WO2023197354A1 - Oled显示面板及其制备方法 - Google Patents

Oled显示面板及其制备方法 Download PDF

Info

Publication number
WO2023197354A1
WO2023197354A1 PCT/CN2022/088407 CN2022088407W WO2023197354A1 WO 2023197354 A1 WO2023197354 A1 WO 2023197354A1 CN 2022088407 W CN2022088407 W CN 2022088407W WO 2023197354 A1 WO2023197354 A1 WO 2023197354A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multifunctional
display panel
oled display
light
Prior art date
Application number
PCT/CN2022/088407
Other languages
English (en)
French (fr)
Inventor
唐甲
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2023197354A1 publication Critical patent/WO2023197354A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • This application relates to the field of OLED display technology, and specifically to an OLED display panel and an OLED display panel preparation method.
  • Embodiments of the present application provide an OLED display panel and an OLED display panel preparation method, which can alleviate the technical problems of multiple masks and high costs in existing OLED display panels.
  • An embodiment of the present application provides an OLED display panel, including:
  • An array substrate the array substrate includes a source electrode and a drain electrode, and the source electrode and the drain electrode are arranged on the same layer;
  • a multifunctional layer is disposed above the array substrate;
  • a light-emitting layer, the light-emitting layer is disposed on the side of the multi-functional layer away from the array substrate;
  • a cathode, the cathode is disposed on the side of the light-emitting layer away from the array substrate;
  • the multifunctional layer includes a plurality of conductive parts and non-conductive parts arranged at intervals, one end of the conductive part is electrically connected to the light-emitting layer, and the other end of the conductive part is electrically connected to the source electrode.
  • the conductive part and the non-conductive part are arranged in the same layer.
  • the preparation material of the multifunctional layer includes a multifunctional material, wherein, under the first condition, the multifunctional material is an insulating material, and under the second condition, the multifunctional material is an insulating material.
  • the multifunctional material has electrical conductivity after reacting with the first solution.
  • the first condition is a condition at normal temperature and one atmospheric pressure
  • the normal state of the multifunctional material is an insulating material
  • the preparation material of the multifunctional layer includes a multifunctional material, and the transmittance of the multifunctional material to light in the range of 400 nanometers to 760 nanometers is greater than 85%.
  • the viscosity of the multifunctional material ranges from 10 centipoise to 30 centipoise.
  • the multifunctional material is an organic material.
  • the bending properties of the multifunctional material are better than those of indium tin oxide.
  • the OLED display panel further includes a pixel definition layer, which is disposed on a side of the multifunctional layer away from the array substrate.
  • the pixel definition layer It includes organic patterns arranged at intervals, and the light-emitting layer is arranged between adjacent organic patterns.
  • the light-emitting layer is provided corresponding to the conductive part.
  • the array substrate is further provided with a color resistor layer, which includes a red color resistor, a blue color resistor, and a green color resistor arranged at intervals, and the light-emitting layer is
  • a color resistor layer which includes a red color resistor, a blue color resistor, and a green color resistor arranged at intervals
  • the light-emitting layer is The orthographic projection on the substrate covers the orthographic projection of the color resist layer on the substrate.
  • the red color resistor, the blue color resistor, and the green color resistor are respectively provided corresponding to the conductive portion.
  • the light-emitting layer is arranged on the entire surface, and the cathode is arranged on the entire surface.
  • the OLED display panel is not provided with a pixel definition layer.
  • a light reflective layer is further provided on the array substrate, and the conductive portion is provided on the light reflective layer.
  • the light reflective layer includes a reflective material, and the reflectivity of the reflective material is higher than the reflectivity of the cathode preparation material.
  • Embodiments of the present application provide a method for preparing an OLED display panel, including:
  • a layer of multifunctional material is deposited on the array substrate to obtain a multifunctional material layer.
  • the multifunctional material layer is conductive treated with the first solution to prepare a multifunctional layer.
  • the multifunctional layer is It includes a plurality of conductive parts and non-conductive parts arranged at intervals;
  • a light-emitting layer is prepared on the side of the multifunctional layer away from the array substrate;
  • a cathode is prepared on the side of the light-emitting layer away from the array substrate.
  • the step of preparing the multifunctional layer further includes: conducting a conductive treatment on the multifunctional material layer through a first mask, and preparing a conductive layer of the multifunctional layer. and non-conductive parts.
  • the step of preparing the multifunctional layer further includes: preparing a photoresist pattern on the multifunctional material layer, and applying the photoresist pattern to the multifunctional material layer. Shielding is performed, the multifunctional material layer is conductive/insulated to prepare a conductive part/non-conductive part of the multifunctional layer, and then the photoresist pattern is peeled off and removed.
  • the step of preparing a light-emitting layer on the multifunctional layer includes: preparing a pixel definition layer on the multifunctional layer, the pixel definition layer including spaced apart pixels.
  • the organic pattern is prepared by inkjet printing/evaporation between adjacent organic patterns to prepare the light-emitting layer.
  • the multifunctional layer By arranging a multifunctional layer on the array substrate, the multifunctional layer includes a conductive part and a non-conductive part.
  • the multifunctional layer replaces the existing flat layer and anode.
  • One end of the conductive part is electrically connected to the light-emitting layer, and the other end of the conductive part is electrically connected to the light-emitting layer.
  • the source electrical connection since the conductive part and the non-conductive part are on the same layer and coplanar, at least one photomask is eliminated, the cost is reduced, and the technical problems of multiple photomasks and high cost in existing OLED display panels are alleviated.
  • Figure 1 is a first cross-sectional schematic diagram of an OLED display panel provided by an embodiment of the present application
  • Figure 2 is a second schematic cross-sectional view of an OLED display panel provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view of an OLED display panel preparation method provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of the OLED display panel preparation method provided by this application.
  • the OLED display panel 1 includes an array substrate 2, a multifunctional layer 100, a luminescent layer 130, and a cathode 140.
  • the array substrate 2 includes a source electrode 801 and a drain electrode. 802.
  • the source electrode 801 and the drain electrode 802 are arranged on the same layer.
  • the multifunctional layer 100 is arranged above the array substrate 2.
  • the luminescent layer 130 is arranged on the multifunctional layer 100.
  • the cathode 140 is disposed on the light-emitting layer 130, wherein the multi-functional layer 100 includes a plurality of conductive parts 110 and non-conductive parts 120 arranged at intervals, and one end of the conductive part 110 is electrically connected to the light-emitting layer 130. The other end of the conductive part 110 is electrically connected to the source electrode 801 .
  • a multi-functional layer 100 is provided on the array substrate 2.
  • the multi-functional layer 100 includes a conductive part 110 and a non-conductive part 120.
  • the multi-functional layer 100 replaces the existing flat layer and anode, that is, the multi-functional layer can perform both functions.
  • the flat layer can also function as an anode.
  • One end of the conductive part 110 is electrically connected to the light-emitting layer 130, and the other end is electrically connected to the source 801. Since the conductive part 110 and the non-conductive part 120 are in the same layer and The coplanar arrangement eliminates one photomask and reduces costs.
  • the light-emitting layer and the cathode are arranged on the entire surface, there is no need to provide a pixel definition layer on the side of the multi-functional layer away from the array substrate, and one photomask can be further reduced; that is, by placing the conductive part 110 and the non-conductive part 120 in the same layer Moreover, the coplanar arrangement and the removal of the pixel definition layer can reduce the cost of two photomasks; and there is no need to set up a pixel definition layer, which can also achieve the technical effect of reducing the overall film thickness.
  • the light-emitting layer is arranged on the entire surface, overlapping of the anode and the cathode can be avoided, thereby achieving the technical effect of avoiding short circuit caused by overlapping of the anode and the cathode.
  • the array substrate 2 includes a substrate 10, a light-shielding layer 20 provided on the substrate 10, a buffer layer 30 provided on the light-shielding layer 20, and an active layer provided on the buffer layer 30.
  • the gate insulating layer 50 disposed on the active layer 40, the gate electrode layer 60 disposed on the gate insulating layer 50, the interlayer insulating layer 70 disposed on the gate electrode layer 60, and the The source and drain electrode 802 layer 80 on the interlayer insulating layer 70 and the passivation layer 90 provided on the source and drain electrode 802 layer 80.
  • the conductive part 110 and the non-conductive part 120 are arranged in the same layer.
  • the passivation layer 90 includes a via hole penetrating the passivation layer 90 , and the conductive part 110 is arranged to cover the via hole.
  • the conductive part 110 is connected to the source electrode 801 through the via hole.
  • the conductive part 110 and the non-conductive part 120 are arranged in the same layer.
  • the conductive part 110 and the non-conductive part 120 can be prepared in the same process, which reduces the use of photomasks.
  • a light reflective layer 150 is also provided on the array substrate 2.
  • the conductive portion 110 is provided on the light reflective layer 150.
  • the OLED display panel 1 is a top-emission type, and the light emission direction is the side of the light-emitting layer 130 away from the substrate 10 .
  • the light reflective layer 150 includes a reflective material, and the reflectivity of the reflective material is higher than the reflectivity of the material for making the cathode 140 .
  • a multifunctional layer 100 is provided on the array substrate 2.
  • the technical solution in which the multifunctional layer 100 includes a conductive part 110 and a non-conductive part 120 is also applicable to the top-emission OLED display panel 1.
  • the multifunctional layer is added 100 application range.
  • the luminescent layer 130 is a white light luminescent layer 130, and the array substrate 2 is also provided with a color resistor layer.
  • the color resistor layer includes a red color resistor, a blue color resistor, and a green color resistor arranged at intervals.
  • the orthographic projection of the luminescent layer 130 on the substrate 10 covers the orthographic projection of the color resistor layer on the substrate 10 , and the red color resistor, the blue color resistor, and the green color resistor respectively It is provided corresponding to the conductive part 110 .
  • the OLED display panel 1 is a large-size display panel. Specifically, the size of the OLED display panel 1 may be greater than or equal to 55 inches.
  • the luminescent layer 130 of the OLED display panel 1 can be prepared by evaporation.
  • the OLED display panel 1 is not provided with a pixel definition layer, and the luminescent layer 130 is provided on the multifunctional layer 100 .
  • the luminescent layer 130 of the OLED display panel 1 is prepared by inkjet printing.
  • the OLED display panel 1 further includes a pixel definition layer, and the pixel definition layer includes organic patterns arranged at intervals.
  • the white light emitting layer 130 is disposed between adjacent organic patterns.
  • the preparation material of the multifunctional layer 100 includes a multifunctional material, wherein, under the first condition, the multifunctional material is an insulating material, and under the second condition, the multifunctional material and The first solution becomes conductive after reaction.
  • the first condition can be a condition at normal temperature and one atmospheric pressure; that is, the normal state of the multifunctional material can be an insulating material.
  • the second condition can be a preset condition, and the preset condition can be selected according to actual needs.
  • the multifunctional material reacts with the first solution under the preset condition, This results in a multifunctional material with conductive properties.
  • the multifunctional material can also be a conductive material in a normal state, and react with the second solution under the third condition, so that the multifunctional material has insulating properties.
  • the third condition and the second solution are capable of You can choose according to your needs, or you can obtain and obtain it directly through purchasing.
  • the multifunctional layer 100 is made of a multifunctional material, and the transmittance of the multifunctional material to light in the range of 400 nanometers to 760 nanometers is greater than 85%.
  • the multifunctional material mainly has a large transmittance to blue light.
  • the light transmittance of the multifunctional material in the range of 400 nanometers to 760 nanometers is greater than 85%, thereby improving the light extraction efficiency of the OLED display panel.
  • the multifunctional material has a viscosity in the range of 10 centipoise to 30 centipoise.
  • the OLED display panel 1 further includes a pixel definition layer disposed on the multifunctional layer 100 , the pixel definition layer includes organic patterns arranged at intervals, and the light-emitting layer 130 is disposed between adjacent organic patterns.
  • the light-emitting layer is arranged corresponding to the conductive part.
  • the multifunctional material is an organic material.
  • the bending characteristics of the multifunctional material are better than the flexibility of the anode material indium tin oxide.
  • the display panel with the indium tin oxide anode cracked, and the impedance could be measured to increase.
  • the impedance of the multifunctional material did not change, proving that the resistance of the multifunctional material did not change when bending.
  • the functional material has fewer or no cracks, indicating that the multifunctional material is more flexible than the indium tin oxide.
  • the flexibility of the multifunctional material is higher than that of indium tin oxide, which reduces cracks generated in the OLED display panel during the bending process.
  • the preparation method of OLED display panel 1 provided by the embodiment of this application includes:
  • the multifunctional layer 100 includes a plurality of conductive parts 110 and non-conductive parts 120 arranged at intervals;
  • the conductive part 110 and the non-conductive part 120 are arranged in the same layer.
  • the array substrate 2 includes a substrate 10, a light shielding layer 20, a buffer layer 30, an active layer 40, a gate insulating layer 50, a gate layer 60, and an interlayer insulating layer 70. Source and drain 802 layers 80 and passivation layer 90 .
  • the source and drain electrode 802 layer 80 includes a source electrode 801 and a drain electrode 802.
  • One end of the conductive part 110 is electrically connected to the source electrode 801 , and the other end of the conductive part 110 is electrically connected to the light-emitting layer 130 .
  • the OLED display panel 1 when the luminescent layer 130 is prepared by inkjet printing, the OLED display panel 1 includes a pixel definition layer, and the pixel definition layer includes organic patterns arranged at intervals for limiting the luminescent material, Avoid luminescent materials that cross the organic pattern and cause color mixing.
  • via holes are provided on the passivation layer 90 of the array substrate 2 , and the via holes are provided through the passivation layer 90 , and a multifunctional layer is deposited on the passivation layer 90 .
  • the materials are prepared to obtain a multifunctional material layer, and the multifunctional material layer is conductive/insulated to prepare a conductive part 110 and a non-conductive part 120 .
  • the step of preparing the multifunctional layer 100 further includes: patterning the multifunctional material layer through a first mask to prepare the conductive portion 110 and the non-conducting portion of the multifunctional layer 100. Conductive part 120.
  • the conductive part 110 and the non-conductive part 120 can be obtained by insulating some areas.
  • the conductive part 110 and the non-conductive part 120 can be obtained by performing conductive treatment on some areas.
  • the conductive part 110 and the non-conductive part 120 can be prepared through the first mask plate, and the opening area of the first mask plate corresponds to the non-conductive part. 120. Insulate the multifunctional material through the first mask plate to obtain the non-conductive part 120.
  • the conductive part 110 and the non-conductive part 120 can be prepared through the second mask plate, and the opening area of the second mask plate corresponds to the conductive part 110 , conduct conduction processing on the multifunctional material through the second mask plate to obtain the conductive portion 110 .
  • the conductive part 110 has the same function as the anode, and the non-conductive part 120 has the same function as the flat layer.
  • the conductive part 110 and the non-conductive part 120 are prepared through the multi-functional material layer through the first mask plate/second mask plate, which can save a photomask and can be performed in one step.
  • the conductive part 110 and the non-conductive part 120 are prepared.
  • the step of preparing the multifunctional layer 100 further includes: preparing a photoresist pattern on the multifunctional material layer, blocking the multifunctional material layer with the photoresist pattern, and shielding the multifunctional material layer.
  • the multifunctional material layer is conductive/insulated to prepare the conductive part 110/non-conductive part 120 of the multifunctional layer 100, and then the photoresist pattern is peeled off and removed.
  • the photoresist pattern is used to shield the multifunctional material, thereby obtaining the conductive part 110 and the non-conductive part 120 .
  • the photoresist pattern is prepared by patterning the photoresist material through a third mask, and then the photoresist pattern is used to block the multifunctional material. After the conductive part 110 and the non-conductive part 120 are prepared, , and then remove the photoresist pattern.
  • the step of preparing the luminescent layer 130 on the multifunctional layer 100 includes: preparing a pixel definition layer on the multifunctional layer 100, and printing between adjacent pixel definition layers by inkjet printing.
  • the light-emitting layer 130 is prepared by evaporation.
  • the luminescent layer 130 is prepared by inkjet printing, a pixel definition layer needs to be prepared first, and then the luminescent layer 130 is prepared between adjacent pixel definition layers by inkjet printing.
  • the light-emitting layer 130 when the light-emitting layer 130 is prepared by evaporation, there is no need to prepare a pixel definition layer.
  • the luminescent layer 130 can be obtained by evaporation through a fourth mask, and the opening area of the fourth mask is arranged opposite to the pattern of the luminescent layer 130 .
  • the light-emitting layer 130 is directly prepared through the fourth mask, without providing a pixel definition layer, and the overall thickness of the OLED display panel 1 can be reduced.
  • the OLED display panel provided in this embodiment includes an array substrate, a multifunctional layer, a luminescent layer, and a cathode.
  • the array substrate includes a source electrode and a drain electrode. The source electrode and the drain electrode are arranged in the same layer.
  • the multifunctional layer is disposed above the array substrate, the luminescent layer is disposed on the multifunctional layer, and the cathode is disposed on the luminescent layer, wherein the multifunctional layer includes a plurality of conductive parts and non-conductive parts arranged at intervals.
  • one end of the conductive part is electrically connected to the light-emitting layer, and the other end of the conductive part is electrically connected to the source electrode; by arranging the conductive part and the non-conductive part in the same layer and coplanar, at least one photomask is eliminated , reducing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板(1)及其制备方法,OLED显示面板(1)包括阵列基板(2)、设置于阵列基板(2)上的多功能层(100),多功能层(100)包括多个间隔设置的导电部(110)和非导电部(120),导电部(110)一端与发光层(130)电连接,导电部(110)另一端与源极(801)电连接;通过在一步工序中制备得到同层且共面的导电部(110)和非导电部(120),能减少至少一道光罩,降低了成本。

Description

OLED显示面板及其制备方法 技术领域
本申请涉及OLED显示技术领域,具体涉及一种OLED显示面板、一种OLED显示面板制备方法。
背景技术
现有OLED显示面板在阵列基板上需要采用不同光罩单独制备平坦层、阳极,光罩数量较多,成本较高。
技术问题
因此,现有OLED显示面板存在光罩多、成本高的技术问题。
技术解决方案
本申请实施例提供一种OLED显示面板、一种OLED显示面板制备方法,可以缓解现有OLED显示面板存在光罩多、成本高的技术问题。
本申请实施例提供一种OLED显示面板,包括:
阵列基板,所述阵列基板包括源极、漏极,所述源极和所述漏极同层设置;
多功能层,所述多功能层设置于所述阵列基板上方;
发光层,所述发光层设置于所述多功能层远离所述阵列基板的一侧;
阴极,所述阴极设置于所述发光层远离所述阵列基板的一侧;
其中,所述多功能层包括多个间隔设置的导电部和非导电部,所述导电部一端与所述发光层电连接,所述导电部另一端与所述源极电连接。
可选的,在本申请的一些实施例中,所述导电部和非导电部同层设置。
可选的,在本申请的一些实施例中,所述多功能层的制备材料包括多功能材料,其中,在第一条件下,所述多功能材料为绝缘材料,在第二条件下,所述多功能材料与第一溶液反应后具备导电性。
可选的,在本申请的一些实施例中,所述第一条件为常温、一个大气压下的条件,所述多功能材料的常态为绝缘材料。
可选的,在本申请的一些实施例中,所述多功能层的制备材料包括多功能材料,所述多功能材料对400纳米至760纳米范围光线的透过率大于85%。
可选的,在本申请的一些实施例中,所述多功能材料的粘度范围为10厘泊至30厘泊。
可选的,在本申请的一些实施例中,所述多功能材料为有机材料。
可选的,在本申请的一些实施例中,所述多功能材料的弯折特性比氧化铟锡的弯折特性好。
可选的,在本申请的一些实施例中,所述OLED显示面板还包括像素定义层,所述像素定义层设置于所述多功能层远离所述阵列基板的一侧,所述像素定义层包括间隔设置的有机图案,所述发光层设置于相邻所述有机图案之间。
可选的,在本申请的一些实施例中,所述发光层与所述导电部对应设置。
可选的,在本申请的一些实施例中,所述阵列基板还设置有色阻层,所述色阻层包括间隔设置的红色色阻、蓝色色阻、绿色色阻,所述发光层在所述衬底上的正投影覆盖所述色阻层在所述衬底上的正投影。
可选的,在本申请的一些实施例中,所述红色色阻、所述蓝色色阻、所述绿色色阻分别与所述导电部对应设置。
可选的,在本申请的一些实施例中,所述发光层整面设置,所述阴极整面设置。
可选的,在本申请的一些实施例中,所述OLED显示面板未设置像素定义层。
可选的,在本申请的一些实施例中,所述阵列基板上还设置有光反射层,所述光反射层上设置有所述导电部。
可选的,在本申请的一些实施例中,所述光反射层包括反射材料,所述反射材料的反射率高于所述阴极制备材料的反射率。
本申请实施例提供一种OLED显示面板制备方法,包括:
提供一阵列基板;
在所述阵列基板上沉积一层多功能材料得到多功能材料层,在第二条件下,通过第一溶液对所述多功能材料层导体化处理,制备得到多功能层,所述多功能层包括多个间隔设置的导电部和非导电部;
在所述多功能层远离所述阵列基板的一侧制备得到发光层;
在所述发光层远离所述阵列基板的一侧制备得到阴极。
可选的,在本申请的一些实施例中,制备得到多功能层的步骤还包括:通过第一掩膜板对所述多功能材料层进行导体化处理,制备得到所述多功能层的导电部和非导电部。
可选的,在本申请的一些实施例中,制备得到多功能层的步骤还包括:在所述多功能材料层上制备得到光阻图案,通过所述光阻图案对所述多功能材料层进行遮挡,对所述多功能材料层进行导体化/绝缘化,制备得到所述多功能层的导电部/非导电部,而后将所述光阻图案剥离去除。
可选的,在本申请的一些实施例中,在所述多功能层上制备得到发光层的步骤包括:在所述多功能层上制备得到像素定义层,所述像素定义层包括间隔设置的有机图案,在相邻所述有机图案之间通过喷墨打印/蒸镀的方式,制备得到所述发光层。
有益效果
通过在阵列基板上设置多功能层,多功能层包括导电部和非导电 部,多功能层替代了现有的平坦层和阳极,所述导电部一端与发光层电连接,其另一端与所述源极电连接,由于导电部与非导电部同层且共面设置,减少了至少一道光罩,降低了成本,缓解了现有OLED显示面板存在光罩多、成本高的技术问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的OLED显示面板的第一种截面示意图;
图2是本申请实施例提供的OLED显示面板的第二种截面示意图;
图3是本申请实施例提供的OLED显示面板制备方法的截面示意图;
图4是本申请提供的OLED显示面板制备方法的流程图。
附图标记说明:
Figure PCTCN2022088407-appb-000001
Figure PCTCN2022088407-appb-000002
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
请参阅图1,本申请提供一种OLED显示面板1,所述OLED显示面板1包括阵列基板2、多功能层100、发光层130、阴极140,所述阵列基板2包括源极801、漏极802,所述源极801和所述漏极802同层设置,所述多功能层100设置于所述阵列基板2上方,所述发光层130设置于所述多功能层100上,所述阴极140设置于所述发光层130上,其中,所述多功能层100包括多个间隔设置的导电部110和非导电部120,所述导电部110一端与所述发光层130电连接,所述导电部110另一端与所述源极801电连接。
本申请通过在阵列基板2上设置多功能层100,多功能层100包括导电部110和非导电部120,多功能层100替代了现有的平坦层和阳极,即多功能层既能起到平坦层的功效,又能起到阳极的功效,所述导电部110一端与发光层130电连接,其另一端与所述源极801电连接,由于导电部110与非导电部120同层且共面设置,减少了一道光罩,降低了成本。
若,发光层和阴极均整面设置,所述多功能层远离所述阵列基板的一侧无需设置像素定义层,还可以进一步减少一道光罩;即通过将 导电部110与非导电部120同层且共面设置,再去除像素定义层,能减少两道光罩降低成本;且无需再设置像素定义层,还能起到减少整体膜层厚度的技术效果。
可以理解的是,若发光层整面设置,则可以避免阳极与阴极搭接,进而起到避免阳极与阴极搭接导致的短路的技术效果。
其中,所述阵列基板2包括衬底10、设置于所述衬底10上的遮光层20、设置于所述遮光层20上的缓冲层30、设置于所述缓冲层30上的有源层40、设置于所述有源层40上的栅绝缘层50、设置于所述栅绝缘层50上的栅极层60、设置于所述栅极层60上的层间绝缘层70、设置于所述层间绝缘层70上的源漏极802层80、设置于所述源漏极802层80上的钝化层90。
现结合具体实施例对本申请的技术方案进行描述。
在一种实施例中,所述导电部110和非导电部120同层设置。
其中,所述钝化层90包括一贯穿所述钝化层90的过孔,所述导电部110覆盖所述过孔设置。
其中,所述导电部110通过所述过孔与所述源极801连接。
在本实施例中,所述导电部110与所述非导电部120同层设置,可以在同一道工序中制备得到所述导电部110和非导电部120,减少了光罩的使用。
在一种实施例中,请参阅图2,所述阵列基板2上还设置有光反射层150,所述光反射层150上设置有所述导电部110,所述光反射层150与所述源极801连接。
其中,所述OLED显示面板1为顶发射型,出光方向为发光层130远离所述衬底10的一侧。
其中,所述光反射层150包括反射材料,所述反射材料的反射率高于所述阴极140制备材料的反射率。
在本实施例中,在阵列基板2上设置多功能层100,多功能层100包括导电部110和非导电部120的技术方案还适用于顶发射OLED显 示面板1,增加了所述多功能层100的应用范围。
在一种实施例中,所述发光层130为白光发光层130,所述阵列基板2还设置有色阻层,所述色阻层包括间隔设置的红色色阻、蓝色色阻、绿色色阻,所述发光层130在所述衬底10上的正投影覆盖所述色阻层在所述衬底10上的正投影,所述红色色阻、所述蓝色色阻、所述绿色色阻分别与所述导电部110对应设置。
其中,所述OLED显示面板1为大尺寸显示面板,具体的,所述OLED显示面板1的尺寸可以大于或等于55寸。
在一种实施例中,所述OLED显示面板1的发光层130可以为蒸镀制备得到,所述OLED显示面板1未设置像素定义层,所述发光层130设置于多功能层100上。
在另一种实施例中,所述OLED显示面板1的发光层130为喷墨打印制备得到,所述OLED显示面板1还包括像素定义层,所述像素定义层包括间隔设置的有机图案,所述白光发光层130设置于相邻有机图案之间。
在一种实施例中,所述多功能层100的制备材料包括多功能材料,其中,在第一条件下,所述多功能材料为绝缘材料,在第二条件下,所述多功能材料与第一溶液反应后具备导电性。
可以理解的是,所述第一条件可以为常温、一个大气压下的条件;即所述多功能材料的常态可以为绝缘材料。
可以理解的是,所述第二条件可以为一预设条件,所述预设条件可根据实际需求进行选择,所述多功能材料在所述预设条件下,与所述第一溶液反应,从而使多功能材料具备导电特性。
进一步的,所述多功能材料还可以常态为导电材料,在第三条件下,与第二溶液反应,从而使多功能材料具备绝缘特性,具体的,其第三条件、第二溶液均属于能够根据需求进行选择的,或者,能直接通过购买等方式得到、获取。
在一种实施例中,所述多功能层100的制备材料包括多功能材料,所述多功能材料对400纳米至760纳米范围光线的透过率大于85%。
其中,所述多功能材料主要对蓝光的透过率较大。
在本实施例中,通过使多功能材料在400纳米至760纳米范围光线的透过率大于85%,从而提升OLED显示面板的出光效率。
在一种实施例中,所述多功能材料的粘度范围为10厘泊至30厘泊。
在一种实施例中,所述OLED显示面板1还包括像素定义层,所述像素定义层设置于所述多功能层100上,所述像素定义层包括间隔设置的有机图案,所述发光层130设置于相邻所述有机图案之间。
在一种实施例中,所述发光层与所述导电部对应设置。
在一种实施例中,所述多功能材料为有机材料。
可以理解的是,所述多功能材料的弯折特性比阳极材料氧化铟锡的柔性更好。
其中,在做弯折测试时,阳极为氧化铟锡的显示面板发生裂痕,可以通过检测,测得其阻抗变大,但做弯折测试时,多功能材料阻抗无变化,证明弯折时多功能材料的裂痕较少或无裂痕,说明所述多功能材料的柔性大于所述氧化铟锡。
需要注意的是,通过对氧化铟锡与多功能材料分别做弯折测试,在相同的弯折条件下,测得氧化铟锡与多功能材料的阻抗大小,并通过阻抗大小及变化,确定多功能材料的柔性与氧化铟锡柔性大小之间的关系。
请参阅图3、图4,在本实施例中,所述多功能材料的柔性高于氧化铟锡的柔性,减少了弯折过程中OLED显示面板产生的裂纹。
本申请实施例提供的OLED显示面板1制备方法包括:
S1:提供一阵列基板2;
S2:在所述阵列基板2上沉积一层多功能材料得到多功能材料层,在第二条件下,通过第一溶液对所述多功能材料层导体化处理,制备得到多功能层100,所述多功能层100包括多个间隔设置的导电部110和非导电部120;
S3:在所述多功能层100远离所述阵列基板2的一侧制备得到发 光层130;
S4:在所述发光层130远离所述阵列基板2的一侧制备得到阴极140。
其中,所述导电部110与所述非导电部120同层设置。
其中,所述阵列基板2包括衬底10、设置于所述衬底10上的遮光层20、缓冲层30、有源层40、栅绝缘层50、栅极层60、层间绝缘层70、源漏极802层80、钝化层90。
其中,源漏极802层80包括源极801和漏极802。
其中,所述导电部110一端与所述源极801电连接,所述导电部110另一端与所述发光层130电连接。
可以理解的是,当所述发光层130为喷墨打印制备得到时,所述OLED显示面板1包括像素定义层,所述像素定义层包括间隔设置的有机图案,用于限制所述发光材料,避免发光材料越过所述有机图案造成混色。
需要注意的是,在所述阵列基板2上沉积一层多功能材料得到多功能材料层后,还需要对非显示区的部分区域进行图案化处理,使封装净空区,切割道,COF区等位置的多功能材料层进行镂空设置以暴露出来。
具体的,请参阅图3,在所述阵列基板2的钝化层90上设置过孔,所述过孔贯穿所述钝化层90设置,在所述钝化层90上沉积一层多功能材料制备得到多功能材料层,对所述多功能材料层进行导体化/绝缘化处理制备得到导电部110和非导电部120。
在一种实施例中,制备得到多功能层100的步骤还包括:通过第一掩膜板对所述多功能材料层进行图案化处理,制备得到所述多功能层100的导电部110和非导电部120。
其中,当所述多功能材料为导体材料时,可通过对部分区域绝缘化处理,从而得到所述导电部110和非导电部120。
其中,当所述多功能材料为绝缘材料时,可通过对部分区域导体化处理,从而得到所述导电部110和非导电部120。
可以理解的是,当所述多功能材料为导体材料时,通过第一掩膜板可以制备得到导电部110和非导电部120,所述第一掩膜板的开口区域对应所述非导电部120,通过所述第一掩膜板对所述多功能材料进行绝缘化处理,得到非导电部120。
可以理解的是,当所述多功能材料为导体材料时,通过第二掩膜板可以制备得到导电部110和非导电部120,所述第二掩膜板的开口区域对应所述导电部110,通过所述第二掩膜板对所述多功能材料进行导体化处理,得到导电部110。
需要注意的是,所述导电部110的作用与所述阳极相同,所述非导电部120的作用与所述平坦层相同。
在本实施例中,通过第一掩膜板/第二掩膜板通过所述多功能材料层制备得到所述导电部110和所述非导电部120,可以节省一道光罩,在一步工序中制备得到所述导电部110和所述非导电部120。
在一种实施例中,制备得到多功能层100的步骤还包括:在所述多功能材料层上制备得到光阻图案,通过所述光阻图案对所述多功能材料层进行遮挡,对所述多功能材料层进行导体化/绝缘化,制备得到所述多功能层100的导电部110/非导电部120,而后将所述光阻图案剥离去除。
其中,利用所述光阻图案对所述多功能材料进行遮挡,从而得到所述导电部110和非导电部120。
其中,通过第三掩膜板对光阻材料图案化制备得到所述光阻图案,再利用所述光阻图案对所述多功能材料进行遮挡,在制备得到导电部110和非导电部120后,再去除所述光阻图案。
在一种实施例中,在所述多功能层100上制备得到发光层130的步骤包括:在所述多功能层100上制备得到像素定义层,在相邻像素定义层之间通过喷墨打印/蒸镀的方式,制备得到所述发光层130。
其中,当通过喷墨打印制备得到所述发光层130时,需要先制备得到像素定义层,而后在相邻像素定义层间通过喷墨打印的方式制备得到发光层130。
在一种实施例中,当通过蒸镀制备得到所述发光层130时,无需制备得到像素定义层。
其中,可以通过第四掩膜板蒸镀得到发光层130,所述第四掩膜板的开口区域与所述发光层130的图案相对设置。
在本实施例中,通过第四掩膜板直接制备得到发光层130,无需设置像素定义层,可以降低OLED显示面板1的整体厚度。
本实施例提供的OLED显示面板包括阵列基板、多功能层、发光层、阴极,所述阵列基板包括源极、漏极,所述源极和所述漏极同层设置,所述多功能层设置于所述阵列基板上方,所述发光层设置于所述多功能层上,所述阴极设置于所述发光层上,其中,所述多功能层包括多个间隔设置的导电部和非导电部,所述导电部一端与所述发光层电连接,所述导电部另一端与所述源极电连接;通过使导电部与非导电部同层且共面设置,至少减少了一道光罩,降低了成本。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种OLED显示面板、一种OLED显示面板制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种OLED显示面板,其包括:
    阵列基板,所述阵列基板包括源极、漏极,所述源极和所述漏极同层设置;
    多功能层,所述多功能层设置于所述阵列基板上方;
    发光层,所述发光层设置于所述多功能层远离所述阵列基板的一侧;
    阴极,所述阴极设置于所述发光层远离所述阵列基板的一侧;
    其中,所述多功能层包括多个间隔设置的导电部和非导电部,所述导电部一端与所述发光层电连接,所述导电部另一端与所述源极电连接。
  2. 如权利要求1所述的OLED显示面板,其中,所述导电部和非导电部同层设置。
  3. 如权利要求1所述的OLED显示面板,其中,所述多功能层的制备材料包括多功能材料,其中,在第一条件下,所述多功能材料为绝缘材料,在第二条件下,所述多功能材料与第一溶液反应后具备导电性。
  4. 如权利要求3所述的OLED显示面板,其中,所述第一条件为常温、一个大气压下的条件,所述多功能材料的常态为绝缘材料。
  5. 如权利要求1所述的OLED显示面板,其中,所述多功能层的制备材料包括多功能材料,所述多功能材料对400纳米至760纳米范围光线的透过率大于85%。
  6. 如权利要求1所述的OLED显示面板,其中,所述多功能材料的粘度范围为10厘泊至30厘泊。
  7. 如权利要求1所述的OLED显示面板,其中,所述多功能材料为有机材料。
  8. 如权利要求1所述的OLED显示面板,其中,所述多功能材料的弯折特性比氧化铟锡的弯折特性好。
  9. 如权利要求1所述的OLED显示面板,其中,所述OLED显示面板还包括像素定义层,所述像素定义层设置于所述多功能层远离所述阵列基板的一侧,所述像素定义层包括间隔设置的有机图案,所述发光层设置于相邻所述有机图案之间。
  10. 如权利要求9所述的OLED显示面板,其中,所述发光层与所述导电部对应设置。
  11. 如权利要求9所述的OLED显示面板,其中,所述阵列基板还设置有色阻层,所述色阻层包括间隔设置的红色色阻、蓝色色阻、绿色色阻,所述发光层在所述衬底上的正投影覆盖所述色阻层在所述衬底上的正投影。
  12. 如权利要求11所述的OLED显示面板,其中,所述红色色阻、所述蓝色色阻、所述绿色色阻分别与所述导电部对应设置。
  13. 如权利要求1所述的OLED显示面板,其中,所述发光层整面设置,所述阴极整面设置。
  14. 如权利要求13所述的OLED显示面板,其中,所述OLED显示面板未设置像素定义层。
  15. 如权利要求1所述的OLED显示面板,其中,所述阵列基板上还设置有光反射层,所述光反射层上设置有所述导电部。
  16. 如权利要求15所述的OLED显示面板,其中,所述光反射层包括反射材料,所述反射材料的反射率高于所述阴极制备材料的反射率。
  17. 一种OLED显示面板制备方法,其包括:
    提供一阵列基板;
    在所述阵列基板上沉积一层多功能材料得到多功能材料层,在第二条件下,通过第一溶液对所述多功能材料层导体化处理,制备得到多功能层,所述多功能层包括多个间隔设置的导电部和非导电部;
    在所述多功能层远离所述阵列基板的一侧制备得到发光层;
    在所述发光层远离所述阵列基板的一侧制备得到阴极。
  18. 如权利要求17所述的OLED显示面板制备方法,其中,制 备得到多功能层的步骤还包括:
    通过第一掩膜板对所述多功能材料层进行导体化处理,制备得到所述多功能层的导电部和非导电部。
  19. 如权利要求17所述的OLED显示面板制备方法,其中,制备得到多功能层的步骤还包括:
    在所述多功能材料层上制备得到光阻图案,通过所述光阻图案对所述多功能材料层进行遮挡,对所述多功能材料层进行导体化/绝缘化,制备得到所述多功能层的导电部/非导电部,而后将所述光阻图案剥离去除。
  20. 如权利要求17所述的OLED显示面板制备方法,其中,在所述多功能层上制备得到发光层的步骤包括:在所述多功能层远离所述阵列基板的一侧制备得到像素定义层,所述像素定义层包括间隔设置的有机图案,在相邻所述有机图案之间通过喷墨打印/蒸镀的方式,制备得到所述发光层。
PCT/CN2022/088407 2022-04-12 2022-04-22 Oled显示面板及其制备方法 WO2023197354A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210382743.4A CN114784069A (zh) 2022-04-12 2022-04-12 Oled显示面板及其制备方法
CN202210382743.4 2022-04-12

Publications (1)

Publication Number Publication Date
WO2023197354A1 true WO2023197354A1 (zh) 2023-10-19

Family

ID=82429604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088407 WO2023197354A1 (zh) 2022-04-12 2022-04-22 Oled显示面板及其制备方法

Country Status (2)

Country Link
CN (1) CN114784069A (zh)
WO (1) WO2023197354A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545457A (zh) * 2013-10-28 2014-01-29 京东方科技集团股份有限公司 发光器件、阵列基板、显示装置及发光器件的制造方法
US20140315339A1 (en) * 2013-04-19 2014-10-23 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display
CN104810382A (zh) * 2015-05-07 2015-07-29 深圳市华星光电技术有限公司 Amoled背板的制作方法及其结构
CN108281574A (zh) * 2018-01-18 2018-07-13 华南理工大学 一种有机发光显示面板及其制备方法
CN109166865A (zh) * 2018-08-08 2019-01-08 深圳市华星光电技术有限公司 阵列基板及其制造方法、显示面板
CN110993642A (zh) * 2019-11-01 2020-04-10 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113053974A (zh) * 2021-03-11 2021-06-29 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140315339A1 (en) * 2013-04-19 2014-10-23 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display
CN103545457A (zh) * 2013-10-28 2014-01-29 京东方科技集团股份有限公司 发光器件、阵列基板、显示装置及发光器件的制造方法
CN104810382A (zh) * 2015-05-07 2015-07-29 深圳市华星光电技术有限公司 Amoled背板的制作方法及其结构
CN108281574A (zh) * 2018-01-18 2018-07-13 华南理工大学 一种有机发光显示面板及其制备方法
CN109166865A (zh) * 2018-08-08 2019-01-08 深圳市华星光电技术有限公司 阵列基板及其制造方法、显示面板
CN110993642A (zh) * 2019-11-01 2020-04-10 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN113053974A (zh) * 2021-03-11 2021-06-29 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Also Published As

Publication number Publication date
CN114784069A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN109671739B (zh) 大面积有机发光二极管显示器
US11094762B2 (en) Display device and method for manufacturing the same
CN109979964B (zh) 顶部发光有机发光二极管显示器
CN111293158B (zh) 显示面板和显示装置
WO2019179371A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
CN108550616B (zh) Oled显示基板及其制作方法、显示装置
CN110400810B (zh) 显示基板及其制作方法、和显示装置
CN107845662B (zh) 一种彩膜基板及其制作方法和显示装置
CN106019751A (zh) 阵列基板及其制造方法、显示装置
CN113972252B (zh) 显示面板及电子设备
CN109037277B (zh) 一种oled显示面板的制备方法及oled显示面板、显示装置
CN111146215A (zh) 一种阵列基板、其制作方法及显示装置
CN105742299A (zh) 一种像素单元及其制作方法、阵列基板及显示装置
CN111785760A (zh) 一种显示基板及其制备方法、显示装置
CN110828483A (zh) 顶发射oled显示背板及其制作方法和oled显示装置
WO2023024256A1 (zh) 一种阵列基板及其制备方法、显示装置
CN112838110B (zh) 一种显示面板及显示装置
CN113471384A (zh) 一种显示面板及其制备方法、显示装置
WO2020233485A1 (zh) 发光器件及其制造方法、掩膜板、显示装置
WO2023197354A1 (zh) Oled显示面板及其制备方法
CN112259579A (zh) Oled显示面板及其制作方法
CN117082943A (zh) 显示面板及其制备方法
CN111415963A (zh) 显示面板及其制备方法
CN111312732B (zh) 一种显示面板及其制作方法、显示模组及电子装置
WO2022222111A1 (zh) 显示基板、显示装置及制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17771651

Country of ref document: US