a radial anisotropic magnet.
  • the axis of easy magnetization of the magnet 32 is oriented so as to concentrate toward the orientation point P1 set on the d-axis, or to spread radially from the orientation point P1. Therefore, the magnetic flux density distribution becomes close to a sine wave.
  • the magnetic flux can be concentrated on the center side of the magnetic pole, making it possible to increase the torque of the rotating electric machine 10.
  • the magnet magnetic flux on the d-axis in the magnet unit 22 is strengthened, and changes in the magnetic flux near the q-axis are suppressed.
  • the magnet unit 22 in which the surface magnetic flux changes gradually from the q-axis to the d-axis in each magnetic pole.
  • the axis of easy magnetization of the magnet 32 is oriented so as to concentrate toward a predetermined orientation point P1 or to spread radially from the orientation point P1.
  • the orientation point P1 is set closer to the stator 60 than the magnet unit 22 on the d-axis.
  • the magnet magnetic flux on the d-axis is strengthened, and changes in the magnetic flux near the q-axis are suppressed.
  • the magnet unit 22 in which the surface magnetic flux change from the q-axis to the d-axis in each magnetic pole is smooth in the shape of a sine wave.
  • the orientation point P1 is set to be located within the region of the stator 60 on the d-axis. More specifically, the orientation point P1 is set to be located closer to the rotor 20 than the center of the region of the stator 60 in the radial direction. In this embodiment, the orientation point P1 is set at the center of the stator winding 61 in the radial direction on the d-axis. Thereby, the magnetic flux from the magnet 32 can be concentrated on the stator winding 61, and high torque can be achieved.
  • an outer rotor structure (external rotation structure) is adopted, but an inner rotor structure (internal rotation structure) may be adopted.
  • the axis of easy magnetization of the magnet 132 in this case is illustrated in FIG.
  • the radially outer (stator 60 side) circumferential surface of the magnet 132 is a magnetic flux action surface 134 where magnetic flux is transferred.
  • the easy axis of magnetization in each magnet 132 of the second embodiment is a linear easy axis of magnetization, and the angle (inclination angle ⁇ ) with respect to the radial direction gradually changes depending on the position in the circumferential direction.
  • the axis of easy magnetization of the magnet 132 of this embodiment is oriented so that it is concentrated toward the orientation point P10 set on the d-axis, or so as to spread radially from the orientation point P10. has been done.
  • this orientation point P10 is set to be located within the area of the stator 60 on the d-axis.
  • the orientation point P1 is set to be located closer to the rotor 20 than the center of the area of the stator 60 in the radial direction of the rotor 20. Note that it is more preferable that the orientation point P10 is set at the center of the stator winding 61 in the radial direction on the d-axis as in the present embodiment.
  • each axis of easy magnetization is oriented, as shown in FIG.
  • the inclination angle ⁇ of each axis of easy magnetization is set to be small with respect to the radial direction so as to be parallel to the central d-axis.
  • a magnet magnetic path is formed along this axis of easy magnetization.
  • the rotor 20 is configured as an embedded magnet rotor (IPM rotor), and includes a rotor core 231 as a field core, and a rotor core 231 as a field core.
  • IPM rotor embedded magnet rotor
  • a plurality of magnets 232 are embedded and fixed in the magnet.
  • the magnet 232 of the third embodiment is composed of multiple layers in the radial direction.
  • the magnet 232 is comprised of two layers, an inner layer and an outer layer, in the radial direction.
  • the magnet 232 on the inside (on the stator 60 side) may be referred to as a first magnet 232a, and the magnet 232 on the outside (on the side opposite to the stator 60) may be referred to as a second magnet 232b.
  • the easy magnetization axis of the first magnet 232a will be explained.
  • the direction of the axis of easy magnetization (magnetization direction, magnetization vector) of the first magnet 232a is indicated by an arrow.
  • the easy axis of magnetization in the first magnet 232a is a linear easy axis of magnetization, as in the first embodiment, and the angle (inclination angle ⁇ ) with respect to the radial direction gradually changes depending on the position in the circumferential direction. As shown in FIG.
  • the axis of easy magnetization of the first magnet 232a is concentrated toward the orientation point P1 set on the d-axis, similar to the magnet 32 of the first embodiment, or , are oriented to spread radially from the orientation point P1.
  • the direction of the axis of easy magnetization (arrow) is shown to be concentrated toward the orientation point P1, but the direction of the arrow may be opposite depending on the polarity of the first magnet 232a. Needless to say. In other words, if the polarity changes, the direction of the axis of easy magnetization points in a direction that radially spreads from the orientation point P1.
  • the easy magnetization axis of the second magnet 232b will be explained.
  • the direction of the axis of easy magnetization (magnetization direction, magnetization vector) of the second magnet 232b is indicated by an arrow.
  • the axis of easy magnetization in the second magnet 232b is a straight axis of easy magnetization, and the angle (inclination angle ⁇ ) with respect to the radial direction gradually changes depending on the position in the circumferential direction.
  • the axis of easy magnetization of the second magnet 232b is concentrated toward the orientation point P100 set on the d-axis, or It is oriented so that it spreads radially from the center.
  • the direction of the axis of easy magnetization (arrow) is shown to be concentrated toward the orientation point P100, but the direction of the arrow may be opposite depending on the polarity of the second magnet 232b. Needless to say.
  • the orientation point P100 on the easy axis of magnetization of the second magnet 232b is set on the d-axis to be further away from the magnet unit 22 in the radial direction than the orientation point P1 on the easy axis of the first magnet 232a.
  • this orientation point P100 is set to be located within the region of the stator 60 on the d-axis.
  • an orientation point P100 is set on the stator core 62.
  • the orientation point P100 may be set to be located closer to the rotor 20 than the center of the region of the stator 60 in the radial direction of the rotor 20, and the orientation point P100 may be set to be located closer to the rotor 20 than the center of the area of the stator 60 in the radial direction of the rotor 20, and It may be set to .
  • the orientation point P100 of the second magnet 232b and the orientation point P1 of the first magnet 232a may be set at the same position.
  • the orientation point P1 of the easy axis of magnetization in the first magnet 232a and the orientation point P100 of the easy axis of magnetization in the second magnet 232b are set to be different on the d-axis. This allows the surface magnetic flux density of the magnet unit 22 to be shaped into a sine wave shape, compared to the case where the orientation point P1 of the easy axis of magnetization in the first magnet 232a and the orientation point P100 of the easy axis of magnetization in the second magnet 232b are made to match. It becomes possible to get closer.
  • the orientation point P1 of the axis of easy magnetization in the first magnet 232a on the side closer to the stator winding 61 was set at the center of the stator winding 61.
  • the torque can be achieved.
  • the configuration of the third embodiment may be adopted in a rotating electric machine having an inner rotor structure like the second embodiment.
  • an SPM rotor surface magnet type rotor
  • the first magnet 232a and the second magnet 232b are directly stacked and fixed with adhesive or the like.
  • the magnet unit 22 may be configured with three or more layers of magnets in the radial direction.
  • the stator side circumferential surfaces of the magnets 32, 132, 232 may be covered with a thin protective sheet 41, as shown in FIG.
  • the protective sheet 41 may be made of, for example, a nonmagnetic metal, copper with low magnetic resistance, or a nonmagnetic material such as resin. Thereby, scattering and falling off of the magnets 32, 132, 232 can be suppressed.
  • the protective sheet 41 corresponds to a scattering prevention member.
  • the soft magnetic material 42 may be interposed in the gap between the magnets 32, 132, 232 in the circumferential direction on the q-axis side.
  • the magnet magnetic paths of circumferentially adjacent magnets 32, 132, 232 can be connected via the q-axis, and the surface magnetic flux density can be improved.
  • magnetic flux leakage can be suppressed while reducing the amount of magnets.
  • the axis of easy magnetization is formed in a straight line, but it may be formed in a curved or arcuate shape.
  • a rotating electric machine (10) in which one of the field element and the armature is a rotor in which one of the field element and the armature is a rotor,
  • the axis of easy magnetization in the magnets (32, 132, 232) constituting the magnet section is oriented on the d-axis side, which is the magnetic pole center, compared to the q-axis side, which is the magnetic pole boundary, and the d-axis, which is the magnetic pole center.
  • a magnet magnetic path is formed along the axis of easy magnetization.
  • the axis of easy magnetization is oriented so as to concentrate toward a predetermined orientation point (P1, P100) or to spread radially from the orientation point.
  • P1, P100 a predetermined orientation point
  • the orientation point is set closer to the armature than the magnet portion on the d-axis.
  • the magnets constituting the magnet section are composed of multiple layers in the radial direction of the rotor, an orientation point (P1) of the axis of easy magnetization in the first magnet (232a) disposed on the armature side in the radial direction; and a second magnet disposed on the anti-armature side with respect to the first magnet in the radial direction.
  • the rotating electric machine according to any one of configurations 1 to 4, wherein the orientation point (P100) of the easy axis of magnetization in (232b) is different on the d-axis.
  • the magnet section includes a plurality of magnets arranged side by side in the circumferential direction, The rotating electric machine according to any one of configurations 1 to 6, wherein the magnet is divided on the q-axis side, and a soft magnetic material (42) is arranged in a gap between the adjacent magnets on the q-axis. .

