WO2023197545A1 - 水泥窑用稀土节能外加剂及其调配方法 - Google Patents

水泥窑用稀土节能外加剂及其调配方法 Download PDF

Info

Publication number
WO2023197545A1
WO2023197545A1 PCT/CN2022/125351 CN2022125351W WO2023197545A1 WO 2023197545 A1 WO2023197545 A1 WO 2023197545A1 CN 2022125351 W CN2022125351 W CN 2022125351W WO 2023197545 A1 WO2023197545 A1 WO 2023197545A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
saving
clinker
earth energy
heat consumption
Prior art date
Application number
PCT/CN2022/125351
Other languages
English (en)
French (fr)
Inventor
何金峥
张君
陆立新
Original Assignee
包头市宏润稀土科技有限公司
北京宏科瑞达工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 包头市宏润稀土科技有限公司, 北京宏科瑞达工程技术有限公司 filed Critical 包头市宏润稀土科技有限公司
Publication of WO2023197545A1 publication Critical patent/WO2023197545A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/421Inorganic materials
    • C04B7/425Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/421Inorganic materials
    • C04B7/424Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/428Organic materials

Definitions

  • the invention relates to the technical field of cement kiln energy saving and emission reduction, and in particular to a rare earth energy-saving admixture for cement kilns and a preparation method thereof.
  • the commonly used method is to carry out hardware equipment technology on the preheater system on the one hand.
  • Modifications such as installing SNCR, SCR, staged combustion, low-nitrogen burners, hot raw meal sulfur suppression and other devices; on the other hand, re-adjust the ratio of the existing raw meal ingredients in the plant, thereby improving the clinker Firing working conditions to reduce emissions.
  • the problems are: 1. Installing plug-in equipment still requires a large amount of consumables, and the superimposed cost remains high. 2. The ingredients are adjusted based on the original materials in the factory. Due to the differences in the mineralization conditions of the original mines, it is mostly difficult to eliminate the impact of harmful substances on the firing conditions.
  • a rare earth energy-saving admixture for cement kilns which includes, in terms of mass fraction, 4 to 22% of rare earth composite oxides, 31 to 49% of urea, and 30 to 49% of gypsum.
  • the rare earth composite oxide is composed of La 2 O 3 and Y 2 O 3 , of which the La 2 O 3 content is 98 ⁇ 99%.
  • the preparation method of rare earth energy-saving additives for cement kilns is carried out as follows: S1. Conduct a thermal diagnosis investigation on the original firing working conditions and material proportions: select a time period when the process is stable, conduct preheater, high-temperature fan, Thermal calibration of the rotary kiln, decomposition furnace and cooler is used to obtain the actual heat consumption Q 1 of the existing clinker based on the measured values.
  • S6 Determine the amount of rare earth energy-saving additives to be added based on the selection conditions based on the reduction of heat consumption below the ideal clinker heat consumption, and the strength increase value as the preferred condition.
  • the rare earth energy-saving admixture in S5 is ground to a particle size of less than 0.5 mm and then mixed with the raw material.
  • the beneficial effects of the present invention are: (1) It can reduce the eutectic temperature, increase the firing speed, and reduce the heat consumption by 3 to 7%; (2) Change the cement burning working conditions and increase the clinker Strength; (3) Fix sulfur and denitrify, reduce harmful gas emissions, play the role of energy conservation, emission reduction, and reduce production costs, thereby achieving the sustainable development goals of the cement industry; (4) Without changing or minimally changing existing hardware equipment , through the diagnosis of the production system, implement soft process improvements in the formulation model of rare earth energy-saving additives, thereby maximizing the potential for process improvement and saving the cost of installation and technical modification of large hardware equipment.
  • Figure 1 is a data model diagram provided by Embodiment 1 of the present invention.
  • Figure 2 is a data model diagram provided by Embodiment 2 of the present invention.
  • the invention provides a rare earth energy-saving admixture for cement kilns, which is composed of the following mass fraction components: 4 to 22% of rare earth composite oxides, 31 to 49% of urea, and 30 to 49% of gypsum.
  • the rare earth composite oxide is composed of La 2 O 3 and Y 2 O 3 , of which the La 2 O 3 content is 98 ⁇ 99%.
  • the rare earth compound in the rare earth energy-saving admixture enhances the oxidation and catalytic material reaction rate, increases the temperature-raising reaction, and then causes the low-temperature liquid phase to occur earlier to form an intermediate transition phase.
  • the transition phase decomposes C3S at a lower temperature, thereby reducing A Mine formation temperature.
  • Urea begins high-temperature pyrolysis above 150°C to generate ammonia. On the one hand, it reacts with nitrogen oxides in the exhaust gas to form nitrogen and is discharged. On the other hand, it reacts with sulfides in the flue gas to form ammonium sulfite, which then reacts with calcium in the material.
  • aluminum raw materials react to form calcium sulfoaluminate and enter the kiln, thereby achieving the functions of denitrification and sulfur fixation.
  • As an alkaline calcium material gypsum itself reacts with the acidic volatiles in the flue gas to neutralize and fix sulfur. At the same time, after entering the kiln, it can reduce the eutectic point, promote chemical coordination in the liquid phase, and increase the firing speed. Effect.
  • the rare earth energy-saving admixture for cement kilns is composed of the following mass fractions: 15% rare earth composite oxide, 40% urea, and 45% gypsum.
  • the rare earth composite oxide is composed of La 2 O 3 and Y 2 O 3 , of which La 2 O 3 content is 98%.
  • the method of the present invention is implemented in Factory A of a certain cement company.
  • the specific steps are as follows: S1.
  • the air volume, air pressure, and temperature data it can be seen from the measurement that the production of one kilogram of clinker requires 0.126kg of coal and 1m3 of air.
  • the heat consumption of clinker is the amount of coal consumed per unit mass of clinker, that is, 0.126kg of coal in this example. /kg clinker, the calorific value of 1kg coal is 6200kcal, and the actual heat consumption Q 1 of the existing clinker is 780kcal/kg-cli.
  • the mineral content correspondingly increases slowly and then decreases slowly; in the second stage (the content of rare earth energy-saving admixture is 0.9-1.2%), the content of mineral A increases significantly and then slightly decreases, while the content of mineral B decreases significantly and then increases slightly; the third stage (the content of rare earth energy-saving additives is 0.9-1.2%) The content of admixtures is 1.2 ⁇ 1.4%) The content of mineral A gradually decreases, while the content of mineral B increases significantly.
  • the addition amount is 0.7%
  • the content of A ore is 60%
  • the content of B ore is 27%
  • the comprehensive heat consumption is 760kcal-cli, which is a 2.6% reduction based on the original heat consumption of 780kcal/kg-cli.
  • the addition amount is 0.8%
  • the content of A ore is 60.1%
  • the content of B ore is 27.1%
  • the comprehensive heat consumption is 740kcal-cli, which is 5.1% lower than the original heat consumption of 780kcal/kg-cli.
  • the addition amount is 1.0%, the content of A ore is 63.8%, the content of B ore is 26%, and the comprehensive heat consumption is 725kcal-cli, which is 7.1% lower than the original heat consumption of 780kcal/kg-cli.
  • the addition amount is 1.2%
  • the A ore content is 65.5%
  • the B ore content is 25%
  • the comprehensive heat consumption is 710kcal-cli, which is a 9% reduction based on the original heat consumption of 780kcal/kg-cli.
  • the addition amount of rare earth energy-saving additives is determined to be 0.8%.
  • the nitrogen oxide content and desulfurization effect of the clinker added in the determined amount will be tested.
  • the original heat consumption is reduced by 5% on the basis of 780kcal/kg, and the operation can stably reach 740kcal/kg; the clinker strength is increased by 1.5MPa; the nitrogen oxide content is reduced from the original 120mg/ m3 is reduced to below 70mg/ m3 ; the desulfurization effect can be reduced by about 30%.
  • the rare earth energy-saving admixture for cement kilns is composed of the following mass fractions: 15% rare earth composite oxide, 40% urea, and 45% gypsum.
  • the rare earth composite oxide is composed of La 2 O 3 and Y 2 O 3 , of which La 2 O 3 content is 98%.
  • the method of the present invention is implemented in Plant B of a certain cement company.
  • the specific steps are as follows: S1.
  • the air volume, air pressure, and temperature data it can be seen from the measurement that the production of one kilogram of clinker requires 0.129kg of coal and 1m3 of air.
  • the heat consumption of clinker is the amount of coal consumed per unit mass of clinker, that is, 0.129kg of coal in this example. /kg clinker, the calorific value of 1kg coal is 6200kcal, and the actual heat consumption Q 1 of the existing clinker is 800kcal/kg-cli.
  • the addition amount is 1.1%
  • the content of ore A is 65%
  • the content of ore B is 27.5%
  • the comprehensive heat consumption is 740kcal-cli, which is a 7.5% reduction based on the original heat consumption of 800kcal/kg-cli.
  • the addition amount is 1.2%
  • the content of A ore is 67.5%
  • the content of B ore is 26%
  • the comprehensive heat consumption is 730kcal-cli, which is 8.75% lower than the original heat consumption of 800kcal/kg-cli.
  • the addition amount is 1.3%
  • the content of ore A is 67%
  • the content of ore B is 26.5%
  • the comprehensive heat consumption is 725kcal-cli, which is a reduction of 9.4% based on the original heat consumption of 800kcal/kg-cli.
  • the addition amount is 1.4%
  • the content of A ore is 66%
  • the content of B ore is 27.5%
  • the comprehensive heat consumption is 715kcal-cli, which is 10.6% lower than the original heat consumption of 800kcal/kg-cli.
  • the addition amount of the rare earth energy-saving admixture is determined to be 1.0%.
  • the nitrogen oxide content and desulfurization effect of the clinker added in the determined amount will be tested.
  • the heat consumption of clinker is reduced from 800kcal/kg to 750kcal/kg; the clinker strength is increased from 54MPa to 56MPa; the nitrogen oxide emission is reduced from 130mg/ m3 to less than 50mg/ m3 , and the trioxide Sulfur is stable within 30mg/ m3 , and the effect is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种水泥窑用稀土节能外加剂及其调配方法,涉及水泥窑节能减排技术领域。本发明在不改变或少改变现有硬件设备的条件下,通过对生产系统进行热工诊断,计算得到稀土节能外加剂的添加量,从而降低生产系统热耗,降低硫氮、硫排放,节约大型硬件设备的加装技改成本。

Description

水泥窑用稀土节能外加剂及其调配方法 技术领域
本发明涉及水泥窑节能减排技术领域,尤其涉及一种水泥窑用稀土节能外加剂及其调配方法。
背景技术
在确保不降低水泥品质的前提下,面对水泥熟料生产过程中的原燃料消耗高、有害气体排放量大的课题,开发更先进的多元化节能技术是水泥工业可持续发展迫切需要。
目前对于水泥熟料生产过程中易烧性差,熟料强度低,单位能耗高,NOx、SOx排放指标严格控制的情况下,现在普遍采用的方式是一方面对预热器系统进行硬件设备技改,如加装SNCR、SCR、分级燃烧、低氮燃烧器、热生料抑硫等装置;另一方面对厂内既有生料成分率值重新进行配比调整,从而起到改善熟料烧成工况,降低排放作用。
技术问题
问题点在于:1、加装外挂设备的同时依然需要大量的耗材,叠加成本高居不下。2、在厂内原有物料基础上进行配料调整,受限于原生矿山成矿条件差异,要消除有害物质对烧成工况的影响多数较困难。
鉴于水泥窑产量大,需长期连续运行的特点,当以上原因造成产出熟料品质上下波动,强度无法达标时,将会给企业带来的庞大的经济损失和商誉信任流失。
技术解决方案
为实现此技术目的,本发明采用如下方案:一种水泥窑用稀土节能外加剂,以质量分数计,包括稀土复合氧化物4~22%,尿素31~49%,石膏30~49%。
进一步地,稀土复合氧化物由La 2O 3和Y 2O 3组成,其中La 2O 3含量98~99%。
水泥窑用稀土节能外加剂的调配方法,按如下步骤进行:S1、对原烧成工况流程及物料配比率进行热工诊断调查:选取工艺稳定的时间段,进行预热器、高温风机、回转窑、分解炉及冷却机的热工标定,根据测定值得到现有熟料的实际热耗Q 1
S2、在热工诊断调查的基础上,以理想熟料指标热耗Q 0为目标,针对现状分析结果反向测算所需稀土节能外加剂的添加量W:W%=(Q 1- Q 0)/ Q 2×1.5+0.05,其中,Q 0为理想熟料热耗,Q 1为现有熟料实际热耗,Q 2为稀土节能外加剂平均降低指标。
S3、实时测量掺加稀土节能外加剂的熟料中硅酸三钙C3S(A矿)含量、硅酸二钙C2S(B矿)含量和热能消耗量,并将测量数据绘制成曲线,建立数据模型。
S4、在S2得到的W数据范围内,选取不同的添加量数据带入S3的模型中,对比分析每个添加量点的综合热耗。
S5、分别采用S4选取的不同添加量的稀土节能外加剂掺入现有生料中,得到混合生料,在经1450℃高温烧制得到熟料后,并对熟料进行强度检测。
S6、以热耗降低至理想熟料热耗以下为基础选取条件,强度提高值为优选条件,确定稀土节能外加剂的添加量。
进一步地,稀土节能外加剂平均降低指标Q 2=(5%~10%)Q 1
进一步地,S5中稀土节能外加剂研磨至粒径0.5mm以下后与生料混合。
有益效果
与现有技术相比,本发明的有益效果在于:(1)能够降低共熔点温度,提高烧成速度,降低热耗3~7%;(2)改烧水泥烧成工况,提高熟料强度;(3)固硫脱硝,减少有害气体排放,发挥节能减排、降低生产成本作用,进而实现水泥工业的可持续发展目标;(4)在不改变或少改变现有硬件设备的情况下,通过对生产系统的诊断,实施稀土节能外加剂的配制模型的软性工艺改进,从而最大限度的调动工艺改进潜力,节约大型硬件设备的加装技改成本。
附图说明
图1为本发明实施例1提供的数据模型图。
图2为本发明实施例2提供的数据模型图。
本发明的实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
本发明提供了一种水泥窑用稀土节能外加剂,由如下质量分数的成分组成:稀土复合氧化物4~22%,尿素31~49%,石膏30~49%。稀土复合氧化物由La 2O 3和Y 2O 3组成,其中La 2O 3含量98~99%。
稀土节能外加剂中的稀土化合物起到增强氧化及催化物料反应速率,提高升温反应,进而使低温液相提早发生形成中间过渡相,过渡相在较低的温度下分解出C3S,从而降低了A矿的形成温度。尿素在150℃以上开始高温热解生成氨气,一方面与废气中的氮氧化物反应形成氮气排出,另一方面与烟气中的硫化物反应形成亚硫酸氨,再与物料中的钙质、铝质原料反应形成硫铝酸钙入窑,从而达到脱硝与固硫的作用。石膏自身作为碱性钙质物料与烟气中的酸性挥发物产生中和固硫反应的同时,入窑后对于降低共熔点、促进液相状态下的化学配位、提高烧成速度有矿化效果。
实施例1。
水泥窑用稀土节能外加剂,由如下质量分数的成分组成:稀土复合氧化物15%,尿素40%,石膏45%。稀土复合氧化物由La 2O 3和Y 2O 3组成,其中La 2O 3含量98%。
将本发明方法在某水泥公司A厂实施,具体步骤如下:S1、对水泥窑原烧成工况现场进行实际热工标定,测量预热器、高温风机、回转窑、分解炉及冷却炉的风量、风压、温度数据,通过测量可知生产一公斤熟料需要0.126kg煤和1m 3空气,熟料的热耗为生产单位质量熟料消耗的煤量,即本实施例中为0.126kg煤/kg熟料,1kg煤发热量为6200kcal,换算得到现有熟料实际热耗Q 1为780kcal/kg-cli。
S2、设定理想熟料热耗Q 0为750kcal/kg-cli,稀土节能剂平均降低指标Q 2=39~78kcal-cli,将数据代入公式W%=(Q 1- Q 0)/ Q 2×1.5+0.05,计算得到W的范围为0.6~1.2。
S3、测量掺加稀土节能外加剂的熟料中A矿含量、B矿含量和热能消耗量,并将测量数据绘制成曲线,形成数据图像模型,如图1所示。根据图像模型可知,A矿和B矿含量变化分为三个阶段(即图中三个区域),第一阶段(稀土节能外加剂含量0.5~0.9%)A矿含量缓慢降低后缓慢回升,B矿含量对应缓慢升高后缓慢降低;第二阶段(稀土节能外加剂含量0.9~1.2%)A矿含量明显提高后略有下降,B矿含量明显降低后略有上升;第三阶段(稀土节能外加剂含量1.2~1.4%)A矿含量逐渐降低,B矿含量明显提高。
S4、根据S2中得到的添加量W的范围,选取几个添加量数据点,带入数据图像模型中,分析具体添加量下的综合热耗。
具体选取0.6%、0.7%、0.8%、1.0%、1.2%四个数据点进行模型对比分析:当添加量为0.6%时,A矿含量为61%,B矿含量为26%,综合热耗为780kcal-cli,与原有熟料热耗相同。
当添加量为0.7%时,A矿含量为60%,B矿含量为27%,综合热耗为760kcal-cli,在原有热耗780kcal/kg-cli的基础上降低了2.6%。
当添加量为0.8%时,A矿含量为60.1%,B矿含量为27.1%,综合热耗为740kcal-cli,在原有热耗780kcal/kg-cli的基础上降低了5.1%。
当添加量为1.0%时,A矿含量为63.8%,B矿含量为26%,综合热耗为725kcal-cli,在原有热耗780kcal/kg-cli的基础上降低了7.1%。
当添加量为1.2%时,A矿含量为65.5%,B矿含量为25%,综合热耗为710kcal-cli,在原有热耗780kcal/kg-cli的基础上降低了9%。
对比上述五组数据,添加量0.6%和0.7%时,热耗没有降低到理想熟料热耗值,与本发明降低热耗目的不符。添加量0.8%、1.0%和1.2%为可选数据范围。
S5、选取S4中不同添加量的稀土节能外加剂的熟料进行强度测试,结果如表1。
表1 实施例1的熟料强度。
根据表1中数据可知,稀土节能外加剂添加量0.8%的条件下,熟料强度提高了1.5MPa。
S6、以热耗降低至理想熟料热耗以下为基础选取条件,强度提高值为优选条件,确定稀土节能外加剂的添加量为0.8%。并对确定添加量的熟料进行氮氧化物含量检测和脱硫效果检测。
在稀土节能外加剂添加量0.8%的条件下,原有热耗在780kcal/kg的基础上降低5%,能够稳定达到740kcal/kg运行;熟料强度提高1.5MPa;氮氧化物含量由原来的120mg/m 3降低到70mg/m 3以下;脱硫效果可以降低30%左右。
实施例2。
水泥窑用稀土节能外加剂,由如下质量分数的成分组成:稀土复合氧化物15%,尿素40%,石膏45%。稀土复合氧化物由La 2O 3和Y 2O 3组成,其中La 2O 3含量98%。
在某水泥公司B厂实施本发明的方法,具体步骤如下:S1、对水泥窑原烧成工况现场进行实际热工标定,测量预热器、高温风机、回转窑、分解炉及冷却炉的风量、风压、温度数据,通过测量可知生产一公斤熟料需要0.129kg煤和1m 3空气,熟料的热耗为生产单位质量熟料消耗的煤量,即本实施例中为0.129kg煤/kg熟料,1kg煤发热量为6200kcal,换算得到现有熟料实际热耗Q 1为800kcal/kg-cli。
S2、设定理想熟料热耗Q 0为750kcal/kg-cli,稀土节能剂平均降低指标Q 2=40~80kcal-cli,将数据代入公式W%=(Q 1- Q 0)/ Q 2×1.5+0.05,计算得到W的范围为1.0~1.9。
S3、实时测量掺加稀土节能外加剂的熟料中A矿含量、B矿含量和热能消耗量,并将测量数据绘制成曲线,形成数据图像模型,如图2所示。
S4、根据S2中得到的添加量W的范围,选取几个添加量数据点,带入数据图像模型中,分析具体添加量的热耗。
具体选取1.0、1.1、1.2、1.3、1.4三个数据点进行模型对比分析:当添加量为1.0%时,A矿含量为63%,B矿含量为28.8%,综合热耗为750kcal-cli,在原有热耗800kcal/kg-cli的基础上降低了6.25%。
当添加量为1.1%时,A矿含量为65%,B矿含量为27.5%,综合热耗为740kcal-cli,在原有热耗800kcal/kg-cli的基础上降低了7.5%。
当添加量为1.2%时,A矿含量为67.5%,B矿含量为26%,综合热耗为730kcal-cli,在原有热耗800kcal/kg-cli的基础上降低了8.75%。
当添加量为1.3%时,A矿含量为67%,B矿含量为26.5%,综合热耗为725kcal-cli,在原有热耗800kcal/kg-cli的基础上降低了9.4%。
当添加量为1.4%时,A矿含量为66%,B矿含量为27.5%,综合热耗为715kcal-cli,在原有热耗800kcal/kg-cli的基础上降低了10.6%。
添加量1.0%时,熟料热耗降低至理想值,剩余4组数据的热耗均低于理想熟料热耗,五组数据均符合基础选择条件。
S5、选取S4中不同添加量的稀土节能外加剂的熟料进行强度测试,强度结果如表2所示。
表2 实施例2的熟料强度。
根据表2中数据可知,稀土节能外加剂添加量1.0%的条件下,熟料强度提高了2MPa。
S6、以热耗降低至理想熟料热耗以下为基础选取条件,强度提高值为优选条件,确定稀土节能外加剂的添加量为1.0%。并对确定添加量的熟料进行氮氧化物含量检测和脱硫效果检测。
添加量1%的条件下,熟料热耗由800kcal/kg降低为750kcal/kg;熟料强度由54MPa提升到56MPa;氮氧化物排放由130mg/m 3降低到50mg/m 3以内,三氧化硫稳定在30mg/m 3以内,效果明显。
最后,需要注意的是:以上列举的仅是本发明的优选实施例,当然本领域的技术人员可以对本发明进行改动和变型,倘若这些修改和变型属于本发明权利要求及其等同技术的范围之内,均应认为是本发明的保护范围。

Claims (5)

  1. 一种水泥窑用稀土节能外加剂,其特征在于,以质量分数计,包括稀土复合氧化物4~22%,尿素31~49%,石膏30~49%。
  2. 根据权利要求1所述的稀土节能外加剂,其特征在于,稀土复合氧化物由La 2O 3和Y 2O 3组成,其中La 2O 3质量含量为98~99%。
  3. 一种权利要求1或2所述的水泥窑用稀土节能外加剂的调配方法,其特征在于,按如下步骤进行:
    S1、对原烧成工况流程及物料配比率进行热工诊断调查:
    选取工艺稳定的时间段,进行预热器、高温风机、回转窑、分解炉及冷却炉的热工标定,根据测定值得到现有熟料的实际热耗Q 1
    S2、在热工诊断调查的基础上,以理想熟料指标热耗Q 0为目标,针对现状分析结果反向测算所需稀土节能外加剂的添加量W:
    W%=(Q 1- Q 0)/ Q 2×1.5+0.05,
    其中,Q 0为理想熟料热耗,Q 1为现有熟料实际热耗,Q 2为稀土节能外加剂平均降低指标;
    S3、测量不同稀土节能外加剂添加量下的水泥熟料中C3S含量、C2S含量和热能消耗量变化,并将测量数据绘制成曲线,建立图像数据模型;
    S4、在S2得到的W数据范围内,选取不同的添加量数据带入S3的图像数据模型中,对比分析每个添加量点的综合热耗;
    S5、分别采用S4选取的不同添加量的稀土节能外加剂掺入现有生料中,得到混合生料,在经1450℃高温烧制得到熟料后,并对熟料进行强度检测;
    S6、根据S4和S5的结果,以热耗降低至理想熟料热耗以下为基础选取条件,强度提高值为优选条件,确定稀土节能外加剂的添加量。
  4. 根据权利要求1所述的水泥窑用稀土节能外加剂的调配方法,其特征在于,稀土节能外加剂平均降低指标Q 2=(5%~10%)Q 1
  5. 根据权利要求1所述的水泥窑用稀土节能外加剂的调配方法,其特征在于,S5中稀土节能外加剂研磨至粒径0.5mm以下后与生料混合。
PCT/CN2022/125351 2022-04-13 2022-10-14 水泥窑用稀土节能外加剂及其调配方法 WO2023197545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210385247.4 2022-04-13
CN202210385247.4A CN114804679B (zh) 2022-04-13 2022-04-13 水泥窑用稀土节能外加剂及其调配方法

Publications (1)

Publication Number Publication Date
WO2023197545A1 true WO2023197545A1 (zh) 2023-10-19

Family

ID=82536275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125351 WO2023197545A1 (zh) 2022-04-13 2022-10-14 水泥窑用稀土节能外加剂及其调配方法

Country Status (2)

Country Link
CN (1) CN114804679B (zh)
WO (1) WO2023197545A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804679B (zh) * 2022-04-13 2022-09-30 包头市宏润稀土科技有限公司 水泥窑用稀土节能外加剂及其调配方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011712A (ko) * 2008-07-25 2010-02-03 이웅재 희토류 원소 첨가 레미콘, 모르타르 및 콘크리트 조성물
CN108529916A (zh) * 2018-04-27 2018-09-14 济南大学 一种自荧光硫铝酸盐水泥熟料及其制备方法
CN110683777A (zh) * 2019-11-14 2020-01-14 天津水泥工业设计研究院有限公司 一种水泥窑用粉体脱硫剂及其制备方法与应用
CN111111773A (zh) * 2019-12-26 2020-05-08 辽宁鑫隆科技有限公司 一种水泥生产脱硫脱硝催化剂
CN112028509A (zh) * 2020-09-21 2020-12-04 临沂德艺科技发展有限公司 一种用于干法水泥窖熟料生产的外加剂
CN114804679A (zh) * 2022-04-13 2022-07-29 包头市宏润稀土科技有限公司 水泥窑用稀土节能外加剂及其调配方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244513C (zh) * 2004-07-09 2006-03-08 朱效荣 水泥催化剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011712A (ko) * 2008-07-25 2010-02-03 이웅재 희토류 원소 첨가 레미콘, 모르타르 및 콘크리트 조성물
CN108529916A (zh) * 2018-04-27 2018-09-14 济南大学 一种自荧光硫铝酸盐水泥熟料及其制备方法
CN110683777A (zh) * 2019-11-14 2020-01-14 天津水泥工业设计研究院有限公司 一种水泥窑用粉体脱硫剂及其制备方法与应用
CN111111773A (zh) * 2019-12-26 2020-05-08 辽宁鑫隆科技有限公司 一种水泥生产脱硫脱硝催化剂
CN112028509A (zh) * 2020-09-21 2020-12-04 临沂德艺科技发展有限公司 一种用于干法水泥窖熟料生产的外加剂
CN114804679A (zh) * 2022-04-13 2022-07-29 包头市宏润稀土科技有限公司 水泥窑用稀土节能外加剂及其调配方法

Also Published As

Publication number Publication date
CN114804679A (zh) 2022-07-29
CN114804679B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN108314338B (zh) 一种低碱硅酸盐水泥熟料及其制备方法
CN105567272B (zh) 提高民用焦炭高温固硫效果的钙基钡锰铝复合添加剂及制法和应用
CN111635152B (zh) 一种高贝利特硫铝酸盐水泥熟料及其制备方法
ZA200701333B (en) High belite-containing sulfoaluminous clinker, method for the production and the use thereof for preparing hydraulic binders
CN115677243B (zh) 一种低碳水泥熟料的制备方法
WO2023197545A1 (zh) 水泥窑用稀土节能外加剂及其调配方法
CN113800796A (zh) 一种水泥生料助剂及其制备方法
CN105254193B (zh) 一种以废弃物为原料的水泥及水泥熟料的制备方法
CN112759289B (zh) 一种兼具助磨、分解促进作用的水泥生料外加剂
CN103073204B (zh) 一种生石灰的节能制备方法
CN112299734B (zh) 一种水泥熟料中阿利特晶体结构调控方法
CN113354311A (zh) 一种资源节约型低碳水泥熟料及其制备方法
CN108178536B (zh) 一种分步煅烧煤气化渣制备少熟料水泥的方法
CN102643038B (zh) 一种利用低热值高炉煤气煅烧高活性度石灰的工艺
WO2022095515A1 (zh) 一种硅酸盐水泥熟料及其制备方法
CN107099356B (zh) 提高民用焦炭灰熔点的氧化铝复合添加剂及制法和应用
CN105152141A (zh) 一种石膏制酸热工工艺及装置
CN101899353B (zh) 一种高温固硫添加剂及其制备方法
CN115073030B (zh) 一种磷石膏脱硫联产水泥工艺
CN115215592A (zh) 耐火混凝土及其制备方法
CN115164610A (zh) 一种基于co/o2的水泥分解炉燃烧优化方法及系统
CN111018389A (zh) 一种膨胀剂熟料及其生产方法
CN1076182A (zh) 燃煤锅炉生产水泥的技术
CN110283621A (zh) 一种提高气化焦灰熔点的方法
CN218646019U (zh) 一种用于回转窑的低氧助燃空气装置及回转窑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937182

Country of ref document: EP

Kind code of ref document: A1