WO2024065973A1 - 储能装置 - Google Patents

储能装置 Download PDF

Info

Publication number
WO2024065973A1
WO2024065973A1 PCT/CN2022/131208 CN2022131208W WO2024065973A1 WO 2024065973 A1 WO2024065973 A1 WO 2024065973A1 CN 2022131208 W CN2022131208 W CN 2022131208W WO 2024065973 A1 WO2024065973 A1 WO 2024065973A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage device
bottom plate
baffle
box
Prior art date
Application number
PCT/CN2022/131208
Other languages
English (en)
French (fr)
Inventor
刘越
彭浩然
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/123362 external-priority patent/WO2024065716A1/zh
Priority claimed from PCT/CN2022/123432 external-priority patent/WO2024065740A1/zh
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280055745.0A priority Critical patent/CN118120100A/zh
Priority to CN202320742804.3U priority patent/CN220693438U/zh
Priority to PCT/CN2023/129957 priority patent/WO2024099271A1/zh
Publication of WO2024065973A1 publication Critical patent/WO2024065973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells

Definitions

  • the present application relates to the technical field of energy storage devices, and in particular to an energy storage device.
  • the present application provides an energy storage device, which facilitates improving assembly efficiency.
  • the present application provides an energy storage device, comprising: a box body having a battery compartment; at least one column of batteries disposed in the battery compartment, each column of batteries comprising a plurality of batteries arranged along the height direction of the box body; and at least one control box disposed in the battery compartment.
  • the battery and control box of the energy storage device are both arranged in the battery compartment of the box body, and the overall structure is simple. Compared with the structure in which the battery and the control box are arranged in separate compartments, the structure of the energy storage device can be simplified, thereby improving the assembly efficiency of the overall energy storage device.
  • the multiple batteries in the battery compartment are arranged along the height direction of the box body, which is convenient for battery assembly, wiring and other operations, thereby further improving the assembly efficiency; in addition, the multiple batteries are arranged along the height direction of the box body, and the wiring harness arrangement of the multiple batteries is shorter, which can reduce the problem of space utilization caused by the excessive length of the wiring harness.
  • the overall energy storage device improves space utilization while simplifying the structure and improving assembly efficiency.
  • each of the control boxes is electrically connected to a column of batteries, and the control box is located below the corresponding column of batteries.
  • the energy storage device also includes: a baffle, which is arranged between the control box and the at least one column of batteries to protect the control box.
  • control box is located below the corresponding battery, which further improves the convenience of operation and maintenance of the control box, improves the assembly and wiring efficiency of the control box, and thus further improves the overall assembly efficiency of the energy storage device.
  • a baffle is provided between the control box and the battery to prevent liquid (such as condensate), pollutants, dust and other impurities in the energy storage box from falling onto the control box, which plays a good protective role for the control box, improves the performance stability of the control box, and thus improves the performance stability of the energy storage device.
  • the projection of the baffle at least partially covers the control box.
  • the baffle is located above the control box, and the baffle at least partially covers the control box, so that the baffle covers and protects the control box, thereby reducing the possibility of impurities falling into the control box and improving the protective effect of the baffle.
  • the projection of the baffle completely covers the control box.
  • the projection of the baffle completely covers the control box, that is, the control box is completely located within the covering range of the baffle, which is conducive to fully exerting the protective effect of the baffle and further improving the performance stability of the control box.
  • the energy storage device also includes a first bracket, which is disposed in the battery compartment and connected to the box body, the first bracket is configured to carry the battery, and the length of the baffle is smaller than the length of the first bracket.
  • a first bracket is arranged in the box body, which is conducive to improving the convenience of battery installation and fixation, improving the battery assembly efficiency and improving the reliability of battery fixation.
  • the length of the baffle is less than the length of the first bracket, which can reduce the weight and size of the baffle, reduce material costs and facilitate weight reduction of the energy storage device.
  • the baffle includes a first surface facing the battery, and the first surface is inclined relative to the height direction.
  • the first surface of the baffle facing the battery i.e., the upper surface of the baffle along the height direction of the energy storage box
  • impurities such as liquid falling on the first surface
  • the first surface of the baffle facing the battery is inclined, and impurities such as liquid falling on the first surface can slide from the lower edge of the first surface to the bottom of the box under the action of gravity, so as to be centrally processed at the bottom of the box or discharged from the energy storage box in time, reducing the risk of impurities (especially liquids) accumulating on the baffle, thereby alleviating the problem of moisture in the box caused by the accumulation of liquid on the baffle and re-evaporation due to heat, which is conducive to keeping the box dry.
  • the angle between the first surface and the reference plane is ⁇ , satisfying 0° ⁇ 30°, and the height direction is perpendicular to the reference plane.
  • the angle between the first surface and the reference plane perpendicular to the height direction of the energy storage box is greater than zero, so that the first surface can be tilted relative to the height direction of the energy storage box, thereby improving the smoothness and timeliness of the baffle drainage; at the same time, if the inclination angle of the baffle is too large, under the premise of ensuring the coverage area of the baffle on the control box, the structure of the baffle needs to be enlarged, and the space occupied by the baffle along the height direction of the energy storage box will also be greatly increased, which is not conducive to improving the space utilization of the energy storage box, and thus is not conducive to improving the energy density of the energy storage device; controlling the angle between the first surface and the reference plane within a range greater than zero and less than 30° can improve the energy density of the energy storage device while improving the smoothness and timeliness of the baffle drainage.
  • the angle between the first surface and the reference plane perpendicular to the height direction of the energy storage box is controlled between 0.5° and 15°, which can further improve the smoothness and timeliness of liquid discharge; at the same time, it is beneficial to further improve the space utilization of the energy storage box, thereby improving the energy density of the energy storage device.
  • the energy storage device includes: a first limit member and a second limit member, which are arranged at intervals along the height direction and connected to the box body; wherein the baffle is inserted between the first limit member and the second limit member.
  • a first limit member and a second limit member are arranged in the box body at intervals along the height direction of the box body, and the baffle is inserted between the first limit member and the second limit member.
  • the first limit member and the second limit member cooperate with each other to limit the relative position of the baffle along the height direction, thereby limiting the baffle in the box body and reducing the possibility of the baffle being out of the installation position.
  • the plug-in method requires little installation space and is easy to operate, which is conducive to improving the convenience and efficiency of assembly of the energy storage device.
  • a projection of the first limiting member on the baffle and a projection of the second limiting member on the baffle are staggered with each other.
  • the first limit member and the second limit member are staggered with each other, which can improve the stability of the first limit member and the second limit member in limiting the baffle and reduce the extension length of the first limit member and the second limit member, saving costs and facilitating disassembly and assembly operations.
  • the energy storage device also includes a second bracket, which is arranged in the battery compartment and connected to the box body, the second bracket is configured to carry the control box, and the first limit member and the second limit member are connected to the second bracket.
  • a second bracket is arranged inside the box body, which is beneficial to improving the convenience of installing and fixing the control box, improving the assembly efficiency of the control box and improving the reliability of fixing the control box; the first limit member and the second limit member are integrated in the second bracket, and the structural integration is strong, which can further simplify the assembly process of the energy storage device, reduce the assembly difficulty, and improve the assembly efficiency of the energy storage device.
  • the energy storage device further includes a fastener, and the baffle is detachably connected to the box body via the fastener.
  • the baffle and the box body are connected by fasteners, which can further improve the relative position stability of the baffle; at the same time, its fixing method is simple and easy to disassemble and assemble, which is conducive to improving the assembly efficiency of the overall energy storage device.
  • the baffle includes a baffle body and a first extension portion, the baffle body is inserted between the first limit member and the second limit member, and the first extension portion extends from the edge of the baffle body;
  • the energy storage device also includes a second bracket, the second bracket is arranged in the battery compartment and connected to the box body, the second bracket is configured to carry the control box, the second bracket includes a bracket body and a second extension portion, and the second extension portion extends from the edge of the bracket body; wherein, the first extension portion and the second extension portion overlap each other and are detachably connected by the fastener.
  • the baffle is provided with a first extension portion
  • the second bracket is provided with a second extension portion.
  • the first extension portion and the second extension portion are connected to each other, so as to fix the relative position relationship between the baffle and the second bracket, which is conducive to further improving the convenience of assembly operation and thus improving assembly efficiency.
  • the baffle includes a substrate and a first thermal insulation layer stacked along the height direction.
  • the first thermal insulation layer can reduce the temperature difference between the substrate and the internal environment of the box, and play a role in heat preservation of the substrate, thereby reducing the amount of condensation water generated on the substrate, thereby reducing the risk of condensation water generated on the substrate dripping onto the control box and causing the control box to become damp, which is beneficial to further improve the performance of the control box.
  • the first thermal insulation layer is located on a side of the substrate facing the control box.
  • the first thermal insulation layer is located on the side of the substrate facing the control box, which can further reduce the possibility of condensation water generating on the side of the baffle facing the control box; at the same time, even if a small amount of condensation water is generated, the first thermal insulation layer can assist in absorbing at least part of the condensation water, which is beneficial to further reduce the risk of moisture in the control box.
  • the thermal conductivity of the first thermal insulation layer is T1, satisfying T1 ⁇ 0.05W/m ⁇ K.
  • the thermal conductivity of the first thermal insulation layer is less than or equal to 0.05 W/m ⁇ K, which is beneficial to improving the thermal insulation performance of the first thermal insulation layer, thereby improving the thermal insulation effect of the first thermal insulation layer on the substrate and reducing the possibility of condensation water forming on the substrate.
  • each of the control boxes is electrically connected to a column of batteries, and the control box is located above or below the corresponding column of batteries. Along the height direction, the control box directly faces the batteries adjacent to it.
  • control box directly faces the battery adjacent to it, eliminating the isolation layer between the control box and the battery in the traditional energy storage device, thereby simplifying the structure of the energy storage device, further improving the assembly process of the energy storage device, and improving the assembly efficiency of the energy storage device.
  • the box body includes a bottom wall, and the bottom wall includes a second thermal insulation layer.
  • the second heat insulation layer is arranged on the bottom wall of the box body, which can play a good role in heat preservation for the battery and control box in the box body, which is beneficial to improve the working performance of the battery and control box in a low temperature environment.
  • the second heat insulation layer is arranged on the bottom wall of the box body, which can prevent the second heat insulation layer from occupying the internal space of the battery compartment, which is beneficial to improve the energy density of the energy storage device.
  • the bottom wall further includes a first bottom plate and a second bottom plate arranged opposite to each other along the height direction, and the second thermal insulation layer is arranged between the first bottom plate and the second bottom plate.
  • the second thermal insulation layer is clamped between the first bottom plate and the second bottom plate, and the second thermal insulation layer plays a role in heat preservation for the box body.
  • the first bottom plate and the second bottom plate not only improve the structural strength of the box body, but also protect the second thermal insulation layer, thereby reducing the problem of insulation failure caused by the second thermal insulation layer being exposed to the outside due to contamination, soaking, and damage, and improving the thermal insulation effect of the second thermal insulation layer.
  • the second bottom plate is located below the first bottom plate, and at least a portion of the first bottom plate is inclined relative to the height direction.
  • At least part of the first bottom plate is inclined relative to the height direction, and impurities (especially liquid) falling on the first bottom plate can gather to a lower position in the height direction under the action of their own gravity, which is convenient for collecting and discharging impurities.
  • the bottom wall also includes: a first side beam and a second side beam, which are spaced apart along a first direction; a middle beam, which is arranged between the first side beam and the second side beam, the first side beam, the second side beam and the middle beam all extend along a second direction, and the first direction, the second direction and the height direction are perpendicular to each other; the first bottom plate includes a first sub-bottom plate and a second sub-bottom plate, the first sub-bottom plate connects the first side beam and the middle beam, and the second sub-bottom plate connects the second side beam and the middle beam.
  • the first side beam, the second side beam and the middle beam form the main load-bearing beams of the box body, and the first bottom plate is divided into two smaller pieces, which reduces the difficulty of assembling the first bottom plate, and is conducive to further improving the assembly efficiency of the energy storage device.
  • the first side beam, the second side beam and the middle beam divide the space between the first bottom plate and the second bottom plate into two sub-spaces, which is convenient for filling the second insulation layer in the cavity, and the first sub-bottom plate and the second sub-bottom plate respectively encapsulate the second insulation layer filled between the middle beam and the first side beam and the second insulation layer filled between the middle beam and the second side beam, thereby improving the sealing of the second insulation layer encapsulated between the first bottom plate and the second bottom plate.
  • the first sub-bottom plate gradually tilts downward.
  • the first sub-bottom plate gradually tilts downward, and impurities such as liquid that fall on the first sub-bottom plate gather toward the second sub-bottom plate, which facilitates centralized treatment of the impurities.
  • the upper end of the first side beam exceeds the upper end of the middle beam
  • the first sub-bottom plate connects the upper end of the first side beam and the upper end of the middle beam
  • the upper ends of the first side beam and the middle beam are arranged at different heights, and the first sub-bottom plate is connected to the upper ends of the first side beam and the middle beam to realize the inclined arrangement of the first sub-bottom plate, and the installation of the first sub-bottom plate plays a role in preventing errors, further improving the assembly efficiency.
  • the first sub-bottom plate is connected to the upper ends of the first side beam and the middle beam, which can prevent a large fault from forming between the upper surface of the first sub-bottom plate and the middle beam, thereby reducing the possibility of impurities of the first sub-bottom plate accumulating near the middle beam, and improving the convenience of cleaning impurities in the box.
  • the bottom wall is provided with a drainage hole penetrating the second sub-bottom plate, the second heat insulation layer and the second bottom plate, and the drainage hole is used to discharge the liquid in the box body.
  • a drainage hole is provided at the second sub-bottom plate of the bottom wall, and liquid can be discharged from the box body through the drainage hole of the second sub-bottom plate, which is beneficial to keep the internal environment of the box body dry.
  • the upper surface of the second sub-bottom plate is inclined to guide the liquid on the upper surface to the drainage hole.
  • the upper surface of the second sub-bottom plate is inclined, and the liquid flowing to the upper surface can quickly flow to the position of the drainage hole, further improving the timeliness and smoothness of the box body drainage.
  • the bottom wall further includes: a sleeve, which is disposed in the drainage hole and is used to separate the liquid from the second thermal insulation layer.
  • a sleeve is provided in the drainage hole, and the sleeve plays an isolating and protective role for the second insulation layer arranged between the first bottom plate and the second bottom plate, reducing the possibility of liquid discharged from the drainage hole wetting the second insulation layer, thereby improving the thermal insulation effect of the second insulation layer.
  • the bottom wall also includes: a support member, which is arranged between the first bottom plate and the second bottom plate, and along the height direction, the support member and the first bottom plate and the second bottom plate are all spaced apart, and the support member is used to support the second thermal insulation layer.
  • a support member is arranged between the first bottom plate and the second bottom plate, and the support member supports the portion of the second thermal insulation layer filled between the first bottom plate and the second bottom plate, so that the second thermal insulation layer can stably and evenly fill the space between the first bottom plate and the second bottom plate, thereby reducing the total filling amount of the second thermal insulation layer and improving the thermal insulation effect of the second thermal insulation layer.
  • the thermal conductivity of the second thermal insulation layer is T2, satisfying T2 ⁇ 0.05 W/m ⁇ K.
  • the thermal conductivity of the second thermal insulation layer is less than or equal to 0.05 W/m ⁇ K, which is conducive to improving the thermal insulation performance of the second thermal insulation layer, thereby improving the thermal insulation effect of the second thermal insulation layer on the internal environment of the box.
  • the material of the second thermal insulation layer is at least one of polyurethane foam or rock wool.
  • the second heat insulation layer can be made of at least one of polyurethane foam or rock wool, which are mature materials with good thermal insulation effects and strong practicality.
  • the box is a standard container.
  • the box body is a standard container and can be directly transported by container transportation tools without the need for secondary packaging with intermediate devices such as open top cabinets to synthesize standard sizes. It is easy to transport and has strong versatility.
  • the battery compartment has an opening in a first direction, and a battery is disposed in the battery compartment along the first direction.
  • the battery enters the battery compartment through the opening from the first direction.
  • a battery is arranged in the battery compartment, so that the size of the battery in the first direction can be larger.
  • the size of the battery in the first direction can be close to the size of the battery compartment in the first direction, thereby improving the space utilization of the battery compartment in the first direction, and thus making the energy storage device have a higher energy density.
  • a dimension of the battery compartment in the first direction is L1
  • a dimension of the battery in the first direction is L2, satisfying L1 ⁇ 2L2.
  • the ratio of the size L1 of the battery compartment in the first direction to the size L2 of the battery in the first direction satisfies L1 ⁇ 2L2, and the size of the battery in the first direction can be larger to make the space utilization of the battery compartment in the first direction higher.
  • the ratio between the dimension L1 of the battery compartment in the first direction and the dimension L2 of the battery in the first direction satisfies the above range, which can further improve the space utilization of the battery compartment in the first direction, so that the energy storage device can have a higher energy density.
  • 1500mm ⁇ L1 ⁇ 2500mm 1500mm ⁇ L1 ⁇ 2500mm.
  • the size of the battery compartment in the first direction meets the above range, the battery compartment has a larger accommodating space, and the size of the battery in the first direction can be larger, so that the energy storage device can have a higher energy density.
  • 1600 mm ⁇ L1 ⁇ 2400 mm 1600 mm ⁇ L1 ⁇ 2400 mm.
  • the battery compartment can have a larger accommodating space, and on the other hand, the battery compartment occupies less space in the first direction, which is convenient for the layout of the energy storage box.
  • 1500mm ⁇ L2 ⁇ 2500mm 1500mm ⁇ L2 ⁇ 2500mm.
  • the size of the battery in the first direction satisfies the above range, so that the battery matches the size of the battery compartment in the first direction, so that the energy storage device can have a higher energy density.
  • 1600mm ⁇ L2 ⁇ 2400mm 1600mm ⁇ L2 ⁇ 2400mm.
  • the size of the battery in the first direction is more suitable for assembly with the battery compartment, so that the energy storage device can have a higher energy density and can also facilitate the assembly of the battery and other components (such as wiring harnesses).
  • the first direction is the width direction of the box.
  • the first direction is the width direction of the energy storage box
  • the battery compartment has a higher space utilization in the width direction of the energy storage box, so as to improve the overall space utilization of the battery compartment, thereby making the energy storage device have a higher energy density.
  • the length direction of the battery is parallel to the first direction.
  • the length direction of the battery is parallel to the width direction of the energy storage box, and the length of the battery matches the width of the energy storage box, which reduces the difficulty of processing and manufacturing the battery.
  • the box body includes a cabin body and a cabin door, the cabin body has the battery compartment, the cabin door is connected to the cabin body, and the cabin door is used to close the opening of the battery compartment.
  • the hatch closes the opening of the battery compartment so as to isolate the battery in the battery compartment from the outside, thereby protecting the battery.
  • the energy storage device includes multiple columns of batteries, and the multiple columns of batteries are arranged in the battery compartment along the second direction;
  • the control box is provided in plurality, and the multiple control boxes are arranged in the battery compartment along the second direction, each of the control boxes is electrically connected to a corresponding column of batteries and is located above or below the column of batteries, and the second direction is the length direction of the box body.
  • multiple rows of batteries are arranged in the battery compartment, and multiple batteries are arranged in a rectangular array, which makes more rational use of the space in the battery compartment, facilitates the battery compartment to accommodate more batteries, and further improves the space utilization rate of the battery compartment.
  • FIG1 is a schematic diagram of the structure of an energy storage device provided in some embodiments of the present application.
  • FIG2 is a partial exploded view of an energy storage device provided in some embodiments of the present application.
  • FIG3 is a front view of an energy storage device provided in some embodiments of the present application.
  • FIG4 is a partial enlarged view of the portion A shown in FIG2 ;
  • FIG5 is a schematic diagram of the structure of installing the battery and the control box in the box shown in FIG4;
  • FIG6 is a partial enlarged view of portion B shown in FIG3 ;
  • FIG7 is a side view of the baffle shown in FIG6;
  • FIG8 is a schematic structural diagram of a baffle and a second bracket provided in some embodiments of the present application.
  • FIG9 is a schematic diagram of a structure in which a baffle is connected to a first bracket according to some embodiments of the present application.
  • FIG10 is a front view of an energy storage device provided in some other embodiments of the present application.
  • FIG11 is a partial enlarged view of portion C shown in FIG10 ;
  • FIG12 is a partial side cross-sectional view of the box of the energy storage device shown in FIG3 ;
  • FIG13 is a top view of the box of the energy storage device shown in FIG3 ;
  • FIG14 is a top cross-sectional view of an energy storage device provided in some embodiments of the present application.
  • FIG15 is a schematic diagram of a battery provided in some embodiments of the present application.
  • FIG. 16 is a front view of an energy storage device provided in some other embodiments of the present application.
  • the term “plurality” refers to more than two (including two).
  • the energy storage device is usually a cabinet structure, which includes a box, multiple batteries and a control box.
  • the interior of the box has compartments for placing batteries and compartments for placing control boxes. Improving the assembly efficiency of the energy storage device is conducive to improving the output of the energy storage device, thereby meeting the wide market demand.
  • the inventors have found that the structure of the box, the arrangement of the batteries, etc. directly affect the assembly efficiency of the energy storage device. If the box structure is complex, the box assembly process will be correspondingly cumbersome and the assembly will take longer. At the same time, the arrangement of the batteries in the box directly affects the convenience of battery wiring and wiring, and also affects the grouping efficiency of the energy storage device.
  • the energy storage device includes a box body, and the box body has a battery compartment; the battery and the control box are arranged in the battery compartment, and the batteries are arranged in a row along the height direction of the box body.
  • the battery and control box of the energy storage device are both arranged in the battery compartment of the box body, and the overall structure is simple. Compared with the structure in which the battery and control box are arranged in separate compartments, the structure of the energy storage device can be simplified, thereby improving the assembly efficiency of the overall energy storage device. At the same time, the multiple batteries in the battery compartment are arranged along the height direction of the box body, which is convenient for battery assembly, wiring and other operations, thereby further improving the assembly efficiency.
  • the energy storage device disclosed in the embodiments of the present application is used to store energy.
  • a device that needs to use electrical energy requires a device for storing electrical energy.
  • the energy storage device for storing electrical energy can be a household energy storage device, an electric cabinet, an energy storage container, etc.
  • Figure 1 is a schematic diagram of the structure of an energy storage device provided in some embodiments of the present application
  • Figure 2 is a partial exploded view of an energy storage device provided in some embodiments of the present application
  • Some embodiments of the present application provide an energy storage device 100, the energy storage device 100 includes a box 10, at least one row of batteries 20 and at least one control box 30, the box 10 has a battery compartment 13. At least one row of batteries 20 is arranged in the battery compartment 13, and each row of batteries 20 includes a plurality of batteries 20 arranged along the height direction of the box 10.
  • At least one control box 30 is disposed in the battery compartment 13 .
  • the box 10 provides a storage space for the battery 20 and the control box 30.
  • the box 10 may be a rectangular parallelepiped structure.
  • the height direction of the box 10 extends along the Z direction shown in the figure, the length direction of the box 10 extends along the Y direction, and the width direction of the box 10 extends along the X direction.
  • the box 10 may be a prefabricated energy storage box, an energy storage container, etc.
  • the box 10 may include a body and a cover.
  • the body may be a hollow structure with an opening 131 at one end.
  • the cover is connected to the body and is used to close the open end of the body.
  • the body and the cover together form a battery compartment 13.
  • the body may also be a hollow structure with openings at both ends. Two groups of covers are provided, and the two groups of covers cover the two open ends of the body respectively.
  • the size of the box 10 can be adaptively changed according to the capacity requirements.
  • the box 10 can be an energy storage container.
  • the size of the container can be an internationally standard size, or it can be customized to a non-standard size according to the constraints such as the size of the battery 20.
  • the box 10 can be made of steel, aluminum, alloy, etc., which have a certain structural strength and weight bearing capacity.
  • Multiple batteries 20 are arranged in order in the battery compartment 13 along the height direction of the box 10 (in actual applications, the height direction of the box 10 can be perpendicular to the fixing plane or the bearing plane of the energy storage device 100, and the height direction extends along the Z direction in the figure).
  • only one column of batteries 20 may be arranged in the battery compartment 13, or two, three or even more columns of batteries 20 may be arranged.
  • the multiple columns of batteries 20 may be arranged along the length direction of the box body 10 (the Y direction shown in the figure) or along the width direction of the box body 10 (the X direction shown in the figure), or may be arranged in a matrix in the battery compartment 13.
  • the control box 30 is a box-type structure with control components, which may be a PLC (Programmable Logic ControllXr).
  • the control box 30 is used to be electrically connected to one or more batteries 20.
  • the control box 30 can also be connected to the master control system. Specifically, the control box 30 can read the voltage, current, temperature and other data of the battery 20 during operation, control the switch state of the battery 20, etc.
  • control boxes 30 can be only one, and the one control box 30 is electrically connected to all batteries 20 in the battery compartment 13. Multiple control boxes 30 can also be provided, and each control box 30 can be electrically connected to some batteries 20 in the battery compartment 13.
  • the control box 30 may be disposed above the plurality of batteries 20 arranged in a row, or may be disposed below the plurality of batteries 20 arranged in a row, or may be inserted between the plurality of batteries 20 arranged in a row.
  • the battery 20 and the control box 30 of the energy storage device 100 are both arranged in the battery compartment 13 of the box body 10, and the overall structure is simple. Compared with the structure in which the battery 20 and the control box 30 are arranged in separate compartments, the structure of the energy storage device 100 can be simplified, thereby improving the assembly efficiency of the overall energy storage device 100.
  • the multiple batteries 20 in the battery compartment 13 are arranged along the height direction of the box body 10, which is convenient for the assembly and wiring of the batteries 20, thereby further improving the assembly efficiency; in addition, the multiple batteries 20 are arranged along the height direction of the box body 10, and the wiring harness arrangement of the multiple batteries 20 is shorter, which can reduce the problem of space utilization caused by the excessive length of the wiring harness.
  • the overall energy storage device 100 improves space utilization while simplifying the structure and improving assembly efficiency.
  • Figure 3 is a front view of the energy storage device provided in some embodiments of the present application
  • Figure 4 is a partial enlarged view of part A shown in Figure 2
  • Figure 5 is a structural schematic diagram of batteries and a control box loaded in a box body as shown in Figure 4
  • Figure 6 is a partial enlarged view of part B shown in Figure 3
  • Figure 7 is a side view of the baffle shown in Figure 6; according to some embodiments of the present application, each control box 30 is electrically connected to a column of batteries 20, and the control box 30 is located below the corresponding column of batteries 20, and the energy storage device 100 also includes a baffle 40, which is arranged between the control box 30 and at least one column of batteries 20 to protect the control box 30.
  • the number of control boxes 30 is equal to the number of columns of batteries 20 , and the control box 30 is connected to each column of batteries 20 , and the control box 30 is disposed below a column of batteries 20 connected to the control box 30 .
  • the baffle 40 is disposed between the control box 30 and the battery 20 located above the control box 30. Specifically, the baffle 40 is disposed between the control box 30 and a battery 20 adjacent to the control box 30.
  • the baffle 40 is generally a plate-shaped structure, and the baffle 40 can be made of metal material, or can be made of materials such as plastic.
  • the baffle 40 is used to protect the control box 30.
  • the baffle 40 can prevent impurities (such as liquid, dust, etc.) above the control box 30 from falling on the main control box and affecting the performance of the main control box.
  • impurities such as liquid, dust, etc.
  • condensation water is easily generated in the box body 10 due to temperature changes.
  • the condensation water dripping on the main control box is easy to cause the main control box to get damp, thereby affecting the performance of the main control box.
  • the control box 30 is located below the corresponding battery 20, which further improves the convenience of operation and maintenance of the control box 30, improves the assembly and wiring efficiency of the control box 30, and thus further improves the overall assembly efficiency of the energy storage device 100.
  • a baffle 40 is provided between the control box 30 and the battery 20, which can prevent liquid (such as condensate), pollutants, dust and other impurities located above the control box 30 in the energy storage box 10 from falling into the control box 30, plays a good protective role for the control box 30, improves the performance stability of the control box 30, and thus improves the performance stability of the energy storage device 100.
  • the projection of the baffle 40 at least partially covers the control box 30 .
  • the baffle 40 is disposed above the control box 30, and along the height direction of the box body 10 (Z direction shown in FIG. 7 ), the projection of the baffle 40 on the control box 30 can cover a portion of the control box 30, for example, the projection of the baffle 40 on the control box 30 can only cover the area of the control box 30 that is easy for impurities to enter.
  • the projection of the baffle 40 on the control box 30 can also completely cover the control box 30.
  • the baffle 40 is located above the control box 30 .
  • the baffle 40 at least partially covers the control box 30 .
  • the baffle 40 covers and protects the control box 30 , thereby reducing the possibility of impurities falling into the control box 30 and improving the protective effect of the baffle 40 .
  • the projection of the baffle 40 completely covers the control box 30 .
  • the projection of the baffle 40 on the control box 30 completely covers the control box 30, and the control box 30 is entirely included in the shielding range of the baffle 40 along the Z direction.
  • control box 30 being completely located within the covering range of the baffle 40 is conducive to fully exerting the protective effect of the baffle 40 and further improving the performance stability of the control box 30.
  • the energy storage device 100 also includes a first bracket 50, the first bracket 50 is disposed in the battery compartment 13 and connected to the box body 10, the first bracket 50 is configured to carry the battery 20, and the length of the baffle 40 is less than the length of the first bracket 50.
  • the first bracket 50 is a component for supporting the battery 20.
  • the first bracket 50 is disposed in the battery compartment 13.
  • the first bracket 50 can be directly connected to the box 10 or connected to other components disposed in the box 10.
  • a support frame 15 is disposed in the box 10, and the first bracket 50 can be connected to the support frame 15 in the box 10.
  • the number of the first brackets 50 can be multiple groups, and the multiple groups of first brackets 50 are distributed in the battery compartment 13.
  • the multiple groups of first brackets 50 can be arranged in the battery compartment 20 at intervals along the height direction of the box body 10 (Z direction in the figure), and each group of first brackets 50 can be used to support at least one battery 20.
  • the first bracket 50 can be a boss connected to the support frame 15.
  • the boss has an upper surface along the height direction.
  • the upper surface of the boss is used to contact the battery 20.
  • the boss supports the battery 20.
  • the boss can be connected to the inner wall of the box body 10 by welding, screwing, etc.
  • the length direction of the first bracket 50 extends along the length direction of the battery 20.
  • the length direction of the battery 20 may extend along the width direction (X direction) of the box 10, and the length of the first bracket 50 also extends along the X direction.
  • the length of the first bracket 50 may be greater than, equal to, or less than the length of the battery 20.
  • the length of the baffle 40 also extends along the X direction.
  • the extension length of the first bracket 50 is greater than the extension length of the baffle 40, and there may be a gap between the opposite ends of the baffle 40 along the X direction and the inner wall of the box 10.
  • a first bracket 50 is provided in the box body 10, which is beneficial to improving the convenience of installing and fixing the battery 20, improving the assembly efficiency of the battery 20 and improving the reliability of fixing the battery 20.
  • the length of the baffle 40 is smaller than the length of the first bracket 50, which can reduce the weight and size of the baffle 40, reduce material costs and facilitate weight reduction of the energy storage device 100.
  • the baffle 40 includes a first surface 43 facing the battery 20 , and the first surface 43 is inclined relative to the height direction.
  • the baffle 40 may have only the first surface 43 as an inclined surface, or the baffle 40 may be a flat plate structure as a whole, and the baffle 40 as a whole is inclined relative to the height direction, so that the first surface 43 is inclined relative to the height direction.
  • the baffle 40 is a flat plate structure as a whole, and the baffle 40 is inclined so that the first surface 43 of the baffle 40 is an inclined surface.
  • the first surface 43 of the baffle 40 can be inclined.
  • the first surface 43 can be gradually inclined downward along any direction perpendicular to the height direction.
  • the first surface 43 can be gradually inclined downward along the length direction of the box 10 (the Y direction shown in the figure), or can be gradually inclined downward along the width direction of the box 10 (the X direction shown in the figure).
  • the baffle is gradually inclined downward along the width direction of the box 10 (the X direction shown in the figure).
  • the first surface 43 of the baffle 40 facing the battery 20 i.e., the upper surface of the baffle 40 along the height direction of the energy storage box 10) is inclined, and impurities such as liquid falling on the first surface 43 can slide from the lower edge of the first surface 43 to the bottom of the box 10 under the action of gravity, so as to be centrally processed at the bottom of the box 10 or discharged from the energy storage box 10 in time, thereby reducing the risk of impurities (especially liquids) accumulating on the baffle 40, thereby alleviating the problem of increased moisture in the box 10 due to the accumulation of liquid on the baffle 40 and re-evaporation due to heat, and is conducive to keeping the box 10 dry.
  • the angle between the first surface 43 and the reference plane W is ⁇ , which satisfies 0° ⁇ 30°, and the height direction is perpendicular to the reference plane W.
  • the first surface 43 is tilted downwardly with respect to the reference plane W at an angle ⁇ , and ⁇ may be any angle greater than 0° and less than or equal to 30°.
  • may be 5°, 10°, 15°, 20°, 25°, 30°, etc.
  • may be 2°.
  • the reference plane W can be a horizontal plane.
  • the angle between the first surface 43 and the reference plane perpendicular to the height direction of the energy storage box 10 is greater than zero, so that the first surface 43 can be tilted relative to the height direction of the energy storage box 10, thereby improving the smoothness and timeliness of the drainage of the baffle 40; at the same time, if the inclination angle of the baffle 40 is too large, under the premise of ensuring the coverage area of the baffle 40 on the control box 30, the structure of the baffle 40 needs to be enlarged, and the space occupied by the baffle 40 along the height direction of the energy storage box 10 of the energy storage box 10 will also be greatly increased, which is not conducive to improving the space utilization rate of the energy storage box 10, and thus is not conducive to improving the energy density of the energy storage device 100; controlling the angle between the first surface 43 and the reference plane to be greater than zero and less than 30° can improve the energy density of the energy storage device 100 while improving the smoothness and timeliness of the drainage of the baffle 40.
  • the first surface 43 is tilted downwardly with respect to the reference plane W at an angle ⁇ , and ⁇ may be any angle greater than 0.5° and less than or equal to 15°.
  • may be 0.5°, 0.8°, 3°, 5°, 8°, 10°, 12°, 15°, etc.
  • may be 1°.
  • the angle between the first surface 43 and the reference plane perpendicular to the height direction of the energy storage box 10 is controlled between 0.5° and 15°, which can further improve the smoothness and timeliness of liquid discharge; at the same time, it is beneficial to further improve the space utilization of the energy storage box 10, thereby improving the energy density of the energy storage device 100.
  • the energy storage device 100 includes a first limit member 70 and a second limit member 80, the first limit member 70 and the second limit member 80 are arranged at intervals along the height direction and connected to the box body 10; wherein the baffle 40 is inserted between the first limit member 70 and the second limit member 80.
  • the first stopper 70 and the second stopper 80 can be in a conventional shape such as a block, a column, a plate, or other special-shaped structures, and a gap is provided between the first stopper 70 and the second stopper 80 to accommodate the insertion of the baffle 40.
  • the first stopper 70 and the second stopper 80 are both in a plate-like structure, and the large surfaces of the first stopper 70 and the second stopper 80 are perpendicular to the height direction (Z direction).
  • the surfaces of the first stopper 70 and the second stopper 80 facing the baffle 40 may be in direct contact with the baffle 40 , or there may be a gap between at least one of them and the baffle 40 .
  • the first limiting member 70 and the second limiting member 80 may be separately provided and respectively connected to the box body 10 , or the first limiting member 70 and the second limiting member 80 may be connected to each other to form an integral structure, and the integral structure is connected to the box body 10 .
  • the first stopper 70 and the second stopper 80 may be directly connected to the box body 10, for example, the first stopper 70 and the second stopper 80 may be directly connected to the inner wall of the box body 10.
  • the first stopper 70 and the second stopper 80 may also be indirectly connected to the box body 10, for example, the first stopper 70 and the second stopper 80 may be connected to a component located in the box body 10, and the component is connected to the box body 10.
  • the setting positions of the first limit member 70 and the second limit member 80 can be flexibly set according to the insertion direction of the baffle 40.
  • the baffle 40 is inserted between the control box 30 and the battery 20 along the Y direction, and the first limit member 70 and the second limit member 80 can be set in two groups.
  • the two groups of first limit members 70 and second limit members are respectively arranged on the opposite sides of the baffle 40 along the X direction; of course, the first limit member 70 and the second limit member 80 can also be arranged at the end of the baffle 40 along the Y direction.
  • one end of the baffle 40 along the Y direction is inserted between the first limit member 70 and the second limit member 80.
  • the baffle 40 can be inserted into the box body 10 from the open end of the body to the direction opposite to the open end of the body. For example, if the open end of the body is located on one side of the body along the X direction, the baffle 40 can be inserted into the box body 10 from the open end of the body along the X direction.
  • two groups of the first stopper 70 and the second stopper 80 can be provided, and the two groups of the first stopper 70 and the second stopper 80 are respectively provided on both sides of the baffle 40 along the Y direction.
  • a first limit member 70 and a second limit member 80 are arranged in the box body 10 at intervals along the height direction of the box body 10, and the baffle 40 is inserted between the first limit member 70 and the second limit member 80.
  • the first limit member 70 and the second limit member 80 cooperate with each other to limit the relative position of the baffle 40 along the height direction, thereby limiting the baffle 40 in the box body 10, reducing the possibility of the baffle 40 being out of the installation position.
  • the plug-in method requires little installation space and is easy to operate, which is conducive to improving the convenience and efficiency of assembly of the energy storage device 100.
  • the projection of the first limiting member 70 on the baffle 40 and the projection of the second limiting member 80 on the baffle 40 are staggered with each other.
  • first stopper 70 and the second stopper 80 are mutually staggered along the first direction.
  • first stopper 70 and the second stopper 80 are disposed on one side of the baffle 40 along the Y direction, and the first stopper 70 and the second stopper 80 are arranged at intervals along the X direction.
  • the first stopper 70 and the second stopper 80 are mutually staggered along the Z direction.
  • the first limit member 70 and the second limit member 80 are staggered with each other, which can improve the stability of the first limit member 70 and the second limit member 80 in limiting the baffle 40 and reduce the extension length of the first limit member 70 and the second limit member 80, saving costs and facilitating disassembly and assembly operations.
  • Figure 8 is a structural schematic diagram of the baffle and the second bracket provided in some embodiments of the present application.
  • the energy storage device 100 also includes a second bracket 60, which is disposed in the battery compartment 13 and connected to the box body 10.
  • the second bracket 60 is configured to carry the control box 30, and the first limit member 70 and the second limit member 80 are connected to the second bracket 60.
  • the second bracket 60 is a component for supporting the control box 30.
  • the second bracket 60 is disposed in the battery compartment 13.
  • the second bracket 60 can be directly connected to the box body 10, or can be connected to other components disposed in the box body 10.
  • a support frame 15 is disposed in the box body 10, and the second bracket 60 can be connected to the inner wall support frame 15 in the box body 10.
  • the number of the second brackets 60 can be multiple groups, and each group of the second brackets 60 can support a corresponding control box 30 .
  • the second bracket 60 can also be implemented in a variety of structures.
  • the second bracket 60 can include a supporting plate 611 and a connecting plate 612.
  • the supporting plate 611 has an upper surface intersecting with the height direction.
  • the connecting plate 612 is connected to the upper surface of the supporting plate 611.
  • the upper surface of the supporting plate 611 is used to contact with the electric control box to support the electric control box.
  • the connecting plate 612 is used to be connected to the support frame 15 by welding, screwing, etc.
  • the first limiting member 70 and the second limiting member 80 can be arranged at one end of the connecting plate 612 away from the supporting plate 611 to limit the baffle 40 above the control box 30 located on the supporting plate 611.
  • one end of the connecting plate 612 away from the supporting plate 611 is provided with two connecting parts 613 with different heights in the height direction, and the first limiting member 70 and the second limiting member 80 are respectively connected to one end of the two connecting parts 613 away from the connecting plate 612.
  • the first limiting member 70 and the second limiting member 80 may be fixed to the second bracket 60 by screwing, riveting, welding, etc., or may be integrally formed with the second bracket 60 .
  • a second bracket 60 is provided in the box body 10, which is beneficial to improving the convenience of installing and fixing the control box 30, improving the assembly efficiency of the control box 30 and improving the reliability of fixing the control box 30; the first limit member 70 and the second limit member 80 are integrated in the second bracket 60, and the structural integration is strong, which can further simplify the assembly process of the energy storage device 100, reduce the assembly difficulty, and improve the assembly efficiency of the energy storage device 100.
  • the energy storage device 100 further includes a fastener 90 , and the baffle 40 is detachably connected to the box body 10 via the fastener 90 .
  • the baffle 40 can be detachably connected to the box body 10 by a fastener 90, so as to limit the position of the baffle 40.
  • the baffle 40 can also be limited by only the first limiter 70 and the second limiter 80.
  • the baffle 40 can be limited by the first limiter 70 and the second limiter 80, and connected to the box body 10 by the fastener 90, so as to further improve the stability of the baffle 40.
  • the position of the fastener 90 can be flexibly set according to the position of the baffle 40.
  • the fasteners can be any conventional connection structures such as bolts, clips, and straps.
  • the box body 10 may include a main body and a cover body, the main body may be a hollow structure with an opening at one end, the cover body is connected to the main body and is used to close the opening of the main body, and the main body and the cover body together form a battery compartment", the baffle 40 may be inserted into the box body 10 from the opening end of the main body to the direction opposite to the opening end of the main body, and the fastener 90 may be located on the side of the baffle 40 facing the opening end of the main body to facilitate disassembly and assembly operations.
  • the baffle 40 may be directly connected to the box body 10 via the fastener 90 , or the baffle 40 may be connected to a structure disposed inside the box body 10 and connected to the box body 10 via the fastener 90 .
  • the energy storage device 100 includes a first bracket 50 , and the first bracket 50 is used to carry the battery 20 ”, the baffle 40 can be connected to the first bracket 50 of the battery 20 adjacent to the control box 30 through the fastener 90 .
  • Figure 9 is a structural schematic diagram of the baffle connected to the first bracket provided in some embodiments of the present application, the first bracket 50 is located above the control box 30, the baffle 40 is arranged between the first bracket 50 and the control box 30, and the baffle 40 is provided with a connecting structure of a fastener 90 (the first extension portion 45 described below) on one side along the X direction.
  • the one side of the first bracket 50 along the X direction can be connected to the adapter bracket 51, and the adapter bracket 51 and the first extension portion 45 are connected by the fastener 90 to connect the baffle 40 to the first bracket 50.
  • the energy storage device 100 includes a second bracket 60, and the second bracket 60 is used to carry the battery 20"
  • the baffle 40 can be connected to the second bracket 60 through the fastener 90.
  • the implementation structure of the baffle 40 connected to the second bracket 60 will be described in detail below.
  • the baffle 40 and the second bracket 60 are connected by a fastener 90 , which can further improve the relative position stability of the baffle 40 ; at the same time, the fixing method is simple and easy to disassemble and assemble, which is beneficial to improving the assembly efficiency of the overall energy storage device 100 .
  • the baffle 40 includes a baffle body 44 and a first extension portion 45, the baffle body 44 is inserted between the first limit member 70 and the second limit member 80, and the first extension portion 45 extends from the edge of the baffle body 44;
  • the energy storage device 100 also includes a second bracket 60, the second bracket 60 is arranged in the battery compartment 13 and connected to the box body 10, the second bracket 60 is configured to carry the control box 30, the second bracket 60 includes a bracket body 61 and a second extension portion 62, and the second extension portion 62 extends from the edge of the bracket body 61; wherein, the first extension portion 45 and the second extension portion 62 overlap each other and are detachably connected by a fastener 90.
  • the setting position of the fastener 90 can be adaptively set according to the insertion direction of the baffle 40 and the structure of the second bracket.
  • one end of the box body 10 along the X direction is an open end
  • the first extension portion 45 is located on one side of the baffle body 44 along the X direction and facing the open end
  • the first extension portion 45 is a plate-like structure
  • the large surface of the first extension portion 45 is perpendicular to the Y direction.
  • the second bracket 60 includes a supporting plate 611 and a connecting plate 612.
  • the connecting plate 612 is connected to the upper surface of the supporting plate 611.
  • the supporting plate 611 is used to support the electric control box.
  • the connecting plate 612 is screwed to the box body 10 to fix the second bracket 60.
  • Each electric control box is supported by two second brackets 60, and the two second brackets 60 are located on opposite sides of the control box 30 along the Y direction.
  • Each second bracket 60 is provided with a first limiting member 70 and a second limiting member 80.
  • the first limiting member 70 and the second limiting member 80 are arranged at one end of the connecting plate 612 away from the supporting plate 611 to limit the baffle 40 above the control box 30 located on the supporting plate 611.
  • a second extension portion 62 is provided on one side of the connecting plate 612 facing the main body opening 131.
  • the second extension portion 62 is also plate-shaped and overlaps with the first extension portion 45 along the Y direction.
  • the fastener 90 passes through the first extension portion 45 and the second extension portion 62 to connect the two.
  • each second bracket 60 is provided with a second extension portion 62
  • the baffle 40 can also be provided with two first extension portions 45, and the two first extension portions 45 and the two second extension portions 62 can be connected one by one.
  • a bending portion 6121 may be formed on one side of the connecting plate 612 facing the end of the main body opening 131, and the bending portion 6121 extends along the Y direction.
  • the second extension portion 62 is arranged on the bending portion 6121.
  • the bending portion 6121 can provide a connecting surface for the control box 30.
  • the control box 30 arranged on the second bracket 60 can be connected to the bending portion 6121 by fasteners 90 or other fasteners.
  • the baffle 40 includes a first surface 43 facing the battery 20, and the first surface 43 is inclined relative to the height direction
  • the gap between the first limit member 70 and the second limit member 80 can be staggered with the fastener 90 along the height direction, so that the baffle 40 as a whole can be inclined relative to the height direction.
  • the baffle 40 is provided with a first extension portion 45, and the second bracket 60 is provided with a second extension portion 62.
  • the first extension portion 45 and the second extension portion 62 are connected to each other, so as to fix the relative position relationship between the baffle 40 and the second bracket 60, which is conducive to further improving the convenience of assembly operation, thereby improving assembly efficiency.
  • the baffle 40 includes a substrate 41 and a first heat insulation layer 42 stacked in a height direction.
  • the substrate 41 can be made of a material with a certain structural strength, such as hard plastic, metal, etc.
  • the substrate 41 in order to improve the wear resistance, drop resistance and service life of the baffle 40, can be made of a metal material.
  • the first thermal insulation layer 42 can be made of any material with good thermal insulation performance.
  • the first thermal insulation layer 42 can be made of a thermal insulation material with good water absorption, such as microporous foamed polypropylene, polyurethane and other materials, or directly made of melamine insulation cotton, melamine insulation cotton, acrylic insulation cotton, glass fiber cloth, high silica glass fiber cloth, ceramic fiber cotton, aerogel felt and the like.
  • the baffle 40 includes a baffle body 44 and a first extension portion 45
  • the substrate 41 and the first thermal insulation layer 42 can jointly form the baffle body 44 and be inserted between the first limit member 70 and the second limit member 80 , and the first extension portion 45 can extend from the substrate 41 .
  • the first thermal insulation layer 42 can reduce the temperature difference between the substrate 41 and the internal environment of the box body 10, and play a role in heat preservation for the substrate 41, thereby reducing the amount of condensed water generated on the substrate 41, thereby reducing the risk of condensed water generated on the substrate 41 dripping onto the control box 30 and causing the control box 30 to get damp, which is beneficial to further improve the performance of the control box 30.
  • the first heat insulation layer 42 is located on a side of the substrate 41 facing the control box 30 .
  • the substrate 41 has two opposite surfaces along its thickness direction, one surface faces the control box 30 , and the other surface faces the battery 20 .
  • the first heat insulation layer 42 is disposed on one side of the substrate 41 facing the control box 30 .
  • the first heat-insulating layer 42 may completely cover the substrate 41 , or may partially cover the substrate 41 .
  • the first heat-insulating layer 42 completely covers the surface of the substrate 41 .
  • the first thermal insulation layer 42 is located on the side of the substrate 41 facing the control box 30, which can further reduce the possibility of condensation water being generated on the side of the baffle 40 facing the control box 30; at the same time, even if a small amount of condensation water is generated, the first thermal insulation layer 42 can assist in absorbing at least part of the condensation water, which is beneficial to further reduce the risk of the control box 30 getting damp.
  • the thermal conductivity of the first thermal insulation layer 42 is T1, satisfying T1 ⁇ 0.05 W/m ⁇ K.
  • Thermal conductivity refers to the heat flux under a unit temperature gradient. Specifically, thermal conductivity refers to the amount of heat transferred through an area of 1 square meter under stable heat transfer conditions, when the temperature difference between the two surfaces of a 1 meter thick material is 1 degree (K, ° C). The unit is watt/meter ⁇ degree (W/(m ⁇ K), where K can be replaced by ° C). It can be understood that the larger the thermal conductivity, the better the thermal conductivity of the first thermal insulation layer 42, and vice versa.
  • the thermal conductivity T1 of the first heat insulating layer 42 may be any value less than or equal to 0.05 W/m ⁇ K.
  • T1 may be 0.05 W/m ⁇ K, 0.04 W/m ⁇ K, 0.03 W/m ⁇ K, 0.02 W/m ⁇ K, etc.
  • the thermal conductivity of the first thermal insulation layer 42 is less than or equal to 0.05 W/m ⁇ K, which is beneficial to improving the thermal insulation performance of the first thermal insulation layer 42 , thereby improving the thermal insulation effect of the first thermal insulation layer 42 on the substrate 41 and reducing the possibility of condensation water being generated on the substrate 41 .
  • Figure 10 is a front view of the energy storage device provided in some other embodiments of the present application
  • Figure 11 is a partial enlarged view of part C shown in Figure 10
  • each control box 30 is electrically connected to a column of batteries 20, and the control box 30 is located above or below the corresponding column of batteries 20. Along the height direction, the control box 30 directly faces the battery 20 adjacent to it.
  • a row of batteries 20 arranged in the height direction is electrically connected to the first control box 30, and the control box 30 can be located above or below the row of batteries 20.
  • the outermost battery 20 in the height direction is adjacent to the control box 30.
  • the control box 30 directly faces the battery 20 adjacent thereto, which means that no partition structure such as a partition or a partition is provided between a battery 20 adjacent to the control box 30 and the control box 30 , so that the control box 30 can directly face the battery 20 .
  • the control box 30 directly faces the battery 20 adjacent thereto, eliminating the isolation layer between the control box 30 and the battery 20 in the traditional energy storage device 100, thereby simplifying the structure of the energy storage device 100, further improving and simplifying the assembly process of the energy storage device 100, and improving the assembly efficiency of the energy storage device 100; and facilitating saving of material costs and space in the battery compartment 13.
  • Figure 12 is a partial side cross-sectional view of the box of the energy storage device shown in Figure 3;
  • Figure 13 is a top view of the box of the energy storage device shown in Figure 3.
  • the box 10 includes a bottom wall 14, and the bottom wall 14 includes a second insulation layer 145.
  • the bottom wall 14 is provided with a second heat insulating layer 145, and the second heat insulating layer 145 can be made of any material with good heat insulating performance.
  • the second heat insulating layer 145 can be made of rock wool, asbestos, foam plastic, etc.
  • the second heat insulating layer 145 can be made of rock wool.
  • the second heat insulating layer 145 may be fixed to the outer surface of the bottom wall 14 of the box body 10 by bonding, binding, etc.
  • the bottom wall 14 of the box body 10 may be provided with a filling cavity, and the second heat insulating layer 145 is filled in the filling cavity.
  • the second heat insulation layer 145 is provided on the bottom wall 14 of the box body 10, which can provide good heat preservation for the battery 20 and the control box 30 in the box body 10, and is beneficial to improving the working performance of the battery 20 and the control box 30 in a low temperature environment.
  • the second heat insulation layer 145 is provided on the bottom wall 14 of the box body 10, which can prevent the second heat insulation layer 145 from occupying the internal space of the battery compartment 13, and is beneficial to improving the energy density of the energy storage device 100.
  • the bottom wall 14 further includes a first bottom plate 141 and a second bottom plate 146 arranged opposite to each other in the height direction, and the second thermal insulation layer 145 is arranged between the first bottom plate 141 and the second bottom plate 146 .
  • first bottom plate 141 and the second bottom plate 146 are spaced apart along the height direction of the box body 10 (the Z direction shown in the figure), and a filling cavity for filling the second thermal insulation layer 145 can be formed between the first bottom plate 141 and the second bottom plate 146.
  • the second thermal insulation layer 145 is arranged in the filling cavity, and the first bottom plate 141, the second thermal insulation layer 145 and the second bottom plate 146 form a sandwich-like structure.
  • the second heat insulating layer 145 may be movably disposed between the first bottom plate 141 and the second bottom plate 146 , and the second heat insulating layer 145 may also be fixed between the first bottom plate 141 and the second bottom plate 146 by bonding or the like.
  • the second thermal insulation layer 145 is clamped between the first bottom plate 141 and the second bottom plate 146.
  • the second thermal insulation layer 145 has a heat-insulating effect on the box body 10.
  • the first bottom plate 141 and the second bottom plate 146 not only improve the structural strength of the box body 10, but also protect the second thermal insulation layer 145, thereby reducing the problem of thermal insulation failure caused by the second thermal insulation layer 145 being exposed to the outside due to contamination, soaking, and damage, thereby improving the thermal insulation effect of the second thermal insulation layer 145.
  • the second bottom plate 146 is located below the first bottom plate 141 , and at least a portion of the first bottom plate 141 is tilted relative to the height direction.
  • the second bottom plate 146 is located below the first bottom plate 141 along the height direction of the box body 10
  • the first bottom plate 141 is located above the second bottom plate 146 along the height direction.
  • the upper surface of the first bottom plate 141 can form the inner surface of the box body 10 .
  • the first bottom plate 141 is tilted so that the upper surface of the first bottom plate 141 forms a slope. Impurities such as debris and liquid dropped on the first bottom plate 141 in the box body 10 can slide along the slope of the first bottom plate 141 to facilitate centralized processing of the impurities in the box body 10.
  • the first bottom plate 141 may be inclined in a variety of directions.
  • the first bottom plate 141 may be gradually inclined downward along the Y direction.
  • the first bottom plate 141 may be gradually inclined downward in a direction from one end of the Y direction to the other end.
  • the first bottom plate 141 may also be gradually inclined downward in a direction from two opposite ends of the Y direction to the middle.
  • the first bottom plate 141 may be gradually inclined downward in the X direction.
  • the first bottom plate 141 may be gradually inclined downward in a direction from one end of the X direction to the other end.
  • the first bottom plate 141 may also be gradually inclined downward in a direction from two opposite ends of the X direction to the middle.
  • the first bottom plate 141 may also be inclined in a direction from the edge to the center, so that the first bottom plate 141 forms a structure with a low middle and a high periphery.
  • At least a portion of the first bottom plate 141 is tilted relative to the height direction, so that impurities (especially liquid) falling on the first bottom plate 141 can gather to a lower position in the height direction under the action of their own gravity, which is convenient for collecting and discharging the impurities.
  • the bottom wall 14 also includes: a first side beam 147 and a second side beam 148, which are arranged at intervals along the first direction; a middle beam 149, which is arranged between the first side beam 147 and the second side beam 148, and the first side beam 147, the second side beam 148 and the middle beam 149 all extend along the second direction, and the first direction, the second direction and the height direction are perpendicular to each other; the first bottom plate 141 includes a first sub-bottom plate 142 and a second sub-bottom plate 143, the first sub-bottom plate 142 connects the first side beam 147 and the middle beam 149, and the second sub-bottom plate 143 connects the second side beam 148 and the middle beam 149.
  • the first direction may extend along the X direction in the figure
  • the second direction may extend along the Y direction in the figure
  • the first direction X may be the width direction or the length direction of the box 10
  • the second direction Y is the width direction of the box 10.
  • the first direction X is the width direction of the box 10
  • the second direction Y is the length direction of the box 10.
  • the first direction X is the width direction of the box 10
  • the second direction Y is the length direction of the box 10.
  • the first side beam 147 and the second side beam 148 are arranged opposite to each other along the first direction X, the middle beam 149 is arranged between the first side beam 147 and the second side beam 148, and the first side beam 147, the second side beam 148 and the middle beam 149 are arranged in pairs along the first direction X, and the length directions of the first side beam 147, the second side beam 148 and the middle beam 149 all extend along the second direction Y.
  • the first bottom plate 141 includes a first sub-bottom plate 142 and a second sub-bottom plate 143, the first sub-bottom plate 142 and the second sub-bottom plate 143 are arranged side by side along the first direction X, the first sub-bottom plate 142 connects the first side beam 147 and the middle beam 149, and the second sub-bottom plate 143 connects the second side beam 148 and the middle beam 149.
  • the second heat insulation layer 145 can be arranged between the first sub-bottom plate 142 and the second bottom plate 146 and between the second sub-bottom plate 143 and the second bottom plate 146.
  • the area of the first sub-bottom plate 142, the first side beam 147, the middle beam 149 and the second bottom plate 146 corresponding to the first sub-bottom plate 142 along the height direction can be enclosed to form a filling cavity for filling the second heat insulation layer 145
  • the area of the second sub-bottom plate 143, the second side beam 148, the middle beam 149 and the second bottom plate 146 corresponding to the second sub-bottom plate 143 along the height direction can be enclosed to form another filling cavity for filling the second heat insulation layer 145.
  • the first side beam 147, the second side beam 148 and the middle beam 149 form the main load-bearing beams of the box body 10, and the first bottom plate 141 is divided into two smaller pieces, which reduces the difficulty of assembling the first bottom plate 141, and is conducive to further improving the assembly efficiency of the energy storage device 100.
  • the first side beam 147, the second side beam 148 and the middle beam 149 divide the space between the first bottom plate 141 and the second bottom plate 146 into two sub-spaces, which is convenient for the sub-cavity filling of the second thermal insulation layer 145, and the first sub-bottom plate 142 and the second sub-bottom plate 143 respectively encapsulate the second thermal insulation layer 145 filled between the middle beam 149 and the first side beam 147 and the second thermal insulation layer 145 filled between the middle beam 149 and the second side beam 148, thereby improving the sealing performance of the second thermal insulation layer 145 encapsulated between the first bottom plate 141 and the second bottom plate 146.
  • the first sub-bottom plate 142 gradually tilts downward.
  • the first side beam 147 and the middle beam 149 are arranged at intervals along the first direction X, and the first sub-bottom plate 142 gradually tilts downward along the direction from the first side beam 147 to the middle beam 149.
  • the upper surface of the first sub-bottom plate 142 forms an inclined surface inclined relative to the height direction, and along the height direction of the box body 10, the end of the first sub-bottom plate 142 facing the first side beam 147 is higher than the end of the first sub-bottom plate 142 facing the middle beam 149.
  • the impurities in the box body 10 fall on the first sub-bottom plate 142, the impurities will slide toward the direction of the middle beam 149 under the action of their own gravity, and may eventually gather at one end of the first sub-bottom plate 142 close to the middle beam 149, or gather at the position of the middle beam 149, or enter the upper surface of the second sub-bottom plate 143 through the middle beam 149.
  • the first sub-bottom plate 142 gradually tilts downward, and the impurities such as liquid falling on the first sub-bottom plate 142 gather toward the second sub-bottom plate 143, so as to facilitate the centralized treatment of the impurities.
  • the upper end of the first side beam 147 exceeds the upper end of the middle beam 149 , and the first sub-bottom plate 142 connects the upper end of the first side beam 147 and the upper end of the middle beam 149 .
  • the upper end of the middle beam 149 and the upper end of the first side beam 147 are not flush, the upper end of the first side beam 147 is higher than the upper end of the middle beam 149, one end of the first sub-bottom plate 142 facing the middle beam 149 is connected to the upper end of the middle beam 149, and one end of the first sub-bottom plate 142 facing the first side beam 147 is connected to the upper end of the first side beam 147.
  • the upper ends of the first side beam 147 and the middle beam 149 are arranged at different heights.
  • the first sub-bottom plate 142 is connected to the upper ends of the first side beam 147 and the upper ends of the middle beam 149 to realize the inclined arrangement of the first sub-bottom plate 142.
  • the installation of the first sub-bottom plate 142 plays a role in preventing errors, further improving the assembly efficiency.
  • the first sub-bottom plate 142 is connected to the upper ends of the first side beam 147 and the middle beam 149 to prevent a large fault from forming between the upper surface of the first sub-bottom plate 142 and the middle beam 149, thereby reducing the possibility of impurities of the first sub-bottom plate 142 accumulating near the middle beam 149, and improving the convenience of cleaning impurities in the box body 10.
  • the second bottom plate 146 can be connected to the lower ends of the middle beam 149, the first side beam 147, and the second side beam 148. Similar to the structure of the first bottom plate 141, two second bottom plates 146 can be provided, one second bottom plate 146 connects the first side beam 147 and the middle beam 149, and the other second bottom plate 146 connects the middle beam 149 and the second side beam 148.
  • the middle beam 149 may be an I-beam
  • the first bottom plate 141 is connected to the upper cross beam of the I-beam
  • the second bottom plate 146 is connected to the vertical beam or the lower cross beam of the I-beam.
  • the first side beam 147 may be formed by two C-shaped steels buckled toward each other, and the two C-shaped steels are buckled to form an inner cavity, and the inner cavity may also be filled with thermal insulation materials.
  • the second side beam 148 may also be formed by two C-shaped steels buckled toward each other, and the two C-shaped steels are buckled to form an inner cavity, and the inner cavity may also be filled with thermal insulation materials.
  • the bottom wall 14 is provided with a drainage hole 1431 penetrating the second sub-bottom plate 143 , the second heat insulation layer 145 and the second bottom plate 146 , and the drainage hole 1431 is used to discharge the liquid in the box body 10 .
  • the first sub-base plate 142 is connected to the upper end of the middle beam 149 , so the liquid dripping on the first sub-base plate 142 can pass through the middle beam 149 and enter the second sub-base plate 143 area.
  • the bottom wall 14 is provided with a drainage hole 1431 penetrating the second sub-bottom plate 143 , the second insulation layer 145 and the second bottom plate 146 , so that the liquid collected from the first sub-bottom plate 142 to the second sub-bottom plate 143 and the liquid dripping on the second sub-bottom plate 143 can be discharged from the box body 10 through the drainage hole 1431 .
  • one or more drainage holes 1431 may be provided. As shown in FIG. 13 , a plurality of drainage holes 1431 may be provided at intervals along the second direction Y on the second sub-base plate 143 to further improve the timeliness of drainage.
  • the second sub-base plate 143 may also be arranged at least partially inclined relative to the height direction, and the drainage hole 1431 may be arranged at a depressed part of the second sub-base plate 143.
  • the second sub-base plate 143 may also be arranged not inclined, and the plane where the second sub-pad is located may be flush with the upper end of the middle beam 149, or may be lower than the upper end of the middle beam 149.
  • the box body 10 includes a main body and a cover body, and the box body 10 is a hollow structure with an open end
  • the second sub-bottom plate 143 provided with the drainage hole 1431 can be close to the open end of the box body 10.
  • the open end of the box body 10 is located on one side of the box body 10 along the X direction
  • the second sub-bottom plate 143 and the first sub-bottom plate 142 are arranged side by side along the X direction.
  • the second sub-bottom plate 143 is closer to the open end of the box body 10 than the first sub-bottom plate 142, so as to facilitate manual construction and maintenance of the drainage hole 1431.
  • the second sub-bottom plate 143 of the bottom wall 14 is provided with a drainage hole 1431 , and the liquid in the box body 10 can be discharged from the box body 10 through the drainage hole 1431 of the second sub-bottom plate 143 , which is helpful to keep the internal environment of the box body 10 dry.
  • a drain valve may also be installed in the drain hole 1431 .
  • the upper surface of the second sub-base plate 143 is inclined to guide the liquid on the upper surface to the drainage hole 1431 .
  • the second sub-bottom plate 143 is also arranged to be inclined, and the drainage hole 1431 is located at a depressed part of the second sub-bottom plate 143 .
  • the second sub-bottom plate 143 can be tilted downward in any direction relative to the height direction.
  • the second sub-bottom plate 143 can be gradually tilted downward in the direction from the second side beam 148 to the middle beam 149, and the drainage hole 1431 is provided on the side of the second sub-bottom plate 143 close to the middle beam 149.
  • the second sub-bottom plate 143 can also be gradually tilted downward in the direction from the middle beam 149 to the second side beam 148, and the drainage hole 1431 is provided on the side of the second sub-bottom plate 143 close to the second side beam 148.
  • the drainage hole 1431 is disposed near the middle of the second sub-bottom plate 143 along the first direction X, and the edge of the second sub-bottom plate 143 gradually slopes downward toward the drainage hole 1431 .
  • the upper surface of the first sub-bottom plate 142 forms an inclined surface inclined relative to the height direction, and along the height direction of the box body 10, the end of the first sub-bottom plate 142 facing the first side beam 147 is higher than the end of the first sub-bottom plate 142 facing the middle beam 149. If impurities in the box body 10 fall on the first sub-bottom plate 142, the impurities will slide toward the middle beam 149 under the action of their own gravity, and may eventually gather at one end of the first sub-bottom plate 142 close to the middle beam 149, or gather at the position of the middle beam 149, or enter the upper surface of the second sub-bottom plate 143 through the middle beam 149.
  • the upper surface of the second sub-bottom plate 143 is inclined, and the liquid flowing to the upper surface can quickly flow to the position of the drainage hole 1431, further improving the timeliness and smoothness of drainage of the box body 10.
  • the bottom wall 14 further includes a sleeve 1410 , which is disposed in the drainage hole 1431 to separate the liquid from the second thermal insulation layer 145 .
  • the second heat insulating layer 145 is filled between the second sub-bottom plate 143 and the second bottom plate 146 . If the liquid discharged through the drainage hole 1431 enters the second heat insulating layer 145 , it will soak the second heat insulating layer 145 and affect its heat preservation effect.
  • a sleeve 1410 is provided on the bottom wall 14, and the sleeve 1410 is inserted into the drainage hole 1431.
  • One axial end of the sleeve 1410 can be sealed and connected to the second sub-bottom plate 143, and the other end can be sealed and connected to the second bottom plate 146.
  • the inner cavity of the sleeve 1410 forms a drainage channel, thereby separating the liquid from the second insulation layer 145.
  • a sleeve 1410 is provided at the drainage hole 1431, and the sleeve 1410 plays an isolating and protecting role for the second insulation layer 145 provided between the first bottom plate 141 and the second bottom plate 146, thereby reducing the possibility of liquid discharged from the drainage hole 1431 soaking the second insulation layer 145, thereby improving the thermal insulation effect of the second insulation layer 145.
  • the bottom wall 14 also includes a support member 1411, and the support member 1411 is arranged between the first bottom plate 141 and the second bottom plate 146.
  • the support member 1411, the first bottom plate 141 and the second bottom plate 146 are arranged in pairs, and the support member 1411 is used to support the second thermal insulation layer 145.
  • the support member 1411 can have a variety of implementation structures.
  • the support member 1411 can be a plate-like structure arranged opposite to the first base plate 141, or it can include a plurality of strip structures.
  • the plurality of strip structures are arranged at intervals along any direction perpendicular to the height direction (for example, along the first direction X) to form the support member 1411.
  • the support member 1411 can be fixedly connected to the edge of the bottom wall 14 by welding, screwing, etc.
  • a first sub-filling space may be formed between the support member 1411 and the first bottom plate 141
  • a second sub-filling space may be formed between the support member 1411 and the second bottom plate 146 .
  • the first sub-filling space and the second sub-filling space are both provided with a second heat insulating layer 145 .
  • a support member 1411 is arranged between the first bottom plate 141 and the second bottom plate 146.
  • the support member 1411 divides the space between the first bottom plate 141 and the second bottom plate 146, and supports the portion of the second thermal insulation layer 145 filled between the first bottom plate 141 and the second bottom plate 146, so that the second thermal insulation layer 145 can stably and evenly fill the space between the first bottom plate 141 and the second bottom plate 146, thereby reducing the total filling amount of the second thermal insulation layer 145 and improving the thermal insulation effect of the second thermal insulation layer 145.
  • the thermal conductivity of the second thermal insulation layer 145 is T2, satisfying T2 ⁇ 0.05 W/m ⁇ K.
  • the thermal conductivity T2 of the second thermal insulation layer 145 can be any value less than or equal to 0.05 W/m ⁇ K.
  • T2 can be 0.05 W/m ⁇ K, 0.04 W/m ⁇ K, 0.03 W/m ⁇ K, 0.02 W/m ⁇ K, etc.
  • the thermal conductivity of the second thermal insulation layer 145 is less than or equal to 0.05 W/m ⁇ K, which is beneficial to improving the thermal insulation performance of the second thermal insulation layer 145 , thereby improving the thermal insulation effect of the second thermal insulation layer 145 on the internal environment of the box body 10 .
  • the material of the second heat insulating layer 145 is at least one of polyurethane foam or rock wool, which are mature materials with good heat preservation and insulation effects and strong practicality.
  • the box body 10 is a standard container.
  • a standard container refers to an international standard container, which is an internationally used standard container built and used according to international standards.
  • the dimensions of an international standard container can be divided into “external dimensions” and “minimum internal dimensions”.
  • the standard container of this embodiment can be a standard container of any specification.
  • a standard container can be a standard 20-foot high container, and the external dimensions of the container are: length 6058mm ⁇ width 2438mm ⁇ height 2896mm.
  • the box body 10 is a standard container and can be directly transported by container transport vehicles without the need for secondary packaging with intermediate devices such as open top cabinets to synthesize a standard size, which is convenient for transportation and has strong versatility.
  • Figures 1 to 3 are a top view of the energy storage device provided in some embodiments of the present application.
  • the battery compartment 13 has an opening 131 in the first direction, and a battery 20 is arranged in the battery compartment 13 along the first direction.
  • the first direction extends along the X direction, and the first direction X can be the width direction of the box body 10 or the length direction of the box body 10.
  • the first direction X can be the width direction of the box body 10 or the length direction of the box body 10.
  • only one battery 20 is shown in FIG. 1 to illustrate the battery compartment 13.
  • the battery compartment 13 is a compartment for accommodating the battery 20 .
  • the battery 20 can enter the battery compartment 13 along a first direction X from an opening 131 of the battery compartment 13 .
  • the battery compartment 13 is provided with one battery 20 , which can be understood as only one battery 20 is arranged along the first direction X in the battery compartment 13 .
  • the battery compartment 13 may have an opening 131 on one side in the first direction X, so that two energy storage devices 100 can be arranged adjacent to each other, and the openings 131 of the battery compartments 13 of the two energy storage devices 100 may be arranged back to back to improve the space utilization of the location where the energy storage devices 100 are located.
  • the battery compartment 13 may also have openings 131 on both sides in the first direction X, so that the battery 20 can be placed into or taken out of the battery compartment 13 from both sides in the first direction X respectively.
  • the battery 20 enters the battery compartment 13 through the opening 131 from the first direction.
  • a battery 20 is arranged in the battery compartment 13, so that the size of the battery 20 in the first direction can be larger.
  • the size of the battery 20 in the first direction can be close to the size of the battery compartment 13 in the first direction, thereby improving the space utilization of the battery compartment 13 in the first direction, and thus making the energy storage device 100 have a higher energy density.
  • Figure 15 is a schematic diagram of a battery provided in some embodiments of the present application; the size of the battery compartment 13 in the first direction is L1, and the size of the battery 20 in the first direction is L2, satisfying that L1 ⁇ 2L2.
  • the dimension L1 of the battery compartment 13 in the first direction X refers to the distance along the first direction X from the opening 131 of the battery compartment 13 to the inner surface of the compartment wall at one end of the battery compartment 13 away from the opening 131 .
  • the battery 20 is disposed in the battery compartment 13 , and the relationship between a dimension L1 of the battery compartment 13 in the first direction X and a dimension L2 of the battery 20 in the first direction X satisfies: L1>L2.
  • the ratio of the size L1 of the battery compartment 13 in the first direction to the size L2 of the battery 20 in the first direction satisfies L1 ⁇ 2L2, and the size of the battery 20 in the first direction can be larger, so that the space utilization rate of the battery compartment 13 in the first direction is higher.
  • L2/L1 can be any value between 95% and 100%.
  • L2/L1 can be 95%, 95.4%, 96%, 96.8%, 97%, 97.6%, 98%, 98.8%, 99%, 99.5% or 100%, etc.
  • the ratio between the dimension L1 of the battery compartment 13 in the first direction and the dimension L2 of the battery 20 in the first direction satisfies the above range, which can further improve the space utilization of the battery compartment 13 in the first direction, so that the energy storage device 100 can have a higher energy density.
  • the ratio of L2/L1 can be any value between 98% and 99%.
  • L2/L1 can be 98%, 98.1%, 98.2%, 98.25%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9% or 99%.
  • 1500mm ⁇ L1 ⁇ 2500mm 1500mm ⁇ L1 ⁇ 2500mm.
  • L1 can be any value between 1500 mm and 2500 mm.
  • L1 can be 1500 mm, 1600 mm, 1700 mm, 1800 mm, 1900 mm, 2000 mm, 2100 mm, 2200 mm, 2300 mm, 2400 mm or 2500 mm.
  • the size of the battery compartment 13 in the first direction meets the above range, the battery compartment 13 has a large accommodating space, and the size of the battery 20 in the first direction can be larger, so that the energy storage device 100 can have a higher energy density.
  • 1600 mm ⁇ L1 ⁇ 2400 mm 1600 mm ⁇ L1 ⁇ 2400 mm.
  • L1 can be any value between 1600mm and 2400mm.
  • L1 can be 1600mm, 1650mm, 1700mm, 1750mm, 1800mm, 1850mm, 1900mm, 1950mm, 2000mm, 2050mm, 2100mm, 2150mm, 2200mm, 2250mm, 2300mm, 2350mm or 2400mm.
  • the battery compartment 13 can have a larger accommodating space, and on the other hand, the battery compartment 13 occupies less space in the first direction, which is convenient for the layout of the energy storage box 10.
  • 1500mm ⁇ L2 ⁇ 2500mm 1500mm ⁇ L2 ⁇ 2500mm.
  • L2 can be any value between 1500mm and 2500mm.
  • L2 can be 1500mm, 1600mm, 1700mm, 1800mm, 1900mm, 2000mm, 2100mm, 2200mm, 2300mm, 2400mm or 2500mm.
  • the size of the battery 20 in the first direction satisfies the above range, so that the battery 20 matches the size of the battery compartment 13 in the first direction, so that the energy storage device 100 can have a higher energy density.
  • 1600mm ⁇ L2 ⁇ 2400mm 1600mm ⁇ L2 ⁇ 2400mm.
  • L2 can be any value between 1600mm and 2400mm.
  • L2 can be 1600mm, 1700mm, 1800mm, 1900mm, 2000mm, 2100mm, 2200mm, 2300mm or 2400mm.
  • the size of the battery 20 in the first direction is more suitable for assembly with the battery compartment 13, so that the energy storage device 100 can have a higher energy density and can also facilitate the assembly of the battery 20 with other components (such as wiring harnesses).
  • the first direction is the width direction of the box body 10 .
  • the first direction extends in an X direction, and the first direction X is the width direction of the box body 10 .
  • the first direction is the width direction of the energy storage box 10.
  • the battery compartment 13 has a higher space utilization in the width direction of the energy storage box 10, so as to improve the overall space utilization of the battery compartment 13, thereby making the energy storage device 100 have a higher energy density.
  • the length direction of the battery 20 is parallel to the first direction.
  • the length direction of the battery 20 is parallel to the width direction of the energy storage box 10, which facilitates the length of the battery 20 to match the width of the energy storage box 10.
  • the battery 20 can more easily occupy as much internal space of the battery compartment 13 as possible, which is conducive to reducing the difficulty of assembling the high energy density of the energy storage device 100.
  • the box body 10 includes a cabin body 11 and a hatch 12.
  • the cabin body 11 has a battery compartment 13.
  • the hatch 12 is connected to the cabin body 11.
  • the hatch 12 is used to close the opening 131 of the battery compartment 13.
  • the box body 10 may include a main body and a cover body, the cabin body 11 corresponds to the aforementioned main body, and the cabin door 12 corresponds to the aforementioned cover body.
  • the hatch 12 can be hinged to the cabin 11 by a rotating mechanism such as a rotating shaft, and the hatch 12 rotates relative to the cabin 11 to open or close the opening 131 of the battery compartment 13.
  • the hatch 12 can be connected to the cabin 11 around an axis parallel to the height direction Z of the energy storage box 10, so that the hatch 12 can rotate relative to the cabin 11.
  • the hatch 12 closes the opening 131 of the battery compartment 13 so as to isolate the battery 20 and the control box 30 in the battery compartment 13 from the outside, thereby protecting the battery 20 and the control box 30 .
  • the energy storage device 100 includes a plurality of columns of batteries 20, and the plurality of columns of batteries 20 are arranged in the battery compartment 13 along the second direction; a plurality of control boxes 30 are provided, and the plurality of control boxes 30 are arranged in the battery compartment 13 along the second direction, each control box 30 is electrically connected to a column of batteries 20 and is located above or below the column of batteries 20, and the second direction is the length direction of the box body 10.
  • each column of batteries 20 includes multiple batteries 20 arranged along the Z direction, and multiple columns of batteries 20 are arranged along the Y direction in the battery compartment 13. All batteries 20 are arranged in a matrix in the battery compartment 13.
  • the control box 30 may be located above the battery 20 or below the battery 20 . Exemplarily, all the control boxes 30 are located below the battery 20 , and a plurality of control boxes 30 are arranged along the Y direction with the battery compartment 13 .
  • a plurality of rows of batteries 20 are arranged in the battery compartment 13 , and the plurality of batteries 20 are arranged in a rectangular array, so that the space of the battery compartment 13 is more reasonably utilized, so that the battery compartment 13 can accommodate more batteries 20 , and the space utilization rate of the battery compartment 13 is further improved.
  • each hatch 12 there are multiple hatches 12, and the multiple hatches 12 are rotatably connected to the cabin body 11.
  • the hatches 12 are arranged along the length direction of the energy storage box body 10.
  • each hatch 12 can correspond to a row of multiple batteries 20, so as to facilitate the assembly of the battery 20 and the control box 30.
  • the battery 20 may include a battery 20 box and a plurality of battery 20 cells accommodated in the battery 20 box, and at least two battery 20 cells among the plurality of battery 20 cells are connected in parallel.
  • connection between the battery cells 20 is an electrical connection to facilitate the transmission of current.
  • the battery 20 box of the battery 20 is made of aluminum, for example, AL6061.
  • AL6061 is an aluminum alloy material, which is a heat-treatable alloy with good formability, weldability, and machinability, and has medium strength, and can still maintain good operability after annealing.
  • some embodiments of the present application provide an energy storage device 100, which includes a box 10, multiple battery rows 20, and multiple control boxes 30.
  • the box 10 is a standard container, and includes a cabin 11 and a hatch 12.
  • the cabin 11 has a battery compartment 13, and the battery compartment 13 has an opening 131 on one side of the box 10 in the width direction (X direction in the figure).
  • the hatch 12 is connected to the cabin 11, and the hatch 12 is used to close the opening 131 of the battery compartment 13.
  • the box body 10 includes a bottom wall 14 (i.e., the bottom wall 14 of the cabin body 11), the bottom wall 14 includes a first bottom plate 141 and a second bottom plate 146 relatively arranged along the height direction of the box body 10 (Z direction in the figure), and a second thermal insulation layer 145 arranged between the first bottom plate 141 and the second bottom plate 146, and also includes a first side beam 147, a middle beam 149 and a second side beam 148 spaced apart along the width direction of the box body 10 (X direction in the figure), wherein the second side beam 148 is closer to the opening 131 of the battery compartment 13 than the first side beam 147.
  • the first bottom plate 141 is located above the second bottom plate 146.
  • the first bottom plate 141 includes a first sub-bottom plate 142 and a second sub-bottom plate 143 arranged in the X direction.
  • the upper end of the first side beam 147 exceeds the upper end of the middle beam 149 in the height direction.
  • the first sub-bottom plate 142 connects the upper end of the first side beam 147 and the upper end of the middle beam 149, so that the first sub-bottom plate 142 gradually tilts downward along the direction from the first side beam 147 to the middle beam 149.
  • the second sub-bottom plate 143 connects the upper end of the middle beam 149 and the upper end of the first side beam 147.
  • the bottom wall 14 is provided with a drainage hole 1431 penetrating the second sub-bottom plate 143, the second heat insulation layer 145 and the second bottom plate 146.
  • the drainage hole 1431 is used to discharge the liquid in the box body 10.
  • the upper surface of the second sub-bottom plate 143 is inclined to guide the liquid on the upper surface to the drainage hole 1431.
  • the second bottom plate 146 is connected to lower ends of the first side beam 147 , the second side beam 148 and the middle beam 149 .
  • Multiple columns of batteries 20 are arranged along the length direction (Y direction) of the box 10, and multiple batteries 20 in each column are arranged along the height direction (Z direction) of the box 10.
  • a control box 30 is correspondingly arranged below each column of batteries 20 in the battery compartment 20, and the control box 30 is electrically connected to a column of batteries 20 located above the control box 30. In the height direction of the box 10, the control box 30 directly faces the battery 20 adjacent to it.
  • some embodiments of the present application provide an energy storage device 100, which includes a box 10, multiple rows of batteries 20, multiple control boxes 30, and a baffle 40.
  • the box 10 is a standard container, and includes a cabin 11 and a hatch 12.
  • the cabin 11 has a battery compartment 13, and the battery compartment 13 has an opening 131 on one side of the box 10 in the width direction (X direction in the figure).
  • the hatch 12 is connected to the cabin 11, and the hatch 12 is used to close the opening 131 of the battery compartment 13.
  • the box body 10 includes a bottom wall 14 (i.e., the bottom wall 14 of the cabin body 11), the bottom wall 14 includes a first bottom plate 141 and a second bottom plate 146 relatively arranged along the height direction of the box body 10 (Z direction in the figure), and a second thermal insulation layer 145 arranged between the first bottom plate 141 and the second bottom plate 146, and also includes a first side beam 147, a middle beam 149 and a second side beam 148 spaced apart along the width direction of the box body 10 (X direction in the figure), wherein the second side beam 148 is closer to the opening 131 of the battery compartment 13 than the first side beam 147.
  • the first bottom plate 141 is located above the second bottom plate 146.
  • the first bottom plate 141 includes a first sub-bottom plate 142 and a second sub-bottom plate 143 arranged in the X direction.
  • the upper end of the first side beam 147 exceeds the upper end of the middle beam 149 in the height direction.
  • the first sub-bottom plate 142 connects the upper end of the first side beam 147 and the upper end of the middle beam 149, so that the first sub-bottom plate 142 gradually tilts downward along the direction from the first side beam 147 to the middle beam 149.
  • the second sub-bottom plate 143 connects the upper end of the middle beam 149 and the upper end of the first side beam 147.
  • the bottom wall 14 is provided with a drainage hole 1431 penetrating the second sub-bottom plate 143, the second heat insulation layer 145 and the second bottom plate 146.
  • the drainage hole 1431 is used to discharge the liquid in the box body 10.
  • the upper surface of the second sub-bottom plate 143 is inclined to guide the liquid on the upper surface to the drainage hole 1431.
  • the second bottom plate 146 is connected to lower ends of the first side beam 147 , the second side beam 148 and the middle beam 149 .
  • Multiple columns of batteries 20 are arranged along the length direction (Y direction) of the box body 10, and multiple batteries 20 in each column are arranged along the height direction (Z direction) of the box body 10.
  • a control box 30 is correspondingly arranged below each column of batteries 20 in the battery compartment 20, and the control box 30 is electrically connected to a column of batteries 20 located above the control box 30.
  • baffles 40 there are also multiple baffles 40, one baffle 40 is arranged between each column of batteries 20 and the control box 30 located below the column of batteries 20, and the baffle 40 includes a first surface 43 facing the battery 20, and the first surface 43 is inclined relative to the height direction.
  • the energy storage device 100 also includes a second bracket 60, which is arranged in the battery compartment 13 and connected to the box body 10.
  • the second bracket 60 includes a bracket body 61 and a second extension portion 62.
  • the bracket body 61 is used to support the control box 30.
  • the second extension portion 62 is arranged at one end of the bracket body 61 close to the opening 131 of the battery compartment 13 along the X direction.
  • the bracket body 61 is connected to a first limit member 70 and a second limit member 80 that are relatively arranged along the height direction of the box body 10. Two groups of the first limit members 70 and the second limit members 80 are provided.
  • the two groups of first limit members 70 and second limit members 80 are respectively located on opposite sides of the baffle 40 along the length direction (Y direction) of the box body 10.
  • the baffle 40 includes a baffle body 44 and a first extension portion 45. Both ends of the baffle body 44 along the Y direction are inserted between the first limit member 70 and the second limit member 80.
  • the first extension portion 45 is located at one end of the baffle body 44 along the X direction close to the opening 131 of the battery compartment 13.
  • the first extension portion 45 is overlapped with the second extension portion 62 and connected by bolts.
  • the projection of the central axis of the bolt on the box body 10 is located above the projection of the gap between the first limit member 70 and the second limit member 80 on the box body 10, so that the baffle body 44 is tilted relative to the height direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种储能装置,包括:箱体,具有电池仓;至少一列电池,设置于所述电池仓内,每一列电池包括沿所述箱体的高度方向排列的多个电池;至少一个控制箱,设置于所述电池仓内。本申请技术方案中,储能装置的电池和控制箱均设置在箱体的电池仓内,其整体结构简单,相较于电池和控制箱分仓设置的结构,可简化储能装置的结构,从而提高整体储能装置的装配效率。同时,电池仓内的多个电池沿箱体的高度方向排列,便于电池的组装、接线等操作,从而进一步提高装配效率;另外,多个电池沿箱体的高度方向排列,多个电池的线束排布更加简短,可减少线束过长导致的空间利用率的问题,提高空间利用率。

Description

储能装置
相关申请的交叉引用
本申请要求享有2022年09月30日提交的名称为“储能箱体及储能装置”的PCT专利申请PCT/CN2022/123362的优先权,该申请的部分内容通过引用并入本文中;本申请要求享有2022年09月30日提交的名称为“储能装置”的PCT专利申请PCT/CN2022/123432的优先权,该申请的部分内容通过引用并入本文中。
技术领域
本申请涉及储能装置技术领域,具体而言,涉及一种储能装置。
背景技术
由于市场对清洁能源的广泛需求,储能装置得到了广泛应用。相关技术中,储能装置的结构复杂,组装效率较低。因此,如何提高储能装置的组装效率为亟待解决的问题。
发明内容
本申请提供一种储能装置,该储能装置便于提高组装效率。
第一方面,本申请提供了一种储能装置,包括:箱体,具有电池仓;至少一列电池,设置于所述电池仓内,每一列电池包括沿所述箱体的高度方向排列的多个电池;至少一个控制箱,设置于所述电池仓内。
本申请技术方案中,储能装置的电池和控制箱均设置在箱体的电池仓内,其整体结构简单,相较于电池和控制箱分仓设置的结构,可简化储能装置的结构,从而提高整体储能装置的装配效率。同时,电池仓内的多个电池沿箱体的高度方向排列,便于电池的组装、接线等操作,从而进一步提高装配效率;另外,多个电池沿箱体的高度方向排列,多个电池的线束排布更加简短,可减少线束过长导致的空间利用率的问题,整体储能装置在简化结构、提高装配效率的同时提高空间利用率。
根据本申请的一些实施例,每个所述控制箱与一列电池对应电连接,所述控制箱位于与之对应的一列电池的下方,所述储能装置还包括:挡板,设置于所述控制箱和所述至少一列电池之间,用于防护所述控制箱。
上述技术方案中,控制箱位于与之对应的电池的下方,进一步提高控制箱的操作维护的便捷性,提高控制箱的组装接线效率,从而进一步提高储能装置的整体组装效率。在控制箱和电池之间设置挡板,可阻挡储能箱体内的位于控制箱上方的液体(如冷凝液)、污染物、粉尘等杂质落到控制箱,对控制箱起到很好的防护作用,提高控制箱的性能稳定性,从而提高储能装置的性能稳定性。
根据本申请的一些实施例,沿所述高度方向,所述挡板的投影至少部分覆盖所述控制箱。
上述技术方案中,挡板位于控制箱的上方,挡板至少部分遮挡控制箱,使挡板对控制箱起到覆盖防护作用,从而降低杂质落至控制箱的可能性,提高挡板的防护效果。
根据本申请的一些实施例,沿所述高度方向,所述挡板的投影完全覆盖所述控制箱。
上述技术方案中,挡板的投影完全覆盖控制箱,即控制箱完全位于挡板的遮盖范围内,有利于充分发挥挡板的防护效果,进一步提高控制箱的性能稳定性。
根据本申请的一些实施例,所述储能装置还包括第一托架,所述第一托架设置于所述电池仓内且与所述箱体连接,所述第一托架被配置为承载所述电池,所述挡板的长度小于所述第一托架的长度。
上述技术方案中,箱体内设置第一托架,有利于提高电池安装固定的便捷性,提高电池组 装效率的同时提高电池固定的可靠性,挡板的长度小于第一托架的长度,可减少挡板的重量和尺寸,降低材料成本的同时便于储能装置的减重。
根据本申请的一些实施例,所述挡板包括朝向所述电池的第一表面,所述第一表面相对于所述高度方向倾斜设置。
上述技术方案中,挡板的朝向电池的第一表面(即挡板的沿储能箱体的高度方向的上表面)倾斜设置,落在第一表面的液体等杂质能够在重力作用下从第一表面的高度较低的边缘滑落至箱体的底部,以便于在箱体底部集中处理或及时排出储能箱体,降低杂质(尤其是液体)在挡板上积存的风险,从而缓解因液体在挡板上积存、受热重新汽化而加重箱体内潮湿问题,利于保持箱体内的干燥。
根据本申请的一些实施例,所述第一表面与基准面之间的角度为α,满足,0°<α≤30°,所述高度方向垂直于所述基准面。
上述技术方案中,第一表面与垂直于储能箱体的高度方向的基准面之间的角度大于零度,使得第一表面能够相对于储能箱体的高度方向倾斜设置,从而提高挡板排液的顺畅性和及时性;同时,如果挡板的倾斜角度过大,在保证挡板对控制箱的覆盖面积的前提下,挡板的结构需要加大,挡板的占用储能箱体的沿储能箱体的高度方向的空间也会大幅度增加,不利于提高储能箱体的空间利用率,从而不利于提高储能装置的能量密度;将第一表面和基准面之间的角度控制在大于零且小于30°的范围,可在提高挡板排液顺畅及时性的同时,提高储能装置的能量密度。
根据本申请的一些实施例,0.5°≤α≤15°。
上述技术方案中,第一表面与垂直于储能箱体的高度方向的基准面之间的角度控制在0.5°至15°之间,可进一步提高排液的顺畅性和及时性;同时,有利于进一步提高储能箱体的空间利用率,从而提高储能装置的能量密度。
根据本申请的一些实施例,所述储能装置包括:第一限位件和第二限位件,沿所述高度方向间隔设置且连接于所述箱体;其中,所述挡板插设于所述第一限位件和所述第二限位件之间。
上述技术方案中,箱体内设置沿箱体的高度方向间隔设置的第一限位件和第二限位件,挡板插设在第一限位件和第二限位件之间,第一限位件和第二限位件相互配合限制挡板的沿高度方向的相对位置,从而将挡板限位在箱体内,减小挡板脱离安装位置的可能性,同时,插接的方式对安装空间需求小,便于操作,有利于提高储能装置的组装的便捷性和组装效率。
根据本申请的一些实施例,沿所述高度方向,所述第一限位件在所述挡板上的投影和所述第二限位件在所述挡板上的投影相互错开。
上述技术方案中,第一限位件和第二限位件相互错开,在提高第一限位件和第二限位件对挡板限位稳定的同时,可降低第一限位件和第二限位件的延伸长度,节省成本的同时便于拆装操作。
根据本申请的一些实施例,所述储能装置还包括第二托架,所述第二托架设置于所述电池仓内且与所述箱体连接,所述第二托架被配置为承载所述控制箱,所述第一限位件和所述第二限位件连接于所述第二托架。
上述技术方案中,箱体内设置第二托架,有利于提高控制箱安装固定的便捷性,提高控制箱组装效率的同时提高控制箱固定的可靠性;第一限位件和第二限位件集成于第二托架,结构集成性强,可进一步简化储能装置组装工艺,降低组装难度,提高储能装置组装效率。
根据本申请的一些实施例,所述储能装置还包括紧固件,所述挡板通过所述紧固件与所述箱体可拆卸连接。
上述技术方案中,挡板和箱体通过紧固件连接,可进一步提高挡板的相对位置稳定性;同时,其固定方式简单,便于拆装,有利于提高整体储能装置的组装效率。
根据本申请的一些实施例,所述挡板包括挡板本体和第一延伸部,所述挡板本体插设于所述第一限位件和所述第二限位件之间,所述第一延伸部从所述挡板本体的边缘延伸出;所述储能装置还包括第二托架,所述第二托架设置于所述电池仓内且与所述箱体连接,所述第二托架被配置为承载所述控制箱,所述第二托架包括托架本体和第二延伸部,所述第二延伸部从所述托架本体的边缘延伸出;其中,所述第一延伸部和所述第二延伸部相互叠置且通过所述紧固件可拆卸连接。
上述技术方案中,挡板设置第一延伸部,第二托架设置第二延伸部,第一延伸部和第二延伸部相互连接,即可固定挡板和第二托架的相对位置关系,有利于进一步提高组装操作便捷性,从而提高组装效率。
根据本申请的一些实施例,所述挡板包括沿所述高度方向叠置的基板和第一隔热层。
上述技术方案中,第一隔热层可降低基板与箱体内部环境的温差,对基板起到保温作用,从而降低基板上冷凝水的生成量,从而降低基板上生成冷凝水滴落至控制箱而使控制箱受潮的风险,有利于进一步提高控制箱的使用性能。
根据本申请的一些实施例,所述第一隔热层位于所述基板的朝向所述控制箱的一侧。
上述技术方案中,第一隔热层位于基板的朝向控制箱的一侧,可进一步降低挡板的朝向控制箱的一侧生成冷凝水的可能性;同时,即使有少量冷凝水生成,第一隔热层可辅助吸收至少部分冷凝水,有利于进一步降低控制箱受潮风险。
根据本申请的一些实施例,所述第一隔热层的导热系数为T1,满足,T1≤0.05W/m·K。
上述技术方案中,第一隔热层的导热系数小于等于0.05W/m·K,有利于提高第一隔热层的隔热性能,从而提高第一隔热层对基板的保温效果,降低基板上生成冷凝水的可能性。
根据本申请的一些实施例,每个所述控制箱与一列电池对应电连接,所述控制箱位于与之对应的一列电池的上方或下方,沿所述高度方向,所述控制箱直接面对与之相邻的所述电池。
上述技术方案中,控制箱直接面对与之相邻的电池,取消传统储能装置中设置在控制箱和电池之间的隔离层,从而简化储能装置的结构,进一步提高简化储能装置的组装工艺,提高储能装置的装配效率。
根据本申请的一些实施例,所述箱体包括底壁,所述底壁包括第二隔热层。
上述技术方案中,箱体的底壁设置第二隔热层,可对箱体内的电池和控制箱起到良好的保温作用,有利于提高低温环境下电池和控制箱的工作性能。同时,第二隔热层设置于箱体的底壁,相较于设置在电池仓内的方式,可防止第二隔热层占用电池仓的内部空间,有利于提高储能装置的能量密度。
根据本申请的一些实施例,所述底壁还包括沿所述高度方向相对设置的第一底板和第二底板,所述第二隔热层设置于所述第一底板和所述第二底板之间。
上述技术方案中,第二隔热层夹持在第一底板和第二底板之间,第二隔热层对箱体起到保温作用,同时,第一底板和第二底板在提高箱体结构强度的同时,对第二隔热层起到防护作用,降低第二隔热层裸露在外因被污染、被浸湿、被损坏而造成保温失效的问题,提高第二隔热层的保温效果。
根据本申请的一些实施例,所述第二底板位于所述第一底板的下方,至少部分所述第一底板相对于所述高度方向倾斜设置。
上述技术方案中,至少部分第一底板相对于所述高度方向倾斜设置,落在第一底板上的杂质(尤其是液体)可以在自身重力作用下向高度方向较低的位置聚集,便于杂质的收集及排出。
根据本申请的一些实施例,所述底壁还包括:第一边梁和第二边梁,沿第一方向间隔设置;中间梁,设置于所述第一边梁和所述第二边梁之间,所述第一边梁、所述第二边梁和所述中间梁均沿第二方向延伸,所述第一方向、所述第二方向和所述高度方向两两垂直;所述第一底板包括第一子底板和第二子底板,所述第一子底板连接所述第一边梁和所述中间梁,所述第二子底板连接所述第二边梁和所述中间梁。
上述技术方案中,第一边梁、第二边梁和中间梁形成箱体的主要承重梁,第一底板分体设置成尺寸较小的两块,减小第一底板的组装难度,有利于进一步提高储能装置的组装效率。同时,第一边梁、第二边梁和中间梁将第一底板和第二底板之间的空间格成两个子空间,便于第二隔热层的分腔填充,且第一子底板和第二子底板对填充在中间梁和第一边梁之间的第二隔热层和填充在中间梁和第二边梁之间的第二隔热层分别进行封装,提高第二隔热层封装在第一底板和第二底板之间的封闭性。
根据本申请的一些实施例,沿所述第一边梁指向所述中间梁的方向,所述第一子底板逐渐向下倾斜。
上述技术方案中,第一子底板逐渐向下倾斜,落在第一子底板的液体等杂质向第二子底板方向收拢,便于杂质的集中处理。
根据本申请的一些实施例,沿所述高度方向,所述第一边梁的上端超出所述中间梁的上端,所述第一子底板连接所述第一边梁的上端和所述中间梁的上端。
上述技术方案中,第一边梁和中间梁的上端高低错落设置,第一子底板连接至第一边梁的上端和中间梁的上端即可实现第一子底板的倾斜设置,第一子底板的安装起到防错作用,进一步提 高组装效率。同时,第一子底板连接至第一边梁和中间梁的上端,可防止第一子底板的上表面与中间梁之间形成较大断层,从而减小第一子底板的杂质在靠近中间梁处堆积的可能性,提高箱体清理杂质的便捷性。
根据本申请的一些实施例,所述底壁设有贯穿所述第二子底板、所述第二隔热层和所述第二底板的排水孔,所述排水孔用于排出所述箱体内的液体。
上述技术方案中,底壁的第二子底板处设置有排水孔,液体可经第二子底板的排水孔排出箱体,有利于保持箱体的内部环境干燥。
根据本申请的一些实施例,所述第二子底板的上表面倾斜设置以将所述上表面的液体引导至所述排水孔。
上述技术方案中,第二子底板的上表面倾斜设置,流至上表面的液体可快速向排水孔的位置流动,进一步提高箱体排水的及时性和顺畅性。
根据本申请的一些实施例,所述底壁还包括:套筒,所述套筒设置于所述排水孔,用于将液体和所述第二隔热层隔开。
上述技术方案中,排水孔设置套筒,套筒对设置在第一底板和第二底板之间的第二隔热层起到隔离防护作用,减小排水孔排出的液体浸湿第二隔热层的可能性,从而提高第二隔热层的保温效果。
根据本申请的一些实施例,所述底壁还包括:支撑件,设置于所述第一底板和第二底板之间,沿所述高度方向,所述支撑件和所述第一底板及所述第二底板均间隔设置,所述支撑件用于支撑所述第二隔热层。
上述技术方案中,第一底板和第二底板之间设置支撑件,支撑件对填充在第一底板和第二底板之间的部分第二隔热层起到支撑作用,使得第二隔热层能够稳定均匀的填满第一底板和第二底板之间的空间,减少第二隔热层的总填充量的同时提高第二隔热层的保温效果。
根据本申请的一些实施例,所述第二隔热层的导热系数为T2,满足,T2≤0.05W/m·K。
上述技术方案中,第二隔热层的导热系数小于等于0.05W/m·K,有利于提高第二隔热层的隔热性能,从而提高第二隔热层对箱体的内部环境的保温效果。
根据本申请的一些实施例,所述第二隔热层的材质为聚氨酯发泡胶或岩棉中的至少一种。
上述技术方案中,第二隔热层可采用聚氨酯发泡胶或岩棉中的至少一种,其材料成熟且保温隔热效果好,实用性强。
根据本申请的一些实施例,所述箱体为标准集装箱。
上述技术方案中,箱体为标准集装箱,可直接使用集装箱运输工具进行运输,无需配合开顶柜等中间装置进行二次装箱而合成标准尺寸,便于运输,通用性强。
根据本申请的一些实施例,所述电池仓在第一方向上具有开口,沿所述第一方向,所述电池仓设置一个所述电池。
上述技术方案中,电池从第一方向经由开口进入电池仓内,沿第一方向,电池仓设置一个电池,使得电池在第一方向上的尺寸可以较大,例如,电池在第一方向上的尺寸可以接近电池仓在第一方向上的尺寸,从而能够提高电池仓在第一方向上的空间利用率,进而使得储能装置具有较高的能量密度。
根据本申请的一些实施例,所述电池仓在所述第一方向上的尺寸为L1,所述电池在所述第一方向上的尺寸为L2,满足,L1<2L2。
上述技术方案中,电池仓在第一方向上的尺寸L1与电池在第一方向上的尺寸L2的比例满足L1<2L2,电池在第一方向上的尺寸可以较大,以使得电池仓在第一方向上的空间利用率较高。
根据本申请的一些实施例,95%≤L2/L1≤100%。
上述技术方案中,电池仓在第一方向上的尺寸L1与电池在第一方向上的尺寸L2之间的比例满足上述范围,可进一步提高电池仓在第一方向上的空间利用率,使得储能装置能够具有较高的能量密度。
根据本申请的一些实施例,98%≤L2/L1≤99%。
上述技术方案中,相较于95%≤L2/L1≤100%,当98%≤L2/L1≤99%时,既能保证电池仓在第一方向上具有较高的空间利用率,也便于预留电池与其他部件的装配空间,减小电池与其他部件的干涉。
根据本申请的一些实施例,1500mm≤L1≤2500mm。
上述技术方案中,电池仓在第一方向的尺寸满足上述范围,电池仓具有较大的容纳空间,电池在第一方向上的尺寸可以较大,使得储能装置能够具有较高的能量密度。
根据本申请的一些实施例,1600mm≤L1≤2400mm。
上述技术方案中,相较于1500mm≤L1≤2500mm,当1600mm≤L1≤2400mm时,一方面,电池仓能够具有较大的容纳空间,另一方面,电池仓在第一方向的空间占用较小,便于储能箱体的布局。
根据本申请的一些实施例,1500mm≤L2≤2500mm。
上述技术方案中,电池在第一方向上的尺寸满足上述范围,以便于电池匹配电池仓在第一方向上的尺寸,使得储能装置能够具有较高的能量密度。
根据本申请的一些实施例,1600mm≤L2≤2400mm。
上述技术方案中,相较于1500mm≤L2≤2500mm,当1600mm≤L2≤2400mm时,电池在第一方向上的尺寸更适合与电池仓装配,使得储能装置能够具有较高的能量密度,还能够便于电池与其他部件(如线束)的装配。
根据本申请的一些实施例,所述第一方向为所述箱体的宽度方向。
上述技术方案中,第一方向为储能箱体的宽度方向,电池仓在储能箱体的宽度方向上具有较高的空间利用率,以便于提高电池仓的整体空间利用率,进而使得储能装置具有较高的能量密度。
根据本申请的一些实施例,所述电池的长度方向与所述第一方向平行。
上述技术方案中,电池的长度方向与储能箱体的宽度方向平行,电池的长度与储能箱体的宽度匹配,降低电池的加工制造难度。
根据本申请的一些实施例,所述箱体包括舱体和舱门,所述舱体具有所述电池仓,所述舱门连接于所述舱体,所述舱门用于封闭所述电池仓的所述开口。
上述技术方案中,舱门封闭电池仓的开口,以便于位于电池仓内的电池与外部隔离,便于保护电池。
根据本申请的一些实施例,所述储能装置包括多列电池,所述多列电池沿第二方向排列于所述电池仓;所述控制箱设有多个,多个所述控制箱沿所述第二方向排列于所述电池仓,每个所述控制箱与一列电池对应电连接且位于该列电池的上方或下方,所述第二方向为所述箱体的长度方向。
上述技术方案中,电池仓内设置多列电池,多个电池排列成矩形阵列,更加合理利用电池仓的空间,便于电池仓容纳较多的电池,进一步提高电池仓的空间利用率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的储能装置的结构示意图;
图2为本申请一些实施例提供的储能装置的局部爆炸图;
图3为本申请一些实施例提供的储能装置的主视图;
图4为图2所示的A部分的局部放大图;
图5为图4所示的在箱体内装入电池和控制箱的结构示意图;
图6为图3所示的B部分的局部放大图;
图7为图6所示的挡板的侧视图;
图8为本申请一些实施例提供的挡板和第二托架的结构示意图;
图9为本申请一些实施例提供的挡板连接于第一托架的结构示意图;
图10为本申请又一些实施例提供的储能装置的主视图;
图11为图10所示的C部分的局部放大图;
图12为图3所示的储能装置的箱体的局部侧视剖面图;
图13为图3所示的储能装置的箱体的俯视图;
图14为本申请一些实施例提供的储能装置的俯视剖面图;
图15为本申请一些实施例提供的电池示意图;
图16为本申请另一些实施例提供的储能装置的主视图。
在附图中,附图并未按照实际的比例绘制。
标记说明:100-储能装置;10-箱体;11-舱体;12-舱门;13-电池仓;131-开口;14-底壁;141-第一底板;142-第一子底板;143-第二子底板;1431-排水孔;145-第二隔热层;146-第二底板;147-第一边梁;148-第二边梁;149-中间梁;1410-套筒;1411-支撑件;15-支撑架体;20-电池;30-控制箱;40-挡板;41-基板;42-第一隔热层;43-第一表面;44-挡板本体;45-第一延伸部;50-第一托架;51-转接支架;60-第二托架;61-托架本体;611-承托板;612-连接板;6121-折弯部;613-衔接部;62-第二延伸部;70-第一限位件;80-第二限位件;90-紧固件;W-基准面。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“设置”“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接、信号连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
储能装置通常为柜体结构,储能装置包括箱体和多个电池以及控制箱,箱体的内部具有用于放置电池的仓位和用于放置控制箱的仓位,提高储能装置的组装效率有利于提升储能装置的产 量,从而适应市场广泛需求。
发明人发现,箱体的结构、电池的排布方式等直接影响储能装置的组装效率,如果箱体结构复杂,其箱体组装工艺相应繁琐,组装需时更长;同时,箱体内的电池的排布直接影响电池的接线、布线的便捷性,同样影响储能装置的成组效率。
鉴于此,为了提高储能装置的组装效率,发明人经过研究,设计了一种储能装置,该储能装置包括箱体,箱体具有电池仓;电池和控制箱设置于电池仓内,电池沿箱体的高度方向成列设置。
储能装置的电池和控制箱均设置在箱体的电池仓内,其整体结构简单,相较于电池和控制箱分仓设置的结构,可简化储能装置的结构,从而提高整体储能装置的装配效率。同时,电池仓内的多个电池沿箱体的高度方向排列,便于电池的组装、接线等操作,从而进一步提高装配效率。
本申请实施例公开的储能装置用于储存能量,例如需要使用电能的设备就需要储存电能的装置,储存电能的装置的储能装置可以为家庭储能装置、电柜、储能集装箱等。
请参照图1至图2,图1为本申请一些实施例提供的储能装置的结构示意图;图2为本申请一些实施例提供的储能装置的局部爆炸图;本申请一些实施例提供了一种储能装置100,储能装置100包括箱体10、至少一列电池20和至少一个控制箱30,箱体10具有电池仓13。至少一列电池20设置于电池仓13内,每一列电池20包括沿箱体10的高度方向排列的多个电池20。
在一些实施例中,至少一个控制箱30设置于电池仓13内。
箱体10为电池20和控制箱30提供容置空间,箱体10可以为长方体结构,箱体10的高度方向沿图中所示的Z方向延伸,箱体10的长度方向沿Y方向延伸,箱体10的宽度方向沿X方向延伸。箱体10可以是储能预制箱、储能集装箱等。箱体10可以包括本体和盖体,本体可以为一端开口131的空心结构,盖体连接于本体且用于封闭本体的开口端,本体和盖体合围形成电池仓13。当然,本体也可以为相对两端开口的空心结构,盖体设置两组,两组盖体分别盖合本体的两个开口端。
根据容量需求,箱体10的大小可进行适应性变更,例如,箱体10可以为储能集装箱,该集装箱的尺寸可以是国际通用的标准尺寸,也可以根据电池20尺寸等限制条件定制为非标尺寸。箱体10可以采用钢、铝、合金等具有一定结构强度和重量承载力的材质制成。
多个电池20沿箱体10的高度方向(在实际应用中,箱体10的高度方向可以垂直于储能装置100的固定平面或承载平面,高度方向沿图中Z方向延伸)有序排列在电池仓13内。
可以理解的是,电池仓13内可以只设置一列电池20,也可以设置两列、三列甚至更多列电池20,多列电池20可以沿箱体10的长度方向(图中所示的Y方向)或沿箱体10的宽度方向(图中所示的X方向)排列,也可以矩阵排列于电池仓13内。
控制箱30为具有控制元器件的箱体式结构,控制元器件可以为PLC(ProgrammablXLogicControllXr,可编程逻辑控制器),控制箱30用于与一个或者多个电池20电连接,同时,控制箱30还可以接至总控系统。具体而言,控制箱30可以读取电池20在运行过程中的电压、电流、温度等数据,控制电池20的开关状态等。
控制箱30的数量可以只设置一个,该一个控制箱30与电池仓13内的所有电池20电连接。控制箱30也可以设置多个,每个控制箱30可以与电池仓13内的部分个电池20电连接。
控制箱30可以设置在成列排列的多个电池20的上方,也可以设置在成列排列的多个电池20的下方,或者插设于成列排列的多个电池20之间。
储能装置100的电池20和控制箱30均设置在箱体10的电池仓13内,其整体结构简单,相较于电池20和控制箱30分仓设置的结构,可简化储能装置100的结构,从而提高整体储能装置100的装配效率。同时,电池仓13内的多个电池20沿箱体10的高度方向排列,便于电池20的组装、接线等操作,从而进一步提高装配效率;另外,多个电池20沿箱体10的高度方向排列,多个电池20的线束排布更加简短,可减少线束过长导致的空间利用率的问题,整体储能装置100在简化结构、提高装配效率的同时提高空间利用率。
请继续参照图1和图2,并进一步参照图3至图7,图3为本申请一些实施例提供的储能装置的主视图;图4为图2所示的A部分的局部放大图;图5为图4所示的在箱体内装入电池和控制箱的结构示意图;图6为图3所示的B部分的局部放大图;图7为图6所示的挡板的侧视图;根据本申请的一些实施例,每个控制箱30与一列电池20对应电连接,控制箱30位于与之对应的一列电池20的下方,储能装置100还包括挡板40,挡板40设置于控制箱30和至少一列电池20之 间,用于防护控制箱30。
具体而言,控制箱30的数量与电池20的列数相等,且控制箱30与每列电池20对应连接,控制箱30设置在与该控制箱30连接的一列电池20的下方。
挡板40设置在控制箱30和位于控制箱30上方的电池20之间,具体而言,挡板40设置在控制箱30和与该控制箱30相邻的一个电池20之间。挡板40大致呈板状结构,挡板40可以采用金属材质制成,也可以采用塑料等材质制成。
挡板40用于对控制箱30起到防护作用,挡板40可以阻挡控制箱30上方的杂质(如液体、灰尘等)落在主控箱上而影响主控箱的使用性能。尤其是箱体10内容易因温差变化产生冷凝水,冷凝水滴落在主控箱上容易造成主控箱受潮,进而影响主控箱的使用性能。
控制箱30位于与之对应的电池20的下方,进一步提高控制箱30的操作维护的便捷性,提高控制箱30的组装接线效率,从而进一步提高储能装置100的整体组装效率。在控制箱30和电池20之间设置挡板40,可阻挡储能箱体10内的位于控制箱30上方的液体(如冷凝液)、污染物、粉尘等杂质落到控制箱30,对控制箱30起到很好的防护作用,提高控制箱30的性能稳定性,从而提高储能装置100的性能稳定性。
根据本申请的一些实施例,如图7所示,沿高度方向,挡板40的投影至少部分覆盖控制箱30。
具体而言,挡板40设置在控制箱30的上方,沿箱体10的高度方向(图7中所示的Z方向),挡板40在控制箱30上的投影可以覆盖控制箱30的一部分,比如挡板40在控制箱30上的投影可以只覆盖控制箱30的容易进杂质的区域。挡板40在控制箱30上的投影也可以完全覆盖控制箱30。
挡板40位于控制箱30的上方,挡板40至少部分遮挡控制箱30,挡板40对控制箱30起到覆盖防护作用,从而降低杂质落至控制箱30的可能性,提高挡板40的防护效果。
根据本申请的一些实施例,沿高度方向,挡板40的投影完全覆盖控制箱30。
也就是说,沿箱体10的高度方向(图中所示的Z方向),挡板40在控制箱30上的投影完全覆盖控制箱30,控制箱30整体纳入挡板40的沿Z方向的遮挡范围内。
控制箱30完全位于挡板40的遮盖范围内有利于充分发挥挡板40的防护效果,进一步提高控制箱30的性能稳定性。
根据本申请的一些实施例,请参照图2,并进一步参照图5至图7,储能装置100还包括第一托架50,第一托架50设置于电池仓13内且与箱体10连接,第一托架50被配置为承载电池20,挡板40的长度小于第一托架50的长度。
第一托架50为用于承托电池20的部件,第一托架50设置于电池仓13内,可选地,第一托架50可以直接连接于箱体10,也可以连接于设置在箱体10内的其他构件。在一些实施例中,箱体10内设置支撑架体15,第一托架50可以连接于箱体10内的支撑架体15。
第一托架50的数量可以为多组,多组第一托架50分布于电池仓13内,多组第一托架50可以沿箱体10的高度方向(图中的Z方向)间隔设置于电池20舱内,每组第一托架50可以用于承托至少一个电池20。
第一托架50的实施结构可以有多种,比如,第一托架50可以为连接于支撑架体15的凸台,凸台具有沿高度方向的上表面,凸台的上表面用于与电池20接触,凸台承托电池20,凸台可以与箱体10的内壁采用焊接、螺接等方式连接。
第一托架50的长度方向沿电池20的长度方向延伸。示例性的,如图7所示,电池20的长度方向可以沿箱体10的宽度方向(X方向)延伸,第一托架50的长度同样沿X方向延伸。通常,第一托架50的长度可以大于、等于或小于电池20的长度。挡板40的长度也沿X方向延伸,沿X方向,第一托架50的延伸长度大于挡板40的延伸长度,挡板40的沿X方向的相对两端距离箱体10的内壁之间可以具有间隙。
箱体10内设置第一托架50,有利于提高电池20安装固定的便捷性,提高电池20组装效率的同时提高电池20固定的可靠性,挡板40的长度小于第一托架50的长度,可减少挡板40的重量和尺寸,降低材料成本的同时便于储能装置100的减重。
根据本申请的一些实施例,请继续参照图7,挡板40包括朝向电池20的第一表面43,第一表面43相对于高度方向倾斜设置。
具体而言,挡板40可以仅第一表面43为斜面,挡板40也可以整体呈平板状结构,整体 挡板40相较于高度方向倾斜设置,以使第一表面43相对于高度方向倾斜设置。示例性的,挡板40整体呈平板状结构,挡板40倾斜设置,以使挡板40的第一表面43成斜面。
挡板40的第一表面43倾斜设置的实施方式有多种,第一表面43可以沿任意垂直于高度方向的指向逐渐向下倾斜。比如,第一表面43可以沿箱体10长度方向(图中所示的Y方向)逐渐向下倾斜,也可以沿箱体10的宽度方向(图中所示的X方向)逐渐向下倾斜,示例性的,如图7所示,挡板沿箱体10的宽度方向(图中所示的X方向)逐渐向下倾斜。
挡板40的朝向电池20的第一表面43(即挡板40的沿储能箱体10的高度方向的上表面)倾斜设置,落在第一表面43的液体等杂质能够在重力作用下从第一表面43的高度较低的边缘滑落至箱体10的底部,以便于在箱体10底部集中处理或及时排出储能箱体10,降低杂质(尤其是液体)在挡板40上积存的风险,从而缓解因液体在挡板40上积存、受热重新汽化而加重箱体10内潮湿问题,利于保持箱体10内的干燥。
根据本申请的一些实施例,请继续参照图7,第一表面43与基准面W之间的角度为α,满足,0°<α≤30°,高度方向垂直于基准面W。
具体而言,第一表面43相较于基准面W向下倾斜的角度为α,α可以是任意大于0°且小于等于30°的角度。
比如,α可以为5°、10°、15°、20°、25°、30°等,示例性的,α可以为2°。
可以理解的是,当箱体的高度方向沿竖直方向延伸时,基准面W可以为水平面。
第一表面43与垂直于储能箱体10的高度方向的基准面之间的角度大于零度,使得第一表面43能够相对于储能箱体10的高度方向倾斜设置,从而提高挡板40排液的顺畅性和及时性;同时,如果挡板40的倾斜角度过大,在保证挡板40对控制箱30的覆盖面积的前提下,挡板40的结构需要加大,挡板40的占用储能箱体10的沿储能箱体10的高度方向的空间也会大幅度增加,不利于提高储能箱体10的空间利用率,从而不利于提高储能装置100的能量密度;将第一表面43和基准面之间的角度控制在大于零且小于30°的范围,可在提高挡板40排液顺畅及时性的同时,提高储能装置100的能量密度。
根据本申请的一些实施例,0.5°≤α≤15°。
具体而言,第一表面43相较于基准面W向下倾斜的角度为α,α可以是任意大于0.5°且小于等于15°的角度。
比如,α可以为0.5°、0.8°、3°、5°、8°、10°、12°、15°等,示例性的,α可以为1°。
第一表面43与垂直于储能箱体10的高度方向的基准面之间的角度控制在0.5°至15°之间,可进一步提高排液的顺畅性和及时性;同时,有利于进一步提高储能箱体10的空间利用率,从而提高储能装置100的能量密度。
根据本申请的一些实施例,请继续参照图6和图7,储能装置100包括第一限位件70和第二限位件80,第一限位件70和第二限位件80沿高度方向间隔设置且连接于箱体10;其中,挡板40插设于第一限位件70和第二限位件80之间。
第一限位件70和第二限位件80可以呈块状、柱状、板状等常规形状或其他异型结构,第一限位件70和第二限位件80之间具有容纳挡板40插入的间隙即可。示例性的,第一限位件70和第二限位件80均呈板状结构,第一限位件70和第二限位件80的大面垂直于高度方向(Z方向)。
第一限位件70和第二限位件80的朝向挡板40的表面可以与挡板40直接接触,也可以至少一者与挡板40之间具有间隙。
第一限位件70和第二限位件80可以分体设置并分别连接于箱体10,第一限位件70和第二限位件80也可以相互连接为一体结构,该一体结构连接于箱体10。
第一限位件70和第二限位件80可以直接连接于箱体10,比如第一限位件70和第二限位件80可以直接连接于箱体10的内壁。第一限位件70和第二限位件80也可以间接连接于箱体10,比如第一限位件70和第二限位件80可以连接至位于箱体10内的构件上,该构件连接于箱体10。
第一限位件70和第二限位件80的设置位置可以根据挡板40的插入方向灵活设置,比如,挡板40沿Y方向插入控制箱30和电池20之间,第一限位件70和第二限位件80可以设置两组,两组第一限位件70和第二限位分设于挡板40的沿X方向的相对两侧;当然,第一限位件70 和第二限位件80也可以设置于挡板40的沿Y方向末端,挡板40沿Y方向插入后,挡板40的沿Y方向的一端插入第一限位件70和第二限位件80之间。
基于“箱体10包括本体和盖体”实施形式,挡板40可以自本体的开口端向本体的与开口端相对的方向插入箱体10。比如,本体的开口端位于本体的沿X方向的一侧,则挡板40可以沿X方向自本体的开口端插入箱体10。同时,第一限位件70和第二限位件80可以设置两组,两组第一限位件70和第二限位件80分别设置于挡板40的沿Y方向的两侧。
箱体10内设置沿箱体10的高度方向间隔设置的第一限位件70和第二限位件80,挡板40插设在第一限位件70和第二限位件80之间,第一限位件70和第二限位件80相互配合限制挡板40的沿高度方向的相对位置,从而将挡板40限位在箱体10内,降低挡板40脱离安装位置的可能性,同时,插接的方式对安装空间需求小,便于操作,有利于提高储能装置100的组装的便捷性和组装效率。
根据本申请的一些实施例,请继续参照图7,沿高度方向,第一限位件70在挡板40上的投影和第二限位件80在挡板40上的投影相互错开。
也就是说,第一限位件70和第二限位件80沿第一方向相互错位设置。示例性的,如图7所示,第一限位件70和第二限位件80设置于挡板40的沿Y方向的一侧,第一限位件70和第二限位件80沿X方向间隔排列。第一限位件70和第二限位件80沿Z方向相互错位。
第一限位件70和第二限位件80相互错开,在提高第一限位件70和第二限位件80对挡板40限位稳定的同时,可降低第一限位件70和第二限位件80的延伸长度,节省成本的同时便于拆装操作。
根据本申请的一些实施例,请参照图2,并进一步参照图7和图8,图8为本申请一些实施例提供的挡板和第二托架的结构示意图,储能装置100还包括第二托架60,第二托架60设置于电池仓13内且与箱体10连接,第二托架60被配置为承载控制箱30,第一限位件70和第二限位件80连接于第二托架60。
第二托架60为用于承托控制箱30的部件,第二托架60设置于电池仓13内,可选地,第二托架60可以直接连接于箱体10,也可以连接于设置在箱体10内的其他构件。在一些实施例中,箱体10内设置支撑架体15,第二托架60可以连接于箱体10内的内壁支撑架体15。
第二托架60的数量可以为多组,每组第二托架60可以对应承托一个控制箱30。
第二托架60的实施结构同样可以有多种,示例性的,如图7和图8所示,第二托架60可以包括承托板611和连接板612,承托板611具有与高度方向相交的上表面,连接板612连接于承托板611的上表面,承托板611的上表面用于与电控箱接触而承托电控箱,连接板612用于与支撑架体15采用焊接、螺接等方式连接。第一限位件70和第二限位件80可以设置于连接板612的远离承托板611的一端,以将挡板40限位在位于承托板611上的控制箱30的上方。
具体而言,连接板612的背离承托板611的一端设置有两个沿高度方向高度不等的衔接部613,第一限位件70和第二限位件80分别连接于两个衔接部613的背离连接板612的一端。
其中,第一限位件70和第二限位件80可以通过螺接、铆接、焊接等方式固定于第二托架60,也可以与第二托架60一体成型。
箱体10内设置第二托架60,有利于提高控制箱30安装固定的便捷性,提高控制箱30组装效率的同时提高控制箱30固定的可靠性;第一限位件70和第二限位件80集成于第二托架60,结构集成性强,可进一步简化储能装置100组装工艺,降低组装难度,提高储能装置100组装效率。
根据本申请的一些实施例,如图7所示,储能装置100还包括紧固件90,挡板40通过紧固件90与箱体10可拆卸连接。
具体而言,在一些实施例中,挡板40可以通过紧固件90与箱体10可拆卸连接,从而对挡板40进行限位。在另一些实施例中,挡板40也可以仅通过第一限位件70和第二限位件80进行限位。在又一些实施例中,挡板40可以在通过第一限位件70和第二限位件80限位的同时,并通过紧固件90连接连接于箱体10,以进一步提高挡板40限位的稳定性。紧固件90的位置可以根据挡板40的位置进行灵活性设置。
紧固件的实施结构有多种,比如,紧固件可以为螺栓、卡接件、绑带等等任意一种常规的连接结构。
基于“箱体10可以包括本体和盖体,本体可以为一端开口的空心结构,盖体连接于本体 且用于封闭本体的开口,本体和盖体合围形成电池仓”的实施形式,挡板40可以自本体的开口端向本体的与开口端相对的方向插入箱体10,紧固件90可以位于挡板40的朝向本体的开口端的一侧,以更加方便于拆装操作。
可以理解的是,挡板40可以通过紧固件90直接连接于箱体10,挡板40也可以通过紧固件90连接于设置在箱体10内的与箱体10连接的结构。
比如,基于“储能装置100包括第一托架50,第一托架50用于承载电池20”的实施形式,挡板40可以通过紧固件90连接于与控制箱30相邻的电池20的第一托架50。
示例性的,如图9所示,图9为本申请一些实施例提供的挡板连接于第一托架的结构示意图,第一托架50位于控制箱30的上方,挡板40设置在第一托架50和控制箱30之间,挡板40沿X方向的一侧设置有紧固件90的连接结构(下述的第一延伸部45),第一托架50的沿X方向的一侧可以连接转接支架51,转接支架51和第一延伸部45通过紧固件90连接,以将挡板40连接于第一托架50。
再比如,基于“储能装置100包括第二托架60,第二托架60用于承载电池20”的实施形式,挡板40可以通过紧固件90连接于第二托架60。下文会详细介绍挡板40连接于第二托架60的实施结构。
挡板40和第二托架60通过紧固件90连接,可进一步提高挡板40的相对位置稳定性;同时,其固定方式简单,便于拆装,有利于提高整体储能装置100的组装效率。
根据本申请的一些实施例,请再次参照图8,挡板40包括挡板本体44和第一延伸部45,挡板本体44插设于第一限位件70和第二限位件80之间,第一延伸部45从挡板本体44的边缘延伸出;储能装置100还包括第二托架60,第二托架60设置于电池仓13内且与箱体10连接,第二托架60被配置为承载控制箱30,第二托架60包括托架本体61和第二延伸部62,第二延伸部62从托架本体61的边缘延伸出;其中,第一延伸部45和第二延伸部62相互叠置且通过紧固件90可拆卸连接。
如前所述,紧固件90的设置位置可以根据挡板40的插接方向、第二支架的结构进行适应性设置。
示例性的,箱体10的沿X方向的一端为开口端,第一延伸部45位于挡板本体44的沿X方向的且朝向开口端的一侧,第一延伸部45为板状结构,第一延伸部45的大面垂直于Y方向。
第二托架60包括承托板611和连接板612,连接板612连接于承托板611的上表面,承托板611用于承托电控箱,连接板612与箱体10螺接从而固定第二托架60。每个电控箱由两个第二托架60承托,两个第二托架60位于控制箱30的沿Y方向的相对两侧。每个第二托架60上均设置有第一限位件70和第二限位件80,第一限位件70和第二限位件80设置于连接板612的远离承托板611的一端,以将挡板40限位在位于承托板611上的控制箱30的上方。
连接板612的朝向本体开口131端的一侧设置第二延伸部62,第二延伸部62同样呈板状,第二延伸部62与第一延伸部45沿Y方向叠置,紧固件90贯穿第一延伸部45和第二延伸部62将该两者连接。
可以理解的是,第二延伸部62可以设置两个,即每个第二托架60设置一个第二延伸部62,相应的,挡板40也可以设置两个第一延伸部45,两个第一延伸部45和两个第二延伸部62一一对应连接即可。
在一些实施例中,连接板612的朝向本体开口131端的一侧可以形成有折弯部6121,折弯部6121沿Y方向延伸,第二延伸部62设置于折弯部6121,折弯部6121可以为控制箱30提供连接面,设置于第二托架60上的控制箱30可以通过紧固件90或其他紧固件连接于折弯部6121。
基于“挡板40包括朝向电池20的第一表面43,第一表面43相对于高度方向倾斜设置”的实施形式,第一限位件70和第二限位件80之间的缝隙可以与紧固件90沿高度方向相互错位设置,从而使得挡板40整体能够相对于高度方向倾斜设置。
挡板40设置第一延伸部45,第二托架60设置第二延伸部62,第一延伸部45和第二延伸部62相互连接,即可固定挡板40和第二托架60的相对位置关系,有利于进一步提高组装操作便捷性,从而提高组装效率。
根据本申请的一些实施例,请再次参照图7,挡板40包括沿高度方向叠置的基板41和第一隔热层42。
基板41可以采用具有一定结构强度的材质制成,比如硬质塑料、金属等。示例性的,为 了提高挡板40的耐磨性、耐摔性和使用寿命,基板41可以采用金属材质制成。
第一隔热层42可以采用任意隔热性能好的材质制成,在一些实施例中,第一隔热层42可采用吸水性好的隔热材料制成,比如可采用微孔发泡聚丙烯、聚氨基甲酸酯等材质制成,也可直接使用三聚氰胺隔热棉、密胺隔热棉、腈纶隔热棉、玻璃纤维布、高硅氧玻璃纤维布、陶瓷纤维棉、气凝胶毡等。
基于“挡板40包括挡板本体44和第一延伸部45”的实施形式,基板41和第一隔热层42可以共同形成挡板本体44并插入第一限位件70和第二限位件80之间,第一延伸部45可以从基板41延伸出。
第一隔热层42可降低基板41与箱体10内部环境的温差,对基板41起到保温作用,从而降低基板41上冷凝水的生成量,从而降低基板41上生成冷凝水滴落至控制箱30而使控制箱30受潮的风险,有利于进一步提高控制箱30的使用性能。
根据本申请的一些实施例,如图7所示,第一隔热层42位于基板41的朝向控制箱30的一侧。
具体而言,基板41具有沿其厚度方向相对的两个表面,其中一个表面朝向控制箱30,另一个表面朝向电池20,第一隔热层42设置于基板41的朝向控制箱30的一侧表面。
第一隔热层42可以完全覆盖基板41,也可以部分覆盖基板41,示例性的,第一隔热层42完全覆盖基板41的表面。
第一隔热层42位于基板41的朝向控制箱30的一侧,可进一步降低挡板40的朝向控制箱30的一侧生成冷凝水的可能性;同时,即使有少量冷凝水生成,第一隔热层42可辅助吸收至少部分冷凝水,有利于进一步降低控制箱30受潮风险。
根据本申请的一些实施例,第一隔热层42的导热系数为T1,满足,T1≤0.05W/m·K。
导热系数是指单位温度梯度下的热通量,具体而言,导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在一定时间内,通过1平方米面积传递的热量,单位为瓦/米·度(W/(m·K),此处为K可用℃代替)。可以理解的是,导热系数越大,第一隔热层42的导热性越好,反之隔热性能越差。
第一隔热层42的导热系数T1可以是任意小于等于0.05W/m·K的数值,比如,T1可以为0.05W/m·K、0.04W/m·K、0.03W/m·K、0.02W/m·K等。
第一隔热层42的导热系数小于等于0.05W/m·K,有利于提高第一隔热层42的隔热性能,从而提高第一隔热层42对基板41的保温效果,降低基板41上生成冷凝水的可能性。
根据本申请的又一些实施例,请继续参照图1和图2,并进一步参照图10和图11,图10为本申请另一些实施例提供的储能装置的主视图;图11为图10所示的C部分的局部放大图;每个控制箱30与一列电池20对应电连接,控制箱30位于与之对应的一列电池20的上方或下方,沿高度方向,控制箱30直接面对与之相邻的电池20。
也就是说,一列沿高度方向(图中所示的Z方向)排列的电池20与第一控制箱30电连接,且该控制箱30可以位于该列电池20的上方,也可以位于该列电池20的下方。沿高度方向(图中所示的Z方向)的最外侧的一个电池20与控制箱30相邻。
控制箱30直接面对与之相邻的电池20,是指与控制箱30相邻的一个电池20和控制箱30之间不设置隔层、隔板等分隔结构,从而使得控制箱30能够直接面对电池20。
控制箱30直接面对与之相邻的电池20,取消传统储能装置100中设置在控制箱30和电池20之间的隔离层,从而简化储能装置100的结构,进一步提高简化储能装置100的组装工艺,提高储能装置100的装配效率;且便于节省材料成本和电池仓13内的空间。
根据本申请的一些实施例,请继续参照图1至图3,并进一步参照图12和图13,图12为图3所示的储能装置的箱体的局部侧视剖面图;图13为图3所示的储能装置的箱体的俯视图。箱体10包括底壁14,底壁14包括第二隔热层145。
具体而言,底壁14设置有第二隔热层145,第二隔热层145可以采用任意隔热性能好的材质制成。比如,第二隔热层145可以使用岩棉、石棉、泡沫塑料等。示例性的,第二隔热层145可以使用岩棉。
在一些实施例中,第二隔热层145可以采用粘贴、绑缚等方式固定于箱体10的底壁14的外表面。或者,箱体10的底壁14可以设置填充腔,第二隔热层145填充在填充腔内。
箱体10的底壁14设置第二隔热层145,可对箱体10内的电池20和控制箱30起到良好 的保温作用,有利于提高低温环境下电池20和控制箱30的工作性能。同时,第二隔热层145设置于箱体10的底壁14,相较于设置在电池仓13内的方式,可防止第二隔热层145占用电池仓13的内部空间,有利于提高储能装置100的能量密度。
根据本申请的一些实施例,如图12所示,底壁14还包括沿高度方向相对设置的第一底板141和第二底板146,第二隔热层145设置于第一底板141和第二底板146之间。
具体而言,第一底板141和第二底板146沿箱体10的高度方向(图中所示的Z方向)间隔设置,第一底板141和第二底板146之间可以形成用于填充第二隔热层145的填充腔,第二隔热层145设置在该填充腔内,第一底板141、第二隔热层145和第二底板146形成类似三明治的结构。
其中,第二隔热层145可以活动设置在第一底板141和第二底板146之间,第二隔热层145也可以通过粘接等方式固定于第一底板141和第二底板146之间。
第二隔热层145夹持在第一底板141和第二底板146之间,第二隔热层145对箱体10起到保温作用,同时,第一底板141和第二底板146在提高箱体10结构强度的同时,对第二隔热层145起到防护作用,降低第二隔热层145裸露在外因被污染、被浸湿、被损坏而造成保温失效的问题,从而提高第二隔热层145的保温效果。
根据本申请的一些实施例,第二底板146位于第一底板141的下方,至少部分第一底板141相对于高度方向倾斜设置。
具体而言,第二底板146位于第一底板141的沿箱体10的高度方向的下方,第一底板141位于第二底板146的沿高度方向的上方,第一底板141的上表面可以形成箱体10的内表面。
第一底板141倾斜设置,可以使第一底板141的上表面形成斜面,箱体10内掉落在第一底板141上的杂物、液体等杂质可以顺着第一底板141的斜面滑动,以便于箱体10内的杂质的集中处理。
其中,第一底板141的倾斜方向可以有多种,比如,第一底板141可以沿Y方向逐渐向下倾斜,具体而言,第一底板141可以沿Y方向的一端指向另一端的方向逐渐向下倾斜,第一底板141也可以沿Y方向的相对两端指向中间的方向逐渐向下倾斜。再比如,第一底板141可以沿X方向逐渐向下倾斜,具体而言,第一底板141可以沿X方向的一端指向另一端的方向逐渐向下倾斜,第一底板141也可以沿X方向的相对两端指向中间的方向逐渐向下倾斜。当然,第一底板141的也可以沿边缘指向中心的方向倾斜,使得第一底板141形成中间低、外周高的结构。
至少部分第一底板141相对于高度方向倾斜设置,落在第一底板141上的杂质(尤其是液体)可以在自身重力作用下向高度方向较低的位置聚集,便于杂质的收集及排出。
根据本申请的一些实施例,如图12所示,底壁14还包括:第一边梁147和第二边梁148,沿第一方向间隔设置;中间梁149,设置于第一边梁147和第二边梁148之间,第一边梁147、第二边梁148和中间梁149均沿第二方向延伸,第一方向、第二方向和高度方向两两垂直;第一底板141包括第一子底板142和第二子底板143,第一子底板142连接第一边梁147和中间梁149,第二子底板143连接第二边梁148和中间梁149。
具体而言,第一方向可以沿图中的X方向延伸,第二方向可以沿图中的Y方向延伸,其中,第一方向X可以为箱体10的宽度方向或长度方向,当第一方向X为箱体10的长度方向时,第二方向Y为箱体10的宽度方向。当第一方向X为箱体10的宽度方向时,第二方向Y为箱体10的长度方向。示例性的,如图12和图13所示,第一方向X为箱体10的宽度方向时,第二方向Y为箱体10的长度方向。
第一边梁147和第二边梁148沿第一方向X相对设置,中间梁149设置在第一边梁147和第二边梁148之间,且第一边梁147、第二边梁148和中间梁149沿第一方向X两两间隔设置,第一边梁147、第二边梁148和中间梁149的长度方向均沿第二方向Y延伸。
第一底板141包括第一子底板142和第二子底板143,第一子底板142和第二子底板143沿第一方向X并排设置,第一子底板142连接第一边梁147和中间梁149,第二子底板143连接第二边梁148和中间梁149。可以理解的是,第一子底板142与第二底板146之间以及第二子底板143和第二底板146之间可以均设置第二隔热层145。也就是说,第一子底板142、第一边梁147、中间梁149和第二底板146的与第一子底板142沿高度方向对应的区域可以合围形成一个用于填充第二隔热层145的填充腔,第二子底板143、第二边梁148、中间梁149和第二底板146的与第二子底板143沿高度方向对应的区域可以合围形成另一个用于填充第二隔热层145的填充腔。
第一边梁147、第二边梁148和中间梁149形成箱体10的主要承重梁,第一底板141分体设置成尺寸较小的两块,减小第一底板141的组装难度,有利于进一步提高储能装置100的组装效率。同时,第一边梁147、第二边梁148和中间梁149将第一底板141和第二底板146之间的空间格成两个子空间,便于第二隔热层145的分腔填充,且第一子底板142和第二子底板143对填充在中间梁149和第一边梁147之间的第二隔热层145和填充在中间梁149和第二边梁148之间的第二隔热层145分别进行封装,提高第二隔热层145封装在第一底板141和第二底板146之间的封闭性。
根据本申请的一些实施例,如图12所示,沿第一边梁147指向中间梁149的方向,第一子底板142逐渐向下倾斜。
具体而言,第一边梁147和中间梁149沿第一方向X间隔设置,第一子底板142沿第一边梁147指向中间梁149的方向逐渐向下倾斜,第一子底板142的上表面形成相对于高度方向倾斜的斜面,且沿箱体10的高度方向,第一子底板142的朝向第一边梁147的一端高于第一子底板142的朝向中间梁149的一端,箱体10内如果有杂质落在第一子底板142上,则该杂质会在自身重力作用下向中间梁149的方向滑动,最终可以聚集在第一子底板142的靠近中间梁149的一端、或聚集在中间梁149位置、或经中间梁149进入第二子底板143的上表面。
第一子底板142逐渐向下倾斜,落在第一子底板142的液体等杂质向第二子底板143方向收拢,便于杂质的集中处理。
根据本申请的一些实施例,如图12所示,沿高度方向,第一边梁147的上端超出中间梁149的上端,第一子底板142连接第一边梁147的上端和中间梁149的上端。
具体而言,沿垂直于高度方向的方向,中间梁149的上端和第一边梁147的上端不平齐,第一边梁147的上端高于中间梁149的上端,第一子底板142朝向中间梁149的一端连接于中间梁149的上端,第一子底板142朝向第一边梁147的一端连接于第一边梁147的上端。
第一边梁147和中间梁149的上端高低错落设置,第一子底板142连接至第一边梁147的上端和中间梁149的上端即可实现第一子底板142的倾斜设置,第一子底板142的安装起到防错作用,进一步提高组装效率。同时,第一子底板142连接至第一边梁147和中间梁149的上端,防止第一子底板142的上表面与中间梁149之间形成较大断层,从而减小第一子底板142的杂质在靠近中间梁149处堆积的可能性,提高箱体10清理杂质的便捷性。
在一些实施例中,第二底板146可以连接于中间梁149、第一边梁147和第二边梁148的下端。与第一底板141的结构相似,第二底板146可以设置两个,其中一个第二底板146连接第一边梁147和中间梁149,另一个第二底板146连接中间梁149和第二边梁148。
在一些实施例中,中间梁149可以采用工字梁,第一底板141连接于工字梁的上横梁,第二底板146连接于工字梁的竖梁或下横梁。
在一些实施例中,第一边梁147可以由两个相向扣合的C型钢构成,两个C型钢扣合后形成内腔,内腔内也可填充保温隔热材料。同样的,第二边梁148也可以由两个相向扣合的C型钢构成,两个C型钢扣合后形成内腔,内腔内也可填充保温隔热材料。
根据本申请的一些实施例,如图12所示,底壁14设有贯穿第二子底板143、第二隔热层145和第二底板146的排水孔1431,排水孔1431用于排出箱体10内的液体。
如前所述,第一子底板142连接于中间梁149的上端,所以滴落在第一子底板142上的液体可以经过中间梁149进入第二子底板143区域。
底壁14设置贯穿第二子底板143、第二隔热层145和第二底板146的排水孔1431,能够使得由第一子底板142汇集到第二子底板143的液体以及滴落在第二子底板143上的液体均通过该排水孔1431排出箱体10。
可以理解的是,排水孔1431可以设置一个,也可以设置多个,如图13所示,多个排水孔1431可以在第二子底板143上沿第二方向Y间隔设置,以进一步提高排水的及时性。
其中,第二子底板143也可以至少部分区域相对于高度方向倾斜设置,将排水孔1431设置于第二子底板143的低陷处。当然,第二子底板143也可以不倾斜设置,第二子垫板所在平面可以与中间梁149的上端平齐,也可以低于中间梁149的上端。
基于“箱体10包括本体和盖体,箱体10为一端开口的空心结构”的实施形式,设置有排水孔1431的第二子底板143可以靠近箱体10的开口端,示例性的,箱体10的开口端位于箱体10的沿X方向的一侧,第二子底板143和第一子底板142沿X方向并排设置,第二子底板143相较于 第一子底板142更靠近箱体10的开口端,以便于人工对排水孔1431进行施工及维护。
底壁14的第二子底板143处设置有排水孔1431,箱体10内的液体可经第二子底板143的排水孔1431排出箱体10,有利于保持箱体10的内部环境干燥。
在一些实施例中,排水孔1431内还可以安装排水阀。
根据本申请的一些实施例,第二子底板143的上表面倾斜设置以将上表面的液体引导至排水孔1431。
也就是说,第二子底板143同样倾斜设置,排水孔1431位于第二子底板143的低陷处。
可以理解的是,第二子底板143可以相对于高度方向沿任意指向向下倾斜。比如,第二子底板143可以沿第二边梁148指向中间梁149的方向逐渐向下倾斜,排水孔1431设置于第二子底板143的靠近中间梁149的一侧。当然,第二子底板143也可以沿中间梁149指向第二边梁148的方向逐渐向下倾斜,排水孔1431设置于第二子底板143的靠近第二边梁148的一侧。
示例性的,如图12和图13所示,排水孔1431设置于第二子底板143的沿第一方向X的靠近中间的位置,第二子底板143的边缘朝向排水孔1431逐渐向下倾斜。
第一子底板142的上表面形成相对于高度方向倾斜的斜面,且沿箱体10的高度方向,第一子底板142的朝向第一边梁147的一端高于第一子底板142的朝向中间梁149的一端,箱体10内如果有杂质落在第一子底板142上,则该杂质会在自身重力作用下向中间梁149的方向滑动,最终可以聚集在第一子底板142的靠近中间梁149的一端、或聚集在中间梁149位置、或经中间梁149进入第二子底板143的上表面。
第二子底板143的上表面倾斜设置,流至上表面的液体可快速向排水孔1431的位置流动,进一步提高箱体10排水的及时性和顺畅性。
根据本申请的一些实施例,如图12所示,底壁14还包括套筒1410,套筒1410设置于排水孔1431,用于将液体和第二隔热层145隔开。
具体而言,第二子底板143和第二底板146之间填充有第二隔热层145,经排水孔1431排出的液体如果进入第二隔热层145,会浸湿第二隔热层145而影响其保温效果。
底壁14设置套筒1410,套筒1410穿设于排水孔1431内,套筒1410的轴向的一端可以与第二子底板143密封连接,另一端可以与第二底板146密封连接,套筒1410的内腔形成排水通道,从而将液体和第二隔热层145隔开。
排水孔1431设置套筒1410,套筒1410对设置在第一底板141和第二底板146之间的第二隔热层145起到隔离防护作用,降低排水孔1431排出的液体浸湿第二隔热层145的可能性,从而提高第二隔热层145的保温效果。
根据本申请的一些实施例,如图12所示,底壁14还包括支撑件1411,支撑件1411设置于第一底板141和第二底板146之间,沿高度方向Z,支撑件1411、第一底板141和第二底板146两两间隔设置,支撑件1411用于支撑第二隔热层145。
支撑件1411可以有多种实施结构,支撑件1411可以呈与第一底板141相对设置的板状结构,也可以包括多个条形结构,多个条形结构沿任意垂直于高度方向的方向(比如沿第一方向X)间隔排列而形成支撑件1411,支撑件1411可以通过焊接、螺接等方向与底壁14的边缘固定连接。
支撑件1411和第一底板141之间可以形成第一子填充空间,支撑件1411和第二底板146之间可以形成第二子填充空间,第一子填充空间和第二子填充空间均设置有第二隔热层145。
第一底板141和第二底板146之间设置支撑件1411,支撑件1411对第一底板141和第二底板146之间的空间进行划分,对填充在第一底板141和第二底板146之间的部分第二隔热层145起到支撑作用,使得第二隔热层145能够稳定均匀的填满第一底板141和第二底板146之间的空间,减少第二隔热层145的总填充量的同时提高第二隔热层145的保温效果。
根据本申请的一些实施例,第二隔热层145的导热系数为T2,满足,T2≤0.05W/m·K。
第二隔热层145的导热系数T2可以是任意小于等于0.05W/m·K的数值,比如,T2可以为0.05W/m·K、0.04W/m·K、0.03W/m·K、0.02W/m·K等。
第二隔热层145的导热系数小于等于0.05W/m·K,有利于提高第二隔热层145的隔热性能,从而提高第二隔热层145对箱体10的内部环境的保温效果。
根据本申请的一些实施例,第二隔热层145的材质为聚氨酯发泡胶或岩棉中的至少一种。其材料成熟且保温隔热效果好,实用性强。
根据本申请的一些实施例,箱体10为标准集装箱。
标准集装箱是指国际标准集装箱,国际标准集装箱是指根据国际标准来建造和使用的国际通用的标准集装箱。国际标准集装箱的尺寸可分为“外部尺寸”和“最小内部尺寸”,本实施例的标准集装箱可以是任意一种规格的标准集装箱。示例性的,标准集装箱可以采用标准20尺高集装箱,集装箱的外部尺寸为:长为6058mm×宽2438mm×高2896mm。
箱体10为标准集装箱,可直接使用集装箱运输工具进行运输,无需配合开顶柜等中间装置进行二次装箱而合成标准尺寸,便于运输,通用性强。
根据本申请的一些实施例,请继续参照图1至图3,并进一步参照图14,图14为本申请一些实施例提供的储能装置的俯视剖面图;电池仓13在第一方向上具有开口131,沿第一方向,电池仓13设置一个电池20。
图中,第一方向沿X方向延伸,第一方向X可以为箱体10的宽度方向也可以为箱体10的长度方向。为了便于示意,图1中仅示出了一个电池20,以示出电池仓13。
电池仓13为用于容纳电池20的仓室,电池20能够沿第一方向X从电池仓13的开口131进入电池仓13。
沿第一方向,电池仓13设置一个电池20,可以理解为,电池仓13内沿第一方向X只排布一个电池20。
电池仓13可以在第一方向X上的一侧具有开口131,使得两个储能装置100能够相邻设置,并且两个储能装置100的电池仓13的开口131可以相背设置,以提高储能装置100所在位置的空间利用率。
当然,电池仓13也可以在第一方向X上的两侧具有开口131,可以分别从第一方向X上的两侧向电池仓13内放置电池20或从电池仓13内取出电池20。
电池20从第一方向经由开口131进入电池仓13内,沿第一方向,电池仓13设置一个电池20,使得电池20在第一方向上的尺寸可以较大,例如,电池20在第一方向上的尺寸可以接近电池仓13在第一方向上的尺寸,从而能够提高电池仓13在第一方向上的空间利用率,进而使得储能装置100具有较高的能量密度。
根据本申请的一些实施例,请参照图14和图15,图15为本申请一些实施例提供的电池示意图;电池仓13在第一方向上的尺寸为L1,电池20在第一方向上的尺寸为L2,满足,L1<2L2。
电池仓13在第一方向X上的尺寸L1是指,沿第一方向X,从电池仓13的开口131到位于电池仓13的远离开口131的一端的仓壁的内表面之间的距离。
电池20设置于电池仓13内,电池仓13在第一方向X上的尺寸L1与电池20在第一方向X上的尺寸L2之间的关系满足:L1>L2。
电池仓13在第一方向上的尺寸L1与电池20在第一方向上的尺寸L2的比例满足L1<2L2,电池20在第一方向上的尺寸可以较大,以使得电池仓13在第一方向上的空间利用率较高。
根据本申请的一些实施例,95%≤L2/L1≤100%。
L2/L1的比值可以是95%至100%之间的任意数值,可选地,L2/L1可以为95%、95.4%、96%、96.8%、97%、97.6%、98%、98.8%、99%、99.5%或100%等。
电池仓13在第一方向上的尺寸L1与电池20在第一方向上的尺寸L2之间的比例满足上述范围,可进一步提高电池仓13在第一方向上的空间利用率,使得储能装置100能够具有较高的能量密度。
根据本申请的一些实施例,98%≤L2/L1≤99%。
也就是说,L2/L1的比值可以是98%至99%之间的任意数值,可选地,L2/L1可以为98%、98.1%、98.2%、98.25%、98.3%、98.4%、98.5%、98.6%、98.7%、98.8%、98.9%或99%。
相较于95%≤L2/L1≤100%,当98%≤L2/L1≤99%时,既能保证电池仓13在第一方向X上具有较高的空间利用率,也便于预留电池20与其他部件的装配空间,减小电池20与其他部件的干涉。
根据本申请的一些实施例,1500mm≤L1≤2500mm。
L1可以为1500mm至2500mm之间的任意数值,可选地,L1可以为1500mm、1600mm、1700mm、1800mm、1900mm、2000mm、2100mm、2200mm、2300mm、2400mm或2500mm。
电池仓13在第一方向的尺寸满足上述范围,电池仓13具有较大的容纳空间,电池20在 第一方向上的尺寸可以较大,使得储能装置100能够具有较高的能量密度。
根据本申请的一些实施例,1600mm≤L1≤2400mm。
L1可以为1600mm至2400mm之间的任意数值,可选地,L1可以为1600mm、1650mm、1700mm、1750mm、1800mm、1850mm、1900mm、1950mm、2000mm、2050mm、2100mm、2150mm、2200mm、2250mm、2300mm、2350mm或2400mm。
相较于1500mm≤L1≤2500mm,当1600mm≤L1≤2400mm时,一方面,电池仓13能够具有较大的容纳空间,另一方面,电池仓13在第一方向的空间占用较小,便于储能箱体10的布局。
根据本申请的一些实施例,1500mm≤L2≤2500mm。
L2可以为1500mm至2500mm之间的任意数值,可选地,L2可以为1500mm、1600mm、1700mm、1800mm、1900mm、2000mm、2100mm、2200mm、2300mm、2400mm或2500mm。
电池20在第一方向上的尺寸满足上述范围,以便于电池20匹配电池仓13在第一方向上的尺寸,使得储能装置100能够具有较高的能量密度。
根据本申请的一些实施例,1600mm≤L2≤2400mm。
L2可以为1600mm至2400mm之间的任意数值,L2可以为1600mm、1700mm、1800mm、1900mm、2000mm、2100mm、2200mm、2300mm或2400mm。
相较于1500mm≤L2≤2500mm,当1600mm≤L2≤2400mm时,电池20在第一方向上的尺寸更适合与电池仓13装配,使得储能装置100能够具有较高的能量密度,还能够便于电池20与其他部件(如线束)的装配。
根据本申请的一些实施例,第一方向为箱体10的宽度方向。
如图14所示,第一方向沿X方式延伸,第一方向X为箱体10的宽度方向。
第一方向为储能箱体10的宽度方向,电池仓13在储能箱体10的宽度方向上具有较高的空间利用率,以便于提高电池仓13的整体空间利用率,进而使储能装置100具有较高能量密度。
根据本申请的一些实施例,如图14所示,电池20的长度方向与第一方向平行。
电池20的长度方向与储能箱体10的宽度方向平行,便于电池20的长度与储能箱体10的宽度匹配,在储能装置100组装时,电池20能够更容易的尽可能多的占用电池仓13内部空间,有利于降低储能装置100的高能量密度组装难度。
根据本申请的一些实施例,请再次参照图1,箱体10包括舱体11和舱门12,舱体11具有电池仓13,舱门12连接于舱体11,舱门12用于封闭电池仓13的开口131。
如前所述,箱体10可以包括本体和盖体,舱体11对应前述的本体,舱门12对应前述的盖体。
舱门12可以采用转轴等旋转机构转动铰接于舱体11,舱门12相对于舱体11转动,以打开或关闭电池仓13的开口131。在一些实施例中,舱门12可以绕与储能箱体10的高度方向Z平行的轴线连接于舱体11,以使舱门12能够相对于舱体11转动。
舱门12封闭电池仓13的开口131,以便于位于电池仓13内的电池20和控制箱30与外部隔离,便于保护电池20和控制箱30。
根据本申请的另一些实施例,请参照图1至图3,并进一步参照图16,图16为本申请另一些实施例提供的储能装置的主视图,储能装置100包括多列电池20,多列电池20沿第二方向排列于电池仓13;控制箱30设有多个,多个控制箱30沿第二方向排列于电池仓13,每个控制箱30与一列电池20对应电连接且位于该列电池20的上方或下方,第二方向为箱体10的长度方向。
第二方向沿图中的Y方向延伸,箱体10的高度方向沿Z方向延伸,每列电池20包括沿Z方向排列的多个电池20,电池仓13内沿Y方向排列有多列电池20。所有电池20矩阵排列于电池仓13内。
控制箱30可以位于电池20的上方,也可以位于电池20的下方,示例性的,控制箱30全部位于电池20的下方,多个控制箱30沿Y方向排列与电池仓13。
电池仓13内设置多列电池20,多个电池20排列成矩形阵列,更加合理利用电池仓13的空间,便于电池仓13容纳较多的电池20,进一步提高电池仓13的空间利用率。
根据本申请的一些实施例,舱门12的数量为多个,多个舱门12可转动地连接于舱体11。舱门12沿储能箱体10的长度方向排列设置,当多个电池20排列成矩形阵列时,每个舱门12可以对应一列的多个电池20,以便于电池20和控制箱30的装配。
根据本申请的一些实施例,电池20可以包括电池20箱和容置在电池20箱内的多个电池 20单体,多个电池20单体中至少两个电池20单体并联。
例如,两个电池20单体并联组成一个单元,然后,多个单元串联,以构成电池20。再例如,三个电池20单体并联组成一个单元,然后,多个单元串联,以构成电池20。需要指出的是,电池20单体之间的连接为电连接,以便于电流的传输。
根据本申请的一些实施例,电池20的电池20箱的材质为铝,例如,AL6061。AL6061是铝合金材料,AL6061属热处理可强化合金,具有良好的可成型性、可焊接性、可机加工性能,同时具有中等强度,在退火后仍能维持较好的操作性。
请参照图1至图16,本申请一些实施例提供一种储能装置100,储能装置100包括箱体10、多列电池20和多个控制箱30。箱体10为标准集装箱,箱体10包括舱体11和舱门12,舱体11具有电池仓13,电池仓13箱体10的宽度方向(图中的X方向)的一侧具有开口131,舱门12连接于舱体11,舱门12用于封闭电池仓13的开口131。
箱体10包括底壁14(即舱体11的底壁14),底壁14包括沿箱体10的高度方向(图中的Z方向)相对设置的第一底板141和第二底板146,以及设置在第一底板141和第二底板146之间的第二隔热层145,还包括沿箱体10的宽度方向(图中的X方向)间隔设置的第一边梁147、中间梁149和第二边梁148,其中,第二边梁148相较于第一边梁147更靠近电池仓13的开口131。第一底板141位于第二底板146的上方,第一底板141包括沿X方向排列的第一子底板142和第二子底板143,沿高度方向第一边梁147的上端超出中间梁149的上端,第一子底板142连接第一边梁147的上端和中间梁149的上端,以使第一子底板142沿第一边梁147指向中间梁149的方向逐渐向下倾斜。第二子底板143连接中间梁149的上端和第一边梁147的上端,底壁14设有贯穿第二子底板143、第二隔热层145和第二底板146的排水孔1431,排水孔1431用于排出箱体10内的液体,第二子底板143的上表面倾斜设置以将上表面的液体引导至所述排水孔1431。第二底板146连接于第一边梁147、第二边梁148和中间梁149的下端。
多列电池20沿箱体10的长度方向(Y方向)排列,每列的多个电池20沿箱体10的高度方向(Z方向)排列,电池20舱内位于每列电池20的下方对应设置一个控制箱30,控制箱30与位于该控制箱30上方的一列电池20电连接。其中,沿箱体10的高度方向,控制箱30直接面对与之相邻的电池20。
请参照图1至图16,本申请一些实施例提供一种储能装置100,储能装置100包括箱体10、多列电池20、多个控制箱30和挡板40。箱体10为标准集装箱,箱体10包括舱体11和舱门12,舱体11具有电池仓13,电池仓13箱体10的宽度方向(图中的X方向)的一侧具有开口131,舱门12连接于舱体11,舱门12用于封闭电池仓13的开口131。
箱体10包括底壁14(即舱体11的底壁14),底壁14包括沿箱体10的高度方向(图中的Z方向)相对设置的第一底板141和第二底板146,以及设置在第一底板141和第二底板146之间的第二隔热层145,还包括沿箱体10的宽度方向(图中的X方向)间隔设置的第一边梁147、中间梁149和第二边梁148,其中,第二边梁148相较于第一边梁147更靠近电池仓13的开口131。第一底板141位于第二底板146的上方,第一底板141包括沿X方向排列的第一子底板142和第二子底板143,沿高度方向第一边梁147的上端超出中间梁149的上端,第一子底板142连接第一边梁147的上端和中间梁149的上端,以使第一子底板142沿第一边梁147指向中间梁149的方向逐渐向下倾斜。第二子底板143连接中间梁149的上端和第一边梁147的上端,底壁14设有贯穿第二子底板143、第二隔热层145和第二底板146的排水孔1431,排水孔1431用于排出箱体10内的液体,第二子底板143的上表面倾斜设置以将上表面的液体引导至所述排水孔1431。第二底板146连接于第一边梁147、第二边梁148和中间梁149的下端。
多列电池20沿箱体10的长度方向(Y方向)排列,每列的多个电池20沿箱体10的高度方向(Z方向)排列,电池20舱内位于每列电池20的下方对应设置一个控制箱30,控制箱30与位于该控制箱30上方的一列电池20电连接。
挡板40同样设置有多个,每列电池20和位于该列电池20的下方的控制箱30之间设置一个挡板40,挡板40包括朝向电池20的第一表面43,第一表面43相对于高度方向倾斜设置。
储能装置100还包括第二托架60,第二托架60设置于电池仓13内与箱体10连接,第二托架60包括托架本体61和第二延伸部62,托架本体61用于承托控制箱30,第二延伸部62设置于托架本体61的沿X方向的靠近电池仓13开口131的一端,托架本体61上连接有沿箱体10的高度方向相对设置的第一限位件70和第二限位件80,第一限位件70和第二限位件80设置有两组, 两组第一限位件70和第二限位件80分别位于挡板40的沿箱体10的长度方向(Y方向)的相对两侧。挡板40包括挡板本体44和第一延伸部45,挡板本体44的沿Y方向的两端插设于第一限位件70和第二限位件80之间,第一延伸部45位于挡板本体44的沿X方向的靠近电池仓13开口131的一端,第一延伸部45与第二延伸部62叠置且通过螺栓连接,沿箱体10的宽度方向(X方向),螺栓的中心轴线在箱体10上的投影位于第一限位件70和第二限位件80之间的间隙在箱体10上的投影的上方,以使挡板本体44相对于高度方向倾斜设置。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (42)

  1. 一种储能装置,包括:
    箱体,具有电池仓;
    至少一列电池,设置于所述电池仓内,每一列电池包括沿所述箱体的高度方向排列的多个电池;
    至少一个控制箱,设置于所述电池仓内。
  2. 根据权利要求1所述的储能装置,其中,每个所述控制箱与一列电池对应电连接,所述控制箱位于与之对应的一列电池的下方,所述储能装置还包括:
    挡板,设置于所述控制箱和所述至少一列电池之间,用于防护所述控制箱。
  3. 根据权利要求2所述的储能装置,其中,沿所述高度方向,所述挡板的投影至少部分覆盖所述控制箱。
  4. 根据权利要求3所述的储能装置,其中,沿所述高度方向,所述挡板的投影完全覆盖所述控制箱。
  5. 根据权利要求4所述的储能装置,其中,所述储能装置还包括第一托架,所述第一托架设置于所述电池仓内且与所述箱体连接,所述第一托架被配置为承载所述电池,所述挡板的长度小于所述托架的长度。
  6. 根据权利要求2-5中任一项所述的储能装置,其中,所述挡板包括朝向所述电池的第一表面,所述第一表面相对于所述高度方向倾斜设置。
  7. 根据权利要求6所述的储能装置,其中,所述第一表面与基准面之间的角度为α,满足,0°≤α≤30°,所述高度方向垂直于所述基准面。
  8. 根据权利要求7所述的储能装置,其中,0.5°≤α≤15°。
  9. 根据权利要求2-8中任一项所述的储能装置,其中,所述储能装置包括:
    第一限位件和第二限位件,沿所述高度方向间隔设置且连接于所述箱体;
    其中,所述挡板插设于所述第一限位件和所述第二限位件之间。
  10. 根据权利要求9所述的储能装置,其中,沿所述高度方向,所述第一限位件在所述挡板上的投影和所述第二限位件在所述挡板上的投影相互错开。
  11. 根据权利要求9或10所述的储能装置,其中,所述储能装置还包括第二托架,所述第二托架设置于所述电池仓内且与所述箱体连接,所述第二托架被配置为承载所述控制箱,所述第一限位件和所述第二限位件连接于所述第二托架。
  12. 根据权利要求2-11中任一项所述的储能装置,其中,所述储能装置还包括紧固件,所述挡板通过所述紧固件与所述箱体可拆卸连接。
  13. 根据权利要求12所述的储能装置,其中,所述挡板包括挡板本体和第一延伸部,所述挡板本体插设于所述第一限位件和所述第二限位件之间,所述第一延伸部从所述挡板本体的边缘延伸出;
    所述储能装置还包括第二托架,所述第二托架设置于所述电池仓内且与所述箱体连接,所述第二托架被配置为承载所述控制箱,所述第二托架包括托架本体和第二延伸部,所述第二延伸部从所述托架本体的边缘延伸出;
    其中,所述第一延伸部和所述第二延伸部相互叠置且通过所述紧固件可拆卸连接。
  14. 根据权利要求2-13中任一项所述的储能装置,其中,所述挡板包括沿所述高度方向叠置的基板和第一隔热层。
  15. 根据权利要求14所述的储能装置,其中,所述第一隔热层位于所述基板的朝向所述控制箱的一侧。
  16. 根据权利要求14或15所述的储能装置,其中,所述第一隔热层的导热系数为T1,满足,T1≤0.05W/m·K。
  17. 根据权利要求1所述的储能装置,其中,每个所述控制箱与一列电池对应电连接,所述控制箱位于与之对应的一列电池的上方或下方,沿所述高度方向,所述控制箱直接面对与之相邻的所述电池。
  18. 根据权利要求1-17中任一项所述的储能装置,其中,所述箱体包括底壁,所述底壁包括第二隔热层。
  19. 根据权利要求18所述的储能装置,其中,所述底壁还包括沿所述高度方向相对设置的第一底板和第二底板,所述第二隔热层设置于所述第一底板和所述第二底板之间。
  20. 根据权利要求19所述的储能装置,其中,所述第二底板位于所述第一底板的下方,至少部分所述第一底板相对于所述高度方向倾斜设置。
  21. 根据权利要求20所述的储能装置,其中,所述底壁还包括:
    第一边梁和第二边梁,沿第一方向间隔设置;
    中间梁,设置于所述第一边梁和所述第二边梁之间,所述第一边梁、所述第二边梁和所述中间梁均沿第二方向延伸,所述第一方向、所述第二方向和所述高度方向两两垂直;
    所述第一底板包括第一子底板和第二子底板,所述第一子底板连接所述第一边梁和所述中间梁,所述第二子底板连接所述第二边梁和所述中间梁。
  22. 根据权利要求21所述的储能装置,其中,沿所述第一边梁指向所述中间梁的方向,所述第一子底板逐渐向下倾斜。
  23. 根据权利要求22所述的储能装置,其中,沿所述高度方向,所述第一边梁的上端超出所述中间梁的上端,所述第一子底板连接所述第一边梁的上端和所述中间梁的上端。
  24. 根据权利要求22或23所述的储能装置,其中,所述底壁设有贯穿所述第二子底板、所述第二隔热层和所述第二底板的排水孔,所述排水孔用于排出所述箱体内的液体。
  25. 根据权利要求24所述的储能装置,其中,所述第二子底板的上表面倾斜设置以将所述上表面的液体引导至所述排水孔。
  26. 根据权利要求24或25所述的储能装置,其中,所述底壁还包括:
    套筒,所述套筒设置于所述排水孔,用于将液体和所述第二隔热层隔开。
  27. 根据权利要求19-26中任一项所述的储能装置,其中,所述底壁还包括:
    支撑件,设置于所述第一底板和第二底板之间,沿所述高度方向,所述支撑件、所述第一底板和所述第二底板两两间隔设置,所述支撑件用于支撑所述第二隔热层。
  28. 根据权利要求18-27中任一项所述的储能装置,其中,所述第二隔热层的导热系数为T2,满足,T2≤0.05W/m·K。
  29. 根据权利要求18-28中任一项所述的储能装置,其中,所述第二隔热层的材质为聚氨酯发泡胶或岩棉中的至少一种。
  30. 根据权利要求1-29中任一项所述的储能装置,其中,所述箱体为标准集装箱。
  31. 根据权利要求1-30中任一项所述的储能装置,其中,所述电池仓在第一方向上具有开口,沿所述第一方向,所述电池仓设置一个所述电池。
  32. 根据权利要求31所述的储能装置,其中,所述电池仓在所述第一方向上的尺寸为L1,所述电池在所述第一方向上的尺寸为L2,满足,L1<2L2。
  33. 根据权利要求32所述的储能装置,其中,95%≤L2/L1≤100%。
  34. 根据权利要求33所述的储能装置,其中,98%≤L2/L1≤99%。
  35. 根据权利要求32-34中任一项所述的储能装置,其中,1500mm≤L1≤2500mm。
  36. 根据权利要求35所述的储能装置,其中,1600mm≤L1≤2400mm。
  37. 根据权利要求32-36中任一项所述的储能装置,其中,1500mm≤L2≤2500mm。
  38. 根据权利要求37所述的储能装置,其中,1600mm≤L2≤2400mm。
  39. 根据权利要求31-38中任一项所述的储能装置,其中,所述第一方向为所述箱体的宽度方向。
  40. 根据权利要求39所述的储能装置,其中,所述电池的长度方向与所述第一方向平行。
  41. 根据权利要求1-40中任一项所述的储能装置,其中,所述箱体包括舱体和舱门,所述舱体具有所述电池仓,所述舱门连接于所述舱体,所述舱门用于封闭所述电池仓的所述开口。
  42. 根据权利要求1-41中任一项所述的储能装置,其中,所述储能装置包括多列电池,所述多列电池沿第二方向排列于所述电池仓;
    所述控制箱设有多个,多个所述控制箱沿所述第二方向排列于所述电池仓,每个所述控制箱与一列电池对应电连接且位于该列电池的上方或下方,所述第二方向为所述箱体的长度方向。
PCT/CN2022/131208 2022-09-30 2022-11-10 储能装置 WO2024065973A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280055745.0A CN118120100A (zh) 2022-09-30 2022-11-10 储能装置
CN202320742804.3U CN220693438U (zh) 2022-11-10 2023-04-06 储能设备
PCT/CN2023/129957 WO2024099271A1 (zh) 2022-11-10 2023-11-06 储能设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/123362 WO2024065716A1 (zh) 2022-09-30 2022-09-30 储能箱体及储能装置
CNPCT/CN2022/123432 2022-09-30
CNPCT/CN2022/123362 2022-09-30
PCT/CN2022/123432 WO2024065740A1 (zh) 2022-09-30 2022-09-30 储能装置

Publications (1)

Publication Number Publication Date
WO2024065973A1 true WO2024065973A1 (zh) 2024-04-04

Family

ID=90475744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131208 WO2024065973A1 (zh) 2022-09-30 2022-11-10 储能装置

Country Status (1)

Country Link
WO (1) WO2024065973A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128295A1 (ko) * 2017-01-04 2018-07-12 삼성에스디아이 주식회사 전지시스템 및 이를 포함하는 자동차
CN211980663U (zh) * 2020-02-27 2020-11-20 蓝谷智慧(北京)能源科技有限公司 模块化智能电池仓
CN216698553U (zh) * 2021-12-28 2022-06-07 南通中集特种运输设备制造有限公司 储能集装箱
CN217182277U (zh) * 2022-04-14 2022-08-12 宁德时代新能源科技股份有限公司 一种储能预制箱和换电站
CN217427395U (zh) * 2022-01-07 2022-09-13 华自科技股份有限公司 一种分布式储能机柜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128295A1 (ko) * 2017-01-04 2018-07-12 삼성에스디아이 주식회사 전지시스템 및 이를 포함하는 자동차
CN211980663U (zh) * 2020-02-27 2020-11-20 蓝谷智慧(北京)能源科技有限公司 模块化智能电池仓
CN216698553U (zh) * 2021-12-28 2022-06-07 南通中集特种运输设备制造有限公司 储能集装箱
CN217427395U (zh) * 2022-01-07 2022-09-13 华自科技股份有限公司 一种分布式储能机柜
CN217182277U (zh) * 2022-04-14 2022-08-12 宁德时代新能源科技股份有限公司 一种储能预制箱和换电站

Similar Documents

Publication Publication Date Title
JP7311611B2 (ja) 電池パック、車両及びエネルギー蓄積装置
US4262653A (en) Solar energy heat storage and transfer system
US4289117A (en) Solar panel unit and system for heating circulating air
WO2024065973A1 (zh) 储能装置
CN218101545U (zh) 一种电池柜结构
WO2007039221A1 (en) Open ceiling containing phase change material
CN118120100A (zh) 储能装置
CN218827567U (zh) 储能系统
US7266953B2 (en) Stacked condensing assembly
CN216958288U (zh) 一种储能电池集装箱系统
CN215624213U (zh) 集装箱
CN218827559U (zh) 一种储能柜及储能系统
US3844885A (en) Insulation and cooling system for a nuclear reactor condenser compartment
CN220914437U (zh) 一种电池簇及储能系统
CN211450336U (zh) 大型低温液体储罐及其排液管结构
CN201604931U (zh) 一种集装箱
JP2815816B2 (ja) 圧縮空気除湿装置
CN220382240U (zh) 一种电池簇架
CN214833906U (zh) 一种防水隔热式粮仓屋顶结构
KR102236876B1 (ko) 냉각탑이 구비된 흡착식 잠열제거장치
CN217058073U (zh) 一种可调温区的生物安全箱
CN117638354A (zh) 电池柜及采用该电池柜的储能系统
CN218957946U (zh) 一种储能集装箱
RU226215U1 (ru) Рефрижераторный вагон
CN214198969U (zh) 一种立式的组合式空气处理机组、中央空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960571

Country of ref document: EP

Kind code of ref document: A1