JP4890056B2 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP4890056B2
JP4890056B2 JP2006061022A JP2006061022A JP4890056B2 JP 4890056 B2 JP4890056 B2 JP 4890056B2 JP 2006061022 A JP2006061022 A JP 2006061022A JP 2006061022 A JP2006061022 A JP 2006061022A JP 4890056 B2 JP4890056 B2 JP 4890056B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
peripheral side
electric motor
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006061022A
Other languages
Japanese (ja)
Other versions
JP2007244064A (en
Inventor
昇栄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006061022A priority Critical patent/JP4890056B2/en
Publication of JP2007244064A publication Critical patent/JP2007244064A/en
Application granted granted Critical
Publication of JP4890056B2 publication Critical patent/JP4890056B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、電動機に関する。   The present invention relates to an electric motor.

従来、例えば電動機の回転軸の周囲に同心円状に設けた第1および第2回転子を備え、電動機の回転速度に応じて、あるいは、固定子に発生する回転磁界の速度に応じて第1および第2回転子の周方向の相対位置つまり位相差を制御する電動機が知られている(例えば、特許文献1参照)。
この電動機では、例えば電動機の回転速度に応じて第1および第2回転子の位相差を制御する場合には、遠心力の作用により径方向に沿って変位する部材を介して第1および第2回転子の周方向の相対位置を変更するようになっている。また、例えば固定子に発生する回転磁界の速度に応じて第1および第2回転子の位相差を制御する場合には、各回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することによって、第1および第2回転子の周方向の相対位置を変更するようになっている。
特開2002−204541号公報
Conventionally, for example, first and second rotors provided concentrically around a rotating shaft of an electric motor are provided, and the first and second rotors are provided in accordance with the rotational speed of the electric motor or the rotational magnetic field generated in the stator. An electric motor that controls the relative position of the second rotor in the circumferential direction, that is, the phase difference is known (see, for example, Patent Document 1).
In this electric motor, for example, when the phase difference between the first and second rotors is controlled according to the rotational speed of the electric motor, the first and second elements are displaced via a member that is displaced along the radial direction by the action of centrifugal force. The relative position in the circumferential direction of the rotor is changed. For example, when the phase difference between the first and second rotors is controlled in accordance with the speed of the rotating magnetic field generated in the stator, the stator windings are kept in a state where each rotor maintains the rotation speed due to inertia. The relative position in the circumferential direction of the first and second rotors is changed by passing a control current and changing the rotating magnetic field velocity.
JP 2002-204541 A

ところで、上記従来技術の一例に係る電動機において、例えば電動機の回転速度に応じて第1および第2回転子の位相差を制御する場合には、電動機の作動状態つまり回転速度に応じた遠心力が作用する状態でのみ第1および第2回転子の位相差を制御可能であり、電動機の停止状態を含む適宜のタイミングで位相差を制御することができないという問題が生じる。また、この電動機を駆動源として車両に搭載した場合等のように、この電動機に外部からの振動が作用し易い状態においては、遠心力の作用のみによって第1および第2回転子の位相差を適切に制御することが困難であるという問題が生じる。しかも、この場合には、モータに対する電源での電源電圧の変動に拘わらずに位相差が制御されることから、例えば電源電圧と電動機の逆起電圧との大小関係が逆転してしまうという不具合が生じる虞がある。
また、例えば固定子に発生する回転磁界の速度に応じて第1および第2回転子の位相差を制御する場合には、回転磁界速度が変更されることから、電動機の制御処理が複雑化してしまうという問題が生じる。
また、第1および第2回転子の位相差を制御して電動機の誘起電圧定数を変更する際には、第1回転子に具備される永久磁石と第2回転子に具備される永久磁石との間の相対的な距離に応じた誘起電圧定数の可変幅を適切に増大させて、界磁制御の内容を多様化させることが望まれている。
By the way, in the electric motor according to the above prior art, for example, when controlling the phase difference between the first and second rotors according to the rotational speed of the electric motor, the centrifugal force according to the operating state of the electric motor, that is, the rotational speed is There is a problem in that the phase difference between the first and second rotors can be controlled only in the operating state, and the phase difference cannot be controlled at an appropriate timing including the stop state of the electric motor. In addition, when the electric motor is mounted on a vehicle as a drive source, etc., when the external vibration is likely to act on the electric motor, the phase difference between the first and second rotors is determined only by the centrifugal force. The problem is that it is difficult to control properly. In addition, in this case, since the phase difference is controlled regardless of the fluctuation of the power supply voltage at the power supply to the motor, for example, the magnitude relationship between the power supply voltage and the counter electromotive voltage of the motor is reversed. May occur.
For example, when the phase difference between the first and second rotors is controlled according to the speed of the rotating magnetic field generated in the stator, the rotating magnetic field speed is changed, which complicates the motor control process. Problem arises.
Further, when changing the induced voltage constant of the electric motor by controlling the phase difference between the first and second rotors, the permanent magnet provided in the first rotor and the permanent magnet provided in the second rotor It is desired to diversify the contents of field control by appropriately increasing the variable width of the induced voltage constant according to the relative distance between the two.

本発明は上記事情に鑑みてなされたもので、電動機が複雑化することを抑制しつつ、容易かつ適切に誘起電圧定数を可変とすることで、運転可能な回転数範囲およびトルク範囲を拡大し、運転効率を向上させると共に高効率での運転可能範囲を拡大することが可能な電動機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and by making the induced voltage constant variable easily and appropriately while suppressing the complexity of the electric motor, the operable rotation speed range and torque range are expanded. An object of the present invention is to provide an electric motor capable of improving the operation efficiency and expanding the operable range with high efficiency.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の電動機は、周方向に沿って配置された内周側永久磁石(例えば、実施の形態での内周側永久磁石11a)を具備する内周側回転子(例えば、実施の形態での内周側回転子11)および周方向に沿って配置された外周側永久磁石(例えば、実施の形態での外周側永久磁石12a)を具備する外周側回転子(例えば、実施の形態での外周側回転子12)の互いの回転軸が同軸に配置され、少なくとも前記内周側回転子および前記外周側回転子の何れか一方を前記回転軸周りに回動させることによって前記内周側回転子と前記外周側回転子との間の相対的な位相を変更可能な回動手段(例えば、実施の形態での位相制御装置15)を備える電動機であって、前記外周側回転子は、前記外周側永久磁石が固定される周壁部(例えば、実施の形態での周壁片31b,…,31b)と、該周壁部に接続された磁性材からなる底部(例えば、実施の形態での底部31a)とを備える略有底筒型に形成され、前記周壁部において前記外周側永久磁石が固定される位置(例えば、実施の形態での外周面31B)から前記周壁部および前記底部を経由して前記回転軸に向かう仮想的な経路上における前記底部の所定位置に磁束短絡抑制部(例えば、実施の形態での磁束短絡抑制部35)を備え、前記所定位置は、軸方向に沿って見た際の前記内周側永久磁石の軸方向端面に重なり合う位置であり、前記磁束短絡抑制部は、前記底部の前記磁束短絡抑制部以外の部位に比べて小さな透磁率を有することを特徴としている。 In order to solve the above-described problems and achieve the object, an electric motor according to a first aspect of the present invention includes an inner peripheral side permanent magnet (for example, an inner peripheral side permanent magnet in the embodiment) arranged along the circumferential direction. An inner circumferential rotor (for example, inner circumferential rotor 11 in the embodiment) having a magnet 11a) and an outer peripheral permanent magnet (for example, outer circumferential permanent in the embodiment) arranged along the circumferential direction. The rotating shafts of the outer circumferential rotor (for example, the outer circumferential rotor 12 in the embodiment) having the magnet 12a) are arranged coaxially, and at least any of the inner circumferential rotor and the outer circumferential rotor Rotating means that can change the relative phase between the inner circumferential rotor and the outer circumferential rotor by rotating one of them around the rotation axis (for example, phase control in the embodiment) Device 15), wherein the outer peripheral rotor , The peripheral wall portion to which the outer peripheral side permanent magnet is fixed (for example, the peripheral wall pieces 31b,..., 31b in the embodiment) and the bottom portion made of a magnetic material connected to the peripheral wall portion (for example, in the embodiment) The bottom portion 31a) is formed in a substantially bottomed cylindrical shape, and passes through the peripheral wall portion and the bottom portion from a position where the outer peripheral side permanent magnet is fixed on the peripheral wall portion (for example, the outer peripheral surface 31B in the embodiment). and includes a magnetic flux short-circuit suppressing portion at a predetermined position of the bottom portion on a virtual path towards said rotary shaft (e.g., the magnetic flux short-circuit suppressing portion 35 in the embodiment), the predetermined position is along the axial direction a position overlapping in the axial end surface of the inner peripheral permanent magnets when viewed Te, the magnetic flux short circuit suppression unit, have a small magnetic permeability as compared with the portion other than the magnetic flux short circuit suppressing portion of said bottom Rukoto It is characterized by.