Abstract

The direction of the easy magnetization axis of a magnet (32, 132, 232) constituting a magnet part (22) of a rotary electric machine (10) is oriented so as to be parallel to the d axis which is the magnetic pole center nearer to the d axis-side, the d axis being the magnetic pole center, than to a q axis-side, the q axis being a magnetic pole boundary, so that a magnet path is formed along the easy magnetization axis. As viewed from the axial direction of the rotor, the easy magnetization axis is oriented so as to be focused toward a predetermined orientation point (P1, P10, P100), or alternatively, so as to expand radially from the orientation point. Additionally, the orientation point is set further to the armature-side than the magnet part on the d axis.

Description

回転電機rotating electric machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年4月14日に出願された日本出願番号2022-067193号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-067193 filed on April 14, 2022, and the contents thereof are incorporated herein.
 この明細書における開示は、回転電機に関する。 The disclosure in this specification relates to a rotating electrical machine.
 従来、磁石の表面磁束密度を正弦波状に近づけるため、磁石における配向状態について種々の工夫を施している(例えば、特許文献1)。特許文献1の開示において、磁石の磁化容易軸は、磁極中心であるd軸に近づくほどd軸に対して平行に近い向きとなるように配向されている。これにより、d軸に近づくほど、磁束を集中させ、磁石の表面磁束密度を正弦波状に近づけることが可能となる。 Conventionally, in order to make the surface magnetic flux density of a magnet approximate to a sine wave, various efforts have been made to the orientation state of the magnet (for example, Patent Document 1). In the disclosure of Patent Document 1, the axis of easy magnetization of the magnet is oriented such that the closer it gets to the d-axis, which is the center of the magnetic pole, the more parallel it becomes to the d-axis. As a result, the closer the magnetic flux is to the d-axis, the more the magnetic flux can be concentrated, and the surface magnetic flux density of the magnet can be made closer to a sine wave shape.
特開2019-122237号公報JP2019-122237A
 ところで、高トルクの回転電機を実現させる場合、磁束をどのように集中させるかについて、さらなる工夫の余地があることがわかった。 By the way, in order to realize a high-torque rotating electric machine, it was found that there is room for further improvement in how to concentrate the magnetic flux.
 本開示は、上記事情に鑑みてなされたものであり、その主たる目的は、高トルクの回転電機を提供することにある。 The present disclosure has been made in view of the above circumstances, and its main purpose is to provide a high-torque rotating electrical machine.
 上記課題を解決するための第1の手段は、周方向に極性が交互となる複数の磁極を含む磁石部を有する界磁子と、径方向において前記磁石部に対向して配置される電機子と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機であって、前記磁石部を構成する磁石における磁化容易軸は、その向きが磁極境界であるq軸の側に比べて磁極中心であるd軸の側において、磁極中心であるd軸に平行となるように配向され、当該磁化容易軸に沿って磁石磁路が形成されており、前記回転子の軸方向から見て、前記磁化容易軸は、予め決められた配向点に向かって集中するように、若しくは、前記配向点から放射状に広がるように、配向されており、当該配向点は、d軸上において、前記磁石部よりも前記電機子側に設定されていることを要旨とする。 A first means for solving the above problem includes a field element having a magnet portion including a plurality of magnetic poles with alternating polarities in the circumferential direction, and an armature disposed facing the magnet portion in the radial direction. A rotating electrical machine comprising either the field element or the armature as a rotor, wherein the axis of easy magnetization in the magnets constituting the magnet section is the q-axis whose direction is the magnetic pole boundary. The magnets are oriented parallel to the d-axis, which is the magnetic pole center, on the d-axis side, which is the magnetic pole center, compared to the side of the rotor. Viewed from the axial direction, the axis of easy magnetization is oriented so as to concentrate toward a predetermined orientation point or to spread radially from the orientation point, and the orientation point is aligned with the d-axis. In the above, the gist is that the magnet portion is set closer to the armature than the magnet portion.
 これにより、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。したがって、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石部を好適に実現することができる。それとともに、高トルクとすることが可能となる。 As a result, the magnet magnetic flux on the d-axis is strengthened, and changes in the magnetic flux near the q-axis are suppressed. Therefore, it is possible to suitably realize a magnet portion in which the surface magnetic flux changes gradually from the q-axis to the d-axis in each magnetic pole. At the same time, it becomes possible to achieve high torque.
 第2の手段は、第1の手段において、前記配向点は、d軸上において、前記電機子の領域内に配置されるように設定されている。 In the second means, in the first means, the orientation point is set to be located within a region of the armature on the d-axis.
 これにより、磁束を集中させ、より高トルクを実現することが可能となる。 This makes it possible to concentrate magnetic flux and achieve higher torque.
 第3の手段は、第2の手段において、前記配向点は、前記回転子の径方向における前記電機子の領域の中央よりも前記界磁子側に配置されるように設定されている。 In a third means, in the second means, the orientation point is set to be located closer to the field element than the center of the region of the armature in the radial direction of the rotor.
 これにより、磁束を集中させ、より高トルクを実現することが可能となる。 This makes it possible to concentrate magnetic flux and achieve higher torque.
 第4の手段は、第2の手段において、前記電機子は、導線部と、導線部が固定される電機子コアと、を備え、前記配向点は、d軸上において、径方向における導線部の中心に設定されている。 In a fourth means, in the second means, the armature includes a conducting wire portion and an armature core to which the conducting wire portion is fixed, and the orientation point is on the d-axis and the conducting wire portion in the radial direction. is set at the center of
 これにより、導線部に磁束を集中させ、より高トルクを実現することが可能となる。 This makes it possible to concentrate magnetic flux on the conducting wire portion and achieve higher torque.
 第5の手段は、第1の手段において、前記磁石部を構成する磁石は、前記回転子の径方向において複数層で構成されており、前記径方向において電機子側に配置される第1磁石における磁化容易軸の配向点と、前記径方向において前記第1磁石よりも反電機子側に配置される第2磁石における磁化容易軸の配向点とは、d軸上において異なる。 According to a fifth means, in the first means, the magnets constituting the magnet portion are composed of a plurality of layers in the radial direction of the rotor, and the first magnet is arranged on the armature side in the radial direction. The orientation point of the easy axis of magnetization in the d-axis and the orientation point of the easy axis of magnetization in the second magnet disposed on the opposite armature side than the first magnet in the radial direction are different on the d-axis.
 これにより、磁石部の表面磁石密度をより正弦波形状に近づけることが可能となり、それに伴い、コギングトルクを抑制することができる。 This makes it possible to make the surface magnet density of the magnet part closer to a sine wave shape, and accordingly, it is possible to suppress cogging torque.
 第6の手段は、第1の手段において、前記磁石部は、周方向に並べて配置される複数の磁石と、複数の前記磁石の表面を覆う非磁性材料の飛散防止部材とを備える。 According to a sixth means, in the first means, the magnet portion includes a plurality of magnets arranged side by side in the circumferential direction, and a scattering prevention member made of a non-magnetic material that covers the surfaces of the plurality of magnets.
 これにより、磁石の飛散や脱落を防止することができる。 This can prevent the magnet from scattering or falling off.
 第7の手段は、第1の手段において、前記磁石部は、周方向に並べて配置される複数の磁石を備え、前記磁石は、q軸側で分割されており、q軸において隣接する前記磁石間の隙間には、軟磁性体が配置されている。 In a seventh means, in the first means, the magnet section includes a plurality of magnets arranged side by side in the circumferential direction, the magnets are divided on the q-axis side, and the magnets adjacent on the q-axis A soft magnetic material is placed in the gap between them.
 これにより、磁気回路において、q軸を介して周方向に隣り合う磁石間の磁石磁路を接続することができる。これにより、磁束密度を向上させることが可能となり、高トルクを実現することが可能となる。 Thereby, in the magnetic circuit, the magnet magnetic paths between circumferentially adjacent magnets can be connected via the q-axis. This makes it possible to improve magnetic flux density and achieve high torque.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態における回転電機の全体を示す斜視図であり、 図2は、回転電機の平面図であり、 図3は、回転電機の縦断面図であり、 図4は、回転電機の横断面図であり、 図5は、回転電機の分解断面図であり、 図6は、回転子の断面図であり、 図7は、磁石ユニットの断面構造を示す部分横断面図であり、 図8は、第2実施形態の磁石ユニットの断面構造を示す部分横断面図であり、 図9は、第3実施形態の磁石ユニットの断面構造を示す部分横断面図であり、 図10は、変形例の磁石ユニットの断面構造を示す部分横断面図であり、 図11は、変形例の磁石ユニットの断面構造を示す部分横断面図である。
The above objects and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a perspective view showing the entire rotating electrical machine in the first embodiment, FIG. 2 is a plan view of the rotating electric machine, FIG. 3 is a longitudinal cross-sectional view of the rotating electric machine, FIG. 4 is a cross-sectional view of the rotating electric machine, FIG. 5 is an exploded cross-sectional view of the rotating electric machine, FIG. 6 is a cross-sectional view of the rotor, FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit, FIG. 8 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit of the second embodiment, FIG. 9 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit of the third embodiment, FIG. 10 is a partial cross-sectional view showing a cross-sectional structure of a magnet unit of a modified example, FIG. 11 is a partial cross-sectional view showing the cross-sectional structure of a modified magnet unit.
