JP2009254005A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2009254005A
JP2009254005A JP2008094837A JP2008094837A JP2009254005A JP 2009254005 A JP2009254005 A JP 2009254005A JP 2008094837 A JP2008094837 A JP 2008094837A JP 2008094837 A JP2008094837 A JP 2008094837A JP 2009254005 A JP2009254005 A JP 2009254005A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
outer peripheral
peripheral side
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008094837A
Other languages
Japanese (ja)
Inventor
Jiro Kuroki
次郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008094837A priority Critical patent/JP2009254005A/en
Publication of JP2009254005A publication Critical patent/JP2009254005A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor which outputs a large torque in the case of being set to a somewhat stronger field phase in a low-speed range, and outputs its induced voltage sufficiently in the case of being set to a weaker field phase in a high-speed range. <P>SOLUTION: The motor is equipped with: an outer rotor 5 which has a plurality of peripheral permanent magnets 9A that are arranged at specified intervals in its circumferential direction so that the direction of magnetization faces in the circumferential direction; an inner rotor 6 which has a plurality of inner permanent magnets 9B that are provided concentrically with the outer rotor and are arranged at specified intervals in its circumferential direction so that the direction of magnetization faces in its radial direction; and a means which changes the relative phase between the outer rotor and the inner rotor. Herein, the length Win in the direction of magnetization of the inner permanent magnet and the length Wout in the direction of magnetization of the peripheral permanent magnet are the same, and the area of magnetic flux generating face of the inner permanent magnet is double the area of the magnetic flux generating face of the outer permanent magnet. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転子に設けられる永久磁石の界磁特性を変更できるようにした電動機に関する。   The present invention relates to an electric motor capable of changing the field characteristics of a permanent magnet provided in a rotor.

例えば、従来の電動機として、回転軸の周囲に互いに同心に設けられた、内周側永久磁石を具備する内周側回転子と外周側永久磁石を具備する外周側回転子とを備え、内周側回転子と外周側回転子との間の位相を変更することにより、永久磁石による界磁特性を制御するようにしたものが提案されている(例えば、特許文献1参照。)。この特許文献1に記載の電動機では、遠心力の作用により径方向に沿って変位する部材を使用することで、或いは、各回転子が慣性により回転速度を維持した状態で固定子巻線に回転磁界を発生させることで、各回転子の位相を変更している。
特開2002−204541号公報
For example, as a conventional electric motor, provided with an inner peripheral side rotor having an inner peripheral side permanent magnet and an outer peripheral side rotor having an outer peripheral side permanent magnet provided concentrically with each other around a rotation shaft, There has been proposed a technique in which the field characteristics of a permanent magnet are controlled by changing the phase between the side rotor and the outer rotor (see, for example, Patent Document 1). In the electric motor described in Patent Document 1, a member that is displaced in the radial direction by the action of a centrifugal force is used, or each rotor rotates to a stator winding while maintaining a rotation speed due to inertia. The phase of each rotor is changed by generating a magnetic field.
JP 2002-204541 A

ところで、電動機では、低速域においては、界磁を強く制御することでトルクを大きく出せるようにし、また、高速域においては、界磁を弱く制御して、固定子巻線に発生する誘起電圧を小さくして、回転数をアップできることが望ましい。   By the way, in the electric motor, the torque can be increased by controlling the field strongly in the low speed region, and the induced voltage generated in the stator winding is controlled by weakly controlling the field in the high speed region. It is desirable that the number of rotations can be increased by reducing the speed.

特許文献1に記載の電動機では、高速域にて弱め界磁位相に設定することが記載されているが、内周回転子の永久磁石による発生磁束よりも外周側回転子の永久磁石による発生磁束の方が強い場合には、固定子に及ぼす磁束を弱め切れず、結果的に誘起電圧を十分に低減できないという課題があった。   In the electric motor described in Patent Document 1, it is described that the field weakening phase is set in a high speed region, but the magnetic flux generated by the permanent magnet of the outer rotor is more than the magnetic flux generated by the permanent magnet of the inner rotor. In the case where is stronger, there is a problem that the magnetic flux exerted on the stator cannot be weakened, and as a result, the induced voltage cannot be reduced sufficiently.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、低速域において強め界磁位相に設定した場合に大きなトルクを出すことができると共に、高速域において弱め界磁位相に設定した場合に誘起電圧を十分に小さくすることができるようにした電動機を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to set a strong field phase in the low speed range and to set a weak field phase in the high speed range. It is an object of the present invention to provide an electric motor that can sufficiently reduce the induced voltage.