上記構成の電動機によれば、略有底筒型に形成された底部および周壁部に対し、周壁部において外周側永久磁石が固定される位置から周壁部および底部を経由して回転軸に向かう仮想的な経路上における底部の所定位置に透磁率が相対的に小さな磁束短絡抑制部を備えることにより、この仮想的な経路に沿って外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを防止することができる。しかも、例えば外周側永久磁石を具備する環状のロータ鉄心の内周部に、外周側回転子の駆動力を外部に伝達するためのシャフト部材を圧入する場合に比べて、所望の剛性を確保しつつ、底部および周壁部の厚さ、特に外周側回転子の径方向厚さが増大してしまうことを防止することができる。
これにより、周壁部に固定される外周側永久磁石と、内周側回転子の内周側永久磁石との間の距離が増大してしまうことを抑制すると共に、誘起電圧定数の可変幅を適切に増大させることができる。
According to the electric motor having the above configuration, with respect to the bottom portion and the peripheral wall portion formed in a substantially bottomed cylindrical shape, a virtual heading from the position where the outer peripheral side permanent magnet is fixed on the peripheral wall portion to the rotation axis via the peripheral wall portion and the bottom portion. By providing a magnetic flux short-circuit suppressing portion having a relatively small magnetic permeability at a predetermined position on the bottom portion on a typical path, a magnetic path is formed between the outer peripheral side permanent magnet and the inner peripheral side permanent magnet along the virtual path. It is possible to prevent a short circuit from occurring. In addition, for example, a desired rigidity is ensured as compared with a case where a shaft member for transmitting the driving force of the outer rotor to the outside is press-fitted into the inner peripheral portion of the annular rotor core including the outer permanent magnet. On the other hand, it is possible to prevent the thickness of the bottom portion and the peripheral wall portion, in particular, the radial thickness of the outer peripheral rotor from increasing.
This suppresses an increase in the distance between the outer peripheral side permanent magnet fixed to the peripheral wall portion and the inner peripheral side permanent magnet of the inner peripheral side rotor, and appropriately sets the variable width of the induced voltage constant. Can be increased.

そして、例えば外周側永久磁石の界磁磁束に対する内周側永久磁石の界磁磁束による界磁強め状態では、電動機のトルク定数(つまり、トルク/相電流)を相対的に高い値に設定することができ、電動機運転時の電流損失を低減すること無しに、または、固定子巻線への通電を制御するインバータの出力電流の最大値を変更すること無しに、電動機が出力する最大トルク値を増大させることができ、電動機の運転効率の最大値を増大させ、運転効率が所定効率以上となる高効率領域を拡大させることができる。
しかも、界磁強め状態と界磁弱め状態との間の状態変化を連続的に設定することができ、電動機の誘起電圧定数を適宜の値に連続的に変化させることができる。これにより、電動機の運転可能な回転数およびトルクの値を連続的に変更することができると共に、運転可能な回転数およびトルクの範囲を拡大させることができる。
And, for example, in the field strengthening state by the field magnetic flux of the inner peripheral side permanent magnet with respect to the field magnetic flux of the outer peripheral side permanent magnet, the torque constant (that is, torque / phase current) of the motor is set to a relatively high value. The maximum torque value output by the motor can be reduced without reducing the current loss during motor operation or without changing the maximum output current of the inverter that controls the energization of the stator windings. The maximum value of the operating efficiency of the electric motor can be increased, and the high efficiency region where the operating efficiency is equal to or higher than the predetermined efficiency can be expanded.
In addition, the state change between the field strengthening state and the field weakening state can be set continuously, and the induced voltage constant of the motor can be continuously changed to an appropriate value. As a result, it is possible to continuously change the values of the rotational speed and torque at which the electric motor can be operated, and it is possible to expand the range of the rotational speed and torque at which the electric motor can be operated.

さらに、請求項2に記載の発明の電動機では、前記磁束短絡抑制部は、前記回動手段により前記内周側回転子と前記外周側回転子との間の相対的な位相が変更されることによって、前記回転軸に平行な方向に沿って見た際の前記内周側永久磁石の周方向位置と、前記磁束短絡抑制部の周方向位置とが重なり合うことが可能となるように形成されていることを特徴としている。   Furthermore, in the electric motor according to the second aspect of the present invention, the relative phase between the inner rotor and the outer rotor is changed by the rotating means in the magnetic flux short-circuit suppressing unit. Thus, the circumferential position of the inner peripheral permanent magnet when viewed along the direction parallel to the rotation axis and the circumferential position of the magnetic flux short-circuit suppressing portion can be overlapped with each other. It is characterized by being.

上記構成の電動機によれば、回転軸に平行な方向(軸方向)に沿って見た内周側永久磁石の周方向位置と、磁束短絡抑制部の周方向位置とが重なり合う状態では、周壁部において外周側永久磁石が固定される位置から周壁部および底部を経由して回転軸に向かう仮想的な経路に沿って外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。   According to the electric motor having the above configuration, in the state where the circumferential position of the inner peripheral side permanent magnet viewed along the direction parallel to the rotation axis (axial direction) and the circumferential position of the magnetic flux short-circuit suppression unit overlap, the peripheral wall portion A short circuit occurs between the outer permanent magnet and the inner permanent magnet along a virtual path from the position where the outer permanent magnet is fixed to the rotation axis from the position where the outer permanent magnet is fixed. Can be prevented appropriately.

さらに、請求項3に記載の発明の電動機では、前記磁束短絡抑制部は、前記底部を厚さ方向に貫通する貫通孔であることを特徴としている。   Furthermore, in the electric motor according to a third aspect of the present invention, the magnetic flux short-circuit suppressing portion is a through-hole penetrating the bottom portion in the thickness direction.

上記構成の電動機によれば、底部に設けられた貫通孔を磁束短絡抑制部とすることで、この貫通孔内の相対的に透磁率が小さな空間によって、外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。   According to the electric motor having the above-described configuration, the outer peripheral side permanent magnet and the inner peripheral side permanent magnet are formed by using the through hole provided in the bottom portion as a magnetic flux short-circuit suppressing unit, due to a space having a relatively small permeability in the through hole. It can prevent appropriately that a magnetic circuit short circuit arises between.

さらに、請求項4に記載の発明の電動機では、前記磁束短絡抑制部は、前記底部の表面上に設けられた凹部であることを特徴としている。   Furthermore, in the electric motor according to the fourth aspect of the present invention, the magnetic flux short circuit suppressing portion is a concave portion provided on the surface of the bottom portion.

上記構成の電動機によれば、底部に設けられた凹部を磁束短絡抑制部とすることで、この凹部内の相対的に透磁率が小さな空間によって、外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。   According to the electric motor having the above configuration, the concave portion provided at the bottom portion is used as a magnetic flux short-circuit suppressing portion, so that the space between the outer peripheral side permanent magnet and the inner peripheral side permanent magnet is relatively small in the concave portion. It can prevent appropriately that a magnetic circuit short circuit arises in between.

さらに、請求項5に記載の発明の電動機は、前記凹部に装着された非磁性材からなる部材を備えることを特徴としている。   Furthermore, an electric motor according to a fifth aspect of the present invention is characterized by including a member made of a non-magnetic material attached to the recess.

上記構成の電動機によれば、底部に設けられた凹部を磁束短絡抑制部とすることで、この凹部内に装着された相対的に透磁率が小さな非磁性材によって、外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。   According to the electric motor having the above configuration, the concave portion provided in the bottom portion is used as the magnetic flux short-circuit suppressing portion, so that the non-magnetic material having a relatively small permeability mounted in the concave portion and the outer peripheral side permanent magnet It can prevent appropriately that a magnetic circuit short circuit arises between a side permanent magnet.

請求項1に記載の発明の電動機によれば、略有底筒型に形成された底部および周壁部に対し、周壁部において外周側永久磁石が固定される位置から周壁部および底部を経由して回転軸に向かう仮想的な経路上における底部の所定位置に透磁率が相対的に小さな磁束短絡抑制部を備えることにより、この仮想的な経路に沿って外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを防止することができる。これにより、周壁部に固定される外周側永久磁石と、内周側回転子の内周側永久磁石との間の距離が増大してしまうことを抑制すると共に、誘起電圧定数の可変幅を適切に増大させることができる。   According to the electric motor of the first aspect of the present invention, with respect to the bottom part and the peripheral wall part formed in a substantially bottomed cylindrical shape, from the position where the outer peripheral side permanent magnet is fixed in the peripheral wall part, via the peripheral wall part and the bottom part. By providing a magnetic flux short-circuit suppressing unit having a relatively small magnetic permeability at a predetermined position on the bottom portion on the virtual path toward the rotation axis, the outer peripheral side permanent magnet and the inner peripheral side permanent magnet along the virtual path It is possible to prevent a magnetic circuit short circuit from occurring between the two. This suppresses an increase in the distance between the outer peripheral side permanent magnet fixed to the peripheral wall portion and the inner peripheral side permanent magnet of the inner peripheral side rotor, and appropriately sets the variable width of the induced voltage constant. Can be increased.

さらに、請求項2に記載の発明の電動機によれば、軸線方向に沿って見た内周側永久磁石の周方向位置と、磁束短絡抑制部の周方向位置とが重なり合う状態では、周壁部において外周側永久磁石が固定される位置から周壁部および底部を経由して回転軸に向かう仮想的な経路に沿って外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。
さらに、請求項3に記載の発明の電動機によれば、底部に設けられた貫通孔を磁束短絡抑制部とすることで、この貫通孔内の相対的に透磁率が小さな空間によって、外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。
Furthermore, according to the electric motor of the invention described in claim 2, in a state where the circumferential position of the inner peripheral permanent magnet viewed along the axial direction and the circumferential position of the magnetic flux short-circuit suppressing portion overlap, A magnetic path short circuit occurs between the outer peripheral side permanent magnet and the inner peripheral side permanent magnet along a virtual path from the position where the outer peripheral side permanent magnet is fixed to the rotation axis via the peripheral wall portion and the bottom portion. It can be prevented appropriately.
Furthermore, according to the electric motor of the invention described in claim 3, by making the through hole provided in the bottom part a magnetic flux short-circuit suppressing part, the outer peripheral side permanent is caused by a space having a relatively small magnetic permeability in the through hole. It can prevent appropriately that a magnetic circuit short circuit arises between a magnet and an inner peripheral side permanent magnet.

さらに、請求項4に記載の発明の電動機によれば、底部に設けられた凹部を磁束短絡抑制部とすることで、この凹部内の相対的に透磁率が小さな空間によって、外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。
さらに、請求項5に記載の発明の電動機によれば、底部に設けられた凹部を磁束短絡抑制部とすることで、この凹部内に装着された相対的に透磁率が小さな非磁性材によって、外周側永久磁石と内周側永久磁石との間に磁路短絡が生じることを適切に防止することができる。
Furthermore, according to the electric motor of the invention described in claim 4, the concave portion provided in the bottom portion is used as a magnetic flux short-circuit suppressing portion, so that the outer peripheral side permanent magnet and the outer permanent magnet are separated by a space having a relatively small magnetic permeability in the concave portion. It can prevent appropriately that a magnetic circuit short circuit arises between inner peripheral side permanent magnets.
Furthermore, according to the electric motor of the invention described in claim 5, by using the concave portion provided in the bottom portion as a magnetic flux short-circuit suppressing portion, a nonmagnetic material having a relatively small magnetic permeability mounted in the concave portion, It can prevent appropriately that a magnetic circuit short circuit arises between an outer peripheral side permanent magnet and an inner peripheral side permanent magnet.

以下、本発明の電動機の一実施形態について添付図面を参照しながら説明する。
本実施の形態による電動機10は、例えば図1〜図5に示すように、周方向に沿って配置された各永久磁石11a,12aを具備する略円環状の各内周側回転子11および外周側回転子12と、内周側回転子11および外周側回転子12を回転させる回転磁界を発生する複数相の固定子巻線(図示略)を有する固定子(図示略)と、内周側回転子11および外周側回転子12に接続され、内周側回転子11と外周側回転子12との間の相対的な位相を制御する位相制御装置15とを備えたブラシレスDCモータであって、例えばハイブリッド車両や電動車両等の車両に駆動源として搭載され、この電動機10の出力軸はトランスミッション(図示略)の入力軸に接続され、電動機10の駆動力がトランスミッションを介して車両の駆動輪(図示略)に伝達されるようになっている。
Hereinafter, an embodiment of an electric motor of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1 to 5, for example, the electric motor 10 according to the present embodiment includes substantially inner annular rotors 11 and outer circumferences each having permanent magnets 11 a and 12 a arranged along the circumferential direction. A side rotor 12, a stator (not shown) having a multi-phase stator winding (not shown) for generating a rotating magnetic field for rotating the inner circumference rotor 11 and the outer circumference rotor 12, and the inner circumference side A brushless DC motor including a phase control device 15 connected to the rotor 11 and the outer rotor 12 and controlling a relative phase between the inner rotor 11 and the outer rotor 12. For example, it is mounted on a vehicle such as a hybrid vehicle or an electric vehicle as a drive source, the output shaft of the electric motor 10 is connected to the input shaft of a transmission (not shown), and the driving force of the electric motor 10 is driven through the transmission. (Figure It is adapted to be transmitted substantially).

また、車両の減速時に駆動輪側から電動機10に駆動力が伝達されると、電動機10は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。さらに、例えばハイブリッド車両においては、この電動機10の出力軸が内燃機関(図示略)のクランクシャフトに連結されており、内燃機関の出力が電動機10に伝達された場合にも電動機10は発電機として機能して発電エネルギーを発生する。   When the driving force is transmitted from the driving wheel side to the electric motor 10 during deceleration of the vehicle, the electric motor 10 functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is converted into electric energy (regenerative energy). to recover. Further, for example, in a hybrid vehicle, the output shaft of the electric motor 10 is connected to a crankshaft of an internal combustion engine (not shown), and the electric motor 10 is used as a generator even when the output of the internal combustion engine is transmitted to the electric motor 10. Functions to generate power generation energy.

内周側回転子11は、例えば珪素鋼板等の電磁鋼板が積層されてなる略円筒状の内周側ロータ鉄心21と、この内周側ロータ鉄心21の外周部で周方向に所定間隔をおいて配置された複数の内周側永久磁石11a,…,11aと、円環板状の内周側端面板22,22と、内周側軸部材23とを備えて構成されている。   The inner circumferential rotor 11 has a substantially cylindrical inner circumferential rotor core 21 formed by laminating electromagnetic steel sheets such as silicon steel plates, and an outer circumferential portion of the inner circumferential rotor core 21 with a predetermined interval in the circumferential direction. 11a, an inner peripheral side end face plates 22 and 22 having an annular plate shape, and an inner peripheral side shaft member 23. The inner peripheral side permanent magnets 11a,.

内周側ロータ鉄心21の外周部には、複数の内周側磁石装着部21a,…,21aが周方向に所定間隔をおいて設けられ、周方向で隣り合う内周側磁石装着部21a,21a間において内周側ロータ鉄心21の外周面21A上には、電動機10の回転軸Oに平行に伸びる凹溝21bが形成されている。
内周側磁石装着部21aは、例えば回転軸Oに平行に貫通する内周側磁石装着孔24を備え、この内周側磁石装着孔24は回転軸Oに平行な方向(軸方向)に対する断面が、略周方向が長手方向かつ略径方向が短手方向の略長方形状に形成され、この内周側磁石装着孔24には回転軸Oに平行に伸びる略長方形板状の内周側永久磁石11aが装着されている。
A plurality of inner peripheral magnet mounting portions 21a,..., 21a are provided at predetermined intervals in the circumferential direction on the outer peripheral portion of the inner peripheral rotor core 21, and the inner peripheral magnet mounting portions 21a adjacent to each other in the circumferential direction are provided. On the outer peripheral surface 21A of the inner rotor core 21 between 21a, a concave groove 21b extending in parallel with the rotation axis O of the electric motor 10 is formed.
The inner peripheral side magnet mounting portion 21a includes, for example, an inner peripheral side magnet mounting hole 24 penetrating in parallel to the rotation axis O. The inner peripheral side magnet mounting hole 24 is a cross section with respect to a direction (axial direction) parallel to the rotation axis O. However, the inner circumferential side permanent magnet is formed in a substantially rectangular shape having a substantially circumferential direction in the longitudinal direction and a substantially radial direction in the short direction. A magnet 11a is attached.

内周側磁石装着孔24に装着される内周側永久磁石11aは、厚さ方向(つまり内周側回転子11の径方向)に磁化され、周方向で隣り合う各内周側磁石装着孔24,24に装着される内周側永久磁石11a,11aは互いに磁化方向が異方向となるように設定されている。すなわち外周側がN極とされた内周側永久磁石11aが装着された内周側磁石装着部21aには、外周側がS極とされた内周側永久磁石11aが装着された内周側磁石装着部21aが、凹溝21bを介して周方向で隣接するようになっている。   The inner peripheral permanent magnet 11a mounted in the inner peripheral magnet mounting hole 24 is magnetized in the thickness direction (that is, the radial direction of the inner peripheral rotor 11), and is adjacent to each inner peripheral magnet mounting hole in the circumferential direction. The inner peripheral side permanent magnets 11a, 11a attached to the 24, 24 are set so that their magnetization directions are different from each other. That is, the inner peripheral side magnet mounting portion 21a to which the inner peripheral side permanent magnet 11a having the N pole on the outer peripheral side is mounted has the inner peripheral side magnet mounting to which the inner peripheral side permanent magnet 11a having the S pole on the outer peripheral side is mounted. The part 21a is adjacent in the circumferential direction via the concave groove 21b.

円環板状の内周側端面板22は、例えば内周側ロータ鉄心21の外径よりも僅かに小さく、かつ、内周側ロータ鉄心21の内周側磁石装着孔24の内周面よりも大きな径の外径と、内周側ロータ鉄心21の内周側磁石装着孔24の内周面よりも小さく、かつ、内周側ロータ鉄心21の内径よりも僅かに大きな径の内径を有し、内周側ロータ鉄心21の内周側磁石装着孔24に装着された内周側永久磁石11aの軸方向端部に当接する。つまり、内周側磁石装着孔24に装着された内周側永久磁石11aを軸方向の両側から挟み込むように配置される2つの内周側端面板22,22によって、内周側永久磁石11aが軸方向に沿って変位することが規制されている。   The annular plate-like inner peripheral side end face plate 22 is, for example, slightly smaller than the outer diameter of the inner peripheral side rotor core 21 and from the inner peripheral surface of the inner peripheral side magnet mounting hole 24 of the inner peripheral side rotor core 21. The inner diameter of the inner peripheral side rotor core 21 is smaller than the inner peripheral surface of the inner peripheral side magnet mounting hole 24 and slightly larger than the inner diameter of the inner peripheral side rotor core 21. Then, it abuts on the axial end of the inner peripheral permanent magnet 11 a mounted in the inner peripheral magnet mounting hole 24 of the inner rotor core 21. That is, the inner peripheral side permanent magnet 11a is formed by the two inner peripheral side end plates 22 and 22 arranged so as to sandwich the inner peripheral side permanent magnet 11a mounted in the inner peripheral side magnet mounting hole 24 from both sides in the axial direction. Displacement along the axial direction is restricted.

内周側軸部材23は、例えば内周側ロータ鉄心21の内周部の内径よりも僅かに大きな外径を有する略有底筒型に形成され、内周側ロータ鉄心21の内周部に圧入されて、締まりばめされた状態で固定されている。この内周側軸部材23は、軸方向に沿って底部を貫通する複数の内周側締結孔23a,…,23aに、例えばリベットやボルト等の内周側締結部材25が挿入されて位相制御装置15に締結されることで、位相制御装置15に接続されている。   The inner peripheral side shaft member 23 is formed in, for example, a substantially bottomed cylindrical shape having an outer diameter slightly larger than the inner diameter of the inner peripheral portion of the inner peripheral side rotor core 21, and is formed on the inner peripheral portion of the inner peripheral side rotor core 21. It is press-fitted and fixed in an interference-fitted state. This inner peripheral side shaft member 23 is phase-controlled by inserting inner peripheral side fastening members 25 such as rivets and bolts into a plurality of inner peripheral side fastening holes 23a,..., 23a penetrating the bottom along the axial direction. By being fastened to the device 15, it is connected to the phase control device 15.

外周側回転子12は、回転軸Oと同軸の中心軸を有する略板状の底部31aと、この底部31aの外周端において周方向に所定間隔をおいた位置から軸方向に向かい伸びる複数の周壁片31b,…,31bとを備える略有底筒型の外周側ロータ鉄心31と、この外周側ロータ鉄心31の各周壁片31bの外周面31B上に配置された略長方形板状の外周側永久磁石12aと、各外周側永久磁石12aの外周面に当接する内周面を有する略円筒状の外周側保持部材32と、外周側軸部材33とを備えて構成されている。   The outer peripheral rotor 12 has a substantially plate-shaped bottom 31a having a central axis coaxial with the rotation axis O, and a plurality of peripheral walls extending in the axial direction from a position at a predetermined interval in the circumferential direction at the outer peripheral end of the bottom 31a. A substantially bottomed cylindrical outer peripheral rotor core 31 having pieces 31b, ..., 31b, and a substantially rectangular plate-shaped outer peripheral side permanent arranged on the outer peripheral surface 31B of each peripheral wall piece 31b of the outer peripheral rotor core 31. A magnet 12a, a substantially cylindrical outer peripheral holding member 32 having an inner peripheral surface in contact with the outer peripheral surface of each outer peripheral permanent magnet 12a, and an outer peripheral shaft member 33 are configured.

外周側ロータ鉄心31は、例えば磁性材である単一の部材に対する曲げ成形によって略有底筒型に形成されている。
そして、底部31aには、透磁率が相対的に小さな複数の磁束短絡抑制部35,…,35として、例えば底部31aを厚さ方向(つまり軸方向)に貫通する複数の貫通孔が設けられている。
各磁束短絡抑制部35は、後述するように、各周壁片31bから底部31aを経由して回転軸Oに向かう仮想的な経路上における底部31aの所定位置に設けられ、位相制御装置15によって内周側回転子11と外周側回転子12との間の相対的な位相が変更されることによって、軸方向に沿って見た際の内周側永久磁石11aの軸方向端面11Aに臨んで重なり合うことが可能となるように設定されている。
The outer rotor core 31 is formed in a substantially bottomed cylindrical shape by bending a single member made of, for example, a magnetic material.
The bottom portion 31a is provided with a plurality of through holes that penetrate the bottom portion 31a in the thickness direction (that is, the axial direction) as a plurality of magnetic flux short-circuit suppressing portions 35,. Yes.
As will be described later, each magnetic flux short-circuit suppressing unit 35 is provided at a predetermined position of the bottom 31a on a virtual path from each peripheral wall piece 31b to the rotation axis O via the bottom 31a. By changing the relative phase between the circumferential rotor 11 and the outer circumferential rotor 12, it overlaps with the axial end surface 11A of the inner circumferential permanent magnet 11a when viewed along the axial direction. Is set to be possible.

また、外周側ロータ鉄心31の各周壁片31bの周方向両端部には、周壁片31bの外周面31B上から径方向外方に向かい突出する位置決め突部31c,31cが設けられている。そして、周壁片31bの外周面31B上に配置された外周側永久磁石12aは、周壁片31bの2つの位置決め突部31c,31cによって周方向の両側から挟み込まれるようにして位置決めされ、周方向に沿った変位が規制されている。   In addition, positioning protrusions 31c and 31c that protrude radially outward from the outer peripheral surface 31B of the peripheral wall piece 31b are provided at both ends in the peripheral direction of each peripheral wall piece 31b of the outer peripheral rotor core 31. And the outer peripheral side permanent magnet 12a arrange | positioned on the outer peripheral surface 31B of the surrounding wall piece 31b is positioned so that it may be pinched | interposed from the both sides of the circumferential direction by the two positioning protrusions 31c and 31c of the surrounding wall piece 31b, and the circumferential direction Displacement along is restricted.

各周壁片31bに支持される外周側永久磁石12aは、厚さ方向(つまり外周側回転子12の径方向)に磁化され、周方向で隣り合う各周壁片31b,31bに支持される外周側永久磁石12a,12aは互いに磁化方向が異方向となるように設定されている。すなわち外周側がN極とされた外周側永久磁石12aを支持する周壁片31bには、外周側がS極とされた外周側永久磁石12aを支持する周壁片31bが、所定周方向幅のスリット31dを介して周方向で隣接するようになっている。   The outer peripheral side permanent magnets 12a supported by the peripheral wall pieces 31b are magnetized in the thickness direction (that is, the radial direction of the outer peripheral rotor 12) and are supported by the peripheral wall pieces 31b and 31b adjacent in the circumferential direction. The permanent magnets 12a and 12a are set so that their magnetization directions are different from each other. That is, the peripheral wall piece 31b supporting the outer peripheral side permanent magnet 12a having the N pole on the outer peripheral side is provided with the slit 31d having a predetermined circumferential width on the peripheral wall piece 31b supporting the outer permanent magnet 12a having the S pole on the outer peripheral side. And are adjacent to each other in the circumferential direction.

そして、各周壁片31bによって外周側永久磁石12aを支持する外周側ロータ鉄心31は、各外周側永久磁石12aの外周面によって設定される外径に対して所定の締め代を備える内径の内周面を有する外周側保持部材32の内周部に圧入されて、締まりばめされた状態で固定されている。これにより、各外周側永久磁石12aは、外周側保持部材32の内周面と、各周壁片31bの外周面31Bとによって、径方向の両側から挟み込まれるようにして固定されている。
なお、外周側保持部材32は、例えば軸方向での適宜の位置の径方向厚さが所定の均一の厚さとなる略円筒状に形成されている。
And the outer peripheral side rotor core 31 which supports the outer peripheral side permanent magnet 12a by each peripheral wall piece 31b is the inner periphery of an internal diameter provided with a predetermined interference with respect to the outer diameter set by the outer peripheral surface of each outer peripheral side permanent magnet 12a. It is press-fitted into the inner peripheral portion of the outer peripheral side holding member 32 having a surface and is fixed in an interference-fitted state. Thereby, each outer peripheral side permanent magnet 12a is fixed by being sandwiched from both sides in the radial direction by the inner peripheral surface of the outer peripheral side holding member 32 and the outer peripheral surface 31B of each peripheral wall piece 31b.
In addition, the outer peripheral side holding member 32 is formed in a substantially cylindrical shape in which, for example, the radial thickness at an appropriate position in the axial direction has a predetermined uniform thickness.

外周側軸部材33は、例えば外周側ロータ鉄心31の底部31aと一体に固定される略円環板状に形成され、外周側回転子12の駆動力を外部に出力する出力軸(図示略)に接続されている。また、この外周側軸部材33は、例えば略有底筒型の外周側ロータ鉄心31の内部に配置され、軸方向に沿って外周側軸部材33を貫通する複数の外周側締結孔33a,…,33aと、各外周側締結孔33a,…,33aに臨んで連通するようにして外周側ロータ鉄心31の底部31aを貫通する複数の外周側貫通孔31e,…,31eとに、例えばリベットやボルト等の外周側締結部材34が締結されることで、位相制御装置15に接続されている。   The outer peripheral side shaft member 33 is formed, for example, in a substantially annular plate shape that is fixed integrally with the bottom 31a of the outer peripheral side rotor core 31, and an output shaft (not shown) that outputs the driving force of the outer peripheral side rotor 12 to the outside. It is connected to the. In addition, the outer peripheral side shaft member 33 is disposed, for example, inside a substantially bottomed cylindrical outer peripheral side rotor iron core 31, and has a plurality of outer peripheral side fastening holes 33a that penetrate the outer peripheral side shaft member 33 along the axial direction. , 33a and a plurality of outer peripheral side through holes 31e,..., 31e penetrating through the bottom 31a of the outer peripheral rotor core 31 so as to communicate with the outer peripheral side fastening holes 33a,. The outer peripheral side fastening member 34 such as a bolt is fastened to be connected to the phase control device 15.

そして、内周側回転子11は、例えば略有底筒型の外周側ロータ鉄心31の内部に配置され、内周側回転子11と外周側回転子12とは、互いの回転軸が電動機10の回転軸Oと同軸となるように配置されている。そして、内周側回転子11の各内周側磁石装着孔24,…,24と、外周側回転子12の各周壁片31b,…,31bとは、各回転子11,12の径方向で互いに対向配置可能となるように形成されている。
これにより、内周側回転子11と外周側回転子12との回転軸O周りの相対位置に応じて、電動機10の状態を、内周側回転子11の内周側永久磁石11aと外周側回転子12の外周側永久磁石12aとの同極の磁極同士が対向配置(つまり、内周側永久磁石11aと外周側永久磁石12aとが対極配置)される弱め界磁状態から、内周側回転子11の内周側永久磁石11aと外周側回転子12の外周側永久磁石12aとの異極の磁極同士が対向配置(つまり、内周側永久磁石11aと外周側永久磁石12aとが同極配置)される強め界磁状態に亘る適宜の状態に設定可能とされている。
特に、弱め界磁状態および強め界磁状態においては、軸方向に対する断面において、内周側永久磁石11aの長辺と外周側永久磁石12aの長辺とが対向するように設定されている。
The inner circumferential rotor 11 is disposed, for example, inside a substantially bottomed cylindrical outer rotor core 31, and the inner circumferential rotor 11 and the outer circumferential rotor 12 have a rotating shaft whose electric axis is the electric motor 10. It arrange | positions so that it may become coaxial with the rotating shaft O. And each inner peripheral side magnet mounting hole 24, ..., 24 of the inner peripheral side rotor 11 and each peripheral wall piece 31b, ..., 31b of the outer peripheral side rotor 12 are radial direction of each rotor 11,12. They are formed so that they can be arranged to face each other.
Thereby, the state of the electric motor 10 is changed between the inner peripheral side permanent magnet 11a of the inner peripheral side rotor 11 and the outer peripheral side according to the relative positions of the inner peripheral side rotor 11 and the outer peripheral side rotor 12 around the rotation axis O. From the field-weakening state in which the magnetic poles of the same polarity with the outer peripheral side permanent magnet 12a of the rotor 12 are arranged to face each other (that is, the inner peripheral side permanent magnet 11a and the outer peripheral side permanent magnet 12a are arranged as a counter electrode), The magnetic poles of different polarities of the inner peripheral permanent magnet 11a of the rotor 11 and the outer peripheral permanent magnet 12a of the outer rotor 12 are opposed to each other (that is, the inner peripheral permanent magnet 11a and the outer peripheral permanent magnet 12a are the same). It is possible to set an appropriate state over the strong field state that is pole-arranged.
In particular, in the weak field state and the strong field state, the long side of the inner peripheral permanent magnet 11a and the long side of the outer peripheral permanent magnet 12a are set to face each other in the cross section with respect to the axial direction.

そして、外周側ロータ鉄心31の底部31aに設けられた各磁束短絡抑制部35は、各周壁片31bに支持される外周側永久磁石12aと同等の位相を有する周方向位置、かつ、内周側回転子11の各内周側永久磁石11aの軸方向端面11Aに臨んで重なり合うことが可能となる径方向位置に配置されている。
つまり、例えば図6に示すように、弱め界磁(最大弱め位相)状態および強め界磁(最大強め位相)状態において、各磁束短絡抑制部35は、各外周側永久磁石12aに対向配置される各内周側永久磁石11aの軸方向端面11Aに臨んで重なり合う面積が最大となり、かつ、対向配置される各永久磁石11a、12a間において、外周側永久磁石12aから周壁片31bおよび底部31aを介して内周側永久磁石11aに向かう仮想的な経路上で内周側永久磁石11aの軸方向端面11Aに臨んで重なり合う底部31aの領域(例えば、図6に示す領域A1)の面積が最小となるように形成されている。
これに伴い、例えば図7に示すように、弱め界磁状態と強め界磁状態との間の中間(中間位相)状態においては、内周側永久磁石11aの軸方向端面11Aに臨んで重なり合う底部31aの領域(例えば、図6に示す領域B1)の面積が相対的に大きくなる。
And each magnetic flux short circuit suppression part 35 provided in the bottom part 31a of the outer peripheral side rotor iron core 31 has the circumferential direction position which has a phase equivalent to the outer peripheral side permanent magnet 12a supported by each peripheral wall piece 31b, and inner peripheral side It arrange | positions in the radial direction position which can be overlapped facing the axial direction end surface 11A of each inner peripheral side permanent magnet 11a of the rotor 11. FIG.
That is, for example, as shown in FIG. 6, in the field weakening (maximum weakening phase) state and the field strengthening (maximum strongening phase) state, each magnetic flux short-circuit suppressing unit 35 is disposed to face each outer peripheral permanent magnet 12a. The area overlapping each other on the end surface 11A in the axial direction of each inner peripheral side permanent magnet 11a is maximized, and between the permanent magnets 11a, 12a arranged to face each other, the outer peripheral side permanent magnet 12a passes through the peripheral wall piece 31b and the bottom 31a. The area of the bottom 31a (for example, the region A1 shown in FIG. 6) that overlaps the axial end surface 11A of the inner peripheral permanent magnet 11a on the virtual path toward the inner peripheral permanent magnet 11a is minimized. It is formed as follows.
Accordingly, as shown in FIG. 7, for example, in the intermediate (intermediate phase) state between the weak field state and the strong field state, the bottom portion overlapping the axial end surface 11A of the inner peripheral permanent magnet 11a. The area of the region 31a (for example, the region B1 shown in FIG. 6) becomes relatively large.

これにより、例えば図8に示す実施例のように、磁性材からなる底部31aに磁束短絡抑制部35を設けることによって、例えば磁性材からなる底部31aに磁束短絡抑制部35を設けない比較例1に比べて、強め界磁状態での誘起電圧定数が増大し、弱め界磁状態での誘起電圧定数が減少し、誘起電圧定数の可変幅が増大する。
この実施例では、磁束短絡抑制部35の大きさおよび位置等に応じて、強め界磁状態および弱め界磁状態での各誘起電圧定数が、例えば底部31aを非磁性材により形成した比較例2での誘起電圧定数と、比較例1での誘起電圧定数との間で変化することになり、強め界磁状態から弱め界磁状態に向かい位相が変化することに伴い、誘起電圧定数が適宜の関数形に従って減少傾向に変化する。
なお、例えば図8に示す比較例3は、内周側回転子11と外周側回転子12との相対的な位相が固定されることで、誘起電圧定数が所定の固定値となる場合である。
Thus, for example, as in the embodiment shown in FIG. 8, by providing the magnetic flux short-circuit suppressing portion 35 on the bottom 31a made of a magnetic material, for example, Comparative Example 1 in which the magnetic flux short-circuit suppressing portion 35 is not provided on the bottom 31a made of a magnetic material, for example. As compared with the above, the induced voltage constant in the strong field state increases, the induced voltage constant in the weak field state decreases, and the variable width of the induced voltage constant increases.
In this embodiment, each induced voltage constant in the strong field state and the weak field state depends on the size and position of the magnetic flux short-circuit suppressing unit 35, for example, Comparative Example 2 in which the bottom 31a is formed of a nonmagnetic material. And the induced voltage constant in Comparative Example 1 change, and the induced voltage constant is appropriately changed as the phase changes from the strong field state to the weak field state. It changes in a decreasing trend according to the function form.
For example, Comparative Example 3 shown in FIG. 8 is a case where the induced voltage constant becomes a predetermined fixed value by fixing the relative phases of the inner rotor 11 and the outer rotor 12. .

位相制御装置15は、例えば略有底筒型の内周側軸部材23の内部に配置され、電動あるいは油圧駆動等によって、少なくとも内周側回転子11および外周側回転子12の何れか一方を回転軸O周りに回動させることによって内周側回転子11と外周側回転子12との間の相対的な位相を変更するアクチュエータを備えている。   The phase control device 15 is disposed inside, for example, a substantially bottomed cylindrical inner peripheral shaft member 23, and at least one of the inner peripheral rotor 11 and the outer peripheral rotor 12 is electrically or hydraulically driven. An actuator that changes the relative phase between the inner circumferential rotor 11 and the outer circumferential rotor 12 by rotating around the rotation axis O is provided.

また、固定子(図示略)は、例えば外周側回転子12の外周部に対向配置される略円筒型に形成され、例えば車両のトランスミッションのハウジング(図示略)等に固定されている。   The stator (not shown) is formed in, for example, a substantially cylindrical shape facing the outer periphery of the outer rotor 12 and is fixed to, for example, a vehicle transmission housing (not shown).

上述したように、本実施の形態による電動機10によれば、外周側回転子12は、例えば単一の部材に対する曲げ成形等によって、回転軸Oと同軸の中心軸を有する底部31aと、この底部31aの外周端から回転軸Oに略平行な方向に向かい伸びる複数の周壁片31b,…,31bとを備える略有底筒型に形成され、各周壁片31bに外周側永久磁石12aが支持されることから、例えば底部31aと各周壁片31bとが個別の独立した部材であって締結部材等により接続されて略有底筒型に形成される場合に比べて、所望の剛性を確保しつつ、底部31aおよび周壁片31bの厚さ、特に周壁片31bの径方向厚さが増大してしまうことを容易に防止することができる。   As described above, according to the electric motor 10 according to the present embodiment, the outer peripheral rotor 12 includes, for example, a bottom portion 31a having a central axis coaxial with the rotation axis O by bending molding of a single member, and the bottom portion. 31b is formed in a substantially bottomed cylindrical shape including a plurality of peripheral wall pieces 31b,..., 31b extending in a direction substantially parallel to the rotation axis O from the outer peripheral end of 31a, and the outer peripheral side permanent magnet 12a is supported by each peripheral wall piece 31b. Therefore, for example, the bottom 31a and each peripheral wall piece 31b are separate and independent members that are connected to each other by a fastening member or the like, and are formed into a substantially bottomed cylindrical shape, while ensuring a desired rigidity. The thickness of the bottom 31a and the peripheral wall piece 31b, particularly the radial thickness of the peripheral wall piece 31b, can be easily prevented from increasing.

しかも、外周側ロータ鉄心31は外周側軸部材33を介して底部31aが出力軸Oに接続されることから、底部31a自体の厚さを増大させる必要無しに、外周側回転子12の駆動力を適切に出力軸Oに伝達するために要する所望の剛性を確保することができる。
これにより、周壁片31bに支持される外周側永久磁石12aと、内周側回転子11の内周側永久磁石11aとの間の距離が増大してしまうことを抑制し、誘起電圧定数の可変幅を増大させることができる。
さらに、弱め界磁(最大弱め位相)状態および強め界磁(最大強め位相)状態において、各外周側永久磁石12aに対向配置される各内周側永久磁石11aの軸方向端面11Aに臨んで重なり合う面積が最大となる各磁束短絡抑制部35が底部31aに形成されることにより、例えば磁性材からなる底部31aに磁束短絡抑制部35を設けない場合に比べて、強め界磁状態での誘起電圧定数が増大すると共に、弱め界磁状態での誘起電圧定数が減少し、誘起電圧定数の可変幅が増大することになる。
Moreover, since the bottom 31a of the outer rotor core 31 is connected to the output shaft O via the outer shaft member 33, the driving force of the outer rotor 12 is not required without increasing the thickness of the bottom 31a itself. Can be ensured to have a desired rigidity required for properly transmitting to the output shaft O.
Thereby, it is suppressed that the distance between the outer peripheral side permanent magnet 12a supported by the peripheral wall piece 31b and the inner peripheral side permanent magnet 11a of the inner peripheral side rotor 11 is increased, and the induced voltage constant is variable. The width can be increased.
Further, in the weak field (maximum weakening phase) state and the strong field (maximum strong phase) state, they overlap each other facing the axial end surface 11A of each inner peripheral side permanent magnet 11a disposed to face each outer peripheral side permanent magnet 12a. By forming each magnetic flux short-circuit suppressing portion 35 having the largest area on the bottom portion 31a, for example, compared with the case where the magnetic flux short-circuit suppressing portion 35 is not provided on the bottom portion 31a made of a magnetic material, an induced voltage in the strong field state As the constant increases, the induced voltage constant in the field-weakening state decreases, and the variable width of the induced voltage constant increases.

また、外周側回転子12において、周方向で隣り合う各周壁片31b,31b間に所定周方向幅のスリット31dを設けたことにより、互いに対向配置の関係に無い内周側回転子11の内周側永久磁石11aと外周側回転子12の外周側永久磁石12aとの磁極同士間で磁路短絡が発生することを抑制することができる。   Further, in the outer circumferential rotor 12, by providing a slit 31d having a predetermined circumferential width between the circumferential wall pieces 31b, 31b adjacent in the circumferential direction, the inner circumferential rotor 11 which is not in a mutually opposed relationship is provided. It is possible to suppress the occurrence of a short circuit between the magnetic poles of the peripheral permanent magnet 11a and the outer peripheral permanent magnet 12a of the outer rotor 12.

さらに、内周側ロータ鉄心21において周方向で隣り合う内周側永久磁石11a,11a間に透磁率が相対的に小さな凹溝21bを備えることにより、互いに対向配置の関係に無い内周側永久磁石11aと外周側永久磁石12aとの磁極同士間(例えば、凹溝21bを跨ぐようにして配置される内周側永久磁石11aと外周側永久磁石12aとの磁極同士間等)で磁路短絡が発生することを抑制することができる。   Further, by providing the concave groove 21b having a relatively small magnetic permeability between the inner peripheral side permanent magnets 11a, 11a adjacent in the circumferential direction in the inner peripheral side rotor core 21, the inner peripheral side permanent magnets that are not in a mutually opposed relationship. Magnetic path short circuit between the magnetic poles of the magnet 11a and the outer peripheral permanent magnet 12a (for example, between the magnetic poles of the inner peripheral permanent magnet 11a and the outer peripheral permanent magnet 12a arranged so as to straddle the concave groove 21b). Can be prevented from occurring.

そして、内周側回転子11および外周側回転子12には周方向に沿って略長方形板状の各永久磁石11a,12aが配置され、各永久磁石11a,12aは、回転軸Oに平行な方向に対する断面において各回転子11,12の径方向に沿って互いに対向配置可能となるように設定されていることにより、各永久磁石11a,12aの磁束が周辺の磁気回路(例えば、各ロータ鉄心21,31等)に放射されてしまうことを抑制することができる。これにより、鉄損の発生を抑制し、例えば外周側回転子12の外周側永久磁石12aによる界磁磁束が固定子の固定子巻線を鎖交する鎖交磁束量を、内周側回転子11の内周側永久磁石11aによる界磁磁束によって効率よく増大あるいは低減させることができる。そして、界磁強め状態では、電動機10のトルク定数(つまり、トルク/相電流)を相対的に高い値に設定することができ、電動機10の運転時の電流損失を低減すること無しに、または、固定子巻線への通電を制御するインバータ(図示略)の出力電流の最大値を変更すること無しに、電動機10が出力する最大トルク値を増大させることができる。   The inner rotor 11 and the outer rotor 12 are provided with substantially rectangular plate-like permanent magnets 11a, 12a along the circumferential direction, and the permanent magnets 11a, 12a are parallel to the rotation axis O. By setting so that the rotors 11 and 12 can be arranged so as to face each other along the radial direction of the rotors 11 and 12 in a cross section with respect to the direction, the magnetic fluxes of the permanent magnets 11a and 12a 21 and 31) can be suppressed. Thereby, generation | occurrence | production of an iron loss is suppressed, for example, the amount of interlinkage magnetic flux in which the field magnetic flux by the outer peripheral side permanent magnet 12a of the outer peripheral side rotor 12 is linked with the stator winding of a stator is changed to the inner peripheral side rotor. 11 can be efficiently increased or decreased by the field magnetic flux generated by the inner peripheral permanent magnet 11a. In the field-enhanced state, the torque constant (that is, torque / phase current) of the electric motor 10 can be set to a relatively high value without reducing the current loss during operation of the electric motor 10, or The maximum torque value output from the electric motor 10 can be increased without changing the maximum value of the output current of an inverter (not shown) that controls energization of the stator windings.

しかも、固定子巻線13aを鎖交する界磁磁束の大きさを連続的に変化させることができ、電動機10の誘起電圧定数を適宜の値に連続的に変化させることができる。これにより、電動機10の運転可能な回転数およびトルクの値を連続的に変更することができると共に、運転可能な回転数およびトルクの範囲を拡大させることができる。さらに、電動機10の運転効率の最大値を増大させ、運転効率が所定効率以上となる高効率領域を拡大させることができる。   In addition, the magnitude of the field magnetic flux interlinking the stator winding 13a can be continuously changed, and the induced voltage constant of the electric motor 10 can be continuously changed to an appropriate value. As a result, it is possible to continuously change the values of the rotational speed and torque at which the electric motor 10 can be operated, and it is possible to expand the range of the rotational speed and torque that can be operated. Furthermore, the maximum value of the operation efficiency of the electric motor 10 can be increased, and the high efficiency region where the operation efficiency is equal to or higher than the predetermined efficiency can be expanded.

なお、上述した実施の形態においては、底部31aを厚さ方向に貫通する貫通孔を磁束短絡抑制部35として設けるとしたが、これに限定されず、例えば底部31aの表面上に凹部を設け、この凹部内に設けられる相対的に透磁率が小さな空間を磁束短絡抑制部35としてもよい。
さらに、この場合には、底部31aに形成した凹部内に非磁性材を装着してもよい。
In the above-described embodiment, the through hole penetrating the bottom portion 31a in the thickness direction is provided as the magnetic flux short-circuit suppressing portion 35. However, the present invention is not limited thereto. For example, a recess is provided on the surface of the bottom portion 31a. A space having a relatively small magnetic permeability provided in the recess may be used as the magnetic flux short-circuit suppressing unit 35.
Further, in this case, a nonmagnetic material may be mounted in the recess formed in the bottom 31a.

なお、上述した実施の形態において、外周側ロータ鉄心31は磁性材である単一の部材に対する曲げ成形によって略有底筒型に形成されるとしたが、これに限定されず、例えば底部31aと周壁片31bとが個別の独立した部材であって締結部材等により接続されて略有底筒型に形成されてもよい。この場合には、締結部材を非磁性材とし、この締結部材が装着される底部31aの装着孔を磁束短絡抑制部35としてもよい。   In the above-described embodiment, the outer rotor core 31 is formed into a substantially bottomed cylindrical shape by bending a single member that is a magnetic material. However, the present invention is not limited to this. The peripheral wall piece 31b is an independent member, and may be connected by a fastening member or the like to be formed into a substantially bottomed cylindrical shape. In this case, the fastening member may be a nonmagnetic material, and the mounting hole of the bottom portion 31a to which the fastening member is mounted may be used as the magnetic flux short-circuit suppressing unit 35.

なお、上述した実施の形態において、外周側永久磁石12aは周壁片31bの外周面31B上に配置されるとしたが、これに限定されず、例えば周壁片31bの内部で軸方向に伸びる磁石装着孔に装着されてもよい。   In the above-described embodiment, the outer peripheral side permanent magnet 12a is arranged on the outer peripheral surface 31B of the peripheral wall piece 31b. However, the present invention is not limited to this, for example, a magnet mounting that extends in the axial direction inside the peripheral wall piece 31b. It may be attached to the hole.

なお、上述した実施の形態においては、周方向で隣り合う周壁片31b,31b間にスリット31dを設けるとしたが、これに限定されず、例えば周方向で隣り合う周壁片31b,31bの軸方向先端部β,β間が接続されていてもよい。つまり、この変形例では、外周側回転子12は、回転軸Oと同軸の中心軸を有する略板状の底部31aと、この底部31aの外周端から略軸方向に向かい伸びる筒状の周壁部と、この周壁部の周面上において周方向に所定間隔をおいた位置で径方向に貫通すると共に軸方向基端部から軸方向先端部に向かい伸びる長穴とを備え、周方向で隣り合う長穴間の周壁部に外周側永久磁石12aが支持される。
これにより、各周壁片31bの軸方向先端部β側での剛性を増大させることができる。
In the above-described embodiment, the slit 31d is provided between the circumferential wall pieces 31b and 31b adjacent in the circumferential direction. However, the present invention is not limited to this. For example, the axial direction of the circumferential wall pieces 31b and 31b adjacent in the circumferential direction is provided. The tip portions β and β may be connected. That is, in this modified example, the outer peripheral rotor 12 includes a substantially plate-shaped bottom portion 31a having a central axis coaxial with the rotation axis O, and a cylindrical peripheral wall portion extending in a substantially axial direction from the outer peripheral end of the bottom portion 31a. And an elongated hole penetrating in the radial direction at a predetermined interval in the circumferential direction on the circumferential surface of the circumferential wall portion and extending from the axial proximal end portion toward the axial distal end portion, and adjacent in the circumferential direction The outer peripheral permanent magnet 12a is supported on the peripheral wall portion between the long holes.
Thereby, the rigidity in the axial direction front-end | tip part (beta) side of each surrounding wall piece 31b can be increased.

なお、上述した実施の形態においては、外周側永久磁石12aは外周側ロータ鉄心31の周壁片31bの外周面31B上に配置されるとしたが、これに限定されず、例えば外周側保持部材32を省略し、外周側ロータ鉄心31の各周壁片31b,…,31bの外周面31Bによって設定される外径に対して所定の締め代を備える内径の内周面を有する略円筒状のロータ鉄心の内周部に周方向に所定間隔をおいて複数の外周側永久磁石12a,…,12aを装着し、このロータ鉄心の内周部に外周側ロータ鉄心31の各周壁片31b,…,31bを圧入してもよい。   In the above-described embodiment, the outer peripheral side permanent magnet 12a is disposed on the outer peripheral surface 31B of the peripheral wall piece 31b of the outer peripheral side rotor iron core 31. However, the present invention is not limited to this. , And a substantially cylindrical rotor core having an inner peripheral surface having an inner diameter with a predetermined allowance with respect to the outer diameter set by the outer peripheral surface 31B of each peripheral wall piece 31b, ..., 31b of the outer peripheral rotor core 31. , 12a are mounted at predetermined intervals in the circumferential direction on the inner peripheral portion of the rotor core, and the peripheral wall pieces 31b,..., 31b of the outer rotor core 31 are attached to the inner peripheral portion of the rotor core. May be press-fitted.

本発明の一実施形態に係る電動機の内周側回転子および外周側回転子の要部を分解して示す要部斜視図である。It is a principal part perspective view which decomposes | disassembles and shows the principal part of the inner peripheral side rotor of an electric motor which concerns on one Embodiment of this invention, and an outer peripheral side rotor. 本発明の一実施形態に係る電動機の内周側回転子および外周側回転子の要部を分解して示す要部斜視図である。It is a principal part perspective view which decomposes | disassembles and shows the principal part of the inner peripheral side rotor of an electric motor which concerns on one Embodiment of this invention, and an outer peripheral side rotor. 本発明の一実施形態に係る電動機の内周側回転子および外周側回転子の要部斜視図である。It is a principal part perspective view of the inner peripheral side rotor and outer peripheral side rotor of the electric motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電動機の内周側回転子および外周側回転子の要部斜視図である。It is a principal part perspective view of the inner peripheral side rotor and outer peripheral side rotor of the electric motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電動機の内周側回転子および外周側回転子の断面図である。It is sectional drawing of the inner peripheral side rotor and outer peripheral side rotor of the electric motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電動機の弱め界磁(最大弱め位相)状態および強め界磁(最大強め位相)状態での磁束短絡抑制部と各永久磁石との相対位置を示す図である。It is a figure which shows the relative position of the magnetic flux short circuit suppression part and each permanent magnet in the field weakening (maximum weakening phase) state and strong field (maximum strongening phase) state of the electric motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電動機の中間(中間位相)状態での磁束短絡抑制部と各永久磁石との相対位置を示す図である。It is a figure which shows the relative position of the magnetic flux short circuit suppression part and each permanent magnet in the intermediate | middle (intermediate phase) state of the electric motor which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電動機に対する実施例および比較例1〜3での内周側回転子と外周側回転子との相対的な位相に応じた誘起電圧定数の変化を示すグラフ図である。It is a graph which shows the change of the induced voltage constant according to the relative phase of the inner peripheral side rotor and outer peripheral side rotor in the Example and Comparative Examples 1-3 with respect to the electric motor which concerns on one Embodiment of this invention. .

符号の説明Explanation of symbols

10 電動機
11 内周側回転子
11a 内周側永久磁石
12 外周側回転子
12a 外周側永久磁石
15 位相制御装置(回動手段)
31a 底部
31b 周壁片(周壁部)
31B 外周面(表面)
35 磁束短絡抑制部

DESCRIPTION OF SYMBOLS 10 Electric motor 11 Inner peripheral side rotor 11a Inner peripheral side permanent magnet 12 Outer peripheral side rotor 12a Outer peripheral side permanent magnet 15 Phase control apparatus (rotating means)
31a Bottom part 31b Perimeter wall piece (peripheral wall part)
31B Outer peripheral surface (surface)
35 Magnetic flux short-circuit suppressor

Claims (5)

周方向に沿って配置された内周側永久磁石を具備する内周側回転子および周方向に沿って配置された外周側永久磁石を具備する外周側回転子の互いの回転軸が同軸に配置され、
少なくとも前記内周側回転子および前記外周側回転子の何れか一方を前記回転軸周りに回動させることによって前記内周側回転子と前記外周側回転子との間の相対的な位相を変更可能な回動手段を備える電動機であって、
前記外周側回転子は、前記外周側永久磁石が固定される周壁部と、該周壁部に接続された磁性材からなる底部とを備える略有底筒型に形成され、
前記周壁部において前記外周側永久磁石が固定される位置から前記周壁部および前記底部を経由して前記回転軸に向かう仮想的な経路上における前記底部の所定位置に磁束短絡抑制部を備え
前記所定位置は、軸方向に沿って見た際の前記内周側永久磁石の軸方向端面に重なり合う位置であり、
前記磁束短絡抑制部は、前記底部の前記磁束短絡抑制部以外の部位に比べて小さな透磁率を有することを特徴とする電動機。
The rotation axes of the inner peripheral rotor having the inner peripheral permanent magnet arranged along the circumferential direction and the outer rotor having the outer permanent magnet arranged along the circumferential direction are coaxially arranged. And
The relative phase between the inner circumferential rotor and the outer circumferential rotor is changed by rotating at least one of the inner circumferential rotor and the outer circumferential rotor about the rotation axis. An electric motor with possible turning means,
The outer peripheral rotor is formed in a substantially bottomed cylindrical shape including a peripheral wall portion to which the outer peripheral permanent magnet is fixed, and a bottom portion made of a magnetic material connected to the peripheral wall portion,
Comprising a magnetic flux short-circuit suppressing portion at a predetermined position of the bottom portion on a virtual path toward the rotary shaft via the peripheral wall portion and the bottom portion from a position where the outer peripheral permanent magnets are fixed in the peripheral wall,
The predetermined position is a position overlapping the axial end surface of the inner peripheral permanent magnet when viewed along the axial direction;
The magnetic flux short-circuit suppressing unit includes an electric motor, characterized in Rukoto that having a small magnetic permeability as compared with the portion other than the magnetic flux short circuit suppressing portion of the bottom portion.
前記磁束短絡抑制部は、前記回動手段により前記内周側回転子と前記外周側回転子との間の相対的な位相が変更されることによって、前記回転軸に平行な方向に沿って見た際の前記内周側永久磁石の周方向位置と、前記磁束短絡抑制部の周方向位置とが重なり合うように形成されていることを特徴とする請求項1に記載の電動機。 The magnetic flux short-circuit suppressing unit is viewed along a direction parallel to the rotation axis by changing a relative phase between the inner rotor and the outer rotor by the rotating means. 2. The electric motor according to claim 1, wherein a circumferential position of the inner peripheral side permanent magnet and a circumferential position of the magnetic flux short-circuit suppressing unit are overlapped with each other. 前記磁束短絡抑制部は、前記底部を厚さ方向に貫通する貫通孔であることを特徴とする請求項1または請求項2に記載の電動機。 3. The electric motor according to claim 1, wherein the magnetic flux short-circuit suppressing unit is a through-hole penetrating the bottom in a thickness direction. 前記磁束短絡抑制部は、前記底部の表面上に設けられた凹部であることを特徴とする請求項1または請求項2に記載の電動機。 The electric motor according to claim 1, wherein the magnetic flux short-circuit suppressing unit is a concave portion provided on a surface of the bottom portion. 前記凹部に装着された非磁性材からなる部材を備えることを特徴とする請求項4に記載の電動機。 The electric motor according to claim 4, comprising a member made of a nonmagnetic material attached to the recess.
JP2006061022A 2006-03-07 2006-03-07 Electric motor Expired - Fee Related JP4890056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061022A JP4890056B2 (en) 2006-03-07 2006-03-07 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061022A JP4890056B2 (en) 2006-03-07 2006-03-07 Electric motor

Publications (2)

Publication Number Publication Date
JP2007244064A JP2007244064A (en) 2007-09-20
JP4890056B2 true JP4890056B2 (en) 2012-03-07

Family

ID=38589031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061022A Expired - Fee Related JP4890056B2 (en) 2006-03-07 2006-03-07 Electric motor

Country Status (1)

Country Link
JP (1) JP4890056B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691087B2 (en) * 2007-12-26 2011-06-01 本田技研工業株式会社 Electric motor
US8294318B2 (en) 2007-12-26 2012-10-23 Honda Motor Co., Ltd. Electric motor and rotor for rotating electric machine
JP4767997B2 (en) * 2008-02-04 2011-09-07 本田技研工業株式会社 Rotating electric machine rotor and electric motor
JP4680980B2 (en) * 2007-12-26 2011-05-11 本田技研工業株式会社 Electric motor
JP5324673B2 (en) * 2012-01-20 2013-10-23 ファナック株式会社 Motor rotor having split core and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627559B2 (en) * 1999-01-29 2005-03-09 日産自動車株式会社 Multilayer motor
JP4225001B2 (en) * 2002-08-09 2009-02-18 株式会社エクォス・リサーチ Electric motor

Also Published As

Publication number Publication date
JP2007244064A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4729551B2 (en) Axial gap type motor
JP4707696B2 (en) Axial gap type motor
JP4961302B2 (en) Axial gap type motor
JP4394115B2 (en) Axial gap type motor
JP4269953B2 (en) Rotating electric machine
JP2008271640A (en) Axial gap motor
WO2007072622A1 (en) Electric motor
JP4890056B2 (en) Electric motor
JP6044077B2 (en) Electric rotating machine and electric rotating system
JP4762866B2 (en) Axial gap type motor
JP2008167639A (en) Axial gap motor
JP4605480B2 (en) Axial gap type motor
JP4213171B2 (en) Electric motor
JP5279989B2 (en) Electric motor
JP5095108B2 (en) Electric motor
JP4960749B2 (en) Axial gap type motor
JP4896546B2 (en) Vehicle equipped with an electric motor
JP5114135B2 (en) Axial gap type motor
JP5017045B2 (en) Axial gap type motor
JP4808529B2 (en) Electric motor
JP2009254005A (en) Motor
JP2007244061A (en) Motor
JP4223526B2 (en) Electric motor
JP4896690B2 (en) Axial gap type motor
WO2012070514A1 (en) Rotating device using permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees