WO2023197907A1 - 一种储能预制箱和换电站 - Google Patents

一种储能预制箱和换电站 Download PDF

Info

Publication number
WO2023197907A1
WO2023197907A1 PCT/CN2023/086094 CN2023086094W WO2023197907A1 WO 2023197907 A1 WO2023197907 A1 WO 2023197907A1 CN 2023086094 W CN2023086094 W CN 2023086094W WO 2023197907 A1 WO2023197907 A1 WO 2023197907A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
energy storage
wall
prefabricated box
storage prefabricated
Prior art date
Application number
PCT/CN2023/086094
Other languages
English (en)
French (fr)
Inventor
郑陈铃
刘越
王增忠
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023197907A1 publication Critical patent/WO2023197907A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the embodiments of the present application relate to the field of energy storage technology, and more specifically, to an energy storage prefabricated box and a power swap station.
  • This application provides an energy storage prefabricated box and a power swap station, in which the energy storage prefabricated box has good thermal insulation performance.
  • this application provides an energy storage prefabricated box, including: a battery compartment including a first wall, the first wall having a cavity structure; an insulation member disposed in the cavity structure, the insulation member
  • the article includes at least one layer of thermal insulation bags, the thermal insulation bags are filled with fillers, at least one layer of the thermal insulation bags is arranged along a first direction, each layer of the thermal insulation bags extends along a plane perpendicular to the first direction, and at least one layer of the thermal insulation bags
  • the thermal insulation bag is used to block heat transmission in the first direction, and the first direction is the thickness direction of the first wall.
  • the energy storage prefabricated box provided by this application can block heat transmission in the first direction by arranging at least one layer of thermal insulation bags in the cavity structure of the first wall of the battery compartment, ensuring the thermal insulation performance of the energy storage prefabricated box.
  • the insulation member is connected to an inner surface of the cavity structure parallel to the first direction.
  • the heat can be blocked by the insulation member when it is transmitted in at least the first direction, ensuring the insulation performance of the energy storage prefabricated box.
  • the insulation member is further connected to an inner surface of the cavity structure that is perpendicular to the first direction.
  • thermal insulation component This allows the thermal insulation component to have a fixed position in the cavity structure, and can block heat transmission in different directions, further ensuring the thermal insulation performance of the energy storage prefabricated box.
  • each layer of at least one layer of the thermal insulation bags includes a plurality of the thermal insulation bags arranged along a second direction, and the second direction is perpendicular to the first direction.
  • Providing multiple thermal insulation bags in the second direction can effectively block heat transmission in the second direction.
  • it can further improve the thermal insulation performance of the energy storage prefabricated box in the second direction.
  • the thermal insulation performance of the energy storage prefabricated box can be guaranteed to ensure the overall thermal insulation performance of the energy storage prefabricated box.
  • each layer of at least one layer of the thermal insulation bags includes a plurality of the thermal insulation bags arranged along a third direction, the first direction, the second direction and the third direction. Two by two vertically.
  • a plurality of the thermal insulation bags have the same shape, and the size of each thermal insulation bag along the first direction is smaller than the size along the second direction.
  • the insulation bag is an air bag
  • the filling is gas
  • Filling the insulation bag with gas can improve the insulation performance of the energy storage prefabricated box, and the air bag can also reduce the convective heat transfer of the gas in the cavity structure, blocking the internal and external heat transfer of the energy storage prefabricated box. Heat transfer.
  • filling the air bag with gas can also greatly reduce the mass of the energy storage prefabricated box, which is beneficial to the transportation and installation of the energy storage prefabricated box.
  • the thermal insulation bag is filled with a first gas
  • a second gas is filled between the thermal insulation bag and the cavity structure, and the first gas is different from the second gas.
  • the insulation bag can be filled with appropriate gases according to different needs, such as nitrogen to further reduce the overall mass of the energy storage prefabricated box. At the same time, the filled gas also helps to block heat transmission and ensure the thermal insulation performance of the energy storage prefabricated box.
  • the shape of the thermal insulation bag is a cylinder.
  • the contact area between adjacent cylindrical insulation bags is small, which is beneficial to blocking the heat transmission in the first and second directions and ensuring the insulation performance of the energy storage prefabricated box. .
  • a pressure relief mechanism is provided on the first wall.
  • Providing a pressure relief mechanism on the first wall can be activated when the internal pressure or temperature of the energy storage prefabricated box reaches a predetermined threshold to release the internal pressure or temperature to avoid serious accidents such as explosions. Insulation measures should be taken when the energy storage prefabricated box is used. At the same time, the safety performance of the energy storage prefabricated box can be guaranteed.
  • the first wall includes a first sub-wall and a second sub-wall
  • the first sub-wall is an inner wall of the battery compartment
  • the second sub-wall is parallel to the first sub-wall.
  • the pressure relief mechanism is a weak portion provided on the first sub-wall and/or the second sub-wall.
  • Providing a pressure relief mechanism on the sub-wall of the first wall can make the first wall compatible with the functions of insulation and pressure release.
  • the internal pressure and temperature of the battery compartment are within the normal range, it can provide thermal insulation performance for the battery compartment and ensure that the The battery operating environment is stable; when the pressure and temperature inside the battery compartment are abnormal, the internal pressure or temperature is released through the pressure relief mechanism to ensure the safety performance of the energy storage prefabricated box.
  • the battery compartment includes a plurality of first walls, and the plurality of first walls enclose to form an accommodation space for accommodating the battery.
  • the thermal insulation performance of the battery compartment can be improved in multiple directions, so that the batteries in the battery compartment are always in a relatively stable operating environment, which is beneficial to extending the battery life.
  • the side of the first wall away from the battery compartment is further provided with The second wall has a corrugated plate between the first wall and the second wall.
  • the corrugated plate can increase the strength of the first wall and provide support for the first wall, making the first wall less likely to be damaged. While ensuring the thermal insulation performance of the energy storage prefabricated box, it can also improve the safety performance of the energy storage prefabricated box. .
  • this application provides a power swap station, including: the energy storage prefabricated box described in the above embodiment.
  • Figure 1 is a schematic diagram of the appearance of an energy storage prefabricated box disclosed in the embodiment of the present application.
  • FIG. 2 is a schematic diagram of the internal structure of an energy storage prefabricated box disclosed in the embodiment of the present application.
  • Figure 3 is an enlarged structural schematic diagram of part M in Figure 2.
  • Figure 4 is a schematic structural diagram of a first wall disclosed in the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of another first wall disclosed in the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another first wall disclosed in the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a part of an energy storage prefabricated box disclosed in the embodiment of the present application.
  • the reference numbers in the specific implementation are as follows: 100-Energy storage prefabricated box; 210-battery compartment, 211-first wall, 212-first sub-wall, 213-second sub-wall, 214- second wall, 215-corrugated plate, 216-pressure relief mechanism; 220-insulation parts, 221-insulation bag.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the energy storage prefabricated box is a relatively highly integrated energy storage device.
  • energy storage pre- The manufacturing box may include a battery compartment, in which multiple batteries, main control components, bus components, thermal management components and other components may be arranged.
  • a battery can also be called an electrical box, which includes a box and one or more battery cells enclosed by the box.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • multiple batteries arranged in the battery compartment can be connected in series, in parallel, or in series and parallel.
  • multiple batteries can be connected to the main control component through the bus component, and the electrical connection between the multiple batteries is achieved through the main control component.
  • the energy storage prefabricated box can also include: thermal management components.
  • the thermal management components include but are not limited to air conditioning components, fan components, water cooling pipes, etc., which can be used to thermally manage the interior of the energy storage prefabricated box to adjust the temperature inside the energy storage prefabricated box.
  • the energy storage prefabricated box used to store batteries needs to have good thermal insulation performance to reduce the impact of changes in the external environment on the battery and ensure that the battery performance.
  • rock wool is usually used to cover all surfaces of the battery compartment to minimize heat exchange between the inside and outside of the battery compartment.
  • more rock wool is required, which increases the overall mass of the energy storage prefabricated box, which is not conducive to the transportation and installation of the energy storage prefabricated box.
  • the rock wool is connected by steel plates and angle steel, the quality of the energy storage prefabricated box will be further increased.
  • this application provides an energy storage prefabricated box, in which the first wall of the battery compartment has a cavity structure, and an insulation member is provided in the cavity structure to insulate the battery compartment.
  • the insulation component includes at least one layer of insulation bags filled with fillers and filled in the cavity structure, which can block heat transmission between the inside and outside of the energy storage prefabricated box and ensure the insulation performance of the energy storage prefabricated box.
  • the energy storage prefabricated box can be a 40-foot or 20-foot standard container, or it can also be a specific container with customized dimensions.
  • the batteries contained in the energy storage prefabricated box include but are not limited to: lithium batteries, such as lithium iron phosphate batteries, lithium manganate batteries, or lithium cobalt oxide batteries.
  • Prefabricated energy storage boxes are suitable for various scenarios.
  • energy storage prefabricated boxes can be placed in point swap stations to provide storage space for batteries in the power swap station. When the energy storage prefabricated box is connected to the charging equipment, the batteries stored in the energy storage prefabricated box can also be charged.
  • energy storage prefabricated boxes can also be used in conjunction with power generation equipment (wind power generation, hydropower generation, etc.), and the electric energy generated by the power generation equipment can be stored in batteries stored in the energy storage prefabricated boxes.
  • Figure 1 shows a schematic diagram of the appearance of an energy storage prefabricated box 100 provided by an embodiment of the present application.
  • the energy storage prefabricated box 100 can be a regular rectangular parallelepiped structure, which facilitates the fixed placement and transportation of the energy storage prefabricated box 100 .
  • the interior of the energy storage prefabricated box 100 is a hollow structure, and the hollow structure may include a battery compartment to facilitate the placement of multiple batteries in the battery compartment.
  • the interior of the energy storage prefabricated box 100 can also be divided into multiple functional compartments according to actual needs. Each functional compartment is provided with other functional equipment components that manage or assist in the operation of the multiple batteries. For example: bus components, main control components, thermal management components, etc.
  • the embodiment of the present application defines three directions based on the rectangular parallelepiped energy storage prefabricated box 100 , where the six faces of the rectangular parallelepiped are the six outer walls of the energy storage prefabricated box 100 .
  • x can be the length direction of the energy storage prefabricated box 100, and for the two walls perpendicular to the length direction x among the six outer walls of the energy storage prefabricated box 100, they are referred to as The front wall and the rear wall;
  • y can be the height direction of the energy storage prefabricated box 100, and for the two walls perpendicular to the height direction y among the six outer walls of the energy storage prefabricated box 100, they are called the top wall and the The bottom wall;
  • z may be the width direction of the energy storage prefabricated box 100, and the two walls perpendicular to the width direction z among the six outer walls of the energy storage prefabricated box 100 are called the right wall and the left wall in turn.
  • the top wall and the bottom wall perpendicular to the height direction y can face the opposite direction of gravity and the direction of gravity respectively. Therefore, in addition to the top wall and bottom wall being inconvenient to open the door of the energy storage prefabricated box 100, the front wall, rear wall, left wall and left wall of the energy storage prefabricated box 100 A door of the energy storage prefabricated box 100 can be provided on any one or more of the walls or the right wall to facilitate users to enter the energy storage prefabricated box 100 and manage its internal components.
  • FIG. 2 is a schematic diagram of the internal structure of an energy storage container 100 disclosed in the embodiment of the present application, showing a schematic cross-sectional view of the energy storage prefabricated box 100 on the plane formed by the length direction x and the width direction y.
  • FIG. 3 shows an enlarged structural schematic diagram of part M in FIG. 2 .
  • the structure of the energy storage container provided by the embodiment of the present application will be described.
  • the energy storage prefabricated box 100 provided by the embodiment of the present application includes a battery compartment 210 and an insulation part 220.
  • the battery compartment 210 includes a first wall 211, and the first wall 211 has a cavity structure; the insulation part 220 is arranged in the cavity structure, and the insulation part 220 is disposed in the cavity structure.
  • 220 includes at least one layer of thermal insulation bags 221 filled with filler, at least one layer of thermal insulation bags 221 arranged along the first direction T, each layer of thermal insulation bags 221 extending along a plane perpendicular to the first direction T, at least one layer
  • the thermal insulation bag 221 is used to block heat transmission in the first direction T, and the first direction T is the thickness direction of the first wall 211 .
  • the battery compartment 210 is used to accommodate the battery, in which components such as main control components, bus components, thermal management components, etc. can be installed.
  • the battery compartment 210 may only accommodate batteries, and other components may be arranged in other compartments, where the other compartments may be, for example, electrical compartments.
  • Other compartments are provided around the battery compartment 210 for controlling and managing the batteries in the battery compartment 210 .
  • the battery compartment 210 may include a plurality of walls that enclose a receiving space in which the battery is received.
  • the first wall 211 may be any one of a plurality of walls, and the first wall 211 has a cavity structure.
  • the thermal insulation member 220 is accommodated in the cavity structure of the first wall 211 and provides thermal insulation performance for the battery compartment 210 .
  • the thermal insulation component 220 includes at least one layer of thermal insulation bags 221 arranged along the first direction T.
  • Each layer of thermal insulation bags 221 may include at least one thermal insulation bag 221 .
  • one layer of thermal insulation bags 221 may include multiple thermal insulation bags 221 , or as shown in FIG. 5 , one layer of thermal insulation bags 221 There is only one thermal bag 221.
  • a layer of thermal insulation bags 221 is provided in the middle of the cavity structure along the first direction T.
  • This layer of thermal insulation bags 221 does not contact the two surfaces of the cavity structure that are perpendicular to the first direction T. Then this layer of thermal insulation bags 221 divides the cavity structure into three parts along the first direction T. This situation is equivalent to having three layers of thermal insulation bags 221 in the cavity structure. That is, it can be considered that a three-layer thermal insulation bag 221 is provided in the cavity structure. The more layers the thermal insulation bag 221 has in the first direction T, the better the thermal insulation performance in the first direction T.
  • Each layer of thermal insulation bags 221 extends on a plane perpendicular to the first direction T, so that one side of the first wall 211 facing the inside of the energy storage prefabricated box 100 and one side of the first wall 211 away from the inside of the energy storage prefabricated box 100 When transferring heat from one side to another, it needs to pass through at least one layer of thermal insulation bags 221, making it difficult to quickly transfer heat.
  • the embodiment of the present application does not limit the number and shape of each layer of thermal insulation bags 221.
  • the number of thermal insulation bags 221 in different layers can be the same or different.
  • one layer of thermal insulation bags 221 may include only one thermal insulation bag 221
  • another layer of thermal insulation bags 221 may include multiple thermal insulation bags 221 .
  • the shapes of different thermal insulation bags 221 can be the same or different.
  • the thermal insulation bags 221 of the same layer may have the same shape and the thermal insulation bags 221 of different layers may have different shapes, or the thermal insulation bags 221 of the same layer may have different shapes.
  • the thermal insulation bag 221 can be a cylinder, a rounded cube, or other irregular three-dimensional shapes.
  • the thermal insulation component 220 shown in FIG. 4 includes two layers of thermal insulation bags 221, each layer of thermal insulation bags 221 includes one thermal insulation bag 221, and the thermal insulation bag 221 has an irregular three-dimensional shape.
  • the thermal insulation piece 220 shown in FIG. 5 includes two layers of thermal insulation bags 221 arranged along the first direction T.
  • Each layer of thermal insulation bags 221 includes multiple columns of thermal insulation bags 221 in the second direction L, and in the third direction W, Includes 221 rows of insulated bags.
  • the shape of the thermal insulation bag 221 shown in FIGS. 4 and 5 is only an example. When the thermal insulation bag 221 is filled with filler, the thermal insulation bag 221 may be slightly deformed.
  • the thermal insulation bag 221 is filled with filler, which may be gas, liquid, colloid, solid, etc.
  • the filler is used to block heat transmission on both sides of the first wall 211, so the filler is required to have a lower thermal conductivity.
  • the filler may also be required to have a smaller density.
  • the filler can be air.
  • the filling in the insulation bag 221 can play a certain blocking role, and the insulation bag 221 itself will also slow down the convection in the first direction T.
  • Heat, especially when the insulating bag 221 is filled with gas, setting the insulating bag 221 can slow down the convective heat transfer of the gas in the cavity structure in the first direction T, thereby blocking the heat transmission in the first direction T and improving the heat transfer in the first direction T.
  • One wall 211 provides protection for the energy storage prefabricated box 100 temperature performance.
  • the energy storage prefabricated box 100 provided by this application can block heat transmission in the first direction T by arranging at least one layer of thermal insulation bags 221 in the cavity structure of the first wall 211 of the battery compartment 210, ensuring the safety of the energy storage prefabricated box 100. Insulating properties.
  • the insulation member 220 is connected to an inner surface of the cavity structure parallel to the first direction T.
  • the thermal insulation member 220 can block heat transmission in the first direction T in the cavity structure of the first wall 211.
  • insulation The member 220 may be filled in the cavity structure and connected with an inner surface of the cavity structure parallel to the first direction T. Considering that the surface of the first wall 211 perpendicular to the second direction L and the third direction W will not affect the heat transfer inside and outside the energy storage prefabricated box 100 , the insulation member 220 does not need to be restricted from being perpendicular to the first direction T. inner surface connection.
  • the insulation member 220 is also connected to the inner surface of the cavity structure that is perpendicular to the first direction T.
  • the thermal insulation member 220 can also be connected to the inner surface of the cavity structure that is perpendicular to the first direction T. That is, the thermal insulation member 220 can be connected to all the inner surfaces of the cavity structure.
  • the connection may be a fixed connection, that is, the insulation member 220 is fixed in the cavity structure through the connection between the insulation member 220 and the inner surface of the cavity structure; the connection may also be a connection between the insulation member 220 and the inner surface of the cavity structure.
  • the contact, that is, the insulation member 220 is tightly packed in the cavity structure to fix the position of the insulation member 220 in the cavity structure.
  • the insulation member 220 can have a fixed position in the cavity structure, and can block heat transmission in different directions, further ensuring the insulation performance of the energy storage prefabricated box 100.
  • each layer of the at least one layer of thermal insulation bags 221 includes a plurality of thermal insulation bags 221 arranged along the second direction L, and the second direction L is perpendicular to the first direction T.
  • the number of thermal insulation bags 221 provided in the second direction L is greater than that provided in the first direction T.
  • the number of layers of thermal insulation bags 221 is increased, the thermal insulation performance of the first wall 211 in the second direction L for the energy storage prefabricated box 100 can be improved.
  • the number of thermal insulation bags 221 provided in the second direction L may be less than or equal to that in the first direction T.
  • the number of layers of thermal insulation bags 221 provided on the thermal insulation bag 221 is to reduce the cost of using the thermal insulation bags 221.
  • Providing a plurality of thermal insulation bags 221 in the second direction L can effectively block heat transmission in the second direction L.
  • the energy storage prefabricated box 100 can be further improved.
  • the thermal insulation performance of the box 100 in the second direction L can ensure the overall thermal insulation performance of the energy storage prefabricated box 100 .
  • each layer of the at least one layer of thermal insulation bags 221 includes a plurality of thermal insulation bags 221 arranged along the third direction W, the first direction T, the second direction L and the third direction W.
  • the three directions W are vertical in twos and twos.
  • multiple thermal insulation bags 221 are provided in the first direction T, the second direction L and the third direction W, which can simultaneously block the transmission of heat in the above three directions.
  • each thermal insulation bag 221 can be arranged closely.
  • the thermal insulation bag 221 it can be arranged in the gap formed between two adjacent thermal insulation bags 221 in the second direction L, so that multiple thermal insulation bags 221 can be closely arranged and the cavity structure can be filled with the thermal insulation bags 221 as much as possible.
  • the plurality of thermal insulation bags 221 have the same shape, and the size of each thermal insulation bag 221 along the first direction T is smaller than the size along the second direction L.
  • the first direction T is the thickness direction of the first wall 211 and is the most important direction of heat transmission between the inside and outside of the energy storage prefabricated box 100.
  • the requirements for thermal insulation performance in the first direction T are much higher than those in the second direction.
  • Requirements for thermal insulation performance in L and third direction W In order to ensure the thermal insulation performance of the first wall 211 in the first direction T as much as possible, more thermal insulation bags 221 can be provided in the first direction T of the cavity structure, and appropriately in the second direction L or the third direction W. By setting fewer thermal insulation bags 221, thermal insulation performance can be ensured and costs can be saved. Therefore, when designing the thermal insulation bag 221, the size of each thermal insulation bag 221 along the first direction T may be smaller than that along the second direction T.
  • the size in the direction L is such that more thermal insulation bags 221 can be arranged in the first direction T, and fewer thermal insulation bags 221 can be arranged in the second direction L or the third direction W.
  • thermal insulation bags 221 can be arranged in the first direction T to block heat transmission in the first direction T as much as possible, thereby improving the thermal insulation performance of the energy storage prefabricated box 100 .
  • the thermal insulation bag 221 is an air bag, and the filling is gas.
  • the thermal insulation bag 221 can be an air bag, and the filling material in the thermal insulation bag 221 can be gas.
  • the filling of gas in the insulation bag 221 can improve the insulation performance of the energy storage prefabricated box 100, and the air bag can also reduce the convective heat transfer of the gas in the cavity structure and block the heat transfer inside and outside the energy storage prefabricated box 100.
  • filling the air bag with gas can also greatly reduce the mass of the energy storage prefabricated box 100, which is beneficial to the transportation and installation of the energy storage prefabricated box 100.
  • the insulation bag 221 is filled with a first gas, and the space between the insulation bag 221 and the cavity structure is filled with a second gas, and the first gas is different from the second gas.
  • the first gas may be nitrogen
  • the second gas may be air. That is to say, when producing the thermal insulation bag 221, the thermal insulation bag 221 can be filled with nitrogen and sealed, and then the nitrogen-filled thermal insulation bag 221 is placed in the cavity structure in a certain arrangement, then the cavity structure Except for the thermal insulation bag 221 and the space occupied by the gas inside the thermal insulation bag 221, the portion filled with air is air.
  • different gases can be filled in the thermal insulation bag 221 as needed. For example, filling with nitrogen can further reduce the overall mass of the energy storage prefabricated box 100 .
  • the thermal insulation bag 221 can be filled with appropriate gas according to different requirements, such as nitrogen to further reduce the overall mass of the energy storage prefabricated box 100 .
  • the filled gas also helps to block heat transmission and ensures the thermal insulation performance of the energy storage prefabricated box 100 .
  • the shape of the thermal insulation bag 221 is a cylinder.
  • the shape of the thermal insulation bag 221 can be a regular shape, such as a cylinder
  • Figure 4 shows a possible arrangement of cylindrical thermal insulation bags 221.
  • the side surfaces of the cylinders are arranged in a tangent manner, and in the third direction W, the end surfaces of the cylinders are in contact with each other.
  • the contact area between adjacent cylindrical insulation bags 221 is small, which is beneficial to blocking the heat transmission in the first direction T and the second direction L, ensuring energy storage prefabrication Box 100 insulation performance.
  • a pressure relief mechanism 216 is provided on the first wall 211 .
  • a pressure relief mechanism 216 is usually provided on the energy storage prefabricated box 100 .
  • the pressure relief mechanism 216 can usually be provided on a battery cell or on a box, and refers to an element or component that is activated to release the internal pressure or temperature when the internal pressure or temperature of the corresponding component reaches a predetermined threshold.
  • the pressure relief mechanism 216 on the battery cell is activated, the high-temperature and high-pressure substances inside the battery cell are released into the box through the pressure relief mechanism 216 on the battery cell.
  • the pressure relief mechanism 216 on the box will also be activated, and the high-temperature and high-pressure substances from inside the battery cells will pass through the pressure relief mechanism on the box. 216 is discharged into the battery compartment 210.
  • the safety performance of the battery can be guaranteed to a certain extent, when the pressure relief mechanism 216 on the battery box is activated, high-temperature and high-pressure substances from inside the battery cells will enter the energy storage prefabricated box 100
  • the battery compartment 210 introduces certain safety risks in the battery compartment 210 .
  • the wall of the battery compartment 210 of the energy storage prefabricated box 100 is provided with an insulation member 220, which makes it difficult to quickly dissipate heat inside the energy storage prefabricated box 100. Therefore, a pressure relief mechanism 216 needs to be provided on the first wall 211 of the energy storage prefabricated box 100 to ensure the safety performance of the energy storage prefabricated box 100 .
  • the pressure relief mechanism 216 provided on the first wall 211 can be activated when the internal pressure or temperature of the energy storage prefabricated box 100 reaches a predetermined threshold to release the internal pressure or temperature to avoid serious accidents such as explosions. When the energy storage prefabricated box 100 While taking thermal insulation measures, the safety performance of the energy storage prefabricated box 100 can be ensured.
  • the first wall 211 includes a first sub-wall 212 and a second sub-wall 213.
  • the first sub-wall 212 is the inner wall of the battery compartment 210, and the second sub-wall 213 is parallel to the first sub-wall 212.
  • the sub-wall 212 is located on the side of the first sub-wall 212 away from the inside of the battery compartment 210 .
  • the pressure relief mechanism 216 is a weak portion provided on the first sub-wall 212 and/or the second sub-wall 213 .
  • FIG. 6 shows a structure in which the first wall 211 is provided with a pressure relief mechanism 216 .
  • the first wall 211 includes a first sub-wall 212 and a second sub-wall 213.
  • the first sub-wall 212 and the second sub-wall 213 are parallel and have a certain distance, and the space between them is for accommodating thermal insulation components. 220 cavity structure.
  • the first sub-wall 212 is the inner wall of the battery compartment 210 and is in direct contact with the inside of the battery compartment 210 .
  • the second sub-wall 213 is located on a side of the first sub-wall 212 away from the inside of the battery compartment 210 . It can be seen from Figure 6 that one or more pressure relief mechanisms 216 are provided on the first sub-wall 212.
  • the pressure relief mechanisms 216 are provided on the first sub-wall 212 in the form of a weak portion.
  • the weak portion can be, for example, a carved mark.
  • the pressure relief mechanism 216 can also be provided on the second sub-wall 213 in the same manner.
  • the pressure relief mechanism 216 on the first sub-wall 212 can rupture from the weak point to release the internal pressure or temperature into the cavity structure. If the internal pressure or temperature of the energy storage prefabricated box 100 cannot be completely released in this way, the internal pressure or temperature of the energy storage prefabricated box 100 can be further released through the pressure relief mechanism 216 on the second sub-wall 213 .
  • Providing a pressure relief mechanism 216 on the sub-wall of the first wall 211 can enable the first wall 211 to be compatible with the functions of insulation and pressure release, and provide insulation performance for the battery compartment 210 when the internal pressure and temperature of the battery compartment 210 are within the normal range. , to ensure the stability of the operating environment of the battery in the battery compartment 210; when the internal pressure and temperature of the battery compartment 210 are abnormal, the internal pressure or temperature is released through the pressure relief mechanism 216 to ensure the safety performance of the energy storage prefabricated box 100.
  • the battery compartment 210 includes a plurality of first walls 211, and the plurality of first walls 211 enclose to form an accommodation space for accommodating batteries.
  • the first wall 211 of the battery compartment 210 is provided with an insulation member 220, which can insulate the battery compartment 210.
  • a pressure relief mechanism 216 may also be provided on the first wall 211 of the battery compartment 210 to improve the efficiency of the battery compartment.
  • the walls surrounding the battery compartment 210 may be set as the first wall 211 .
  • the plurality of first walls 211 are enclosed to form a storage space for accommodating batteries, which can maintain and insulate the batteries accommodated in the storage space.
  • the thermal insulation performance of the battery compartment 210 can be improved in multiple directions, so that the batteries in the battery compartment 210 are always in a relatively stable operating environment, which is beneficial to extending the battery life.
  • a second wall 214 is provided on the side of the first wall 211 away from the battery compartment 210 , and a corrugated plate 215 is provided between the first wall 211 and the second wall 214 .
  • FIG 7 shows a schematic structural diagram of a part of the energy storage prefabricated box 100 disclosed in the embodiment of the present application.
  • the second wall 214 is provided on the side of the first wall 211 away from the battery compartment 210, and also It can be regarded as being disposed on the side of the second sub-wall 213 away from the battery compartment 210 .
  • the corrugated plate 215 refers to a plate processed by a steel plate into a continuous trapezoid, which can improve the rigidity of the plate and reduce the weight of the plate.
  • the corrugated plate 215 has a strong ability to absorb collision energy, and the battery contained in the prefabricated energy storage box 100 is not easily damaged during transportation.
  • the corrugated plate 215 can increase the strength of the first wall 211 and play a supporting role for the first wall 211 so that the first wall 211 is not easily damaged. While ensuring the thermal insulation performance of the energy storage prefabricated box 100, it can also improve energy storage. Prefabricated box 100 safety features.
  • This application also provides a power swap station, including the energy storage prefabricated box 100 in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Packages (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供了一种储能预制箱和换电站,其中储能预制箱包括:电池仓,包括第一壁,所述第一壁具有空腔结构;保温件,设置于所述空腔结构内,所述保温件包括至少一层保温袋,所述保温袋中填充有填充物,至少一层所述保温袋沿第一方向排列,每层所述保温袋沿垂直于第一方向的平面延伸,至少一层所述保温袋用于阻隔所述第一方向上的热量传输,所述第一方向为所述第一壁的厚度方向。本申请提供的储能预制箱通过在电池仓的第一壁的空腔结构中设置至少一层保温袋,可以阻隔第一方向上的热量传输,保证储能预制箱的保温性能。

Description

一种储能预制箱和换电站
本申请要求于2022年04月14日提交中国国家知识产权局、申请号为202220862317.6、申请名称为“一种储能预制箱和换电站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及储能技术领域,并且更具体地,涉及一种储能预制箱和换电站。
背景技术
随着新能源技术的大力发展,各种与储能有关的技术也逐渐得到了重视。其中,利用储能预制箱对电池进行储存具有较为广泛的应用。为了保证储能预制箱中储存的电池的性能,该储能预制箱的保温性的相关设计十分重要。因此,如何保证储能预制箱的保温性能,是一项亟待解决的技术问题。
发明内容
本申请提供一种储能预制箱和换电站,其中储能预制箱具有较好的保温性能。
第一方面,本申请提供了一种储能预制箱,包括:电池仓,包括第一壁,所述第一壁具有空腔结构;保温件,设置于所述空腔结构内,所述保温件包括至少一层保温袋,所述保温袋中填充有填充物,至少一层所述保温袋沿第一方向排列,每层所述保温袋沿垂直于第一方向的平面延伸,至少一层所述保温袋用于阻隔所述第一方向上的热量传输,所述第一方向为所述第一壁的厚度方向。
本申请提供的储能预制箱通过在电池仓的第一壁的空腔结构中设置至少一层保温袋,可以阻隔第一方向上的热量传输,保证储能预制箱的保温性能。
在一些实施例中,所述保温件与所述空腔结构的平行于所述第一方向的内表面连接。
这样可以使得热量至少在第一方向上传输时能够被保温件阻隔,保证储能预制箱的保温性能。
在一些实施例中,所述保温件还与所述空腔结构的垂直于所述第一方向的内表面连接。
这样可以使得保温件在空腔结构中具有固定位置,而且能够阻隔不同方向上的热量传输,进一步保证储能预制箱的保温性能。
在一些实施例中,至少一层所述保温袋中的每层保温袋包括多个沿第二方向排列的所述保温袋,所述第二方向垂直于所述第一方向。
在第二方向上设置多个保温袋,可以有效阻隔第二方向上的热量传输,在保证储能预制箱在第一方向上的保温性能的基础上,进一步提高储能预制箱在第二方向上的保温性能,从而能够保证储能预制箱整体的保温性能。
在一些实施例中,至少一层所述保温袋中的每层保温袋包括多个沿第三方向排列的所述保温袋,所述第一方向、所述第二方向和所述第三方向两两垂直。
这样可以在各个方向上阻隔热量传输,并减少空腔结构中的对流换热,能够保证储能预制箱的保温性能。
在一些实施例中,多个所述保温袋形状相同,每个所述保温袋沿第一方向的尺寸小于沿第二方向的尺寸。
这样可以在第一方向上布置更多层保温袋,尽可能地阻隔第一方向上的热量传输,从而提高储能预制箱的保温性能。
在一些实施例中,所述保温袋为气袋,所述填充物为气体。
保温袋中填充气体可以提高储能预制箱的保温性能,而且气袋也可以减少空腔结构中的气体的对流换热,阻隔储能预制箱的内部和外部的 热量传输。另外,在实现保温隔热的同时,气袋中填充的是气体也能极大地减轻储能预制箱的质量,有利于储能预制箱的运输与安装。
在一些实施例中,所述保温袋中填充有第一气体,所述保温袋与所述空腔结构之间填充有第二气体,所述第一气体与所述第二气体不同。
可以根据不同的需求在保温袋中填充合适的气体,例如填充氮气以进一步减轻储能预制箱的整体质量。同时,填充的气体也有助于阻隔热量传输,保证储能预制箱的保温性能。
在一些实施例中,所述保温袋的形状为圆柱体。
在圆柱体保温袋的横截面所在的平面上,相邻圆柱体保温袋之间的接触面积较小,有利于阻隔第一方向和第二方向上的热量传输,保证储能预制箱的保温性能。
在一些实施例中,所述第一壁上设置有泄压机构。
在第一壁上设置泄压机构可以使得储能预制箱的内部压力或温度达到预定阈值时致动以泄放内部压力或温度,避免发生爆炸等严重事故,在储能预制箱采取保温措施的同时能够保证储能预制箱的安全性能。
在一些实施例中,所述第一壁包括第一子壁和第二子壁,所述第一子壁为所述电池仓的内壁,所述第二子壁平行于所述第一子壁,且位于所述第一子壁的远离所述电池仓内部的一侧,所述泄压机构为所述第一子壁和/或所述第二子壁上设置的薄弱部。
在第一壁的子壁上设置泄压机构可以使得第一壁能够兼容保温和释放压力的功能,在电池仓内部压力和温度处于正常范围内时,为电池仓提供保温性能,保证电池仓中电池的运行环境的稳定;在电池仓内部压力和温度异常时,通过泄压机构释放内部压力或温度,保证储能预制箱的安全性能。
在一些实施例中,所述电池仓包括多个所述第一壁,多个所述第一壁围合形成容纳所述电池的容纳空间。
这样可以在多个方向上提高电池仓的保温性能,使得电池仓中的电池始终处于较为稳定的运行环境,有利于提高电池寿命。
在一些实施例中,所述第一壁的远离所述电池仓的一侧还设置有 第二壁,所述第一壁与所述第二壁之间设置有波形板。
波形板能够提高第一壁的强度,为第一壁起到支撑作用,使得第一壁不容易被破坏,在保证储能预制箱的保温性能的同时,还可以提高储能预制箱的安全性能。
第二方面,本申请提供了一种换电站,包括:上述实施例中所述的储能预制箱。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例公开的一种储能预制箱的外形示意图;
图2是本申请实施例公开的一种储能预制箱的内部结构示意图;
图3是图2中M部分放大的结构示意图。
图4是本申请实施例公开的一种第一壁的结构示意图;
图5是本申请实施例公开的另一种第一壁的结构示意图;
图6是本申请实施例公开的另一种第一壁的结构示意图;
图7是本申请实施例公开的一种储能预制箱的一部分的结构示意图。
具体实施方式中的附图标号如下:
100-储能预制箱;
210-电池仓,211-第一壁,212-第一子壁,213-第二子壁,214-
第二壁,215-波形板,216-泄压机构;
220-保温件,221-保温袋。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或 位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
储能预制箱是一种集成度相对较高的储能装置。具体地,储能预 制箱内可包括电池仓,电池仓内可布置多个电池、主控部件、汇流部件以及热管理部件等等组件。
其中,一个电池也可称之为一个电箱,其包括箱体以及被该箱体封装的一个或多个电池单体。可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
可选地,电池仓内布置的多个电池可以实现相互串联、并联或者串并联。在一些实施方式中,多个电池可通过汇流部件连接至主控部件,并通过主控部件实现多个电池之间的电连接。
除了多个电池、主控部件以及汇流部件以外,储能预制箱中还可以包括:热管理部件。该热管理部件包括但不限于是空调组件、风扇组件、水冷管道等等,其可用于对储能预制箱的内部进行热管理,以调整储能预制箱内部的温度。
另外,对于电池而言,其性能与所处的环境温度息息相关。例如,若环境温度过高,会增大电池发生故障和爆炸的风险,若环境温度过低,会影响电池内部的电化学反应,影响电池的正常运行和使用寿命。因此,为了防止外界环境的变化对储能预制箱中的温度产生较大的影响,用于储存电池的储能预制箱需要具有良好的保温性能,以降低外界环境变化对于电池的影响,保证电池的性能。
在目前的储能预制箱中,通常会使用岩棉覆盖电池仓的各个表面,以尽可能地减少电池仓的内部和外部之间的热量交换。然而,当电池仓的尺寸较大时,所需的岩棉也较多,使得储能预制箱的整体质量增加,不利于储能预制箱的运输与安装。岩棉之间通过钢板加角钢的方式进行连接时,也会进一步增加储能预制箱的质量。
鉴于此,本申请提供一种储能预制箱,其中电池仓的第一壁具有空腔结构,在空腔结构中设置保温件以对电池仓进行保温。其中保温件包括至少一层填充有填充物的保温袋,并填充于空腔结构中,可以阻隔储能预制箱内部和外部之间的热量传输,保证储能预制箱的保温性能。
本申请实施例描述的技术方案适用于各种类型、各种尺寸的储能预制箱。例如,该储能预制箱可以为40英尺或20英尺的标准集装箱,或者,也可以为具有定制尺寸的特定集装箱。该储能预制箱中容纳的电池包括但不限于是:锂电池,例如:磷酸铁锂电池、锰酸锂电池或者钴酸锂电池等等。
储能预制箱适用于各种场景。例如,储能预制箱可以放置于换点站中,为换电站中的电池提供存储空间。当储能预制箱与充电设备连接时,还可以为储能预制箱中储存的电池进行充电。再例如,储能预制箱还可以与发电设备(风力发电、水力发电等)配套使用,发电设备产生的电能可以存储于储能预制箱内存放的电池中。
图1示出了本申请实施例提供的一种储能预制箱100的外形示意图。
如图1所示,该储能预制箱100可以为规则的长方体结构,便于该储能预制箱100的固定放置和运输。该储能预制箱100的内部为中空结构,该中空结构可以包括电池仓,以便于在该电池仓中设置多个电池。另外,除了电池仓以外,该储能预制箱100的内部还可以按照实际需求划分为多个功能仓,每个功能仓中设置有对该多个电池进行管理或者辅助操作的其它功能设备部件,例如:汇流部件、主控部件、热管理部件等等。
继续参见图1,本申请实施例基于长方体的储能预制箱100定义了三个方向,其中,长方体的六个面为储能预制箱100的六个外壁。具体地,如图1所示,x可以为储能预制箱100的长度方向,并且,对于储能预制箱100的六个外壁中垂直于该长度方向x的两个壁,将其依次称为前壁和后壁;y可以为储能预制箱100的高度方向,并且,对于储能预制箱100的六个外壁中垂直于该高度方向y的两个壁,将其依次称为顶壁和底壁;z可以为储能预制箱100的宽度方向,并且,对于储能预制箱100的六个外壁中垂直于该宽度方向z的两个壁,将其依次称为右壁和左壁。
在该储能预制箱100的六个外壁中,垂直于高度方向y的顶壁和底壁可以分别朝向重力反方向和重力方向。因而,除了该顶壁和底壁不便于开设储能预制箱100的箱门以外,该储能预制箱100的前壁、后壁、左 壁或右壁中的任意一个或多个壁均可以开设有储能预制箱100的箱门,以便于用户进入储能预制箱100中,对其内部的部件进行管理。
图2是本申请实施例公开的一种储能集装箱100的内部结构示意图,示出了在长度方向x和宽度方向y形成的平面上该储能预制箱100的截面示意图。为了更清楚地示出该储能预制箱100的第一壁211的结构,图3示出了图2中M部分放大的结构示意图。另外,再结合图4和图5,对本申请实施例提供的储能集装箱的结构进行说明。
本申请实施例提供的储能预制箱100包括电池仓210和保温件220,电池仓210包括第一壁211,第一壁211具有空腔结构;保温件220设置于空腔结构内,保温件220包括至少一层保温袋221,保温袋221中填充有填充物,至少一层保温袋221沿第一方向T排列,每层保温袋221沿垂直于第一方向T的平面延伸,至少一层保温袋221用于阻隔第一方向T上的热量传输,第一方向T为第一壁211的厚度方向。
电池仓210用于容纳电池,其中可以设置主控部件、汇流部件、热管理部件等等组件。在一些可能的实施方式中,电池仓210也可以仅容纳电池,而将其他组件设置于其他仓中,其中其他仓可以例如电气仓等。其他仓设置于电池仓210的周围,用于对电池仓210中的电池进行控制和管理。电池仓210可以包括多个壁,这些壁围合形成容纳空间,电池就容纳于该容纳空间中。
第一壁211可以为多个壁中的任意一个壁,该第一壁211具有空腔结构。
保温件220容纳于第一壁211的空腔结构中并为电池仓210提供保温性能。保温件220包括至少一层沿第一方向T排列设置的保温袋221。每层保温袋221可以包括至少一个保温袋221,例如,可以如图3和图4所示,一层保温袋221包括多个保温袋221,也可以如图5所示,一层保温袋221仅有一个保温袋221。在一种可能的实施方式中,在空腔结构沿第一方向T的中间设置有一层保温袋221,该层保温袋221不与空腔结构中垂直于第一方向T的两个面接触,则该层保温袋221沿第一方向T将空腔结构分为了三个部分,这种情况与空腔结构中设置有三层保温袋221是等同的, 即可以认为空腔结构中设置有三层保温袋221。保温袋221在第一方向T上的层数越多,在第一方向T上的保温性能越好。
每层保温袋221在垂直于第一方向T的平面上延伸,使得第一壁211的朝向储能预制箱100的内部的一侧与第一壁211的远离储能预制箱100的内部的一侧进行热量传输时,需要经过至少一层保温袋221,从而难以快速地实现热量传输。
本申请实施例对每层保温袋221的数量和形状均不作限定。不同层保温袋221的数量可以相同,也可以不同。例如,可以是其中一层保温袋221仅包括一个保温袋221,另一层保温袋221包括多个保温袋221。不同保温袋221的形状可以相同,也可以不同。例如,可以是同一层保温袋221形状相同、不同层保温袋221形状不同,也可以是同一层的保温袋221就具有不同的形状。保温袋221可以为圆柱体、圆角立方体、或其他不规则立体形状。
图4和图5中示出了保温件220的几种可能的结构。例如,图4示出的保温件220包括两层保温袋221,每层保温袋221包括一个保温袋221,且该保温袋221为不规则立体形状。再例如,图5示出的保温件220包括沿第一方向T排列的两层保温袋221,每层保温袋221在第二方向L上包括多列保温袋221,且在第三方向W上包括多排保温袋221。图4和图5示出的保温袋221的形状仅为示例,当保温袋221中填充了填充物时,保温袋221可能存在轻微的变形。
保温袋221中填充有填充物,填充物可以是气体、液体、胶体、固体等。填充物用于阻隔第一壁211两侧的热量传输,因此要求填充物的导热系数较低,同时为了减轻箱体的整体重量,还可以要求填充物的密度较小。例如,填充物可以是空气。
当第一壁211的沿第一方向T的两侧进行热量传输时,保温袋221中的填充物可以起到一定的阻隔作用,同时保温袋221本身也会减缓第一方向T上的对流换热,尤其是保温袋221中填充的是气体时,设置保温袋221可以减缓空腔结构中的气体在第一方向T上的对流换热,从而阻隔第一方向T上的热量传输,提高第一壁211为储能预制箱100提供的保 温性能。
本申请提供的储能预制箱100通过在电池仓210的第一壁211的空腔结构中设置至少一层保温袋221,可以阻隔第一方向T上的热量传输,保证储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,保温件220与空腔结构的平行于第一方向T的内表面连接。
保温件220可以在第一壁211的空腔结构中阻隔第一方向T上的热量传输,则为了保证第一壁211上的每个位置在第一方向T上均能有效阻隔热量传输,保温件220可以被填充于空腔结构中,并与空腔结构的平行于第一方向T的内表面连接。考虑到第一壁211的垂直于第二方向L和第三方向W的表面不会影响储能预制箱100的内部和外部的热量传输,因此可以不限制保温件220与垂直于第一方向T的内表面连接。
这样可以使得热量至少在第一方向T上传输时能够被保温件220阻隔,保证储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,保温件220还与空腔结构的垂直于第一方向T的内表面连接。
保温件220除了与空腔结构的平行于第一方向T的内表面连接,还可以与空腔结构的垂直于第一方向T的内表面连接,即,保温件220可以与空腔结构的所有内表面连接。该连接可以是固定连接,也就是通过保温件220与空腔结构的内表面的连接而使得保温件220被固定在空腔结构中;该连接也可以是保温件220与空腔结构的内表面的接触,也就是保温件220在空腔结构中通过紧密地填充来固定保温件220在空腔结构中的位置。
这样可以使得保温件220在空腔结构中具有固定位置,而且能够阻隔不同方向上的热量传输,进一步保证储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,至少一层保温袋221中的每层保温袋221包括多个沿第二方向L排列的保温袋221,第二方向L垂直于第一方向T。
在第二方向L上设置的保温袋221的数量大于在第一方向T上设 置的保温袋221的层数时,可以提高第一壁211在第二方向L上对储能预制箱100的保温性能。考虑到第二方向L上的热量传输对储能预制箱100的内部与外部的热量传输影响较小,因此在第二方向L上设置的保温袋221的数量可以小于或等于在第一方向T上设置的保温袋221的层数,以降低使用保温袋221的成本。
在第二方向L上设置多个保温袋221,可以有效阻隔第二方向L上的热量传输,在保证储能预制箱100在第一方向T上的保温性能的基础上,进一步提高储能预制箱100在第二方向L上的保温性能,从而能够保证储能预制箱100整体的保温性能。
根据本申请的一些实施例,可选地,至少一层保温袋221中的每层保温袋221包括多个沿第三方向W排列的保温袋221,第一方向T、第二方向L和第三方向W两两垂直。
如图4所示,保温袋221在第一方向T、第二方向L和第三方向W上均设置有多个,可以在上述三个方向上同时阻隔热量的传输。同时,每个保温袋221之间可以紧密排列,以图3和图4为例,当保温袋221在第一方向T和第二方向L形成的平面上的截面为圆形时,保温袋221可以设置在第二方向L上相邻两个保温袋221之间形成的间隙中,这样多个保温袋221之间可以实现紧密排列,尽可能地使保温袋221充满空腔结构。
这样可以在各个方向上阻隔热量传输,并减少空腔结构中的对流换热,能够保证储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,多个保温袋221形状相同,每个保温袋221沿第一方向T的尺寸小于沿第二方向L的尺寸。
第一方向T为第一壁211的厚度方向,是储能预制箱100内部和外部之间热量传输最主要的方向,通常对第一方向T上的保温性能的要求远高于对第二方向L和第三方向W上的保温性能的要求。为了尽可能保证第一壁211在第一方向T上的保温性能,可以在空腔结构的第一方向T上设置较多的保温袋221,而在第二方向L或第三方向W上适当设置较少的保温袋221,这样既可以保证保温性能,又可以节省成本。因此,在设计保温袋221时,每个保温袋221的沿第一方向T的尺寸可以小于沿第二方 向L的尺寸,以使得在第一方向T上可以排列更多的保温袋221,而在第二方向L或第三方向W上排列较少的保温袋221。
这样可以在第一方向T上布置更多层保温袋221,尽可能地阻隔第一方向T上的热量传输,从而提高储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,保温袋221为气袋,填充物为气体。
气体的导热系数往往较小,尤其是空气,其导热系数仅为0.0267W/m·K,是一种较佳的保温隔热材料。因此保温袋221可以为气袋,保温袋221中的填充物可以为气体。
保温袋221中填充气体可以提高储能预制箱100的保温性能,而且气袋也可以减少空腔结构中的气体的对流换热,阻隔储能预制箱100的内部和外部的热量传输。另外,在实现保温隔热的同时,气袋中填充的是气体也能极大地减轻储能预制箱100的质量,有利于储能预制箱100的运输与安装。
根据本申请的一些实施例,可选地,保温袋221中填充有第一气体,保温袋221与空腔结构之间填充有第二气体,第一气体与第二气体不同。
在一种可能的实施方式中,第一气体可以为氮气,第二气体可以为空气。也就是说,在生产保温袋221时,可以向保温袋221中填充氮气,并进行密封,再将填充有氮气的保温袋221按照一定的排列方式放置于空腔结构中,则空腔结构中除保温袋221以及保温袋221内部气体所占据的空间之外的部分填充的就是空气。在一些实施方式中,可以根据需要在保温袋221中填充不同的气体。例如,填充氮气可以进一步减轻储能预制箱100的整体质量。
可以根据不同的需求在保温袋221中填充合适的气体,例如填充氮气以进一步减轻储能预制箱100的整体质量。同时,填充的气体也有助于阻隔热量传输,保证储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,保温袋221的形状为圆柱体。
为了便于生产,保温袋221的形状可以为规则形状,例如圆柱体, 图4示出了圆柱体保温袋221的一种可能的排列方式。在第一方向T和第二方向L上,圆柱体的侧面以相切的形式进行排列,在第三方向W上,圆柱体的端面互相接触。
在圆柱体保温袋221的横截面所在的平面上,相邻圆柱体保温袋221之间的接触面积较小,有利于阻隔第一方向T和第二方向L上的热量传输,保证储能预制箱100的保温性能。
根据本申请的一些实施例,可选地,第一壁211上设置有泄压机构216。
储能预制箱100中的电池在运行过程中,由于其内部的化学反应,可能会产生压力或温度的变化,该变化也会影响储能预制箱100内部的压力或温度。为了避免储能预制箱100的内部压力或温度变化过大而产生的安全隐患,通常会在储能预制箱100上设置泄压机构216。
泄压机构216通常可以设置在电池单体上,或者设置在箱体上,是指相应部件的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。当电池单体上的泄压机构216致动时,电池单体内部的高温高压物质通过该电池单体上的泄压机构216泄放至箱体中。进一步地,当箱体的内部压力或温度达到预设阈值时,该箱体上的泄压机构216也会发生致动,来自电池单体内部的高温高压物质通过该箱体上的泄压机构216泄放至电池仓210中。
通过上述实施方式,虽然可以在一定程度上保证电池的安全性能,但当电池箱体上的泄压机构216致动时,来自电池单体内部的高温高压物质会进入储能预制箱100中的电池仓210,在电池仓210中引入一定的安全隐患。而储能预制箱100的电池仓210的壁上设置有保温件220,难以快速对储能预制箱100内部进行散热。因此,需要在储能预制箱100的第一壁211上设置泄压机构216,以保证储能预制箱100的安全性能。
在第一壁211上设置泄压机构216可以使得储能预制箱100的内部压力或温度达到预定阈值时致动以泄放内部压力或温度,避免发生爆炸等严重事故,在储能预制箱100采取保温措施的同时能够保证储能预制箱100的安全性能。
根据本申请的一些实施例,可选地,第一壁211包括第一子壁212和第二子壁213,第一子壁212为电池仓210的内壁,第二子壁213平行于第一子壁212,且位于第一子壁212的远离电池仓210内部的一侧,泄压机构216为第一子壁212和/或第二子壁213上设置的薄弱部。
图6示出了一种设置有泄压机构216的第一壁211的结构。如图6所示,第一壁211包括第一子壁212和第二子壁213,第一子壁212和第二子壁213平行且具有一定距离,两者之间的空间为容纳保温件220的空腔结构。第一子壁212为电池仓210的内壁,与电池仓210的内部直接接触,第二子壁213位于第一子壁212的远离电池仓210内部的一侧。从图6中可以看出第一子壁212上设置有一个或多个泄压机构216,该泄压机构216以薄弱部的形式设置在第一子壁212上,该薄弱部可以例如为刻痕。在第二子壁213上也可以以相同的方式设置泄压机构216。当储能预制箱100的内部压力或温度达到预定阈值时,第一子壁212上的泄压机构216可以从薄弱处破裂,将内部压力或温度释放至空腔结构中。若这样仍然不能完全释放储能预制箱100的内部压力或温度,还可以通过第二子壁213上的泄压机构216进一步释放储能预制箱100的内部压力或温度。
在第一壁211的子壁上设置泄压机构216可以使得第一壁211能够兼容保温和释放压力的功能,在电池仓210内部压力和温度处于正常范围内时,为电池仓210提供保温性能,保证电池仓210中电池的运行环境的稳定;在电池仓210内部压力和温度异常时,通过泄压机构216释放内部压力或温度,保证储能预制箱100的安全性能。
根据本申请的一些实施例,可选地,电池仓210包括多个第一壁211,多个第一壁211围合形成容纳电池的容纳空间。
电池仓210的第一壁211中设置有保温件220,能够对电池仓210起到保温作用,在一些实施方式中,电池仓210的第一壁211上还可以设置泄压机构216,以提高储能预制箱100的安全性能。因此,可以考虑将电池仓210中的多个壁设置为第一壁211,例如,可以将围合形成电池仓210的壁均设置为第一壁211。多个第一壁211围合形成容纳电池的容纳空间,可以对容纳于容纳空间的电池起到保温隔热的作用。
这样可以在多个方向上提高电池仓210的保温性能,使得电池仓210中的电池始终处于较为稳定的运行环境,有利于提高电池寿命。
根据本申请的一些实施例,可选地,第一壁211的远离电池仓210的一侧还设置有第二壁214,第一壁211与第二壁214之间设置有波形板215。
图7示出了本申请实施例公开的储能预制箱100的一部分的结构示意图,从图7中可以看出,第二壁214设置于第一壁211的远离电池仓210的一侧,也可以看作设置于第二子壁213的远离电池仓210的一侧。第二壁214与第一壁211之间具有一定空间,在该空间中设置有波形板215。
波形板215是指将钢板加工为连续梯形的板,可以在提高板的刚性的同时减轻板的重量。波形板215具有较强的吸收碰撞能量的能力,在储能预制箱100的运输过程中不易使容纳于其中的电池受损。
波形板215能够提高第一壁211的强度,为第一壁211起到支撑作用,使得第一壁211不容易被破坏,在保证储能预制箱100的保温性能的同时,还可以提高储能预制箱100的安全性能。
本申请还提供了一种换电站,包括上述实施例中的储能预制箱100。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (14)

  1. 一种储能预制箱,其特征在于,包括:
    电池仓(210),包括第一壁(211),所述第一壁(211)具有空腔结构;
    保温件(220),设置于所述空腔结构内,所述保温件(220)包括至少一层保温袋(221),所述保温袋(221)中填充有填充物,至少一层所述保温袋(221)沿第一方向(T)排列,每层所述保温袋(221)沿垂直于第一方向(T)的平面延伸,至少一层所述保温袋(221)用于阻隔所述第一方向(T)上的热量传输,所述第一方向(T)为所述第一壁(211)的厚度方向。
  2. 根据权利要求1所述的储能预制箱,其特征在于,所述保温件(220)与所述空腔结构的平行于所述第一方向(T)的内表面连接。
  3. 根据权利要求2所述的储能预制箱,其特征在于,所述保温件(220)还与所述空腔结构的垂直于所述第一方向(T)的内表面连接。
  4. 根据权利要求1至3中任一项所述的储能预制箱,其特征在于,至少一层所述保温袋(221)中的每层保温袋(221)包括多个沿第二方向(L)排列的所述保温袋(221),所述第二方向(L)垂直于所述第一方向(T)。
  5. 根据权利要求4所述的储能预制箱,其特征在于,至少一层所述保温袋(221)中的每层保温袋(221)包括多个沿第三方向(W)排列的所述保温袋(221),所述第一方向(T)、所述第二方向(L)和所述第三方向(W)两两垂直。
  6. 根据权利要求4或5所述的储能预制箱,其特征在于,多个所述保温袋(221)形状相同,每个所述保温袋(221)沿第一方向(T)的尺寸小于沿第二方向(L)的尺寸。
  7. 根据权利要求1至6中任一项所述的储能预制箱,其特征在于,所述保温袋(221)为气袋,所述填充物为气体。
  8. 根据权利要求7所述的储能预制箱,其特征在于,所述保温袋 (221)中填充有第一气体,所述保温袋(221)与所述空腔结构之间填充有第二气体,所述第一气体与所述第二气体不同。
  9. 根据权利要求1至8中任一项所述的储能预制箱,其特征在于,所述保温袋(221)的形状为圆柱体。
  10. 根据权利要求1至9中任一项所述的储能预制箱,其特征在于,所述第一壁(211)上设置有泄压机构。
  11. 根据权利要求10所述的储能预制箱,其特征在于,所述第一壁(211)包括第一子壁(212)和第二子壁(213),所述第一子壁(212)为所述电池仓(210)的内壁,所述第二子壁(213)平行于所述第一子壁(212),且位于所述第一子壁(212)的远离所述电池仓(210)内部的一侧,所述泄压机构为所述第一子壁(212)和/或所述第二子壁(213)上设置的薄弱部。
  12. 根据权利要求1至11中任一项所述的储能预制箱,其特征在于,所述电池仓(210)包括多个所述第一壁(211),多个所述第一壁(211)围合形成容纳所述电池的容纳空间。
  13. 根据权利要求1至12中任一项所述的储能预制箱,其特征在于,所述第一壁(211)的远离所述电池仓的一侧还设置有第二壁(214),所述第一壁(211)与所述第二壁(214)之间设置有波形板(215)。
  14. 一种换电站,其特征在于,包括:根据权利要求1至13中任一项所述的储能预制箱。
PCT/CN2023/086094 2022-04-14 2023-04-04 一种储能预制箱和换电站 WO2023197907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220862317.6U CN217182277U (zh) 2022-04-14 2022-04-14 一种储能预制箱和换电站
CN202220862317.6 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023197907A1 true WO2023197907A1 (zh) 2023-10-19

Family

ID=82709979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086094 WO2023197907A1 (zh) 2022-04-14 2023-04-04 一种储能预制箱和换电站

Country Status (2)

Country Link
CN (1) CN217182277U (zh)
WO (1) WO2023197907A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217182277U (zh) * 2022-04-14 2022-08-12 宁德时代新能源科技股份有限公司 一种储能预制箱和换电站
WO2024065973A1 (zh) * 2022-09-30 2024-04-04 宁德时代新能源科技股份有限公司 储能装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202268394U (zh) * 2011-09-28 2012-06-06 比亚迪股份有限公司 一种具有绝热装置的电池包
CN206194819U (zh) * 2016-11-14 2017-05-24 浙江超威创元实业有限公司 一种具有隔热保温功能的电池组箱体
CN211017322U (zh) * 2019-12-09 2020-07-14 深圳市拓邦锂电池有限公司 一种移动箱式储能电站
CN211167136U (zh) * 2019-10-14 2020-08-04 童张玉瑶 一种超轻保温板
CN112103443A (zh) * 2020-11-13 2020-12-18 江苏时代新能源科技有限公司 箱体、电池、用电设备及电池的制造方法
CN113482428A (zh) * 2021-06-30 2021-10-08 华为技术有限公司 预制模块单元和数据中心
CN215869626U (zh) * 2021-06-03 2022-02-18 河南锂动电源有限公司 一种工程用动力锂电池组箱体
CN217182277U (zh) * 2022-04-14 2022-08-12 宁德时代新能源科技股份有限公司 一种储能预制箱和换电站

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202268394U (zh) * 2011-09-28 2012-06-06 比亚迪股份有限公司 一种具有绝热装置的电池包
CN206194819U (zh) * 2016-11-14 2017-05-24 浙江超威创元实业有限公司 一种具有隔热保温功能的电池组箱体
CN211167136U (zh) * 2019-10-14 2020-08-04 童张玉瑶 一种超轻保温板
CN211017322U (zh) * 2019-12-09 2020-07-14 深圳市拓邦锂电池有限公司 一种移动箱式储能电站
CN112103443A (zh) * 2020-11-13 2020-12-18 江苏时代新能源科技有限公司 箱体、电池、用电设备及电池的制造方法
CN215869626U (zh) * 2021-06-03 2022-02-18 河南锂动电源有限公司 一种工程用动力锂电池组箱体
CN113482428A (zh) * 2021-06-30 2021-10-08 华为技术有限公司 预制模块单元和数据中心
CN217182277U (zh) * 2022-04-14 2022-08-12 宁德时代新能源科技股份有限公司 一种储能预制箱和换电站

Also Published As

Publication number Publication date
CN217182277U (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2023197907A1 (zh) 一种储能预制箱和换电站
US11870094B2 (en) Battery module, battery rack comprising same, and power storage device
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023029504A1 (zh) 电池的箱体、电池和用电装置
KR102329343B1 (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
US20220123430A1 (en) Battery, power consumption device, and method and device for producing battery
US20230089208A1 (en) Battery, power consumption apparatus, and method and apparatus for producing battery
US20240222758A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
CN216120503U (zh) 电池单体、电池及用电装置
US20230011587A1 (en) Battery pack having thermal diffusion prevention structure between battery modules
EP4024573A1 (en) Battery pack having heat diffusion preventing structure applied between battery modules
CN214898695U (zh) 电池和用电装置
CN215578745U (zh) 一种定向隔热的单体电池
CN216120483U (zh) 一种隔热装置、电池及用电设备
WO2022133848A1 (zh) 电池包及无人机
KR20230039122A (ko) 열폭주 전이 방지 성능이 향상된 배터리 모듈
CN216085130U (zh) 电池模组及车辆
CN216054922U (zh) 一种电化学装置以及应用其的用电装置
CN217426902U (zh) 电池及用电装置
CN220358144U (zh) 电池及用电设备
KR102555927B1 (ko) 배터리, 전기 설비, 배터리의 제조 방법 및 제조 설비
WO2023133791A1 (zh) 储能集装箱、制备储能集装箱的方法和装置
WO2022204884A1 (zh) 一种电化学装置以及应用其的用电装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787552

Country of ref document: EP

Kind code of ref document: A1