 本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、航空機用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。 The rotating electrical machine in this embodiment is used, for example, as a vehicle power source. However, rotating electric machines can be widely used for industrial purposes, vehicles, aircraft, home appliances, OA equipment, game machines, and the like. Note that in each of the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the explanations thereof will be referred to for the parts with the same reference numerals.
 (第1実施形態)
 本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1~図5に示す。図1は、回転電機10の全体を示す斜視図であり、図2は、回転電機10の平面図であり、図3は、回転電機10の縦断面図(図2の3-3線断面図)であり、図4は、回転電機10の横断面図(図3の4-4線断面図)であり、図5は、回転電機10の構成要素を分解して示す分解断面図である。以下の記載では、回転電機10において、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
(First embodiment)
The rotating electric machine 10 according to the present embodiment is a synchronous multiphase AC motor, and has an outer rotor structure (external rotation structure). An outline of the rotating electric machine 10 is shown in FIGS. 1 to 5. 1 is a perspective view showing the entire rotating electrical machine 10, FIG. 2 is a plan view of the rotating electrical machine 10, and FIG. 3 is a longitudinal sectional view of the rotating electrical machine 10 (a sectional view taken along line 3-3 in FIG. ), and FIG. 4 is a cross-sectional view (cross-sectional view taken along the line 4--4 in FIG. 3) of the rotating electrical machine 10, and FIG. 5 is an exploded sectional view showing the components of the rotating electrical machine 10 in an exploded manner. In the following description, in the rotating electrical machine 10, the direction in which the rotating shaft 11 extends is referred to as the axial direction, the direction extending radially from the center of the rotating shaft 11 is referred to as the radial direction, and the direction extending circumferentially around the rotating shaft 11 as the center is referred to as the circumferential direction. direction.
 回転電機10は、大別して、回転子20、固定子ユニット50及びバスバーモジュール200を有する回転電機本体と、その回転電機本体を囲むように設けられるハウジング241及びハウジングカバー242とを備えている。これら各部材はいずれも、回転子20に一体に設けられた回転軸11に対して同軸に配置されており、所定順序で軸方向に組み付けられることで回転電機10が構成されている。回転軸11は、固定子ユニット50及びハウジング241にそれぞれ設けられた一対の軸受12,13に支持され、その状態で回転可能となっている。なお、軸受12,13は、例えば内輪と外輪とそれらの間に配置された複数の玉とを有するラジアル玉軸受である。回転軸11の回転により、例えば車両の車軸が回転する。回転電機10は、ハウジング241が車体フレーム等に固定されることにより車両に搭載可能となっている。 The rotating electrical machine 10 is roughly divided into a rotating electrical machine main body having a rotor 20, a stator unit 50, and a busbar module 200, and a housing 241 and a housing cover 242 provided to surround the rotating electrical machine main body. All of these members are arranged coaxially with respect to the rotating shaft 11 that is integrally provided to the rotor 20, and are assembled in the axial direction in a predetermined order to configure the rotating electrical machine 10. The rotating shaft 11 is supported by a pair of bearings 12 and 13 provided in the stator unit 50 and the housing 241, respectively, and is rotatable in this state. Note that the bearings 12 and 13 are, for example, radial ball bearings having an inner ring, an outer ring, and a plurality of balls arranged between them. The rotation of the rotating shaft 11 causes, for example, the axle of the vehicle to rotate. The rotating electrical machine 10 can be mounted on a vehicle by fixing the housing 241 to a vehicle body frame or the like.
 回転電機10において、固定子ユニット50は回転軸11を囲むように設けられ、その固定子ユニット50の径方向外側に回転子20が配置されている。固定子ユニット50は、固定子60と、その径方向内側に組み付けられた固定子ホルダ70とを有している。回転子20と固定子60とはエアギャップを挟んで径方向に対向配置されており、回転子20が回転軸11と共に一体回転することにより、固定子60の径方向外側にて回転子20が回転する。回転子20が「界磁子」に相当し、固定子60が「電機子」に相当する。 In the rotating electrical machine 10, the stator unit 50 is provided so as to surround the rotating shaft 11, and the rotor 20 is arranged on the radially outer side of the stator unit 50. The stator unit 50 includes a stator 60 and a stator holder 70 assembled inside the stator 60 in the radial direction. The rotor 20 and the stator 60 are arranged to face each other in the radial direction with an air gap in between, and as the rotor 20 rotates together with the rotating shaft 11, the rotor 20 rotates on the outside of the stator 60 in the radial direction. Rotate. The rotor 20 corresponds to a "field element" and the stator 60 corresponds to an "armature."
 固定子60は、固定子巻線61と固定子コア62とを有している。なお、固定子巻線61が「電機子巻線」に相当する。本実施形態において、固定子60は、スロットを形成するためのティースを有していないスロットレス構造を有するものであるが、ティースを設けてもよい。 The stator 60 has a stator winding 61 and a stator core 62. Note that the stator winding 61 corresponds to the "armature winding". In this embodiment, the stator 60 has a slotless structure that does not have teeth for forming slots, but teeth may be provided.
 図6は、回転子20の縦断面図である。図6に示すように、回転子20は、略円筒状の回転子キャリア21と、その回転子キャリア21に固定された環状の磁石ユニット22とを有している。回転子キャリア21は、円筒状をなす円筒部23と、その円筒部23の軸方向一端に設けられた端板部24とを有しており、それらが一体化されることで構成されている。回転子キャリア21は、円筒部23の径方向内側に環状に磁石ユニット22が固定されている。端板部24には貫通孔24aが形成されており、その貫通孔24aに挿通された状態で、ボルト等の締結具25により端板部24に回転軸11が固定されている。回転軸11は、軸方向に交差(直交)する向きに延びるフランジ11aを有しており、そのフランジ11aと端板部24とが面接合されている状態で、回転軸11に回転子キャリア21が固定されている。 FIG. 6 is a longitudinal cross-sectional view of the rotor 20. As shown in FIG. 6, the rotor 20 includes a substantially cylindrical rotor carrier 21 and an annular magnet unit 22 fixed to the rotor carrier 21. As shown in FIG. The rotor carrier 21 has a cylindrical portion 23 having a cylindrical shape and an end plate portion 24 provided at one end in the axial direction of the cylindrical portion 23, and is configured by integrating these parts. . In the rotor carrier 21, a magnet unit 22 is fixed to the radially inner side of the cylindrical portion 23 in an annular shape. A through hole 24a is formed in the end plate portion 24, and the rotating shaft 11 is fixed to the end plate portion 24 by a fastener 25 such as a bolt while being inserted into the through hole 24a. The rotating shaft 11 has a flange 11a extending in a direction intersecting (orthogonal to) the axial direction, and the rotor carrier 21 is attached to the rotating shaft 11 in a state where the flange 11a and the end plate portion 24 are surface-joined. is fixed.
 磁石ユニット22は、円筒状の磁石ホルダ31と、その磁石ホルダ31の内周面に固定された複数の磁石32と、軸方向両側のうち回転子キャリア21の端板部24とは逆側に固定されたエンドプレート33とを有している。本実施形態において、磁石ホルダ31は、「磁石保持部」に相当する。エンドプレート33は、円環状に形成されており、磁石32の軸方向端面の一部又は全部を覆い、磁石32の脱落を防止するように構成されている。各磁石32は、磁石ホルダ31の内周面に接着剤等により固定されている。 The magnet unit 22 includes a cylindrical magnet holder 31, a plurality of magnets 32 fixed to the inner circumferential surface of the magnet holder 31, and a magnet holder 31 on the opposite side from the end plate portion 24 of the rotor carrier 21 on both sides in the axial direction. It has a fixed end plate 33. In this embodiment, the magnet holder 31 corresponds to a "magnet holder". The end plate 33 is formed in an annular shape and is configured to cover part or all of the axial end surface of the magnet 32 to prevent the magnet 32 from falling off. Each magnet 32 is fixed to the inner peripheral surface of the magnet holder 31 with an adhesive or the like.
 磁石ホルダ31は、軸方向において磁石32と同じ長さ寸法を有している。磁石32は、磁石ホルダ31に径方向外側から包囲された状態で設けられている。磁石ホルダ31及び磁石32は、軸方向一方側の端部においてエンドプレート33に当接した状態で固定されている。磁石ユニット22が「磁石部」に相当する。 The magnet holder 31 has the same length dimension as the magnet 32 in the axial direction. The magnet 32 is surrounded by the magnet holder 31 from the outside in the radial direction. The magnet holder 31 and the magnet 32 are fixed in contact with an end plate 33 at one end in the axial direction. The magnet unit 22 corresponds to a "magnet section".
 図7は、磁石ユニット22の断面構造を示す部分横断面図である。磁石ユニット22において、磁石32は、回転子20の周方向に沿って極性が交互に変わるように並べて設けられている。これにより、磁石ユニット22は、周方向に複数の磁極を有する。磁石32は、極異方性の永久磁石であり、固有保磁力が400[kA/m]以上であり、かつ残留磁束密度Brが1.0[T]以上である焼結ネオジム磁石を用いて構成されている。 FIG. 7 is a partial cross-sectional view showing the cross-sectional structure of the magnet unit 22. In the magnet unit 22, the magnets 32 are arranged in parallel along the circumferential direction of the rotor 20 so that their polarities alternate. Thereby, the magnet unit 22 has a plurality of magnetic poles in the circumferential direction. The magnet 32 is a polar anisotropic permanent magnet, using a sintered neodymium magnet having an intrinsic coercive force of 400 [kA/m] or more and a residual magnetic flux density Br of 1.0 [T] or more. It is configured.
 これらの複数の磁石32は、q軸にそれぞれ割面を有するものとなっており、それら各磁石32が互いに当接又は近接した状態で配置されている。つまり、磁石32は、1つの磁石により1磁極を構成するものとなっている。なお、1磁極を複数の磁石で構成するようにしてもよい。例えば、d軸及びq軸に割面を有するようにして、2つの磁石の組み合わせにより1磁極を構成するようにしてもよい。 These plurality of magnets 32 each have a split surface on the q-axis, and the magnets 32 are arranged in contact with or close to each other. That is, in the magnet 32, one magnet constitutes one magnetic pole. Note that one magnetic pole may be composed of a plurality of magnets. For example, one magnetic pole may be configured by a combination of two magnets with split surfaces on the d-axis and the q-axis.
 次に、磁石32の磁化容易軸について説明する。図7には、磁石32の磁化容易軸の向きを矢印にて示している。磁石32において径方向内側(固定子60側)の周面が、磁束の授受が行われる磁束作用面34である。磁石ユニット22は、磁石32の磁束作用面34において、磁極中心であるd軸付近の領域に集中的に磁束を生じさせるものとなっている。 Next, the axis of easy magnetization of the magnet 32 will be explained. In FIG. 7, the direction of the axis of easy magnetization of the magnet 32 is indicated by an arrow. The radially inner circumferential surface (on the stator 60 side) of the magnet 32 is a magnetic flux acting surface 34 where magnetic flux is transferred. The magnet unit 22 is configured to generate magnetic flux intensively in a region near the d-axis, which is the center of the magnetic pole, on the magnetic flux acting surface 34 of the magnet 32.
 詳しく説明すると、本実施形態の各磁石32における磁化容易軸は、直線状の磁化容易軸であって、周方向の位置により径方向に対する角度(傾斜角度α)が徐変するものである。図7に示すように、本実施形態の磁石32の磁化容易軸は、d軸上において設定された配向点P1に向かって集中するように、若しくは、配向点P1から放射状に広がるように、配向されている。図7の真ん中の磁石32では、磁化容易軸の方向(磁化方向、磁化ベクトル)が配向点P1に集中する様子を示しているが、当該磁石32に隣接する磁石32では、極性が異なるので、磁化方向が配向点P1から放射状に広がっている様子を示している。 To explain in detail, the axis of easy magnetization in each magnet 32 of this embodiment is a linear easy axis of magnetization, and the angle (inclination angle α) with respect to the radial direction gradually changes depending on the position in the circumferential direction. As shown in FIG. 7, the axis of easy magnetization of the magnet 32 of this embodiment is oriented so that it is concentrated toward the orientation point P1 set on the d-axis, or so as to spread radially from the orientation point P1. has been done. In the magnet 32 in the middle of FIG. 7, the direction of the axis of easy magnetization (magnetization direction, magnetization vector) is shown to be concentrated at the orientation point P1, but since the polarity is different in the magnets 32 adjacent to the magnet 32, It shows how the magnetization direction spreads radially from the orientation point P1.
 この配向点P1は、図7に示すように、d軸上において、固定子60の領域内に配置されるように設定されている。固定子60の領域内とは、径方向における固定子巻線61の内周面(回転子20に最も近い側の面)から、固定子コア62の外周面(回転子20から最も遠い側の面)の間における領域内のことである。 As shown in FIG. 7, this orientation point P1 is set to be located within the region of the stator 60 on the d-axis. The region of the stator 60 is defined as the area from the inner circumferential surface of the stator winding 61 (the surface closest to the rotor 20) to the outer circumferential surface of the stator core 62 (the farthest side from the rotor 20) in the radial direction. It is within the area between the two surfaces.
 より詳しく説明すると、配向点P1は、回転子20の径方向における固定子60の領域の中央よりも回転子20の側に配置されるように設定されている。なお、本実施形態のように、配向点P1が、d軸上において、径方向における固定子巻線61の中心に設定されていると、より好ましい。 To explain in more detail, the orientation point P1 is set to be located closer to the rotor 20 than the center of the region of the stator 60 in the radial direction of the rotor 20. Note that, as in this embodiment, it is more preferable that the orientation point P1 is set at the center of the stator winding 61 in the radial direction on the d-axis.
 以上のように、磁化容易軸が配向されているため、図7に示すように、周方向において、磁極境界であるq軸側から磁極中心であるd軸側に近づくにつれて、磁化容易軸が磁極中心であるd軸に平行となるように、各磁化容易軸の傾斜角度αが、径方向に対して小さくなるように設定されていることとなる。磁石32の磁化容易軸は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べてその向きがd軸に平行となるように配向がなされているともいえる。そして、この磁化容易軸に沿って磁石磁路が形成されている。 As described above, since the axis of easy magnetization is oriented, as shown in FIG. The inclination angle α of each axis of easy magnetization is set to be small with respect to the radial direction so as to be parallel to the central d-axis. It can also be said that the axis of easy magnetization of the magnet 32 is oriented so that the orientation thereof is more parallel to the d-axis on the d-axis side, which is the magnetic pole center, than on the q-axis side, which is the magnetic pole boundary. A magnet magnetic path is formed along this axis of easy magnetization.
 上述したように、磁石32において、磁石磁路は直線状に形成されているが、径方向に対して傾きを有しているため、磁石32の径方向の厚さ寸法よりも磁石磁路長が長くなっている。これにより、磁石32のパーミアンスが上昇し、同じ磁石量でありながら、磁石量の多い磁石と同等の能力を発揮させることが可能となっている。 As described above, in the magnet 32, the magnet magnetic path is formed in a straight line, but has an inclination with respect to the radial direction, so the length of the magnet magnetic path is longer than the radial thickness of the magnet 32. is getting longer. This increases the permeance of the magnet 32, making it possible to exhibit the same ability as a magnet with a larger amount of magnets, even though the amount of magnets is the same.
 磁石32は、上記のとおりの磁石磁路を有しており、q軸では周方向に隣り合う磁石32どうしでN極とS極とが向かい合うこととなる。そのため、q軸近傍でのパーミアンスの向上を図ることができる。また、q軸を挟んで両側の磁石32は互いに吸引し合うため、これら各磁石32は互いの接触状態を保持できる。そのため、やはりパーミアンスの向上に寄与するものとなっている。 The magnet 32 has a magnet magnetic path as described above, and the N and S poles of circumferentially adjacent magnets 32 face each other on the q-axis. Therefore, permeance near the q-axis can be improved. Furthermore, since the magnets 32 on both sides of the q-axis attract each other, these magnets 32 can maintain contact with each other. Therefore, it also contributes to improving permeance.
 磁石ユニット22では、各磁石32により、隣接するN,S極間を磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。また、磁石32の磁化容易軸は、d軸上において設定された配向点P1に向かって集中するように、若しくは、配向点P1から放射状に広がるように、配向されている。このため、磁束密度分布が正弦波に近いものとなる。その結果、ラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることが可能となっている。つまり、上記構成の各磁石32によれば、磁石ユニット22においてd軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石ユニット22を好適に実現することができる。 In the magnet unit 22, magnetic flux flows between adjacent N and S poles of each magnet 32, so the magnet magnetic path is longer than, for example, a radial anisotropic magnet. Further, the axis of easy magnetization of the magnet 32 is oriented so as to concentrate toward the orientation point P1 set on the d-axis, or to spread radially from the orientation point P1. Therefore, the magnetic flux density distribution becomes close to a sine wave. As a result, unlike the magnetic flux density distribution of a radial anisotropic magnet, the magnetic flux can be concentrated on the center side of the magnetic pole, making it possible to increase the torque of the rotating electric machine 10. That is, according to each of the magnets 32 having the above configuration, the magnet magnetic flux on the d-axis in the magnet unit 22 is strengthened, and changes in the magnetic flux near the q-axis are suppressed. Thereby, it is possible to suitably realize the magnet unit 22 in which the surface magnetic flux changes gradually from the q-axis to the d-axis in each magnetic pole.
 上記第1実施形態における効果について説明する。 The effects of the first embodiment will be explained.
 (1)軸方向から見て、磁石32の磁化容易軸は、予め決められた配向点P1に向かって集中するように、若しくは、配向点P1から放射状に広がるように、配向されており、当該配向点P1は、d軸上において、磁石ユニット22よりも固定子60の側に設定されている。磁石ユニット22においてd軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化が正弦波形状になだらかになる磁石ユニット22を好適に実現することができる。また、d軸において磁束を集中させ、高トルクを実現することが可能となる。 (1) When viewed from the axial direction, the axis of easy magnetization of the magnet 32 is oriented so as to concentrate toward a predetermined orientation point P1 or to spread radially from the orientation point P1. The orientation point P1 is set closer to the stator 60 than the magnet unit 22 on the d-axis. In the magnet unit 22, the magnet magnetic flux on the d-axis is strengthened, and changes in the magnetic flux near the q-axis are suppressed. Thereby, it is possible to suitably realize the magnet unit 22 in which the surface magnetic flux change from the q-axis to the d-axis in each magnetic pole is smooth in the shape of a sine wave. Furthermore, it is possible to concentrate magnetic flux on the d-axis and achieve high torque.
