WO2023197781A1 - 自主水下探测系统、方法及自动回收和布放auv的方法 - Google Patents

自主水下探测系统、方法及自动回收和布放auv的方法 Download PDF

Info

Publication number
WO2023197781A1
WO2023197781A1 PCT/CN2023/080064 CN2023080064W WO2023197781A1 WO 2023197781 A1 WO2023197781 A1 WO 2023197781A1 CN 2023080064 W CN2023080064 W CN 2023080064W WO 2023197781 A1 WO2023197781 A1 WO 2023197781A1
Authority
WO
WIPO (PCT)
Prior art keywords
auv
underwater
unmanned ship
unmanned
towed
Prior art date
Application number
PCT/CN2023/080064
Other languages
English (en)
French (fr)
Inventor
刘可安
尚敬
李仁雄
唐智锋
汤树芳
段凯原
吴旋
周要
刘浩平
郭维
杨鸣远
彭勃
廖津余
黄忠
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Publication of WO2023197781A1 publication Critical patent/WO2023197781A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/08Arrangement of ship-based loading or unloading equipment for cargo or passengers of winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled
    • B63B2035/008Unmanned surface vessels, e.g. remotely controlled remotely controlled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present disclosure relates to the field of marine technology engineering, and in particular to an autonomous underwater detection system and method, and a method for automatically recovering and deploying an AUV.
  • the first is to manually drive a ship equipped with underwater acoustic detection equipment to conduct underwater detection operations; the second is to use a mother ship to manually deploy and carry underwater acoustic detection equipment Unmanned ships with detection equipment, unmanned remotely operated underwater vehicles (ROV, Remote Operated Vehicle) and unmanned autonomous underwater vehicles (AUV, Autonomous Underwater Vehicle) and other water robots carry out underwater detection operations; the third is the joint use of remote Remotely controlled unmanned ships, ROVs, AUVs and acoustic detection equipment carry out underwater unmanned detection operations.
  • ROV unmanned remotely operated underwater vehicles
  • AUV Autonomous Underwater Vehicle
  • the main purpose of the present disclosure is to provide an autonomous underwater detection system, method and method for automatically recovering and deploying AUVs, which can perform unmanned autonomous underwater detection according to the received detection tasks.
  • the present disclosure provides an autonomous underwater detection system for unmanned operation, including: AUV, used for autonomous underwater detection according to assigned underwater detection subtasks; and an unmanned ship support platform, used for Generate multiple underwater detection sub-tasks according to the received underwater detection tasks, assign the multiple underwater detection sub-tasks to each AUV carried on it, and autonomously sail to the target waters according to the underwater detection tasks to attack the AUV Carry out automatic deployment and recovery;
  • the unmanned ship support platform includes an unmanned ship and a platform controller mounted on the unmanned ship and a deployment and recovery system.
  • the deployment and recovery system is used to respond accordingly according to the deployment and recovery instructions of the platform controller.
  • the AUV performs automatic deployment and recovery.
  • the deployment and recovery system includes: a winch and an underwater towed docking device.
  • the base of the winch is fixed on the unmanned ship, and the movable end of the winch is connected to the underwater towed docking device.
  • the underwater towed The docking device is docked with the underwater AUV to be recovered, and the winch tows the underwater towed docking device that has successfully docked with the underwater AUV to be recovered back to the designated position of the unmanned ship;
  • the robotic arm has its base fixed on the unmanned ship , used to grab the AUV carried on the unmanned ship and deploy it into the water in the target waters, and to grab the underwater AUV to be recovered towed back by the underwater towed docking device and onto the unmanned ship.
  • the unmanned vessel includes a small waterplane area catamaran.
  • the designated position of the unmanned ship is a limiting structure provided at the bottom of the unmanned ship.
  • the limiting structure is used to limit and lock the underwater towed docking device so that the underwater towed docking device Relative to unmanned ships.
  • the underwater towed docking device includes: an acoustic positioning system and an optical positioning system, used to jointly position the underwater AUV to be recovered; a bell mouth structure, used to dock with the underwater AUV to be recovered; The docking controller is used to control the bell mouth structure to dock with the underwater AUV to be recovered based on the positioning result of the underwater AUV to be recovered.
  • the unmanned ship support platform further includes: an energy power system mounted on the unmanned ship, used to provide energy for the AUV and the unmanned ship support platform under the control of the platform controller.
  • the energy power system includes photovoltaic panels. , battery, charging shelter and battery management system. Among them, the electric energy converted by the photovoltaic panels is stored in the battery.
  • the battery provides electric energy for the charging shelter.
  • the charging shelter is used to charge the AUV; the robotic arm is also used to charge the underwater vehicle. The underwater AUV to be recovered towed back by the towed docking device is grabbed into the charging cabin.
  • the charging cabins include wireless charging cabins.
  • the unmanned ship support platform further includes: a communication navigation and positioning system mounted on the unmanned ship, for providing communication support between multiple AUVs under the control of the platform controller to enable communication between the multiple AUVs.
  • Collaborative networking operations provide communication support between each AUV and the unmanned ship support platform to enable data transmission between each AUV and the unmanned ship support platform, as well as positioning and navigation of the AUV and the unmanned ship support platform.
  • the AUV is also used to: when performing autonomous underwater detection, if its own power is lower than the first preset power threshold or its assigned underwater detection sub-task has been completed, send a signal to the unmanned vessel
  • the platform controller that supports the platform sends a recovery command and reaches the preset depth range, so that the platform controller controls the deployment and recovery system to automatically recover the AUV;
  • a deployment instruction is sent to the platform controller of the unmanned ship support platform so that the platform controller controls the deployment and recovery system to automatically deploy the AUV; among them, the second predetermined It is assumed that the power threshold is higher than the first preset power threshold.
  • the winch includes an electric winch.
  • the robotic arm includes a seven-function robotic arm.
  • the deployment and recovery system further includes: a deployment and recovery controller, configured to control the robotic arm to grab the AUV carried on the unmanned ship and deploy it in the target water area according to the deployment and recovery instructions of the platform controller. Go to the water, control the underwater towed docking device to dock with the underwater AUV to be recovered, and control the winch to drag the underwater towed docking device that has successfully docked with the underwater AUV to be recovered back to the designated location of the unmanned ship, and The robotic arm is controlled to grab the underwater AUV to be recovered towed back by the underwater towed docking device onto the unmanned ship.
  • a deployment and recovery controller configured to control the robotic arm to grab the AUV carried on the unmanned ship and deploy it in the target water area according to the deployment and recovery instructions of the platform controller. Go to the water, control the underwater towed docking device to dock with the underwater AUV to be recovered, and control the winch to drag the underwater towed docking device that has successfully docked with the underwater AUV to be recovered back to the designated
  • the deployment and recovery system further includes: a camera, installed on the unmanned ship, for obtaining the position of the AUV, wherein the camera includes a binocular camera; a deployment and recovery controller, also for According to the position of the AUV, the robotic arm is controlled to grab the AUV carried on the unmanned ship and deployed in the target waters, and the robotic arm is controlled to tow the underwater towed docking device back to the underwater AUV to be recovered to the unmanned ship. on board.
  • the unmanned ship support platform further includes: an autonomous obstacle avoidance system mounted on the unmanned ship, used to detect and feedback obstacles on the navigation path of the unmanned ship support platform under the control of the platform controller, This enables the unmanned ship support platform to avoid obstacles under the control of the platform controller.
  • an autonomous obstacle avoidance system mounted on the unmanned ship, used to detect and feedback obstacles on the navigation path of the unmanned ship support platform under the control of the platform controller, This enables the unmanned ship support platform to avoid obstacles under the control of the platform controller.
  • the present disclosure provides an autonomous underwater detection method for unmanned operation. Based on the autonomous underwater detection system for unmanned operation as mentioned above, the disclosure includes: generating multiple underwater detection tasks according to the received underwater detection tasks. Underwater detection subtasks are assigned to multiple underwater detection subtasks to multiple AUVs mounted on the unmanned ship support platform; the deployment and recovery system is controlled to automatically deploy and recover each AUV, so that multiple AUVs can be deployed separately Complete their respective underwater detection sub-tasks, so that the unmanned ship support platform can complete the underwater detection mission.
  • the method further includes: controlling the unmanned ship support platform to sail autonomously to the target waters according to the underwater detection mission; controlling the deployment and recovery system to automatically deploy each AUV, including: controlling the deployment and recovery system to Each AUV is automatically deployed in the target water area.
  • the method further includes: receiving a recovery signal sent back by the AUV, the recovery signal including the current position of the AUV; controlling the deployment and recovery system to automatically recover each AUV, including: controlling the unmanned ship support platform to sail to The current position of the AUV, and controls the deployment and recovery system to automatically recover the AUV at the current position of the AUV.
  • the present disclosure provides a method for automatically deploying an AUV, which is applied to the deployment and recovery system in the autonomous underwater detection system for unmanned operation as mentioned above, including: when receiving a deployment instruction for the AUV. , obtain the position of the AUV through the camera; control the robotic arm to clamp the AUV according to the position of the AUV, and transport the clamped AUV to a preset position for underwater release.
  • the method further includes: determining whether the robotic arm grips the AUV. Whether the clamping force reaches the preset strength threshold, when the clamping force reaches the preset strength threshold, the clamped AUV will be transported to the preset position for underwater release.
  • the unmanned ship includes a moon pool disposed in the middle of its deck; the preset position includes a position where the distance from the central axis of the moon pool does not exceed a preset distance threshold.
  • the present disclosure provides a method for automatically recovering an AUV, which is applied to the deployment and recovery system in an autonomous underwater detection system operated unmanned as above, including: when receiving a recovery instruction for an underwater AUV and When the unmanned ship support platform sails to the current position of the AUV, it controls the underwater towed docking device to dive to the preset depth range; when the relative position between the underwater towed docking device and the underwater AUV meets the preset requirements, Control the underwater towed docking device to dock with the AUV; control the winch to drag the underwater towed docking device that has successfully docked with the underwater AUV back to the designated position of the unmanned ship, and control the robotic arm to drag the underwater towed docking device The returning underwater AUV was captured onto the unmanned ship.
  • the underwater towed docking device includes a bell mouth structure; the preset requirements include: the central axis of the underwater AUV and the bell mouth structure are on the same straight line.
  • the present disclosure provides a computing device, including a memory and a processor.
  • a computer program is stored in the memory.
  • the autonomous underwater detection method for unmanned operation as described above is performed. or the steps of the method of automatically deploying an AUV as described above or the steps of the method of automatically recovering an AUV as described above.
  • the present disclosure provides a storage medium.
  • a computer program is stored in the storage medium.
  • the steps of the autonomous underwater detection method for unmanned operation as described above are performed or as described above.
  • Figure 1 is a schematic structural diagram of an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure
  • Figure 2 is a rear view of an automatic underwater detection system for unmanned operation according to an embodiment of the present disclosure
  • Figure 3 is a cross-sectional view of the unmanned autonomous underwater detection system in Figure 2 in the direction A-A;
  • Figure 4 is a schematic diagram of the structural composition of an AUV according to an embodiment of the present disclosure.
  • Figure 5 is a schematic diagram of the operation flow of an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure
  • Figure 6 is an operation flow chart of an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of energy flow according to an embodiment of the present disclosure.
  • Figure 8 is a schematic flow chart of deploying AUVs by an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure
  • Figure 9 is a schematic flow chart of an AUV recovered by an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure
  • Figure 10 is a schematic flow chart of AUV energy supply according to an embodiment of the present disclosure.
  • 1-unmanned ship 2-AUV, 3-lithium battery pack, 4-wireless charging cabin, 5-side scan sonar, 6-battery management system, 7-propeller, 8-binocular camera, 9- Drag docking device, 10-photovoltaic panel, -Cameras and lights, -Combined communication antenna, -Seven-function robotic arm, - Moon Pond, -ATS (Automatic identification System, automatic identification system for ships), - Electric winch, -Limiting structure of docking device, -Holder, Autonomous obstacle avoidance system.
  • unmanned ships and underwater robots carry limited energy. When their own energy is consumed, it can only be recycled to the deck of the mother ship for energy replenishment. If umbilical cables are used for energy replenishment, it will affect the scope and flexibility of detection operations. ; Moreover, when a single underwater robot performs ultra-long-distance operations, communication failures are prone to occur, the risk of loss is greater, and operation data cannot be sent back in time, resulting in low operation efficiency.
  • This disclosure proposes an autonomous underwater detection system for unmanned operation, capable of automatic deployment and recovery of AUVs and self-supply of energy under unmanned operation conditions, realizing unmanned operation, long-endurance operations and multiple Coordinated networking of AUVs for underwater detection operations.
  • This embodiment provides an autonomous underwater detection system for unmanned operation, which may include: an AUV, used to conduct autonomous underwater detection according to the assigned underwater detection subtasks; an unmanned ship support platform, used to perform automatic underwater detection according to the assigned underwater detection subtasks;
  • the received underwater detection task generates multiple underwater detection subtasks and assigns the multiple underwater detection subtasks to each AUV carried on it, and autonomously sails to the target waters according to the underwater detection task to automatically conduct automatic inspection of the AUV.