前述した目的を達成するために、請求項1に係る発明は、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石(例えば、実施形態における外周側永久磁石9A)を具備する外周側回転子(例えば、実施形態における外周側回転子5)と、該外周側回転子と同心に設けられ、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の内周側永久磁石(例えば、実施形態における内周側永久磁石9B)を具備する内周側回転子(例えば、実施形態における内周側回転子6)と、前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段(例えば、実施形態における位相変更手段12)と、を備える電動機であって、前記内周側永久磁石の着磁方向長さ(例えば、実施形態における着磁方向長さWin)は、前記外周側永久磁石の着磁方向長さ(例えば、実施形態における着磁方向長さWout)と同一であり、前記内周側永久磁石の磁束発生面の面積(例えば、実施形態における面積Lin)は、前記外周側永久磁石の磁束発生面の面積(例えば、実施形態における面積Wout)の2倍であることを特徴とする。   In order to achieve the above-described object, the invention according to claim 1 is directed to a plurality of outer peripheral side permanent magnets (for example, outer periphery in the embodiment) arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction. The outer circumferential rotor (for example, the outer circumferential rotor 5 in the embodiment) provided with the side permanent magnet 9A) is provided concentrically with the outer circumferential rotor, and the circumferential direction is such that the magnetization direction is in the radial direction. An inner circumferential rotor (for example, the inner circumferential rotor 6 in the embodiment) having a plurality of inner circumferential permanent magnets (for example, the inner circumferential permanent magnet 9B in the embodiment) arranged at predetermined intervals in Phase changing means capable of changing a relative phase between the outer circumferential rotor and the inner circumferential rotor by rotating at least one of the outer circumferential rotor and the inner circumferential rotor. For example, the phase changing means 12) in the embodiment and The magnetization direction length of the inner peripheral permanent magnet (for example, the magnetization direction length Win in the embodiment) is the magnetization direction length of the outer peripheral permanent magnet (for example, the embodiment). Is the same as the magnetization direction length Wout), and the area of the magnetic flux generating surface of the inner peripheral permanent magnet (for example, the area Lin in the embodiment) is the area of the magnetic flux generating surface of the outer peripheral permanent magnet (for example, The area is twice the area Wout) in the embodiment.

請求項2に係る発明は、請求項1に係る電動機において、前記各内周側永久磁石は、同一寸法の一対の永久磁石によって構成されることを特徴とする。   According to a second aspect of the present invention, in the electric motor according to the first aspect, each inner peripheral permanent magnet is constituted by a pair of permanent magnets having the same dimensions.

請求項3に係る発明は、その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石を具備する外周側回転子と、該外周側回転子と同心に設けられ、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の内周側永久磁石を具備する内周側回転子と、前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段と、を備える電動機であって、前記内周側永久磁石の着磁方向長さは、前記外周側永久磁石の着磁方向長さと同一であり、前記内周側永久磁石の磁束発生面の面積は、前記外周側永久磁石の磁束発生面の面積の1.6〜2倍であることを特徴とする。   According to a third aspect of the present invention, there is provided an outer peripheral rotor including a plurality of outer peripheral permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction, and concentric with the outer rotor. An inner peripheral rotor having a plurality of inner peripheral permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the radial direction, the outer peripheral rotor, and the inner periphery A phase changing means capable of changing a relative phase between the outer peripheral rotor and the inner peripheral rotor by rotating at least one of the side rotors, The magnetizing direction length of the inner peripheral side permanent magnet is the same as the magnetizing direction length of the outer peripheral side permanent magnet, and the area of the magnetic flux generating surface of the inner peripheral side permanent magnet is the same as that of the outer peripheral side permanent magnet. It is characterized by being 1.6 to 2 times the surface area.

請求項1に記載の電動機によれば、強め界磁位相に設定した場合に大きなトルクを出すことができると共に、弱め界磁位相に制御した際の誘起電圧をほぼゼロにすることができ、モータ鉄損を十分に下げることができる。   According to the electric motor of the first aspect, a large torque can be produced when the strong field phase is set, and the induced voltage when the weak field phase is controlled can be made substantially zero, Iron loss can be reduced sufficiently.

請求項2に記載の電動機によれば、外周側回転子と内周側回転子で全部同じ永久磁石を使用することができ、生産性を向上することができる。   According to the electric motor of the second aspect, the same permanent magnet can be used for the outer peripheral side rotor and the inner peripheral side rotor, and productivity can be improved.

請求項3に記載の電動機によれば、強め界磁位相に設定した場合に大きなトルクを出すことができると共に、弱め界磁位相に制御した際の誘起電圧を強め界磁位相に制御した際の誘起電圧の10%以下に抑えることができ、モータ鉄損を十分に下げることができる。   According to the electric motor of the third aspect, when a strong field phase is set, a large torque can be output, and an induced voltage when controlling to the weak field phase is controlled to the strong field phase. It can be suppressed to 10% or less of the induced voltage, and the motor iron loss can be sufficiently reduced.

(第1実施形態)
以下、本発明の第1実施形態に係る電動機について図面に基づいて詳細に説明する。本実施形態の電動機1は、図1および図2に示すように、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスDCモータであり、例えば、ハイブリッド車両や電動車両等の走行駆動源として用いられる。固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。この電動機1を車両の走行駆動源として用いる場合、電動機1の回転力はトランスミッション(図示せず)を介して車輪の駆動軸(図示せず)に伝達される。この場合、電動機1を車両の減速時に発電機として機能させれば、発電電力を回生エネルギーとして蓄電器に回収することができる。また、ハイブリッド車両においては、電動機1の回転軸4をさらに内燃機関のクランクシャフト(図示せず)に連結することにより、内燃機関による発電にも利用することができる。
(First embodiment)
Hereinafter, the electric motor which concerns on 1st Embodiment of this invention is demonstrated in detail based on drawing. As shown in FIGS. 1 and 2, the electric motor 1 of the present embodiment is an inner rotor type brushless DC motor in which a rotor unit 3 is arranged on the inner peripheral side of an annular stator 2, for example, a hybrid vehicle And used as a driving source for electric vehicles and the like. The stator 2 has a multi-phase stator winding 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. When the electric motor 1 is used as a vehicle driving source, the rotational force of the electric motor 1 is transmitted to a wheel drive shaft (not shown) via a transmission (not shown). In this case, if the electric motor 1 is caused to function as a generator when the vehicle is decelerated, the generated power can be recovered as regenerative energy in the battery. In the hybrid vehicle, the rotating shaft 4 of the electric motor 1 can be further connected to a crankshaft (not shown) of the internal combustion engine so that it can be used for power generation by the internal combustion engine.

回転子ユニット3は、円環状の外周側回転子5と、この外周側回転子5の内側に同心に配置される円環状の内周側回転子6とを備え、外周側回転子5と内周側回転子6が設定角度の範囲で相対回動可能とされている。   The rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed concentrically inside the outer circumferential rotor 5. The circumferential rotor 6 is rotatable relative to a set angle range.

外周側回転子5と内周側回転子6では、回転子本体である円環状のロータ鉄心7、8が、例えば、複数の電磁鋼板を回転軸4に沿う方向に積層してなる積層鋼板によって形成されており、各ロータ鉄心7、8に軸方向に延出する複数の磁石装着スロット7a、8aが円周方向に沿って設けられている。   In the outer peripheral side rotor 5 and the inner peripheral side rotor 6, the annular rotor cores 7 and 8 which are rotor main bodies are made of, for example, a laminated steel plate in which a plurality of electromagnetic steel plates are laminated in a direction along the rotation axis 4. A plurality of magnet mounting slots 7a, 8a extending in the axial direction are provided in the rotor cores 7, 8 along the circumferential direction.

各磁石装着スロット7a、8aには、厚み方向に磁化された平板状の外周側永久磁石9Aと内周側永久磁石9Bがそれぞれ装着されている。この場合、図3(a)、(b)にも示すように、複数の外周側永久磁石9Aは、着磁方向(厚み方向)が周方向に向くように周方向に所定間隔(本実施形態では、22.5°)で配置され、複数の内周側永久磁石9Bは、着磁方向(厚み方向)が径方向に向くように周方向に所定間隔(本実施形態では、22.5°)で配置されている。   Each of the magnet mounting slots 7a and 8a is mounted with a flat plate-like outer peripheral permanent magnet 9A and inner peripheral permanent magnet 9B magnetized in the thickness direction. In this case, as shown in FIGS. 3A and 3B, the plurality of outer peripheral side permanent magnets 9A have a predetermined interval in the circumferential direction (this embodiment) so that the magnetization direction (thickness direction) faces the circumferential direction. The inner permanent magnets 9B are arranged at a predetermined interval in the circumferential direction (22.5 ° in this embodiment) so that the magnetization direction (thickness direction) faces the radial direction. ).

外周側永久磁石9Aと内周側永久磁石9Bは同数(本実施形態では、8極対)設けられており、外周側回転子5上において周方向に隣接する外周側永久磁石9Aの磁極の向きは逆に設定され、内周側回転子6上において周方向に隣接する内周側永久磁石9Bの磁極の向きも逆に設定されている。   The same number of outer peripheral side permanent magnets 9A and inner peripheral side permanent magnets 9B (8 pole pairs in this embodiment) are provided, and the direction of the magnetic poles of the outer peripheral side permanent magnets 9A adjacent in the circumferential direction on the outer peripheral side rotor 5 Are set in reverse, and the direction of the magnetic pole of the inner peripheral side permanent magnet 9B adjacent in the circumferential direction on the inner peripheral side rotor 6 is also set in reverse.

図2に示すように、内周側永久磁石9Bの着磁方向長さWinは、外周側永久磁石9Aの着磁方向長さWoutと同一に設定されている。また、内周側永久磁石9Bの周方向における長さLinは、外周側永久磁石9Aの径方向における長さLoutの2倍に設定されている。このため、外周側永久磁石9Aと内周側永久磁石9Bの軸方向における長さが略同一であることから、内周側永久磁石9Bの磁束発生面の面積は、外周側永久磁石9Aの磁束発生面の面積の2倍に設定されている。   As shown in FIG. 2, the magnetization direction length Win of the inner peripheral permanent magnet 9B is set to be the same as the magnetization direction length Wout of the outer peripheral permanent magnet 9A. Moreover, the length Lin in the circumferential direction of the inner peripheral side permanent magnet 9B is set to be twice the length Lout in the radial direction of the outer peripheral side permanent magnet 9A. For this reason, since the length in the axial direction of the outer peripheral side permanent magnet 9A and the inner peripheral side permanent magnet 9B is substantially the same, the area of the magnetic flux generating surface of the inner peripheral side permanent magnet 9B is the magnetic flux of the outer peripheral side permanent magnet 9A. It is set to twice the area of the generation surface.

そして、図3(a)に示すように、隣接する外周側永久磁石9Aの対向N極(またはS極)間に、内周側永久磁石9Bの同極つまりN極(またはS極)が対峙するように、外周側回転子5と内周側回転子6の相対回転角度を調整したときには、回転子ユニット3全体の界磁が最も強められる強め界磁位相の状態とすることができる。一方、図3(b)に示すように、隣接する外周側永久磁石9Aの対向N極(またはS極)間に、内周側永久磁石9Bの異極つまりS極(またはN極)が対峙するように、外周側回転子5と内周側回転子6の相対回転角度を調整したときには、回転子ユニット3全体の界磁が最も弱められる弱め界磁位相の状態とすることができる。   As shown in FIG. 3A, the same polarity of the inner peripheral permanent magnet 9B, that is, the N pole (or S pole) is opposed to the opposite N pole (or S pole) of the adjacent outer peripheral permanent magnet 9A. As described above, when the relative rotation angle between the outer rotor 5 and the inner rotor 6 is adjusted, a strong field phase state in which the field of the entire rotor unit 3 is most enhanced can be obtained. On the other hand, as shown in FIG. 3B, the opposite pole of the inner peripheral side permanent magnet 9B, that is, the S pole (or N pole) is opposed to the opposite N pole (or S pole) of the adjacent outer peripheral permanent magnet 9A. As described above, when the relative rotation angle between the outer circumferential rotor 5 and the inner circumferential rotor 6 is adjusted, the field weakening phase where the field of the entire rotor unit 3 is weakened most can be obtained.

また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5、6の相対位相を任意に変更するための位相変更手段12を構成するものであり、非圧縮性の作動流体である作動液の圧力によって操作されるようになっている。位相変更手段12は、上記の回動機構11と、この回動機構11に対する作動液の給排を制御する液圧制御装置(図示せず)とを主要な要素として構成されている。   The rotor unit 3 includes a rotation mechanism 11 for relatively rotating the outer peripheral rotor 5 and the inner peripheral rotor 6. This rotating mechanism 11 constitutes a phase changing means 12 for arbitrarily changing the relative phase of both the rotors 5 and 6, and is operated by the pressure of the working fluid which is an incompressible working fluid. It is like that. The phase changing means 12 includes the above-described rotation mechanism 11 and a hydraulic pressure control device (not shown) that controls supply and discharge of hydraulic fluid to and from the rotation mechanism 11 as main elements.

回動機構11は、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されると共に、ベーンロータ14が、環状ハウジング15と内周側回転子6の軸方向の両側の端面を跨ぐ円板状の一対のドライブプレート16A、16B(端板)を介して外周側回転子5に一体に結合されている。従って、ベーンロータ14は回転軸4と外周側回転子5とに一体化され、環状ハウジング15は内周側回転子6と一体化されている。なお、図中22は、ドライブプレート16A、16Bとベーンロータ14を結合するボルトであり、23は、ドライブプレート16A、16Bと外周側回転子5を結合するボルトである。   The rotating mechanism 11 includes a vane rotor 14 that is spline-fitted to the outer periphery of the rotating shaft 4 so as to be integrally rotatable, and an annular housing 15 that is disposed to be relatively rotatable on the outer peripheral side of the vane rotor 14. Are integrally fitted and fixed to the inner peripheral surface of the inner rotor 6, and the vane rotor 14 is a pair of disk-like members straddling the end faces of both sides of the annular housing 15 and the inner rotor 6 in the axial direction. It is integrally coupled to the outer peripheral rotor 5 via drive plates 16A and 16B (end plates). Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6. In the figure, reference numeral 22 denotes a bolt for connecting the drive plates 16A, 16B and the vane rotor 14, and reference numeral 23 denotes a bolt for connecting the drive plates 16A, 16B to the outer peripheral rotor 5.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられたものである。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、これら各凹部19にベーンロータ14の対応するベーン18が収容配置されている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19同士を画成する仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を移動する。なお、各ベーン18の先端部には、底壁20と軸方向に沿うように摺接するシール31aと、シール31aを底壁20に向けて押圧するスプリング31bからなるシール部材31が設けられており、ベーン18と底壁20との間を液密にシールする。また、各仕切壁21の先端部にも、ボス部17の外周面と軸方向に沿うように摺接するシール32aと、シール32aをボス部17の外周面に向けて押圧するスプリング32bからなるシール部材32が設けられており、仕切壁21とボス部17の外周面との間を液密にシールする。   In the vane rotor 14, a plurality of vanes 18 protruding radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in these concave portions 19. Each recess 19 includes a bottom wall 20 having an arcuate surface that substantially matches the rotational trajectory of the tip of the vane 18, and a partition wall 21 that defines the adjacent recesses 19, and the relative relationship between the vane rotor 14 and the annular housing 15. At the time of rotation, the vane 18 moves between the one partition wall 21 and the other partition wall 21. The tip of each vane 18 is provided with a seal member 31 including a seal 31a that is slidably contacted with the bottom wall 20 along the axial direction, and a spring 31b that presses the seal 31a toward the bottom wall 20. The space between the vane 18 and the bottom wall 20 is liquid-tightly sealed. Further, a seal 32 a which is slidably contacted with the outer peripheral surface of the boss portion 17 along the axial direction at the distal end portion of each partition wall 21 and a spring 32 b which presses the seal 32 a toward the outer peripheral surface of the boss portion 17. The member 32 is provided and seals between the partition wall 21 and the outer peripheral surface of the boss portion 17 in a liquid-tight manner.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16A、16Bは、環状ハウジング15の両側面(軸方向の端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方をそれぞれ閉塞する。従って、環状ハウジング15の各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16A、16Bと共にそれぞれ独立した空間を形成し、この空間は、作動液が導入される導入空間となっている。各導入空間内は、ベーンロータ14の対応する各ベーン18によってそれぞれ2室に隔成され、一方の室が進角側作動室24とされ、他方の室が遅角側作動室25とされている。   The drive plates 16A and 16B on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (axial end surfaces) of the annular housing 15, and the side of each recess 19 of the annular housing 15 Respectively. Accordingly, each concave portion 19 of the annular housing 15 forms an independent space together with the boss portion 17 of the vane rotor 14 and the drive plates 16A and 16B on both sides, and this space is an introduction space into which hydraulic fluid is introduced. . Each introduction space is divided into two chambers by corresponding vanes 18 of the vane rotor 14, one chamber being an advance side working chamber 24 and the other chamber being a retard side working chamber 25. .

進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して図2中の矢印Rで示す電動機1の主回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の主回転方向Rと逆側に進めることを言うものとする。   The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the working fluid introduced inside, and the retard side working chamber 25 is The inner rotor 6 is rotated relative to the outer rotor 5 in the retard direction by the pressure of the working fluid introduced therein. In this case, the “advance angle” means that the inner rotor 6 is advanced in the main rotation direction of the electric motor 1 indicated by the arrow R in FIG. 2 with respect to the outer rotor 5. Means that the inner rotor 6 is moved in the direction opposite to the main rotation direction R of the electric motor 1 with respect to the outer rotor 5.

また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的に、進角側作動室24は、回転軸4に形成された通路孔26aと、通路孔26aと接続される外周面に形成された環状溝26bと、ベーンロータ14のボス部17に略径方向に形成された複数の導通孔26cとを介して液圧制御装置と接続される。また、遅角側作動室25は、回転軸4に形成された通路孔27aと、通路孔27aと接続される外周面に形成された環状溝27bと、ベーンロータ14のボス部17に略径方向に形成された複数の導通孔27cとを介して液圧制御装置と接続される。   Further, the supply and discharge of the hydraulic fluid to and from each of the advance side working chambers 24 and the retard side working chambers 25 is performed through the rotating shaft 4. Specifically, the advance side working chamber 24 is substantially formed in a passage hole 26 a formed in the rotating shaft 4, an annular groove 26 b formed in the outer peripheral surface connected to the passage hole 26 a, and the boss portion 17 of the vane rotor 14. The hydraulic pressure control device is connected through a plurality of conduction holes 26c formed in the radial direction. Further, the retard side working chamber 25 is formed in a substantially radial direction in the passage hole 27a formed in the rotating shaft 4, the annular groove 27b formed in the outer peripheral surface connected to the passage hole 27a, and the boss portion 17 of the vane rotor 14. The hydraulic pressure control device is connected through a plurality of conduction holes 27c formed in the.

以上の構成において、この電動機1の界磁特性を変更する場合、液圧制御装置による作動液の給排により、進角側作動室24と遅角側作動室25の一方に作動液を供給すると共に他方から作動液を排出する。そして、こうして作動液の給排が制御されると、ベーンロータ14と環状ハウジング15が相対的に回動し、それにともなって外周側回転子5と内周側回転子6の相対位相が操作される。   In the above configuration, when the field characteristics of the electric motor 1 are changed, the hydraulic fluid is supplied to one of the advance side working chamber 24 and the retard side working chamber 25 by supplying and discharging the hydraulic fluid by the hydraulic pressure control device. At the same time, the hydraulic fluid is discharged from the other side. When the supply and discharge of the hydraulic fluid is controlled in this way, the vane rotor 14 and the annular housing 15 are relatively rotated, and the relative phases of the outer peripheral rotor 5 and the inner peripheral rotor 6 are operated accordingly. .

外周側回転子5と内周側回転子6の相対位相が操作されると、図3(a)に示す強め界磁の状態と図3(b)に示す弱め界磁の状態の間で、固定子2に及ぼす磁界の強さが変化する。磁界の強さが変化すると、それに伴って誘起電圧定数が変化し、その結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。   When the relative phase of the outer circumferential rotor 5 and the inner circumferential rotor 6 is manipulated, between the strong field state shown in FIG. 3A and the weak field state shown in FIG. The strength of the magnetic field exerted on the stator 2 changes. When the strength of the magnetic field changes, the induced voltage constant changes accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, when the induced voltage constant increases due to the strong field, the allowable rotational speed at which the motor 1 can be operated decreases, but the maximum torque that can be output increases. Conversely, when the induced voltage constant decreases due to the weak field, Although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

特に本電動機1においては、外周側回転子5の外周側永久磁石9Aを着磁方向が周方向を向くように配置し、内周側回転子6の内周側永久磁石9Bを着磁方向が径方向を向くように配置し、しかも、内周側永久磁石9Bの着磁方向長さWinと外周側永久磁石9Aの着磁方向長さWoutとを同一に設定すると共に、内周側永久磁石9Bの磁束発生面の面積を外周側永久磁石9Aの磁束発生面の面積の2倍(即ち、Lin:Lout=2:1)に設定している。このため、図3(a)に示すように、強め界磁位相に設定した場合には、強い界磁を固定子2に及ぼすことができ、図3(b)に示すように、弱め界磁位相に設定した場合には、界磁の影響を固定子2にほとんど及ぼさないようにすることができる。即ち、低速域において強め界磁位相に設定した場合には、大きなトルクを取り出すことができ、高速域において弱め界磁位相に設定した場合には、誘起電圧をほぼゼロにすることができる。よって、モータ鉄損を十分に下げることができる。   In particular, in the present electric motor 1, the outer peripheral side permanent magnet 9A of the outer peripheral side rotor 5 is arranged so that the magnetization direction faces the circumferential direction, and the inner peripheral side permanent magnet 9B of the inner peripheral side rotor 6 is set to have a magnetization direction. Further, the inner circumferential side permanent magnet 9B is set to have the same magnetization direction length Win and the outer circumferential side permanent magnet 9A. The area of the magnetic flux generation surface of 9B is set to twice the area of the magnetic flux generation surface of the outer peripheral side permanent magnet 9A (that is, Lin: Lout = 2: 1). Therefore, when the strong field phase is set as shown in FIG. 3A, a strong field can be exerted on the stator 2, and as shown in FIG. When the phase is set, the influence of the field can be hardly exerted on the stator 2. That is, when the strong field phase is set in the low speed range, a large torque can be taken out, and when the weak field phase is set in the high speed range, the induced voltage can be made almost zero. Therefore, the motor iron loss can be sufficiently reduced.

例えば、図4に示す比較例のように、強いトルクを得るために外周側永久磁石9Bの磁束発生面の面積を大きくした場合(即ち、軸方向長さが一定なので、径方向の長さを大きくすれば)、図示のように弱め界磁位相の状態においても、固定子2側に界磁の影響が大きく及ぶために、誘起電圧が大きくなってしまう。   For example, as in the comparative example shown in FIG. 4, when the area of the magnetic flux generation surface of the outer peripheral permanent magnet 9B is increased in order to obtain a strong torque (ie, the axial length is constant, the radial length is If it is increased), even in the state of field weakening as shown in the figure, the influence of the magnetic field is greatly exerted on the stator 2 side, so that the induced voltage becomes large.

図5は、内周側永久磁石9Bの磁束発生面の面積と外周側永久磁石9Aの磁束発生面の面積の比率、即ち、互いの周方向長さLin:Loutの比率を変えた場合の、内周側回転子と外周側回転子の相対角変化に対する誘起電圧の大きさの変化を示している。この場合、回転数は1000rpmである。このグラフから、Lin:Lout=1:2、Lin:Lout=1:1のときは、弱め界磁位相、即ち、電気角が180°の場合において、誘起電圧の低減効果が小さいことが分かる。一方、Lin:Lout=3:1やLin:Lout=4:1のときは、弱め界磁位相において、誘起電圧がゼロを超えて反転してしまう。それに対して、Lin:Lout=2:1のときは、弱め界磁位相において、誘起電圧をゼロにすることができる。また、Lin:Lout=1.6:1の場合は、誘起電圧を強め界磁位相の誘起電圧の10%以下に抑えられることが分かる。   FIG. 5 shows a case where the ratio of the area of the magnetic flux generation surface of the inner peripheral side permanent magnet 9B and the area of the magnetic flux generation surface of the outer peripheral side permanent magnet 9A, that is, the ratio of the mutual circumferential length Lin: Lout is changed. The change of the magnitude | size of the induced voltage with respect to the relative angle change of an inner peripheral side rotor and an outer peripheral side rotor is shown. In this case, the rotation speed is 1000 rpm. From this graph, it can be seen that when Lin: Lout = 1: 2, Lin: Lout = 1: 1, the effect of reducing the induced voltage is small when the field weakening phase, that is, the electrical angle is 180 °. On the other hand, when Lin: Lout = 3: 1 or Lin: Lout = 4: 1, the induced voltage is inverted beyond zero in the field weakening phase. In contrast, when Lin: Lout = 2: 1, the induced voltage can be made zero in the field-weakening phase. It can also be seen that when Lin: Lout = 1.6: 1, the induced voltage is strengthened and can be suppressed to 10% or less of the induced voltage of the field phase.

従って、本実施形態の電動機1によれば、内周側永久磁石9Bの着磁方向長さWinは、外周側永久磁石9Aの着磁方向長さWoutと同一とし、内周側永久磁石9Bの磁束発生面の面積を外周側永久磁石9Aの磁束発生面の面積の1.6〜2倍とすることで、強め界磁位相に設定した場合に大きなトルクを出すことができると共に、弱め界磁位相に制御した際の誘起電圧を強め界磁位相の誘起電圧の10%以下に抑えることができ、モータ鉄損を十分に下げることができる。特に、内周側永久磁石9Bの磁束発生面の面積を外周側永久磁石9Aの磁束発生面の面積の2倍とすることで、弱め界磁位相に制御した際の誘起電圧をゼロにすることができる。また、本実施形態の電動機1を、ロックアップ機構を有するシリーズハイブリッド車両に適用する場合には、ロックアップ時の各回転子の引き摺り損失をゼロ近くにすることができる。   Therefore, according to the electric motor 1 of the present embodiment, the magnetization direction length Win of the inner peripheral permanent magnet 9B is the same as the magnetization direction length Wout of the outer peripheral permanent magnet 9A, and the inner peripheral permanent magnet 9B By setting the area of the magnetic flux generation surface to 1.6 to 2 times the area of the magnetic flux generation surface of the outer peripheral permanent magnet 9A, a large torque can be generated when the strong field phase is set, and the weak field The induced voltage when the phase is controlled can be strengthened and suppressed to 10% or less of the induced voltage of the field phase, and the motor iron loss can be sufficiently reduced. In particular, by setting the area of the magnetic flux generating surface of the inner peripheral side permanent magnet 9B to twice the area of the magnetic flux generating surface of the outer peripheral side permanent magnet 9A, the induced voltage when controlled to the field weakening phase is made zero. Can do. Moreover, when the electric motor 1 of this embodiment is applied to a series hybrid vehicle having a lockup mechanism, the drag loss of each rotor at the time of lockup can be made close to zero.

(第2実施形態)
図6は、第2実施形態に係る電動機1Aを軸線方向から見た断面図である。この電動機1Aでは、内周側永久磁石9Bを、同一寸法の一対の永久磁石9B1,9B2によって構成している。このようにすることで、外周側永久磁石9Aと内周側永久磁石9Bの永久磁石9B1,9B2とで全て同じ永久磁石を使用することができ、磁石の生産性を向上することができる。なお、その他の構成及び作用については、第1実施形態のものと同様である。
(Second Embodiment)
FIG. 6 is a cross-sectional view of the electric motor 1A according to the second embodiment as viewed from the axial direction. In this electric motor 1A, the inner peripheral side permanent magnet 9B is constituted by a pair of permanent magnets 9B1 and 9B2 having the same dimensions. By doing in this way, the permanent magnet 9B1 of the inner peripheral side permanent magnet 9B and the permanent magnet 9B1 of the inner peripheral side permanent magnet 9B can use the same permanent magnet, and the productivity of a magnet can be improved. Other configurations and operations are the same as those in the first embodiment.

尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。
また、本実施形態では、位相変更手段12が内周側回転子6を回動させることで、外周側回転子5と内周側回転子6との間の相対的な位相を変更可能としているが、外周側回転子5を回動させることで、これら回転子5,6との間の相対的な位相を変更可能としてもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
Further, in the present embodiment, the phase changing means 12 rotates the inner circumferential rotor 6 so that the relative phase between the outer circumferential rotor 5 and the inner circumferential rotor 6 can be changed. However, the relative phase between the rotors 5 and 6 may be changed by rotating the outer peripheral rotor 5.

本発明の第1実施形態の電動機の断面図で、図2のI−I矢視断面図に相当する図である。It is sectional drawing of the electric motor of 1st Embodiment of this invention, and is a figure equivalent to the II sectional view taken on the line of FIG. 同電動機の軸線方向から見た断面図である。It is sectional drawing seen from the axial direction of the same electric motor. (a)は強め界磁位相のときの磁束の状態を示す図、(b)は弱め界磁位相のときの磁束の状態を示す図である。(A) is a figure which shows the state of the magnetic flux in the case of a strong field phase, (b) is a figure which shows the state of the magnetic flux in the case of a field weakening phase. 比較例における弱め界磁位相のときの磁束の状態を示す図である。It is a figure which shows the state of the magnetic flux in the case of a field weakening phase in a comparative example. 内周側永久磁石の磁束発生面の面積と外周側永久磁石の磁束発生面の面積の比率を変えた場合の、内周側回転子と外周側回転子の相対角度変化に対する誘起電圧の大きさの変化を示すグラフである。The magnitude of the induced voltage for the change in the relative angle between the inner and outer rotors when the ratio of the area of the magnetic flux generation surface of the inner peripheral side permanent magnet to the area of the magnetic flux generation surface of the outer peripheral side permanent magnet is changed It is a graph which shows the change of. 本発明の第2実施形態の電動機の軸線方向から見た断面図である。It is sectional drawing seen from the axial direction of the electric motor of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 電動機
5 外周側回転子
6 内周側回転子
9A 外周側永久磁石
9B 内周側永久磁石
12 位相変更手段
Win 内周側永久磁石の着磁方向長さ
Wout 外周側永久磁石の着磁方向長さ
Lin 内周側永久磁石の周方向の長さ
Lout 外周側永久磁石の径方向の長さ
DESCRIPTION OF SYMBOLS 1 Electric motor 5 Outer peripheral side rotor 6 Inner peripheral side rotor 9A Outer peripheral side permanent magnet 9B Inner peripheral side permanent magnet 12 Phase change means Win Inner peripheral side permanent magnet magnetization direction length Wout Outer peripheral side permanent magnet magnetization direction length Lin The circumferential length of the inner peripheral permanent magnet Lout The radial length of the outer permanent magnet

Claims (3)

その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石を具備する外周側回転子と、
該外周側回転子と同心に設けられ、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の内周側永久磁石を具備する内周側回転子と、
前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段と、
を備える電動機であって、
前記内周側永久磁石の着磁方向長さは、前記外周側永久磁石の着磁方向長さと同一であり、
前記内周側永久磁石の磁束発生面の面積は、前記外周側永久磁石の磁束発生面の面積の2倍であることを特徴とする電動機。
An outer peripheral rotor comprising a plurality of outer peripheral permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction;
An inner circumferential rotor that is provided concentrically with the outer circumferential rotor and has a plurality of inner circumferential permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the radial direction;
Phase changing means capable of changing a relative phase between the outer circumferential rotor and the inner circumferential rotor by rotating at least one of the outer circumferential rotor and the inner circumferential rotor; ,
An electric motor comprising:
The magnetization direction length of the inner peripheral side permanent magnet is the same as the magnetization direction length of the outer peripheral side permanent magnet,
The area of the magnetic flux generation surface of the inner peripheral permanent magnet is twice the area of the magnetic flux generation surface of the outer peripheral permanent magnet.
前記各内周側永久磁石は、同一寸法の一対の永久磁石によって構成されることを特徴とする請求項1に記載の電動機。   2. The electric motor according to claim 1, wherein each of the inner peripheral side permanent magnets is constituted by a pair of permanent magnets having the same dimensions. その着磁方向が周方向に向くように周方向に所定間隔で配置された複数の外周側永久磁石を具備する外周側回転子と、
該外周側回転子と同心に設けられ、その着磁方向が径方向に向くように周方向に所定間隔で配置された複数の内周側永久磁石を具備する内周側回転子と、
前記外周側回転子と前記内周側回転子の少なくとも一方を回動させることで、前記外周側回転子と前記内周側回転子との間の相対的な位相を変更可能な位相変更手段と、
を備える電動機であって、
前記内周側永久磁石の着磁方向長さは、前記外周側永久磁石の着磁方向長さと同一であり、
前記内周側永久磁石の磁束発生面の面積は、前記外周側永久磁石の磁束発生面の面積の1.6〜2倍であることを特徴とする電動機。
An outer peripheral rotor comprising a plurality of outer peripheral permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the circumferential direction;
An inner circumferential rotor that is provided concentrically with the outer circumferential rotor and has a plurality of inner circumferential permanent magnets arranged at predetermined intervals in the circumferential direction so that the magnetization direction thereof is in the radial direction;
Phase changing means capable of changing a relative phase between the outer circumferential rotor and the inner circumferential rotor by rotating at least one of the outer circumferential rotor and the inner circumferential rotor; ,
An electric motor comprising:
The magnetization direction length of the inner peripheral side permanent magnet is the same as the magnetization direction length of the outer peripheral side permanent magnet,
The area of the magnetic flux generating surface of the inner peripheral side permanent magnet is 1.6 to 2 times the area of the magnetic flux generating surface of the outer peripheral side permanent magnet.
JP2008094837A 2008-04-01 2008-04-01 Motor Withdrawn JP2009254005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094837A JP2009254005A (en) 2008-04-01 2008-04-01 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094837A JP2009254005A (en) 2008-04-01 2008-04-01 Motor

Publications (1)

Publication Number Publication Date
JP2009254005A true JP2009254005A (en) 2009-10-29

Family

ID=41314152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094837A Withdrawn JP2009254005A (en) 2008-04-01 2008-04-01 Motor

Country Status (1)

Country Link
JP (1) JP2009254005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155740A (en) * 2010-01-26 2011-08-11 Denso Corp Control device of motor
JP2014155415A (en) * 2013-02-13 2014-08-25 Jtekt Corp Embedded magnet rotor and method of manufacturing embedded magnet rotor
WO2015151236A1 (en) * 2014-04-01 2015-10-08 株式会社安川電機 Rotating electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155740A (en) * 2010-01-26 2011-08-11 Denso Corp Control device of motor
JP2014155415A (en) * 2013-02-13 2014-08-25 Jtekt Corp Embedded magnet rotor and method of manufacturing embedded magnet rotor
WO2015151236A1 (en) * 2014-04-01 2015-10-08 株式会社安川電機 Rotating electric machine

Similar Documents

Publication Publication Date Title
US8339010B2 (en) Dual rotor electric machine having a field-controlling rotor
CN101779366A (en) Axial gap type motor
JP4556076B2 (en) Electric motor control device
JP4762866B2 (en) Axial gap type motor
JP5037083B2 (en) Electric motor
JP2009254005A (en) Motor
JP4890056B2 (en) Electric motor
JP5089066B2 (en) Electric motor
JP2008289219A (en) Motor
JP4213171B2 (en) Electric motor
JP4932418B2 (en) Electric motor
JP5286588B2 (en) Electric motor
JP4808529B2 (en) Electric motor
JP2007244042A (en) Motor
JP4223526B2 (en) Electric motor
JP2007244063A (en) Motor
JP4499052B2 (en) Electric motor
JP2008067577A (en) Motor
JP5085875B2 (en) Electric motor
JP5037076B2 (en) Electric motor
JP4494354B2 (en) Electric motor
JP4503543B2 (en) Electric motor
JP2009240057A (en) Electric motor
JP2008099366A (en) Motor
JP2009240013A (en) Electric motor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607