JP2013188065A - Magnetic modulation motor - Google Patents

Magnetic modulation motor Download PDF

Info

Publication number
JP2013188065A
JP2013188065A JP2012053227A JP2012053227A JP2013188065A JP 2013188065 A JP2013188065 A JP 2013188065A JP 2012053227 A JP2012053227 A JP 2012053227A JP 2012053227 A JP2012053227 A JP 2012053227A JP 2013188065 A JP2013188065 A JP 2013188065A
Authority
JP
Japan
Prior art keywords
magnetic
rotor
modulation motor
magnetic induction
induction rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012053227A
Other languages
Japanese (ja)
Other versions
JP5761084B2 (en
Inventor
Arata Kusase
草瀬  新
Yosuke Kaname
陽介 要
Naoto Sakurai
尚人 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012053227A priority Critical patent/JP5761084B2/en
Priority to DE102013102184A priority patent/DE102013102184A1/en
Priority to CN201310076851XA priority patent/CN103312102A/en
Priority to US13/793,382 priority patent/US20130234553A1/en
Publication of JP2013188065A publication Critical patent/JP2013188065A/en
Application granted granted Critical
Publication of JP5761084B2 publication Critical patent/JP5761084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/641
    • Y02T10/642
    • Y02T10/7077

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic modulation motor which has a constitution obtained by disposing a magnet rotor between an armature and a magnetic induction rotor and which improves the strength and durability of the magnetic induction rotor.SOLUTION: A magnet rotor 7 disposed between an armature 3 and a magnetic induction rotor 5 comprises 20 permanent magnets 11 annularly arranged at predetermined circumferential intervals. In each interval between two circumferentially adjacent permanent magnets 11, there is provided a magnetic flux transmission area, in which an inter-polar soft magnetic body 13 is disposed. The magnetic induction rotor 5 is integrally configured by casting, into high-strength aluminum material, 16 V-shaped segments 9 forming magnetic conduction paths, and both ends of each segment 9 opening in a V-shape project to the outer diameter face of the magnetic induction rotor 5 as magnetic flux entrances/exits 9e.

Description

本発明は、例えば、内燃機関の動力と電池の電力とで走行するハイブリッド車両の動力装置に用いて好適な磁気変調モータに関する。   The present invention relates to a magnetic modulation motor suitable for use in, for example, a power device of a hybrid vehicle that travels with the power of an internal combustion engine and the power of a battery.

従来、ハイブリッド自動車の動力伝達装置として、内燃機関の出力軸と、減速や前進後退の切り替えを行うギヤ装置の入力軸との間に、モータとCVT(無段変速機)とを介在するものが一般的であったが、最近は、それらの機能を複合化した新しい技術が提案されている。すなわち、固定子となる電機子と、第一回転軸に固定された磁石回転子と、第二回転軸に固定された磁気誘導回転子とを持ち、磁気変調原理を用いて、第一回転軸と第二回転軸との間の速度変換を滑らかに行う、あるいは、第二回転軸に電動動力を加えて出力する複合機能モータが知られている。例えば、特許文献1には、前述の複合機能を実現する技術が開示されている。   Conventionally, as a power transmission device for a hybrid vehicle, a motor and a CVT (continuously variable transmission) are interposed between an output shaft of an internal combustion engine and an input shaft of a gear device that performs switching between deceleration and forward / backward movement. Although it was general, recently, a new technology that combines these functions has been proposed. That is, an armature as a stator, a magnet rotor fixed to the first rotating shaft, and a magnetic induction rotor fixed to the second rotating shaft, and using the magnetic modulation principle, the first rotating shaft There is known a multi-function motor that smoothly converts the speed between the first rotary shaft and the second rotary shaft or outputs electric power by adding electric power to the second rotary shaft. For example, Patent Document 1 discloses a technique for realizing the above-described composite function.

磁気変調原理を用いたモータ(以下、磁気変調モータと呼ぶ)は、元々は英国シェフィールド大学のAtallah教授らの磁気歯車の研究に端を発するものである。その基本的な構造は、極対数mの永久磁石を有する外側回転子と、極対数nの永久磁石を有する内側回転子とが配置され、両回転子の間にmとnとの和または差の数となる個数の軟磁性体を磁気誘導磁極として配置して磁気変調させるものである。外側回転子を巻線式電機子としたモータも同様にそのルールに従ったものである。
上記の特許文献1に開示された従来技術でも、極対数mの多相巻線を備える電機子と、極対数nの永久磁石を有する磁石回転子との間に、磁気誘導磁極としてk個の軟磁性体を周方向に配列した磁気誘導回転子が配置され、且つ、m=n=8、k=16の構造となっており、磁気変調モータの構造を備えている。
A motor using the magnetic modulation principle (hereinafter referred to as a magnetic modulation motor) originally originated from research on magnetic gears by Professor Atallah of the University of Sheffield, UK. The basic structure is that an outer rotor having a permanent magnet with a pole pair number m and an inner rotor having a permanent magnet with a pole pair number n are arranged, and the sum or difference between m and n between the rotors. The number of soft magnetic materials corresponding to the number is arranged as magnetic induction magnetic poles and magnetically modulated. The same applies to a motor having a wound armature as an outer rotor.
Also in the prior art disclosed in Patent Document 1 described above, k magnetic induction magnetic poles are provided between an armature having a multiphase winding having a pole pair number m and a magnet rotor having a permanent magnet having a pole pair number n. A magnetic induction rotor in which soft magnetic bodies are arranged in the circumferential direction is arranged, and has a structure of m = n = 8 and k = 16, and has a structure of a magnetic modulation motor.

特開2010−017032号公報JP 2010-017032 A

しかし、従来の磁気変調モータには、以下の問題点があった。
それは、特許文献1の図9〜図12に示されるように、磁気誘導磁極がその機能上ばらばらの軟磁性体である必要性があると共に、磁気誘導回転子が電機子と磁石回転子との間に配置されて回転する構成上、その部分を磁束が貫通するため、磁気誘導磁極を囲むような金属部材が存在すると、短絡コイルの作用をして顕著な短絡電流が流れる。このため、磁束の貫通が妨げられるとともに、大きな損失が発生してしまう。このような理由から、磁気誘導回転子は、一般のモータで慣用的に用いられる手法、例えばアルミダイカスト等によって軟磁性体を鋳込むことができないという難しさがあった。その結果、機械的な剛性の確保や回転軸に対する固定が難しく、耐力が弱いという基本的な問題点があった。
However, the conventional magnetic modulation motor has the following problems.
As shown in FIGS. 9 to 12 of Patent Document 1, it is necessary that the magnetic induction magnetic pole is a soft magnetic material that is separated in function, and the magnetic induction rotor is composed of an armature and a magnet rotor. Since the magnetic flux penetrates through the portion arranged in the middle and rotates, if there is a metal member surrounding the magnetic induction magnetic pole, a remarkable short circuit current flows due to the action of the short circuit coil. For this reason, the penetration of magnetic flux is hindered and a large loss occurs. For this reason, the magnetic induction rotor has a difficulty in that a soft magnetic material cannot be cast by a method conventionally used in a general motor, for example, aluminum die casting. As a result, there is a basic problem that it is difficult to secure mechanical rigidity and to fix the rotating shaft, and the yield strength is weak.

一方、磁気誘導回転子を回転軸との固定がしやすい最も内径側に配置した場合は、磁石固定の設計を比較的容易にできる。それは、磁石回転子は磁気誘導回転子のようなセンシティブな回転子ではなく、強力な希土類磁石で磁束を発信する界磁起磁力源であるので、そのため磁極間の多少の磁束の漏れを気にすることもなく、複数の磁石を積層鉄心に埋め込み、ブリッジで繋ぐ等の頑丈な構造設計を採ることができるためである。しかし、磁気誘導回転子を最も内径側に配置する場合は、磁気変調を好適に成立させることが課題となる。
そこで、本願発明者は、前記の課題を克服すべく、磁石回転子を電機子と磁気誘導回転子との間に配置した時の磁気変調作用の有無や課題を検討したところ、次の知見と解決方針を見出した。
On the other hand, when the magnetic induction rotor is arranged on the innermost diameter side where it is easy to fix the rotating shaft, the magnet fixing design can be made relatively easy. The magnet rotor is not a sensitive rotor like a magnetic induction rotor, but a field magnetomotive force source that generates magnetic flux with a powerful rare earth magnet. This is because it is possible to adopt a robust structural design such as embedding a plurality of magnets in a laminated iron core and connecting them with a bridge. However, when the magnetic induction rotor is disposed on the innermost diameter side, it is a problem to preferably establish magnetic modulation.
Therefore, in order to overcome the above problems, the inventor of the present application examined the presence or problem of magnetic modulation when the magnet rotor is disposed between the armature and the magnetic induction rotor, and found the following knowledge. Found a solution policy.

すなわち、磁石回転子を電機子と磁気誘導回転子との間に配置すると、好適な磁気変調作動を得ることは出来ず、モータとしての特性は大幅に低いものになってしまうことが分かった。その原因は、磁石自身が起磁力源であり、磁束発生源であるにしても、磁石の透磁率が空気と同様に低いため、磁気誘導磁極がその極数で磁石磁束を変調したとしても、変調磁束が電機子に向い、またリターンすべきところに磁石が立ちはだかることで、変調磁束の通過の障害になっていることが分かった。つまり、強い起磁力を持った永久磁石が広い範囲でカバーして遮り、本来の変調磁束を乱して阻害していることを発見した。   In other words, it has been found that if the magnet rotor is disposed between the armature and the magnetic induction rotor, a suitable magnetic modulation operation cannot be obtained, and the characteristics as a motor are greatly reduced. The cause is that even if the magnet itself is a magnetomotive force source and a magnetic flux generation source, the magnetic permeability of the magnet is as low as air, so even if the magnetic induction magnetic pole modulates the magnet magnetic flux by the number of poles, It was found that the modulated magnetic flux turned to the armature, and the magnet stood where it should return, which hindered the passage of the modulated magnetic flux. In other words, we discovered that permanent magnets with strong magnetomotive force cover and block over a wide area, disturbing the original modulated magnetic flux.

本発明は、上記事情に基づいて成されたものであり、その目的は、電機子と磁気誘導回転子との間に磁石回転子を配置した構成として、磁気誘導回転子の強度および耐力の向上を図ることができる磁気変調モータを提供することにある。   The present invention has been made based on the above circumstances, and its purpose is to improve the strength and proof strength of a magnetic induction rotor as a configuration in which a magnet rotor is disposed between an armature and a magnetic induction rotor. An object of the present invention is to provide a magnetic modulation motor capable of achieving the above.

本発明は、極対数mの多相巻線を備える電機子と、整数kの数だけ磁気導通路を有する磁気誘導回転子と、mとkとの和または差となる極対数nの極性領域を形成する2n個の永久磁石を有し、この2n個の永久磁石が周方向に所定の間隔を有して環状に配置される磁石回転子とを備え、径方向の外側から内側に向かって電機子、磁石回転子、磁気誘導回転子の順に配列される磁気変調モータであって、磁気誘導回転子は、磁気導通路の両端がそれぞれ磁気誘導回転子の外径面に突出して設けられ、その外径面に突出する磁気導通路の両端をそれぞれ磁束出入り口と呼ぶ時に、磁気導通路は、一方の磁束出入り口と他方の磁束出入り口との間に磁束の通り道を形成し、磁石回転子は、それぞれ周方向に隣り合う二つの永久磁石の間に磁束を透過する磁束透過領域を有することを特徴とする。   The present invention relates to an armature having a multi-phase winding of m pole pairs, a magnetic induction rotor having magnetic conduction paths by the number of integers k, and a polar region of n pole pairs that is the sum or difference of m and k. And 2n permanent magnets, and the 2n permanent magnets are provided with a magnet rotor arranged annularly with a predetermined interval in the circumferential direction, from the radially outer side toward the inner side. A magnetic modulation motor arranged in the order of an armature, a magnet rotor, and a magnetic induction rotor, wherein the magnetic induction rotor is provided with both ends of the magnetic conduction path protruding from the outer diameter surface of the magnetic induction rotor, When both ends of the magnetic conduction path projecting on the outer diameter surface are called magnetic flux entrances, the magnetic conduction path forms a path of magnetic flux between one magnetic flux entrance and the other magnetic flux entrance, and the magnet rotor is Magnetic flux is transmitted between two permanent magnets adjacent in the circumferential direction. It characterized by having a magnetic flux transmission area to.

上記の構成を有する本発明の磁気変調モータは、磁気誘導回転子が最も内径側に配置され、その磁気誘導回転子と電機子との間に起磁力源となる磁石回転子が配置される。この配列であっても、磁石回転子に磁束透過領域を設けているので、磁気誘導回転子による変調磁束は、永久磁石の配列のうち、起磁力の対向する配列と並んだ時にも真っ向から邪魔されることはなく、その通過すべき成分は、磁石と磁石との間の磁束透過領域を経て電機子との磁気的相互作用を果たすことができる。
これにより、磁石回転子が電機子と磁気誘導回転子との間に存在する配列であっても、磁気変調作用が良好に働くモータを実現できる。すなわち、変調子である磁気誘導回転子を電機子と磁石回転子との関係の外に配置した配列でありながら、磁気変調モータとしての作動をさせることができ、且つ、磁気誘導回転子を最も内径側に配置しているので、磁気誘導回転子の強度や耐力向上の目的を達成することができる。
In the magnetic modulation motor of the present invention having the above-described configuration, the magnetic induction rotor is disposed on the innermost diameter side, and a magnet rotor serving as a magnetomotive force source is disposed between the magnetic induction rotor and the armature. Even in this arrangement, a magnetic flux transmission region is provided in the magnet rotor, so that the modulated magnetic flux generated by the magnetic induction rotor is obstructed from the head even when it is aligned with the arrangement of the permanent magnets in the arrangement of the permanent magnets. The component to be passed through can perform a magnetic interaction with the armature via the magnetic flux transmission region between the magnets.
Thereby, even if the magnet rotor is an arrangement between the armature and the magnetic induction rotor, it is possible to realize a motor that works well with magnetic modulation. In other words, the magnetic induction rotor that is the modulator is arranged outside the relationship between the armature and the magnet rotor, and can be operated as a magnetic modulation motor. Since it is arranged on the inner diameter side, the purpose of improving the strength and proof strength of the magnetic induction rotor can be achieved.

実施例1に係る本モータを軸線方向から見た径方向半分の正面図である。It is the front view of the radial direction half which looked at this motor concerning Example 1 from the direction of an axis. 本モータの全体構成を示す概略図である。It is the schematic which shows the whole structure of this motor. 本モータの一部を軸線方向か見た正面図である。It is the front view which looked at a part of this motor from the direction of an axis. 電機子巻線をインバータに接続した結線図である。It is the connection diagram which connected the armature winding to the inverter. (a)従来モータの解析モデルを示す構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) It is a block diagram which shows the analysis model of a conventional motor, (b) It is an analysis figure which shows the simulation result of a magnetic field analysis. (a)実施例1に係る本モータの解析モデルを示す構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) The block diagram which shows the analysis model of this motor concerning Example 1, (b) The analysis figure which shows the simulation result of a magnetic field analysis. (a)解析モデルAの構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) Configuration diagram of analysis model A, (b) Analysis diagram showing simulation results of magnetic field analysis. (a)解析モデルBの構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) Configuration diagram of analysis model B, (b) Analysis diagram showing simulation results of magnetic field analysis. (a)解析モデルCの構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) Configuration diagram of analysis model C, (b) Analysis diagram showing simulation results of magnetic field analysis. (a)解析モデルDの構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) The block diagram of the analysis model D, (b) The analysis figure which shows the simulation result of a magnetic field analysis. 実施例2に係る本モータを軸線方向から見た径方向半分の正面図である。It is the front view of the radial direction half which looked at this motor concerning Example 2 from the direction of an axis. (a)実施例2に係る本モータの解析モデルを示す構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) The block diagram which shows the analysis model of this motor concerning Example 2, (b) The analysis figure which shows the simulation result of a magnetic field analysis. 実施例3に係る本モータを軸線方向から見た径方向半分の正面図である。It is the front view of the radial direction half which looked at this motor concerning Example 3 from the direction of an axis. (a)実施例3に係る本モータの解析モデルを示す構成図、(b)磁場解析のシミュレーション結果を示す解析図である。(A) It is a block diagram which shows the analysis model of this motor concerning Example 3, (b) It is an analysis figure which shows the simulation result of a magnetic field analysis. (a)実施例4に係る本モータの構成を示す部分断面図、(b)短絡コイルの装着状態を示す周方向展開図である。(A) Partial sectional drawing which shows the structure of this motor based on Example 4, (b) The circumferential direction expanded view which shows the mounting state of a short circuit coil. (a)実施例5に係る本モータの構成を示す部分断面図、(b)銅板をボルトで固定した装着状態を示す周方向展開図である。(A) Partial sectional drawing which shows the structure of this motor concerning Example 5, (b) The circumferential direction expanded view which shows the mounting state which fixed the copper plate with the volt | bolt.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the following examples.

(実施例1)
実施例1では、本発明の磁気変調モータをハイブリッド自動車のエンジンとトランスミッションとの間に配置した一例を説明する。
まず、磁気変調モータ(以下、本モータ1と呼ぶ)の構成を説明する。
本モータ1は、図2に示す様に、モータフレーム2の内周に固定される電機子3と、第一回転軸4と一体に回転する磁気誘導回転子5と、第二回転軸6と一体に回転する磁石回転子7とを備え、径方向の外側から内側(中心側)に向かって電機子3、磁石回転子7、磁気誘導回転子5の順に配列される。
第一回転軸4と第二回転軸6は、それぞれ図示しない軸受を介してモータフレーム2に回転自在に支持され、且つ、第一回転軸4がエンジンEの出力軸に連結され、第二回転軸6がトランスミッションMの被駆動軸に連結されている。
Example 1
In the first embodiment, an example in which the magnetic modulation motor of the present invention is disposed between an engine and a transmission of a hybrid vehicle will be described.
First, the configuration of a magnetic modulation motor (hereinafter referred to as the present motor 1) will be described.
As shown in FIG. 2, the motor 1 includes an armature 3 fixed to the inner periphery of the motor frame 2, a magnetic induction rotor 5 that rotates integrally with the first rotating shaft 4, and a second rotating shaft 6. A magnet rotor 7 that rotates integrally is provided, and the armature 3, the magnet rotor 7, and the magnetic induction rotor 5 are arranged in this order from the radially outer side to the inner side (center side).
The first rotating shaft 4 and the second rotating shaft 6 are rotatably supported by the motor frame 2 via bearings (not shown), respectively, and the first rotating shaft 4 is connected to the output shaft of the engine E to perform the second rotation. The shaft 6 is connected to the driven shaft of the transmission M.

(電機子3の説明)
電機子3は、複数枚の電磁鋼板を積層して構成される電機子鉄心30と、この電機子鉄心30に巻装される電機子巻線31とで構成される。
電機子鉄心30には、図1に示す様に、径方向の内周側に複数(実施例1では72個)のスロット30aが周方向等ピッチに形成されている。
電機子巻線31は、極対数m=6の三相巻線であり、図4に示す様に、各相巻線(X相、Y相、Z相)の一端が星型結線されて中性点Oを形成し、各相巻線の他端Xo、Yo、Zoがインバータ8に接続されている。インバータ8は、直流電力を交流電力に変換する周知の電力変換装置であり、車両の主電源である蓄電池Bに接続される。このインバータ8は、車両制御ECU(図示せず)との間で信号をやり取りするインバータECU(図示せず)によって駆動制御される。
(Description of armature 3)
The armature 3 includes an armature core 30 configured by laminating a plurality of electromagnetic steel sheets and an armature winding 31 wound around the armature core 30.
As shown in FIG. 1, the armature core 30 has a plurality of slots 30a (72 in the first embodiment) formed at equal pitches in the circumferential direction on the radially inner peripheral side.
The armature winding 31 is a three-phase winding with a pole pair number m = 6. As shown in FIG. 4, one end of each phase winding (X phase, Y phase, Z phase) is connected in a star shape. A sex point O is formed, and the other end Xo, Yo, Zo of each phase winding is connected to the inverter 8. The inverter 8 is a known power conversion device that converts DC power into AC power, and is connected to a storage battery B that is a main power source of the vehicle. The inverter 8 is driven and controlled by an inverter ECU (not shown) that exchanges signals with a vehicle control ECU (not shown).

(磁気誘導回転子5の説明)
磁気誘導回転子5は、図1に示す様に、本発明の磁気導通路を形成する16個のセグメント9と、この16個のセグメント9を保持する回転子ハブ10とで構成される。
16個のセグメント9は、それぞれ略V字形に打ち抜かれた複数枚の電磁鋼板を積層して構成され、周方向に一定の間隔を有して配列される。以下、セグメント9のV字状に開いた両辺をそれぞれセグメント腕部9aと呼び、2本のセグメント腕部9aの根元側をセグメント基底部9bと呼び、2本のセグメント腕部9aの間に形成される凹みをセグメント凹部9cと呼ぶ。
上記のセグメント9は、2本のセグメント腕部9aが径方向の外側へV字状に開いた状態、つまり、セグメント基底部9bが径方向の内側を向いた状態で配置される。また、セグメント基底部9bの底面には、ダブテール状のアンカー部9dが設けられている。
(Description of the magnetic induction rotor 5)
As shown in FIG. 1, the magnetic induction rotor 5 includes 16 segments 9 that form a magnetic conduction path of the present invention, and a rotor hub 10 that holds the 16 segments 9.
The 16 segments 9 are each formed by laminating a plurality of electromagnetic steel plates punched in a substantially V shape, and are arranged with a certain interval in the circumferential direction. Hereinafter, both sides of the segment 9 that are opened in a V shape are referred to as segment arm portions 9a, and the base sides of the two segment arm portions 9a are referred to as segment base portions 9b, and are formed between the two segment arm portions 9a. The recess that is made is called a segment recess 9c.
The segment 9 is arranged in a state where the two segment arm portions 9a are opened in a V shape outward in the radial direction, that is, in a state where the segment base portion 9b faces inward in the radial direction. Also, a dovetail-shaped anchor portion 9d is provided on the bottom surface of the segment base portion 9b.

回転子ハブ10は、非磁性かつ電気良導体である高強度アルミニウム材(例えばジュラルミン材)によって形成され、16個のセグメント9を一体的に鋳込んでダイカスト製造される。つまり、周方向に隣り合う二つのセグメント9の間には、高強度アルミニウム材が外径面まで充填されている。言い換えると、隣り合う二つのセグメント9は、回転子ハブ10を形成する高強度アルミニウム材によって磁気的に分離されている。なお、セグメント凹部9cにはアルミ材が充填されていない。つまり、セグメント凹部9cは空間である。また、個々のセグメント9は、セグメント基底部9bに設けられたアンカー部9dが回転子ハブ10に埋設されることで回転子ハブ10と強固に固定され、回転子ハブ10からセグメント9が脱落することはない。
回転子ハブ10は、径方向の内周に中心孔10aが形成され、その中心孔10aに第一回転軸4を圧入等により嵌合して固定される。
The rotor hub 10 is formed of a high-strength aluminum material (for example, duralumin material) that is a non-magnetic and good electrical conductor, and is die-cast by integrally casting 16 segments 9. That is, a high-strength aluminum material is filled to the outer diameter surface between two segments 9 adjacent in the circumferential direction. In other words, the two adjacent segments 9 are magnetically separated by the high-strength aluminum material that forms the rotor hub 10. The segment recess 9c is not filled with an aluminum material. That is, the segment recess 9c is a space. Further, each segment 9 is firmly fixed to the rotor hub 10 by the anchor portion 9d provided in the segment base portion 9b being embedded in the rotor hub 10, and the segment 9 is dropped from the rotor hub 10. There is nothing.
The rotor hub 10 has a center hole 10a formed in the inner periphery in the radial direction, and the first rotary shaft 4 is fitted and fixed to the center hole 10a by press fitting or the like.

16個のセグメント9は、それぞれ、セグメント腕部9aの先端面がロータ外径面に突出して磁束の出入り口を形成している。なお、ロータ外径面とは、空隙を有して磁石回転子7と対向する磁気誘導回転子5の外径面であり、周方向に隣り合う二つのセグメント9の間に充填されるアルミ材の外径面である。以下、ロータ外径面に突出するセグメント腕部9aの先端面を磁束出入り口9eと呼ぶ。
個々のセグメント9は、図3に示す様に、磁気誘導回転子5の全周360度をセグメント9の個数16で割った中心角θ1=22.5度の角度範囲に配置され、その中心角θ1=22.5度に対する約1/5、すなわち、中心角θ2=4.5度の角度範囲にセグメント腕部9aの磁束出入り口9eがロータ外径面に突出している。
In each of the 16 segments 9, the distal end surface of the segment arm portion 9a protrudes from the rotor outer diameter surface to form a magnetic flux entrance. The rotor outer diameter surface is an outer diameter surface of the magnetic induction rotor 5 that has a gap and faces the magnet rotor 7, and is an aluminum material that is filled between two segments 9 adjacent in the circumferential direction. This is the outer diameter surface. Hereinafter, the distal end surface of the segment arm portion 9a that protrudes from the rotor outer diameter surface is referred to as a magnetic flux entrance 9e.
As shown in FIG. 3, the individual segments 9 are arranged in an angular range of a central angle θ1 = 22.5 degrees obtained by dividing the entire circumference of the magnetic induction rotor 5 by 360 degrees by the number 16 of the segments 9, and the central angles thereof are arranged. The magnetic flux inlet / outlet 9e of the segment arm portion 9a protrudes from the outer surface of the rotor in an angle range of about 1/5 with respect to θ1 = 22.5 °, that is, the central angle θ2 = 4.5 °.

(磁石回転子7の説明)
磁石回転子7は、図1に示す様に、20個の希土類永久磁石11(例えばネオジム磁石)と、この20個の永久磁石11を保持する軟磁性体12、13とで構成される。
永久磁石11は、図3に示す様に、極弧角α=12.5度を有し、周方向に所定の間隔を空けて環状に配置される。個々の永久磁石11は径方向に着磁される。但し、周方向に隣り合う二つの永久磁石11は、互いの極性が異なる、つまり、N極とS極とが交互に異なる様に配置される。なお、本実施例では、空隙を有して磁気誘導回転子5の外径面と対向する永久磁石11の内径面の周方向両端と磁石回転子7の回転中心とで形成される中心角を極弧角αと定義している。
(Description of magnet rotor 7)
As shown in FIG. 1, the magnet rotor 7 includes 20 rare earth permanent magnets 11 (for example, neodymium magnets) and soft magnetic bodies 12 and 13 that hold the 20 permanent magnets 11.
As shown in FIG. 3, the permanent magnet 11 has a polar arc angle α = 12.5 degrees and is arranged in an annular shape with a predetermined interval in the circumferential direction. Each permanent magnet 11 is magnetized in the radial direction. However, the two permanent magnets 11 adjacent to each other in the circumferential direction are arranged so that their polarities are different from each other, that is, the north and south poles are alternately different. In this embodiment, the central angle formed by the circumferential ends of the inner diameter surface of the permanent magnet 11 facing the outer diameter surface of the magnetic induction rotor 5 with a gap and the rotation center of the magnet rotor 7 is defined. It is defined as the polar arc angle α.

軟磁性体12、13は、図1に示す様に、20個の永久磁石11の外周表面(径方向の外側表面)を覆って磁石回転子7の全周に配置されるリング状の軟磁性体(以下、リング状軟磁性体12と呼ぶ)と、周方向に隣り合う二つの永久磁石11の間に配置されて本発明の磁束透過領域を形成する極間の軟磁性体(以下、極間軟磁性体13と呼ぶ)とを有する。すなわち、リング状軟磁性体12の内径側に20個の極間軟磁性体13が周方向に等間隔に配置され、その周方向に隣り合う二つの極間軟磁性体13の間に形成される開口部に永久磁石11が収納される。
リング状軟磁性体12と極間軟磁性体13は、例えば、電磁鋼板を積層して形成されるものであり、両者を一体に設けることができる。あるいは、リング状軟磁性体12と極間軟磁性体13とを別体に形成することも出来る。
As shown in FIG. 1, the soft magnetic bodies 12 and 13 are ring-shaped soft magnets that are arranged on the entire circumference of the magnet rotor 7 so as to cover the outer circumferential surfaces (radial outer surfaces) of the 20 permanent magnets 11. Body (hereinafter referred to as ring-shaped soft magnetic body 12) and a soft magnetic body (hereinafter referred to as pole) disposed between two permanent magnets 11 adjacent to each other in the circumferential direction to form the magnetic flux transmission region of the present invention. And interstitial soft magnetic material 13). That is, 20 interpolar soft magnetic bodies 13 are arranged at equal intervals in the circumferential direction on the inner diameter side of the ring-shaped soft magnetic body 12 and formed between two adjacent interpolar soft magnetic bodies 13 in the circumferential direction. The permanent magnet 11 is accommodated in the opening.
The ring-shaped soft magnetic body 12 and the interelectrode soft magnetic body 13 are formed by laminating electromagnetic steel plates, for example, and both can be provided integrally. Alternatively, the ring-shaped soft magnetic body 12 and the interelectrode soft magnetic body 13 can be formed separately.

また、図3に示す様に、磁気誘導回転子5の外径面に突出している磁束出入り口9eの周方向幅をW1、周方向に隣り合う二つの永久磁石11の間の周方向距離、すなわち、極間軟磁性体13の内径面の周方向幅をW2とすると、W1≦W2の関係を満たしている。言い換えると、磁束出入り口9eの周方向幅W1に対する中心角θ2=4.5度より、極間軟磁性体13の内径面の周方向幅W2に対する中心角θ3=5.5度の方が大きい。
さらに、セグメント9に形成されるセグメント凹部9cの最大深さ、つまり、図3に示す様に、磁気誘導回転子5の外径面からセグメント凹部9cの底面までの深さDは、極間軟磁性体13の内径面の周方向幅W2以上の寸法に設定される。
Further, as shown in FIG. 3, the circumferential width of the magnetic flux entrance 9e protruding from the outer diameter surface of the magnetic induction rotor 5 is W1, and the circumferential distance between two permanent magnets 11 adjacent in the circumferential direction, that is, When the circumferential width of the inner diameter surface of the interpolar soft magnetic body 13 is W2, the relationship of W1 ≦ W2 is satisfied. In other words, the central angle θ3 = 5.5 degrees with respect to the circumferential width W2 of the inner diameter surface of the interpolar soft magnetic body 13 is larger than the central angle θ2 = 4.5 degrees with respect to the circumferential width W1 of the magnetic flux entrance 9e.
Further, the maximum depth of the segment recess 9c formed in the segment 9, that is, the depth D from the outer diameter surface of the magnetic induction rotor 5 to the bottom surface of the segment recess 9c as shown in FIG. The dimension is set to be equal to or larger than the circumferential width W2 of the inner diameter surface of the magnetic body 13.

次に、本モータ1の作動を説明する。
N極の永久磁石11とS極の永久磁石11とが極間軟磁性体13を介して周方向に交互に配置される磁石回転子7は、その極対数n=10と回転角速度ωとの積10ωnの周波数の起磁力変化を磁気誘導回転子5に与える。一方、磁気誘導回転子5は、磁気導通路を形成する16個のセグメント9が略V字形を成し、そのセグメント9に設けられる2本のセグメント腕部9aの先端面が磁束出入り口9eとして磁気誘導回転子5の外径面に突出している。従って、磁気誘導回転子5の回転角速度をωkとすると、16ωkの周波数の磁気導通変化を形成することができる。すなわち、10ωnの起磁力変化が16ωkの磁気導通として変調される。
Next, the operation of the motor 1 will be described.
The magnet rotor 7 in which the N-pole permanent magnets 11 and the S-pole permanent magnets 11 are alternately arranged in the circumferential direction via the interpolar soft magnetic bodies 13 has a pole pair number n = 10 and a rotational angular velocity ω. A magnetomotive force change having a frequency of the product 10ωn is applied to the magnetic induction rotor 5. On the other hand, in the magnetic induction rotor 5, the 16 segments 9 forming the magnetic conduction path form a substantially V shape, and the tip surfaces of the two segment arm portions 9a provided in the segment 9 are magnetic as the magnetic flux entrance 9e. Projecting to the outer diameter surface of the induction rotor 5. Therefore, if the rotational angular velocity of the magnetic induction rotor 5 is ωk, a magnetic conduction change with a frequency of 16ωk can be formed. That is, a change in magnetomotive force of 10 ωn is modulated as a magnetic continuity of 16 ωk.

永久磁石11より発信された磁束は、セグメント9の一方の磁束出入り口9eが入口側となってセグメント9を通り、他方の磁束出入り口9eが丁度逆極性の永久磁石11である時には、出口側となる他方の磁束出入り口9eより永久磁石11を通って電機子3に磁束が伝播する。出口側となる他方の磁束出入り口9eが極間軟磁性体13と対向する時には、磁束透過領域を形成する極間軟磁性体13を通って電機子3に磁束が伝播することができる。磁気誘導回転子5の外径側に対向する磁石回転子7が全て永久磁石11で覆われていると、磁気誘導回転子5の成分が電機子3に十分に伝わらないが、周方向に隣り合う二つの永久磁石11の間に極間軟磁性体13を配置して磁束透過領域を形成することにより、良好に磁気変調が行われる。   The magnetic flux transmitted from the permanent magnet 11 passes through the segment 9 with one magnetic flux inlet / outlet 9e of the segment 9 being the inlet side, and is on the outlet side when the other magnetic flux inlet / outlet 9e is just the permanent magnet 11 of reverse polarity. Magnetic flux propagates to the armature 3 through the permanent magnet 11 from the other magnetic flux entrance 9e. When the other magnetic flux entrance / exit 9e on the exit side faces the interpolar soft magnetic body 13, the magnetic flux can propagate to the armature 3 through the interpolar soft magnetic body 13 forming the magnetic flux transmission region. If the magnet rotor 7 facing the outer diameter side of the magnetic induction rotor 5 is all covered with the permanent magnet 11, the components of the magnetic induction rotor 5 are not sufficiently transmitted to the armature 3, but are adjacent in the circumferential direction. By arranging the interpolar soft magnetic body 13 between the two matching permanent magnets 11 to form a magnetic flux transmission region, magnetic modulation is favorably performed.

電機子3に伝播する磁気的変化の周波数は、変調作用により10ωnと16ωkとの和と差の二つになり、極対数m=6の電機子巻線31(三相巻線)に生成される回転磁界の角速度をωmとすると、このωmに関して、下記(1)式となるように、インバータ8の作動を制御して電機子巻線31への通電を行う。
6ωm=|10ωn±16ωk| ………………………………(1)
これにより、磁気誘導回転子5と磁石回転子7と電機子3とは、相互にエネルギ変換作用ができ、磁気変調モータとして作動できることとなる。
The frequency of the magnetic change propagating to the armature 3 becomes two of the sum and difference of 10ωn and 16ωk due to the modulation action, and is generated in the armature winding 31 (three-phase winding) having the number of pole pairs m = 6. Assuming that the angular velocity of the rotating magnetic field is ωm, the armature winding 31 is energized by controlling the operation of the inverter 8 so that the following equation (1) is satisfied with respect to ωm.
6ωm = | 10ωn ± 16ωk | ……………………………… (1)
Thereby, the magnetic induction rotor 5, the magnet rotor 7, and the armature 3 can perform an energy conversion action mutually, and can operate as a magnetic modulation motor.

本モータ1は、磁気誘導回転子5を電機子3と磁石回転子7との間ではなく、最も内径側に配置できるため、磁気導通路を形成する16個のセグメント9を高強度アルミニウム材(例えばジュラルミン材)に鋳込むことで剛性の高い回転子構造を実現できる。また、磁気誘導回転子5を最も内径側に配置したことにより、第一回転軸4への固定が容易である。すなわち、16個のセグメント9を保持する回転子ハブ10の中心孔10aに第一回転軸4を圧入等により嵌合することで強固に且つ容易に固定できる。
また、磁気誘導回転子5は、周方向に隣り合う二つのセグメント9の間に高電気伝導率を有する高強度アルミニウム材が充填されているので、動磁場に関して、この部分での磁気漏洩が抑制される効果が生まれる。その結果、磁石回転子7と磁気誘導回転子5との間の磁気変調が整然と行われることにより、高性能化できる効果もある。
In the present motor 1, the magnetic induction rotor 5 can be arranged not on the inner diameter side but between the armature 3 and the magnet rotor 7, so that the 16 segments 9 forming the magnetic conduction path are made of high-strength aluminum material ( For example, a highly rigid rotor structure can be realized by casting into duralumin material. Further, since the magnetic induction rotor 5 is arranged on the innermost diameter side, the fixing to the first rotating shaft 4 is easy. That is, the first rotating shaft 4 can be firmly and easily fixed by fitting the first rotating shaft 4 into the center hole 10a of the rotor hub 10 holding the 16 segments 9 by press fitting or the like.
In addition, since the magnetic induction rotor 5 is filled with a high-strength aluminum material having high electrical conductivity between two segments 9 adjacent in the circumferential direction, magnetic leakage at this portion is suppressed with respect to the dynamic magnetic field. Effect is born. As a result, since the magnetic modulation between the magnet rotor 7 and the magnetic induction rotor 5 is performed in an orderly manner, there is an effect that the performance can be improved.

上記のように、実施例1の構成によれば、耐遠心力強度が向上でき、且つ、小型高性能化できると共に、前述のように磁気回路の変調動作も良好となるため、より高性能化できるという優れた効果が得られる。
また、実施例1に記載した本モータ1は、セグメント9の磁束出入り口9eの周方向幅W1が、極間軟磁性体13の内径面の周方向幅W2に対して同等以下(W1≦W2)に設定される。一方、W1がW2より大きいと、隣り合う二つの永久磁石11の磁界がセグメント9の磁束出入り口9e付近で短絡されるため、セグメント9を有効に磁束が流れることなく、磁束出入り口9e付近だけでの顕著な磁束漏れが生じる。このため、永久磁石11の磁力が弱ってしまう。これに対し、上記の関係(W1≦W2)が満たされていると、磁束出入り口9e付近での短絡が生じないので、永久磁石11の磁力が弱まることはなく、セグメント9に対する磁気誘導が良好に行われる。
As described above, according to the configuration of the first embodiment, the strength against centrifugal force can be improved, the size and performance can be improved, and the modulation operation of the magnetic circuit is also improved as described above. An excellent effect that it can be obtained.
In the motor 1 described in the first embodiment, the circumferential width W1 of the magnetic flux inlet / outlet 9e of the segment 9 is equal to or less than the circumferential width W2 of the inner diameter surface of the interpolar soft magnetic body 13 (W1 ≦ W2). Set to On the other hand, when W1 is larger than W2, the magnetic fields of the two adjacent permanent magnets 11 are short-circuited in the vicinity of the magnetic flux inlet / outlet 9e of the segment 9, so that the magnetic flux does not effectively flow through the segment 9, but only in the vicinity of the magnetic flux inlet / outlet 9e. Significant magnetic flux leakage occurs. For this reason, the magnetic force of the permanent magnet 11 is weakened. On the other hand, if the above relationship (W1 ≦ W2) is satisfied, no short circuit occurs near the magnetic flux inlet / outlet 9e, so that the magnetic force of the permanent magnet 11 does not weaken and the magnetic induction with respect to the segment 9 is good. Done.

さらに、実施例1に記載した本モータ1は、磁気誘導回転子5の外径面からセグメント凹部9cの底面までの深さDが、極間軟磁性体13の内径面の周方向幅W2以上の寸法に設定されている(図3参照)。この作用効果を以下に説明する。
周方向に隣り合う二つの永久磁石11は、前述のように極間漏れが抑制されるように、その幅と寸法が設定される。従って、磁気誘導回転子5のセグメント9以外の部分、すなわち磁気漏れさせたくないセグメント凹部9cの深さDを、極間軟磁性体13の内径面の周方向幅W2以上の寸法に設定することで、磁気漏れを許容できるレベルにまで抑制できる効果を得ることができる。
Furthermore, in the motor 1 described in the first embodiment, the depth D from the outer diameter surface of the magnetic induction rotor 5 to the bottom surface of the segment recess 9c is equal to or greater than the circumferential width W2 of the inner diameter surface of the interpolar soft magnetic body 13. (See FIG. 3). This effect will be described below.
The two permanent magnets 11 adjacent to each other in the circumferential direction are set in width and size so that leakage between the electrodes is suppressed as described above. Therefore, the portion other than the segment 9 of the magnetic induction rotor 5, that is, the depth D of the segment recess 9c that is not desired to be magnetically leaked is set to a dimension equal to or larger than the circumferential width W2 of the inner diameter surface of the interpolar soft magnetic body 13. Thus, it is possible to obtain an effect of suppressing the magnetic leakage to a level that allows it.

以下、磁気誘導回転子5を電機子3と磁石回転子7との間に配置した従来モータと比較しながら、磁場解析のシミュレーション結果を基に本モータ1の効果を説明する。
図5(a)は従来モータの解析モデルを示す構成図、同図(b)は磁場解析のシミュレーション結果である。図6(a)は本モータ1の解析モデルを示す構成図、同図(b)は磁場解析のシミュレーション結果である。
なお、従来モータと本モータ1の解析モデルは、磁気誘導回転子5と磁石回転子7との配列が異なるが、電機子3の外径と軸長は同じである。ちなみに、電機子3の外径=φ254mm、軸長=50mmである。また、従来モータの磁気誘導回転子5は、周方向に隣り合う二つの磁気誘導磁極50の間が空間であり、アルミ材は充填されていない。
Hereinafter, the effect of the motor 1 will be described based on the simulation result of the magnetic field analysis while comparing the magnetic induction rotor 5 with a conventional motor in which the armature 3 and the magnet rotor 7 are arranged.
FIG. 5A is a configuration diagram showing an analysis model of a conventional motor, and FIG. 5B is a simulation result of magnetic field analysis. FIG. 6A is a configuration diagram showing an analysis model of the motor 1, and FIG. 6B is a simulation result of magnetic field analysis.
The analysis model of the conventional motor 1 and the motor 1 is different in the arrangement of the magnetic induction rotor 5 and the magnet rotor 7, but the outer diameter and the axial length of the armature 3 are the same. Incidentally, the outer diameter of the armature 3 = φ254 mm and the axial length = 50 mm. Further, the magnetic induction rotor 5 of the conventional motor has a space between two magnetic induction magnetic poles 50 adjacent in the circumferential direction, and is not filled with an aluminum material.

従来モータと本モータ1において、それぞれ、磁石回転子7を静止した状態で、170A(実効値)の三相交流を電機子巻線31に通電して回転磁界を生成し、磁気誘導回転子5を750rpmにて回転させた時の発生トルクを比較した。
結果は、従来モータの発生トルクが152Nmであるのに対し、本モータ1の発生トルクは183Nmであり、従来モータより大きな発生トルクが得られた。
磁場解析の結果を比較すると、図5(b)に示す従来モータと、図6(b)に示す本モータ1とで、同様に磁気変調が行われていることが理解できる。すなわち、電機子3と磁気誘導回転子5との間に磁石回転子7を配置した本モータ1の構成であっても、磁石回転子7によって磁束の流れが遮られることはなく、磁石回転子7に設けられる極間軟磁性体13を通って磁気誘導回転子5から電機子3へと磁束が伝播できるので、発生トルクが低下することはない。
In the conventional motor and the motor 1, with the magnet rotor 7 stationary, a three-phase alternating current of 170 A (effective value) is passed through the armature winding 31 to generate a rotating magnetic field, and the magnetic induction rotor 5 The generated torque was compared when rotating at 750 rpm.
As a result, the generated torque of the conventional motor is 152 Nm, whereas the generated torque of the motor 1 is 183 Nm, which is larger than that of the conventional motor.
Comparing the results of the magnetic field analysis, it can be understood that the conventional motor shown in FIG. 5B and the motor 1 shown in FIG. That is, even in the configuration of the motor 1 in which the magnet rotor 7 is disposed between the armature 3 and the magnetic induction rotor 5, the flow of magnetic flux is not blocked by the magnet rotor 7, and the magnet rotor The magnetic flux can propagate from the magnetic induction rotor 5 to the armature 3 through the interpolar soft magnetic body 13 provided in the motor 7, so that the generated torque does not decrease.

上記のように、前記磁気誘導回転子5は、電機子3との間の磁束のやりとりにおいて、その間に配置された永久磁石11にすべて覆われてしまわないように、隣り合う二つの永久磁石11の間に磁束透過領域(極間軟磁性体13)を設けているので、磁石回転子7と磁気誘導回転子5との配列を逆にしても変調作用が働き、元々の配置のもの(磁気誘導回転子5を電機子3と磁石回転子7との間に配置したもの)と同等以上の性能が得られることが分かった。
さらに、本発明のモータ構成によれば、磁気誘導回転子5を最も内径側に配置するので、上述したように、磁気誘導回転子5の機械的な剛性を高めることができ、耐遠心力に優れる。これに対し、磁気誘導回転子5を電機子3と磁石回転子7との間に配置する従来モータの構成では、7000rpm程度までの耐遠心力しか得られないものが、実施例1に記載した本モータ1では、従来モータの二倍以上である15000rpm程度まで耐え得ることができる。実質は二倍以上の小型高性能化を実現でき、従来モータと比較して顕著な効果を発揮できる。
As described above, the magnetic induction rotor 5 is adjacent to the two permanent magnets 11 so that the magnetic induction rotor 5 is not covered by the permanent magnets 11 disposed between the magnetic induction rotor 5 and the armature 3. Since the magnetic flux transmission region (interpolar soft magnetic material 13) is provided between the magnetic rotor and the magnetic induction rotor 5, the modulation action works even if the arrangement of the magnet rotor 7 and the magnetic induction rotor 5 is reversed. It has been found that performance equivalent to or higher than that obtained by arranging the induction rotor 5 between the armature 3 and the magnet rotor 7 is obtained.
Furthermore, according to the motor configuration of the present invention, since the magnetic induction rotor 5 is arranged on the innermost diameter side, as described above, the mechanical rigidity of the magnetic induction rotor 5 can be increased, and the anti-centrifugal force can be increased. Excellent. On the other hand, the configuration of the conventional motor in which the magnetic induction rotor 5 is disposed between the armature 3 and the magnet rotor 7 can obtain only a centrifugal force up to about 7000 rpm, as described in Example 1. The motor 1 can withstand up to about 15000 rpm, which is twice or more that of a conventional motor. In fact, it can achieve a size and performance that is more than double that of the conventional motor.

続いて、磁石回転子7の構成が異なる四つの解析モデルA〜Dを使用して磁場解析のシミュレーションを実施した。
モデルAの磁石回転子7は、図7(a)に示す様に、リング状軟磁性体12と極間軟磁性体13とを有する、つまり、実施例1で説明した磁石回転子7の構成である。
モデルBの磁石回転子7は、図8(a)に示す様に、極間軟磁性体13を廃止して、永久磁石11の外周をリング状軟磁性体12で覆った構成である。
モデルCの磁石回転子7は、図9(a)に示す様に、リング状軟磁性体12および極間軟磁性体13を共に廃止した構成である。
モデルDの磁石回転子7は、図10(a)に示す様に、リング状軟磁性体12および極間軟磁性体13を使用することなく、且つ、磁束透過領域を無くした構成、つまり、周方向に永久磁石11を隙間無く並べて配置した構成である。
Subsequently, a simulation of magnetic field analysis was performed using four analysis models A to D having different configurations of the magnet rotor 7.
The magnet rotor 7 of the model A has a ring-shaped soft magnetic body 12 and an interpolar soft magnetic body 13 as shown in FIG. 7A, that is, the configuration of the magnet rotor 7 described in the first embodiment. It is.
As shown in FIG. 8A, the model B magnet rotor 7 has a configuration in which the interpolar soft magnetic body 13 is eliminated and the outer periphery of the permanent magnet 11 is covered with a ring-shaped soft magnetic body 12.
The magnet rotor 7 of the model C has a configuration in which both the ring-shaped soft magnetic body 12 and the interpolar soft magnetic body 13 are abolished as shown in FIG.
As shown in FIG. 10A, the model D magnet rotor 7 has a configuration in which the ring-shaped soft magnetic body 12 and the interpolar soft magnetic body 13 are not used, and the magnetic flux transmission region is eliminated. This is a configuration in which the permanent magnets 11 are arranged in the circumferential direction without gaps.

図7(b)、図8(b)、図9(b)、図10(b)は、それぞれ、モデルA、モデルB、モデルC、モデルDの解析結果を示す磁力線図である。
なお、解析モデルA〜Dに使用した磁気誘導回転子5は、全てセグメント9のみの構成であり、実施例1で説明した高強度アルミニウム材は充填されていないものとして解析した。その理由は、磁石周辺の空間や磁性材の有無、また、磁石で覆われてしまったときの影響を明確に把握し説明するためである。
上記四つのモデルA〜Dにおいて、磁気誘導回転子5の発生トルクを比較すると、リング状軟磁性体12と極間軟磁性体13とを使用したモデルAの結果が最も良く、発生トルクは147Nmとなった。以下、リング状軟磁性体12のみを使用したモデルB、軟磁性体を使用することなく磁束透過領域を形成したモデルC、磁束透過領域を無くしたモデルDの順に発生トルクが低下している。この結果からも明らかな様に、磁石回転子7に磁束透過領域を設けているモデルA、モデルB、モデルCは、磁石回転子7に磁束透過領域を設けていないモデルDと比較して発生トルクが高くなることが分かる。
FIG. 7B, FIG. 8B, FIG. 9B, and FIG. 10B are magnetic field diagrams showing the analysis results of model A, model B, model C, and model D, respectively.
The magnetic induction rotors 5 used in the analysis models A to D were all configured with only the segment 9 and analyzed as being not filled with the high-strength aluminum material described in Example 1. The reason is to clearly grasp and explain the space around the magnet, the presence or absence of a magnetic material, and the influence when covered with a magnet.
In the above four models A to D, when the generated torque of the magnetic induction rotor 5 is compared, the result of the model A using the ring-shaped soft magnetic body 12 and the interpolar soft magnetic body 13 is the best, and the generated torque is 147 Nm. It became. Hereinafter, the generated torque decreases in the order of model B using only the ring-shaped soft magnetic body 12, model C forming the magnetic flux transmission region without using the soft magnetic material, and model D eliminating the magnetic flux transmission region. As is apparent from this result, the models A, B, and C in which the magnetic rotor 7 is provided with the magnetic flux transmission region are generated in comparison with the model D in which the magnetic rotor 7 is not provided with the magnetic flux transmission region. It turns out that torque becomes high.

以下、本発明に係る他の実施例(実施例2〜実施例5)を説明する。
なお、以下に説明する実施例2〜実施例5においても、電機子3、磁石回転子7、磁気誘導回転子5の配列は実施例1と同じであり、すなわち、磁気誘導回転子5が最も内径側に配置されている。また、実施例1と同一の構成には同一の番号を付している。
Hereinafter, other examples (Examples 2 to 5) according to the present invention will be described.
In the second to fifth embodiments described below, the arrangement of the armature 3, the magnet rotor 7, and the magnetic induction rotor 5 is the same as that of the first embodiment, that is, the magnetic induction rotor 5 is the most. It is arranged on the inner diameter side. The same components as those in the first embodiment are denoted by the same reference numerals.

(実施例2)
この実施例2は、実施例1に記載した磁石回転子7の極間軟磁性体13に凹み13aを設けた一例である。極間軟磁性体13には、図11に示す様に、磁気誘導回転子5との対向面、つまり、空隙を有して磁気誘導回転子5の外径面と対向する極間軟磁性体13の内径面に凹み13aが形成されている。この凹み13aは、例えば、磁石回転子7の厚み(半径方向の寸法)の約2/3の深さを有し、且つ、最深部から磁石回転子7の内径面に向かって周方向の開口幅が次第に広くなるテーパ状に形成されている。
また、磁気誘導回転子5は、実施例1と同じく、16個のセグメント9を高強度アルミニウム材に鋳込んで構成されているが、セグメント凹部9cにも同アルミ材15が充填されている。セグメント凹部9cに充填されたアルミ材15は、セグメント腕部9aの側面より突き出る係止片9fに係止されている。
(Example 2)
The second embodiment is an example in which a recess 13 a is provided in the interpolar soft magnetic body 13 of the magnet rotor 7 described in the first embodiment. As shown in FIG. 11, the interpolar soft magnetic body 13 has a surface facing the magnetic induction rotor 5, that is, an interpolar soft magnetic body facing the outer diameter surface of the magnetic induction rotor 5 with a gap. A recess 13 a is formed on the inner diameter surface of 13. The recess 13a has, for example, a depth of about 2/3 of the thickness (radial dimension) of the magnet rotor 7 and is open in the circumferential direction from the deepest portion toward the inner diameter surface of the magnet rotor 7. It is formed in a tapered shape with a gradually increasing width.
The magnetic induction rotor 5 is configured by casting 16 segments 9 into a high-strength aluminum material, as in the first embodiment, but the segment recess 9c is also filled with the aluminum material 15. The aluminum material 15 filled in the segment recess 9c is locked to a locking piece 9f protruding from the side surface of the segment arm 9a.

この実施例2に係る本モータ1の磁場解析を実施例1と同一条件にて実施した。
図12(a)は実施例2に係る本モータ1のモデル構成図、同図(b)は磁場解析のシミュレーション結果である。
この実施例2に係る本モータ1の発生トルクは166Nmとなり、従来モータと同等以上の発生トルクが得られた。なお、従来モータの発生トルクは、実施例1に記載した様に、152Nmである。
極間軟磁性体13の内径面に凹み13aを形成すると、セグメント9に対向する二つの隣り合う永久磁石11の表面間での漏れ磁束が少なくなる効果が期待できる。周方向に隣り合う二つの永久磁石11の間に介在される極間軟磁性体13が両隣の磁極表面と同じ面で連なっていると、極間軟磁性体13を経由した漏れ磁束が多くなるが、極間軟磁性体13の内径面に凹み13aを形成することで、磁束が漏れる通路が小さく、且つ、長くなることで漏れにくくなる。そのため、永久磁石11の磁力が弱まることがなく、セグメント9に対する磁気誘導が良好となる。
The magnetic field analysis of the motor 1 according to Example 2 was performed under the same conditions as in Example 1.
12A is a model configuration diagram of the motor 1 according to the second embodiment, and FIG. 12B is a simulation result of magnetic field analysis.
The generated torque of the motor 1 according to Example 2 was 166 Nm, and a generated torque equal to or higher than that of the conventional motor was obtained. The torque generated by the conventional motor is 152 Nm as described in the first embodiment.
If the recess 13 a is formed on the inner diameter surface of the interpolar soft magnetic body 13, an effect of reducing leakage magnetic flux between the surfaces of two adjacent permanent magnets 11 facing the segment 9 can be expected. When the interpolar soft magnetic bodies 13 interposed between the two permanent magnets 11 adjacent in the circumferential direction are continuous on the same surface as the magnetic pole surfaces adjacent to each other, the leakage magnetic flux via the interpolar soft magnetic bodies 13 increases. However, by forming the recess 13a on the inner diameter surface of the interpolar soft magnetic body 13, the passage through which the magnetic flux leaks is small and long, and it becomes difficult to leak. Therefore, the magnetic force of the permanent magnet 11 is not weakened, and the magnetic induction for the segment 9 is good.

(実施例3)
この実施例3は、磁気誘導回転子5を歯車形状に構成した一例である。
磁気誘導回転子5は、歯車形状に切り出した電磁鋼板を積層して構成されるもので、図13に示す様に、径方向の外側へ突き出るk個の歯形部5aを有し、このk個の歯形部5aが周方向に等間隔に配置されている。この歯形部5aは、磁気導通路に対する磁束の出入り口を形成している。
この実施例3に係る本モータ1についても、実施例1と同一条件にて磁場解析を実施した。図14(a)は実施例3に係る本モータ1のモデル構成図、同図(b)は磁場解析のシミュレーション結果である。なお、本モータ1の解析モデルには、図14(a)に示す様に、周方向に隣り合う二つの歯形部5aの間にアルミ材15が充填されている。
(Example 3)
The third embodiment is an example in which the magnetic induction rotor 5 is configured in a gear shape.
The magnetic induction rotor 5 is configured by laminating electromagnetic steel plates cut into a gear shape, and has k tooth profile portions 5a protruding outward in the radial direction as shown in FIG. Are arranged at equal intervals in the circumferential direction. The tooth profile 5a forms a magnetic flux entrance / exit with respect to the magnetic conduction path.
For the motor 1 according to Example 3, magnetic field analysis was performed under the same conditions as in Example 1. 14A is a model configuration diagram of the motor 1 according to the third embodiment, and FIG. 14B is a simulation result of magnetic field analysis. In the analysis model of the motor 1, as shown in FIG. 14A, an aluminum material 15 is filled between two tooth profile portions 5 a adjacent in the circumferential direction.

本モータ1の発生トルクは137Nmとなり、従来モータに対して発生トルクは低下するが、顕著な差が生じるという程ではない。むしろ、磁気誘導回転子5を歯車形状に形成することで、磁気誘導回転子5がそのまま回転子ハブとしても機能する。言い換えると、k個の歯形部5aが回転子ハブと同一材料によって一体に設けられている構成であるため、遠心力に強い構造となるばかりでなく、第一回転軸4との固設が極めて強固にできる。また、エンジンE(図2参照)の回転振動等に対して優れた耐久性を示す効果もあり、実施例1に記載した磁気誘導回転子5と比較しても、耐高速性に優れる点で小型軽量化のポテンシャルを持つものである。   The generated torque of the motor 1 is 137 Nm, and the generated torque is lower than that of the conventional motor, but not so much that a significant difference occurs. Rather, by forming the magnetic induction rotor 5 in a gear shape, the magnetic induction rotor 5 functions as a rotor hub as it is. In other words, since the k tooth profile portions 5a are integrally formed of the same material as the rotor hub, the structure is not only strong against centrifugal force, but is also firmly fixed to the first rotating shaft 4. Can be strong. In addition, there is also an effect that shows excellent durability against rotational vibration of the engine E (see FIG. 2), and in comparison with the magnetic induction rotor 5 described in the first embodiment, it is excellent in high-speed resistance. It has the potential to reduce size and weight.

(実施例4)
この実施例4は、実施例3に記載した歯車形状の磁気誘導回転子5に対し、図15(a)、(b)に示す様に、周方向に隣り合う二つの歯形部5aの間に短絡コイル16を配置した一例である。
実施例1に記載した磁気誘導回転子5は、周方向に隣り合う二つのセグメント9の間に回転子ハブ10(図1参照)を形成する高アルミニウム材が充填されるので、二つのセグメント9の間の磁気漏洩を抑制できる効果があるが、これと同様に、隣り合う二つの歯形部5aの間に短絡コイル16を配置することで、二つの歯形部5aの間の動的な漏洩磁束を防ぐことができ、磁気変調作用の改善効果がある。
Example 4
The fourth embodiment is different from the gear-shaped magnetic induction rotor 5 described in the third embodiment between two tooth profile portions 5a adjacent to each other in the circumferential direction as shown in FIGS. 15 (a) and 15 (b). This is an example in which a short-circuit coil 16 is arranged.
The magnetic induction rotor 5 described in the first embodiment is filled with the high aluminum material forming the rotor hub 10 (see FIG. 1) between the two segments 9 adjacent in the circumferential direction. In the same manner as this, the magnetic leakage magnetic flux between the two tooth profile portions 5a can be obtained by arranging the short-circuit coil 16 between the two adjacent tooth profile portions 5a. Can be prevented, and the magnetic modulation effect is improved.

(実施例5)
この実施例5は、実施例3に記載した歯車形状の磁気誘導回転子5に対し、図16(a)に示す様に、周方向に隣り合う二つの歯形部5aの間に銅板17を配置した一例である。銅板17は、図16(b)に示す様に、非磁性材より成るボルト18で磁気誘導回転子5に固定される。
この実施例5の構成では、実施例4と同様に、周方向に隣り合う二つの歯形部5aの間の動的な漏洩磁束を防ぐことができ、磁気変調作用の改善効果がある。また、銅板17をボルト18で固定するだけで良いので、銅板17の装着が容易でもある。
(Example 5)
In the fifth embodiment, a copper plate 17 is disposed between two tooth profile portions 5a adjacent to each other in the circumferential direction as shown in FIG. 16 (a) with respect to the gear-shaped magnetic induction rotor 5 described in the third embodiment. This is an example. As shown in FIG. 16B, the copper plate 17 is fixed to the magnetic induction rotor 5 with bolts 18 made of a nonmagnetic material.
In the configuration of the fifth embodiment, similarly to the fourth embodiment, it is possible to prevent the dynamic leakage magnetic flux between the two tooth form portions 5a adjacent in the circumferential direction, and there is an effect of improving the magnetic modulation action. Moreover, since it is only necessary to fix the copper plate 17 with the bolt 18, the mounting of the copper plate 17 is easy.

(変形例)
実施例1に記載した磁気誘導回転子5は、セグメント凹部9cにアルミ材が充填されていない、つまり、セグメント凹部9cが空間となっているが、実施例2と同様に、セグメント凹部9cにアルミ材を充填する構成でも良い。なお、セグメント凹部9cにアルミ材を充填する場合は、磁気誘導回転子5の軸方向端面において、回転子ハブ10を形成するアルミ材と、セグメント凹部9cに充填されるアルミ材とがセグメント9を跨いで磁気的に繋がらない様に構成する必要がある。
(Modification)
In the magnetic induction rotor 5 described in the first embodiment, the segment concave portion 9c is not filled with an aluminum material. That is, the segment concave portion 9c is a space. A structure filled with a material may be used. In addition, when filling the segment recessed part 9c with an aluminum material, the aluminum material which forms the rotor hub 10 and the aluminum material with which the segment recessed part 9c is filled in the axial direction end surface of the magnetic induction rotor 5 It is necessary to configure so as not to be magnetically connected across the bridge.

実施例1に記載した磁気誘導回転子5は、16個のセグメント9を高強度アルミニウム材(例えばジュラルミン材)に鋳込んで一体的に製造されたダイカスト品であるが、かならずしもダイカスト製造する必要はなく、例えば、k個のセグメント9を非磁性の機械構造部材、例えばステンレス鋼材などの連結部材で環状に連結した構成でも良い。あるいは、第一回転軸4を同様に高強度の非磁性ステンレス材で形成し、その第一回転軸4にk個のセグメント9を溶接等で直接固定して磁気誘導回転子5を構成することも出来る。   The magnetic induction rotor 5 described in the first embodiment is a die-cast product that is integrally manufactured by casting 16 segments 9 in a high-strength aluminum material (for example, duralumin material), but it is not always necessary to manufacture the die-cast. Alternatively, for example, a configuration in which the k segments 9 are connected in a ring shape with a connecting member such as a non-magnetic mechanical structural member, for example, a stainless steel material may be used. Alternatively, the first rotary shaft 4 is similarly made of a high-strength nonmagnetic stainless steel, and k segments 9 are directly fixed to the first rotary shaft 4 by welding or the like to form the magnetic induction rotor 5. You can also.

1 本モータ(磁気変調モータ)
3 電機子
5 磁気誘導回転子
7 磁石回転子
9 セグメント(磁気導通路)
9e 磁束出入り口
11 永久磁石
13 極間軟磁性体(磁束透過領域)
31 電機子巻線(多相巻線)
1 motor (magnetic modulation motor)
3 Armature 5 Magnetic induction rotor 7 Magnet rotor 9 Segment (magnetic conduction path)
9e Magnetic flux entrance / exit 11 Permanent magnet 13 Interpolar soft magnetic material (magnetic flux transmission region)
31 Armature winding (multi-phase winding)

Claims (8)

極対数mの多相巻線(31)を備える電機子(3)と、
整数kの数だけ磁気導通路(9)を有する磁気誘導回転子(5)と、
前記mと前記kとの和または差となる極対数nの極性領域を形成する2n個の永久磁石(11)を有し、この2n個の永久磁石(11)が離間して環状に配置される磁石回転子(7)とを備え、
径方向の外側から内側に向かって前記電機子(3)、前記磁石回転子(7)、前記磁気誘導回転子(5)の順に配列される磁気変調モータ(1)であって、
前記磁気誘導回転子(5)は、前記磁気導通路(9)の両端がそれぞれ前記磁気誘導回転子((5)の外径面に突出して設けられ、その外径面に突出する前記磁気導通路(9)の両端をそれぞれ磁束出入り口(9e)と呼ぶ時に、前記磁気導通路(9)は、一方の前記磁束出入り口(9e)と他方の前記磁束出入り口(9e)との間に磁束の通り道を形成し、
前記磁石回転子(7)は、それぞれ周方向に隣り合う二つの前記永久磁石(11)の間に磁束を透過する磁束透過領域(13)を有することを特徴とする磁気変調モータ。
An armature (3) comprising a multiphase winding (31) with a number of pole pairs of m,
A magnetic induction rotor (5) having magnetic conduction paths (9) by the number of integer k;
There are 2n permanent magnets (11) that form a polar region of n pole pairs, which is the sum or difference of m and k, and these 2n permanent magnets (11) are arranged in an annular shape apart from each other. Magnet rotor (7)
A magnetic modulation motor (1) arranged in the order of the armature (3), the magnet rotor (7), and the magnetic induction rotor (5) from the radially outer side toward the inner side,
The magnetic induction rotor (5) is provided with both ends of the magnetic conduction path (9) projecting from the outer diameter surface of the magnetic induction rotor ((5)) and projecting from the outer diameter surface of the magnetic induction rotor (5). When both ends of the passage (9) are called magnetic flux entrances (9e), the magnetic conduction path (9) is a path of magnetic flux between one magnetic flux entrance (9e) and the other magnetic flux entrance (9e). Form the
The said magnetic rotor (7) has a magnetic flux transmission area | region (13) which permeate | transmits a magnetic flux between two said permanent magnets (11) adjacent to the circumferential direction, respectively, The magnetic modulation motor characterized by the above-mentioned.
請求項1に記載した磁気変調モータ(1)において、
前記磁石回転子(7)は、前記2n個の永久磁石(11)の径方向外側面を覆って前記磁石回転子(7)の全周に配置されるリング状の軟磁性体(12)と、このリング状の軟磁性体(12)の径方向内側に設けられて、それぞれ周方向に隣り合う前記永久磁石(11)同士の間に配置される極間の軟磁性体(13)とを有し、この極間の軟磁性体(13)によって前記磁束透過領域(13)が形成されることを特徴とする磁気変調モータ。
Magnetic modulation motor (1) according to claim 1,
The magnet rotor (7) includes a ring-shaped soft magnetic body (12) disposed on the entire circumference of the magnet rotor (7) so as to cover a radially outer surface of the 2n permanent magnets (11). The ring-shaped soft magnetic body (12) is provided on the inner side in the radial direction, and the inter-pole soft magnetic body (13) disposed between the permanent magnets (11) adjacent to each other in the circumferential direction. The magnetic modulation motor is characterized in that the magnetic flux transmission region (13) is formed by the soft magnetic material (13) between the poles.
請求項1または2に記載した磁気変調モータ(1)において、
前記磁束出入り口(9e)の周方向幅をW1とし、前記磁石回転子(7)の内径面に沿って周方向に隣り合う前記永久磁石(11)同士の間の周方向距離をW2とすると、
W1≦W2 ………………………………………(1)
上記(1)式の関係を満たしていることを特徴とする磁気変調モータ。
Magnetic modulation motor (1) according to claim 1 or 2,
When the circumferential width of the magnetic flux entrance (9e) is W1, and the circumferential distance between the permanent magnets (11) adjacent in the circumferential direction along the inner diameter surface of the magnet rotor (7) is W2,
W1 ≦ W2 ……………………………………… (1)
A magnetic modulation motor characterized by satisfying the relationship of the above formula (1).
請求項1〜3に記載した何れか一つの磁気変調モータ(1)において、
前記磁気導通路(9)は、一方の前記磁束出入り口(9e)と他方の前記磁束出入り口(9e)との間が前記磁気誘導回転子(5)の外径面より内径方向に凹んだ凹形状を有し、前記磁気誘導回転子(5)の外径面から前記凹形状の最深部までの径方向距離をDとし、前記磁石回転子(7)の内径面に沿って周方向に隣り合う前記永久磁石(11)同士の間の周方向距離をW2とすると、
D≧W2 …………………………………………(2)
上記(2)式の関係を満たしていることを特徴とする磁気変調モータ。
In any one magnetic modulation motor (1) according to claims 1-3,
The magnetic conduction path (9) has a concave shape in which the gap between one magnetic flux entrance / exit (9e) and the other magnetic flux entrance / exit (9e) is recessed in the inner diameter direction from the outer diameter surface of the magnetic induction rotor (5). And D is a radial distance from the outer diameter surface of the magnetic induction rotor (5) to the deepest part of the concave shape, and is adjacent in the circumferential direction along the inner diameter surface of the magnet rotor (7). When the circumferential distance between the permanent magnets (11) is W2,
D ≧ W2 ………………………………………… (2)
A magnetic modulation motor characterized by satisfying the relationship of the above expression (2).
請求項1〜4に記載した何れか一つの磁気変調モータ(1)において、
前記磁気誘導回転子(5)は、前記磁気導通路(9)が軟磁性体から成るセグメント(9)によって形成され、k個の前記セグメント(9)がそれぞれ磁気的に分離して周方向に等間隔に配置されていることを特徴とする磁気変調モータ。
In any one magnetic modulation motor (1) according to claims 1-4,
In the magnetic induction rotor (5), the magnetic conduction path (9) is formed by segments (9) made of a soft magnetic material, and k segments (9) are magnetically separated from each other in the circumferential direction. A magnetic modulation motor characterized by being arranged at equal intervals.
請求項5に記載した磁気変調モータ(1)において、
前記磁気誘導回転子(5)は、k個の前記セグメント(9)をアルミニウム材で一体的に固定し、周方向に隣り合う二つの前記セグメント(9)の間に前記アルミニウム材が配置されていることを特徴とする磁気変調モータ。
Magnetic modulation motor (1) according to claim 5,
The magnetic induction rotor (5) has k segments (9) fixed integrally with an aluminum material, and the aluminum material is disposed between two segments (9) adjacent in the circumferential direction. A magnetic modulation motor.
請求項6に記載した磁気変調モータ(1)において、
k個の前記セグメント(9)を固定した前記アルミニウム材は、前記磁気誘導回転子(5)を回転軸(4)に固定する回転子ハブ(10)を形成していることを特徴とする磁気変調モータ。
Magnetic modulation motor (1) according to claim 6,
The aluminum material to which the k segments (9) are fixed forms a rotor hub (10) that fixes the magnetic induction rotor (5) to a rotating shaft (4). Modulation motor.
請求項1〜4に記載した何れか一つの磁気変調モータ(1)において、
前記磁気誘導回転子(5)は、径方向の外側へ突き出るk個の歯形部(5a)を有し、このk個の歯形部(5a)が周方向に等間隔に配置された歯車形状の軟磁性体によって形成され、空隙を有して磁石回転子(7)と対向する前記歯形部5aの先端面が磁束の出入り口を形成していることを特徴とする磁気変調モータ。
In any one magnetic modulation motor (1) according to claims 1-4,
The magnetic induction rotor (5) has k tooth profile portions (5a) protruding outward in the radial direction, and the k tooth profile portions (5a) are gear-shaped and arranged at equal intervals in the circumferential direction. A magnetic modulation motor, characterized in that the tip surface of the tooth profile 5a, which is formed of a soft magnetic material and has an air gap and faces the magnet rotor (7), forms a magnetic flux entrance.
JP2012053227A 2012-03-09 2012-03-09 Magnetic modulation motor Expired - Fee Related JP5761084B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012053227A JP5761084B2 (en) 2012-03-09 2012-03-09 Magnetic modulation motor
DE102013102184A DE102013102184A1 (en) 2012-03-09 2013-03-06 Magnetic modulation motor and electrical transmission
CN201310076851XA CN103312102A (en) 2012-03-09 2013-03-11 Magnetic modulation motor and electric transmission
US13/793,382 US20130234553A1 (en) 2012-03-09 2013-03-11 Magnetic modulation motor and electric transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012053227A JP5761084B2 (en) 2012-03-09 2012-03-09 Magnetic modulation motor

Publications (2)

Publication Number Publication Date
JP2013188065A true JP2013188065A (en) 2013-09-19
JP5761084B2 JP5761084B2 (en) 2015-08-12

Family

ID=49389055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012053227A Expired - Fee Related JP5761084B2 (en) 2012-03-09 2012-03-09 Magnetic modulation motor

Country Status (1)

Country Link
JP (1) JP5761084B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131448A (en) * 2015-01-14 2016-07-21 株式会社デンソー Dynamo-electric machine
DE102016201092A1 (en) 2015-01-29 2016-08-04 Suzuki Motor Corporation Electric machine
JP2016140220A (en) * 2015-01-29 2016-08-04 スズキ株式会社 Rotary electric machine
DE102016202477A1 (en) 2015-02-20 2016-08-25 Suzuki Motor Corporation ELECTRICAL MACHINE
DE102016216179A1 (en) 2015-08-31 2017-03-02 Suzuki Motor Corporation Rotating electrical machine
WO2023199709A1 (en) * 2022-04-14 2023-10-19 株式会社デンソー Rotary electric machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121705A (en) * 1996-12-31 2000-09-19 Hoong; Fong Chean Alternating pole AC motor/generator with two inner rotating rotors and an external static stator
JP2008278638A (en) * 2007-04-27 2008-11-13 Honda Motor Co Ltd Rotor yoke, manufacturing method for rotor yoke and motor
JP2009177980A (en) * 2008-01-25 2009-08-06 Alphana Technology Kk Brushless motor
JP2010057271A (en) * 2008-08-28 2010-03-11 Denso Corp Double rotor motor
JP2010183781A (en) * 2009-02-06 2010-08-19 Denso Corp Motor generator
JP2011083107A (en) * 2009-10-06 2011-04-21 Honda Motor Co Ltd Electric motor system
JP2011250620A (en) * 2010-05-28 2011-12-08 Toyota Central R&D Labs Inc Rotary electric machine
WO2012018253A1 (en) * 2010-08-05 2012-02-09 Martin Jacobus Hoeijmakers Rotating electromechanical converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121705A (en) * 1996-12-31 2000-09-19 Hoong; Fong Chean Alternating pole AC motor/generator with two inner rotating rotors and an external static stator
JP2008278638A (en) * 2007-04-27 2008-11-13 Honda Motor Co Ltd Rotor yoke, manufacturing method for rotor yoke and motor
JP2009177980A (en) * 2008-01-25 2009-08-06 Alphana Technology Kk Brushless motor
JP2010057271A (en) * 2008-08-28 2010-03-11 Denso Corp Double rotor motor
JP2010183781A (en) * 2009-02-06 2010-08-19 Denso Corp Motor generator
JP2011083107A (en) * 2009-10-06 2011-04-21 Honda Motor Co Ltd Electric motor system
JP2011250620A (en) * 2010-05-28 2011-12-08 Toyota Central R&D Labs Inc Rotary electric machine
WO2012018253A1 (en) * 2010-08-05 2012-02-09 Martin Jacobus Hoeijmakers Rotating electromechanical converter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131448A (en) * 2015-01-14 2016-07-21 株式会社デンソー Dynamo-electric machine
DE102016201092A1 (en) 2015-01-29 2016-08-04 Suzuki Motor Corporation Electric machine
JP2016140220A (en) * 2015-01-29 2016-08-04 スズキ株式会社 Rotary electric machine
DE102016201094A1 (en) 2015-01-29 2016-08-04 Suzuki Motor Corporation Electric machine
DE102016202477A1 (en) 2015-02-20 2016-08-25 Suzuki Motor Corporation ELECTRICAL MACHINE
US10320271B2 (en) 2015-02-20 2019-06-11 Suzuki Motor Corporation Electric machine
DE102016202477B4 (en) 2015-02-20 2021-08-12 Suzuki Motor Corporation ELECTRIC MACHINE
DE102016216179A1 (en) 2015-08-31 2017-03-02 Suzuki Motor Corporation Rotating electrical machine
WO2023199709A1 (en) * 2022-04-14 2023-10-19 株式会社デンソー Rotary electric machine

Also Published As

Publication number Publication date
JP5761084B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP4707696B2 (en) Axial gap type motor
JP5761084B2 (en) Magnetic modulation motor
JP5477161B2 (en) Double stator type motor
US9252634B2 (en) Synchronous motor
US20100141075A1 (en) Axial gap motor
US20130234553A1 (en) Magnetic modulation motor and electric transmission
EP1940013A1 (en) Axial gap motor
JP5272831B2 (en) Rotating electric machine
KR20140022747A (en) Rotating electromechanical converter
JP2015115985A (en) Rotary electric machine
US20130106227A1 (en) Electric rotating machine
JPWO2014174579A1 (en) Rotating electric machine
CN107078617B (en) Bimorph transducer type rotator
JP2014220930A (en) Magnet type rotary electrical machinery
JP6561692B2 (en) Rotating electric machine
EP3683931A1 (en) Rotor and dynamo-electric machine
JP2016154406A (en) Rotary electric machine
JP2015056921A (en) Magnetic modulation motor and magnetic planet gear
US20210006112A1 (en) Rotary electric machine
JP6260994B2 (en) Axial gap type motor
JP2014017943A (en) Rotating electrical machine
JP6766575B2 (en) Rotating electric machine
JP5957417B2 (en) Rotating electric machine
Wang et al. A novel hybrid-excited flux bidirectional modulated machine for electric vehicle propulsion
JP5708566B2 (en) Electromagnetic coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5761084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees