WO2023197278A1 - 一种具有高单酯含量的蔗糖酯的无溶剂合成方法 - Google Patents

一种具有高单酯含量的蔗糖酯的无溶剂合成方法 Download PDF

Info

Publication number
WO2023197278A1
WO2023197278A1 PCT/CN2022/086961 CN2022086961W WO2023197278A1 WO 2023197278 A1 WO2023197278 A1 WO 2023197278A1 CN 2022086961 W CN2022086961 W CN 2022086961W WO 2023197278 A1 WO2023197278 A1 WO 2023197278A1
Authority
WO
WIPO (PCT)
Prior art keywords
sucrose
solvent
synthesis method
fatty acid
higher fatty
Prior art date
Application number
PCT/CN2022/086961
Other languages
English (en)
French (fr)
Inventor
徐昇
梁振明
闵菊平
邵磊
徐怀义
Original Assignee
广州嘉德乐生化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州嘉德乐生化科技有限公司 filed Critical 广州嘉德乐生化科技有限公司
Priority to PCT/CN2022/086961 priority Critical patent/WO2023197278A1/zh
Priority to CN202280001930.1A priority patent/CN114929720A/zh
Publication of WO2023197278A1 publication Critical patent/WO2023197278A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/02Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
    • C07H13/04Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
    • C07H13/06Fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Definitions

  • the embodiments of the present application relate to the technical field of sucrose ester synthesis, such as a solvent-free synthesis method of sucrose esters with high monoester content, and specifically relate to a sucrose ester synthesis method that does not require the use of solvents, has high monoester content, and has good product color. .
  • Sucrose ester is the abbreviation of sucrose fatty acid ester. It is usually obtained by esterification or transesterification reaction between sucrose and long-chain fatty acids or fatty acid esters. It has both hydrophilic sugar groups and lipophilic fatty acid side chains. It is a kind of non-toxic sugar ester. Ionic surfactant. Research shows that sucrose esters have good emulsifying ability, are non-toxic, and are easily biodegradable, so they are widely used in pharmaceutical, cosmetic and food industries. Since there are multiple hydroxyl reaction sites on the sucrose structure, the reaction product is a mixture of monoesters, diesters and polyesters. Among them, sucrose monoester has good water solubility and has certain antibacterial activity, which makes sucrose monoester have high economic value.
  • sucrose esters In the process of synthesizing sucrose esters, in order to solve the insolubility of sucrose, fatty acids and their derivatives, most modern industries use highly polar solvents to assist in the synthesis of sucrose esters.
  • the solvent method has simple process, mild reaction conditions, and high sucrose ester yield.
  • the solvent method reaction is expensive, and the residual solvent is difficult to remove, making it difficult for the product to meet medical standards.
  • Solvent-free method can effectively avoid the use of organic reagents and solve toxicity problems.
  • sucrose esters produced by solvent-free method generally have low yield, low monoester content and darker color.
  • the present application provides a solvent-free synthesis method of sucrose ester with high monoester content. Specifically, it provides a method for synthesizing sucrose ester without using solvent, with high monoester content and good product color.
  • the embodiments of the present application provide a solvent-free synthesis method of sucrose esters with high monoester content.
  • the method includes the following steps:
  • the high monoester content mentioned in this application means that in the synthesized sucrose ester product, the sucrose monoester content is greater than 30%.
  • 70-90°C Specific numerical values in the above-mentioned 70-90°C include 70°C, 72°C, 75°C, 77°C, 80°C, 82°C, 85°C, 87°C, 90°C, etc.
  • 120-140°C The specific numerical values in the above 120-140°C include, for example, 120°C, 122°C, 125°C, 130°C, 132°C, 135°C, 138°C or 140°C.
  • this application chooses to first mix sucrose, higher fatty acid esters and higher fatty acid salts, preheat them, and then add the catalyst is that if sucrose, higher fatty acid esters, higher fatty acid salts and the catalyst are mixed together, it will not be conducive to the reaction. is fully carried out, the resulting product will be darker in color. Moreover, compared with other temperatures, this application chooses to preheat at 70-90°C, which is more conducive to the full progress of the reaction and makes the resulting product good in color.
  • the reaction in step (2) is carried out at 120-140°C, which is beneficial to increasing the sucrose monoester content in the product.
  • the higher fatty acid ester in step (1) includes any one or a combination of at least two of methyl stearate, ethyl stearate, isopropyl stearate or butyl stearate,
  • the combination of at least two kinds is, for example, the combination of methyl stearate and ethyl stearate, the combination of ethyl stearate and isopropyl stearate, the combination of isopropyl stearate and butyl stearate.
  • Combinations, etc., and other arbitrary combinations are possible, and methyl stearate is preferred.
  • the higher fatty acid salt in step (1) includes any one or a combination of at least two of sodium stearate, calcium stearate, magnesium stearate, potassium stearate or zinc stearate,
  • the combination of at least two kinds for example, the combination of sodium stearate and potassium stearate, the combination of calcium stearate and magnesium stearate, the combination of calcium stearate and zinc stearate, etc., and other arbitrary combinations Any one is acceptable, preferably potassium stearate.
  • the molar ratio of sucrose and higher fatty acid ester in step (1) is 2:5-3:2, such as 2:5, 1:2, 2:3, 1:1.3, 1:1.2, 1: 1.1, 1:1, 1.1:1, 1.2:1, 1.3:1, 3:2, etc., preferably 1:1.3-1.3:1.
  • the mass of the higher fatty acid salts in step (1) is 5-25% of the total mass of sucrose and higher fatty acid esters, such as 5%, 7%, 8%, 9%, 10%, 11%, 12% %, 13%, 14%, 15%, 18%, 20%, 22%, 25%, etc., preferably 7-13%.
  • the preheating time in step (1) is 20-40min, such as 20min, 22min, 25min, 27min, 30min, 32min, 35min, 37min, 40min, etc.
  • the preheating time described in this application is preferably 20-40 minutes. Within this range, it is conducive to the complete mixing of the raw materials, which is conducive to the full progress of the reaction, so that the color of the product is good. If the preheating time is short, the mixing and reaction of the raw materials will be insufficient, resulting in a darker color of the product.
  • the catalyst in step (2) includes any one or a combination of at least two of potassium carbonate, sodium carbonate, potassium hydroxide or sodium hydroxide, the combination of at least two such as potassium carbonate and potassium hydroxide
  • the combination, the combination of sodium carbonate and potassium hydroxide, the combination of sodium carbonate and sodium hydroxide, etc. are all possible, and the combination of potassium carbonate and potassium hydroxide or sodium hydroxide is preferred.
  • the molar ratio of potassium ions and/or sodium ions to sucrose in the catalyst is 1:(1-5), such as 1:1, 1:1.5, 1:2, 1:2.2, 1:2.3, 1:2.4, 1:2.5, 1:2.6, 1:2.7, 1:3, 1:4, 1:5, etc., preferably 1:(2.2-2.7).
  • the reaction in step (2) is carried out under a pressure of 200-2000Pa, such as 200Pa, 300Pa, 400Pa, 500Pa, 600Pa, 700Pa, 800Pa, 900Pa, 1000Pa, 1400Pa, 1500Pa, 1520Pa, 1550Pa, 1570Pa, 1600Pa, 1620Pa, 1650Pa, 1670Pa, 1700Pa, 1800Pa, 2000Pa, etc., preferably 200-1000Pa.
  • 200-2000Pa such as 200Pa, 300Pa, 400Pa, 500Pa, 600Pa, 700Pa, 800Pa, 900Pa, 1000Pa, 1400Pa, 1500Pa, 1520Pa, 1550Pa, 1570Pa, 1600Pa, 1620Pa, 1650Pa, 1670Pa, 1700Pa, 1800Pa, 2000Pa, etc., preferably 200-1000Pa.
  • the reaction temperature in step (2) is 132-138°C, such as 132°C, 133°C, 134°C, 135°C, 136°C, 137°C, 138°C, etc.
  • the reaction time in step (2) is 0.5-6h, such as 0.5h, 1h, 1.5h, 2h, 2.5h, 3h, 3.5h, 3.7h, 4h, 4.2h, 4.5h, 4.7h, 5h, 5.2h, 5.5h, 5.7h, 6h, etc., preferably 3.7-6h.
  • the reaction in step (2) further includes purifying the sucrose ester, and the purification includes: mixing the sucrose ester obtained in step (2) with a solvent, adjusting the pH to 6-7, adding a settling agent, and filtering, Collect the filtrate, dry and recrystallize to obtain purified sucrose ester.
  • the solvent includes any one or a combination of at least two of water, butanone, n-butanol, tert-butanol or isopropanol.
  • Butanol and isopropanol both refer to anhydrous reagents, and the combination of at least two such as water and butanone, water and tert-butanol, water and isopropyl alcohol, etc., and any other combinations are Yes, a combination of water and butanone is preferred.
  • the volume ratio of water to butanone is 1:(1-3), such as 1:1, 1:1.5, 1:2, 1:2.5, 1:3, etc.
  • the settling agent includes calcium chloride.
  • the reagent used in the recrystallization is 90-98% ethanol
  • the 90-98% refers to the volume percentage of absolute ethanol, such as 90%, 91%, 92%, 93%, 94% , 95%, 96%, 97%, 98%, etc.
  • the synthesis method involved in the embodiments of this application adopts a solvent-free transesterification method, in which sucrose, higher fatty acid esters, higher fatty acid salts and catalysts are formed in a eutectic state at high temperature in a certain proportion, and the reaction is favorable for kinetics.
  • Conditions catalyze the synthesis of sucrose esters.
  • sucrose reacts with long-chain fatty acid esters to first generate monoesters.
  • the monoesters participate in the reaction to generate diesters.
  • polyesters can also be generated. Therefore, by controlling the external conditions, the reaction can be maximized in the direction of producing monoester.
  • This synthesis method avoids the use of solvents, solves toxicity problems, and enables the product to meet medical standards.
  • the synthesis reaction of sucrose ester is an equilibrium reaction. This application optimizes each step and specific parameters to maximize the reaction in the direction of generating sucrose monoester.
  • the sucrose in the product without purification treatment Monoester can reach a purity of more than 30%, and after purification, it can reach a purity of more than 70%.
  • the embodiments of the present application make the products produced with good color and luster, and solve the problem of deep color of products prepared by using related technologies.
  • the method steps of the embodiments of the present application are simple (the synthesis steps and purification steps are very simple), are convenient for industrial production, and have important application value.
  • the sucrose used in the following examples is all sucrose obtained by grinding with a pulverizer and passing through a 100-mesh sieve.
  • the catalysts are all in powder form.
  • This embodiment provides a method for synthesizing sucrose ester. The steps are as follows:
  • sucrose, methyl stearate and potassium stearate into a three-necked flask, stir at 80°C for 30 minutes, then add a catalyst (potassium carbonate and potassium hydroxide mixed at a 1:2 molar ratio), and raise the temperature to 135 °C, the reaction was carried out at 1.6kPa and a stirring speed of 400rpm for 4h to obtain the product.
  • a catalyst potassium carbonate and potassium hydroxide mixed at a 1:2 molar ratio
  • the molar ratio of sucrose and methyl stearate is 1:1; the mass of potassium stearate is 10% of the total mass of sucrose and methyl stearate; the molar ratio of potassium ions and sucrose in the catalyst is 2:5.
  • Embodiments 2-4 provide three synthetic methods for sucrose esters. The only difference between the method and Example 1 is that methyl stearate is replaced by ethyl stearate and isopropyl stearate in equal molar amounts. and butyl stearate, other conditions refer to Example 1.
  • Embodiments 5-8 provide four synthetic methods for sucrose esters. The only difference between the methods and Example 1 is that potassium stearate is replaced by equal masses of sodium stearate, calcium stearate, and magnesium stearate. and zinc stearate, other conditions refer to Example 1.
  • Embodiments 9-12 provide four synthetic methods for sucrose esters. The only difference between the method and Example 1 is that the catalyst is replaced with equimolar amounts of potassium carbonate, potassium hydroxide, sodium carbonate and sodium hydroxide. Other conditions Refer to Example 1.
  • Examples 13-16 provide four synthetic methods for sucrose esters. The only difference between the methods and Example 1 is that the molar ratios of sucrose and methyl stearate are 3:2, 2:3, 1:2, and 2. :5, other conditions refer to Example 1.
  • Examples 17-19 provide three synthesis methods of sucrose esters. The only difference between the methods and Example 1 is that the mass of potassium stearate is 5%, 15%, and 20% of the total mass of sucrose and methyl stearate. , refer to Example 1 for other conditions.
  • Embodiments 20-23 provide four synthetic methods for sucrose esters. The only difference between the methods and Example 1 is that the molar ratios of potassium ions and sucrose in the catalyst are 1:5, 3:10, 1:2, and 3: 5. For other conditions, refer to Example 1.
  • Examples 24-27 provide four synthesis methods of sucrose esters. The only difference between the methods and Example 1 is that "heating to 135°C" is changed to 120°C, 125°C, 130°C, and 140°C in sequence. Others Conditions refer to Example 1.
  • Examples 28-31 provide four synthetic methods for sucrose esters. The only difference between the methods and Example 1 is that the reaction time is replaced from “4h” to 0.5h, 2.5h, 3.5h, and 6h in sequence. Other conditions are implemented as follows. example 1.
  • This comparative example provides a method for synthesizing sucrose ester. The only difference between the method and Example 1 is that it does not contain potassium stearate, and other conditions remain unchanged.
  • Example 1 Methyl stearate 36.3% 0.2% 21.1% 0.1% 10.7% 0.6%
  • Example 2 Ethyl stearate 1.9% 0.2% ⁇ 1% / 29.0% 1.7%
  • Example 3 Isopropyl stearate ⁇ 1% / ⁇ 1% / 27.5% 0.4%
  • Example 4 Butyl stearate ⁇ 1% / ⁇ 1% / 27.6% 1.2%
  • sucrose monoester in the product is higher.
  • sodium hydroxide it can also achieve High content of sucrose monoesters above 32%.
  • the molar ratio of sucrose and higher fatty acid esters is preferably 1:1.
  • the amount of catalyst used in the synthesis method involved in this application is measured by the molar ratio of potassium ions to sucrose. Under the conditions of 1: (1.5-2.5), more sucrose monoesters can be obtained. and sucrose diester, more preferably 2:5.
  • This purification example provides a synthesis method of sucrose ester. The steps are as follows:
  • Example 2 Take 10g of the product prepared in Example 1 and place it in a 200mL beaker, add 25mL of water and 50mL of butanone, slightly raise the temperature and stir until all is dissolved, adjust the pH to 6.5 with 96% phosphoric acid, then add 0.7g of CaCl 2 and stir at 55°C. After stirring for 40 minutes, a white precipitate appears. The precipitate is removed by filtration. The filtrate is vacuum-dried to obtain a white solid. The filtrate is recrystallized with 95% ethanol and dried to obtain the purified sucrose ester.
  • Purification Examples 2-4 provide four synthesis methods of sucrose esters. The only difference between the method and Purification Example 1 is that "1.6kPa" in Example 1 is replaced by 1000pa, 500pa, and 200pa in sequence. Other conditions are implemented as follows. Example 1 and Purification Example 1.
  • Test Example 2 Evaluation of the purity of the product obtained after purification:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Abstract

本文公布一种具有高单酯含量的蔗糖酯的无溶剂合成方法,所述方法包括如下步骤:(1)将蔗糖、高级脂肪酸酯和高级脂肪酸盐混合,在70-90℃下预热,得混合料;(2)将混合料与催化剂混合,在120-140℃下反应,即得所述蔗糖酯。本申请所涉及的合成方法采用无溶剂酯交换法,将蔗糖与高级脂肪酸酯、高级脂肪酸盐和催化剂四者按一定比例在高温下形成共熔融状态,在有利于动力学的反应条件下,催化合成蔗糖酯。所述合成方法避免了溶剂的使用,解决了毒性问题,使产品能够达到医用食用的标准,产物中的蔗糖单酯含量高,且制得的产品色泽良好,合成方法步骤简单,便于工业化生产,具有重要的应用价值。

Description

一种具有高单酯含量的蔗糖酯的无溶剂合成方法 技术领域
本申请实施例涉及蔗糖酯合成技术领域,例如一种具有高单酯含量的蔗糖酯的无溶剂合成方法,具体涉及一种无需使用溶剂、单酯含量高,且产品色泽好的蔗糖酯合成方法。
背景技术
蔗糖酯是蔗糖脂肪酸酯的简称,通常是由蔗糖与长链脂肪酸或脂肪酸酯通过酯化或酯交换反应获得,其同时存在亲水性糖基与亲油性脂肪酸侧链,是一类非离子型表面活性剂。研究表明蔗糖酯具有良好的乳化能力、无毒、且易被生物分解,因此被广泛应用于医药、化妆品和食品等行业。由于蔗糖结构上存在多个羟基反应位点,因此反应产物为单酯,二酯和多酯的混合物。其中蔗糖单酯的水溶性较好,且具有一定的抗菌活性,使得蔗糖单酯具有较高的经济价值。
在合成蔗糖酯的过程中,为了解决蔗糖与脂肪酸及其衍生物的不溶性,现代工业大多借助强极性溶剂辅助合成蔗糖酯。溶剂法工艺简单、反应条件温和、蔗糖酯得率高。但溶剂法反应成本昂贵,且残留的溶剂难以去除干净,产品难以达到医用食用的标准。采用无溶剂法可以很好地避免使用有机试剂,解决毒性问题,但应用无溶剂法生产的蔗糖酯普遍得率不高、单酯含量较低、色泽较深。
因此,如何开发出一种无需使用溶剂、单酯含量高,且产品色泽好的蔗糖酯合成方法是本领域技术人员亟待解决的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种具有高单酯含量的蔗糖酯的无溶剂合成方法,具体提供一种无需使用溶剂、单酯含量高,且产品色泽好的蔗糖酯合成方法。
第一方面,本申请实施例提供一种具有高单酯含量的蔗糖酯的无溶剂合成方法,所述方法包括如下步骤:
(1)将蔗糖、高级脂肪酸酯和高级脂肪酸盐混合,在70-90℃下预热,得混合料;
(2)将混合料与催化剂混合,在120-140℃下反应,即得所述蔗糖酯。
本申请所述高单酯含量是指在合成的蔗糖酯产物中,蔗糖单酯的含量大于30%。
上述70-90℃中的具体数值例如70℃、72℃、75℃、77℃、80℃、82℃、85℃、87℃、90℃等。
上述120-140℃中的具体数值例如120℃、122℃、125℃、130℃、132℃、135℃、138℃或140℃等。
本申请选择先将蔗糖、高级脂肪酸酯和高级脂肪酸盐混合,进行预热,后加入催化剂的原因在于:若将蔗糖、高级脂肪酸酯、高级脂肪酸盐和催化剂一起混合,不利于反应的充分进行,得到的产品色泽较深。而且,相比于其他温度,本申请选择在70-90℃下预热,更有利于反应的充分进行,使得到的产品色泽良好。步骤(2)中的反应在120-140℃下进行,有利于提高产物中蔗糖单酯的含量。
优选地,步骤(1)所述高级脂肪酸酯包括硬脂酸甲酯、硬脂酸乙酯、硬脂酸异丙酯或硬脂酸丁酯中的任意一种或至少两种的组合,所述至少两种的组合例如硬脂酸甲酯和硬脂酸乙酯的组合、硬脂酸乙酯和硬脂酸异丙酯的组合、硬脂酸异丙酯和硬脂酸丁酯的组合等,其他任意的组合方式均可,优选为硬脂酸甲酯。
优选地,步骤(1)所述高级脂肪酸盐包括硬脂酸钠、硬脂酸钙、硬脂酸镁、硬脂酸钾或硬脂酸锌中的任意一种或至少两种的组合,所述至少两种的组合例如硬脂酸钠和硬脂酸钾的组合、硬脂酸钙和硬脂酸镁的组合、硬脂酸钙和硬脂酸锌的组合等,其他任意的组合方式均可,优选为硬脂酸钾。
优选地,步骤(1)所述蔗糖与高级脂肪酸酯的摩尔比为2:5-3:2,例如2:5、1:2、2:3、1:1.3、1:1.2、1:1.1、1:1、1.1:1、1.2:1、1.3:1、3:2等,优选为1:1.3-1.3:1。
优选地,步骤(1)所述高级脂肪酸盐的质量为蔗糖和高级脂肪酸酯总质量的5-25%,例如5%、7%、8%、9%、10%、11%、12%、13%、14%、15%、18%、20%、、22%、25%等,优选为7-13%。
优选地,步骤(1)所述预热的时间为20-40min,例如20min、22min、25 min、27min、30min、32min、35min、37min、40min等。
本申请所述预热时间优选为20-40min,在此范围内,有利于原料的充分混合,进而利于反应的充分进行,从而使产品的色泽良好。若预热时间较短,则会导致原料混合及反应不充分,从而导致产品色泽较深。
优选地,步骤(2)所述催化剂包括碳酸钾、碳酸钠、氢氧化钾或氢氧化钠中的任意一种或至少两种的组合,所述至少两种的组合例如碳酸钾与氢氧化钾的组合、碳酸钠和氢氧化钾的组合、碳酸钠和氢氧化钠的组合等,其他任意的组合方式均可,优选为碳酸钾与氢氧化钾的组合或氢氧化钠。
优选地,所述催化剂中的钾离子和/或钠离子与蔗糖的摩尔比为1:(1-5),例如1:1、1:1.5、1:2、1:2.2、1:2.3、1:2.4、1:2.5、1:2.6、1:2.7、1:3、1:4、1:5等,优选为1:(2.2-2.7)。
优选地,步骤(2)所述反应在200-2000Pa的压力下进行,例如200Pa、300Pa、400Pa、500Pa、600Pa、700Pa、800Pa、900Pa、1000Pa、1400Pa、1500Pa、1520Pa、1550Pa、1570Pa、1600Pa、1620Pa、1650Pa、1670Pa、1700Pa、1800Pa、2000Pa等,优选为200-1000Pa。
优选地,步骤(2)所述反应的温度为132-138℃,例如132℃、133℃、134℃、135℃、136℃、137℃、138℃等。
优选地,步骤(2)所述反应的时间为0.5-6h,例如0.5h、1h、1.5h、2h、2.5h、3h、3.5h、3.7h、4h、4.2h、4.5h、4.7h、5h、5.2h、5.5h、5.7h、6h等,优选为3.7-6h。
优选地,步骤(2)所述反应后还包括对蔗糖酯进行纯化,所述纯化包括:将步骤(2)得到的蔗糖酯与溶剂混合,调节pH至6-7,加入沉降剂,过滤,收集滤液,干燥,重结晶,即得纯化后的蔗糖酯。
所述6-7中的具体数值例如6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7等。
优选地,在纯化步骤中,所述溶剂包括水、丁酮、正丁醇、叔丁醇或异丙醇中的任意一种或至少两种的组合,所述丁酮、正丁醇、叔丁醇和异丙醇均指无水的试剂,所述至少两种的组合例如水和丁酮的组合、水和叔丁醇的组合、水和异丙醇的组合等,其他任意的组合方式均可,优选为水和丁酮的组合。
当选择水和丁酮的组合进行重结晶时,纯化得到的产品的色泽最好。
优选地,所述水与丁酮的体积比为1:(1-3),例如1:1、1:1.5、1:2、1:2.5、1:3等。
优选地,所述沉降剂包括氯化钙。
优选地,所述重结晶中使用的试剂为90-98%乙醇,所述90-98%是指无水乙醇的体积百分含量,例如90%、91%、92%、93%、94%、95%、96%、97%、98%等。
本申请所述的数值范围不仅包括上述列举的点值,还包括没有列举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
与相关技术相比,本申请具有如下有益效果:
本申请实施例所涉及的合成方法采用无溶剂酯交换法,将蔗糖与高级脂肪酸酯、高级脂肪酸盐和催化剂四者按一定比例在高温下形成共熔融状态,在有利于动力学的反应条件下,催化合成蔗糖酯。在反应过程中,蔗糖与长链脂肪酸酯反应先生成单酯,当外部提供能量大于单酯酯交换活化能时单酯参与反应生成二酯,同理亦可生成多酯。因此,通过控制外部条件,可使反应最大程度的向生成单酯的方向进行。(1)该合成方法避免了溶剂的使用,解决了毒性问题,使产品能够达到医用食用的标准。(2)蔗糖酯的合成反应属于平衡反应,本申请通过对各步骤及具体参数进行优化,使反应最大化地向生成蔗糖单酯的方向进行,在不经过纯化处理的条件下产物中的蔗糖单酯即可达到30%以上的纯度,纯化后可达到70%以上的纯度。(3)本申请实施例通过对各步骤及具体参数进行优化,使制得的产品色泽良好,解决了采用相关技术制备得到的产品色泽深的问题。(4)本申请实施例方法步骤简单(合成步骤及纯化处理步骤均很简单),便于工业化生产,具有重要的应用价值。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为更进一步阐述本申请所采取的技术手段及其效果,以下结合本申请的优选实施例来进一步说明本申请的技术方案,但本申请并非局限在实施例范围内。
下述实施例中所使用的的蔗糖均为用粉碎机磨碎后过100目筛得到的蔗糖。催化剂均为粉末状态。
实施例1
本实施例提供一种蔗糖酯的合成方法,步骤如下:
将蔗糖、硬脂酸甲酯和硬脂酸钾加入至三口瓶中,在80℃下搅拌30min,然后向其中加入催化剂(碳酸钾和氢氧化钾以1:2摩尔比混合),升温至135℃,在1.6kPa下以400rpm的搅拌速度进行反应4h,得到产物。
其中,蔗糖与硬脂酸甲酯的摩尔比为1:1;硬脂酸钾质量为蔗糖和硬脂酸甲酯总质量的10%;催化剂中钾离子与蔗糖的摩尔比为2:5。
实施例2-4
实施例2-4提供三种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于将硬脂酸甲酯依次替换为等摩尔量的硬脂酸乙酯、硬脂酸异丙酯和硬脂酸丁酯,其他条件参照实施例1。
实施例5-8
实施例5-8提供四种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于将硬脂酸钾依次替换为等质量的硬脂酸钠、硬脂酸钙、硬脂酸镁和硬脂酸锌,其他条件参照实施例1。
实施例9-12
实施例9-12提供四种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于将催化剂依次替换为等摩尔量的碳酸钾、氢氧化钾、碳酸钠和氢氧化钠,其他条件参照实施例1。
实施例13-16
实施例13-16提供四种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于蔗糖与硬脂酸甲酯的摩尔比依次为3:2、2:3、1:2、2:5,其他条件参照实施例1。
实施例17-19
实施例17-19提供三种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于硬脂酸钾质量依次为蔗糖和硬脂酸甲酯总质量的5%、15%、20%,其他条件参照实施例1。
实施例20-23
实施例20-23提供四种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于催化剂中钾离子与蔗糖的摩尔比依次为1:5、3:10、1:2、3:5,其他条件参照 实施例1。
实施例24-27
实施例24-27提供四种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于将“升温至135℃”依次改为升温至120℃、125℃、130℃、140℃,其他条件参照实施例1。
实施例28-31
实施例28-31提供四种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于反应的时间由“4h”依次替换为0.5h、2.5h、3.5h、6h,其他条件参照实施例1。
对比例1
本对比例提供一种蔗糖酯的合成方法,所述方法与实施例1的区别仅在于不含有硬脂酸钾,其他条件均保持不变。
测试例1-粗产物的纯度评价:
将实施例1-31制得的产物研磨至粉末状,用WATERS公司UPC 2-SQ detector 2分别检测产物中蔗糖单酯、蔗糖二酯、蔗糖及硬脂酸酯的含量。结果如表1-表8所示。
表1
组别 反应原料 蔗糖单酯 标准差 蔗糖二酯 标准差 蔗糖 标准差
实施例1 硬脂酸甲酯 36.3% 0.2% 21.1% 0.1% 10.7% 0.6%
实施例2 硬脂酸乙酯 1.9% 0.2% <1% / 29.0% 1.7%
实施例3 硬脂酸异丙酯 <1% / <1% / 27.5% 0.4%
实施例4 硬脂酸丁酯 <1% / <1% / 27.6% 1.2%
由表1结果可知:本申请所涉及的合成方法选用硬脂酸甲酯时,相比于其他类型的高级脂肪酸酯,其合成效果明显更好,产物中蔗糖单酯和蔗糖二酯的含量均很高。
表2
Figure PCTCN2022086961-appb-000001
Figure PCTCN2022086961-appb-000002
由表2结果可知:本申请所涉及的合成方法选用硬脂酸钾时,相比于其他类型的高级脂肪酸盐,其合成效果更好,产物中蔗糖单酯的含量更高。
表3
Figure PCTCN2022086961-appb-000003
由表3结果可知:本申请所涉及的合成方法选用碳酸钾与氢氧化钾的组合作为催化剂时具有更好的效果,产物中蔗糖单酯的含量更高,选用氢氧化钠时,也能达到32%以上的高含量蔗糖单酯。
表4
Figure PCTCN2022086961-appb-000004
Figure PCTCN2022086961-appb-000005
由表4结果可知:在本申请方法中,蔗糖与高级脂肪酸酯的摩尔比优选为1:1。
表5
Figure PCTCN2022086961-appb-000006
由表5结果可知:本申请所涉及的合成方法中加入高级脂肪酸盐,使蔗糖单酯的得率大大提高,高级脂肪酸盐质量特定选择为蔗糖和高级脂肪酸酯总质量的10-25%的范围下,能获得更好的合成效果,进一步优选为10%。
表6
Figure PCTCN2022086961-appb-000007
Figure PCTCN2022086961-appb-000008
由表6结果可知:本申请所涉及的合成方法中催化剂的使用量以钾离子与蔗糖的摩尔比来进行衡量,在1:(1.5-2.5)的条件下均能获得较多的蔗糖单酯和蔗糖二酯,进一步优选为2:5。
表7
Figure PCTCN2022086961-appb-000009
由表7结果可知:反应温度的选择也对本申请所涉及的合成方法有十分重要的影响,在135℃左右下进行反应能获得最佳的效果。
表8
Figure PCTCN2022086961-appb-000010
由表8结果可知:反应时间的选择也对本申请所涉及的合成效果有十分重要的影响,反应3.5-6h能获得较好的效果。
纯化实施例1
本纯化实施例提供一种蔗糖酯的合成方法,步骤如下:
取10g实施例1制得的产物置于200mL烧杯中,加入25mL水与50mL丁酮,稍微升温搅拌至全部溶解后,用96%磷酸调节pH至6.5,随后加入CaCl 20.7g,在55℃下搅拌40min出现白色沉淀,过滤除掉沉淀,再将滤液真空干燥得到白色固体,用95%乙醇重结晶得到滤液干燥后,即得纯化后的蔗糖酯。
纯化实施例2-4
纯化实施例2-4提供四种蔗糖酯的合成方法,所述方法与纯化实施例1的区别仅在于将实施例1中的“1.6kPa”依次替换为1000pa、500pa、200pa,其他条件参照实施例1及纯化实施例1。
测试例2—经纯化处理得产物的纯度评价:
将纯化实施例1-4制得的产物研磨至粉末状,用WATERS公司的UPC 2-SQ detector 2检测产物中蔗糖单酯的含量。结果见表9。
表9
组别 压力 蔗糖单酯纯度 标准差
纯化实施例1 1.6kPa 70.8 0.8%
纯化实施例2 1000pa 73.6 0.9%
纯化实施例3 500pa 75.5 0.8%
纯化实施例4 200pa 74.3 0.6%
结果显示:当压力过大时反应物不能反应彻底,导致采用简单的纯化步骤无法达到理想的纯化结果,给纯化步骤带来麻烦。当压力为200-1000pa时,反应物能够反应彻底,因此采用简单的纯化步骤即可提高蔗糖单酯的纯度。
申请人声明,本申请通过上述实施例、纯化实施例来说明本申请的一种具有高单酯含量的蔗糖酯的无溶剂合成方法,但本申请并不局限于上述实施例、纯化实施例,即不意味着本申请必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征, 在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。

Claims (12)

  1. 一种具有高单酯含量的蔗糖酯的无溶剂合成方法,其包括:
    (1)将蔗糖、高级脂肪酸酯和高级脂肪酸盐混合,在70-90℃下预热,得混合料;
    (2)将混合料与催化剂混合,在120-140℃下反应,即得所述蔗糖酯。
  2. 如权利要求1所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述高级脂肪酸酯包括硬脂酸甲酯、硬脂酸乙酯、硬脂酸异丙酯或硬脂酸丁酯中的任意一种或至少两种的组合。
  3. 根据权利要求2所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述高级脂肪酸酯为硬脂酸甲酯。
  4. 如权利要求1-3任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述高级脂肪酸盐包括硬脂酸钠、硬脂酸钙、硬脂酸镁、硬脂酸钾或硬脂酸锌中的任意一种或至少两种的组合。
  5. 如权利要求4所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述高级脂肪酸盐为硬脂酸钾。
  6. 如权利要求1-5中任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述蔗糖与高级脂肪酸酯的摩尔比为2:5-3:2,优选为1:1.3-1.3:1。
  7. 如权利要求1-6中任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述高级脂肪酸盐的质量为蔗糖和高级脂肪酸酯总质量的5-25%,优选为7-13%。
  8. 如权利要求1-7中任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(1)所述预热的时间为20-40min。
  9. 如权利要求1-8中任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(2)所述催化剂包括碳酸钾、碳酸钠、氢氧化钾或氢氧化钠中的任意一种或至少两种的组合,优选为碳酸钾与氢氧化钾的组合或氢氧化钠;
    优选地,所述催化剂中的钾离子和/或钠离子与蔗糖的摩尔比为1:(1-5),优选为1:(2.2-2.7)。
  10. 如权利要求1-9中任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(2)所述反应在200-2000Pa的压力下进行,优选为200-1000Pa;
    优选地,步骤(2)所述反应的温度为132-138℃;
    优选地,步骤(2)所述反应的时间为0.5-6h,优选为3.7-6h。
  11. 如权利要求1-10中任一项所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,步骤(2)所述反应后还包括对蔗糖酯进行纯化,所述纯化包括:将步骤(2)得到的蔗糖酯与溶剂混合,调节pH至6-7,加入沉降剂,过滤,收集滤液,干燥,重结晶,即得纯化后的蔗糖酯。
  12. 如权利要求11所述的具有高单酯含量的蔗糖酯的无溶剂合成方法,其中,在纯化步骤中,所述溶剂包括水、丁酮、正丁醇、叔丁醇或异丙醇中的任意一种或至少两种的组合,优选为水和丁酮的组合;
    优选地,所述水与丁酮的体积比为1:(1-3);
    优选地,所述沉降剂包括氯化钙;
    优选地,所述重结晶中使用的试剂为90-98%乙醇。
PCT/CN2022/086961 2022-04-15 2022-04-15 一种具有高单酯含量的蔗糖酯的无溶剂合成方法 WO2023197278A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/086961 WO2023197278A1 (zh) 2022-04-15 2022-04-15 一种具有高单酯含量的蔗糖酯的无溶剂合成方法
CN202280001930.1A CN114929720A (zh) 2022-04-15 2022-04-15 一种具有高单酯含量的蔗糖酯的无溶剂合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086961 WO2023197278A1 (zh) 2022-04-15 2022-04-15 一种具有高单酯含量的蔗糖酯的无溶剂合成方法

Publications (1)

Publication Number Publication Date
WO2023197278A1 true WO2023197278A1 (zh) 2023-10-19

Family

ID=82816092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086961 WO2023197278A1 (zh) 2022-04-15 2022-04-15 一种具有高单酯含量的蔗糖酯的无溶剂合成方法

Country Status (2)

Country Link
CN (1) CN114929720A (zh)
WO (1) WO2023197278A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781340A (zh) * 2010-02-09 2010-07-21 浙江迪耳化工有限公司 一种蔗糖脂肪酸酯的提纯方法
CN104387429A (zh) * 2014-11-11 2015-03-04 浙江师范大学 一种蔗糖脂肪酸酯的提纯方法
CN105624234A (zh) * 2014-10-31 2016-06-01 陕西启源科技发展有限责任公司 无溶剂体系糖酯的制备方法
CN110891962A (zh) * 2019-08-08 2020-03-17 广州嘉德乐生化科技有限公司 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途
CN112940054A (zh) * 2021-03-09 2021-06-11 武汉臻治生物科技有限公司 一种高单酯含量蔗糖酯制备方法
CN113201032A (zh) * 2021-05-21 2021-08-03 武汉臻治生物科技有限公司 一种合成高纯度蔗糖单酯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781340A (zh) * 2010-02-09 2010-07-21 浙江迪耳化工有限公司 一种蔗糖脂肪酸酯的提纯方法
CN105624234A (zh) * 2014-10-31 2016-06-01 陕西启源科技发展有限责任公司 无溶剂体系糖酯的制备方法
CN104387429A (zh) * 2014-11-11 2015-03-04 浙江师范大学 一种蔗糖脂肪酸酯的提纯方法
CN110891962A (zh) * 2019-08-08 2020-03-17 广州嘉德乐生化科技有限公司 一种蔗糖脂肪酸酯及其制备方法、定量分析方法和用途
CN112940054A (zh) * 2021-03-09 2021-06-11 武汉臻治生物科技有限公司 一种高单酯含量蔗糖酯制备方法
CN113201032A (zh) * 2021-05-21 2021-08-03 武汉臻治生物科技有限公司 一种合成高纯度蔗糖单酯的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU JIAN HUA, HU PENG: "Study on the Solvent-Free Synthesis of Sucrose Esters (I)—Synthesis of Sucrose Esters by Solvent-Free Method", CHINA OILS AND FATS, vol. 24, no. 5, 31 December 1999 (1999-12-31), pages 61 - 64, XP009549607, ISSN: 1003-7969 *

Also Published As

Publication number Publication date
CN114929720A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
DE2632415C3 (de) Nichtverdaubarer Nahrungsmittel-Zusatzstoff und Verfahren zu seiner Herstellung
JPS5912100B2 (ja) 多価アルコ−ルのエステルの製造方法
CN103450304B (zh) 用于获得11-脱氧皮醇的17α-单酯和/或其9,11-脱氢衍生物的酶法
WO2021114200A1 (zh) 一种蔗糖酯的制备方法
CN102127571A (zh) 非水相酶促合成l-抗坏血酸棕榈酸酯的生产方法
US6977306B2 (en) Citalopram hydrobromide crystal and method for crystallization thereof
DE2023944A1 (de) Verfahren zur Herstellung von modi fiziertem Sacchandmaterial
DE60015984T2 (de) Verfahren zum gewinnen von organischen säuren
WO2023197278A1 (zh) 一种具有高单酯含量的蔗糖酯的无溶剂合成方法
CN113201032B (zh) 一种合成高纯度蔗糖单酯的方法
DE3334517C2 (zh)
Hibbert et al. Studies on reactions relating to carbohydrates and polysaccharides. XXXIV. The constitution of levan and its relation to inulin
IE43828B1 (en) Purification of sucrose esters
KR100447105B1 (ko) 탄수화물 지방산 에스테르의 제조방법
CN109689609B (zh) 二羧酸结晶及其制造方法
US2040145A (en) Beta-methylcholine derivatives and salts and processes for their production
JPS607961B2 (ja) 色白化粧料
KR100369117B1 (ko) 용매로 물을 이용한 설탕에스테르의 제조 및 정제 방법
CN113151373B (zh) 一种具有抗菌及抗肿瘤活性的蔗糖单酯的制备方法及其应用
EP1471036A1 (fr) Solide cristallise IM-8 de type metallaphosphate et son procede de preparation
CN112220761B (zh) 一种注射用氢化可的松琥珀酸钠的制备方法
US5952260A (en) Catalytic system for cellulose acylation, process for producing said catalytic system, and for its practical application
CN112941129A (zh) 一种利用无定形蔗糖酶催化合成蔗糖酯的方法
KR100346882B1 (ko) 설탕에스테르의정제방법
SU891687A1 (ru) Способ получени ацетосукцината целлюлозы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936926

Country of ref document: EP

Kind code of ref document: A1