WO2023198158A1 - 信道分离方法及系统 - Google Patents

信道分离方法及系统 Download PDF

Info

Publication number
WO2023198158A1
WO2023198158A1 PCT/CN2023/088130 CN2023088130W WO2023198158A1 WO 2023198158 A1 WO2023198158 A1 WO 2023198158A1 CN 2023088130 W CN2023088130 W CN 2023088130W WO 2023198158 A1 WO2023198158 A1 WO 2023198158A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
reflective surface
smart
reference signal
repeater
Prior art date
Application number
PCT/CN2023/088130
Other languages
English (en)
French (fr)
Inventor
郭晓江
李�杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023198158A1 publication Critical patent/WO2023198158A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • Embodiments of the present invention relate to the field of communications, and specifically, to a channel separation method and system.
  • Intelligent reflective surfaces are a popular research direction for beyond 5th generation mobile communication systems (B5G) and 6th generation mobile communication systems (6G). Intelligent reflective surfaces can greatly improve the blind spot signal filling of wireless signals and the ranking of hotspot areas. It is a A low-cost wireless signal enhancement solution. Under normal circumstances, it is difficult for the base station to obtain the channel-dimensional received data information of the smart reflector. In related technologies, the channel-dimensional received data information of the smart reflector can be obtained through beam training of the smart reflector. However, the codebook design of this method The complexity or solution complexity is very high.
  • Embodiments of the present invention provide a channel separation method and system to at least solve the problem of high codebook design complexity or high solution complexity in the related technology scheme of obtaining the channel-dimensional received data information of an intelligent reflective surface.
  • a channel separation method including: when multiple reference signals are reflected by the smart reflective surface or repeater, the smart reflective surface or repeater separates each reference signal.
  • the codebook of the signal is switched to a corresponding smart reflective surface codebook, wherein each reference signal corresponds to a different smart reflective surface/or repeater codebook.
  • a channel separation system including: an intelligent reflective surface or a repeater, configured to separate each reference signal when multiple reference signals are reflected by the intelligent reflective surface or repeater.
  • the codebooks of the reference signals are switched to a corresponding smart reflective surface codebook, wherein each reference signal corresponds to a different smart reflective surface or repeater codebook.
  • a computer-readable storage medium is also provided.
  • a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the above methods when running. Steps in Examples.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Steps in method embodiments.
  • Figure 1 is a schematic diagram of an intelligent reflective surface in related technologies
  • Figure 2 is a flow chart of a channel separation method according to an embodiment of the present invention.
  • Figure 3 is a structural block diagram of a channel separation system according to an embodiment of the present invention.
  • Figure 4 is a flow chart of a 1-bit intelligent reflective surface channel separation method according to an embodiment of the present invention.
  • Figure 5 is a flow chart of a channel separation method according to another embodiment of the present invention.
  • Figure 6 is a flow chart of a channel separation method according to yet another embodiment of the present invention.
  • a smart reflective surface or repeater is a low-cost wireless signal enhancement solution.
  • Figure 1 is a schematic diagram of an intelligent reflective surface in related technologies. As shown in Figure 1, the smart reflective surface is converted into multiple channels. , Under normal circumstances, it is difficult for the base station to obtain the received data information of the channel dimension of the intelligent reflector.
  • Embodiments of the present invention provide a channel separation method and system, which are applied to the above-mentioned intelligent reflecting surface or repeater, and are used to obtain channel-dimensional received data information of the intelligent reflecting surface or repeater.
  • FIG. 2 is a flow chart of a channel separation method according to an embodiment of the present invention. As shown in Figure 2, the process includes the following steps:
  • Step S202 when multiple reference signals are reflected by the smart reflective surface or repeater, the smart reflective surface or repeater switches the codebook of each reference signal to a corresponding smart reflective surface codebook, Each reference signal corresponds to a different smart reflective surface/or repeater codebook.
  • the base station before the smart reflective surface or repeater switches the codebook of each reference signal to a corresponding smart reflective surface codebook, the base station also includes: The relay configures or agrees on the parameters used to separate the logical channels of the smart reflective surface or repeater, wherein the parameters include: a first parameter, used to indicate the number of logical channels that need to be separated; a second parameter, Indicates a codebook set configured for the logical channel of the smart reflector or repeater, wherein the codebook set includes a logical channel codebook corresponding to the number of logical channels; the third parameter is used to indicate Subarray codebook configured for the physical subarray of each logical channel.
  • the parameters include: a first parameter, used to indicate the number of logical channels that need to be separated; a second parameter, Indicates a codebook set configured for the logical channel of the smart reflector or repeater, wherein the codebook set includes a logical channel codebook corresponding to the number of logical channels; the third parameter is used to indicate Subarray code
  • the intelligent reflective surface codebook is a Kronecker product of a logical channel codebook and a corresponding subarray codebook.
  • the first parameter includes: the number of logical channels that need to be separated for the azimuth and pitch dimensions of the smart reflective surface or repeater, or the sum of the azimuth dimensions contained in each logical channel.
  • the number of physical arrays in the pitch dimension includes: the number of logical channels that need to be separated for the azimuth and pitch dimensions of the smart reflective surface or repeater, or the sum of the azimuth dimensions contained in each logical channel. The number of physical arrays in the pitch dimension.
  • each of the logical channel codebooks is represented by 1 bit of information
  • the order of the logical channel codebooks in the codebook set is based on an agreement or indicated by base station signaling
  • the codebook set The number of logical channel codebooks in is greater than or equal to the number of logical channels.
  • all sub-array codebooks in the same logical channel are the same.
  • each logical channel corresponds to a logical channel codebook; in the case where the base station does not obtain the initial amplitude and phase of the reference signal below, at least one logical channel corresponds to multiple logical channel codebooks.
  • the method before the smart reflective surface or repeater switches the codebook of each reference signal to a corresponding smart reflective surface codebook, the method further includes: the base station configuring multiple reference signals. , where the number of reference signals is equal to an integer multiple of the logical channel codebook.
  • the reference signal configured on each OFDM symbol occupies the same RB, and the number of REs occupied on each RB is the same.
  • step S202 of this embodiment after the base station configures multiple reference signals, it further includes: the base station notifies the intelligent reflection of the time slot and OFDM symbol position of the configured reference signal through signaling. surface or repeater.
  • step S202 of this embodiment it includes: the smart reflective surface or repeater switches the codebook of each reference signal to a corresponding smart reflective surface code based on the time slot and OFDM symbol position of the reference signal. Book.
  • the method further includes: after the base station receives the reference signal, the base station switches according to the reference signal.
  • the subsequent codebook separates the logical channels of the smart reflector or repeater.
  • separating the logical channels of the smart reflection surface or repeater according to the codebook after switching of each reference signal includes: in the case where the base station does not acquire the initial amplitude and phase of the reference signal, The amplitude and phase of the reference signal are compensated through different logical channel codebooks corresponding to the same logical channel, and then each logical channel is separated according to the compensated reference signal.
  • the number of logical channels to be separated is N
  • the codebook set includes N logical channel codebooks
  • each logical channel codebook includes N elements with the same amplitude, where the Mth The Mth element in a codebook is 180 degrees out of phase with other elements, where N is an integer greater than 1, and M is an integer greater than or equal to 1 and less than or equal to N.
  • each reference signal passes through the smart reflector or repeater, the codebook of each reference signal is switched to a corresponding smart reflective codebook, so that the base station at the receiving end can use the smart reflective codebook based on the smart reflective codebook.
  • This gets the channel-dimensional received data information of a smart reflector or repeater. Therefore, it is possible to solve the problem of complex codebook design or high solution complexity in related technologies through beam training of smart reflective surfaces to obtain channel-dimensional received data information of smart reflective surfaces, thereby achieving the effect of reducing computational complexity.
  • ROM/RAM Read-Only Memory/Random Access Memory
  • disk optical disk
  • ROM/RAM Read-Only Memory/Random Access Memory
  • terminal device which can be a mobile phone, computer, server, or network device, etc.
  • Methods described in various embodiments of the present invention include a number of instructions to cause a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute Methods described in various embodiments of the present invention.
  • This embodiment also provides a channel separation system, which is used to implement the above embodiments and preferred implementations. What has been described will not be described again.
  • the apparatus described in the following embodiments is preferably implemented in software, implementation in hardware, or a combination of software and hardware, is also possible and contemplated.
  • Figure 3 is a structural block diagram of a channel separation system according to an embodiment of the present invention. As shown in Figure 3, the system includes: an intelligent reflector or repeater 10 and a base station 20.
  • the smart reflective surface or repeater 10 is configured to switch the codebook of each reference signal to a corresponding smart reflective surface codebook when multiple reference signals are reflected through the smart reflective surface or repeater, where , each reference signal corresponds to a different smart reflector or repeater codebook.
  • the base station 20 is configured to configure or agree on parameters for separating the logical channels of the smart reflective surface or repeater for the smart reflective surface or repeater, where the parameters include:
  • the first parameter is used to indicate the number of logical channels that need to be separated
  • the second parameter is used to indicate the codebook set of logical channels configured for the smart reflective surface or repeater, wherein the codebook set includes logical channel codebooks corresponding to the number of logical channels;
  • the third parameter is used to indicate the subarray codebook configured for the physical subarray of each logical channel.
  • the base station is further configured to notify the smart reflector or relay of the configured time slot and OFDM symbol position of the reference signal through signaling.
  • the base station is further configured to, after receiving the reference signal, separate the logical channels of the smart reflective surface or repeater according to the codebook after switching of the reference signal.
  • each of the above modules can be implemented through software or hardware.
  • it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention provide a channel separation method and system.
  • the channel dimension information of the intelligent reflective surface can be quickly obtained.
  • the entire process does not require multiplication and division operations, and the computational complexity is Extremely low.
  • the number of logical channels of the smart reflective surface is N row ⁇ N col .
  • the number of channels here can be actual physical arrays, or it can be divided into several logical channels of the entire smart reflective surface, where N row and N col represent respectively The number of channels in the vertical and horizontal dimensions of the smart reflective surface.
  • the actual number of physical arrays shown in the figure is 12 ⁇ 16. If 2 ⁇ 2 physical arrays are used as a subarray (ie, logical channel), the codebook of each subarray is the same, with a total of 6 ⁇ 8 logical channel.
  • the received data before being reflected to the smart reflective surface is X, where X is a matrix with N rows , N col rows and L columns. Each row of X corresponds to a channel of the smart reflective surface.
  • the weighting factor of the smart reflective surface is ⁇ , where ⁇ is the diagonal matrix of N row N col ⁇ N row N col .
  • the main diagonal element is the weighting factor and the non-main diagonal element is 0.
  • the reflection signal after weighting the reflection of the intelligent reflecting surface is ⁇ X. Assuming that the channel between the receiving end and the smart reflecting surface is H r-ris , then the received signal Y at the receiving end can be expressed as:
  • n the received signal noise, etc.
  • the embodiment of the present invention proposes a 1-bit intelligent reflective surface channel separation method.
  • the codebook design and channel separation principles are as follows:
  • ⁇ k can also be any value in the above form, such as the whole multiplied by a coefficient.
  • Y temp of formula (4) can also be obtained from a codebook whose main diagonal is all 1, but this will increase the number of codebooks.
  • parameter configuration for channel separation of the intelligent reflective surface is performed, that is, the base station configures parameters for channel separation for the intelligent reflective surface, including:
  • the number of logical channels that need to be separated in the azimuth dimension and the pitch dimension can be the number of channels N col configured to separate the azimuth dimension alone, or the number of channels N row configured to separate the pitch dimension alone, or the azimuth dimension and pitch dimension can be configured The dimensions are separated by the number of channels N col and N row .
  • the base station can also configure the number of physical arrays for each logical channel in the azimuth or pitch dimension.
  • the base station needs to configure a set of codebooks for logical channels for the smart reflector.
  • Each codebook only contains codebook elements for the number of logical channels. Each element can be represented by 1 bit information.
  • the order of the codebooks in the set It can be agreed in advance or indicated through base station signaling.
  • the number of codebooks in the set is greater than or equal to the number of logical channels N col ⁇ N row . Since the set of codebooks conforms to certain mathematical rules, it can also be agreed in advance. When this set of codebooks is used in different time slots, and the reference signals transmitted in different time slots have random amplitude and phase jumps, a codebook needs to be repeated in additional time slots.
  • the base station When mn is not equal to 1, the base station also needs to configure a corresponding subarray-level codebook for each subarray.
  • the codebooks of all subarrays are the same, and the codebook contains m*n elements.
  • the codebook of the entire smart reflective surface is obtained by combining the subarray codebook and the logical channel codebook, which is mathematically expressed as the Kronecker product of the logical channel codebook and the subarray codebook.
  • the base station configures a set of reference signals.
  • the reference signals configured on each OFDM symbol should occupy at least the same RB, and each RB occupies the same number of REs.
  • the number of reference signals is equal to an integer multiple of the codebook used for channel separation. By default, the number of reference signals is equal to the number of codebooks used for channel separation.
  • the base station notifies the smart reflective surface of the time slot and OFDM symbol label of the configured reference signal through signaling.
  • the reference signal on each OFDM symbol corresponds to a smart reflective surface codebook.
  • the smart reflective surface should switch to the corresponding codebook.
  • the embodiment of the present invention also designs a set of low-complexity codebooks for intelligent reflective surface channel separation. If used to separate N logical channels, the characteristics of this set of codebooks are:
  • FIG. 4 is a flow chart of a 1-bit intelligent reflective surface channel separation method according to an embodiment of the present invention. Based on the above codebook The principle of design and channel separation is shown in Figure 4.
  • the 1-bit intelligent reflective surface channel separation method in the embodiment of the present invention includes the following steps:
  • Step S401 The base station configures parameters for channel separation on the intelligent reflective surface.
  • this parameter is mainly used to indicate:
  • the number of logical channels that need to be separated You can directly configure the number of logical channels that need to be separated in the azimuth and pitch dimensions. You can also configure the number of physical arrays in the azimuth or pitch dimension contained in each logical channel, and the physical arrays in the azimuth and pitch dimensions. The number should be an integer multiple of the number of corresponding logical channels;
  • the base station needs to configure a set of codebooks for logical channels for the smart reflector.
  • Each codebook only contains codebook elements for the number of logical channels. Each element can be represented by 1 bit information.
  • the order of the codebooks in the set It can be agreed in advance or indicated through base station signaling.
  • the number of codebooks in the set is greater than or equal to the number of logical channels. Since the codebook set conforms to certain mathematical rules, it can also be agreed in advance;
  • each subarray when the number of physical arrays contained in each subarray is greater than 1, usually the base station also needs to provide a configuration codebook for each subarray of the smart reflector.
  • the codebooks of all subarrays are the same, so you only need to configure the codebook of one subarray.
  • the configuration of the subarray codebook can be a specific codebook or an indicator label of a certain codebook. You can also set a codebook in advance. The default codebook.
  • Step S402 The base station configures a set of reference signals.
  • the number of reference signals is equal to the number of codebooks in the logical channel codebook set, and the smart reflective surface needs to continuously switch the configured codebooks on different OFDM symbols corresponding to the reference signals.
  • Step S403 The base station notifies the intelligent reflective surface of the time slot and OFDM symbol position of the configured reference signal through signaling.
  • the reference signal on each OFDM symbol corresponds to a smart reflective surface codebook.
  • the smart reflective surface should switch to the corresponding codebook.
  • Step S404 The base station performs channel separation after receiving the reference signals of the intelligent reflective surface in different codebooks.
  • Figure 5 is a flow chart of a channel separation method according to another embodiment of the present invention.
  • the receiving end can obtain the initial amplitude and phase of each reference signal, it can be considered that the transmission status of each reference signal is known.
  • each reference signal occupies one OFDM symbol, and the initial phase of each reference signal is known.
  • the method includes the following steps:
  • Step S501 The base station configures parameters for channel separation on the intelligent reflective surface.
  • this parameter is used to indicate:
  • the number of azimuth-dimensional physical arrays for each logical channel is 2, and the number of pitch-dimensional physical arrays is 2. That is, the intelligent reflecting surface is divided into logical channels with 2 ⁇ 2 as a sub-array. Since the base station can know the intelligent The actual number of physical arrays on the reflective surface is 12 ⁇ 16, which means that the intelligent reflective surface is divided into 6 ⁇ 8 logical channels;
  • the base station configures a codebook set for the logical channel for the smart reflector.
  • the codebook set contains 6 ⁇ 8 codebooks, each codebook contains 48 elements with the same amplitude, among which the nth code The nth element in the codebook is 180 degrees out of phase with other elements.
  • the codebook set can be agreed in advance to avoid signaling overhead;
  • (c) Configure a subarray-level codebook for the subarrays contained in the logical channels.
  • the subarray codebooks of all logical channels are the same, so that all subarrays have the same beam direction.
  • the configuration of the subarray codebook can be a specific codebook or an indicator label of a certain codebook, or a default codebook can be set in advance.
  • Step S502 The base station configures a set of reference signals.
  • the number of reference signals is equal to the number of logical channels, that is, equal to 48.
  • Smart reflective surfaces require continuous switching of configured codebooks on different time domain symbols corresponding to the reference signal.
  • the codebook weight of each physical array is equal to the weight of the subarray-level codebook multiplied by the codebook weight of the logical channel corresponding to the subarray.
  • Step S503 The base station notifies the smart reflective surface of the time slot and OFDM symbol position of the configured reference signal through signaling.
  • the reference signal on each OFDM symbol corresponds to a smart reflective surface logical codebook.
  • the smart reflective surface should switch to the corresponding codebook.
  • Step S504 The base station performs channel separation after receiving the reference signals of the intelligent reflective surface in different codebooks.
  • Figure 6 is a flow chart of a channel separation method according to another embodiment of the present invention.
  • the receiving end cannot obtain the initial amplitude and phase of each reference signal, and there may be random amplitudes and phases between the reference signals at the transmitting end. Jumps (for example, for reference signals distributed over multiple time slots, there may be a random amplitude and phase jump in the reference signals between different time slots). In this way, when the channels are separated, the difference between the reference signals needs to be compensated first. Amplitude and phase jumps ensure that the initial state of each reference signal is the same.
  • the number of physical arrays of the smart reflective surface in the figure is 12 ⁇ 16, and each logical channel contains a 2 ⁇ 2 subarray. Since it is divided into 48 logical channels in total, at least 48 references are needed. signal, if an OFDM signal is used and each time slot contains 14 symbols, then at least 4 time slots are needed to obtain 48 OFDM symbols. When there is a random jump in the initial phase of the 4 time slots, it needs to be used between time slots. At least one identical codebook.
  • the method includes the following steps:
  • Step S601 The base station configures parameters for channel separation on the intelligent reflective surface.
  • this parameter is used to indicate:
  • the number of azimuth-dimensional physical arrays for each logical channel is 2, and the number of pitch-dimensional physical arrays is 2. That is, the intelligent reflecting surface is divided into logical channels with 2 ⁇ 2 as a sub-array. Since the base station can know the intelligent The actual number of physical arrays on the reflective surface is 12 ⁇ 16, which means that the smart reflective surface is divided into 6 ⁇ 8 logical channels;
  • the base station configures a codebook set for the logical channel for the smart reflector.
  • codebook set for example, there are 51 codebooks in the codebook set, including 6 ⁇ 8 different codebooks, which are assumed to be ⁇ 1 and ⁇ respectively. 2 ,..., ⁇ 48 , each codebook contains 48 elements with the same amplitude, where the nth element in the nth codebook is 180 degrees out of phase with other elements.
  • the configuration of the subarray codebook may be a specific codebook or an indication label of a certain codebook, or a default codebook may be set in advance.
  • Step S602 The base station configures a set of reference signals.
  • the number of reference signals is equal to the number of logical channels, that is, equal to 48, which is equal to the number of codebooks in the logical channel codebook set.
  • Smart reflective surfaces require continuous switching of configured codebooks on different time domain symbols corresponding to the reference signal.
  • the codebook weight of each physical array is equal to the weight of the subarray-level codebook multiplied by the codebook weight of the logical channel corresponding to the subarray.
  • Step S603 The base station notifies the smart reflective surface of the time slot and OFDM symbol position of the configured reference signal through signaling.
  • the reference signal on each OFDM symbol corresponds to a smart reflective surface logical codebook.
  • the smart reflective surface should switch to the corresponding codebook.
  • Step S604 After receiving the reference signals of the smart reflective surface in different codebooks, the base station performs amplitude and phase compensation between time slots based on the same logical channel codebook in different time slots. After compensation, the channel is performed according to the method in the above embodiment. separation.
  • the channel dimension information of the intelligent reflective surface can be quickly obtained using 1-bit channel dimension codebook control.
  • the entire process does not require multiplication and division operations, and the calculation complexity is extremely low, solving the problem in related technologies.
  • Beam training of smart reflectors to obtain channel-dimensional received data information of smart reflectors has problems such as complex codebook design or high solution complexity, which can reduce computational complexity.
  • Embodiments of the present invention also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • each module or each step of the above-mentioned embodiments of the present invention can be implemented by a general-purpose computing device. They can be concentrated on a single computing device, or distributed among multiple computing devices. over a network, they may be implemented with program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases, may be executed in a sequence different from that described here.
  • the steps shown or described may be implemented by fabricating them separately into individual integrated circuit modules, or by fabricating multiple modules or steps among them into a single integrated circuit module. As such, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信道分离方法及系统。该方法包括:当多个参考信号通过所述智能反射面或中继器进行反射时,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面/或中继器码本。通过本发明实施例,智能反射面或中继器将每个参考信号经过时,将各参考信号的码本切换到一个对应的智能反射面码本,从而接收端的基站可根据该智能反射面码本获取智能反射面或中继器的通道维的接收数据信息。

Description

信道分离方法及系统 技术领域
本发明实施例涉及通讯领领域,具体而言,涉及一种信道分离方法及系统。
背景技术
智能反射面是超5代移动通信系统(B5G)和第6代移动通信系统(6G)的热门研究方向,智能反射面能够大大提高无线信号对盲区信号的补盲和热点区域的秩,是一种低成本的无线信号增强方案。通常情况下,基站很难获取智能反射面通道维的接收数据信息,在相关技术中,可以通过智能反射面的波束训练获取智能反射面通道维的接收数据信息,但是这类方法的码本设计复杂度或者求解复杂度都很高。
发明内容
本发明实施例提供了一种信道分离方法及系统,以至少解决相关技术中获取智能反射面通道维的接收数据信息的方案,存在码本设计复杂度或者求解复杂度高的问题。
根据本发明的一个实施例,提供了一种信道分离方法,包括:当多个参考信号通过所述智能反射面或中继器进行反射时,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面/或中继器码本。
根据本发明的另一个实施例,提供了一种信道分离系统,包括:智能反射面或中继器,设置为当多个参考信号通过所述智能反射面或中继器进行反射时,将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面或中继器码本。
根据本发明的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是相关技术中智能反射面示意图;
图2是根据本发明实施例的信道分离方法的流程图;
图3是根据本发明实施例的信道分离系统的结构框图;
图4是根据本发明实施例的一种1bit智能反射面通道分离方法的流程图;
图5是根据本发明另一实施例的信道分离方法的流程图;
图6是根据本发明又一实施例的信道分离方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明的实施例。
在相关技术中,智能反射面或中继器是一种低成本的无线信号增强方案,图1是相关技术中智能反射面示意图,如图1所示,该智能反射面被化为多个通道,通常情况下,基站很难获取智能反射面通道维的接收数据信息。本发明实施例提供了信道分离方法及系统,应用于上述智能反射面或中继器,用于获取智能反射面或中继器的通道维的接收数据信息。
图2是根据本发明实施例的信道分离方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,当多个参考信号通过所述智能反射面或中继器进行反射时,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面/或中继器码本。
在本实施例的步骤S202中,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本之前,还包括:基站为所述智能反射面或中继器配置或约定用于分离所述智能反射面或中继器的逻辑通道的参数,其中,所述参数包括:第一参数,用于指示需要分离的逻辑通道的数量;第二参数,用于指示为所述智能反射面或中继器的逻辑通道配置的码本集合,其中,所述码本集合中包含与逻辑通道的数量相对应的逻辑通道码本;第三参数,用于指示为每个逻辑通道的物理子阵配置的子阵码本。
在一个示例性实施例中,其中,所述智能反射面码本为逻辑通道码本与对应的子阵码本的克罗内克积。
在一个示例性实施例中,其中,所述第一参数包括:所述智能反射面或中继器的方位维和俯仰维需要分离的逻辑通道的数量,或每个逻辑通道中所包含的方位维和俯仰维的物理阵子数。
在一个示例性实施例中,其中,所述每个逻辑通道码本用1bit信息表示,所述码本集合中的逻辑通道码本的顺序基于约定或通过基站信令指示,所述码本集合中的逻辑通道码本的数目大于或等于逻辑通道的数目。
在一个示例性实施例中,其中,同一逻辑通道中的所有子阵码本均相同。
在一个示例性实施例中,其中,在基站获取所述参考信号的初始幅相的情况下,每个逻辑通道对应一个逻辑通道码本;在基站没有获取所述参考信号的初始幅相的情况下,至少一个逻辑通道对应多个逻辑通道码本。
在一个示例性实施例中,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本之前,还包括:所述基站配置多个所述参考信号,其中所述参考信号的数目等于逻辑通道码本的整数倍。
在一个示例性实施例中,其中,每个OFDM符号上配置的所述参考信号占用相同的RB,每个RB上所占用的RE数目相同。
在本实施例的步骤S202中,所述基站配置多个所述参考信号之后,还包括:所述基站通过信令将配置的所述参考信号所在的时隙和OFDM符号位置通知所述智能反射面或中继器。
在本实施例的步骤S202中,包括:所述智能反射面或中继器基于所述参考信号的时隙和OFDM符号位置,将每个参考信号的码本切换到一个对应的智能反射面码本。
在本实施例的步骤S202之后,还包括:基站接收到所述参考信号后,根据参考信号切换 后的码本分离智能反射面或中继器的逻辑通道。
在一个示例性实施例中,根据所述每个参考信号切换后的码本分离智能反射面或中继器的逻辑通道,包括:在基站没有获取所述参考信号的初始幅相的情况下,通过同一逻辑通道对应的不同逻辑通道码本对所述参考信号进行幅相补偿,再根据补偿后的参考信号分离各逻辑通道。
在一个示例性实施例中,其中,需分离的逻辑通道的数量为N,所述码本集合包括N个逻辑通道码本,每个逻辑通道码本包括N个幅度相同的元素,其中第M个码本中的第M个元素与其它元素相位相差180度,其中,N为大于1的整数,M为大于等于1且小于等于N的整数。
通过上述步骤,智能反射面或中继器将每个参考信号经过时,将各参考信号的码本切换到一个对应的智能反射面码本,以此在接收端的基站可根据该智能反射面码本获取智能反射面或中继器的通道维的接收数据信息。因此,可以解决相关技术中通过智能反射面的波束训练以获取智能反射面通道维的接收数据信息,存在码本设计复杂或者求解复杂度高的问题,达到降低计算复杂度的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器/随机存取存储器(Read-Only Memory/Random Access Memory,ROM/RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信道分离系统,该系统用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的信道分离系统的结构框图,如图3所示,该系统包括:智能反射面或中继器10和基站20。
智能反射面或中继器10,设置为当多个参考信号通过所述智能反射面或中继器进行反射时,将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面或中继器码本。
基站20,设置为为所述智能反射面或中继器配置或约定用于分离所述智能反射面或中继器的逻辑通道的参数,其中,所述参数包括:
第一参数,用于指示需要分离的逻辑通道的数量;
第二参数,用于指示为所述智能反射面或中继器配置的逻辑通道的码本集合,其中,所述码本集合中包含与逻辑通道的数量相对应的逻辑通道码本;
第三参数,用于指示为每个逻辑通道的物理子阵配置的子阵码本。
在一个示例性实施例中,所述基站,还设置为通过信令将配置的所述参考信号所在的时隙和OFDM符号位置通知所述智能反射面或中继器。
在一个示例性实施例中,所述基站,还设置为接收到所述参考信号后,根据参考信号切换后的码本分离智能反射面或中继器的逻辑通道。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
为了便于对本发明所提供的技术方案的理解,下面将结合具体场景的实施例进行详细阐述。
本发明实施例中提供了一种信道分离方法及系统,通过利用1bit的通道维码本控制,可快速获取智能反射面的通道维信息,极限情况下整个过程不需要乘除法运算,计算复杂度极低。
相关技术中,码本设计和通道分离的原理如下:
假设智能反射面的逻辑通道数为Nrow×Ncol,这里的通道数可以是实际的物理阵子,也可以是将整个智能反射面划分成的若干个逻辑通道,其中Nrow和Ncol分别表示智能反射面纵向和横向两个维度的通道数。如图1所示,图中显示的实际物理阵子数量为12×16,如果以2×2的物理阵子作为一个子阵(即逻辑通道),每个子阵的码本相同,共有6×8个逻辑通道。
假设反射到智能反射面之前的接收数据为X,其中X为NrowNcol行L列的矩阵,X的每一行对应智能反射面的一个通道。智能反射面的加权因子为Φ,其中Φ为NrowNcol×NrowNcol的对角阵,主对角线元素为加权因子,非主对角线元素为0。经过智能反射面反射加权后的反射信号为ΦX。假设接收端和智能反射面之间的信道为Hr-ris,那么接收端的接收信号Y可以表示为:
Y=Hr,risΦX+n   公式(1)
其中,n表示接收信号噪声等。
通常情况下假设在观测时间内X保持不变,或者经过一些预补偿之后保持不变。那么通过改变智能反射面加权因子Φ经过波束训练和一些计算可以获取智能反射面的一些信息。
本发明实施例提出一种1bit智能反射面通道分离方法,其码本设计和通道分离的原理如下:
假设智能反射面的加权因子存在Φk,其中,
Φk还可以是如上述形式的任何值,如整体乘以一个系数。
假设加权因子Φk对应的接收端接收数据为Yk,忽略噪声,可以获得:
Yk=Hr,risΦkX,k=1,2,…,NrowNcol   公式(3)
对NrowNcol个Yk相加并除以(NrowNcol-2),可以得出Ytemp
其中Φtemp可以表示为
可以获得
对于公式(4)的Ytemp也可以通过主对角线全为1的码本获取,但是会增加码本数量。
那么对于智能反射面第k个通道反射的数据可以表示为Yfrom RIS-k
其中,Φtempk只有主对角线上的第k个元素为1,其余元素均为0。
从上面可以看出智能反射面通道分离算法中的乘除法运算只牵涉到了公式(4)和公式(7),分别为除以NrowNcol-2和2,其中除以2可以通过移位实现。当NrowNcol-2=2n,n为正整数时,除以NrowNcol-2也可以通过移位实现。从而整个分离过程没有任何乘除法运算。
在实施例中,基于上述码本设计和通道分离原理,进行智能反射面通道分离的参数配置,即基站给智能反射面配置用于通道分离的参数,包括:
(1)需要分离的方位维和俯仰维逻辑通道数,可以是配置单独的方位维分离的通道数Ncol、也可以是配置单独的俯仰维分离的通道数Nrow,还可以是配置方位维和俯仰维都进行分离的通道数Ncol和Nrow
在本实施例中,基站也可以配置方位维或者俯仰维每个逻辑通道的物理阵子数,如给每个逻辑通道配置m个方位物理阵子、n个俯仰物理阵子,m、n可以单独配置也可以一起配置,如果智能反射面方位向有M个物理阵子、俯仰向有N个物理阵子,那么可以推算出逻辑通道数Ncol=M/m、Nrow=N/n。
(2)基站需要给智能反射面配置一套关于逻辑通道的码本集合,每个码本中只包含逻辑通道数目的码本元素,每个元素可以用1bit信息表示,集合中码本的顺序可以提前约定好也可以通过基站信令指示,集合中码本的数目大于等于逻辑通道的数目Ncol×Nrow,由于该套码本集合符合一定的数学规律,因此也可以提前约定好。当这套码本集合作用在不同时隙,且不同时隙发射的参考信号存在随机幅相跳变时,需要额外一些时隙中重复某个码本。
(3)当mn不等于1时,基站还需给每个子阵配置相应的子阵级码本,所有子阵的码本相同,该码本包含m*n个元素。整个智能反射面的码本由子阵码本和逻辑通道码本相结合获取,从数学上表示为逻辑通道码本和子阵码本的克罗内克积(Kronecker product)。
在本实施例中,基站配置了一套参考信号,每个OFDM符号上配置的参考信号至少应占用相同的RB,每个RB占用相同的RE数。参考信号的数目等于用于通道分离的码本的整数倍,可以默认参考信号的数目等于通道分离的码本数。
在本实施例中,基站通过信令将配置的参考信号所在的时隙和OFDM符号标号告知智能反射面,每个OFDM符号上的参考信号对应一个智能反射面码本。当参考信号所在的符号通过智能反射面时,智能反射面应切换成相应的码本。
本发明实施例还设计了一套用于智能反射面通道分离的低复杂度码本,如果用于分离N个逻辑通道,那么这套码本的特征在于:
每个码本中有N-1个元素完全相同,假设为a,那么剩下一个元素为-a
这套码本集合中-a出现的位置需要占据N个元素中所有位置。
图4是根据本发明实施例的一种1bit智能反射面通道分离方法的流程图,基于上述码本 设计和通道分离的原理,如图4所示,本发明实施例中的1bit智能反射面通道分离方法包括如下步骤:
步骤S401:基站给智能反射面配置用于通道分离的参数。
具体地,该参数主要用于指示:
(1)需要分离的逻辑通道数,可以直接配置方位维和俯仰维需要分离的逻辑通道数,也可以配置每个逻辑通道包含的方位维或者俯仰维的物理阵子数,方位维和俯仰维的物理阵子数应当是对应逻辑通道数的整数倍;
(2)基站需要给智能反射面配置一套关于逻辑通道的码本集合,每个码本中只包含逻辑通道数目的码本元素,每个元素可以用1bit信息表示,集合中码本的顺序可以提前约定好也可以通过基站信令指示,集合中码本的数目大于等于逻辑通道的数目,由于该套码本集合符合一定的数学规律,因此也可以提前约定好;
(3)如果把构成每个逻辑通道的若干个物理阵子认为一个子阵,当每个子阵包含的物理阵子数大于1时,通常基站还需给智能反射面的每个子阵的配置码本,所有子阵的码本相同,因此只需要配置一个子阵的码本即可,子阵码本的配置可以是具体的码本也可以是某个码本的指示标号,还可以提前设定一个默认的码本。
步骤S402:基站配置一套参考信号。
具体地,参考信号的数目等于逻辑通道码本集合中码本的数目,智能反射面需要在参考信号对应的不同的OFDM符号上连续切换配置的码本。
步骤S403:基站通过信令将配置的参考信号所在的时隙和OFDM符号位置告知智能反射面。
具体地,每个OFDM符号上的参考信号对应一个智能反射面码本,当发射的参考信号所在的符号通过智能反射面时,智能反射面应切换成相应的码本。
步骤S404:基站接收到的智能反射面在不同码本上的参考信号后,进行通道分离。
图5是根据本发明另一实施例的信道分离方法的流程图,在本实施例中,假设接收端能够获得每个参考信号的初始幅相,可以认为每个参考信号的发射状态是已知的,例如对连续发射的多个参考信号,每个参考信号占用一个OFDM符号,每个参考信号的初始相位已知。如图5所示,该方法包括如下步骤:
步骤S501:基站给智能反射面配置用于通道分离的参数。
具体地,以图1的智能反射面为例,该参数用于指示:
(1)每个逻辑通道的方位维物理阵子数为2、俯仰维物理阵子数为2,即是将智能反射面划分成以2×2为一个子阵的逻辑通道,由于基站事先可以知道智能反射面实际物理阵子数为12×16,意味着将智能反射面划分成了6×8的逻辑通道;
(b)基站给智能反射面配置一套关于逻辑通道的码本集合,例如,该码本集合包含6×8个码本,每个码本包含48个幅度相同的元素,其中第n个码本中的第n个元素和其它元素相位相差180度,在本实施例中,该码本集合可以是提前约定好,从而避免信令开销;
(c)给逻辑通道包含的子阵配置一个子阵级码本,所有逻辑通道的子阵码本相同,这样所有子阵具有相同的波束指向。子阵码本的配置可以是具体的码本也可以是某个码本的指示标号,还可以提前设定一个默认的码本。
步骤S502:基站配置一套参考信号。
具体地,在本实施例中参考信号的数目等于逻辑通道数目,即等于48。智能反射面需要在参考信号对应的不同的时域符号上连续切换配置的码本。
在本实施例中,每个物理阵子的码本加权值等于子阵级码本的权值乘以该子阵对应的逻辑通道的码本权值。
步骤S503:基站通过信令将配置的参考信号所在的时隙和OFDM符号位置告知智能反射面,每个OFDM符号上的参考信号对应一个智能反射面逻辑码本,当发射的参考信号所在的符号通过智能反射面时,智能反射面应切换成相应的码本。
步骤S504:基站接收到的智能反射面在不同码本上的参考信号后,进行通道分离。
图6是根据本发明又一实施例的信道分离方法的流程图,在本实施例中,假设接收端不能获得每个参考信号的初始幅相,发射端的参考信号之间可能存在随机的幅相跳变(例如,对分布在多个时隙上的参考信号,不同时隙之间的参考信号可能存在一个随机的幅相跳变),这样在通道分离时需要先补偿掉参考信号之间的幅相跳变,保证每个参考信号的初始状态一样。
例如,如图1所示,该图中智能反射面物理阵子数为12×16,每个逻辑通道包含一个2×2的子阵,由于一共划分成了48个逻辑通道,至少需要48个参考信号,如果采用OFDM信号,每个时隙含有14个符号,那么至少需要4个时隙才能获取48个OFDM符号,当4个时隙的初始相位存在随机跳变时,需要在时隙间采用至少一个相同码本。
如图6所示,该方法包括如下步骤:
步骤S601:基站给智能反射面配置用于通道分离的参数。
具体地,基于图1中的智能反射面,该参数用于指示:
(1)每个逻辑通道的方位维物理阵子数为2、俯仰维物理阵子数为2,即,将智能反射面划分成以2×2为一个子阵的逻辑通道,由于基站事先可以知道智能反射面实际物理阵子数为12×16,因此,意味着将智能反射面划分成了6×8的逻辑通道;
(2)基站给智能反射面配置一套关于逻辑通道的码本集合,例如,该码本集合中共有51个码本,其中有6×8个不同的码本,分别假设为Φ1、Φ2、...、Φ48,每个码本包含48个幅度相同的元素,其中第n个码本中的第n个元素和其它元素相位相差180度。将该码本集合分成4组,假设第1组包含的码本为Φ1~Φ12,第2组为Φ12~Φ24,第3组为Φ24~Φ36,第3组为Φ36~Φ48,共51个码本,当然码本的分组和每组的选择还有其它很多选择,原则上只要能够补偿时隙间的幅相跳变即可。在本实施例中,该码本集合的分组和划分可以提前约定好,从而避免信令开销;
(3)给逻辑通道包含的子阵配置一个子阵级码本,在本实施例中,所有逻辑通道的子阵码本相同,这样所有子阵具有相同的波束指向。
在本实施例中,子阵码本的配置可以是具体的码本也可以是某个码本的指示标号,还可以提前设定一个默认的码本。
步骤S602:基站配置一套参考信号。
具体地,参考信号的数目等于逻辑通道数目,即等于48,和逻辑通道码本集合中码本数目相等。智能反射面需要在参考信号对应的不同的时域符号上连续切换配置的码本。
在本实施例中,每个物理阵子的码本加权值等于子阵级码本的权值乘以该子阵对应的逻辑通道的码本权值。
步骤S603:基站通过信令将配置的参考信号所在的时隙和OFDM符号位置告知智能反射面,每个OFDM符号上的参考信号对应一个智能反射面逻辑码本。当发射的参考信号所在的符号通过智能反射面时,智能反射面应切换成相应的码本。
步骤S604:基站接收到的智能反射面在不同码本上的参考信号后,以不同时隙相同逻辑通道码本为基准进行时隙间的幅相补偿,补偿后按照上述实施例的方法进行通道分离。
需要说明的是,本发明的上述所有实施例中的智能反射面RIS均可替换成中继器,具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
通过本发明上述实施例,利用1bit的通道维码本控制,可快速获取智能反射面的通道维信息,极限情况下整个过程不需要乘除法运算,计算复杂度极低,解决了相关技术中通过智能反射面的波束训练以获取智能反射面通道维的接收数据信息,存在码本设计复杂或者求解复杂度高的问题,达到降低计算复杂度的效果。
本发明的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种信道分离方法,包括:
    当多个参考信号通过所述智能反射面或中继器进行反射时,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面/或中继器码本。
  2. 根据权利要求1所述的方法,其中,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本之前,还包括:
    基站为所述智能反射面或中继器配置或约定用于分离所述智能反射面或中继器的逻辑通道的参数,其中,所述参数包括:
    第一参数,用于指示需要分离的逻辑通道的数量;
    第二参数,用于指示为所述智能反射面或中继器的逻辑通道配置的码本集合,其中,所述码本集合中包含与逻辑通道的数量相对应的逻辑通道码本;
    第三参数,用于指示为每个逻辑通道的物理子阵配置的子阵码本。
  3. 根据权利要求2所述的方法,其中,所述智能反射面码本为逻辑通道码本与对应的子阵码本的克罗内克积。
  4. 根据权利要求2所述的方法,其中,所述第一参数包括:所述智能反射面或中继器的方位维和俯仰维需要分离的逻辑通道的数量,或每个逻辑通道中所包含的方位维和俯仰维的物理阵子数。
  5. 根据权利要求2所述的方法,其中,所述每个逻辑通道码本用1bit信息表示,所述码本集合中的逻辑通道码本的顺序基于约定或通过基站信令指示,所述码本集合中的逻辑通道码本的数目大于或等于逻辑通道的数目。
  6. 根据权利要求2所述的方法,其中,同一逻辑通道中的所有子阵码本均相同。
  7. 根据权利要求5所述的方法,其中,
    在基站获取所述参考信号的初始幅相的情况下,每个逻辑通道对应一个逻辑通道码本;
    在基站没有获取所述参考信号的初始幅相的情况下,至少一个逻辑通道对应多个逻辑通道码本。
  8. 根据权利要求2所述的方法,其中,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本之前,还包括:
    所述基站配置多个所述参考信号,其中所述参考信号的数目等于逻辑通道码本的整数倍。
  9. 根据权利要求8所述的方法,其中,每个OFDM符号上配置的所述参考信号占用相同的RB,每个RB上所占用的RE数目相同。
  10. 根据权利要求9所述的方法,其中,所述基站配置多个所述参考信号之后,还包括:
    所述基站通过信令将配置的所述参考信号所在的时隙和OFDM符号位置通知所述智能反射面或中继器。
  11. 根据权利要求10所述的方法,其中,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本,包括:
    所述智能反射面或中继器基于所述参考信号的时隙和OFDM符号位置,将每个参考信号的码本切换到一个对应的智能反射面码本。
  12. 根据权利要求1所述的方法,其中,所述智能反射面或中继器将每个参考信号的码本切换到一个对应的智能反射面码本之后,还包括:
    基站接收到所述参考信号后,根据参考信号切换后的码本分离智能反射面或中继器的逻辑通道。
  13. 根据权利要求12所述的方法,其中,根据所述每个参考信号切换后的码本分离智能反射面或中继器的逻辑通道,包括:
    在基站没有获取所述参考信号的初始幅相的情况下,通过同一逻辑通道对应的不同逻辑通道码本对所述参考信号进行幅相补偿,再根据补偿后的参考信号分离各逻辑通道。
  14. 根据权利要求2所述的方法,其中,需分离的逻辑通道的数量为N,所述码本集合包括N个逻辑通道码本,每个逻辑通道码本包括N个幅度相同的元素,其中第M个码本中的第M个元素与其它元素相位相差180度,其中,N为大于1的整数,M为大于等于1且小于等于N的整数。
  15. 一种信道分离系统,包括:
    智能反射面或中继器,设置为当多个参考信号通过所述智能反射面或中继器进行反射时,将每个参考信号的码本切换到一个对应的智能反射面码本,其中,每个参考信号对应一个不同所述智能反射面或中继器码本。
  16. 根据权利要求15所述的系统,还包括,
    基站,设置为为所述智能反射面或中继器配置或约定用于分离所述智能反射面或中继器的逻辑通道的参数,其中,所述参数包括:
    第一参数,用于指示需要分离的逻辑通道的数量;
    第二参数,用于指示为所述智能反射面或中继器配置的逻辑通道的码本集合,其中,所述码本集合中包含与逻辑通道的数量相对应的逻辑通道码本;
    第三参数,用于指示为每个逻辑通道的物理子阵配置的子阵码本。
  17. 根据权利要求16所述的系统,
    所述基站,还设置为通过信令将配置的所述参考信号所在的时隙和OFDM符号位置通知所述智能反射面或中继器。
  18. 根据权利要求16所述的系统,
    所述基站,还设置为接收到所述参考信号后,根据参考信号切换后的码本分离智能反射面或中继器的逻辑通道。
  19. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求1至14任一项中所述的方法的步骤。
  20. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述权利要求1至14任一项中所述的方法的步骤。
PCT/CN2023/088130 2022-04-13 2023-04-13 信道分离方法及系统 WO2023198158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210386305.5A CN115865289A (zh) 2022-04-13 2022-04-13 信道分离方法及系统
CN202210386305.5 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023198158A1 true WO2023198158A1 (zh) 2023-10-19

Family

ID=85660054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088130 WO2023198158A1 (zh) 2022-04-13 2023-04-13 信道分离方法及系统

Country Status (2)

Country Link
CN (1) CN115865289A (zh)
WO (1) WO2023198158A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115865289A (zh) * 2022-04-13 2023-03-28 中兴通讯股份有限公司 信道分离方法及系统
CN115865288A (zh) * 2022-04-13 2023-03-28 中兴通讯股份有限公司 信道分离方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050276A (zh) * 2019-12-23 2020-04-21 华中科技大学 基于角度信息的irs辅助通信系统的优化方法及设备
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质
US20220077919A1 (en) * 2020-09-10 2022-03-10 Qualcomm Iincorporated Techniques to use reference signals for intelligent reflecting surface systems
CN115865289A (zh) * 2022-04-13 2023-03-28 中兴通讯股份有限公司 信道分离方法及系统
CN115865288A (zh) * 2022-04-13 2023-03-28 中兴通讯股份有限公司 信道分离方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050276A (zh) * 2019-12-23 2020-04-21 华中科技大学 基于角度信息的irs辅助通信系统的优化方法及设备
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质
US20220077919A1 (en) * 2020-09-10 2022-03-10 Qualcomm Iincorporated Techniques to use reference signals for intelligent reflecting surface systems
CN115865289A (zh) * 2022-04-13 2023-03-28 中兴通讯股份有限公司 信道分离方法及系统
CN115865288A (zh) * 2022-04-13 2023-03-28 中兴通讯股份有限公司 信道分离方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancement for UL AoA positioning", 3GPP TSG RAN WG1 MEETING #104-E R1-2100237, 19 January 2021 (2021-01-19), XP051970869 *

Also Published As

Publication number Publication date
CN115865289A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2023198158A1 (zh) 信道分离方法及系统
CN101442349B (zh) 多用户mimo码本子集选择方法
JP2022070888A (ja) 通信方法、端末、および基地局
KR102127313B1 (ko) 코딩 지시 정보의 전송 및 프리코딩 매트릭스의 결정 방법 및 장치
CN108141256B (zh) 天线阵列的相位调整方法及装置
JP2012519453A (ja) 差分コードブック、mimoビームフォーミングシステム及び量子化誤差削減方法
CN105874646A (zh) 一种阵列天线
EP3026823B1 (en) Method and device for acquiring channel information
KR20170054046A (ko) 무선 통신 시스템에서 복호화 방법 및 장치
US11818065B2 (en) Method, apparatus and system for sending uplink reference signal, base station and terminal
CN110366828A (zh) 一种上行信号的传输方法及相关设备
US11071075B2 (en) Apparatus for transmitting synchronous signal, terminal for receiving synchronous signal and method thereof
CN103475609A (zh) 通信设备、基带单元和通信方法
KR20190115817A (ko) 비직교 다중 접속을 위한 빔포밍 장치 및 방법
CN103858359A (zh) 一种天线阵列、信号映射的方法及基站
JP6548814B2 (ja) プリコーディング行列確定方法および装置
CN115865288A (zh) 信道分离方法及系统
CN107046431B (zh) 信息的传输、接收方法及装置
CN108462519A (zh) 一种信道状态信息反馈方法、ue及接入网实体
EP3078123B1 (en) A node in a wireless communication system with four beam ports and corresponding method
CN103907291A (zh) 使用相移发射分集来产生虚拟扇区宽静止波束的方法及设备
CN107733486B (zh) 混合波束赋形系统中的信息传输方法及装置
CN108370265A (zh) 一种确定预编码矩阵的方法及装置
KR102230412B1 (ko) 다중 입출력 통신 시스템에서의 다중 빔 검색 방법 및 다중 빔 검색 방법을 수행하는 통신 장치
CN106612137B (zh) 码本生成方法、预编码矩阵确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787800

Country of ref document: EP

Kind code of ref document: A1