  • the unmanned ship support platform includes an unmanned ship and a platform controller mounted on the unmanned ship and a deployment and recovery system.
  • the deployment and recovery system is used to carry out deployment and recovery of the AUV accordingly according to the deployment and recovery instructions of the platform controller. Automatic deployment and recovery.
  • the deployment and recovery system includes: a winch and an underwater towed docking device.
  • the base of the winch is fixed on the unmanned ship.
  • the movable end of the winch is connected to the underwater towed docking device.
  • the underwater towed docking device The device is docked with the underwater AUV to be recovered, and the winch tows the underwater towed docking device that has successfully docked with the underwater AUV to be recovered back to the designated position of the unmanned ship; the mechanical arm, with its base fixed on the unmanned ship, is It grabs the AUV carried on the unmanned ship and deploys it into the water in the target water area, and grabs the underwater AUV to be recovered towed back by the underwater towed docking device and onto the unmanned ship.
  • the deployment and recovery system may also include: a deployment and recovery controller, which is used to control the robotic arm to grab the AUV carried on the unmanned ship and deploy it into the water in the target water area according to the deployment and recovery instructions of the platform controller, and control
  • the underwater towed docking device docks with the underwater AUV to be recovered and controls the winch to drag the underwater towed docking device that has successfully docked with the underwater AUV to be recovered back to the designated position of the unmanned ship, and controls the robotic arm to pull the underwater AUV back to the designated location of the unmanned ship.
  • the underwater AUV to be recovered is towed back by the towed docking device and grabbed onto the unmanned ship.
  • the unmanned ship can include a small waterplane area catamaran; the winch can include an electric winch; the robotic arm can include a seven-function robotic arm; the robotic arm can deploy the captured AUV through the moon pool on the unmanned ship. target waters.
  • the unmanned ship support platform After receiving the underwater detection task, the unmanned ship support platform analyzes and/or splits the underwater detection task, thereby obtaining several underwater detection sub-tasks suitable for AUV execution, and assigns each underwater detection sub-task Each AUV determines the target water or target sea area based on the underwater detection mission, and sails to the target water or target sea area according to its self-planned navigation route for automatic deployment of the AUV.
  • the AUV After receiving the underwater detection sub-task and being deployed to the target water or target sea area, the AUV dives to the target depth for underwater detection. AUV can plan its own detection trajectory according to the conditions of the water or sea area being detected. trace, and then perform the underwater detection sub-task. Of course, if multiple AUVs perform underwater detection subtasks at the same time, the multiple AUVs can also collaborate in a network to jointly perform detection tasks.
  • the AUV When the AUV is performing autonomous underwater detection, if its own power is lower than the first preset power threshold or its assigned underwater detection subtask has been completed, it will send a recovery command to the platform controller of the unmanned ship support platform. And reach the preset depth range, so that the platform controller controls the deployment and recovery system to automatically recover the AUV; when the AUV is charging in the charging cabin, if its own power is higher than the second preset power threshold and its assigned underwater If the detection subtask is not completed, a deployment instruction is sent to the platform controller of the unmanned ship support platform, so that the platform controller controls the deployment and recovery system to automatically deploy the AUV; where the second preset power threshold is higher than the first Preset power threshold.
  • the designated position of the unmanned ship can be a limiting structure provided at the bottom of the unmanned ship.
  • the limiting structure is used to limit and lock the underwater towed docking device so that the underwater towed docking device can interact with the towed docking device.
  • Unmanned ships are relatively stationary.
  • the underwater towed docking device may include: an acoustic positioning system and an optical positioning system, used to jointly position the underwater AUV to be recovered; a bell mouth structure, used to dock with the underwater AUV to be recovered; a docking controller, with Yu controls the bell mouth structure to dock with the underwater AUV to be recovered based on the positioning result of the underwater AUV to be recovered.
  • the acoustic positioning system can be used to roughly position the underwater AUV to be recovered, and then the optical positioning system can be used to accurately position the underwater AUV to be recovered, and then the underwater towed docking device is connected to the underwater AUV to be recovered.
  • the underwater towed docking device will be limited and locked by the limiting structure at the bottom of the unmanned ship, which will facilitate the robotic arm to obtain the accurate position of the AUV and accurately grasp the AUV.
  • the unmanned ship support platform can also include: an energy power system mounted on the unmanned ship, used to provide energy for the AUV and unmanned ship support platform under the control of the platform controller.
  • the energy power system includes photovoltaic panels, batteries, charging Shelter and battery management system, in which the electric energy converted by photovoltaic panels is stored in the battery, which provides electrical energy for the charging shelter, which is used to charge the AUV; the robotic arm is also used to connect the underwater towed docking device The towed underwater AUV to be recovered is grabbed into the charging cabin.
  • the number of charging cabins may be multiple, and the charging cabins may include wireless charging cabins.
  • the AUV When the AUV is performing autonomous underwater detection, if its own power is lower than the first preset power threshold or its assigned underwater detection subtask has been completed, it will send a recovery command to the platform controller and reach the preset depth range. , the platform controller instructs the deployment and recovery system to automatically recover the AUV.
  • the underwater towed docking device After the underwater towed docking device tows the AUV back to the unmanned ship, the underwater towed docking device is locked by the limiting structure, and the AUV is also fixed relative to the unmanned ship.
  • the camera on the robotic arm The accurate position of the AUV can be obtained, and the deployment and recovery controller is used to control the robotic arm according to the position of the AUV to grab the underwater AUV to be recovered towed back by the underwater towed docking device into the charging cabin of the unmanned ship.
  • Charge When grabbing the AUV, you can judge whether the grabbing action is firm based on the pressure between the clamping device and the AUV, and then move when the grabbing action is firm.
  • the AUV itself can include a power monitoring module to monitor its own power in real time.
  • the charging cabin can stop charging the AUV.
  • the platform controller can instruct the deployment and recovery system to continue automatic deployment of the AUV. put.
  • the camera on the robotic arm can obtain the position of the AUV in the charging cabin, then grab the AUV and deploy the AUV into the water through the moon pool, where the camera can include a binocular camera.
  • the unmanned ship support platform may also include: a communication, navigation and positioning system mounted on the unmanned ship, used to provide communication support between multiple AUVs under the control of the platform controller to enable collaborative networking operations between multiple AUVs , and provide communication support between each AUV and the unmanned ship support platform to enable data transmission between each AUV and the unmanned ship support platform, as well as positioning and navigation of the AUV and the unmanned ship support platform.
  • a communication, navigation and positioning system mounted on the unmanned ship, used to provide communication support between multiple AUVs under the control of the platform controller to enable collaborative networking operations between multiple AUVs , and provide communication support between each AUV and the unmanned ship support platform to enable data transmission between each AUV and the unmanned ship support platform, as well as positioning and navigation of the AUV and the unmanned ship support platform.
  • Communication between multiple AUVs enables collaborative networking operations between the multiple AUVs.
  • Communication between the AUV and the unmanned ship support platform can realize data interaction between the AUV and the unmanned ship support platform.
  • the communication navigation and positioning system also provides communication support between the autonomous underwater detection system and the shore-based command center.
  • the unmanned ship support platform may also include: an autonomous obstacle avoidance system mounted on the unmanned ship, which is used to detect and feedback obstacles on the navigation path of the unmanned ship support platform under the control of the platform controller, so that the unmanned ship Support the platform to avoid obstacles under the control of the platform controller.
  • an autonomous obstacle avoidance system mounted on the unmanned ship, which is used to detect and feedback obstacles on the navigation path of the unmanned ship support platform under the control of the platform controller, so that the unmanned ship Support the platform to avoid obstacles under the control of the platform controller.
  • each of its respective controllers can exchange information with the platform controller.
  • they can receive control instructions from the platform controller, and at the same time, they can transmit their respective collected data back to the platform controller. This allows the platform controller to continue transmitting the received data back to the shore-based command center.
  • the autonomous underwater detection system operated unmanned in this embodiment can analyze the underwater detection task to obtain the target waters or sea areas when the unmanned ship support platform receives the underwater detection task, and automatically plans the underwater detection system according to the automatically planned The navigation route reaches the target water or sea area. At the same time, it can also generate underwater detection subtasks suitable for each AUV based on the received underwater detection tasks and assign them to each AUV, so that each AUV can conduct autonomous underwater detection.
  • the deployment and recovery system can automatically deploy and recover the AUV according to instructions, realizing unmanned automatic underwater detection.
  • the system does not need to rely entirely on shore energy supply, thereby extending the system's operating time.
  • This embodiment provides an autonomous underwater detection method for unmanned operation. Based on the autonomous underwater detection system for unmanned operation as described above, it may include: generating multiple underwater detection tasks based on the received underwater detection tasks. Underwater detection subtask, allocate multiple underwater detection subtasks to multiple AUVs mounted on the unmanned ship support platform; control the deployment and recovery system to automatically deploy and recover each AUV, so that multiple AUVs Complete their respective underwater detection sub-tasks respectively, so that the unmanned ship support platform can complete the underwater detection tasks.
  • the method may further include: controlling the unmanned ship support platform to autonomously sail to the target waters according to the underwater detection mission; correspondingly, controlling the deployment and recovery system to automatically deploy each AUV, which may include : Control the deployment and recovery system to automatically deploy each AUV in the target water area.
  • the method may further include: receiving a recovery signal sent back by the AUV, where the recovery signal includes the current position of the AUV; and controlling the deployment and recovery system to automatically recover each AUV, which may include: controlling the unmanned The ship support platform sails to the current position of the AUV and controls the deployment and recovery system to automatically recover the AUV at the current position of the AUV.
  • This embodiment provides a method for automatically deploying an AUV, which is applied to the deployment and recovery system in the autonomous underwater detection system for unmanned operation as described above, which may include: when receiving an instruction to deploy the AUV. , obtain the position of the AUV through the camera; control the robotic arm to clamp the AUV according to the position of the AUV, and transport the clamped AUV to a preset position for underwater release.
  • the method may also include: determining whether the gripping force of the robotic arm to grip the AUV reaches The force threshold is preset. When the clamping force reaches the preset force threshold, the clamped AUV is transported to the preset position for underwater release.
  • the unmanned ship may include a moon pool disposed in the middle of its deck; the preset position may include a position where the distance from the central axis of the moon pool does not exceed a preset distance threshold.
  • This embodiment provides a method for automatically recovering an AUV, which is applied to the deployment and recovery system in the autonomous underwater detection system for unmanned operation as described above. It may include: when receiving a recovery instruction for the underwater AUV and When the unmanned ship support platform sails to the current position of the AUV, it controls the underwater towed docking device to dive to the preset depth range; when the relative position between the underwater towed docking device and the underwater AUV meets the preset requirements, Control the underwater towed docking device to dock with the AUV; control the winch to drag the underwater towed docking device that has successfully docked with the underwater AUV back to the designated position of the unmanned ship, and control the robotic arm to drag the underwater towed docking device The returning underwater AUV was captured onto the unmanned ship.
  • the underwater towed docking device may include a bell mouth structure; the preset requirements may include: the central axis of the underwater AUV and the bell mouth structure are on the same straight line.
  • the autonomous underwater detection system for unmanned operation in this embodiment mainly consists of an unmanned ship support platform and 8 AUVs. composition.
  • the unmanned ship support platform consists of an unmanned ship, a deployment and recovery system, a communication navigation and positioning system and an energy power system. system, etc.
  • the unmanned ship 1 adopts the structure of a small waterplane area catamaran, which has good seakeeping and maneuverability, high propulsion efficiency, and a large deck area.
  • a moon pool was opened in the middle of the hull It is directly connected to the water and is used for AUV2 deployment and recovery.
  • a streamlined docking device limiting structure is designed in the middle area of the bottom of the hull. It is used to limit and lock the underwater towed docking device 9 so that it is relatively fixed to the unmanned ship 1.
  • the deployment and recovery system mainly consists of a seven-function robotic arm Electric winch It is composed of underwater towed docking device 9 and so on.
  • the underwater towed docking device 9 is fixed to the limit structure at the bottom of the unmanned ship 1 , using a bell mouth structure, built-in acoustic positioning and optical positioning systems, and can be driven by an electric winch Retract and retract to achieve precise underwater docking with AUV2.
  • Seven-function robotic arm Arranged in Moon Pond The middle area next to it is mainly used for grabbing AUV2 and realizing the deployment and recovery of AUV2.
  • Electric winch Connected to the underwater towed docking device 9, used to recover the AUV 2 to a fixed position of the unmanned ship.
  • the communication navigation and positioning system mainly consists of inertial navigation, GPS, AIS, Beidou, acoustic positioning system, antenna system, acoustic communication machine, etc. It is mainly used to realize autonomous navigation and autonomous obstacle avoidance of unmanned ships 1, and as an AUV 2 and shore-based
  • the communication relay of the command center realizes data interaction between the shore base and AUV2, transmits underwater operation task data back to the command center in a timely manner, and issues new operation tasks to AUV2.
  • the energy power system mainly consists of photovoltaic panels 10, lithium battery pack 3, wireless charging cabin 4 and battery management system 6.
  • Photovoltaic panels 10 are arranged on the top deck of the unmanned ship to convert light energy into electrical energy and store it in the lithium battery pack 3.
  • the lithium battery pack 3 is mainly used to store the electric energy converted by photovoltaics, provide a source of power for the navigation of unmanned ships 1, and provide energy supply to AUV2.
  • the battery management system6 mainly realizes regulated power output, photovoltaic energy storage conversion, wireless charging output and monitoring, and energy management of unmanned ships1.
  • An arc-shaped wireless charging coil is arranged in each storage compartment, using electromagnetic waves to realize wireless charging of AUV2.
  • FIG 4 is a schematic diagram of the structural composition of an AUV according to an embodiment of the present disclosure.
  • the AUV includes a propulsion module, a control module, an energy module, a wireless charging module and a mission payload module.
  • the unmanned ship realizes the deployment and recovery of AUV through the coordinated linkage of the seven-function mechanical arm, electric winch and underwater towed docking device, effectively solving the technical problems of deployment and recovery in AUV operations.
  • the unmanned ship adopts a combination of photovoltaic power modules + lithium battery packs + wireless charging shelters, which not only ensures the long endurance operation of the unmanned ships, but also enables autonomous deployment, recovery and wireless charging of shelters.
  • Realizing energy cycle supply for AUVs solves the technical problem of energy supply for unmanned ships and underwater robots.
  • the cabin of the unmanned ship can carry and store 8 AUVs at a time.
  • the unmanned ship and the AUVs communicate underwater through hydroacoustic communication machines, which can realize the communication between the unmanned ship and the AUVs, and between the AUV and the AUV. Collaborative communication and navigation positioning between AUVs, and the realization of collaborative network detection operations, thus solving the technical problems of low operating efficiency and easy loss of a single underwater robot.
  • FIG. 5 is a schematic diagram of the operation flow of an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure.
  • the unmanned ship support platform of the autonomous underwater detection system in this embodiment receives data from the shore-based command center. After arriving at the underwater detection task, the underwater detection task is divided into several underwater detection subtasks, and the several underwater detection subtasks are assigned to the designated AUV to complete, and at the same time, it sails to the target water area according to the underwater detection task. The designated AUV is then automatically deployed into the water. The AUV starts working after entering the water and automatically dives to the target depth.
  • Each AUV can independently perform the underwater detection sub-tasks it receives, or multiple AUVs can be networked together to jointly perform underwater detection tasks.
  • the AUV's mission if the AUV's power is lower than a certain set value, it can send a recovery signal to the unmanned ship support platform and float to the specified depth.
  • the unmanned ship sails over the AUV and recovers the AUV into the wireless charging cabin for charging.
  • the AUV When the AUV is fully charged, it can continue to be deployed into the water to perform underwater detection tasks, and this process is repeated until the underwater detection tasks are completed.
  • Figure 6 is an operation flow chart of an autonomous underwater detection system operated unmanned according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of energy flow according to an embodiment of the present disclosure
  • Figure 8 is an implementation of the present disclosure.
  • Figure 9 is a schematic flow chart of an autonomous underwater detection system for unmanned operation to deploy an AUV according to an embodiment of the present disclosure
  • Figure 10 is a schematic flow chart for the recovery of an AUV by an autonomous underwater detection system for unmanned operation according to an embodiment of the present disclosure
  • a schematic flow chart of AUV energy supply according to an embodiment of the present disclosure.
  • the operation process of the unmanned autonomous underwater detection system of this embodiment includes the following steps (1) to step (15).
  • the unmanned ship remotely receives the operation tasks of the shore-based command center at the port terminal or sea area.
  • the unmanned ship autonomously plans its trajectory according to the operating tasks and sails autonomously to the target sea area.
  • AUVs autonomously dive to the target water depth according to mission planning.
  • AUVs collaborate in a network to independently perform underwater detection tasks.
  • the unmanned ship After receiving the recovery signal, the unmanned ship autonomously travels to a position above the AUV.
  • the AUV and the underwater docking device perform positioning and docking.
  • the unmanned ship realizes the automatic recovery of the AUV into the shelter through the robotic arm.
  • the position of the AUV can be visually identified by the binocular camera on the robotic arm, and then based on the identified Capture the AUV at the location.
  • AUV performs wireless charging and information exchange in the shelter.
  • the unmanned ship is equipped with an energy power system, which uses photovoltaic panels to convert solar energy into electrical energy, and stores the electrical energy in a lithium battery pack under the management of the power management system.
  • an unmanned ship sails, it consumes electricity and
  • the power consumption of the AUV causes the autonomous underwater detection system to have insufficient power
  • the lithium battery pack can be controlled to discharge through the power management system.
  • the autonomous underwater detection system has sufficient power (for example, reaching a certain level of power)
  • the lithium battery pack can be controlled to stop. Powering autonomous underwater detection systems.
  • the unmanned ship remotely receives the operation task from the shore-based command center, travels to the target water area, obtains real-time water depth data through the sonar detection system, and then travels to the appropriate depth of water to perform the deployment task of the AUV.
  • the deployment and recovery system receives the instruction to deploy the AUV, first the binocular camera of the manipulator acquires the position of the AUV, and plans a movement path to the AUV position based on the AUV position.
  • the manipulator moves near the AUV, it obtains the position through the front-end camera. Then open the clamper to clamp the AUV according to the accurate clamping position of the AUV, and judge whether it is clamped according to the force feedback.
  • the binocular camera inside the unmanned ship performs ranging detection to determine the offset position of the bow and stern of the AUV. If the line connecting the bow and stern of the AUV is close to coinciding with the center line of the moon pool, the AUV is already at a reasonable release position. , if the bow and stern position deviation is large, the robotic arm will automatically fine-tune the rotating gripper until the reasonable release position requirements are met, and then the robotic arm will send the AUV underwater at the release position.
  • the AUV's water entry sensor automatically activates the AUV's main power supply after sensing that the AUV has entered water.
  • the AUV autonomously sends a forward signal to the main thruster for a duration of 2 seconds to complete the self-test before the AUV is released.
  • the force sensor of the robotic arm gripper receives the feedback signal that the self-test is completed, it releases the gripper and releases the AUV.
  • the AUV dives to the target depth and begins underwater detection. At this point, the AUV deployment is completed.
  • the AUV when the AUV performing the underwater detection task is low on power or the underwater detection sub-task is completed, the AUV sends a recovery command to the unmanned ship support platform, and then automatically floats to the recovery depth.
  • the unmanned ship automatically drives to the position above the AUV according to the planned track, starts the electric winch, and releases the underwater towed docking device.
  • the underwater towed docking device dives to the recovery depth and communicates with the to-be-recovered through the ultra-short baseline transducer.
  • the underwater AUV communicates so that the underwater towed docking device and the AUV know each other's position.
  • the AUV sails to the bell mouth position of the docking device according to the position of the underwater towed docking device.
  • the optical positioning system of the underwater towed docking device Obtain the precise position of the AUV, and through optical positioning and ranging and the attitude adjustment of the AUV, it is determined that when the optical beacon on the bow of the AUV is in the center range of the three optical beacons of the underwater towed docking device, the relative position between the two meets the docking requirements.
  • the AUV accelerates and collides into the docking horn.
  • the underwater towed docking device automatically locks the AUV.
  • the electric winch retrieves the underwater towed docking device, returns it to the unmanned ship's limiting structure, and locks it.
  • the robotic arm is instructed to automatically grab the AUV into the wireless charging cabin.
  • the transmitting coil in the wireless charging cabin and the receiving coil of the AUV automatically transfer energy wirelessly through electromagnetic induction.
  • the power management system in the unmanned ship operates in real time. Monitor the power and efficiency of wireless energy transmission of each AUV in the wireless charging shelter. If the area where the induction coil of the AUV is placed is small and the area where the electric energy is received is small, control the robotic arm to rotate and fine-tune the position of the AUV until a certain wireless transmission power value is met. , that is, the AUV has been placed at a reasonable location in the wireless charging cabin.
  • the autonomous underwater detection system of this embodiment achieves fully autonomous operation through collaborative operations between various systems. Unmanned underwater exploration.
  • the deployment and recovery system combines three-dimensional vision-based robotic arms, electric winches and underwater towed docking devices to achieve unmanned autonomous deployment and recovery of AUVs.
  • the energy power system adopts a power supply solution that combines photovoltaic power and lithium battery packs to realize wireless energy supply to the AUV through wireless charging cabins, extending the battery life of the system. Combined with the deployment and recovery system, it achieves unmanned operation Energy cycle supply.
  • a collaborative communication mode that combines parent-child communication and child-child communication can be used between surface and underwater operating AUVs to achieve collaborative navigation and positioning between two AUVs, establish a three-dimensional underwater space detection network, and improve fault tolerance. Safety and efficiency of detection operations.
  • the autonomous underwater detection system of this embodiment integrates unmanned ship surface unmanned autonomous driving technology, AUV underwater autonomous navigation operation technology, three-dimensional vision-based robotic arm automatic grabbing operation technology, magnetic coupling wireless charging technology, etc., and then Through the analysis of the target function of unmanned underwater operations, the hull structure of the small waterplane area unmanned ship is designed to combine with the moon pool.
  • the unmanned deployment and recovery functions are used to comprehensively arrange wireless charging on the main deck of the unmanned ship. Shelter, electric winch, seven-function robotic arm and underwater docking device, etc., thereby realizing the functions of storage, deployment, recovery, charging, data exchange and collaborative navigation and positioning of the AUV by the unmanned ship, and finally realizing the entire system unmanned operation.
  • Unmanned operation From receiving the underwater detection mission to returning after completing the operation mission, the entire process is truly unmanned operation.
  • This embodiment provides a computing device, including a memory and a processor.
  • a computer program is stored in the memory.
  • the steps of the autonomous underwater exploration method for unmanned operation as described above are performed or The steps of the method of automatically deploying an AUV as described above or the steps of the method of automatically recovering an AUV as described above.
  • the computing device may include one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer-readable media, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash memory (flash FLASH RAM). Memory is an example of computer-readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash FLASH RAM flash FLASH RAM
  • This embodiment provides a storage medium.
  • a computer program is stored in the storage medium.
  • the steps of the autonomous underwater detection method for unmanned operation as described above are performed or as described above. Steps of a method of automatically deploying an AUV or steps of a method of automatically recovering an AUV as described above.
  • a computer program may employ any combination of one or more storage media.
  • the storage medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may include, for example, electrical, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media may include: an electrical connection with one or more wires, a portable disk, a hard disk, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying a readable computer program therein. Such propagated data signals may take many forms, and may include, for example, electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable signal medium may also be any storage medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • the computer program contained on the storage medium may be transmitted using any suitable medium, which may include, for example, wireless, wired, optical cable, RF, etc., or any suitable combination of the above.
  • Computer programs for performing the operations of the present disclosure may be written in any combination of one or more programming languages.
  • Programming languages may include object-oriented programming languages, such as Java, C++, etc., and may also include conventional procedural programming languages, such as the "C" language or similar programming languages.
  • a computer program may execute entirely on the user's computing device, partially on the user's device, or entirely on a remote computing device or server. In situations involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, which may include, for example, a local area network or a wide area network, or may be connected to an external computing device, such as via an Internet service provider over the Internet. connect).
  • the disclosed detection system consists of an unmanned ship + multiple autonomous underwater robots, which can realize unmanned automatic deployment and autonomous recovery of autonomous underwater robots, and achieve long-range operations and energy for the unmanned ship and autonomous underwater robots.
  • the self-circulating supply realizes unmanned operation of over-the-horizon underwater detection operations, reduces operating costs, and improves the efficiency of underwater detection operations.
  • This disclosure realizes the automatic deployment and recovery of AUV through the coordinated linkage of the configured mechanical arm, winch and underwater towed docking device, effectively solving the technical problems of deployment and recovery in AUV operations.

Abstract

一种自主水下探测系统、方法及自动回收和布放AUV的方法,自主水下探测系统包括:AUV(2),用于根据所分配到的水下探测子任务进行水下自主探测;无人船支持平台,包括无人船(1)及搭载在所述无人船(1)上的平台控制器和布放回收系统。布放回收系统用于根据平台控制器的布放和回收指令相应地对AUV(2)进行自动布放和回收。布放回收系统包括:绞车(16)、水下拖曳式对接装置(9)及机械臂(13)。通过配置的机械臂(13)、绞车(16)和水下拖曳式对接装置(9)协同联动,实现对AUV(2)的自动布放和回收,有效地解决了AUV(2)作业中布放和回收的技术难题。

Description

自主水下探测系统、方法及自动回收和布放AUV的方法
相关申请的交叉引用
本公开要求享有2022年04月12日提交的名称为“自主水下探测系统、方法及自动回收和布放AUV的方法”的中国专利申请CN202210381521.0的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及海洋技术工程领域,尤其涉及一种自主水下探测系统、方法及自动回收和布放AUV的方法。
背景技术
相关技术中,水下探测作业的方式一般有以下三种:第一种是人工驾驶船舶搭载水下声学探测设备进行水下探测作业;第二种是利用母船采用人工布放搭载了水下声学探测设备的无人船、无人遥控水下机器人(ROV,Remote Operated Vehicle)和无人自主水下机器人(AUV,Autonomous Underwater Vehicle)等水域机器人进行水下探测作业;第三种是联合利用远程遥控无人船、ROV、AUV和声学探测设备进行水下无人探测作业。
但是以上几种方式都存在应用痛点,即水下机器人只能实现水下的无人化探测,但是平台本体的运营需要中小型支持母船和较多的运营团队,无人船和水下机器人的布放和回收都离不开人工操作。
因此,亟需一种能够无人化运营的自主水下探测系统。
发明内容
本公开的主要目的是提供一种自主水下探测系统、方法及自动回收和布放AUV的方法,能够根据所接收到的探测任务进行无人化自主水下探测。
第一方面,本公开提供一种无人化运营的自主水下探测系统,包括:AUV,用于根据所分配到的水下探测子任务进行水下自主探测;无人船支持平台,用于根据所接收到的水下探测任务生成多个水下探测子任务并将多个水下探测子任务分别分配给其上搭载的各个AUV,以及根据水下探测任务自主航行到目标水域以对AUV进行自动布放和回收;无人船支持平台包括无人船及搭载在无人船上的平台控制器和布放回收系统,布放回收系统用于根据平台控制器的布放和回收指令相应地对AUV进行自动布放和回收,布放回收系统包括:绞车和水下拖曳式对接装置,绞车的底座固定在无人船上,其绞绳的活动端与水下拖曳式对接装置连接,水下拖曳式对接装置与待回收的水下AUV对接,绞车将与待回收的水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置;机械臂,其底座固定在无人船上,用于抓取无人船上搭载的AUV并在目标水域布放到水中,以及将水下拖曳式对接装置拖回的待回收的水下AUV抓取到无人船上。
在一个实施例中,无人船包括小水线面双体船。
在一个实施例中,无人船的指定位置为设置在无人船底部的限位结构,限位结构用于对水下拖曳式对接装置进行限位和锁定,以使水下拖曳式对接装置与无人船相对固定。
在一个实施例中,水下拖曳式对接装置包括:声学定位系统和光学定位系统,用于共同对待回收的水下AUV进行定位;喇叭口结构,用于与待回收的水下AUV进行对接;对接控制器,用于根据对待回收的水下AUV的定位结果控制喇叭口结构与待回收的水下AUV进行对接。
在一个实施例中,无人船支持平台进一步包括:搭载在无人船上的能源动力系统,用于在平台控制器的控制下为AUV和无人船支持平台提供能源,能源动力系统包括光伏板、蓄电池、充电方舱和电池管理系统,其中,光伏板所转化出的电能储存在蓄电池中,蓄电池为充电方舱提供电能,充电方舱用于对AUV充电;机械臂还用于将水下拖曳式对接装置拖回的待回收的水下AUV抓取到充电方舱中。
在一个实施例中,充电方舱的数量为多个,充电方舱包括无线充电方舱。
在一个实施例中,无人船支持平台进一步包括:搭载在无人船上的通信导航定位系统,用于在平台控制器的控制下为多个AUV之间提供通信支持以使多个AUV之间协同组网作业,为各个AUV与无人船支持平台之间提供通信支持以使各个AUV与无人船支持平台之间进行数据传输,以及对AUV和无人船支持平台进行定位和导航。
在一个实施例中,AUV还用于:在执行水下自主探测时,如果其自身电量低于第一预设电量阈值或其分配得的水下探测子任务已经执行完毕,则向无人船支持平台的平台控制器发送回收指令并到达预设深度范围,以使平台控制器控制布放回收系统自动回收AUV;在充电方舱中充电时,如果其自身电量高于第二预设电量阈值且其分配得的水下探测子任务没有执行完毕,则向无人船支持平台的平台控制器发送布放指令,以使平台控制器控制布放回收系统自动布放AUV;其中,第二预设电量阈值高于第一预设电量阈值。
在一个实施例中,绞车包括电动绞车。
在一个实施例中,机械臂包括七功能机械臂。
在一个实施例中,布放回收系统进一步包括:布放回收控制器,用于根据平台控制器的布放和回收指令相应地控制机械臂抓取无人船上搭载的AUV并在目标水域布放到水中,并控制水下拖曳式对接装置与待回收的水下AUV对接并控制绞车将与待回收的水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置,以及控制机械臂将水下拖曳式对接装置拖回的待回收的水下AUV抓取到无人船上。
在一个实施例中,布放回收系统进一步包括:摄像机,设置于无人船上,用于获取AUV的位置,其中,摄像机包括双目摄像机;布放回收控制器,还用于 根据AUV的位置,控制机械臂抓取无人船上搭载的AUV并在目标水域布放到水中,以及控制机械臂将水下拖曳式对接装置拖回的待回收的水下AUV抓取到无人船上。
在一个实施例中,无人船支持平台进一步包括:搭载在无人船上的自主避障系统,用于在平台控制器的控制下探测并反馈无人船支持平台在航行路径上的障碍物,以使无人船支持平台在平台控制器的控制下规避障碍物。
第二方面,本公开提供一种无人化运营的自主水下探测方法,基于如上文的无人化运营的自主水下探测系统,包括:根据所接收到的水下探测任务生成多个水下探测子任务,将多个水下探测子任务分别分配给无人船支持平台上搭载的多个AUV;控制布放回收系统对每个AUV进行自动布放和回收,以使多个AUV分别完成各自的水下探测子任务,从而使得无人船支持平台完成水下探测任务。
在一个实施例中,该方法进一步包括:根据水下探测任务控制无人船支持平台自主航行到目标水域;控制布放回收系统对每个AUV进行自动布放,包括:控制布放回收系统在目标水域对每个AUV进行自动布放。
在一个实施例中,该方法进一步包括:接收AUV发回的回收信号,回收信号包括AUV的当前位置;控制布放回收系统对每个AUV进行自动回收,包括:控制无人船支持平台航行至AUV的当前位置,并控制布放回收系统在AUV的当前位置对AUV进行自动回收。
第三方面,本公开提供一种自动布放AUV的方法,应用于如上文的无人化运营的自主水下探测系统中的布放回收系统,包括:当接收到对AUV的布放指令时,通过摄像机获取AUV的位置;控制机械臂根据AUV的位置夹取AUV,并将所夹取的AUV运送到预设位置进行水下释放。
在一个实施例中,在控制机械臂根据AUV的位置夹取AUV之后,且在将所夹取的AUV运送到预设位置进行水下释放之前,该方法进一步包括:判断机械臂夹取AUV的夹持力是否达到预设力度阈值,当夹持力达到预设力度阈值时,再将所夹取的AUV运送到预设位置进行水下释放。
在一个实施例中,无人船包括设置于其甲板中部的月池;预设位置包括:与月池的中轴线之间的距离不超过预设距离阈值的位置。
第四方面,本公开提供一种自动回收AUV的方法,应用于如上文的无人化运营的自主水下探测系统中的布放回收系统,包括:当接收到对水下AUV的回收指令且无人船支持平台航行至AUV的当前位置时,控制水下拖曳式对接装置下潜到预设深度范围;当水下拖曳式对接装置与水下AUV之间的相对位置满足预设要求时,控制水下拖曳式对接装置与AUV进行对接;控制绞车将与水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置,并控制机械臂将水下拖曳式对接装置拖回的水下AUV抓取到无人船上。
在一个实施例中,水下拖曳式对接装置包括喇叭口结构;预设要求包括:水下AUV与喇叭口结构的中轴线在同一直线上。
第五方面,本公开提供一种计算设备,包括存储器和处理器,存储器中存储有计算机程序,当计算机程序被处理器执行时,执行如上文所述的无人化运营的自主水下探测方法的步骤或如上文所述的自动布放AUV的方法的步骤或如上文所述的自动回收AUV的方法的步骤。
第六方面,本公开提供一种存储介质,存储介质中存储有计算机程序,当计算机程序被处理器执行时,执行如上文所述的无人化运营的自主水下探测方法的步骤或如上文所述的自动布放AUV的方法的步骤或如上文所述的自动回收AUV的方法的步骤。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定,在附图中:
图1为根据本公开的一实施方式的无人化运营的自主水下探测系统的结构示意图;
图2为根据本公开的一实施方式的无人化运营的自动水下探测系统的后视图;
图3为图2的无人化运营的自主水下探测系统在A-A方向的剖面图;
图4为根据本公开的一实施方式的AUV的结构组成示意图;
图5为根据本公开的一实施方式的无人化运营的自主水下探测系统的作业流程示意图;
图6为根据本公开的一实施方式的无人化运营的自主水下探测系统的作业流程图;
图7为根据本公开的一实施方式的能源流动示意图;
图8为根据本公开的一实施方式的无人化运营的自主水下探测系统布放AUV的流程示意图;
图9为根据本公开的一实施方式的无人化运营的自主水下探测系统回收AUV的流程示意图;
图10为根据本公开的一实施方式的对AUV能源补给的流程示意图;
其中,①-无人船,②-AUV,③-锂电池组,④-无线充电方舱,⑤-侧扫声呐,⑥-电池管理系统,⑦-推进器,⑧-双目摄像机,⑨-拖曳式对接装置,⑩-光伏板,-摄像机和照明灯,-组合通信天线,-七功能机械臂,-月池,-ATS(Automatic identification System,船舶自动识别系统),-电动绞车,-对接装置限位结构,-夹持器,自主避障系统。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
随着人工智能和互联网技术的发展,无线充电技术、机械臂三维视觉技术、 多模式组网通信技术等在工业领域逐步得到应用和推广,这也带动了水下探测的技术革新。未来的水下探测作业必将是往无人化、协同化和智能化方向发展。
相关技术中,无人船和水下机器人携带的能源有限,当自身能源消耗完后,只能回收至母船甲板进行能源补给,若采用脐带缆进行能源补给,则影响探测作业的范围和灵活性;而且,单个水下机器人在进行超远距离作业时,容易发生通信故障,丢失风险较大,且作业数据无法及时发回,作业效率较低。
本公开提出了一种无人化运营的自主水下探测系统,能够在无人运营情况下进行AUV自动布放和回收,能源的自行补给,实现了无人化运营、长续航作业和多个AUV的协调组网水下探测作业。
实施例一
本实施例提供一种无人化运营的自主水下探测系统,可以包括:AUV,用于根据所分配到的水下探测子任务进行水下自主探测;无人船支持平台,用于根据所接收到的水下探测任务生成多个水下探测子任务并将多个水下探测子任务分别分配给其上搭载的各个AUV,以及根据水下探测任务自主航行到目标水域以对AUV进行自动布放和回收;无人船支持平台包括无人船及搭载在无人船上的平台控制器和布放回收系统,布放回收系统用于根据平台控制器的布放和回收指令相应地对AUV进行自动布放和回收,布放回收系统包括:绞车和水下拖曳式对接装置,绞车的底座固定在无人船上,其绞绳的活动端与水下拖曳式对接装置连接,水下拖曳式对接装置与待回收的水下AUV对接,绞车将与待回收的水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置;机械臂,其底座固定在无人船上,用于抓取无人船上搭载的AUV并在目标水域布放到水中,以及将水下拖曳式对接装置拖回的待回收的水下AUV抓取到无人船上。
布放回收系统还可以包括:布放回收控制器,用于根据平台控制器的布放和回收指令相应地控制机械臂抓取无人船上搭载的AUV并在目标水域布放到水中,并控制水下拖曳式对接装置与待回收的水下AUV对接并控制绞车将与待回收的水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置,以及控制机械臂将水下拖曳式对接装置拖回的待回收的水下AUV抓取到无人船上。
其中,该无人船可以包括小水线面双体船;绞车可以包括电动绞车;机械臂可以包括七功能机械臂;机械臂可以通过无人船上的月池将所抓取的AUV布放到目标水域。
无人船支持平台接收到水下探测任务之后,对该水下探测任务进行解析和/或拆分,从而得到若干个适合AUV执行的水下探测子任务,并把各个水下探测子任务分配给各个AUV,同时根据该水下探测任务确定目标水域或目标海域,并根据其自行规划的航行路线航行到目标水域或目标海域,进行AUV的自动布放。
AUV在接收到水下探测子任务且被布放到目标水域或目标海域之后,下潜到目标深度进行水下探测。AUV可以根据所探测的水域或海域情况自行规划探测轨 迹,进而执行水下探测子任务。当然,如果多个AUV同时执行水下探测子任务,该多个AUV还可以协同组网共同执行探测任务。
当AUV在执行水下自主探测时,如果其自身电量低于第一预设电量阈值或其分配得的水下探测子任务已经执行完毕,则向无人船支持平台的平台控制器发送回收指令并到达预设深度范围,以使平台控制器控制布放回收系统自动回收AUV;当AUV在充电方舱中充电时,如果其自身电量高于第二预设电量阈值且其分配得的水下探测子任务没有执行完毕,则向无人船支持平台的平台控制器发送布放指令,以使平台控制器控制布放回收系统自动布放AUV;其中,第二预设电量阈值高于第一预设电量阈值。
其中,无人船的指定位置可以为设置在无人船底部的限位结构,该限位结构用于对水下拖曳式对接装置进行限位和锁定,以使水下拖曳式对接装置能够与无人船相对固定。
水下拖曳式对接装置可以包括:声学定位系统和光学定位系统,用于共同对待回收的水下AUV进行定位;喇叭口结构,用于与待回收的水下AUV进行对接;对接控制器,用于根据对待回收的水下AUV的定位结果控制喇叭口结构与待回收的水下AUV进行对接。在一示例性实施过程中,可以利用声学定位系统对待回收的水下AUV进行粗略定位,再利用光学定位系统对待回收的水下AUV进行精确定位,继而水下拖曳式对接装置与待回收的水下AUV进行对接,并在电动绞车的拖动下将对接成功的AUV拖回无人船。水下拖曳式对接装置在回到无人船后会被无人船底部的限位结构限位和锁定,从而利于机械臂获取准确的AUV的位置,以有利于对AUV进行准确抓取。
该无人船支持平台还可以包括:搭载在无人船上的能源动力系统,用于在平台控制器的控制下为AUV和无人船支持平台提供能源,能源动力系统包括光伏板、蓄电池、充电方舱和电池管理系统,其中,光伏板所转化出的电能储存在蓄电池中,蓄电池为充电方舱提供电能,充电方舱用于对AUV充电;机械臂还用于将水下拖曳式对接装置拖回的待回收的水下AUV抓取到充电方舱中。在一示例性实施例中,充电方舱的数量可以为多个,充电方舱可以包括无线充电方舱。
当AUV在执行水下自主探测时,如果其自身电量低于第一预设电量阈值或其分配得的水下探测子任务已经执行完毕,则向平台控制器发送回收指令并到达预设深度范围,平台控制器则指令布放回收系统对AUV进行自动回收。在一示例性实施例中,当水下拖曳式对接装置将AUV拖回无人船之后,水下拖曳式对接装置被限位结构锁定,AUV也相对于无人船固定,机械臂上的摄像机可以获取AUV的准确位置,布放回收控制器则用于根据AUV的位置控制机械臂将水下拖曳式对接装置拖回的待回收的水下AUV抓取到无人船的充电方舱中进行充电。在抓取AUV时,可以根据夹持装置与AUV之间的压力大小来判断该抓取动作是否牢靠,在抓取动作牢靠时再进行移动。另外,在充电方舱对AUV进行充电的过程中,还可以与AUV进行数据交互,以及时获取AUV在执行水下探测子任务 时所收集的数据。
AUV自身可以包括电量监测模块,以实时监测自身电量。当AUV自身电量充满或者达到设定值时,充电方舱可以停止对AUV充电,继而如果AUV的水下探测子任务尚未执行完毕,则平台控制器可以指令布放回收系统对AUV继续进行自动布放。在一示例性实施例中,机械臂上的摄像机可以获取AUV在充电方舱的位置,进而抓取AUV并将该AUV通过月池布放到水中,其中,该摄像机可以包括双目摄像机。
该无人船支持平台还可以包括:搭载在无人船上的通信导航定位系统,用于在平台控制器的控制下为多个AUV之间提供通信支持以使多个AUV之间协同组网作业,和为各个AUV与无人船支持平台之间提供通信支持以使各个AUV与无人船支持平台之间进行数据传输,以及对AUV和无人船支持平台进行定位和导航。
多个AUV之间进行通信可以实现该多个AUV之间的协同组网作业。AUV与无人船支持平台之间进行通信可以实现AUV与无人船支持平台之间的数据交互。同时,通信导航定位系统还为该自主水下探测系统与岸基指挥中心之间提供通信支持。
无人船支持平台还可以包括:搭载在无人船上的自主避障系统,用于在平台控制器的控制下探测并反馈无人船支持平台在航行路径上的障碍物,以使无人船支持平台在平台控制器的控制下规避障碍物。
然而,无论是布放回收系统、能源动力系统、通信导航定位系统还是自主避障系统,都可以有自己的控制器,以对自身结合其他信息进行自动控制,该其他信息可以是其他系统传来的数据信息,也可以是外界的控制指令。而其各自的控制器均可以与平台控制器之间进行信息交互,在一示例性实施例中,可以接收平台控制器发来的控制指令,同时可以将各自收集的数据传送回平台控制器,以使平台控制器将所接收的数据继续传送回岸基指挥中心。
本实施例的无人化运营的自主水下探测系统,在无人船支持平台接收到水下探测任务时,能够对水下探测任务进行解析以获取目标水域或海域,并根据所自动规划的航行路线到达目标水域或海域,同时,还能够根据所接收到的水下探测任务生成适合各个AUV执行的水下探测子任务并分配给各个AUV,以使各个AUV能够进行自主水下探测。布放和回收系统则能够根据指令对AUV进行自动布放和回收,实现了无人化自动水下探测。
通过在该系统中设置能源动力系统,尤其通过设置光伏板和蓄电池,使得该系统无需完全依赖于岸上能源补给,从而能够延长系统的续航时间。
实施例二
本实施例提供一种无人化运营的自主水下探测方法,基于如上文所述的无人化运营的自主水下探测系统,可以包括:根据所接收到的水下探测任务生成多个 水下探测子任务,将多个水下探测子任务分别分配给无人船支持平台上搭载的多个AUV;控制布放回收系统对每个AUV进行自动布放和回收,以使多个AUV分别完成各自的水下探测子任务,从而使得无人船支持平台完成水下探测任务。
在一示例性实施例中,该方法还可以包括:根据水下探测任务控制无人船支持平台自主航行到目标水域;相应的,控制布放回收系统对每个AUV进行自动布放,可以包括:控制布放回收系统在目标水域对每个AUV进行自动布放。
在另一示例性实施例中,该方法还可以包括:接收AUV发回的回收信号,回收信号包括AUV的当前位置;控制布放回收系统对每个AUV进行自动回收,可以包括:控制无人船支持平台航行至AUV的当前位置,并控制布放回收系统在AUV的当前位置对AUV进行自动回收。
实施例三
本实施例提供一种自动布放AUV的方法,应用于如上文所述的无人化运营的自主水下探测系统中的布放回收系统,可以包括:当接收到对AUV的布放指令时,通过摄像机获取AUV的位置;控制机械臂根据AUV的位置夹取AUV,并将所夹取的AUV运送到预设位置进行水下释放。
在控制机械臂根据AUV的位置夹取AUV之后,且在将所夹取的AUV运送到预设位置进行水下释放之前,该方法还可以包括:判断机械臂夹取AUV的夹持力是否达到预设力度阈值,当夹持力达到预设力度阈值时,再将所夹取的AUV运送到预设位置进行水下释放。
其中,无人船可以包括设置于其甲板中部的月池;预设位置可以包括:与月池的中轴线之间的距离不超过预设距离阈值的位置。
实施例四
本实施例提供一种自动回收AUV的方法,应用于如上文所述的无人化运营的自主水下探测系统中的布放回收系统,可以包括:当接收到对水下AUV的回收指令且无人船支持平台航行至AUV的当前位置时,控制水下拖曳式对接装置下潜到预设深度范围;当水下拖曳式对接装置与水下AUV之间的相对位置满足预设要求时,控制水下拖曳式对接装置与AUV进行对接;控制绞车将与水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置,并控制机械臂将水下拖曳式对接装置拖回的水下AUV抓取到无人船上。
在一个示例中,水下拖曳式对接装置可以包括喇叭口结构;预设要求可以包括:水下AUV与喇叭口结构的中轴线在同一直线上。
实施例五
本实施例提供一种无人化运营的自主水下探测系统,如图1至3所示,本实施例的无人化运营的自主水下探测系统主要由无人船支持平台和8个AUV组成。其中,无人船支持平台由无人船、布放回收系统、通信导航定位系统和能源动力 系统等组成。
无人船①采用小水线面双体船的结构形式,具有较好的耐波性和操纵性,推进效率高,且具有宽大的甲板面积。在船体中部开设了一个月池直通水下,用于AUV②布放和回收,在船体底部中间区域设计了一个流线型的对接装置限位结构用于水下拖曳式对接装置⑨的限位和锁定,使其与无人船①相对固定。
布放回收系统主要由七功能机械臂电动绞车和水下拖曳式对接装置⑨等组成。水下拖曳式对接装置⑨固定在无人船①底部的限位结构中,采用喇叭口结构形式,内置声学定位和光学定位系统,可通过电动绞车进行收放,实现与AUV②的水下精准对接。七功能机械臂布置在月池旁边的中间区域,主要用于对AUV②的抓取,实现AUV②的布放和回收。电动绞车与水下拖曳式对接装置⑨连接,用于将AUV②回收至无人船固定位置。
通信导航定位系统主要由惯性导航、GPS、AIS、北斗、声学定位系统、天线系统、声学通信机等组成,主要用于实现无人船①的自主航行、自主避障,以及作为AUV②与岸基指挥中心的通信中继,实现岸基与AUV②之间的数据交互,将水下作业任务数据的及时传输回指挥中心,并将新的作业任务下发至AUV②。
能源动力系统主要由光伏板⑩、锂电池组③、无线充电方舱④和电池管理系统⑥等组成。光伏板⑩布置在无人船顶部甲板,实现将光能转化成电能储存在锂电池组③中。锂电池组③主要用于储存光伏转化的电能、为无人船①航行提供动力来源,以及对AUV②进行能源补给。电池管理系统⑥主要实现稳压电源输出、光伏储能转化、无线充电输出和监测以及无人船①的能源管理。无线充电方舱④设置2个,在无人船①主甲板月池的两侧各1个,每个由4个AUV储存格组成,每个储存格中布置圆弧形的无线充电线圈,采用电磁波的形式,实现对AUV②的无线充电。
图4为根据本公开的一实施方式的AUV的结构组成示意图。如图4所示,AUV包括推进舱段、控制舱段、能源舱段、无线充电舱段和任务载荷舱段。
无人船通过配置的七功能机械臂、电动绞车和水下拖曳式对接装置协同联动,实现对AUV的布放和回收,有效地解决了AUV作业中布放和回收的技术难题。在能源方面,无人船采用了光伏电源模块+锂电池组+无线充电方舱相结合的方式,既保障了无人船的长续航作业,又能通过自主布放回收和无线充电方舱,实现对AUVs的能源循环补给,这样就解决了无人船和水下机器人能源补给的技术难题。在作业效率方面,无人船的方舱一次性可搭载存放8个AUVs,无人船与AUVs之间在水下通过水声通讯机进行通讯,可实现无人船与AUVs之间、AUV与AUV之间的协同通信和导航定位,并实现协同组网探测作业,这样就解决了单一水下机器人作业效率低,且容易丢失的技术难题。
图5为根据本公开的一实施方式的无人化运营的自主水下探测系统的作业流程示意图。本实施例的自主水下探测系统的无人船支持平台从岸基指挥中心接收 到水下探测任务之后,将该水下探测任务拆分成若干水下探测子任务,将该若干水下探测子任务分配给指定AUV去完成,同时根据该水下探测任务航行到目标水域,随后自动布放指定AUV到水中。AUV入水后开始工作并自动下潜到目标深度。可以每个AUV各自执行自己所接收到的水下探测子任务,也可以多个AUV协同组网共同执行水下探测任务。在AUV执行任务过程中,如果AUV电量低于某个设定值,则可以向无人船支持平台发送回收信号并上浮到指定深度。无人船则航行到该AUV上方,将该AUV回收到无线充电方舱中进行充电。当AUV电量充满时可以继续布放到水中执行水下探测任务,如此反复直至水下探测任务执行完毕。
图6为根据本公开的一实施方式的无人化运营的自主水下探测系统的作业流程图;图7为根据本公开的一实施方式的能源流动示意图;图8为根据本公开的一实施方式的无人化运营的自主水下探测系统布放AUV的流程示意图;图9为根据本公开的一实施方式的无人化运营的自主水下探测系统回收AUV的流程示意图;图10为根据本公开的一实施方式的对AUV能源补给的流程示意图。
如图6所示,本实施例的无人化运营的自主水下探测系统的作业流程包括如下步骤(1)至步骤(15)。
(1)由无人船在港口码头或海域远程接收岸基指挥中心的作业任务。
(2)无人船根据作业任务自主规划航迹,自主航行至目标海域。
(3)无人船通过机械臂依次自主布放AUVs。
(4)AUVs根据任务规划,自主下潜到目标水域深度。
(5)AUVs协同组网自主执行水下探测作业任务。
(6)当AUV电量不足(例如低于15%)时,发送回收信号,并自动上浮。
(7)无人船接收到回收信号后,自主行驶到AUV上方位置。
(8)无人船电动绞车释放水下拖曳式对接装置。
(9)AUV与水下对接装置进行定位对接。
(10)电动绞车将水下拖曳式对接装置回收至无人船固定位置。
(11)无人船通过机械臂实现对AUV的自动回收至方舱中,在一示例性实施例中,可以先由机械臂上的双目摄像机视觉识别AUV的位置,再根据所识别出的位置对AUV进行抓取。
(12)AUV在方舱中进行无线充电和信息交互。
(13)当AUV电量充足(≥95%)时,可以再次通过机械臂自主投放到水中并自主下潜执行探测作业任务。
(14)如此循环往复,直至探测作业任务完成。
(15)当整个水下探测任务完成时,无人船回收AUV,并自动规划航迹,返回港口码头。
如图7所示,无人船上搭载能源动力系统,利用光伏板将太阳能转化成电能,并在电源管理系统的管理下将电能存储在锂电池组中。当无人船航行耗电以及 AUV耗电使得该自主水下探测西酮电量不足时,则可以通过电源管理系统控制锂电池组放电,当该自主水下探测系统电量充足(例如达到一定电量)时,则控制锂电池组停止为自主水下探测系统供电。
如图8所示,无人船远程接收岸基指挥中心发来的作业任务,行驶到目标水域,通过声呐探测系统获取到实时水深数据,然后行驶到合适深度的水域执行对AUV的布放任务。当布放回收系统接收到布放AUV的指令时,首先机械臂的双目摄像机获取AUV位置,并根据AUV位置规划到AUV位置的运动路径,在机械臂运动到AUV附近时,通过前端摄像机获取AUV的准确夹取位置,继而打开夹持器根据AUV的准确夹取位置对AUV进行夹持,并根据力反馈判断是否夹紧,当对AUV夹紧之后再取出AUV运行到月池上方,通过无人船内部的双目摄像头进行测距检测,判断AUV艏部和艉部的偏移位置,AUV艏部和艉部连线与月池的中心线接近重合,则AUV已在合理的释放位置,若艏艉位置偏差较大,机械臂自动微调旋转夹持器,直到满足合理释放位置要求,再通过机械臂在释放位置将AUV送到水下。AUV的入水传感器在感测到AUV入水后自启动AUV主电源,AUV自主发送一个前进信号给主推进器,持续时间为2S,完成AUV释放前的自检。机械臂夹持器的力传感器接收到自检完成的反馈信号后,松开夹持器,释放AUV。AUV下潜到目标深度开始进行水下探测。至此完成AUV布放。
如图9所示,当水下执行探测任务的AUV电量不足或水下探测子任务执行完毕时,AUV向无人船支持平台发送回收指令,随后自动上浮到回收深度。无人船则根据规划航迹自动行驶到AUV上方位置,启动电动绞车,释放水下拖曳式对接装置,水下拖曳式对接装置下潜到回收深度,并通过超短基线换能器与待回收的水下AUV进行通信,使得水下拖曳式对接装置与AUV彼此获知对方位置,AUV根据水下拖曳式对接装置的位置航行至对接装置的喇叭口位置,水下拖曳式对接装置的光学定位系统获取AUV的精确位置,通过光学定位测距和AUV的姿态调整,判断AUV艏部光信标处于水下拖曳式对接装置的三个光信标的中心范围时,二者之间的相对位置满足对接要求,AUV加速冲撞进入对接喇叭口,对接成功后则水下拖曳式对接装置自动锁紧AUV。随后,电动绞车回收水下拖曳式对接装置,使其回到无人船限位结构中并被锁紧。此时,机械臂得到指令将AUV自动抓取到无线充电方舱中,无线充电方舱中的发射线圈与AUV的接收线圈通过电磁感应自动进行无线传能,无人船中的电源管理系统实时监测无线充电方舱中各个AUV的无线传能的功率和效率,若AUV放置的位置感应线圈接收电能的面积较小,则控制机械臂对AUV的位置进行旋转微调,直到满足一定无线传输功率值,即AUV已放置在无线充电方舱中的合理位置。
结合图10,当AUV被放入无线充电方舱中时,锂电池组放电,向AUV中的信息接收端进行无线电能传输和与之进行信息交互。当AUV电量充满时则停止向AUV放电。
本实施例的自主水下探测系统通过各系统之间的协同作业,实现了全自主的 无人化水下探测。(1)布放回收系统基于三维视觉的机械臂、电动绞车和水下拖曳式对接装置相结合,实现了对AUV的无人化自主布放和回收。(2)能源动力系统采用光伏电源与锂电池组相结合的供电方案,通过无线充电方舱实现对AUV的无线能源补给,延长了系统的续航时间,结合布放回收系统,实现了无人化能源循环补给。(3)水面和水下作业AUV之间可以采用子母通信与子子通信相结合的协同通信模式,实现AUV两两之间协同导航定位,组建水下空间三维探测网,提高故障容错性、安全性和探测作业效率。
本实施例的自主水下探测系统,集成了无人船水面无人自动驾驶技术、AUV水下自主导航作业技术、基于三维视觉的机械臂自动抓取作业技术、磁耦合无线充电技术等,再通过无人化水下作业目标功能分析,设计小水线面无人船船型与月池相结合的船体结构形式,利用无人化布放和回收功能,在无人船主甲板综合布置了无线充电方舱、电动绞车、七功能机械臂和水下对接装置等,进而实现了无人船对AUV的存储、布放、回收、充能、数据交互和协同导航定位等功能,最终实现了整个系统的无人化运营。
与其他传统水下作业方案相比,具备以下优点a)至优点e)。
a)无人化运营:从接收到水下探测任务到作业任务完成后返航,真正做到了全程无人化运营。
b)长续航作业:通过光伏电源与锂电池组相结合的方式,有效保障了系统的长续航循环作业。
c)可复制性强:可快速复制多个本实施例的系统,组建水下探测编队,实现1+N*8的作业模式,即1个指挥中心,N个自主水下探测系统,每个系统平台搭载8个AUV。
d)智能化管理:系统各功能模块、载体平台和AUV均实现了自动化运行,可实现系统的智能化管理,通过岸基指挥中心监控各系统的运行状态和数据。
e)超视距指挥:在岸基指挥中心便可实现对水下探测系统的超视距指挥、调度和控制。
实施例六
本实施例提供一种计算设备,包括存储器和处理器,存储器中存储有计算机程序,当计算机程序被处理器执行时,执行如上文所述的无人化运营的自主水下探测方法的步骤或如上文所述的自动布放AUV的方法的步骤或如上文所述的自动回收AUV的方法的步骤。
在一个实施例中,该计算设备可以包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash FLASH RAM)。内存是计算机可读介质的示例。
实施例七
本实施例提供一种存储介质,存储介质中存储有计算机程序,当计算机程序被处理器执行时,执行如上文所述的无人化运营的自主水下探测方法的步骤或如上文所述的自动布放AUV的方法的步骤或如上文所述的自动回收AUV的方法的步骤。
计算机程序可以采用一个或多个存储介质的任意组合。存储介质可以是可读信号介质或可读存储介质。
可读存储介质例如可以包括电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)可以包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件或者上述的任意合适的组合。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读计算机程序。这种传播的数据信号可以采用多种形式,例如可以包括电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何存储介质,该存储介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
存储介质上包含的计算机程序可以用任何适当的介质传输,例如可以包括无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的计算机程序。程序设计语言可以包括面向对象的程序设计语言——例如Java、C++等,还可以包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。计算机程序可以完全地在用户计算设备上执行、部分地在用户设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网(例如可以包括局域网或广域网)连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
本公开的探测系统由无人船+多个自主水下机器人组成,可实现自主水下机器人的无人化自动布放和自主回收,实现无人船与自主水下机器人的长续航作业和能源的自循环补给,从而实现了无人化运营的超视距水下探测作业,降低了运营成本,提高了水下探测作业效率。本公开通过配置的机械臂、绞车和水下拖曳式对接装置协同联动,实现对AUV的自动布放和回收,有效地解决了AUV作业中布放和回收的技术难题。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式,当在本公开中使用术语“包含”和/或“包 括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换。
应当理解的是,本公开中的示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。提供这些实施方式是为了使得本公开的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,而不应当理解为对本公开的限制。
虽然已经参考若干具体实施方式描述了本公开的精神和原理,但是应该理解,本公开并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合以进行受益,这种划分仅是为了表述的方便。本公开旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。

Claims (23)

  1. 一种无人化运营的自主水下探测系统,包括:
    AUV,用于根据所分配到的水下探测子任务进行水下自主探测;
    无人船支持平台,用于根据所接收到的水下探测任务生成多个水下探测子任务并将所述多个水下探测子任务分别分配给其上搭载的各个所述AUV,以及根据所述水下探测任务自主航行到目标水域以对所述AUV进行自动布放和回收;
    所述无人船支持平台包括无人船及搭载在所述无人船上的平台控制器和布放回收系统,所述布放回收系统用于根据所述平台控制器的布放和回收指令相应地对所述AUV进行自动布放和回收,所述布放回收系统包括:
    绞车和水下拖曳式对接装置,所述绞车的底座固定在所述无人船上,其绞绳的活动端与所述水下拖曳式对接装置连接,所述水下拖曳式对接装置与待回收的水下AUV对接,所述绞车将与所述待回收的水下AUV对接成功的水下拖曳式对接装置拖回至所述无人船的指定位置;
    机械臂,其底座固定在所述无人船上,用于抓取所述无人船上搭载的AUV并在目标水域布放到水中,以及将所述水下拖曳式对接装置拖回的所述待回收的水下AUV抓取到无人船上。
  2. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述无人船包括小水线面双体船。
  3. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述无人船的指定位置为设置在无人船底部的限位结构,所述限位结构用于对所述水下拖曳式对接装置进行限位和锁定,以使所述水下拖曳式对接装置与所述无人船相对固定。
  4. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述水下拖曳式对接装置包括:
    声学定位系统和光学定位系统,用于共同对待回收的水下AUV进行定位;
    喇叭口结构,用于与所述待回收的水下AUV进行对接;
    对接控制器,用于根据对待回收的水下AUV的定位结果控制所述喇叭口结构与所述待回收的水下AUV进行对接。
  5. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述无人船支持平台进一步包括:
    搭载在所述无人船上的能源动力系统,用于在所述平台控制器的控制下为所述AUV和所述无人船支持平台提供能源,所述能源动力系统包括光伏板、蓄电池、充电方舱和电池管理系统,其中,所述光伏板所转化出的电能储存在所述蓄电池中,所述蓄电池为所述充电方舱提供电能,所述充电方舱用于对所述AUV充电;
    所述机械臂还用于将所述水下拖曳式对接装置拖回的所述待回收的水下 AUV抓取到所述充电方舱中。
  6. 根据权利要求5所述的无人化运营的自主水下探测系统,其中,所述充电方舱的数量为多个,所述充电方舱包括无线充电方舱。
  7. 根据权利要求1或5所述的无人化运营的自主水下探测系统,其中,所述无人船支持平台进一步包括:
    搭载在所述无人船上的通信导航定位系统,用于在所述平台控制器的控制下为多个所述AUV之间提供通信支持以使所述多个AUV之间协同组网作业,为各个所述AUV与所述无人船支持平台之间提供通信支持以使各个所述AUV与所述无人船支持平台之间进行数据传输,以及对所述AUV和所述无人船支持平台进行定位和导航。
  8. 根据权利要求7所述的无人化运营的自主水下探测系统,其中,所述AUV还用于:
    在执行水下自主探测时,如果其自身电量低于第一预设电量阈值或其分配得的水下探测子任务已经执行完毕,则向所述无人船支持平台的平台控制器发送回收指令并到达预设深度范围,以使所述平台控制器控制所述布放回收系统自动回收所述AUV;
    在所述充电方舱中充电时,如果其自身电量高于第二预设电量阈值且其分配得的水下探测子任务没有执行完毕,则向所述无人船支持平台的平台控制器发送布放指令,以使所述平台控制器控制所述布放回收系统自动布放所述AUV;其中,所述第二预设电量阈值高于所述第一预设电量阈值。
  9. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述绞车包括电动绞车。
  10. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述机械臂包括七功能机械臂。
  11. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述布放回收系统进一步包括:
    布放回收控制器,用于根据所述平台控制器的布放和回收指令相应地控制所述机械臂抓取所述无人船上搭载的AUV并在目标水域布放到水中,并控制所述水下拖曳式对接装置与待回收的水下AUV对接并控制所述绞车将与所述待回收的水下AUV对接成功的水下拖曳式对接装置拖回至所述无人船的指定位置,以及控制所述机械臂将所述水下拖曳式对接装置拖回的所述待回收的水下AUV抓取到无人船上。
  12. 根据权利要求11所述的无人化运营的自主水下探测系统,其中,所述布放回收系统进一步包括:
    摄像机,设置于所述无人船上,用于获取AUV的位置,其中,所述摄像机包括双目摄像机;
    所述布放回收控制器,还用于根据所述AUV的位置,控制所述机械臂抓取 所述无人船上搭载的AUV并在目标水域布放到水中,以及控制所述机械臂将所述水下拖曳式对接装置拖回的所述待回收的水下AUV抓取到无人船上。
  13. 根据权利要求1所述的无人化运营的自主水下探测系统,其中,所述无人船支持平台进一步包括:
    搭载在所述无人船上的自主避障系统,用于在所述平台控制器的控制下探测并反馈所述无人船支持平台在航行路径上的障碍物,以使所述无人船支持平台在所述平台控制器的控制下规避障碍物。
  14. 一种无人化运营的自主水下探测方法,基于如权利要求1至13中任一项所述的无人化运营的自主水下探测系统,其中,所述方法包括:
    根据所接收到的水下探测任务生成多个水下探测子任务,将所述多个水下探测子任务分别分配给无人船支持平台上搭载的多个AUV;
    控制布放回收系统对每个AUV进行自动布放和回收,以使多个AUV分别完成各自的水下探测子任务,从而使得无人船支持平台完成所述水下探测任务。
  15. 根据权利要求14所述的无人化运营的自主水下探测方法,其中,所述方法进一步包括:
    根据所述水下探测任务控制无人船支持平台自主航行到目标水域;
    控制布放回收系统对每个AUV进行自动布放,包括:
    控制布放回收系统在所述目标水域对每个AUV进行自动布放。
  16. 根据权利要求14所述的无人化运营的自主水下探测方法,其中,所述方法进一步包括:
    接收AUV发回的回收信号,所述回收信号包括AUV的当前位置;
    控制布放回收系统对每个AUV进行自动回收,包括:
    控制无人船支持平台航行至AUV的当前位置,并控制布放回收系统在AUV的当前位置对AUV进行自动回收。
  17. 一种自动布放AUV的方法,应用于如权利要求1至13中任一项所述的无人化运营的自主水下探测系统中的布放回收系统,其中,所述方法包括:
    当接收到对AUV的布放指令时,通过摄像机获取AUV的位置;
    控制机械臂根据AUV的位置夹取AUV,并将所夹取的AUV运送到预设位置进行水下释放。
  18. 根据权利要求17所述的自动布放AUV的方法,其中,在控制机械臂根据AUV的位置夹取AUV之后,且在将所夹取的AUV运送到预设位置进行水下释放之前,所述方法进一步包括:
    判断所述机械臂夹取AUV的夹持力是否达到预设力度阈值,当所述夹持力达到预设力度阈值时,再将所夹取的AUV运送到预设位置进行水下释放。
  19. 根据权利要求17所述的自动布放AUV的方法,其中,所述无人船包括设置于其甲板中部的月池;
    所述预设位置包括:与所述月池的中轴线之间的距离不超过预设距离阈值的 位置。
  20. 一种自动回收AUV的方法,应用于如权利要求1至13中任一项所述的无人化运营的自主水下探测系统中的布放回收系统,其中,所述方法包括:
    当接收到对水下AUV的回收指令且无人船支持平台航行至AUV的当前位置时,控制水下拖曳式对接装置下潜到预设深度范围;
    当水下拖曳式对接装置与水下AUV之间的相对位置满足预设要求时,控制水下拖曳式对接装置与AUV进行对接;
    控制绞车将与水下AUV对接成功的水下拖曳式对接装置拖回至无人船的指定位置,并控制机械臂将水下拖曳式对接装置拖回的水下AUV抓取到无人船上。
  21. 根据权利要求20所述的自动回收AUV的方法,其中,所述水下拖曳式对接装置包括喇叭口结构;
    所述预设要求包括:水下AUV与所述喇叭口结构的中轴线在同一直线上。
  22. 一种计算设备,包括存储器和处理器,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,执行如权利要求14至16中任一项所述的无人化运营的自主水下探测方法的步骤或如权利要求17至19中任一项所述的自动布放AUV的方法的步骤或如权利要求20至21中任一项所述的自动回收AUV的方法的步骤。
  23. 一种存储介质,存储介质中存储有计算机程序,当所述计算机程序被处理器执行时,执行如权利要求14至16中任一项所述的无人化运营的自主水下探测方法的步骤或如权利要求17至19中任一项所述的自动布放AUV的方法的步骤或如权利要求20至21中任一项所述的自动回收AUV的方法的步骤。
PCT/CN2023/080064 2022-04-12 2023-03-07 自主水下探测系统、方法及自动回收和布放auv的方法 WO2023197781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210381521.0 2022-04-12
CN202210381521.0A CN114872841A (zh) 2022-04-12 2022-04-12 自主水下探测系统、方法及自动回收和布放auv的方法

Publications (1)

Publication Number Publication Date
WO2023197781A1 true WO2023197781A1 (zh) 2023-10-19

Family

ID=82669145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080064 WO2023197781A1 (zh) 2022-04-12 2023-03-07 自主水下探测系统、方法及自动回收和布放auv的方法

Country Status (2)

Country Link
CN (1) CN114872841A (zh)
WO (1) WO2023197781A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117644944A (zh) * 2024-01-26 2024-03-05 山东科技大学 一种跨域协同海上风电运维无人系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872841A (zh) * 2022-04-12 2022-08-09 株洲中车时代电气股份有限公司 自主水下探测系统、方法及自动回收和布放auv的方法
CN116540751B (zh) * 2023-07-05 2023-10-20 海云联科技(苏州)有限公司 一种无人船自动回收布放水下机器人的方法
CN117041769B (zh) * 2023-10-08 2023-12-15 天宇利水信息技术成都有限公司 一种水文站用可装配通用性综合监测载台

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107226186A (zh) * 2017-07-31 2017-10-03 武汉理工大学 Auv多功能综合服务平台及编队运行控制方法
CN108569385A (zh) * 2018-04-24 2018-09-25 西北工业大学 一种auv水下回收锁紧机构
CN109178260A (zh) * 2018-08-23 2019-01-11 杭州电子科技大学 一种无人船与auv的对接系统及对接方法
CN109774856A (zh) * 2019-01-21 2019-05-21 江苏科技大学 安全高效水下潜水器布放回收方法及装置
CN111284633A (zh) * 2018-12-06 2020-06-16 中国科学院沈阳自动化研究所 一种用于usv自主回收auv的拖曳装置及其回收方法
CN111409793A (zh) * 2019-01-07 2020-07-14 中国科学院沈阳自动化研究所 利用水面机器人回收水下机器人的捕获系统及方法
KR102196850B1 (ko) * 2020-10-22 2020-12-30 (주)금하네이벌텍 잠수정의 진수 및 회수가 가능한 선박
US20220033042A1 (en) * 2018-09-21 2022-02-03 Usea As A marine structure comprising a launch and recovery system
CN114185079A (zh) * 2021-11-22 2022-03-15 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种水下立体探测系统
CN114801793A (zh) * 2022-04-12 2022-07-29 株洲中车时代电气股份有限公司 一种水下机器人的能源补给装置及方法、无人船
CN114872841A (zh) * 2022-04-12 2022-08-09 株洲中车时代电气股份有限公司 自主水下探测系统、方法及自动回收和布放auv的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018231273A1 (en) * 2017-06-12 2018-12-20 Seatrepid International, Llc Multiple autonomous underwater vehicle system
JP6916134B2 (ja) * 2018-03-20 2021-08-11 三井E&S造船株式会社 水中航走体の回収装置、曳航装置、水中航走体の回収システム、及び水中航走体の回収方法
CN109367707B (zh) * 2018-10-26 2019-07-12 河海大学 一种基于导向缆的无人船回收自主水下航行器装置及方法
CN109760811B (zh) * 2019-03-11 2024-04-30 上海海洋大学 一种基于海洋馆观赏型仿生鱿鱼
FR3101846B1 (fr) * 2019-10-10 2023-01-27 Ixblue Système et procédé de déploiement et de récupération d’engin autonome sous-marin par un véhicule de récupération remorqué par un navire, ensemble d’exploration sous-marine
CN111824375B (zh) * 2020-07-23 2022-09-23 西北工业大学 一种小型回转体型auv自主收放装置
CN113291421B (zh) * 2021-05-26 2022-07-05 上海十方生态园林股份有限公司 一种无人驾驶装置能源补给无人船

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107226186A (zh) * 2017-07-31 2017-10-03 武汉理工大学 Auv多功能综合服务平台及编队运行控制方法
CN108569385A (zh) * 2018-04-24 2018-09-25 西北工业大学 一种auv水下回收锁紧机构
CN109178260A (zh) * 2018-08-23 2019-01-11 杭州电子科技大学 一种无人船与auv的对接系统及对接方法
US20220033042A1 (en) * 2018-09-21 2022-02-03 Usea As A marine structure comprising a launch and recovery system
CN111284633A (zh) * 2018-12-06 2020-06-16 中国科学院沈阳自动化研究所 一种用于usv自主回收auv的拖曳装置及其回收方法
CN111409793A (zh) * 2019-01-07 2020-07-14 中国科学院沈阳自动化研究所 利用水面机器人回收水下机器人的捕获系统及方法
CN109774856A (zh) * 2019-01-21 2019-05-21 江苏科技大学 安全高效水下潜水器布放回收方法及装置
KR102196850B1 (ko) * 2020-10-22 2020-12-30 (주)금하네이벌텍 잠수정의 진수 및 회수가 가능한 선박
CN114185079A (zh) * 2021-11-22 2022-03-15 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 一种水下立体探测系统
CN114801793A (zh) * 2022-04-12 2022-07-29 株洲中车时代电气股份有限公司 一种水下机器人的能源补给装置及方法、无人船
CN114872841A (zh) * 2022-04-12 2022-08-09 株洲中车时代电气股份有限公司 自主水下探测系统、方法及自动回收和布放auv的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117644944A (zh) * 2024-01-26 2024-03-05 山东科技大学 一种跨域协同海上风电运维无人系统及方法

Also Published As

Publication number Publication date
CN114872841A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023197781A1 (zh) 自主水下探测系统、方法及自动回收和布放auv的方法
GB2581091A (en) Guide cable based apparatus and method for unmanned vehicle recovering autonomous underwater vehicle
US10450040B2 (en) Re-configurable subsea robot
US11845521B2 (en) Marine structure comprising a launch and recovery system
CN111618835B (zh) 一种港口岸电智能充电机器人系统及作业方法
CN109178260A (zh) 一种无人船与auv的对接系统及对接方法
CN105329418A (zh) 一种无人船载水下机器人混合系统
Fukasawa et al. " MARINE BIRD", a new experimental AUV with underwater docking and recharging system
JPH03266794A (ja) 水中探査システム
TW201620785A (zh) 用於執行表面操作之航海機具
CN109204715A (zh) 一种无人作业船及其工作流程
CN107878669B (zh) 智慧水面监测三体船
CN114801793A (zh) 一种水下机器人的能源补给装置及方法、无人船
Kawasaki et al. Development of AUV" Marine Bird" with underwater docking and recharging system
CN111674516A (zh) 光伏混合动力小型无人科考船
CN212022927U (zh) 一种应用于无人船的潜航器回收装置
JP2023543373A (ja) 自律航海電力補給船舶
CN213768912U (zh) 海上多功能智能打捞系统
CN209192167U (zh) 一种无人作业船
CN112498144A (zh) 太阳能驱动锚系式自主航行器多功能对接站及对接方法
Haji et al. Design and testing of auv docking modules for a renewably powered offshore auv servicing platform
Yoshida et al. Development of the cruising-AUV “Jinbei”
JP7195582B2 (ja) 複数の水中航走体の揚収方法、及び複数の水中航走体の揚収システム
Kawasaki et al. " Marine Bird", a new experimental AUV-results of docking and electric power supply tests in sea trials
Morinaga et al. Development of a Docking Station ROV for Underwater Power Supply to AUVs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787429

Country of ref document: EP

Kind code of ref document: A1