JP2008278638A - Rotor yoke, manufacturing method for rotor yoke and motor - Google Patents

Rotor yoke, manufacturing method for rotor yoke and motor Download PDF

Info

Publication number
JP2008278638A
JP2008278638A JP2007119455A JP2007119455A JP2008278638A JP 2008278638 A JP2008278638 A JP 2008278638A JP 2007119455 A JP2007119455 A JP 2007119455A JP 2007119455 A JP2007119455 A JP 2007119455A JP 2008278638 A JP2008278638 A JP 2008278638A
Authority
JP
Japan
Prior art keywords
rotor
magnetic material
circumferential
soft magnetic
yoke member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007119455A
Other languages
Japanese (ja)
Other versions
JP4999535B2 (en
Inventor
Takayuki Azuma
孝之 東
Kazuyuki Iwata
和之 岩田
Masato Fujioka
征人 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007119455A priority Critical patent/JP4999535B2/en
Publication of JP2008278638A publication Critical patent/JP2008278638A/en
Application granted granted Critical
Publication of JP4999535B2 publication Critical patent/JP4999535B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent magnetic field flux from being short-circuited and reduce leakage flux. <P>SOLUTION: A rotor core 7 of an outer-periphery-side rotor includes an inner-periphery-side yoke member containing a soft magnetic material 7a on either one side and an outer-periphery-side yoke member containing a non-magnetic substance 7b on the other side. The inner-periphery-side yoke member has an annular shape and a protrusion portion at the outer-periphery portion and the outer-periphery-side yoke member has an annular shape and a fitting recessed portion for fitting onto the protrusion portion at the inner-periphery portion. While the protrusion portion is fitted into the fitting recessed portion, a joint body is formed by sinter diffusion connection. Further, by removing the inner-periphery portion and the outer-periphery so as to alternately arrange the soft magnetic material 7a and the non-magnetic substance 7b in the peripheral direction, the rotor core 7 of the outer-periphery-side rotor is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ローターヨークおよびローターヨークの製造方法および電動機に関する。   The present invention relates to a rotor yoke, a method for manufacturing the rotor yoke, and an electric motor.

従来、例えば電動機の回転軸の周囲に同心円状に設けた第1および第2回転子を備え、電動機の回転速度に応じて、あるいは、固定子に発生する回転磁界の速度に応じて第1および第2回転子の周方向の相対位置つまり位相差を制御する電動機が知られている(例えば、特許文献1参照)。
この電動機では、例えば電動機の回転速度に応じて第1および第2回転子の位相差を制御する場合には、遠心力の作用により径方向に沿って変位する部材を介して第1および第2回転子の周方向の相対位置を変更するようになっている。また、例えば固定子に発生する回転磁界の速度に応じて第1および第2回転子の位相差を制御する場合には、各回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することによって、第1および第2回転子の周方向の相対位置を変更するようになっている。
特開2002−204541号公報
Conventionally, for example, first and second rotors provided concentrically around a rotating shaft of an electric motor are provided, and the first and second rotors are provided in accordance with the rotational speed of the electric motor or the rotational magnetic field generated in the stator. An electric motor that controls the relative position of the second rotor in the circumferential direction, that is, the phase difference is known (see, for example, Patent Document 1).
In this electric motor, for example, when the phase difference between the first and second rotors is controlled according to the rotational speed of the electric motor, the first and second elements are displaced via a member that is displaced along the radial direction by the action of centrifugal force. The relative position in the circumferential direction of the rotor is changed. For example, when the phase difference between the first and second rotors is controlled in accordance with the speed of the rotating magnetic field generated in the stator, the stator windings are kept in a state where each rotor maintains the rotation speed due to inertia. The relative position in the circumferential direction of the first and second rotors is changed by passing a control current and changing the rotating magnetic field velocity.
JP 2002-204541 A

ところで、上記従来技術の一例に係る電動機においては、内周側の第2回転子の永久磁石による界磁磁束が、外周側の第1回転子の永久磁石を鎖交せずに、第1回転子のヨークを介して短絡してしまう虞があり、この場合には、内周側の第2回転子の永久磁石による界磁磁束のうち、外周側の第1回転子の永久磁石を鎖交する磁束の量(鎖交磁束量)が低下し、漏洩磁束が増大してしまい、第1および第2回転子の周方向の相対位置を変更することに伴う誘起電圧定数の可変幅が低下してしまうという問題が生じる。   By the way, in the electric motor according to an example of the above prior art, the field magnetic flux generated by the permanent magnet of the second rotor on the inner peripheral side does not interlink the permanent magnet of the first rotor on the outer peripheral side, and the first rotation. There is a risk of short circuit through the yoke of the child. In this case, of the field magnetic flux generated by the permanent magnet of the second rotor on the inner circumference, the permanent magnet of the first rotor on the outer circumference is linked. The amount of magnetic flux to be reduced (linkage magnetic flux amount) decreases, the leakage magnetic flux increases, and the variable width of the induced voltage constant accompanying the change in the relative position in the circumferential direction of the first and second rotors decreases. Problem arises.

本発明は上記事情に鑑みてなされたもので、界磁磁束の短絡を抑制し、漏洩磁束を低減することが可能なローターヨークおよびローターヨークの製造方法および電動機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a rotor yoke, a method of manufacturing the rotor yoke, and an electric motor that can suppress a short circuit of field magnetic flux and reduce leakage magnetic flux.

上記課題を解決して係る目的を達成するために、本発明の第1態様に係るローターヨークは、何れか一方は軟磁性材(例えば、実施の形態での軟磁性材7a)からなり、何れか他方は非磁性材(例えば、実施の形態での非磁性材7b)からなる内周側ヨーク部材(例えば、実施の形態での内周側ヨーク部材41)および外周側ヨーク部材(例えば、実施の形態での外周側ヨーク部材42)に対し、環状であって外周部に凹凸部(例えば、実施の形態での凸部41a)を有する前記内周側ヨーク部材と、環状であって内周部に前記凹凸部に嵌合する嵌合凹凸部(例えば、実施の形態での嵌合凹部42a)を有する前記外周側ヨーク部材とを、前記凹凸部と前記嵌合凹凸部とを嵌合させた状態で、焼結拡散接合により接合して接合体(例えば、実施の形態での接合体43)を形成し、前記軟磁性材と前記非磁性材とが周方向で交互に配置されるように前記接合体の内周部および外周部を切除して形成されている。   In order to solve the above problems and achieve the object, either one of the rotor yokes according to the first aspect of the present invention is made of a soft magnetic material (for example, the soft magnetic material 7a in the embodiment). The other is an inner circumferential yoke member (for example, inner circumferential yoke member 41 in the embodiment) and an outer circumferential yoke member (for example, implementation) made of a nonmagnetic material (for example, the nonmagnetic material 7b in the embodiment). And the inner periphery side yoke member which is annular and has an uneven portion (for example, the convex portion 41a in the embodiment) on the outer periphery, and the annular and inner periphery The outer periphery side yoke member having a fitting uneven portion (for example, the fitting concave portion 42a in the embodiment) fitted to the uneven portion is fitted to the uneven portion and the fitting uneven portion. In this state, the bonded body (for example, actual Formed by cutting the inner periphery and the outer periphery of the joined body so that the soft magnetic material and the nonmagnetic material are alternately arranged in the circumferential direction. Yes.