 (2)配向点P1は、d軸上において、固定子60の領域内に配置されるように設定されている。より詳しくは、配向点P1は、径方向における固定子60の領域の中央よりも回転子20の側に配置されるように設定されている。そして、本実施形態において、配向点P1は、d軸上において、径方向における固定子巻線61の中心に設定されている。これにより、固定子巻線61に磁石32からの磁束を固定子巻線61に集中させることができ、高トルクを実現することができる。 (2) The orientation point P1 is set to be located within the region of the stator 60 on the d-axis. More specifically, the orientation point P1 is set to be located closer to the rotor 20 than the center of the region of the stator 60 in the radial direction. In this embodiment, the orientation point P1 is set at the center of the stator winding 61 in the radial direction on the d-axis. Thereby, the magnetic flux from the magnet 32 can be concentrated on the stator winding 61, and high torque can be achieved.
 (第2実施形態)
 上記第1実施形態では、アウタロータ構造(外転構造)を採用したが、インナロータ構造(内転構造)を採用してもよい。この場合における磁石132の磁化容易軸について図8に図示する。
(Second embodiment)
In the first embodiment, an outer rotor structure (external rotation structure) is adopted, but an inner rotor structure (internal rotation structure) may be adopted. The axis of easy magnetization of the magnet 132 in this case is illustrated in FIG.
 図8に示すように、磁石132において径方向外側(固定子60側)の周面が、磁束の授受が行われる磁束作用面134である。第2実施形態の各磁石132における磁化容易軸は、直線状の磁化容易軸であって、周方向の位置により径方向に対する角度(傾斜角度α)が徐変するものである。図8に示すように、本実施形態の磁石132の磁化容易軸は、d軸上において設定された配向点P10に向かって集中するように、若しくは、配向点P10から放射状に広がるように、配向されている。 As shown in FIG. 8, the radially outer (stator 60 side) circumferential surface of the magnet 132 is a magnetic flux action surface 134 where magnetic flux is transferred. The easy axis of magnetization in each magnet 132 of the second embodiment is a linear easy axis of magnetization, and the angle (inclination angle α) with respect to the radial direction gradually changes depending on the position in the circumferential direction. As shown in FIG. 8, the axis of easy magnetization of the magnet 132 of this embodiment is oriented so that it is concentrated toward the orientation point P10 set on the d-axis, or so as to spread radially from the orientation point P10. has been done.
 この配向点P10は、図8に示すように、d軸上において、固定子60の領域内に配置されるように設定されている。より詳しく説明すると、配向点P1は、回転子20の径方向における固定子60の領域の中央よりも回転子20の側に配置されるように設定されている。なお、本実施形態のように、配向点P10が、d軸上において、径方向における固定子巻線61の中心に設定されていると、より好ましい。 As shown in FIG. 8, this orientation point P10 is set to be located within the area of the stator 60 on the d-axis. To explain in more detail, the orientation point P1 is set to be located closer to the rotor 20 than the center of the area of the stator 60 in the radial direction of the rotor 20. Note that it is more preferable that the orientation point P10 is set at the center of the stator winding 61 in the radial direction on the d-axis as in the present embodiment.
 以上のように、磁化容易軸が配向されているため、図8に示すように、周方向において、磁極境界であるq軸側から磁極中心であるd軸側に近づくにつれて、磁化容易軸が磁極中心であるd軸に平行となるように、各磁化容易軸の傾斜角度αが、径方向に対して小さくなるように設定されていることとなる。そして、この磁化容易軸に沿って磁石磁路が形成されている。 As described above, since the axis of easy magnetization is oriented, as shown in FIG. The inclination angle α of each axis of easy magnetization is set to be small with respect to the radial direction so as to be parallel to the central d-axis. A magnet magnetic path is formed along this axis of easy magnetization.
 (第3実施形態)
 上記第1実施形態の磁石ユニット22の構成の一部を以下に説明するように変更してよい。図9に示すように、第3実施形態では、回転子20は、埋込磁石型ロータ(IPMロータ)として構成されており、界磁子コアとしての回転子コア231と、その回転子コア231に埋設された状態で固定される複数の磁石232とを備えている。
(Third embodiment)
A part of the configuration of the magnet unit 22 of the first embodiment may be changed as described below. As shown in FIG. 9, in the third embodiment, the rotor 20 is configured as an embedded magnet rotor (IPM rotor), and includes a rotor core 231 as a field core, and a rotor core 231 as a field core. A plurality of magnets 232 are embedded and fixed in the magnet.
 図9に示すように、第3実施形態の磁石232は、径方向において複数層で構成されている。第3実施形態では、径方向に内外2層となる磁石232により構成されている。内側(固定子60側)の磁石232を、第1磁石232aと示し、外側(反固定子60側)の磁石232を、第2磁石232bと示す場合がある。 As shown in FIG. 9, the magnet 232 of the third embodiment is composed of multiple layers in the radial direction. In the third embodiment, the magnet 232 is comprised of two layers, an inner layer and an outer layer, in the radial direction. The magnet 232 on the inside (on the stator 60 side) may be referred to as a first magnet 232a, and the magnet 232 on the outside (on the side opposite to the stator 60) may be referred to as a second magnet 232b.
 次に、第1磁石232aの磁化容易軸について説明する。図9(a)には、第1磁石232aの磁化容易軸(磁化方向、磁化ベクトル)の向きを矢印にて示している。第1磁石232aにおける磁化容易軸は、第1実施形態と同様に、直線状の磁化容易軸であって、周方向の位置により径方向に対する角度(傾斜角度α)が徐変するものである。図9(a)に示すように、第1磁石232aの磁化容易軸は、第1実施形態の磁石32と同様に、d軸上において設定された配向点P1に向かって集中するように、若しくは、配向点P1から放射状に広がるように、配向されている。なお、図9(a)では、磁化容易軸の方向(矢印)が、配向点P1に向かって集中するように図示されているが、第1磁石232aの極性により矢印方向が反対となることは言うまでもない。つまり、極性が変われば、磁化容易軸の方向は、配向点P1から放射状に広がる方向に指し示すこととなる。 Next, the easy magnetization axis of the first magnet 232a will be explained. In FIG. 9A, the direction of the axis of easy magnetization (magnetization direction, magnetization vector) of the first magnet 232a is indicated by an arrow. The easy axis of magnetization in the first magnet 232a is a linear easy axis of magnetization, as in the first embodiment, and the angle (inclination angle α) with respect to the radial direction gradually changes depending on the position in the circumferential direction. As shown in FIG. 9(a), the axis of easy magnetization of the first magnet 232a is concentrated toward the orientation point P1 set on the d-axis, similar to the magnet 32 of the first embodiment, or , are oriented to spread radially from the orientation point P1. Note that in FIG. 9(a), the direction of the axis of easy magnetization (arrow) is shown to be concentrated toward the orientation point P1, but the direction of the arrow may be opposite depending on the polarity of the first magnet 232a. Needless to say. In other words, if the polarity changes, the direction of the axis of easy magnetization points in a direction that radially spreads from the orientation point P1.
 次に、第2磁石232bの磁化容易軸について説明する。図9(b)には、第2磁石232bの磁化容易軸(磁化方向、磁化ベクトル)の向きを矢印にて示している。第2磁石232bにおける磁化容易軸は、直線状の磁化容易軸であって、周方向の位置により径方向に対する角度(傾斜角度β)が徐変するものである。図9(b)に示すように、第2磁石232bの磁化容易軸は、第1磁石232aと異なり、d軸上において設定された配向点P100に向かって集中するように、若しくは、配向点P100から放射状に広がるように、配向されている。なお、図9(b)では、磁化容易軸の方向(矢印)が、配向点P100に向かって集中するように図示されているが、第2磁石232bの極性により矢印方向が反対となることは言うまでもない。 Next, the easy magnetization axis of the second magnet 232b will be explained. In FIG. 9(b), the direction of the axis of easy magnetization (magnetization direction, magnetization vector) of the second magnet 232b is indicated by an arrow. The axis of easy magnetization in the second magnet 232b is a straight axis of easy magnetization, and the angle (inclination angle β) with respect to the radial direction gradually changes depending on the position in the circumferential direction. As shown in FIG. 9(b), unlike the first magnet 232a, the axis of easy magnetization of the second magnet 232b is concentrated toward the orientation point P100 set on the d-axis, or It is oriented so that it spreads radially from the center. In addition, in FIG. 9(b), the direction of the axis of easy magnetization (arrow) is shown to be concentrated toward the orientation point P100, but the direction of the arrow may be opposite depending on the polarity of the second magnet 232b. Needless to say.
 第2磁石232bの磁化容易軸における配向点P100は、d軸上において、第1磁石232aの磁化容易軸における配向点P1よりも径方向において磁石ユニット22から離れるように設定されている。 The orientation point P100 on the easy axis of magnetization of the second magnet 232b is set on the d-axis to be further away from the magnet unit 22 in the radial direction than the orientation point P1 on the easy axis of the first magnet 232a.
 この配向点P100は、図9に示すように、d軸上において、固定子60の領域内に配置されるように設定されている。本実施形態では、固定子コア62に配向点P100が設定されている。なお、配向点P100は、回転子20の径方向における固定子60の領域の中央よりも回転子20の側に配置されるように設定されてもよく、固定子巻線61の径方向における中心に設定されていてもよい。また、第2磁石232bの配向点P100と,第1磁石232aの配向点P1とを同一の位置に設定してもよい。 As shown in FIG. 9, this orientation point P100 is set to be located within the region of the stator 60 on the d-axis. In this embodiment, an orientation point P100 is set on the stator core 62. Note that the orientation point P100 may be set to be located closer to the rotor 20 than the center of the region of the stator 60 in the radial direction of the rotor 20, and the orientation point P100 may be set to be located closer to the rotor 20 than the center of the area of the stator 60 in the radial direction of the rotor 20, and It may be set to . Furthermore, the orientation point P100 of the second magnet 232b and the orientation point P1 of the first magnet 232a may be set at the same position.
 この第3実施形態によれば、第1実施形態の効果に加えて以下のような効果を得ることができる。すなわち、第1磁石232aにおける磁化容易軸の配向点P1と、第2磁石232bにおける磁化容易軸の配向点P100とは、d軸上において異なるように設定した。これにより、第1磁石232aにおける磁化容易軸の配向点P1と、第2磁石232bにおける磁化容易軸の配向点P100とを一致させる場合に比較して、磁石ユニット22の表面磁束密度を正弦波形状により近づけることが可能となる。 According to the third embodiment, the following effects can be obtained in addition to the effects of the first embodiment. That is, the orientation point P1 of the easy axis of magnetization in the first magnet 232a and the orientation point P100 of the easy axis of magnetization in the second magnet 232b are set to be different on the d-axis. This allows the surface magnetic flux density of the magnet unit 22 to be shaped into a sine wave shape, compared to the case where the orientation point P1 of the easy axis of magnetization in the first magnet 232a and the orientation point P100 of the easy axis of magnetization in the second magnet 232b are made to match. It becomes possible to get closer.
 また、固定子巻線61に近い側の第1磁石232aにおける磁化容易軸の配向点P1を、固定子巻線61の中心に設定した。これにより、配向点P1の代わりに、固定子巻線61から遠い側の第2磁石232bにおける磁化容易軸の配向点P100を、固定子巻線61の中心に設定する場合に比較して、高トルクを実現することが可能となる。 Furthermore, the orientation point P1 of the axis of easy magnetization in the first magnet 232a on the side closer to the stator winding 61 was set at the center of the stator winding 61. As a result, compared to the case where the orientation point P100 of the axis of easy magnetization in the second magnet 232b on the side far from the stator winding 61 is set at the center of the stator winding 61 instead of the orientation point P1, the torque can be achieved.
 なお、第3実施形態の構成を第2実施形態のようなインナロータ構造の回転電機に採用してもよい。また、IPMロータでなく、第1実施形態のようなSPMロータ(表面磁石型ロータ)としてもよい。この場合、第1磁石232aと第2磁石232bを直接積層して、接着剤などで固定することとなる。また、磁石ユニット22を、径方向において3層以上の磁石により構成してもよい。 Note that the configuration of the third embodiment may be adopted in a rotating electric machine having an inner rotor structure like the second embodiment. Further, instead of the IPM rotor, an SPM rotor (surface magnet type rotor) like the first embodiment may be used. In this case, the first magnet 232a and the second magnet 232b are directly stacked and fixed with adhesive or the like. Further, the magnet unit 22 may be configured with three or more layers of magnets in the radial direction.
 (変形例)
 上記実施形態の構成の一部を変更した変形例について説明する。
(Modified example)
A modification example in which a part of the configuration of the above embodiment is changed will be described.
 ・上記実施形態において、磁石32,132,232の固定子側周面を、図10に示すように、薄膜状の保護シート41で覆ってもよい。保護シート41は、例えば、非磁性の金属、又は磁気抵抗が低い銅、あるいは樹脂などの非磁性材料で構成されていればよい。これにより、磁石32,132,232の飛散や脱落を抑制することができる。保護シート41が飛散防止部材に相当する。 - In the above embodiment, the stator side circumferential surfaces of the magnets 32, 132, 232 may be covered with a thin protective sheet 41, as shown in FIG. The protective sheet 41 may be made of, for example, a nonmagnetic metal, copper with low magnetic resistance, or a nonmagnetic material such as resin. Thereby, scattering and falling off of the magnets 32, 132, 232 can be suppressed. The protective sheet 41 corresponds to a scattering prevention member.
 ・上記実施形態において、図11に示すように、q軸側における周方向における磁石32,132,232の間の隙間に軟磁性体42を介在させてもよい。軟磁性体42を介在させることにより、q軸を介して周方向に隣接する磁石32,132,232の磁石磁路を接続して、表面磁束密度を向上させることができる。また、磁石量を低減しつつ、磁束漏れを抑制することができる。 - In the above embodiment, as shown in FIG. 11, the soft magnetic material 42 may be interposed in the gap between the magnets 32, 132, 232 in the circumferential direction on the q-axis side. By interposing the soft magnetic body 42, the magnet magnetic paths of circumferentially adjacent magnets 32, 132, 232 can be connected via the q-axis, and the surface magnetic flux density can be improved. Moreover, magnetic flux leakage can be suppressed while reducing the amount of magnets.
 ・上記実施形態において、磁化容易軸は、直線状に構成したが、曲線状や円弧状に形成してもよい。 - In the above embodiment, the axis of easy magnetization is formed in a straight line, but it may be formed in a curved or arcuate shape.
 以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
 周方向に極性が交互となる複数の磁極を含む磁石部(22)を有する界磁子(20)と、径方向において前記磁石部に対向して配置される電機子(60)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
 前記磁石部を構成する磁石(32,132,232)における磁化容易軸は、その向きが磁極境界であるq軸の側に比べて磁極中心であるd軸の側において、磁極中心であるd軸に平行となるように配向され、当該磁化容易軸に沿って磁石磁路が形成されており、
 前記回転子の軸方向から見て、前記磁化容易軸は、予め決められた配向点(P1,P100)に向かって集中するように、若しくは、前記配向点から放射状に広がるように、配向されており、
 当該配向点は、d軸上において、前記磁石部よりも前記電機子側に設定されている回転電機。
[構成2]
 前記配向点は、d軸上において、前記電機子の領域内に配置されるように設定されている構成1に記載の回転電機。
[構成3]
 前記配向点は、前記回転子の径方向における前記電機子の領域の中央よりも前記界磁子側に配置されるように設定されている構成1又は2に記載の回転電機。
[構成4]
 前記電機子は、導線部(61)と、導線部が固定される電機子コア(62)と、を備え、
 前記配向点は、d軸上において、径方向における導線部の中心に設定されている構成1~3のうちいずれかに記載の回転電機。
[構成5]
 前記磁石部を構成する磁石は、前記回転子の径方向において複数層で構成されており、
 前記径方向において電機子側に配置される第1磁石(232a)における磁化容易軸の配向点(P1)と、前記径方向において前記第1磁石よりも反電機子側に配置される第2磁石(232b)における磁化容易軸の配向点(P100)とは、d軸上において異なる構成1~4のうちいずれかに記載の回転電機。
[構成6]
 前記磁石部は、周方向に並べて配置される複数の磁石と、複数の前記磁石の表面を覆う非磁性材料の飛散防止部材(41)とを備える構成1~5のうちいずれかに記載の回転電機。
[構成7]
 前記磁石部は、周方向に並べて配置される複数の磁石を備え、
 前記磁石は、q軸側で分割されており、q軸において隣接する前記磁石間の隙間には、軟磁性体(42)が配置されている構成1~6のうちいずれかに記載の回転電機。
Characteristic configurations extracted from each of the embodiments described above will be described below.
[Configuration 1]
A field element (20) having a magnet part (22) including a plurality of magnetic poles with alternating polarities in the circumferential direction, and an armature (60) disposed facing the magnet part in the radial direction. , in a rotating electric machine (10) in which one of the field element and the armature is a rotor,
The axis of easy magnetization in the magnets (32, 132, 232) constituting the magnet section is oriented on the d-axis side, which is the magnetic pole center, compared to the q-axis side, which is the magnetic pole boundary, and the d-axis, which is the magnetic pole center. , and a magnet magnetic path is formed along the axis of easy magnetization.
When viewed from the axial direction of the rotor, the axis of easy magnetization is oriented so as to concentrate toward a predetermined orientation point (P1, P100) or to spread radially from the orientation point. Ori,
In the rotating electric machine, the orientation point is set closer to the armature than the magnet portion on the d-axis.
[Configuration 2]
The rotating electric machine according to configuration 1, wherein the orientation point is set to be located within a region of the armature on the d-axis.
[Configuration 3]
The rotating electric machine according to configuration 1 or 2, wherein the orientation point is set to be located closer to the field element than the center of the area of the armature in the radial direction of the rotor.
[Configuration 4]
The armature includes a conducting wire portion (61) and an armature core (62) to which the conducting wire portion is fixed,
The rotating electrical machine according to any one of configurations 1 to 3, wherein the orientation point is set at the center of the conducting wire portion in the radial direction on the d-axis.
[Configuration 5]
The magnets constituting the magnet section are composed of multiple layers in the radial direction of the rotor,
an orientation point (P1) of the axis of easy magnetization in the first magnet (232a) disposed on the armature side in the radial direction; and a second magnet disposed on the anti-armature side with respect to the first magnet in the radial direction. The rotating electric machine according to any one of configurations 1 to 4, wherein the orientation point (P100) of the easy axis of magnetization in (232b) is different on the d-axis.
[Configuration 6]
The rotating magnet according to any one of configurations 1 to 5, wherein the magnet portion includes a plurality of magnets arranged side by side in the circumferential direction, and a scattering prevention member (41) made of a non-magnetic material that covers the surface of the plurality of magnets. Electric machine.
[Configuration 7]
The magnet section includes a plurality of magnets arranged side by side in the circumferential direction,
The rotating electric machine according to any one of configurations 1 to 6, wherein the magnet is divided on the q-axis side, and a soft magnetic material (42) is arranged in a gap between the adjacent magnets on the q-axis. .
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.

Claims (7)

  1.  周方向に極性が交互となる複数の磁極を含む磁石部(22)を有する界磁子(20)と、径方向において前記磁石部に対向して配置される電機子(60)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
     前記磁石部を構成する磁石(32,132,232)における磁化容易軸は、その向きが磁極境界であるq軸の側に比べて磁極中心であるd軸の側において、磁極中心であるd軸に平行となるように配向され、当該磁化容易軸に沿って磁石磁路が形成されており、
     前記回転子の軸方向から見て、前記磁化容易軸は、予め決められた配向点(P1,P10,P100)に向かって集中するように、若しくは、前記配向点から放射状に広がるように、配向されており、
     当該配向点は、d軸上において、前記磁石部よりも前記電機子側に設定されている回転電機。
    A field element (20) having a magnet part (22) including a plurality of magnetic poles with alternating polarities in the circumferential direction, and an armature (60) disposed facing the magnet part in the radial direction. , in a rotating electric machine (10) in which one of the field element and the armature is a rotor,
    The axis of easy magnetization in the magnets (32, 132, 232) constituting the magnet section is oriented on the d-axis side, which is the magnetic pole center, compared to the q-axis side, which is the magnetic pole boundary, and the d-axis, which is the magnetic pole center. , and a magnet magnetic path is formed along the axis of easy magnetization.
    Viewed from the axial direction of the rotor, the axis of easy magnetization is oriented so as to concentrate toward predetermined orientation points (P1, P10, P100) or to spread radially from the orientation point. has been
    In the rotating electric machine, the orientation point is set closer to the armature than the magnet portion on the d-axis.
  2.  前記配向点は、d軸上において、前記電機子の領域内に配置されるように設定されている請求項1に記載の回転電機。 The rotating electric machine according to claim 1, wherein the orientation point is set to be located within a region of the armature on the d-axis.
  3.  前記配向点は、前記回転子の径方向における前記電機子の領域の中央よりも前記界磁子側に配置されるように設定されている請求項2に記載の回転電機。 The rotating electric machine according to claim 2, wherein the orientation point is set to be located closer to the field element than the center of the region of the armature in the radial direction of the rotor.
  4.  前記電機子は、導線部(61)と、導線部が固定される電機子コア(62)と、を備え、
     前記配向点は、d軸上において、径方向における導線部の中心に設定されている請求項2に記載の回転電機。
    The armature includes a conducting wire portion (61) and an armature core (62) to which the conducting wire portion is fixed,
    The rotating electrical machine according to claim 2, wherein the orientation point is set at the center of the conducting wire portion in the radial direction on the d-axis.
  5.  前記磁石部を構成する磁石は、前記回転子の径方向において複数層で構成されており、
     前記径方向において電機子側に配置される第1磁石(232a)における磁化容易軸の配向点(P1)と、前記径方向において前記第1磁石よりも反電機子側に配置される第2磁石(232b)における磁化容易軸の配向点(P100)とは、d軸上において異なる請求項1に記載の回転電機。
    The magnets constituting the magnet section are composed of multiple layers in the radial direction of the rotor,
    an orientation point (P1) of the axis of easy magnetization in the first magnet (232a) disposed on the armature side in the radial direction; and a second magnet disposed on the anti-armature side with respect to the first magnet in the radial direction. The rotating electric machine according to claim 1, wherein the orientation point (P100) of the easy axis of magnetization at (232b) is different on the d-axis.
  6.  前記磁石部は、周方向に並べて配置される複数の磁石と、複数の前記磁石の表面を覆う非磁性材料の飛散防止部材(41)とを備える請求項1に記載の回転電機。 The rotating electrical machine according to claim 1, wherein the magnet portion includes a plurality of magnets arranged in a circumferential direction, and a scattering prevention member (41) made of a non-magnetic material that covers the surfaces of the plurality of magnets.
  7.  前記磁石部は、周方向に並べて配置される複数の磁石を備え、
     前記磁石は、q軸側で分割されており、q軸において隣接する前記磁石間の隙間には、軟磁性体(42)が配置されている請求項1に記載の回転電機。
    The magnet section includes a plurality of magnets arranged side by side in the circumferential direction,
    The rotating electric machine according to claim 1, wherein the magnet is divided on the q-axis side, and a soft magnetic body (42) is disposed in a gap between the adjacent magnets on the q-axis.
PCT/JP2023/011173 2022-04-14 2023-03-22 Rotary electric machine WO2023199709A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022067193A JP2023157343A (en) 2022-04-14 2022-04-14 Rotary electric machine
JP2022-067193 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023199709A1 true WO2023199709A1 (en) 2023-10-19

Family

ID=88329377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011173 WO2023199709A1 (en) 2022-04-14 2023-03-22 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP2023157343A (en)
WO (1) WO2023199709A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266646A (en) * 1996-03-18 1997-10-07 Aichi Emerson Electric Co Ltd Brushless dc motor
JP2002010543A (en) * 2000-06-23 2002-01-11 Asmo Co Ltd Rotary-field motor
JP2009273304A (en) * 2008-05-09 2009-11-19 Asmo Co Ltd Rotor of rotating electric machine, and rotating electric machine
JP2011166951A (en) * 2010-02-10 2011-08-25 Fuji Electric Co Ltd Method for manufacturing permanent magnet rotary machine
JP2012125006A (en) * 2010-12-07 2012-06-28 Denso Corp Motor device
JP2013188065A (en) * 2012-03-09 2013-09-19 Denso Corp Magnetic modulation motor
JP2015154533A (en) * 2014-02-12 2015-08-24 Wolongモーター制御技術株式会社 motor
JP2019187199A (en) * 2018-04-17 2019-10-24 株式会社ダイドー電子 Permanent magnet rotor and rotating electrical machine
JP2020078231A (en) * 2018-10-04 2020-05-21 日東電工株式会社 Multiple motor products, motor, motor group, drive device, and magnet group

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266646A (en) * 1996-03-18 1997-10-07 Aichi Emerson Electric Co Ltd Brushless dc motor
JP2002010543A (en) * 2000-06-23 2002-01-11 Asmo Co Ltd Rotary-field motor
JP2009273304A (en) * 2008-05-09 2009-11-19 Asmo Co Ltd Rotor of rotating electric machine, and rotating electric machine
JP2011166951A (en) * 2010-02-10 2011-08-25 Fuji Electric Co Ltd Method for manufacturing permanent magnet rotary machine
JP2012125006A (en) * 2010-12-07 2012-06-28 Denso Corp Motor device
JP2013188065A (en) * 2012-03-09 2013-09-19 Denso Corp Magnetic modulation motor
JP2015154533A (en) * 2014-02-12 2015-08-24 Wolongモーター制御技術株式会社 motor
JP2019187199A (en) * 2018-04-17 2019-10-24 株式会社ダイドー電子 Permanent magnet rotor and rotating electrical machine
JP2020078231A (en) * 2018-10-04 2020-05-21 日東電工株式会社 Multiple motor products, motor, motor group, drive device, and magnet group

Also Published As

Publication number Publication date
JP2023157343A (en) 2023-10-26

Similar Documents

Publication Publication Date Title
US9966809B2 (en) Motor
US9071118B2 (en) Axial motor
US7595575B2 (en) Motor/generator to reduce cogging torque
US9077224B2 (en) Rotor core, rotor, and rotating electric machine
JP4310611B2 (en) Permanent magnet motor
US9515525B2 (en) Electric motor
JP2008271640A (en) Axial gap motor
US20200044501A1 (en) Rotor of electric rotating machine
US9515524B2 (en) Electric motor
JP4640373B2 (en) Rotating electric machine
JPWO2020110191A1 (en) Rotating machine
JP7166066B2 (en) Rotating electric machine
US11901773B2 (en) Rotating electric machine
JP5702118B2 (en) Rotor structure and motor
WO2023199709A1 (en) Rotary electric machine
JP5852418B2 (en) Rotor and motor
JP2009118594A (en) Axial gap type motor
JPH11191939A (en) Motor using rotor embedded with permanent magnet
JP2017046386A (en) Permanent magnet electric motor
WO2013111335A1 (en) Rotary electric machine
WO2024075469A1 (en) Rotor and motor
US20230100335A1 (en) Rotor and motor
JP2010158168A (en) Axial gap rotary motor and method of manufacturing the same
JP2023061074A (en) Buried-type magnetic motor
JP2012182947A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23788129

Country of ref document: EP

Kind code of ref document: A1