WO2023197682A1 - Procédé de préparation efficace de nanofeuille de nitrure de bore - Google Patents

Procédé de préparation efficace de nanofeuille de nitrure de bore Download PDF

Info

Publication number
WO2023197682A1
WO2023197682A1 PCT/CN2022/142028 CN2022142028W WO2023197682A1 WO 2023197682 A1 WO2023197682 A1 WO 2023197682A1 CN 2022142028 W CN2022142028 W CN 2022142028W WO 2023197682 A1 WO2023197682 A1 WO 2023197682A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
nanosheets
nitride nanosheets
cleaning
reaction
Prior art date
Application number
PCT/CN2022/142028
Other languages
English (en)
Chinese (zh)
Inventor
毕见强
梁关东
王绍印
殷壮壮
孙国勋
王伟礼
尚蒙蒙
梁延杰
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2023197682A1 publication Critical patent/WO2023197682A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0646Preparation by pyrolysis of boron and nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Definitions

  • the invention belongs to the technical field of inorganic non-metallic materials, and specifically relates to a preparation method of boron nitride nanosheets.
  • the purpose of the present invention is to provide an efficient preparation method of boron nitride nanosheets.
  • the present invention uses zinc borate nanosheets as the boron source, and at the same time, the zinc borate nanosheets are also used as the substrate template for the reaction, and ammonia gas is used as the nitrogen source to prepare boron nitride nanosheets through high-temperature nitridation reaction.
  • the boron element in the zinc borate nanosheets near the melting point continuously diffuses to the surface to react with ammonia gas, depositing a layer of boron nitride nanosheets on the surface of the zinc borate nanosheets, leaving zinc oxide in the inner layer, and then passes through Ultrasonic pickling with concentrated hydrochloric acid washes away the zinc oxide to obtain pure boron nitride nanosheets.
  • the above preparation method has the advantages of stability, reliability, simple operation, low equipment cost, easy availability of raw materials, and high yield.
  • the first aspect of the present invention provides a method for preparing boron nitride nanosheets.
  • the preparation method includes using zinc borate nanosheets as a boron source and performing a high-temperature heating reaction in an ammonia atmosphere to obtain the nitride. Boron nanosheets.
  • zinc borate nanosheets serve as a model agent and boron source at the same time, providing a sheet template for the deposition of boron nitride.
  • the present invention provides a preparation method of zinc borate nanosheets, which is prepared by heating zinc nitrate and sodium borate. The preparation method is as follows: respectively heating the aqueous solutions of zinc nitrate and sodium borate to 65-75°C, and mixing the two solutions. Prepared by heating in a water bath at 65-75°C for 18-24 hours.
  • the concentration of the zinc nitrate solution is 0.1-0.3 mol/L.
  • the concentration of the sodium borate solution is 0.05-0.15 mol/L.
  • the reaction product is washed and dried to obtain the zinc borate nanosheets.
  • the drying temperature is 55-65°C and the drying time is 8-12 hours.
  • the specific method for high-temperature heating of the boron source and ammonia is as follows: place the boron source in a tube furnace, introduce ammonia gas to perform a high-temperature reaction, the reaction temperature is 800-1100°C, and the heating rate is 8-1100°C. 12°C/min, holding time is 2 ⁇ 4h.
  • the flow rate of the ammonia gas is 65-75 sccm; further, it is 68-72 sccm, and a specific example is 71.9 sccm.
  • the steps of cleaning and drying the product are also included; the cleaning is carried out with an acid solution, and the acid solution is hydrochloric acid, nitric acid or sulfuric acid solution.
  • the pickling uses a hydrochloric acid solution for ultrasonic cleaning, the hydrochloric acid concentration is 2 to 5 mol/L, and the ultrasonic cleaning time is 3 to 5 hours.
  • the above-mentioned ultrasonic cleaning also includes a water washing step.
  • the water washing uses deionized water for centrifugal cleaning.
  • the number of cleaning times can be adjusted according to the cleaning effect, such as 3 to 5 times.
  • the thickness of boron nitride nanosheets prepared by the above method is between 5-14nm, and the lateral size can be controlled from nanometer to micrometer, which has the advantage of being mass-produced; in addition, the single-time output of the above preparation method can reach At the gram level, the size of zinc borate nanosheets can be controlled by controlling the reaction time of the precursor; in addition, the size and thickness of boron nitride nanosheets can be controlled by controlling parameters such as the temperature and reaction time of ammonia nitridation.
  • the boron nitride nanosheets can be controlled by controlling the lateral size of the zinc borate nanosheets. size; in addition, the quality and thickness of boron nitride nanosheets are also closely related to the temperature, time and other parameters of the ammonia nitridation reaction, so the quality and thickness of the prepared boron nitride nanosheets can be further controlled by adjusting the ammonia nitridation parameters. thickness.
  • the preparation method of boron nitride nanosheets provided by the present invention can realize the preparation of boron nitride nanosheets in large quantities. Compared with mechanical stripping, vapor deposition and other methods, it significantly improves the yield of a single reaction and effectively meets the needs of boron nitride nanosheets. practical application.
  • the raw materials used in the above preparation method are easy to obtain and low in cost, and the production equipment is relatively simple and easy to operate, making it easy to realize industrial scale-up production.
  • the present invention uses thinner zinc borate nanosheets as the boron source and base template to realize the controllable preparation of boron nitride nanosheets with lateral dimensions from nanometer to micrometer, and can nitride the nanosheets according to the purpose of use. The lateral dimensions of boron nanosheets are adjusted.
  • Figure 1 is a scanning electron microscope photo of the flaky zinc borate precursor nanosheets prepared by the water bath reaction for 24 hours in Examples 1 to 3 of the present invention and the water bath reaction for 18 hours in Example 4. It can be clearly seen that the size of the zinc borate nanosheets is smaller after the reaction for 18 hours. Much smaller than the zinc borate nanosheets that reacted for 24 h;
  • Figure 1A shows the preparation of precursor nanosheets after 24 hours of reaction, with a magnification of 20,000 times;
  • Figure 1B shows the preparation of precursor nanosheets after 18 hours of reaction, with a magnification of 20,000 times
  • Figure 2 is a scanning electron microscope photograph of boron nitride nanosheets prepared in Examples 1 to 4 of the present invention. From Figures 2A, 2B and 2C of Examples 1 to 3, it can be seen that the ammonia nitriding temperature increases from 800°C At 1000°C, the surface of the boron nitride nanosheets prepared becomes smooth and the size also increases.
  • the boron nitride nanosheets prepared at 800°C have a lower reaction temperature and the boron source diffuses slowly during the reaction, resulting in the prepared nitrogen There are many crumb-like nanosheets in the boron nitride nanosheets, and the quality is poor; while the boron nitride nanosheets prepared at 900°C and 1000°C are of better quality, with smooth surfaces and lateral dimensions in the micron range; Figure 2D can be seen in the water bath reaction After nitriding zinc borate nanosheets as a boron source at 900°C for 18 hours, the lateral size of the boron nitride nanosheets obtained is very small, and the size is nanoscale.
  • magnification of Figures 2A, 2B, and 2C is 10,000 times;
  • Figure 3 is a magnified scanning electron microscope image of a single boron nitride nanosheet prepared in Example 2 of the present invention
  • magnification is 30,000 times.
  • Figure 4 is an AFM spectrum of boron nitride nanosheets prepared in Example 3 of the present invention.
  • Figure 5 is an XRD pattern of boron nitride nanosheets prepared in Examples 1 to 3 of the present invention.
  • the mixed powder obtained from the zinc borate nanosheets is reacted with ammonia gas at a high temperature in a tube furnace.
  • the heating rate is 10°C/min
  • the reaction temperature is 900°C
  • the holding time is 3h.
  • the ammonia gas The flow rate is 71.9sccm;
  • the mixed powder obtained from the zinc borate nanosheets is reacted with ammonia gas at a high temperature in a tube furnace.
  • the heating rate is 10°C/min
  • the reaction temperature is 1000°C
  • the holding time is 3h.
  • the ammonia gas The flow rate is 71.9sccm;
  • the mixed powder obtained from the zinc borate nanosheets is reacted with ammonia gas at a high temperature in a tube furnace.
  • the heating rate is 10°C/min
  • the reaction temperature is 900°C
  • the holding time is 3h.
  • the ammonia gas The flow rate is 71.9sccm;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention se rapporte au domaine technique des matériaux non métalliques inorganiques, et concerne un procédé de préparation d'une nanofeuille de nitrure de bore. Selon la présente invention, le borate de zinc en forme de nanofeuille est d'abord synthétisé comme source de bore précurseur et comme modèle de substrat, le gaz ammoniac est utilisé comme source d'azote, et une nanofeuille de nitrure de bore ayant une bonne morphologie et une taille transversale de l'ordre du micron est préparée à une température relativement basse. Entre-temps, un précurseur de borate de zinc en forme de nanofeuille est préparé à l'aide d'un procédé de précipitation en une étape, le rendement est élevé et l'opération est simple, de sorte que les avantages de la nanofeuille de nitrure de bore préparée par ce procédé incluent une taille ajustable, un rendement élevé et la capacité de réaliser une production de masse, et une base est fournie pour l'application à grande échelle de la nanofeuille de nitrure de bore.
PCT/CN2022/142028 2022-04-11 2022-12-26 Procédé de préparation efficace de nanofeuille de nitrure de bore WO2023197682A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210374129.3A CN114751387B (zh) 2022-04-11 2022-04-11 一种高效制备氮化硼纳米片的方法
CN202210374129.3 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023197682A1 true WO2023197682A1 (fr) 2023-10-19

Family

ID=82330170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142028 WO2023197682A1 (fr) 2022-04-11 2022-12-26 Procédé de préparation efficace de nanofeuille de nitrure de bore

Country Status (2)

Country Link
CN (1) CN114751387B (fr)
WO (1) WO2023197682A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114751387B (zh) * 2022-04-11 2023-11-28 山东大学 一种高效制备氮化硼纳米片的方法
CN115448264A (zh) * 2022-08-31 2022-12-09 山东大学 一种多孔氮化硼纳米片的制备方法
CN117900467A (zh) * 2024-03-19 2024-04-19 天津大学 氮化硼纳米片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155176A (ja) * 2007-12-27 2009-07-16 Teijin Ltd 窒化ホウ素ナノ繊維及びその製造方法
CN106829888A (zh) * 2015-12-04 2017-06-13 中国科学院苏州纳米技术与纳米仿生研究所 氮化硼纳米片粉体及其宏量制备方法
CN107640750A (zh) * 2016-07-22 2018-01-30 中国科学院苏州纳米技术与纳米仿生研究所 氮化硼纳米片粉体及其低成本批量制备方法
US20190127222A1 (en) * 2016-07-22 2019-05-02 Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences Boron Nitride Nanomaterial, and Preparation Method and Use Thereof
CN114751387A (zh) * 2022-04-11 2022-07-15 山东大学 一种高效制备氮化硼纳米片的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155176A (ja) * 2007-12-27 2009-07-16 Teijin Ltd 窒化ホウ素ナノ繊維及びその製造方法
CN106829888A (zh) * 2015-12-04 2017-06-13 中国科学院苏州纳米技术与纳米仿生研究所 氮化硼纳米片粉体及其宏量制备方法
CN107640750A (zh) * 2016-07-22 2018-01-30 中国科学院苏州纳米技术与纳米仿生研究所 氮化硼纳米片粉体及其低成本批量制备方法
US20190127222A1 (en) * 2016-07-22 2019-05-02 Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences Boron Nitride Nanomaterial, and Preparation Method and Use Thereof
CN114751387A (zh) * 2022-04-11 2022-07-15 山东大学 一种高效制备氮化硼纳米片的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO PINGQIANG, SONG WENHUA, DING FENG, LI MENGMENG, WANG XIN: "In Situ One-Step Synthesis and Characterization of Nano Flake-Like Zinc Borate", NANOTECHNOLOGY AND PRECISION ENGINEERING, vol. 11, no. 2, 15 March 2013 (2013-03-15), pages 118 - 122, XP009549668, ISSN: 1672-6030, DOI: 10.13494/j.npe.2013.021 *

Also Published As

Publication number Publication date
CN114751387A (zh) 2022-07-15
CN114751387B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2023197682A1 (fr) Procédé de préparation efficace de nanofeuille de nitrure de bore
CN108269989B (zh) 一种碳包覆微米硅、其制备方法和应用
CN103346299B (zh) 原位刻蚀制备中空锡基氧化物/碳复合纳米材料的方法
WO2016197516A1 (fr) Procédé de préparation industrielle d'une poudre d'aluminium nanométrique ou d'une poudre de magnésium nanométrique revêtues de graphène
CN112758950B (zh) 一种硼烯纳米片及其制备方法
CHEN et al. Graphene glass: direct growth of graphene on traditional glasses
CN106495133A (zh) 高导热柔性石墨烯薄膜制备方法
CN106431418A (zh) 水热法制备纳米AlN粉体的方法和其中间体及产品
WO2018120601A1 (fr) Méthode de préparation d'un film mince autoportant de carbone poreux tridimensionnel renforcé au graphène
CN108285139B (zh) 一种氮掺杂石墨烯碳材料的制备方法和应用
CN105420689B (zh) 一种取向碳纳米管-氧化铝杂化纤维及其制备方法
CN107572509B (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
CN108622887B (zh) 一种微波膨爆制备石墨烯的方法
CN107032331A (zh) 一种基于绝缘基底的石墨烯制备方法
Zhao et al. Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment
CN108314333A (zh) 一种石墨烯玻璃的静电吸附制备方法
CN108624992B (zh) 一种螺旋纳米碳纤维及其制备方法
CN110125433A (zh) 一种室温下制备纳米铜粉的方法
CN113798503A (zh) 一种制备金属钴纳米片的方法
CN108975409B (zh) 一种小尺寸高分散性四氧化三锰纳米粒子的制备方法
CN108609588B (zh) 一种规则六边形六方氮化硼纳米片的制备方法
CN112194115A (zh) 一种中空纳米碳球的制备方法及中空纳米碳球
WO2019196144A1 (fr) Méthode de préparation de graphène par intercalation de métal alcalin
CN113526531A (zh) 从锂电三元材料洗液中回收高纯亚微米级碳酸锂的方法
CN105712317B (zh) 一种含纳米中空碳材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937309

Country of ref document: EP

Kind code of ref document: A1