また、本発明の第2態様に係るローターヨークの製造方法は、何れか一方は軟磁性材(例えば、実施の形態での軟磁性材7a)からなり、何れか他方は非磁性材(例えば、実施の形態での非磁性材7b)からなる内周側ヨーク部材(例えば、実施の形態での内周側ヨーク部材41)および外周側ヨーク部材(例えば、実施の形態での外周側ヨーク部材42)に対し、環状であって外周部に凹凸部(例えば、実施の形態での凸部41a)を有する前記内周側ヨーク部材と、環状であって内周部に前記凹凸部に嵌合する嵌合凹凸部(例えば、実施の形態での嵌合凹部42a)を有する前記外周側ヨーク部材とを、前記凹凸部と前記嵌合凹凸部とを嵌合させる嵌合工程(例えば、実施の形態でのステップS02)と、前記凹凸部と前記嵌合凹凸部とを嵌合させた状態で、前記内周側ヨーク部材と前記外周側ヨーク部材とを焼結拡散接合により接合して接合体(例えば、実施の形態での接合体43)を形成する接合工程(例えば、実施の形態でのステップS03)と、前記軟磁性材と前記非磁性材とが周方向で交互に配置されるように前記接合体の内周部および外周部を切除する切除工程(例えば、実施の形態でのステップS04)とを含む。   In addition, in the rotor yoke manufacturing method according to the second aspect of the present invention, either one is made of a soft magnetic material (for example, the soft magnetic material 7a in the embodiment), and either one is made of a non-magnetic material (for example, An inner circumference side yoke member (for example, inner circumference side yoke member 41 in the embodiment) and an outer circumference side yoke member (for example, outer circumference side yoke member 42 in the embodiment) made of the nonmagnetic material 7b in the embodiment. ) And the inner peripheral side yoke member having an irregular portion (for example, the convex portion 41a in the embodiment) on the outer peripheral portion, and the annular inner portion and fitting on the concave and convex portion on the inner peripheral portion. A fitting step (for example, embodiment) in which the outer circumferential side yoke member having a fitting uneven portion (for example, the fitting concave portion 42a in the embodiment) is fitted to the uneven portion and the fitting uneven portion. Step S02), and the concave and convex portions and the fitting concave and convex portions A joining step (for example, a joined body (for example, joined body 43 in the embodiment)) in which the inner circumferential yoke member and the outer circumferential yoke member are joined by sintered diffusion bonding in a fitted state. , Step S03 in the embodiment, and an excision step of excising the inner periphery and the outer periphery of the joined body so that the soft magnetic material and the nonmagnetic material are alternately arranged in the circumferential direction (for example, Step S04) in the embodiment.

また、本発明の第3態様に係る電動機は、第1態様に記載のローターヨークと、前記ローターヨークの内周側または外周側において周方向に配置された複数の永久磁石片(例えば、実施の形態での永久磁石9a)とを備える回転子を備える。   An electric motor according to a third aspect of the present invention includes a rotor yoke according to the first aspect, and a plurality of permanent magnet pieces (for example, implementations) arranged in the circumferential direction on the inner peripheral side or outer peripheral side of the rotor yoke. A rotor with a permanent magnet 9a) in the form.

さらに、本発明の第4態様に係る電動機は、前記ローターヨークの外周側のうち径方向で前記軟磁性材に対向する位置に前記永久磁石片を備える外周側回転子(例えば、実施の形態での外周側回転子5)と、前記外周側回転子に対して同軸かつ相対回動可能に配置され、周方向に配置された複数の永久磁石片(例えば、実施の形態での永久磁石9b)を備える内周側回転子(例えば、実施の形態での内周側回転子6)と、前記外周側回転子と前記内周側回転子との相対位相を変更する位相変更手段(例えば、実施の形態での位相変更手段12)とを備える。   Furthermore, the electric motor according to the fourth aspect of the present invention is an outer peripheral rotor (for example, in the embodiment) provided with the permanent magnet piece at a position facing the soft magnetic material in the radial direction on the outer peripheral side of the rotor yoke. And a plurality of permanent magnet pieces (for example, permanent magnets 9b in the embodiment) arranged in the circumferential direction so as to be coaxial and relatively rotatable with respect to the outer rotor. An inner circumferential rotor (for example, an inner circumferential rotor 6 in the embodiment), and phase changing means for changing a relative phase between the outer circumferential rotor and the inner circumferential rotor (for example, implementation) Phase change means 12) in the form of

さらに、本発明の第5態様に係る電動機では、前記外周側回転子の前記軟磁性材の外周側での周方向幅aと、前記軟磁性材の内周側での周方向幅bと、前記内周側回転子の磁石装着突部の周方向幅cとに対して、所定の関係(a>b≧c)が設定され、かつ、前記外周側回転子の前記軟磁性材の外周側の周方向両端が中心軸に対してなす角θ1と、前記外周側回転子の前記軟磁性材の外周側および内周側での周方向の一端同士を含む直線と他端同士を含む直線とのなす角θ2とに対して、所定関係(θ1<θ2)が設定されている。   Furthermore, in the electric motor according to the fifth aspect of the present invention, a circumferential width a on the outer peripheral side of the soft magnetic material of the outer rotor and a circumferential width b on the inner peripheral side of the soft magnetic material, A predetermined relationship (a> b ≧ c) is set with respect to the circumferential width c of the magnet mounting protrusion of the inner circumferential rotor, and the outer circumferential side of the soft magnetic material of the outer circumferential rotor An angle θ1 formed by both ends in the circumferential direction with respect to the central axis, a straight line including one end in the circumferential direction on the outer peripheral side and the inner peripheral side of the soft magnetic material of the outer peripheral rotor, and a straight line including the other end A predetermined relationship (θ1 <θ2) is set with respect to the angle θ2 formed by

本発明の第1態様に係るローターヨークによれば、煩雑な手間および過剰な費用が掛かることを防止しつつ、周方向に交互に配置された軟磁性材と非磁性材とに対して所望の接合強度を確保することができると共に、ローターヨークにおいて磁束を所望の方向に収束させることができ、漏洩磁束を低減することができる。   According to the rotor yoke according to the first aspect of the present invention, desired soft magnetic material and non-magnetic material that are alternately arranged in the circumferential direction can be obtained while preventing troublesome labor and excessive costs. The joining strength can be ensured, and the magnetic flux can be converged in a desired direction in the rotor yoke, so that the leakage magnetic flux can be reduced.

また、本発明の第2態様に係るローターヨークの製造方法によれば、煩雑な手間および過剰な費用が掛かることを防止しつつ、周方向に交互に配置された軟磁性材と非磁性材とに対して所望の接合強度を確保することができると共に、ローターヨークにおいて磁束を所望の方向に収束させることができ、漏洩磁束を低減することができる。   Further, according to the method of manufacturing the rotor yoke according to the second aspect of the present invention, the soft magnetic material and the non-magnetic material, which are alternately arranged in the circumferential direction, are prevented while taking troublesome labor and excessive costs. On the other hand, a desired bonding strength can be ensured, and the magnetic flux can be converged in a desired direction in the rotor yoke, so that the leakage magnetic flux can be reduced.

また、本発明の第3態様に係る電動機によれば、ローターヨークにおいて永久磁石の界磁磁束を所望の方向に収束させることができ、漏洩磁束を低減することができ、電動機のトルクおよび回転数に対する運転可能範囲が減少してしまうことを防止することができる。   Further, according to the electric motor according to the third aspect of the present invention, the field magnetic flux of the permanent magnet can be converged in a desired direction in the rotor yoke, the leakage magnetic flux can be reduced, and the torque and rotational speed of the electric motor can be reduced. It is possible to prevent the drivable range from decreasing.

さらに、本発明の第4態様に係る電動機によれば、内周側回転子の永久磁石片による界磁磁束が外周側回転子の永久磁石片を鎖交せずにローターヨークを介して短絡してしまうことを抑制し、漏洩磁束を低減することができ、外周側回転子と内周側回転子との相対位相を変更することに伴う電動機の誘起電圧定数の可変幅が低下してしまうことを防止することができる。   Further, according to the electric motor of the fourth aspect of the present invention, the field magnetic flux caused by the permanent magnet piece of the inner peripheral side rotor is short-circuited via the rotor yoke without interlinking the permanent magnet piece of the outer peripheral side rotor. And the leakage flux can be reduced, and the variable range of the induced voltage constant of the motor accompanying the change of the relative phase between the outer rotor and the inner rotor is reduced. Can be prevented.

さらに、本発明の第5態様に係る電動機によれば、内周側回転子の永久磁石片による界磁磁束を外周側回転子の永久磁石片に効率よく鎖交させることができる。
一方、例えば所定の関係(a>b≧c)または所定関係(θ1<θ2)が成り立たない場合には、漏洩磁束が増大したり、内周側回転子の永久磁石片による界磁磁束を適切に収束させることができずに、外周側回転子の永久磁石片を鎖交する界磁磁束の量(鎖交磁束量)が低下し、外周側回転子と内周側回転子との相対位相を変更することに伴う電動機の誘起電圧定数の可変幅が低下してしまう虞がある。
Furthermore, according to the electric motor which concerns on the 5th aspect of this invention, the field magnetic flux by the permanent magnet piece of an inner peripheral side rotor can be efficiently linked with the permanent magnet piece of an outer peripheral side rotor.
On the other hand, for example, when the predetermined relationship (a> b ≧ c) or the predetermined relationship (θ1 <θ2) does not hold, the leakage magnetic flux increases or the field magnetic flux due to the permanent magnet piece of the inner circumferential rotor is appropriately set. The amount of field magnetic flux (linkage magnetic flux) that links the permanent magnet pieces of the outer rotor cannot be reduced, and the relative phase between the outer rotor and the inner rotor is reduced. There is a risk that the variable width of the induced voltage constant of the motor accompanying the change of the motor will be reduced.

以下、本発明のローターヨークおよびローターヨークの製造方法および電動機の実施の形態について添付図面を参照しながら説明する。
この実施の形態による電動機1は、例えばハイブリッド車や電動車両等の車両の走行駆動源として搭載され、例えば図1から図3に示すように、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータとされている。
固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a rotor yoke, a rotor yoke manufacturing method, and an electric motor according to the present invention will be described below with reference to the accompanying drawings.
An electric motor 1 according to this embodiment is mounted as a traveling drive source of a vehicle such as a hybrid vehicle or an electric vehicle. For example, as shown in FIGS. 1 to 3, a rotor is disposed on the inner peripheral side of an annular stator 2. It is an inner rotor type brushless motor in which the unit 3 is disposed.
The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core.

回転子ユニット3は、例えば円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6とが所定の設定角度の範囲で相対的に回動可能とされている。   The rotor unit 3 includes, for example, an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed coaxially inside the outer circumferential rotor 5. The circumferential rotor 6 is relatively rotatable within a predetermined set angle range.

外周側回転子5は、回転子本体である円環状のロータ鉄心7(ローターヨーク)の外周面上に固定された複数の永久磁石9aを備え、各永久磁石9aは厚み方向に磁化された平板状とされている。
内周側回転子6は、回転子本体である円環状のロータ鉄心8の外周側に偏寄した位置に円周方向等間隔に形成された複数の磁石装着スロット8aを備え、各磁石装着スロット8aには、厚み方向に磁化された平板状の永久磁石9bが装着されている。
The outer peripheral rotor 5 includes a plurality of permanent magnets 9a fixed on the outer peripheral surface of an annular rotor core 7 (rotor yoke) which is a rotor body, and each permanent magnet 9a is a flat plate magnetized in the thickness direction. It is made into a shape.
The inner peripheral rotor 6 includes a plurality of magnet mounting slots 8a formed at equal intervals in the circumferential direction at positions offset toward the outer peripheral side of the annular rotor core 8 serving as the rotor body. A flat permanent magnet 9b magnetized in the thickness direction is attached to 8a.

そして、外周側回転子5と内周側回転子6の各永久磁石9a,9bは夫々同数設けられ、夫々1対1で対応するようになっている。これにより、外周側回転子5と内周側回転子6の各永久磁石9a,9bを互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(例えば、図2,図4(a)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各永久磁石9a,9bを互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(例えば、図3,図4(b)参照)を得ることができる。   The same number of permanent magnets 9a and 9b of the outer circumferential rotor 5 and inner circumferential rotor 6 are provided, and correspond one-on-one. Thereby, the permanent magnets 9a and 9b of the outer circumferential rotor 5 and the inner circumferential rotor 6 are opposed to each other with different polarities (the same pole arrangement), so that the field of the entire rotor unit 3 is the most. A strengthened field state (for example, see FIGS. 2 and 4 (a)) can be obtained, and the permanent magnets 9a and 9b of the outer rotor 5 and the inner rotor 6 have the same polarity. By facing each other (with different polarity arrangement), it is possible to obtain a field-weakening state (see, for example, FIGS. 3 and 4B) in which the field of the entire rotor unit 3 is most weakened.

外周側回転子5のロータ鉄心7は、後述する嵌合工程および接合工程および切除工程により形成され、例えば図2および図3に示すように、焼結拡散接合により接合された軟磁性材7aと非磁性材7bとが周方向で交互に配置されて構成されている。外周側回転子5の各永久磁石9aは各軟磁性材7aの外周面上に配置され、例えばフィラメントワインディング等により非磁性材7bの外周面上に形成された磁石保持層7cによって保持されている。   The rotor core 7 of the outer rotor 5 is formed by a fitting process, a joining process, and a cutting process, which will be described later. For example, as shown in FIGS. 2 and 3, a soft magnetic material 7a joined by sintered diffusion bonding and The nonmagnetic material 7b is alternately arranged in the circumferential direction. Each permanent magnet 9a of the outer rotor 5 is disposed on the outer peripheral surface of each soft magnetic material 7a and is held by a magnet holding layer 7c formed on the outer peripheral surface of the nonmagnetic material 7b by, for example, filament winding. .

また、内周側回転子6のロータ鉄心8は、各永久磁石9b毎に対応して径方向外方に向かい突出する突部8bを備え、各突部8bに磁石装着スロット8aが形成されている。   Further, the rotor core 8 of the inner rotor 6 includes protrusions 8b protruding outward in the radial direction corresponding to the respective permanent magnets 9b, and magnet mounting slots 8a are formed in the protrusions 8b. Yes.

そして、例えば図5に示すように、外周側回転子5のロータ鉄心7の軟磁性材7aの外周側での周方向幅aと、軟磁性材7aの内周側での周方向幅bと、内周側回転子6のロータ鉄心8の突部8bの周方向幅cとに対して、所定の関係(a>b≧c)が設定され、かつ、外周側回転子5のロータ鉄心7の軟磁性材7aの外周側の周方向両端が中心軸線Oに対してなす角θ1と、外周側回転子5のロータ鉄心7の軟磁性材7aの外周側および内周側での周方向の一端同士を含む直線と他端同士を含む直線とのなす角θ2とに対して、所定関係(θ1<θ2)が設定されている。   For example, as shown in FIG. 5, a circumferential width a on the outer peripheral side of the soft magnetic material 7a of the rotor core 7 of the outer rotor 5 and a circumferential width b on the inner peripheral side of the soft magnetic material 7a. A predetermined relationship (a> b ≧ c) is set with respect to the circumferential width c of the protrusion 8b of the rotor core 8 of the inner rotor 6 and the rotor core 7 of the outer rotor 5 is set. Of the outer peripheral side of the soft magnetic material 7a, the angle θ1 formed with respect to the central axis O and the circumferential direction on the outer peripheral side and inner peripheral side of the soft magnetic material 7a of the rotor core 7 of the outer rotor 5 A predetermined relationship (θ1 <θ2) is set with respect to an angle θ2 formed by a straight line including one end and a straight line including the other end.

なお、この電動機1において、所定の関係(a>b≧c)または所定関係(θ1<θ2)が成り立たない場合には、漏洩磁束が増大したり、内周側回転子6の永久磁石9bによる界磁磁束を適切に収束させることができずに、外周側回転子5の永久磁石9aを鎖交する界磁磁束の量(鎖交磁束量)が低下し、外周側回転子5と内周側回転子6との相対位相を変更することに伴う電動機1の誘起電圧定数の可変幅が低下してしまう虞がある。   In the electric motor 1, when the predetermined relationship (a> b ≧ c) or the predetermined relationship (θ1 <θ2) does not hold, the leakage magnetic flux increases or the permanent magnet 9b of the inner circumferential rotor 6 The amount of field magnetic flux (interlinkage magnetic flux) interlinking the permanent magnet 9a of the outer rotor 5 is reduced without properly converging the field magnetic flux, and the outer rotor 5 and inner periphery are reduced. There is a possibility that the variable width of the induced voltage constant of the electric motor 1 accompanying the change of the relative phase with the side rotor 6 may be reduced.

また、例えば図1から図3および図6および図7に示すように、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5,6の相対位相を任意に変更するための位相変更手段12の一部を構成するものであり、非圧縮性の作動流体である作動液(例えば、トランスミッションT/M用の潤滑油、エンジンオイル等でもよい)の圧力によって操作されるようになっている。
位相変更手段12は、例えば図7に示すように、回動機構11と、この回動機構11に供給する作動液の圧力を制御する油圧制御装置13とを主要な要素として備えて構成されている。
Further, for example, as shown in FIGS. 1 to 3, 6, and 7, the rotor unit 3 includes a rotating mechanism 11 for relatively rotating the outer peripheral rotor 5 and the inner peripheral rotor 6. ing. The rotating mechanism 11 constitutes a part of phase changing means 12 for arbitrarily changing the relative phase of the rotors 5 and 6, and is a working fluid (for example, an incompressible working fluid) It may be operated by the pressure of transmission T / M lubricating oil, engine oil or the like.
For example, as shown in FIG. 7, the phase changing unit 12 includes a rotation mechanism 11 and a hydraulic control device 13 that controls the pressure of the hydraulic fluid supplied to the rotation mechanism 11 as main elements. Yes.

回動機構11は、例えば図1から図3および図6に示すように、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の両側の側端部を跨ぐ円板状の一対のドライブプレート16,16を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。   For example, as shown in FIG. 1 to FIG. 3 and FIG. 6, the rotation mechanism 11 can be relatively rotated to the outer peripheral side of the vane rotor 14 and the vane rotor 14 that is spline fitted to the outer periphery of the rotary shaft 4. And the annular housing 15 is integrally fitted and fixed to the inner peripheral surface of the inner peripheral rotor 6, and the vane rotor 14 is provided between the annular housing 15 and the inner peripheral rotor 6. It is integrally coupled to the outer peripheral rotor 5 via a pair of disc-shaped drive plates 16, 16 straddling the side end portions on both sides. Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数の羽根部18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応する羽根部18が収容配置されるようになっている。各凹部19は、羽根部18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の突出部21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、羽根部18が一方の突出部21と他方の突出部21の間を変位し得るようになっている。   In the vane rotor 14, a plurality of blade portions 18 projecting radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding blade portions 18 of the vane rotor 14 are accommodated in the concave portions 19. Each recess 19 is configured by a bottom wall 20 having an arc surface that substantially matches the rotational trajectory of the tip of the blade 18 and a substantially triangular protrusion 21 that separates the adjacent recesses 19, 19. When the relative rotation of 14 and the annular housing 15 is performed, the blade portion 18 can be displaced between the one projecting portion 21 and the other projecting portion 21.

この実施の形態においては、突出部21は羽根部18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制する規制部材としても機能する。なお、各羽根部18の先端部と突出部21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によって羽根部18と凹部19の底壁20、突出部21とボス部17の外周面の各間が液密にシールされている。   In this embodiment, the projecting portion 21 also functions as a regulating member that regulates the relative rotation of the vane rotor 14 and the annular housing 15 by contacting the blade portion 18. A seal member 22 is provided along the axial direction at the tip of each blade 18 and the tip of the protrusion 21, and the blade 18 and the bottom wall 20 of the recess 19 protrude from these seal members 22. The space between the outer peripheral surface of the portion 21 and the boss portion 17 is liquid-tightly sealed.

また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、例えば図1に示すように、内周側回転子6や突出部21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。   Further, the base portion 15a of the annular housing 15 fixed to the inner peripheral rotor 6 is formed in a cylindrical shape having a constant thickness, and for example, as shown in FIG. On the other hand, it protrudes outward in the axial direction. Each end projecting outward of the base portion 15a is slidably held in an annular guide groove 16a formed in the drive plate 16, and the annular housing 15 and the inner peripheral rotor 6 are connected to the outer peripheral rotor. 5 and the rotating shaft 4 are supported in a floating state.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動液が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各羽根部18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。   The drive plates 16 and 16 on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (both end surfaces in the axial direction) of the annular housing 15, and the side of each recess 19 of the annular housing 15. Respectively. Therefore, each recessed part 19 forms the independent space part by the boss | hub part 17 of the vane rotor 14, and the drive plates 16 and 16 of both sides, and this space part is the introduction space 23 into which a hydraulic fluid is introduce | transduced. Each introduction space 23 is divided into two chambers by corresponding vane portions 18 of the vane rotor 14, one chamber being an advance side working chamber 24 and the other chamber being a retard side working chamber 25. .

進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図2,図3中の矢印Rで示す電動機1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の回転方向Rと逆側に進めることを言うものとする。   The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the working fluid introduced inside, and the retard side working chamber 25 is The inner rotor 6 is rotated relative to the outer rotor 5 in the retard direction by the pressure of the working fluid introduced therein. In this case, “advance angle” means that the inner rotor 6 is advanced in the rotation direction of the electric motor 1 indicated by the arrow R in FIGS. 2 and 3 with respect to the outer rotor 5. “Angle” means that the inner rotor 6 is advanced to the opposite side of the rotation direction R of the electric motor 1 with respect to the outer rotor 5.

また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、例えば図7に示す油圧制御装置13の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置13の遅角側給排通路27に接続されている。さらに、進角側給排通路26と遅角側給排通路27の一部は、例えば図1に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。   Further, the supply and discharge of the hydraulic fluid to and from each of the advance side working chambers 24 and the retard side working chambers 25 is performed through the rotating shaft 4. Specifically, the advance side working chamber 24 is connected to, for example, the advance side supply / discharge passage 26 of the hydraulic control device 13 shown in FIG. 7, and the retard side working chamber 25 is connected to the retard side of the hydraulic control device 13. It is connected to the supply / discharge passage 27. Further, a part of the advance side supply / exhaust passage 26 and the retard side supply / exhaust passage 27 are constituted by passage holes 26a, 27a formed along the axial direction of the rotary shaft 4 as shown in FIG. 1, for example. Has been.

そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした2位置に形成された環状溝26bと環状溝27bに夫々接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c,…,26c,27c,…,27cに接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。   The end portions of the passage holes 26a and 27a are respectively connected to an annular groove 26b and an annular groove 27b formed at two positions offset in the axial direction of the outer peripheral surface of the rotary shaft 4, and the respective annular grooves 26b and 27b. Are connected to a plurality of conduction holes 26c, ..., 26c, 27c, ..., 27c formed in the boss portion 17 of the vane rotor 14 along the substantially radial direction. Each conduction hole 26c of the advance side supply / discharge passage 26 connects the annular groove 26b and each advance side working chamber 24, and each conduction hole 27c of the retard side supply / exhaust passage 27 connects to the annular groove 27b and each retard side. The working chamber 25 is connected.

この実施の形態の電動機1において、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9a,9bが異極同士で対向して強め界磁の状態(例えば、図2,図4(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9a,9bが同極同士で対向して弱め界磁の状態(例えば、図3,図4(b)参照)になるように設定されている。   In the electric motor 1 of this embodiment, when the inner circumferential rotor 6 is at the most retarded position with respect to the outer circumferential rotor 5, the permanent magnets 9a of the outer circumferential rotor 5 and the inner circumferential rotor 6 are provided. 9b is opposed to the different poles and is in a strong field state (see, for example, FIG. 2 and FIG. 4A), and the inner circumferential rotor 6 is at the most advanced angle position with respect to the outer circumferential rotor 5. In some cases, the permanent magnets 9a, 9b of the outer rotor 5 and the inner rotor 6 face each other with the same poles and are in a field-weakening state (see, for example, FIGS. 3 and 4B). Is set to

なお、この電動機1は、進角側作動室24と遅角側作動室25に対する作動液の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、このように磁界の強さが変更されると、これに伴って誘起電圧定数Keが変化し、この結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数Keが小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。   The electric motor 1 can arbitrarily change the state of the strong field and the state of the weak field by controlling the supply and discharge of the hydraulic fluid to the advance side working chamber 24 and the retard side working chamber 25. When the strength of the magnetic field is changed in this way, the induced voltage constant Ke changes accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, when the induced voltage constant Ke increases due to the strong field, the allowable rotational speed at which the motor 1 can operate decreases, but the maximum torque that can be output increases, and conversely, the induced voltage constant Ke decreases due to the weak field. Then, although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

油圧制御装置13は、例えば図7に示すように、オイルタンク(図示略)から作動液を吸い上げて通路に吐出する電動のオイルポンプ(EOP)32と、このオイルポンプ32から吐出された作動液の油圧を調整して高圧のライン通路33に導入し、余剰分の作動液を各種機器の潤滑や冷却のための低圧通路34に流出させるレギュレータバルブ35と、ライン通路33に導入された作動液を進角側給排通路26と遅角側給排通路27に振り分けるとともに、進角側給排通路26と遅角側給排通路27で不要な作動液をドレン通路36に排出する流路切換弁37とを備えている。   For example, as shown in FIG. 7, the hydraulic control device 13 includes an electric oil pump (EOP) 32 that sucks up hydraulic fluid from an oil tank (not shown) and discharges the hydraulic fluid into a passage, and the hydraulic fluid discharged from the oil pump 32. Is adjusted and introduced into the high-pressure line passage 33, and the surplus hydraulic fluid is discharged to the low-pressure passage 34 for lubricating and cooling various devices, and the hydraulic fluid introduced into the line passage 33 Is switched to the advance-angle side supply / discharge passage 26 and the retard-angle side supply / discharge passage 27, and the flow path is switched to discharge unnecessary hydraulic fluid to the drain passage 36 through the advance-angle supply / discharge passage 26 and the retard-side supply / discharge passage 27. And a valve 37.

レギュレータバルブ35は、ライン通路33の圧力を制御圧として受け、反力スプリング38とのバランスによって作動液の振り分けを行う。
また、流路切換弁37は、制御スプール37aを進退操作する電磁ソレノイド37bを有し、この電磁ソレノイド37bが制御装置(図示略)によって制御されるようになっている。
The regulator valve 35 receives the pressure of the line passage 33 as a control pressure, and distributes the hydraulic fluid according to the balance with the reaction force spring 38.
The flow path switching valve 37 has an electromagnetic solenoid 37b for advancing and retracting the control spool 37a, and this electromagnetic solenoid 37b is controlled by a control device (not shown).

本実施の形態による外周側回転子5のロータ鉄心7(ローターヨーク)および電動機1は上記構成を備えており、次に、このロータ鉄心7(ローターヨーク)の製造方法について説明する。   The rotor iron core 7 (rotor yoke) and the electric motor 1 of the outer peripheral rotor 5 according to the present embodiment have the above-described configuration. Next, a method for manufacturing the rotor iron core 7 (rotor yoke) will be described.

先ず、例えば図8に示すステップS01の圧粉体形成工程では、例えば図9(a),(b)に示すように、軟磁性材または非磁性材の何れか他方を圧縮成形して、圧粉体による環状の内周側ヨーク部材41を形成すると共に、軟磁性材または非磁性材の何れか一方を圧縮成形して、圧粉体による環状の外周側ヨーク部材42を形成する。
内周側ヨーク部材41は外周部に凹凸部、例えば径方向外方に突出する複数の凸部41aを備え、外周側ヨーク部材42は内周部に、内周側ヨーク部材41の凹凸部に嵌合する嵌合凹凸部、例えば内周側ヨーク部材41の凸部41aが嵌合される嵌合凹部42aを備えている。
First, in the green compact forming process of step S01 shown in FIG. 8, for example, as shown in FIGS. 9A and 9B, either the soft magnetic material or the non-magnetic material is compression-molded and compressed. An annular inner yoke member 41 made of powder is formed, and either a soft magnetic material or a nonmagnetic material is compression-molded to form an annular outer yoke member 42 made of green compact.
The inner circumferential side yoke member 41 is provided with a concavo-convex part on the outer peripheral part, for example, a plurality of convex parts 41 a projecting radially outward. A fitting concave / convex portion 42a into which a fitting concave / convex portion to be fitted, for example, a convex portion 41a of the inner circumferential side yoke member 41 is fitted, is provided.

ここで、後述する接合工程での焼結拡散接合に係る所定温度(例えば、912℃以上の温度等)において、内周側ヨーク部材41の線膨張係数は、外周側ヨーク部材42の線膨張係数よりも大きな値を有するように設定されており、例えば内周側ヨーク部材41は、非磁性材であるアルミニウムまたは銅等による圧粉体とされ、例えば外周側ヨーク部材42は、軟磁性材である純鉄系焼結材料による圧粉体とされている。   Here, at a predetermined temperature (for example, a temperature of 912 ° C. or more) related to sintering diffusion bonding in a bonding process described later, the linear expansion coefficient of the inner peripheral side yoke member 41 is the linear expansion coefficient of the outer peripheral side yoke member 42. For example, the inner yoke member 41 is a green compact made of nonmagnetic material such as aluminum or copper, and the outer yoke member 42 is made of a soft magnetic material, for example. It is a green compact made of some pure iron-based sintered material.

また、例えば図10に示すように、内周側ヨーク部材41の凸部41aの周方向幅および外周側ヨーク部材42の嵌合凹部42aの周方向幅は、径方向内方から径方向外方に向かうことに伴い、漸次減少するように形成されている。さらに、外周側ヨーク部材42の内径は内周側ヨーク部材41の外径に対して所定の締め代を有し、外周側ヨーク部材42の嵌合凹部42aは、幅方向(つまり、周方向)には、内周側ヨーク部材41の凸部41aに対して所定の締め代を有すると共に、深さ方向(つまり、径方向)には、内周側ヨーク部材41の凸部41aの長さよりも若干深く形成されている。   For example, as shown in FIG. 10, the circumferential width of the convex portion 41a of the inner circumferential yoke member 41 and the circumferential width of the fitting concave portion 42a of the outer circumferential yoke member 42 are from the radially inner side to the radially outer side. It is formed to gradually decrease as it goes to. Further, the inner diameter of the outer yoke member 42 has a predetermined allowance relative to the outer diameter of the inner yoke member 41, and the fitting recess 42a of the outer yoke member 42 has a width direction (that is, a circumferential direction). Has a predetermined allowance for the convex portion 41a of the inner peripheral side yoke member 41, and in the depth direction (that is, radial direction) than the length of the convex portion 41a of the inner peripheral side yoke member 41. It is formed slightly deep.

次に、ステップS02の嵌合工程では、内周側ヨーク部材41の凸部41aを外周側ヨーク部材42の嵌合凹部42aに嵌合させるようにして、外周側ヨーク部材42の内部に内周側ヨーク部材41を圧入して、例えば図9(c)に示すように、内周側ヨーク部材41と外周側ヨーク部材42とが接合された接合体43を形成する。   Next, in the fitting step of step S02, the convex portion 41a of the inner circumferential side yoke member 41 is fitted into the fitting concave portion 42a of the outer circumferential side yoke member 42 so that the inner circumferential side is located inside the outer circumferential side yoke member 42. The side yoke member 41 is press-fitted to form a joined body 43 in which the inner circumferential side yoke member 41 and the outer circumferential side yoke member 42 are joined, for example, as shown in FIG.

次に、ステップS03の接合工程では、接合体43に焼結処理を行い、内周側ヨーク部材41と外周側ヨーク部材42との界面において原子を拡散させ、所望の接合強度を確保する。なお、この焼結処理での温度条件は、例えば内周側ヨーク部材41および外周側ヨーク部材42の材質等に応じて適宜に設定される。また、拡散を促進させるために適宜の加圧が行われてもよい。   Next, in the joining step of step S03, the joined body 43 is subjected to a sintering process to diffuse atoms at the interface between the inner peripheral side yoke member 41 and the outer peripheral side yoke member 42 to ensure a desired joint strength. The temperature condition in this sintering process is appropriately set according to the material of the inner peripheral side yoke member 41 and the outer peripheral side yoke member 42, for example. Further, appropriate pressurization may be performed to promote diffusion.

次に、ステップS04の切除工程では、接合体43の内周部および外周部を切削加工等によって切除して、例えば図9(d)に示すように、内周側ヨーク部材41の非磁性材7bと外周側ヨーク部材42の軟磁性材7aとが周方向で交互に配置されるように構成され、所定の関係(a>b≧c)および所定関係(θ1<θ2)が設定されたロータ鉄心7を形成する。   Next, in the excision step of step S04, the inner peripheral portion and the outer peripheral portion of the joined body 43 are excised by cutting or the like, for example, as shown in FIG. 9D, for example, the nonmagnetic material of the inner peripheral yoke member 41 7b and the soft magnetic material 7a of the outer yoke member 42 are alternately arranged in the circumferential direction, and the rotor has a predetermined relationship (a> b ≧ c) and a predetermined relationship (θ1 <θ2). An iron core 7 is formed.

上述したように、本実施の形態によるロータ鉄心7(ローターヨーク)によれば、煩雑な手間および過剰な費用が掛かることを防止しつつ、周方向に交互に配置された軟磁性材7aと非磁性材7bとに対して所望の接合強度を確保することができると共に、ロロータ鉄心7(ローターヨーク)において磁束を所望の方向に収束させることができ、漏洩磁束を低減することができる。
また、本実施の形態によるロータ鉄心7(ローターヨーク)の製造方法によれば、周方向に交互に配置された軟磁性材7aと非磁性材7bとに対して所望の接合強度を確保しつつ、磁束を所望の方向に収束させ、漏洩磁束を低減することができるロータ鉄心7(ローターヨーク)を、煩雑な手間および過剰な費用が掛かることを防止しつつ、容易に作製することができる。
As described above, according to the rotor iron core 7 (rotor yoke) according to the present embodiment, the soft magnetic material 7a and the non-magnetic material 7a that are alternately arranged in the circumferential direction are prevented while avoiding complicated labor and excessive costs. A desired bonding strength with the magnetic material 7b can be ensured, and the magnetic flux can be converged in a desired direction in the rorotor core 7 (rotor yoke), so that the leakage magnetic flux can be reduced.
Further, according to the method for manufacturing the rotor core 7 (rotor yoke) according to the present embodiment, a desired bonding strength is ensured with respect to the soft magnetic material 7a and the nonmagnetic material 7b arranged alternately in the circumferential direction. The rotor core 7 (rotor yoke) capable of converging the magnetic flux in a desired direction and reducing the leakage magnetic flux can be easily manufactured while preventing troublesome labor and excessive costs.

また、本実施の形態による電動機1によれば、外周側回転子5のロータ鉄心7(ローターヨーク)において、内周側回転子6の永久磁石9bの界磁磁束を所望の方向に収束させることができ、漏洩磁束を低減することができ、電動機1のトルクおよび回転数に対する運転可能範囲が減少してしまうことを防止することができ、外周側回転子5と内周側回転子6との相対位相を変更することに伴う電動機1の誘起電圧定数の可変幅が低下してしまうことを防止することができる。   Moreover, according to the electric motor 1 according to the present embodiment, the field magnetic flux of the permanent magnet 9b of the inner rotor 6 is converged in a desired direction in the rotor core 7 (rotor yoke) of the outer rotor 5. It is possible to reduce the leakage magnetic flux, to prevent the operable range with respect to the torque and the rotational speed of the electric motor 1 from being reduced, and to prevent the outer peripheral side rotor 5 and the inner peripheral side rotor 6 from It can prevent that the variable width of the induced voltage constant of the electric motor 1 accompanying changing a relative phase falls.

さらに、本実施の形態による電動機1によれば、所定の関係(a>b≧c)および所定関係(θ1<θ2)が設定されていることで、内周側回転子6の永久磁石9bによる界磁磁束を外周側回転子5の永久磁石9aに効率よく鎖交させることができる。
一方、例えば所定の関係(a>b≧c)または所定関係(θ1<θ2)が成り立たない場合には、漏洩磁束が増大したり、内周側回転子6の永久磁石9bによる界磁磁束を適切に収束させることができずに、外周側回転子5の永久磁石9aを鎖交する界磁磁束の量(鎖交磁束量)が低下し、外周側回転子5と内周側回転子6との相対位相を変更することに伴う電動機1の誘起電圧定数の可変幅が低下してしまう虞がある。
Furthermore, according to the electric motor 1 according to the present embodiment, the predetermined relationship (a> b ≧ c) and the predetermined relationship (θ1 <θ2) are set, so that the permanent magnet 9b of the inner circumferential rotor 6 The field magnetic flux can be efficiently linked to the permanent magnet 9a of the outer rotor 5.
On the other hand, for example, when the predetermined relationship (a> b ≧ c) or the predetermined relationship (θ1 <θ2) does not hold, the leakage magnetic flux increases or the field magnetic flux generated by the permanent magnet 9b of the inner circumferential rotor 6 is increased. The amount of field magnetic flux (linkage magnetic flux) that links the permanent magnets 9a of the outer rotor 5 decreases without being properly converged, and the outer rotor 5 and inner rotor 6 decrease. There is a possibility that the variable width of the induced voltage constant of the electric motor 1 accompanying the change of the relative phase with the motor may decrease.

なお、上述した実施の形態においては、圧粉体からなる内周側ヨーク部材41および外周側ヨーク部材42から接合体43を形成するとしたが、これに限定されず、圧粉体からなる内周側ヨーク部材41および外周側ヨーク部材42の何れか一方を焼結して焼結体を形成し、この焼結体と、圧粉体からなる内周側ヨーク部材41および外周側ヨーク部材42の何れか他方とによって、接合体43を形成してもよい。   In the above-described embodiment, the joined body 43 is formed from the inner circumference side yoke member 41 and the outer circumference side yoke member 42 made of green compact. However, the present invention is not limited to this, and the inner circumference made of green compact is used. Either one of the side yoke member 41 and the outer peripheral side yoke member 42 is sintered to form a sintered body, and the sintered body and the inner peripheral side yoke member 41 and the outer peripheral side yoke member 42 made of a green compact are formed. The joined body 43 may be formed by either one.

なお、上述した実施の形態においては、外周側ヨーク部材42の嵌合凹部42aは深さ方向(つまり、径方向)には、内周側ヨーク部材41の凸部41aの長さよりも若干深く形成されているとしたが、これに限定されず、例えば図11(a)に示すように、嵌合凹部42aの深さは凸部41aの長さと同程度であってもよい。
また、上述した実施の形態においては、内周側ヨーク部材41の凸部41aの周方向幅は、径方向内方から径方向外方に向かうことに伴い、漸次減少するとしたが、これに限定されず、例えば図11(b)に示すように、凸部41aの周方向幅は、径方向において不変であってもよい。
In the above-described embodiment, the fitting recess 42a of the outer yoke member 42 is formed slightly deeper in the depth direction (that is, in the radial direction) than the length of the protrusion 41a of the inner yoke member 41. However, the present invention is not limited to this. For example, as shown in FIG. 11A, the depth of the fitting recess 42a may be approximately the same as the length of the protrusion 41a.
Further, in the above-described embodiment, the circumferential width of the convex portion 41a of the inner yoke member 41 is gradually decreased from the radially inner side to the radially outer side. For example, as shown in FIG. 11B, the circumferential width of the convex portion 41a may be unchanged in the radial direction.

なお、上述した実施の形態においては、例えば内周側ヨーク部材41は、非磁性材であるアルミニウムまたは銅等による圧粉体とされ、例えば外周側ヨーク部材42は、軟磁性材である純鉄系焼結材料による圧粉体とされるとしたが、これに限定されず、例えば内周側ヨーク部材41は、軟磁性材である純鉄系焼結材料による圧粉体とされ、例えば外周側ヨーク部材42は、非磁性材であるオーステナイト系ステンレス鋼等による圧粉体とされてもよい。
この場合、接合工程での焼結拡散接合に係る所定温度(例えば、912℃以上の温度等)において、軟磁性材である純鉄系焼結材料の線膨張係数は、非磁性材であるオーステナイト系ステンレス鋼の線膨張係数よりも大きな値を有している。
In the above-described embodiment, for example, the inner yoke member 41 is a green compact made of nonmagnetic material such as aluminum or copper, and the outer yoke member 42 is pure iron that is a soft magnetic material, for example. However, the invention is not limited to this. For example, the inner circumferential side yoke member 41 is a green compact made of a pure iron-based sintered material that is a soft magnetic material. The side yoke member 42 may be a green compact made of austenitic stainless steel, which is a nonmagnetic material.
In this case, the linear expansion coefficient of the pure iron-based sintered material, which is a soft magnetic material, is austenite, which is a nonmagnetic material, at a predetermined temperature (for example, a temperature of 912 ° C. or higher) related to the sintering diffusion bonding in the bonding process. It has a value larger than the linear expansion coefficient of the stainless steel.

そして、例えば図12(a),(b)に示すように、内周側ヨーク部材41の凸部41aの周方向幅および外周側ヨーク部材42の嵌合凹部42aの周方向幅は、径方向内方から径方向外方に向かうことに伴い、漸次増大するように形成されている。
そして、これらの内周側ヨーク部材41および外周側ヨーク部材42に対して、嵌合工程および接合工程を実行することで、例えば図12(c)に示す接合体43が形成され、この接合体43に対して切除工程を実行することで、例えば図12(d)に示す所定の関係(a>b≧c)および所定関係(θ1<θ2)が設定されたロータ鉄心7が形成される。
For example, as shown in FIGS. 12A and 12B, the circumferential width of the protrusion 41a of the inner yoke member 41 and the circumferential width of the fitting recess 42a of the outer yoke member 42 are radial. It is formed so as to gradually increase as it goes from the inside toward the outside in the radial direction.
Then, for example, a joined body 43 shown in FIG. 12C is formed by performing a fitting process and a joining process on the inner circumferential side yoke member 41 and the outer circumferential side yoke member 42, and this joined body. By performing the cutting process on 43, for example, the rotor core 7 in which the predetermined relationship (a> b ≧ c) and the predetermined relationship (θ1 <θ2) shown in FIG.

なお、上述した実施の形態においては、外周側回転子5の各永久磁石9aは各軟磁性材7aの外周面上に配置され、例えばフィラメントワインディング等により非磁性材7bの外周面上に形成された磁石保持層7cによって保持されているとしたが、これに限定されず、例えば図13(a)に示すように、外周側回転子5の各永久磁石9aは、レーザー溶接等によって各軟磁性材7aの外周面上に固定されてもよい。また、例えば図13(b)に示すように、ロータ鉄心7の外周面上に、例えば積層鋼板からなり、磁石装着スロット70aを有する磁石保持層70を設け、各磁石装着スロット70aには、厚み方向に磁化された平板状の永久磁石9aが装着されてもよい。   In the embodiment described above, each permanent magnet 9a of the outer rotor 5 is disposed on the outer peripheral surface of each soft magnetic material 7a, and is formed on the outer peripheral surface of the nonmagnetic material 7b by, for example, filament winding. However, the present invention is not limited to this. For example, as shown in FIG. 13A, each permanent magnet 9a of the outer rotor 5 is softened by laser welding or the like. You may fix on the outer peripheral surface of the material 7a. For example, as shown in FIG. 13B, a magnet holding layer 70 made of, for example, a laminated steel plate and having a magnet mounting slot 70a is provided on the outer peripheral surface of the rotor core 7, and each magnet mounting slot 70a has a thickness. A plate-like permanent magnet 9a magnetized in the direction may be mounted.

なお、上述した実施の形態においては、内周側回転子6は磁石装着スロット8aに装着される永久磁石9bを備えるとしたが、これに限定されず、例えば図14および図15に示すように、内周側回転子6において、磁石装着スロット8aおよび永久磁石9bを省略してもよい。   In the above-described embodiment, the inner rotor 6 is provided with the permanent magnet 9b mounted in the magnet mounting slot 8a. However, the present invention is not limited to this. For example, as shown in FIGS. In the inner rotor 6, the magnet mounting slot 8 a and the permanent magnet 9 b may be omitted.

この場合、外周側回転子5の永久磁石9aおよび軟磁性材7aと、内周側回転子6の突部8bとを径方向で対向させることにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(例えば、図14参照)を得ることができるとともに、外周側回転子5の非磁性材7bと、内周側回転子6の突部8bとを径方向で対向させることにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(例えば、図15参照)を得ることができる。   In this case, the permanent magnet 9a and the soft magnetic material 7a of the outer rotor 5 and the protrusion 8b of the inner rotor 6 are opposed to each other in the radial direction, so that the field of the entire rotor unit 3 is the strongest. The strong magnetic field state (see, for example, FIG. 14) can be obtained, and the nonmagnetic material 7b of the outer rotor 5 and the protrusion 8b of the inner rotor 6 are opposed to each other in the radial direction. Thus, it is possible to obtain a field weakening state (for example, see FIG. 15) in which the field of the entire rotor unit 3 is most weakened.

なお、上述した実施の形態においては、電動機1はインナロータ型としたが、これに限定されず、電動機1は、円環状の固定子2の外周側に回転子ユニット3が配置されたアウタロータ型としてもよい。   In the above-described embodiment, the electric motor 1 is an inner rotor type. However, the electric motor 1 is not limited to this, and the electric motor 1 is an outer rotor type in which the rotor unit 3 is disposed on the outer peripheral side of the annular stator 2. Also good.

なお、上述した実施の形態においては、回転子ユニット3は、外周側回転子5と内周側回転子6とを備えるとしたが、これに限定されず、例えば内周側回転子6を省略し、電動機1の誘起電圧定数を所定値に固定してもよい。   In the above-described embodiment, the rotor unit 3 includes the outer peripheral side rotor 5 and the inner peripheral side rotor 6. However, the present invention is not limited to this, and for example, the inner peripheral side rotor 6 is omitted. Then, the induced voltage constant of the electric motor 1 may be fixed to a predetermined value.

本発明の実施の形態に係る電動機の要部断面図である。It is principal part sectional drawing of the electric motor which concerns on embodiment of this invention. 本発明の実施の形態に係る電動機の最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図である。It is the side view which abbreviate | omitted some components of the rotor unit currently controlled by the most retarded angle position of the electric motor which concerns on embodiment of this invention. 本発明の実施の形態に係る電動機の最進角位置に制御されている回転子ユニットの一部部品を省略した側面図である。It is the side view which abbreviate | omitted some components of the rotor unit currently controlled by the most advanced angle position of the electric motor which concerns on embodiment of this invention. 本発明の実施の形態に係る電動機の内周側回転子の永久磁石と外周側回転子の永久磁石とが同極配置された強め界磁状態を模式的に示す図(a)と、内周側回転子の永久磁石と外周側回転子の永久磁石とが異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図である。The figure (a) which shows typically the strong magnetic field state by which the permanent magnet of the inner peripheral side rotor of the electric motor which concerns on embodiment of this invention, and the permanent magnet of the outer peripheral side rotor are arrange | positioned with the same polarity, It is the figure which described collectively the figure (b) which shows typically the field-weakening state by which the permanent magnet of the side rotor and the permanent magnet of the outer peripheral side rotor were arrange | positioned differently. 本発明の実施の形態に係る電動機の回転子ユニットの要部側面図である。It is a principal part side view of the rotor unit of the electric motor which concerns on embodiment of this invention. 本発明の実施の形態に係る走行モータおよび発電モータの回転子ユニットの分解斜視図である。It is a disassembled perspective view of the rotor unit of the traveling motor and electric power generation motor which concerns on embodiment of this invention. 本発明の実施の形態に係る油圧制御装置の構成図である。It is a block diagram of the hydraulic control apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る外周側回転子のロータ鉄心(ローターヨーク)の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the rotor core (rotor yoke) of the outer peripheral side rotor which concerns on embodiment of this invention. 本発明の実施の形態に係る外周側回転子のロータ鉄心(ローターヨーク)の製造工程における、内周側ヨーク部材および外周側ヨーク部材を示す側面図(a),(b)と、接合体を示す側面図(c)と、ロータ鉄心を示す側面図(d)とを併せて記載した図である。Side views (a) and (b) showing the inner peripheral side yoke member and the outer peripheral side yoke member in the manufacturing process of the rotor core (rotor yoke) of the outer peripheral side rotor according to the embodiment of the present invention, and the joined body It is the figure which combined and described the side view (c) which shows, and the side view (d) which shows a rotor iron core. 本発明の実施の形態に係る接合体の要部側面図である。It is a principal part side view of the zygote concerning an embodiment of the invention. 本発明の実施の形態の変形例に係る接合体の要部側面図である。It is a principal part side view of the conjugate | zygote which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る外周側回転子のロータ鉄心(ローターヨーク)の製造工程における、内周側ヨーク部材および外周側ヨーク部材を示す側面図(a),(b)と、接合体を示す側面図(c)と、ロータ鉄心を示す側面図(d)とを併せて記載した図である。Side views (a) and (b) showing the inner peripheral side yoke member and the outer peripheral side yoke member in the manufacturing process of the rotor core (rotor yoke) of the outer peripheral side rotor according to the modification of the embodiment of the present invention; It is the figure which combined and described the side view (c) which shows a joined body, and the side view (d) which shows a rotor iron core. 本発明の実施の形態の変形例に係る電動機の回転子ユニットの要部側面図である。It is a principal part side view of the rotor unit of the electric motor which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る電動機の最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図である。It is the side view which abbreviate | omitted some components of the rotor unit controlled to the most retarded angle position of the electric motor which concerns on the modification of embodiment of this invention. 本発明の実施の形態の変形例に係る電動機の最進角位置に制御されている回転子ユニットの一部部品を省略した側面図である。It is the side view which abbreviate | omitted some components of the rotor unit currently controlled by the most advanced angle position of the electric motor which concerns on the modification of embodiment of this invention.

符号の説明Explanation of symbols

1 電動機
5 外周側回転子
6 内周側回転子
7a 軟磁性材
7b 非磁性材
9a,9b 永久磁石
11 回動機構
12 位相変更手段
41 内周側ヨーク部材
41a 凸部(凹凸部)
42 外周側ヨーク部材
42a 嵌合凹部(嵌合凹凸部)
43 接合体
ステップS02 嵌合工程
ステップS03 接合工程
ステップS04 切除工程
DESCRIPTION OF SYMBOLS 1 Electric motor 5 Outer peripheral side rotor 6 Inner peripheral side rotor 7a Soft magnetic material 7b Nonmagnetic material 9a, 9b Permanent magnet 11 Rotating mechanism 12 Phase change means 41 Inner peripheral side yoke member 41a Convex part (uneven part)
42 Outer peripheral side yoke member 42a Fitting recess (fitting uneven portion)
43 joined body step S02 fitting process step S03 joining process step S04 excision process

Claims (5)

何れか一方は軟磁性材からなり、何れか他方は非磁性材からなる内周側ヨーク部材および外周側ヨーク部材に対し、
環状であって外周部に凹凸部を有する前記内周側ヨーク部材と、環状であって内周部に前記凹凸部に嵌合する嵌合凹凸部を有する前記外周側ヨーク部材とを、前記凹凸部と前記嵌合凹凸部とを嵌合させた状態で、焼結拡散接合により接合して接合体を形成し、
前記軟磁性材と前記非磁性材とが周方向で交互に配置されるように前記接合体の内周部および外周部を切除して形成されていることを特徴とするローターヨーク。
Either one is made of a soft magnetic material, and one of the other is made of a non-magnetic material.
The inner periphery side yoke member that is annular and has an uneven portion on the outer periphery, and the outer periphery side yoke member that is annular and has a fitting uneven portion that fits on the uneven portion on the inner periphery. In a state where the portion and the fitting uneven portion are fitted, a joined body is formed by sintering diffusion bonding,
A rotor yoke, wherein the soft magnetic material and the nonmagnetic material are formed by cutting away an inner peripheral portion and an outer peripheral portion of the joined body so that the soft magnetic material and the nonmagnetic material are alternately arranged in a circumferential direction.
何れか一方は軟磁性材からなり、何れか他方は非磁性材からなる内周側ヨーク部材および外周側ヨーク部材に対し、
環状であって外周部に凹凸部を有する前記内周側ヨーク部材と、環状であって内周部に前記凹凸部に嵌合する嵌合凹凸部を有する前記外周側ヨーク部材とを、前記凹凸部と前記嵌合凹凸部とを嵌合させる嵌合工程と、
前記凹凸部と前記嵌合凹凸部とを嵌合させた状態で、前記内周側ヨーク部材と前記外周側ヨーク部材とを焼結拡散接合により接合して接合体を形成する接合工程と、
前記軟磁性材と前記非磁性材とが周方向で交互に配置されるように前記接合体の内周部および外周部を切除する切除工程とを含むことを特徴とするローターヨークの製造方法。
Either one is made of a soft magnetic material, and one of the other is made of a non-magnetic material.
The inner periphery side yoke member that is annular and has an uneven portion on the outer periphery, and the outer periphery side yoke member that is annular and has a fitting uneven portion that fits on the uneven portion on the inner periphery. A fitting step for fitting the part and the fitting uneven part,
A joining step of joining the inner circumferential side yoke member and the outer circumferential side yoke member by sintered diffusion bonding in a state where the concave and convex portions and the fitting concave and convex portion are fitted, and a joined body;
A method for manufacturing a rotor yoke, comprising: a cutting step of cutting an inner peripheral portion and an outer peripheral portion of the joined body so that the soft magnetic material and the nonmagnetic material are alternately arranged in a circumferential direction.
請求項1に記載のローターヨークと、
前記ローターヨークの内周側または外周側において周方向に配置された複数の永久磁石片とを備える回転子を備えることを特徴とする電動機。
The rotor yoke according to claim 1;
An electric motor comprising: a rotor including a plurality of permanent magnet pieces arranged in a circumferential direction on an inner peripheral side or an outer peripheral side of the rotor yoke.
前記ローターヨークの外周側のうち径方向で前記軟磁性材に対向する位置に前記永久磁石片を備える外周側回転子と、
前記外周側回転子に対して同軸かつ相対回動可能に配置され、周方向に配置された複数の永久磁石片を備える内周側回転子と、
前記外周側回転子と前記内周側回転子との相対位相を変更する位相変更手段とを備える
ことを特徴とする請求項3に記載の電動機。
Outer peripheral side rotor provided with the permanent magnet piece at a position facing the soft magnetic material in the radial direction of the outer peripheral side of the rotor yoke;
An inner rotor having a plurality of permanent magnet pieces arranged coaxially and relative to the outer rotor and arranged in the circumferential direction;
The electric motor according to claim 3, further comprising phase changing means for changing a relative phase between the outer peripheral rotor and the inner peripheral rotor.
前記外周側回転子の前記軟磁性材の外周側での周方向幅aと、前記軟磁性材の内周側での周方向幅bと、前記内周側回転子の磁石装着突部の周方向幅cとに対して、所定の関係(a>b≧c)が設定され、かつ、前記外周側回転子の前記軟磁性材の外周側の周方向両端が中心軸に対してなす角θ1と、前記外周側回転子の前記軟磁性材の外周側および内周側での周方向の一端同士を含む直線と他端同士を含む直線とのなす角θ2とに対して、所定関係(θ1<θ2)が設定されていることを特徴とする請求項4に記載の電動機。 The circumferential width a of the outer circumferential rotor on the outer circumferential side of the soft magnetic material, the circumferential width b of the inner circumference of the soft magnetic material, and the circumference of the magnet mounting protrusion of the inner circumferential rotor. A predetermined relationship (a> b ≧ c) is set with respect to the direction width c, and an angle θ1 formed by circumferential ends on the outer peripheral side of the soft magnetic material of the outer rotor on the center axis And an angle θ2 formed by a straight line including one end in the circumferential direction on the outer peripheral side and the inner peripheral side of the soft magnetic material of the outer rotor and a straight line including the other end (θ1) The motor according to claim 4, wherein <θ2) is set.
JP2007119455A 2007-04-27 2007-04-27 Rotor yoke and rotor yoke manufacturing method and electric motor Expired - Fee Related JP4999535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119455A JP4999535B2 (en) 2007-04-27 2007-04-27 Rotor yoke and rotor yoke manufacturing method and electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119455A JP4999535B2 (en) 2007-04-27 2007-04-27 Rotor yoke and rotor yoke manufacturing method and electric motor

Publications (2)

Publication Number Publication Date
JP2008278638A true JP2008278638A (en) 2008-11-13
JP4999535B2 JP4999535B2 (en) 2012-08-15

Family

ID=40055947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119455A Expired - Fee Related JP4999535B2 (en) 2007-04-27 2007-04-27 Rotor yoke and rotor yoke manufacturing method and electric motor

Country Status (1)

Country Link
JP (1) JP4999535B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081392A1 (en) * 2010-12-17 2012-06-21 アイシン・エィ・ダブリュ株式会社 Rotary electrical machine
JP2013188065A (en) * 2012-03-09 2013-09-19 Denso Corp Magnetic modulation motor
CN109412383A (en) * 2018-11-02 2019-03-01 湖南维格磁流体股份有限公司 A kind of magnetic coupling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188357A (en) * 1983-04-06 1984-10-25 Shimonishi Seisakusho:Kk Manufacture of magnetized yoke
JPH09117083A (en) * 1995-10-17 1997-05-02 Toshiba Mach Co Ltd Laminated rotor in reluctance synchronous motor and manufacture thereof
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188357A (en) * 1983-04-06 1984-10-25 Shimonishi Seisakusho:Kk Manufacture of magnetized yoke
JPH09117083A (en) * 1995-10-17 1997-05-02 Toshiba Mach Co Ltd Laminated rotor in reluctance synchronous motor and manufacture thereof
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081392A1 (en) * 2010-12-17 2012-06-21 アイシン・エィ・ダブリュ株式会社 Rotary electrical machine
JP2013188065A (en) * 2012-03-09 2013-09-19 Denso Corp Magnetic modulation motor
CN109412383A (en) * 2018-11-02 2019-03-01 湖南维格磁流体股份有限公司 A kind of magnetic coupling device

Also Published As

Publication number Publication date
JP4999535B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4715028B2 (en) Rotating electric machine
US20080093944A1 (en) Permanent-magnet reluctance electrical rotary machine
EP2587094B1 (en) Torque converter using magnetic viscous fluid as working fluid
CN106849569B (en) Electric pump
JP2008086130A (en) Motor
JP4999535B2 (en) Rotor yoke and rotor yoke manufacturing method and electric motor
JP4762866B2 (en) Axial gap type motor
JP2020188674A (en) Rotary electric machine
JP4584206B2 (en) Electric motor
JP2020188561A (en) Rotary electric machine
JP2020188560A (en) Rotary electric machine
JP6956488B2 (en) Rotor and reluctance motor
JP4213171B2 (en) Electric motor
JP6796095B2 (en) Cooling structure of rotary electric machine and rotary electric machine
JP4223526B2 (en) Electric motor
JP2018026978A (en) Electrically-driven machinery
JP4499052B2 (en) Electric motor
CN113036961A (en) Rotating electrical machine
JP2007244042A (en) Motor
JP2009254005A (en) Motor
JP2006087244A (en) Rotating electric machine
JP4503543B2 (en) Electric motor
JP4828393B2 (en) Electric motor
JP4494354B2 (en) Electric motor
JP5037063B2 (en) Electric motor for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees