WO2023197186A1 - 参考信号的发送方法、接收方法及其装置 - Google Patents

参考信号的发送方法、接收方法及其装置 Download PDF

Info

Publication number
WO2023197186A1
WO2023197186A1 PCT/CN2022/086461 CN2022086461W WO2023197186A1 WO 2023197186 A1 WO2023197186 A1 WO 2023197186A1 CN 2022086461 W CN2022086461 W CN 2022086461W WO 2023197186 A1 WO2023197186 A1 WO 2023197186A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
dimension
spacing angle
index value
index
Prior art date
Application number
PCT/CN2022/086461
Other languages
English (en)
French (fr)
Inventor
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/086461 priority Critical patent/WO2023197186A1/zh
Publication of WO2023197186A1 publication Critical patent/WO2023197186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a reference signal sending method, a receiving method and a device thereof.
  • narrow beams need to be used for data transmission.
  • how to achieve precise alignment and real-time tracking and updating of narrow beams has become an urgent problem that needs to be solved.
  • Embodiments of the present disclosure provide a reference signal sending method, a receiving method and a device thereof.
  • the terminal equipment can be assisted to better perform beam measurement, beam prediction and beam management, thereby improving the terminal equipment.
  • Beam measurement and beam management capabilities enable precise alignment of narrow beams and real-time tracking updates.
  • embodiments of the present disclosure provide a method for sending a reference signal.
  • the method is executed by a network side device.
  • the method includes: determining reference signal configuration information; sending the reference signal configuration information.
  • the reference signal The configuration information is used to indicate direction information of the reference signal; a corresponding reference signal is sent based on the reference signal configuration information; wherein the corresponding reference signal is used to instruct the terminal device to perform beam measurement and/or beam management.
  • the reference signal configuration information includes at least one of the following: the index of each reference signal in the configured reference signal set; the index of the configured reference signal; The beam width of each reference signal in the configured reference signal set; the spacing angle between the transmission beams of adjacent indexed reference signals in the configured reference signal set.
  • the spacing angle includes a spacing angle in the first dimension and/or a spacing angle in the second dimension; wherein the spacing angle in the first dimension is the spacing angle of the first-dimensional beam center.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center.
  • the separation angle of the dimensional beam boundaries is a spacing angle in the first dimension and/or a spacing angle in the second dimension; wherein the spacing angle in the first dimension is the spacing angle of the first-dimensional beam center.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center.
  • determining the index of each reference signal in the configured reference signal set includes: taking the reference direction as the starting direction, taking the interval angle of the first dimension as the step size, and calculating on the first dimension according to The positive direction or the negative direction sequentially determines the component index value of the first dimension of each reference signal in the configured reference signal set; and/or, taking the reference direction as the starting direction, using the interval angle of the second dimension is the step size, and the component index value of the second dimension of each reference signal in the configured reference signal set is determined sequentially in the second dimension according to the positive direction or the negative direction; according to each reference signal The component index value of the first dimension and/or the component index value of the second dimension of each reference signal determines the index of each reference signal in the configured reference signal set.
  • the reference direction is the beam direction of the configured reference reference signal; or, the reference direction is a preset absolute direction.
  • the transmission beam of each reference signal is a one-dimensional beam
  • the component index value according to the first dimension of each reference signal or the component index value of the second dimension of each reference signal is , determining the index of each reference signal in the configured reference signal set, including: converting the component index value of the first dimension of each reference signal or the component index value of the second dimension of each reference signal , as the index of each reference signal.
  • the transmission beam of each reference signal is a two-dimensional beam; according to the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal, determine The index of each reference signal in the configured reference signal set includes: taking the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal as The index of each reference signal; or, generate the index of each reference signal according to the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal. index.
  • generating the index of each reference signal according to the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal includes: according to The component index value of the first dimension of each reference signal, the number of beams in the first dimension, and the component index value of the second dimension of each reference signal generate the index of each reference signal; Alternatively, generate the component index value of each reference signal according to the component index value of the first dimension of each reference signal, the component index value of the second dimension of each reference signal, and the number of beams of the second dimension. index.
  • the method further includes: determining a configuration mode of a reference signal index, the configuration mode of the reference signal index being the configuration mode used when configuring the index of each reference signal; wherein, the reference signal configuration
  • the information also includes the configuration mode of the reference signal index.
  • the reference signal configuration information can be determined and the configuration information can be sent, so that after accepting the configuration information, the terminal device determines the direction information of the reference signal configured by the network side device based on the configuration information, so that the terminal device A corresponding reference signal is received based on the direction to complete beam measurement and/or beam management based on the reference signal.
  • the present disclosure can assist the terminal equipment to better perform beam measurement, beam prediction and beam management, thereby improving the terminal equipment's beam measurement and beam management capabilities, thereby enabling narrow beam processing. for precise alignment and real-time tracking updates.
  • embodiments of the present disclosure provide a method for receiving a reference signal.
  • the method is executed by a terminal device.
  • the method includes: receiving reference signal configuration information; the reference signal configuration information is used to indicate the direction of the reference signal. information; determine the direction information of the reference signal according to the configuration information of the reference signal configuration information and the reference signal index; receive the corresponding reference signal based on the direction information of the configured reference signal; wherein, the corresponding reference signal
  • the signal is used to instruct the terminal device to perform beam measurement and/or beam management.
  • the reference signal configuration information includes at least one of the following: the index of each reference signal in the configured reference signal set; the index of the configured reference signal; The beam width of each reference signal in the configured reference signal set; the spacing angle between the transmission beams of adjacent indexed reference signals in the configured reference signal set.
  • the spacing angle includes a spacing angle in the first dimension and/or a spacing angle in the second dimension; wherein the spacing angle in the first dimension is the spacing angle of the first-dimensional beam center.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center.
  • the separation angle of the dimensional beam boundaries is a spacing angle in the first dimension and/or a spacing angle in the second dimension; wherein the spacing angle in the first dimension is the spacing angle of the first-dimensional beam center.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center.
  • the configuration method of the reference signal index is a configuration method agreed by the protocol; or, the configuration method of the reference signal index is included in the reference signal configuration information.
  • the terminal device can receive the reference signal configuration information, determine the direction information of the reference signal based on the configuration information, and receive the corresponding reference signal based on the direction, so as to complete beam measurement and/or beam management based on the reference signal.
  • the terminal equipment in the present disclosure can determine the beam information of the reference signal based on the received reference signal configuration information, and can assist the terminal equipment to better perform beam measurement, beam prediction and beam management, thereby improving the terminal equipment's beam measurement and Beam management capabilities enable precise alignment of narrow beams and real-time tracking updates.
  • an embodiment of the present disclosure provides a communication device including: a processing module for determining reference signal configuration information; a transceiver module for sending the reference signal configuration information, where the reference signal configuration information is used to indicate a reference direction information of the signal; the transceiver module is further configured to send a corresponding reference signal based on the reference signal configuration information; wherein the corresponding reference signal is used to instruct the terminal device to perform beam measurement and/or beam management.
  • the reference signal configuration information includes at least one of the following: the index of each reference signal in the configured reference signal set; the index of the configured reference signal; The beam width of each reference signal in the configured reference signal set; the spacing angle between the transmission beams of adjacent indexed reference signals in the configured reference signal set.
  • the spacing angle includes a spacing angle in the first dimension and/or a spacing angle in the second dimension; wherein the spacing angle in the first dimension is the spacing angle of the first-dimensional beam center.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center.
  • the separation angle of the dimensional beam boundaries is a spacing angle in the first dimension and/or a spacing angle in the second dimension; wherein the spacing angle in the first dimension is the spacing angle of the first-dimensional beam center.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center.
  • the processing module is specifically configured to: use the reference direction as the starting direction, use the interval angle of the first dimension as the step size, and proceed in the positive or negative direction on the first dimension. Sequentially determine the component index value of the first dimension of each reference signal in the configured reference signal set; and/or, use the reference direction as the starting direction, use the interval angle of the second dimension as the step size, in On the second dimension, the component index value of the second dimension of each reference signal in the configured reference signal set is determined sequentially according to the positive direction or the negative direction; according to the first dimension of each reference signal The component index value and/or the component index value of the second dimension of each reference signal determines the index of each reference signal in the configured reference signal set.
  • the reference direction is the beam direction of the configured reference reference signal; or, the reference direction is a preset absolute direction.
  • the transmission beam of each reference signal is a one-dimensional beam; the processing module is specifically configured to: convert the component index value of the first dimension of each reference signal or the third component of each reference signal into The two-dimensional component index value serves as the index of each reference signal.
  • the transmission beam of each reference signal is a two-dimensional beam; the processing module is specifically configured to: combine the first-dimensional component index value of each reference signal and the first-dimensional component index value of each reference signal.
  • the two-dimensional component index value serves as the index of each reference signal; or, according to the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal, An index is generated for each reference signal.
  • the processing module is specifically configured to: according to the component index value of the first dimension of each reference signal, the number of beams of the first dimension, and the component of the second dimension of each reference signal. Index value, generate the index of each reference signal; or, according to the component index value of the first dimension of each reference signal, the component index value of the second dimension of each reference signal and the second The number of beams in the dimension is used to generate an index for each reference signal.
  • the processing module is further configured to: determine a configuration mode of the reference signal index, which is the configuration mode used when configuring the index of each reference signal. ; Wherein, the reference signal configuration information also includes a configuration mode of the reference signal index.
  • embodiments of the present disclosure provide a communication device including: a transceiver module, configured to receive reference signal configuration information; the reference signal configuration information is used to indicate direction information of the reference signal; and a processing module, configured according to the The reference signal configuration information and the configuration mode of the reference signal index determine the direction information of the reference signal; the transceiver module is also used to: receive the corresponding reference signal based on the direction information of the configured reference signal; wherein, the The corresponding reference signal is used to instruct the terminal device to perform beam measurement and/or beam management.
  • the reference signal configuration information includes at least one of the following: the index of each reference signal in the configured reference signal set; the index of the configured reference signal; The beam width of each reference signal in the configured reference signal set; the spacing angle between the transmission beams of adjacent indexed reference signals in the configured reference signal set.
  • the spacing angle of the first dimension is the spacing angle of the first-dimensional beam center, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or, The spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam boundary.
  • the configuration method of the reference signal index is a configuration method agreed by the protocol; or, the configuration method of the reference signal index is included in the reference signal configuration information.
  • inventions of the present disclosure provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Execute the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the second aspect above.
  • embodiments of the present disclosure provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect.
  • the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or the system includes the communication device described in the ninth aspect and the tenth aspect the communication device.
  • embodiments of the present disclosure provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal device. When the instructions are executed, the terminal device is caused to execute the above-mentioned first aspect. Methods.
  • embodiments of the present disclosure provide a readable storage medium for storing instructions used by the above-mentioned network-side device. When the instructions are executed, the network-side device is caused to execute the above-mentioned second aspect. method described.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting a terminal device to implement the functions involved in the first aspect, for example, determining or processing data involved in the above method. and information.
  • the chip system also includes a memory, and the memory is used to save necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system.
  • the chip system includes at least one processor and an interface for supporting the network side device to implement the functions involved in the second aspect, for example, determining or processing the functions involved in the above method. At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network side device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a flow chart of a reference signal sending method provided by an embodiment of the present disclosure
  • Figure 3 is a flowchart of a method for determining the index of each reference signal in a configured reference signal set provided by an embodiment of the present disclosure
  • Figure 4 is a flowchart of another method for determining the index of each reference signal in a configured reference signal set provided by an embodiment of the present disclosure
  • Figure 5 is a flowchart of yet another method for determining the index of each reference signal in a configured reference signal set provided by an embodiment of the present disclosure
  • Figure 6 is a flow chart of a reference signal receiving method provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to a network side device and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more network-side devices and two or more terminal devices may be included.
  • the communication system shown in Figure 1 includes a network side device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network side device 101 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network side device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other future mobile communication systems.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form used by the network side equipment.
  • the network-side device provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure of -DU can separate the protocol layer of the data sending end, such as the base station. Some protocol layer functions are centralized controlled by the CU, and the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the data receiving end can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the data receiving end can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, or an augmented reality (augmented reality, AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid Wireless terminal equipment in (smart grid), wireless terminal equipment in transportation safety (transportation safety), wireless terminal equipment in smart city (smart city), wireless terminal equipment in smart home (smart home), etc.
  • FIG. 2 is a flow chart of a reference signal sending method provided by an embodiment of the present disclosure. The method is executed by a network side device. As shown in Figure 2, the reference signal sending method may include but is not limited to the following steps.
  • Step S201 Determine reference signal configuration information.
  • the reference signal configuration information in this disclosure can be understood as the configuration information of the reference signal configured by the network side device, and the configuration information can be used to represent the beam information of the reference signal configured by the network side device.
  • the network side device can configure a reference signal, where the configured reference signal can be represented by a set.
  • the reference signal set can include one or more reference signals configured by the network side device. After the network side device completes the configuration of the reference signal , the reference signal configuration information can be determined.
  • the reference signal configuration information includes at least one of the following: an index of each reference signal in the configured reference signal set; an index of the configured reference signal set; one of the configured reference signal sets.
  • the index of each reference signal can be represented by 1 index value, such as i; or, the index of each reference signal can be represented by 2 component index values, such as (m, n) represents.
  • the index of the configured base reference signal can be represented by 1 index value, such as i 0 ; or, the index of the configured base reference signal can be represented by 2 component index values, such as (m 0 ,n 0 ) represents.
  • the beam width can be understood as the angle between two beam boundaries.
  • the beam width of each reference signal can be understood as the angle between the beam boundaries of the transmission beams of two adjacent reference signals.
  • the beam boundary is defined as a beam direction that attenuates a preset decibel (for example: 3dB) relative to the strongest energy direction of the corresponding beam.
  • the separation angle between the transmit beams of the reference signals of adjacent indexes can be The angle between the left boundary of beam 1 and the right boundary of beam 2, or the angle between the right boundary of beam 1 and the left boundary of beam 2, or the angle between the left boundary of beam 1 and beam 2
  • the angle of the left boundary, or the angle between the right boundary of beam 1 and the right boundary of beam 2 can be determined according to the actual application.
  • the spacing angle may include a spacing angle in the first dimension and/or a spacing angle in the second dimension. It can be understood that when the transmitting beam of the reference signal is a first-dimensional beam, the spacing angle is the spacing angle of the first dimension; when the transmitting beam of the reference signal is a second-dimensional beam, the spacing angle is the second-dimensional beam. Spacing angle; when the transmission beam of the reference signal is a two-dimensional beam, the spacing angle includes the spacing angle of the first dimension and the spacing angle of the second dimension.
  • the spacing angle of the first dimension may be the spacing angle of the first-dimensional beam center
  • the spacing angle of the second dimension may be the spacing angle of the second-dimensional beam center
  • the spacing angle of the first dimension may be the spacing angle of the first-dimensional beam center.
  • the separation angle of the second dimension can be the separation angle of the second-dimensional beam boundary.
  • the determination method of the separation angle can include the following two methods: Method 1, the separation angle of the beam center, that is, the separation angle in the direction with the strongest beam energy; Method 2, the separation angle of the beam boundary.
  • the first dimension refers to the horizontal dimension or the vertical dimension
  • the second dimension refers to the other dimension of the horizontal dimension and the vertical dimension that is different from the first dimension.
  • the first dimension can be a horizontal dimension and the second dimension can be a vertical dimension.
  • the first dimension can be a vertical dimension
  • the second dimension can be a horizontal dimension.
  • Step S202 Send reference signal configuration information, where the reference signal configuration information is used to indicate direction information of the reference signal.
  • Step S203 Send the corresponding reference signal based on the reference signal configuration information.
  • the corresponding reference signal is used to instruct the terminal device to perform beam measurement and/or beam management.
  • the network side device uses the corresponding transmission beam to send the corresponding reference signal to the terminal device based on the reference signal configuration information.
  • the terminal device can receive the reference signal configuration information sent by the above-mentioned network side device, and determine the direction information of the reference signal configured by the network side device according to the reference signal configuration information and/or the configuration method of the reference signal index, and then receive based on the direction information.
  • the terminal device can use the received reference signal to complete beam prediction, beam management and reporting based on AI (Artificial Intelligence)/ML (Machine Learning).
  • AI Artificial Intelligence
  • Machine Learning Machine Learning
  • the network side device can send a corresponding reference signal to the terminal device in the direction of the reference signal contained in the reference signal configuration information sent to the terminal device.
  • the reference signal is used to instruct the terminal device to perform beam measurement. .
  • the network side device can send a corresponding reference signal to the terminal device in the direction of the reference signal contained in the reference signal configuration information sent to the terminal device.
  • the reference signal is used to instruct the terminal device to perform beam management. .
  • the network side device can send a corresponding reference signal to the terminal device in the direction of the reference signal contained in the reference signal configuration information sent to the terminal device.
  • the reference signal is used to instruct the terminal device to perform beam measurement. and beam management.
  • the reference signal configuration information can be determined and sent to the terminal device, so that the terminal device determines the direction information of the reference signal configured by the network side device based on the configuration information, so that the terminal device can determine the direction information of the reference signal configured by the network side device based on the configuration information.
  • a corresponding reference signal is received in the direction to complete beam measurement and/or beam management based on the reference signal. It can be seen that by sending the beam information of the reference signal to the terminal device, the present disclosure can assist the terminal device to better perform beam measurement, beam prediction and beam management, thereby improving the terminal device's beam measurement and beam management capabilities, thereby achieving Precise alignment and real-time tracking updates for narrow beams.
  • the reference signal configuration information in this disclosure is the configuration information determined after the network side device configures the reference signal.
  • the index of each reference signal in the reference signal configuration information may be determined based on the configuration manner of the reference signal index. That is to say, the present disclosure can determine the index of each reference signal in the reference signal set configured by the network side device based on the configuration manner of the reference signal index.
  • the transmission beam of the reference signal may be a one-dimensional beam, or it may be a two-dimensional beam, that is, the dimensions of the transmission beam of the reference signal are different, the configuration method of the reference signal index may also be different. The following will introduce the implementation method of determining the index of each reference signal in the reference signal configuration information from different dimensions of the transmission beam of the reference signal with reference to FIGS. 3 to 5 .
  • FIG. 3 is a flow chart of a method for determining the index of each reference signal in a configured reference signal set provided by an embodiment of the present disclosure.
  • the beam of the reference signal in the reference signal set is a one-dimensional beam and the transmission beam is a first-dimensional (such as horizontal dimension) beam
  • this method can be used to determine the index of each reference signal in the configured reference signal set.
  • the method of determining the index of each reference signal in the configured reference signal set may include but is not limited to the following steps.
  • Step S301 Taking the reference direction as the starting direction, taking the interval angle of the first dimension as the step size, sequentially determine the first dimension of each reference signal in the configured reference signal set in the first dimension according to the positive direction or the negative direction. component index value.
  • the spacing angle of the first dimension may be the spacing angle of the first-dimensional beam center; or the spacing angle of the first dimension may be the spacing angle of the first-dimensional beam boundary.
  • the spacing angle of the first dimension is the spacing angle of the first-dimensional beam center
  • the reference direction can be the starting direction
  • the spacing angle of the first-dimensional beam center can be the step size.
  • m is the first dimension of the reference signal.
  • Component index value, and the maximum value of m is the value obtained by dividing 360° by the separation angle of the first dimension.
  • the change rule of the index value with the direction of rotation can be preset. For example, it can be preset that when rotating in the positive direction, the index value gradually becomes larger, and when rotating in the negative and positive direction, the index value gradually becomes smaller. ; Or, you can preset that when rotating in the positive direction, the index value gradually becomes smaller, and when rotating in the negative and positive direction, the index value gradually becomes larger.
  • the change rule of the index value with the rotation direction can be determined according to the actual application, and this disclosure does not specifically limit this.
  • the index value when rotating in the positive direction, the index value gradually becomes larger, and when rotating in the negative and positive direction, the index value gradually becomes smaller. It is determined that the number of reference signals in the reference signal set configured by the network side device is 10. , then the number of indexes of the configured reference signal should also be 10, taking the first index number as 0 as an example, assuming that the reference direction is the starting direction, and the spacing angle of the first-dimensional beam center is the step size, in After rotating 2 steps in the positive direction on the first dimension to reach a reference signal, the index value of the reference signal is 2; after rotating 2 steps in the negative direction and reaching another reference signal, the index value of the reference signal is 8.
  • the index value when rotating in the positive direction, the index value gradually becomes smaller, and when rotating in the negative and positive direction, the index value gradually becomes larger. It is determined that the number of reference signals in the reference signal set configured by the network side device is 10. , then the number of indexes of the configured reference signal should also be 10. Taking the first index number as 0 as an example, assuming that the reference direction is the starting direction, and the interval angle of the first-dimensional beam center is the step size, If you reach a reference signal after rotating 2 steps in the positive direction on the first dimension, the index value of the reference signal is 8; if you reach another reference signal after rotating 2 steps in the negative direction, the index value of the reference signal is is 2.
  • the reference direction may be the beam direction of the configured reference reference signal; or the reference direction may be a preset absolute direction.
  • the beam direction of the reference signal configured on the network side device can be used as the reference direction, or an absolute direction can be set in advance as the reference direction; for example: set the true north direction in the horizontal dimension as the reference direction, and set the vertical direction as the reference direction.
  • the zenith direction of the dimension is set to this base direction.
  • Step S302 Determine the index of each reference signal in the configured reference signal set according to the component index value of the first dimension of each reference signal.
  • determining the index of each reference signal in the configured reference signal set based on the component index value of the first dimension of each reference signal includes: converting the first dimension of each reference signal The component index value serves as the index for each reference signal.
  • the component index value of the first dimension of each reference signal can be directly used as the index of the corresponding reference signal.
  • the reference direction can be used as the starting direction, with
  • the interval angle of the first dimension is the step size, and the component index value of the first dimension of each reference signal in the configured reference signal set is determined sequentially in the positive or negative direction on the first dimension, so that the configured reference signal can be realized index of.
  • FIG. 4 is a flow chart of another method for determining the index of each reference signal in a configured reference signal set provided by an embodiment of the present disclosure.
  • this method can be used to determine the index of each reference signal in the configured reference signal set.
  • the method of determining the index of each reference signal in the configured reference signal set may include but is not limited to the following steps.
  • Step S401 Taking the reference direction as the starting direction, taking the interval angle of the second dimension as the step size, sequentially determine the second dimension of each reference signal in the configured reference signal set in the second dimension according to the positive direction or the negative direction. component index value.
  • the spacing angle of the second dimension may be the spacing angle of the second-dimensional beam center; or the spacing angle of the second dimension may be the spacing angle of the second-dimensional beam boundary.
  • the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center
  • the preset reference direction is the starting direction
  • the spacing angle of the second-dimensional beam center is the step size.
  • n is the reference signal's th
  • the component index value of the two dimensions, and the maximum value of n is the value obtained by dividing 360° by the separation angle of the second dimension.
  • the change rule of the index value with the direction of rotation can be preset. For example, it can be preset that when rotating in the positive direction, the index value gradually becomes larger, and when rotating in the negative and positive direction, the index value gradually becomes smaller. ; Or, you can preset that when rotating in the positive direction, the index value gradually becomes smaller, and when rotating in the negative and positive direction, the index value gradually becomes larger.
  • the change rule of the index value with the rotation direction can be determined according to the actual application, and this disclosure does not specifically limit this.
  • the implementation of the component index value of the second dimension of the reference signal is similar to the implementation of the component index value of the first dimension of the reference signal in the embodiment shown in FIG. 3. Refer to the implementation of the component index value of the first dimension in the embodiment shown in FIG. 3. The description of how to implement the component index value of the first dimension of the reference signal will not be described again here.
  • the reference direction may be the beam direction of the configured reference reference signal; or the reference direction may be a preset absolute direction.
  • the beam direction of the reference signal configured on the network side device can be used as the reference direction, or an absolute direction can be set in advance as the reference direction; for example: set the true north direction in the horizontal dimension as the reference direction, and set the vertical direction as the reference direction.
  • the zenith direction of the dimension is set to this base direction.
  • Step S402 Determine the index of each reference signal in the configured reference signal set according to the component index value of the second dimension of each reference signal.
  • determining the index of each reference signal in the configured reference signal set according to the component index value of the second dimension of each reference signal includes: converting the second dimension of each reference signal The component index value serves as the index for each reference signal.
  • the component index value of the second dimension of each reference signal can be directly used as the index of each corresponding reference signal.
  • the reference direction can be used as the starting direction, with
  • the interval angle of the second dimension is the step size, and the component index value of the second dimension of each reference signal in the configured reference signal set is determined sequentially in the positive or negative direction on the second dimension, so that the configured reference signal can be realized index of.
  • FIG. 5 is a flowchart of yet another method for determining the index of each reference signal in a configured reference signal set provided by an embodiment of the present disclosure.
  • this method can be used to determine the index of each reference signal in the configured reference signal set.
  • the method of determining the index of each reference signal in the configured reference signal set may include but is not limited to the following steps.
  • Step S501 Taking the reference direction as the starting direction, taking the interval angle of the first dimension as the step size, sequentially determine the first dimension of each reference signal in the configured reference signal set in the first dimension according to the positive direction or the negative direction. component index value.
  • step S501 can be implemented in any manner in the embodiments of the present disclosure.
  • the embodiments of the present disclosure do not limit this and will not be described again.
  • Step S502 Taking the reference direction as the starting direction, taking the interval angle of the second dimension as the step size, sequentially determine the second dimension of each reference signal in the configured reference signal set in the second dimension according to the positive direction or the negative direction. component index value.
  • step S502 can be implemented in any manner in the embodiments of the present disclosure.
  • the embodiments of the present disclosure do not limit this and will not be described again.
  • the direction in which the component index value of the first dimension of the reference signal is determined in the first dimension, and the component index value of the second dimension of the reference signal in the second dimension is determined in the direction of The directions can be the same or different.
  • each reference signal in the configured reference signal set can be determined sequentially in the positive direction on the first dimension.
  • the component index value of the first dimension, with the reference direction of the second dimension as the starting direction, the interval angle of the second dimension as the step size, and the set of reference signals configured sequentially in the negative direction on the second dimension can be determined sequentially in the positive direction on the first dimension.
  • each reference in the configured reference signal set can be determined sequentially in the positive direction on the first dimension.
  • the component index value of the first dimension of the signal, with the reference direction of the second dimension as the starting direction, the interval angle of the second dimension as the step size, and the set of reference signals configured in the second dimension are determined sequentially in the positive direction.
  • the component index value of the second dimension of each reference signal in .
  • each reference signal in the configured reference signal set can be determined sequentially in the negative direction on the first dimension.
  • the component index value of the first dimension, with the reference direction of the second dimension as the starting direction, the interval angle of the second dimension as the step size, and the set of reference signals configured sequentially in the negative direction on the second dimension can be determined sequentially in the negative direction on the second dimension.
  • each reference in the configured reference signal set can be determined sequentially in the negative direction on the first dimension.
  • the component index value of the first dimension of the signal, with the reference direction of the second dimension as the starting direction, the interval angle of the second dimension as the step size, and the set of reference signals configured in the second dimension are determined sequentially in the positive direction.
  • the component index value of the second dimension of each reference signal in .
  • Step S503 Determine the index of each reference signal in the configured reference signal set based on the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal.
  • the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal can be used as the index of each reference signal; alternatively, the component index value of the first dimension of each reference signal can be used as the index of each reference signal.
  • the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal generate an index of each reference signal.
  • the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal can be directly used as the corresponding The index of each reference signal.
  • the component index value of the first dimension of a reference signal and the reference signal can be The component index value of the second dimension of the signal is directly used as the two components of the index of the reference signal, that is, the index of the reference signal is (m, n), that is, it is represented by two component index values.
  • a preset generation function can be used based on the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal. , generate the index of each reference signal.
  • the index of each reference signal may be generated based on the component index value of the first dimension of each reference signal, the number of beams in the first dimension, and the component index value of the second dimension of each reference signal. ; Or, generate the index of each reference signal according to the component index value of the first dimension of each reference signal, the component index value of the second dimension of each reference signal, and the number of beams in the second dimension.
  • the index used to generate each reference signal is generated based on the component index value of the first dimension of each reference signal, the number of beams in the first dimension, and the component index value of the second dimension of each reference signal.
  • the formula of the function can be expressed as follows:
  • i is the index of the reference signal
  • m is the component index value of the first dimension of each reference signal
  • M is the number of beams in the first dimension
  • n is the component index value of the second dimension of each reference signal, as a
  • m and n can start from index number 0 respectively.
  • the index for each reference signal is generated based on the component index value of the first dimension of each reference signal, the component index value of the second dimension of each reference signal, and the number of beams in the second dimension.
  • the formula of the function can be expressed as follows:
  • i is the index of the reference signal
  • m is the component index value of the first dimension of each reference signal
  • M is the number of beams in the first dimension
  • n is the component index value of the second dimension of each reference signal, as a
  • m and n can start from index number 0 respectively.
  • the reference directions of the first and second dimensions can be respectively used as the starting direction, and the corresponding first and second dimensions can be used as the starting direction.
  • the two-dimensional interval angle is the step size, and the component index values of the first and second dimensions of each reference signal in the configured reference signal set are determined sequentially in the first and second dimensions according to the positive or negative direction, This enables indexing of configured reference signals.
  • the reference signal sending method may further include: determining a configuration method of the reference signal index, which is the configuration method used when configuring the index of each reference signal; wherein , the reference signal configuration information may also include a configuration method of the reference signal index.
  • the configuration mode of the reference signal index in this disclosure may be agreed upon by the protocol, or the configuration mode of the reference signal index may be set in advance.
  • the network side device can determine the index of each reference signal based on the configuration method agreed by the protocol, and send the reference signal to the terminal device.
  • the terminal device After receiving the reference signal configuration information, the terminal device can perform corresponding processing based on the configuration method of the reference signal index agreed upon in the protocol.
  • the configuration mode of the reference signal index is preset, the network side device also needs to send the configuration mode of the reference signal index to the terminal device.
  • the reference signal configuration information sent by the network side device to the terminal device may also include the configuration method used to configure the index of each reference signal.
  • FIG. 6 is a flow chart of a method for receiving a reference signal provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 6, the reference signal receiving method may include but is not limited to the following steps.
  • Step S601 Receive reference signal configuration information; the reference signal configuration information is used to indicate direction information of the reference signal.
  • the reference signal configuration information may be sent by a network side device.
  • the reference signal configuration information includes at least one of the following: an index of each reference signal in the configured reference signal set; an index of the configured reference signal set; one of the configured reference signal sets.
  • the index of each reference signal can be represented by 1 index value, such as i; or, the index of each reference signal can be represented by 2 component index values, such as (m, n) represents.
  • the index of the configured base reference signal can be represented by 1 index value, such as i 0.
  • the index of the configured base reference signal can be represented by 2 component index values, such as (m 0 ,n 0 ) means.
  • the beam width can be understood as the angle between two beam boundaries.
  • the beam width of each reference signal can be understood as the angle ⁇ between the beam boundaries of the transmission beams of two adjacent reference signals.
  • the spacing angle may include a spacing angle in the first dimension and/or a spacing angle in the second dimension. It can be understood that when the beam of the reference signal is a first-dimensional beam, the spacing angle is the spacing angle of the first dimension; when the beam of the reference signal is a second-dimensional beam, the spacing angle is the spacing angle of the second dimension. ; When the beam of the reference signal is a two-dimensional beam, the spacing angle includes the spacing angle of the first dimension and the spacing angle of the second dimension.
  • the spacing angle of the first dimension may be the spacing angle of the first-dimensional beam center
  • the spacing angle of the second dimension may be the spacing angle of the second-dimensional beam center
  • the spacing angle of the first dimension may be the spacing angle of the first-dimensional beam center.
  • the separation angle of the second dimension can be the separation angle of the second-dimensional beam boundary.
  • the determination method of the separation angle can include the following two methods: Method 1, the separation angle of the beam center, that is, the separation angle in the direction with the strongest beam energy; Method 2, the separation angle of the beam boundary.
  • Step S602 Determine the direction information of the reference signal according to the reference signal configuration information and the configuration mode of the reference signal index.
  • the component index value of each dimension of the reference signal configured by the network side device can be determined, based on the reference signal component index value and the corresponding pair separation angle. , the strongest energy direction and/or beam width of the reference signal can be obtained.
  • the transmitting beam of the reference signal as a two-dimensional beam.
  • the index value of the reference signal is (2,3)
  • the spacing angle is 10° (such as the spacing angle of the first-dimensional beam center) and 15° (such as the distance between the second-dimensional beam centers)
  • the direction with the strongest beam energy of the reference signal in the first dimension is starting from the reference direction of the first dimension and increasing by the specified first-dimensional index value.
  • the direction with the strongest beam energy of the reference signal in the second dimension is based on the reference direction of the second dimension as the starting angle, at the specified second dimension index value
  • the configuration method of the reference signal index is a configuration method specified by the protocol; or the configuration method of the reference signal index is included in the received reference signal configuration information.
  • the configuration method of the reference signal index in the embodiment of the present disclosure may be agreed upon by the protocol, or the configuration method of the reference signal index may be set in advance.
  • the terminal device when the configuration method of the reference signal index is agreed by the protocol, the terminal device can determine the index of each reference signal based on the configuration method agreed by the protocol, and receive the reference signal sent by the network side device. When configuring signal information, the corresponding processing is performed based on the configuration method of the reference signal index agreed upon in the protocol.
  • the configuration mode of the reference signal index is preset, the terminal device needs to determine the configuration mode of the reference signal index from the received reference signal configuration information, that is, the configuration mode used when configuring the index of each reference signal.
  • Step S603 Based on the configured direction information of the reference signal, receive the corresponding reference signal.
  • the corresponding reference signal is used to instruct the terminal device to perform beam measurement and/or beam management.
  • the reference signal is received in the angular direction corresponding to the direction information.
  • the terminal device can use the received reference signal to complete AI/ML-based beam prediction, beam management, and reporting.
  • the reference signal may be sent by the network side device that sends the reference signal configuration information, or may be sent by other devices (for example, another network side device).
  • the terminal device may receive the reference signal configuration information sent by the network side device A, and based on the reference signal configuration information, receive the reference signal sent by the network side device B in the corresponding angular direction.
  • the terminal device can receive the reference signal configuration information sent by the network side device, determine the direction information of the reference signal configured by the network side device based on the configuration information, and receive the corresponding reference signal based on the direction, so as to This reference signal performs beam measurement and/or beam management. It can be seen that the terminal device in the present disclosure can determine the beam information of the reference signal configured by the network side device based on the received reference signal configuration information, so that it can better perform beam measurement, beam prediction and beam management, thereby improving the performance of the terminal device. Beam measurement and beam management capabilities enable precise alignment of narrow beams and real-time tracking updates.
  • FIG. 7 is a schematic structural diagram of a communication device 700 according to an embodiment of the present disclosure.
  • the communication device 700 shown in FIG. 7 may include a transceiver module 701 and a processing module 702.
  • the transceiver module 701 may include a transceiver module and/or a transceiver module.
  • the transceiver module is used to implement the sending function.
  • the transceiver module is used to implement the receiving function.
  • the transceiver module 701 may implement the sending function and/or the receiving function.
  • the communication device 700 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 700 may be a network-side device, a device in the network-side device, or a device that can be used in conjunction with the network-side device.
  • the communication device 700 is a network side device: in the embodiment of the present disclosure, the processing module 701 is used to determine the reference signal configuration information; the transceiver module 702 is used to send the reference signal configuration information, and the reference signal configuration information is used to indicate the reference signal. Direction information; the transceiver module 702 is also used to send corresponding reference signals based on the reference signal configuration information; wherein the corresponding reference signals are used to instruct the terminal equipment to perform beam measurement and/or beam management.
  • the reference signal configuration information includes at least one of the following: the index of each reference signal in the configured reference signal set; the index of the configured reference signal; each reference signal in the configured reference signal set.
  • the beam width of the signal the spacing angle between the transmit beams of adjacent indexed reference signals in the configured reference signal set.
  • the spacing angle includes the spacing angle of the first dimension and/or the spacing angle of the second dimension; wherein the spacing angle of the first dimension is the spacing angle of the first-dimensional beam center, and the spacing angle of the second dimension
  • the spacing angle of is the spacing angle of the second-dimensional beam center; or the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam boundary.
  • the processing module 701 is specifically configured to: use the reference direction as the starting direction, use the interval angle of the first dimension as the step size, and sequentially determine the configuration in the first dimension according to the positive direction or the negative direction.
  • the component index value of the first dimension of each reference signal set in the reference signal set; and/or, taking the reference direction as the starting direction, taking the interval angle of the second dimension as the step size, in the second dimension according to the positive direction Or the negative direction determines the component index value of the second dimension of each reference signal in the configured reference signal set in turn; according to the component index value of the first dimension of each reference signal and/or the second dimension of each reference signal
  • the component index value determines the index of each reference signal in the configured reference signal set.
  • the reference direction is the beam direction of the configured reference reference signal; or, the reference direction is a preset absolute direction.
  • the processing module 701 is specifically configured to: convert the component index value of the first dimension of each reference signal or the component index value of the second dimension of each reference signal into , as the index of each reference signal.
  • the processing module 701 is specifically configured to: combine the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal. , as the index of each reference signal; or, generate the index of each reference signal according to the component index value of the first dimension of each reference signal and the component index value of the second dimension of each reference signal.
  • the processing module 701 is specifically configured to: generate each reference signal according to the component index value of the first dimension of each reference signal, the number of beams in the first dimension, and the component index value of the second dimension of each reference signal.
  • the index of the signal or, generate the index of each reference signal based on the component index value of the first dimension of each reference signal, the component index value of the second dimension of each reference signal, and the number of beams in the second dimension.
  • the processing module 701 is also used to determine the configuration mode of the reference signal index.
  • the configuration mode of the reference signal index is the configuration mode used when configuring the index of each reference signal; wherein, the reference signal
  • the configuration information also includes the configuration method of the reference signal index.
  • the reference signal configuration information can be determined and the configuration information can be sent, so that after receiving the configuration information, the terminal device determines the direction information of the reference signal based on the configuration information, so that the terminal device can determine the direction information of the reference signal based on the configuration information.
  • a corresponding reference signal is received in this direction to complete beam measurement and/or beam management based on the reference signal. It can be seen that by sending the beam information of the reference signal, the present disclosure can assist the terminal equipment to better perform beam measurement, beam prediction and beam management, thereby improving the terminal equipment's beam measurement and beam management capabilities, thereby enabling narrow beam processing. for precise alignment and real-time tracking updates.
  • the communication device 700 is a terminal device: in the embodiment of the present disclosure, the transceiver module 702 is used to receive reference signal configuration information; the reference signal configuration information is used to indicate the direction information of the reference signal; the processing module 701 is used to configure according to the reference signal The configuration method of the information and reference signal index determines the direction information of the reference signal; the transceiver module 702 is also used to: receive the corresponding reference signal based on the configured direction information of the reference signal; wherein the corresponding reference signal is used to instruct the terminal device to perform Beam measurement and/or beam management.
  • the reference signal configuration information includes at least one of the following: the index of each reference signal in the configured reference signal set; the index of the configured reference signal; each reference signal in the configured reference signal set.
  • the beam width of the signal the spacing angle between the transmit beams of adjacent indexed reference signals in the configured reference signal set.
  • the spacing angle of the first dimension is the spacing angle of the first-dimensional beam center, and the spacing angle of the second dimension is the spacing angle of the second-dimensional beam center; or, the spacing angle of the first dimension is the spacing angle of the first-dimensional beam boundary, and the spacing angle of the second-dimensional beam is the spacing angle of the second-dimensional beam boundary.
  • the configuration method of the reference signal index is a configuration method specified by the protocol; or the configuration method of the reference signal index is included in the reference signal configuration information.
  • the terminal device can receive the reference signal configuration information sent by the network side device, determine the direction information of the reference signal configured by the network side device based on the configuration information, and receive the corresponding reference signal based on the direction, In order to complete beam measurement and/or beam management based on the reference signal. It can be seen that the terminal equipment in the present disclosure can determine the beam information of the reference signal based on the received reference signal configuration information, and can assist the terminal equipment to better perform beam measurement, beam prediction and beam management, thereby improving the terminal equipment's beam measurement and Beam management capabilities enable precise alignment of narrow beams and real-time tracking updates.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present disclosure.
  • the communication device 800 may be a network-side device, or may be a chip, chip system, or processor that supports the network-side device to implement the above method, or may be a chip, chip system, or processor that supports the terminal device to implement the above method.
  • the communication device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the communication device 800 may be a terminal device, or a chip, chip system, or processor that supports the terminal device to implement the above method, or a chip, chip system, or processor that supports the terminal device to implement the above method.
  • the communication device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 800 may include one or more processors 801.
  • the processor 801 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, electronic equipment, electronic equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 800 may also include one or more memories 802, on which a computer program 803 may be stored.
  • the processor 801 executes the computer program 803, so that the communication device 800 performs the steps described in the above method embodiments. method.
  • the memory 802 may also store data.
  • the communication device 800 and the memory 802 can be provided separately or integrated together.
  • the communication device 800 may also include a transceiver 804 and an antenna 805.
  • the transceiver 804 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 804 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the sending function.
  • the communication device 800 may also include one or more interface circuits 806.
  • the interface circuit 806 is used to receive code instructions and transmit them to the processor 801.
  • the processor 801 executes the code instructions to cause the communication device 800 to perform the method described in the above method embodiment.
  • the communication device 800 is the network side device in the aforementioned method embodiment: the processor 801 is used to execute step S201 in Figure 2, step S301 and step S302 in Figure 3, step S401 and step S402 in Figure 4, and step S402 in Figure 5. Steps S501, S502 and S503.
  • the transceiver 804 is used to perform step S202 and step S203 in FIG. 2 .
  • the communication device 800 is the terminal device in the aforementioned method embodiment: the processor 801 is configured to execute step S602 in Figure 6 .
  • the transceiver 804 is used to perform step S601 and step S603 in FIG. 6 .
  • the processor 801 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 801 may store a computer program, and the computer program runs on the processor 801, causing the communication device 800 to execute the method described in the above method embodiment.
  • the computer program may be solidified in the processor 801, in which case the processor 801 may be implemented by hardware.
  • the communication device 801 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), communication devices, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network side device or a terminal device, but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 8 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • Embodiments of the present disclosure also provide a communication system that includes a communication device as a network side device in the aforementioned embodiment of FIG. 7 and a communication device as a terminal device, or the system includes a communication device as a network side device in the aforementioned embodiment of FIG. 8 Communication device of equipment and communication device as terminal equipment.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the computer program product includes one or more computer programs.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technology is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described by “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号的发送方法、接收方法及其装置,其中,发送方法由网络侧设备执行,方法包括:确定参考信号配置信息;发送参考信号配置信息,参考信号配置信息用于指示参考信号的方向信息;基于参考信号配置信息发送相应的参考信号;其中,相应的参考信号用于指示终端设备进行波束测量和/或波束管理。确定参考信号配置信息,并发送配置信息,以使终端设备在接收配置信息后,基于配置信息确定网络侧设备配置的参考信号的方向信息,使得终端设备基于方向接收相应的参考信号,以便基于参考信号完成波束测量和/或波束管理。

Description

参考信号的发送方法、接收方法及其装置 技术领域
本公开涉及通信领域,尤其涉及一种参考信号的发送方法、接收方法及其装置。
背景技术
随着低频段无线频谱资源被消耗殆尽,发展和利用高频段的毫米波,乃至太赫兹通信技术成为一种必然趋势。
相关技术中,为了应对高频段毫米波、太赫兹通信所面临的路损的挑战,需要使用窄波束进行数据传输。然而在移动通信场景中,如何实现对窄波束的精确对准和实时跟踪更新,成为需要亟待解决的问题。
发明内容
本公开的实施例提供一种参考信号的发送方法、接收方法及其装置,通过发送参考信号的波束信息,能够辅助终端设备更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
第一方面,本公开的实施例提供一种参考信号的发送方法,所述方法由网络侧设备执行,所述方法包括:确定参考信号配置信息;发送所述参考信号配置信息,所述参考信号配置信息用于指示参考信号的方向信息;基于所述参考信号配置信息发送相应的参考信号;其中,所述相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
在一种实现方式中,所述参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;所述配置的参考信号集合之中每个参考信号的波束宽度;所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种可选的实现方式中,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
可选地,确定所述配置的参考信号集合之中每个参考信号的索引,包括:以基准方向为起始方向,以第一维的间隔角度为步长,在所述第一维上按照正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第一维的分量索引值;和/或,以所述基准方向为起始方向,以第二维的间隔角度为步长,在所述第二维上按照所述正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第二维的分量索引值;根据所述每个参考信号的第一维的分量索引值和/或所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引。
可选地,所述基准方向为所述配置的基准参考信号的波束方向;或者,所述基准方向为预设的绝对方向。
可选地,所述每个参考信号的发送波束为一维波束,所述根据所述每个参考信号的第一维的分量索引值或所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引,包括:将所述每个参考信号的第一维的分量索引值或所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引。
可选地,所述每个参考信号的发送波束为二维波束;根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引,包括:将所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引;或者,根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引。
可选地,所述根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引,包括:根据所述每个参考信号的第一维的分量索引值、所述第一维的波束数目、以及所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引;或者,根据所述每个参考信号的第一维的分量索引值、所述每个参考信号的第二维的分量索引值以及所述第二维的波束数目,生成所述每个参考信号的索引。
可选地,所述方法还包括:确定参考信号索引的配置方式,所述参考信号索引的配置方式为配置 所述每个参考信号的索引时所采用的配置方式;其中,所述参考信号配置信息还包括所述参考信号索引的配置方式。
通过本公开的技术方案,可以确定参考信号配置信息,并发送该配置信息,以使终端设备在接受该配置信息后,基于该配置信息确定网络侧设备配置的参考信号的方向信息,使得终端设备基于该方向接收相应的参考信号,以便基于该参考信号完成波束测量和/或波束管理。由此可见,本公开通过发送参考信号的波束信息,能够辅助终端设备更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
第二方面,本公开的实施例提供一种参考信号的接收方法,所述方法由终端设备执行,所述方法包括:接收参考信号配置信息;所述参考信号配置信息用于指示参考信号的方向信息;根据所述参考信号配置信息和参考信号索引的配置方式,确定所述参考信号的方向信息;基于所述配置的参考信号的方向信息,接收相应的参考信号;其中,所述相应的参考信号用于指示所述终端设备进行波束测量和/或波束管理。
在一种实现方式中,所述参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;所述配置的参考信号集合之中每个参考信号的波束宽度;所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种可选地实现方式中,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
在一种实现方式中,所述参考信号索引的配置方式为由协议约定的配置方式;或者,所述参考信号索引的配置方式包含于所述参考信号配置信息中。
通过本公开的技术方案,终端设备可以接收参考信号配置信息,基于该配置信息确定参考信号的方向信息,并基于该方向接收相应的参考信号,以便基于该参考信号完成波束测量和/或波束管理。由此可见,本公开中的终端设备可以基于接收的参考信号配置信息确定参考信号的波束信息,可以辅助终端设备更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
第三方面,本公开的实施例提供一种通信装置包括:处理模块,用于确定参考信号配置信息;收发模块,用于发送所述参考信号配置信息,所述参考信号配置信息用于指示参考信号的方向信息;所述收发模块,还用于基于所述参考信号配置信息发送相应的参考信号;其中,所述相应的参考信号用于指示所述终端设备进行波束测量和/或波束管理。
在一种实现方式中,所述参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;所述配置的参考信号集合之中每个参考信号的波束宽度;所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种可选的实现方式中,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
在一种可选地实现方式中,所述处理模块具体用于:以基准方向为起始方向,以第一维的间隔角度为步长,在所述第一维上按照正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第一维的分量索引值;和/或,以所述基准方向为起始方向,以第二维的间隔角度为步长,在所述第二维上按照所述正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第二维的分量索引值;根据所述每个参考信号的第一维的分量索引值和/或所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引。
可选地,所述基准方向为所述配置的基准参考信号的波束方向;或者,所述基准方向为预设的绝对方向。
可选地,所述每个参考信号的发送波束为一维波束;所述处理模块具体用于:将所述每个参考信号的第一维的分量索引值或所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引。
可选地,所述每个参考信号的发送波束为二维波束;所述处理模块具体用于:将所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引;或者,根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引。
可选地,所述处理模块具体用于:根据所述每个参考信号的第一维的分量索引值、所述第一维的波束数目、以及所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引;或者,根据所述每个参考信号的第一维的分量索引值、所述每个参考信号的第二维的分量索引值以及所述第二维的波束数目,生成所述每个参考信号的索引。
在一种可选地实现方式中,所述处理模块还用于:确定参考信号索引的配置方式,所述参考信号索引的配置方式为配置所述每个参考信号的索引时所采用的配置方式;其中,所述参考信号配置信息还包括所述参考信号索引的配置方式。
第四方面,本公开的实施例提供一种通信装置包括:收发模块,用于接收参考信号配置信息;所述参考信号配置信息用于指示参考信号的方向信息;处理模块,用于根据所述参考信号配置信息和参考信号索引的配置方式,确定所述参考信号的方向信息;所述收发模块还用于:基于所述配置的参考信号的方向信息,接收相应的参考信号;其中,所述相应的参考信号用于指示所述终端设备进行波束测量和/或波束管理。
在一种实现方式中,所述参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;所述配置的参考信号集合之中每个参考信号的波束宽度;所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种可选地实现方式中,所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
在一种实现方式中,所述参考信号索引的配置方式为由协议约定的配置方式;或者,所述参考信号索引的配置方式包含于所述参考信号配置信息中。
第五方面,本公开的实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开的实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开的实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开的实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开的实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开的实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开的实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本公开的实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本公开的实施例提供一种可读存储介质,用于储存为上述网络侧设备所用的指令,当所述指令被执行时,使所述网络侧设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程 序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络侧设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络侧设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开的实施例或背景技术中的技术方案,下面将对本公开的实施例或背景技术中所需要使用的附图进行说明。
图1是本公开的实施例提供的一种通信系统的架构示意图;
图2是本公开的实施例提供的一种参考信号的发送方法的流程图;
图3是本公开的实施例提供的一种确定配置的参考信号集合之中每个参考信号的索引的方法的流程图;
图4是本公开的实施例提供的另一种确定配置的参考信号集合之中每个参考信号的索引的方法的流程图;
图5是本公开的实施例提供的又一种确定配置的参考信号集合之中每个参考信号的索引的方法的流程图;
图6是本公开的实施例提供的一种参考信号的接收方法的流程图;
图7是本公开的实施例提供的一种通信装置的结构示意图;
图8是本公开的实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。其中,在本公开的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本公开的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,在本公开的实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开的实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具有优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了更好的理解本公开的实施例公开的一种参考信号的发送方法、接收方法及其装置,下面首先对本公开的实施例使用的通信系统进行描述。
请参见图1,图1为本公开的实施例提供的一种通信系统的架构示意图。该通信系统可以包括但不限于一个网络侧设备及一个终端设备。图1所示的设备数量和形态仅用于举例并不构成对本公开的实施例的限定,实际应用中可以包括两个或两个以上的网络侧设备及两个或两个以上的终端设备。图1所示的通信系统以包括一个网络侧设备101和一个终端设备102为例。
需要说明的是,本公开的实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本公开的实施例中的网络侧设备101是网络侧的一种用于发射或接收信号的实体。例如,网络侧设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络侧设备所采用的具体技术和具 体设备形态不做限定。本公开的实施例提供的网络侧设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将数据发送端,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开的实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。数据接收端也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。数据接收端可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。
可以理解的是,本公开的实施例描述的通信系统是为了更加清楚的说明本公开的实施例的技术方案,并不构成对于本公开的实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开的实施例提供的技术方案对于类似的技术问题,同样适用。
请参见图2,图2为本公开的实施例提供的一种参考信号的发送方法的流程图,该方法由网络侧设备执行。如图2所示,该参考信号的发送方法可以包括但不限于以下步骤。
步骤S201:确定参考信号配置信息。
其中,本公开中的参考信号配置信息可理解为网络侧设备配置的参考信号的配置信息,该配置信息可用以表征网络侧设备配置的参考信号的波束信息。例如,网络侧设备可以配置参考信号,其中配置的参考信号可以用集合来表示,该参考信号集合中可以有一个或多个网络侧设备配置的参考信号,在网络侧设备完成参考信号的配置后,可以确定参考信号配置信息。
其中,在本公开的一些实施例中,参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;配置的参考信号集合之中每个参考信号的波束宽度;配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种实现方式中,每个参考信号的索引可以分别用1个索引值表示,比如用i表示;或者,每个参考信号的索引可以分别用2个分量索引值表示,比如使用(m,n)表示。
在一种实现方式中,配置的基准参考信号的索引可以使用1个索引值表示,比如用i 0表示;或者,配置的基准参考信号的索引可以用2个分量索引值表示,比如使用(m 0,n 0)表示。
在一种实现方式中,该波束宽度可理解为两个波束边界之间的夹角。其中,每个参考信号的波束宽度可理解为两个相邻索引的参考信号的发送波束的波束边界之间的夹角。其中,在本公开的实施例中,波束边界定义为:相对于对应波束最强能量方向衰减预设分贝(例如:3dB)的波束方向。
在一种实现方式中,以相邻索引的两个参考信号对应的两个发送波束为波束1及波束2为例,则相邻索引的参考信号的发送波束之间的间隔角度可以是相邻波束中波束1的左边界与波束2右边界间的角度,或者还可以是波束1的右边界与波束2的左边界间的角度,或者,还可以是波束1的左边界间与波束2的左边界的角度,或者,还可以是波束1的右边界与波束2的右边界间的角度,可根据实际应用决定。
在一种可选地实现方式中,该间隔角度可包括第一维的间隔角度和/或第二维的间隔角度。可以理解,当参考信号的发送波束为第一维波束时,则该间隔角度为第一维的间隔角度;当参考信号的发送波束为第二维波束时,则该间隔角度为第二维的间隔角度;当参考信号的发送波束为二维波束时,则该间隔角度包括第一维的间隔角度和第二维的间隔角度。
其中,第一维的间隔角度可以为第一维波束中心的间隔角度,第二维的间隔角度可以为第二维波束中心的间隔角度;或者,第一维的间隔角度可以为第一维波束边界的间隔角度,第二维的间隔角度可以为第二维波束边界的间隔角度。
也就是说,该间隔角度的确定方式可以包括以下两种方式:方式1,波束中心的间隔角度,即波束能量最强的方向的间隔角度;方式2,波束边界的间隔角度。
需要说明的是,在本公开的实施例中,第一维指水平维度或者垂直维度,第二维指水平维度和垂直维度中与第一维度不同的另一维度。例如,第一维可以为水平维度,第二维可以为垂直维度。又如,第一维可以为垂直维度,第二维可以为水平维度。
步骤S202:发送参考信号配置信息,该参考信号配置信息用于指示参考信号的方向信息。
步骤S203:基于参考信号配置信息发送相应的参考信号。
其中,在本公开的一些实施例中,该相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
举例而言,网络侧设备基于参考信号配置信息,使用对应的发送波束向终端设备发送相应的参考信号。终端设备可以接收上述网络侧设备发送的参考信号配置信息,并根据该参考信号配置信息和/或参考信号索引的配置方式,确定网络侧设备配置的参考信号的方向信息,进而基于该方向信息接收相应的参考信号,以便基于接收到的参考信号完成波束测量和/或波束管理。作为一种示例,终端设备可以利用接收到的参考信号完成基于AI(Artificial Intelligence,人工智能)/ML(Machine Learning,机器学习)的波束预测、波束管理和上报。
在一种实现方式中,网络侧设备可以在向终端设备发送的参考信号配置信息中包含的参考信号的方向上,向终端设备发送相应的参考信号,该参考信号用于指示终端设备进行波束测量。
在一种实现方式中,网络侧设备可以在向终端设备发送的参考信号配置信息中包含的参考信号的方向上,向终端设备发送相应的参考信号,该参考信号用于指示终端设备进行波束管理。
在一种实现方式中,网络侧设备可以在向终端设备发送的参考信号配置信息中包含的参考信号的方向上,向终端设备发送相应的参考信号,该参考信号用于指示终端设备进行波束测量和波束管理。
通过实施本公开的实施例,可以确定参考信号配置信息,并将该配置信息发送至终端设备,以使终端设备基于该配置信息确定网络侧设备配置的参考信号的方向信息,使得终端设备基于该方向接收相应的参考信号,以便基于该参考信号完成波束测量和/或波束管理。由此可见,本公开通过向终端设备发送参考信号的波束信息,能够辅助终端设备更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
需要说明的是,本公开中的参考信号配置信息是网络侧设备配置参考信号后确定的配置信息。其中,该参考信号配置信息中每个参考信号的索引可以基于参考信号索引的配置方式来确定。也就是说,本公开可以基于参考信号索引的配置方式来确定网络侧设备配置的参考信号集合之中每个参考信号的索引。可以理解,由于参考信号的发送波束可能为一维波束,或者还有可能为二维波束,即参考信号的发送波束的维度的不同,导致参考信号索引的配置方式也可能会有所不同。下面将结合图3至图5从参考信号的发送波束的不同维度,分别介绍确定参考信号配置信息之中每个参考信号的索引的实现方式。
在本公开的一些实施例中,请参见图3,图3为本公开的实施例提供的一种确定配置的参考信号集合之中每个参考信号的索引的方法的流程图。当参考信号集合中参考信号的波束为一维波束时,且该发送波束为第一维(如水平维度)波束时,可采用该方法确定配置的参考信号集合之中每个参考信号的索引。如图3所示,该确定配置的参考信号集合之中每个参考信号的索引的方法可以包括但不限于以下步骤。
步骤S301:以基准方向为起始方向,以第一维的间隔角度为步长,在第一维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值。
在本公开的实施例中,该第一维的间隔角度可以为第一维波束中心的间隔角度;或者,该第一维的间隔角度可以为第一维波束边界的间隔角度。
举例而言,以该第一维的间隔角度为第一维波束中心的间隔角度为例,可以基准方向为起始方向,以第一维波束中心的间隔角度为步长,在第一维上按照规定的正方向或负方向,经m个步长后到达某一参考信号的预设位置(例如,该参考信号波束能量最强的方向),则m即为该参考信号的第一维的分量索引值,且m的最大值为360°除以第一维的间隔角度所得的值。
需要说明的是,随着旋转方向的不同,索引值大小变化也会不同。在本公开的一些实施例中,可以预先设置索引值随旋转方向的大小变化规律,例如:可以预先设置按正方向旋转时,索引值逐渐变大,按负正方向旋转,索引值逐渐变小;或者,可以预先设置按正方向旋转时,索引值逐渐变小,按负正方向旋转,索引值逐渐变大。可以根据实际应用来决定该索引值随旋转方向的大小变化规律,对此本公开不做具体限定。
作为一种示例,以按正方向旋转时,索引值逐渐变大,按负正方向旋转,索引值逐渐变小为例,确定网络侧设备配置的参考信号集合中参考信号的个数为10个,则配置的参考信号的索引个数也应为10个,以第一个索引序号为0为例,假设以基准方向为起始方向,以第一维波束中心的间隔角度为步长,在第一维上正方向旋转2个步长后到达一个参考信号,则该参考信号的索引值为2;在负方向旋转2个步长后到达另一个参考信号,则该参考信号的索引值为8。
作为另一种示例,以按正方向旋转时,索引值逐渐变小,按负正方向旋转,索引值逐渐变大为例,确定网络侧设备配置的参考信号集合中参考信号的个数为10个,则配置的参考信号的索引个数也应为 10个,以第一个索引序号为0为例,假设以基准方向为起始方向,以第一维波束中心的间隔角度为步长,在第一维上正方向旋转2个步长后到达一个参考信号,则该参考信号的索引值为8;在负方向旋转2个步长后到达另一个参考信号,则该参考信号的索引值为2。
在一种可选地实现方式中,该基准方向可以为配置的基准参考信号的波束方向;或者,基准方向可以为预设的绝对方向。
举例而言,可以将网络侧设备配置的基准参考信号的波束方向作为基准方向,或者,可以预先设置一个绝对方向作为基准方向;例如:将水平维度的正北方向设置为该基准方向,将垂直维度的天顶方向设置为该基准方向。
步骤S302:根据每个参考信号的第一维的分量索引值确定配置的参考信号集合之中每个参考信号的索引。
在一种可选地实现方式中,根据每个参考信号的第一维的分量索引值确定配置的参考信号集合之中每个参考信号的索引,包括:将每个参考信号的第一维的分量索引值作为每个参考信号的索引。
举例而言,可将每个参考信号的第一维的分量索引值直接作为对应的参考信号的索引。
通过实施本公开的实施例,在参考信号集合中参考信号的发送波束为一维波束时,且该发送波束为第一维(如水平维度)波束时,可以以基准方向为起始方向,以第一维的间隔角度为步长,在第一维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值,从而可以实现配置的参考信号的索引。
在本公开的一些实施例中,请参见图4,图4为本公开的实施例提供的另一种确定配置的参考信号集合之中每个参考信号的索引的方法的流程图。当参考信号集合中参考信号的波束为一维波束时,且该发送波束为第二维(如垂直维度)波束时,可采用该方法确定配置的参考信号集合之中每个参考信号的索引。如图4所示,该确定配置的参考信号集合之中每个参考信号的索引的方法可以包括但不限于以下步骤。
步骤S401:以基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值。
在本公开的实施例中,该第二维的间隔角度可以为第二维波束中心的间隔角度;或者,该第二维的间隔角度可以为第二维波束边界的间隔角度。
举例而言,以该第二维的间隔角度为第二维波束中心的间隔角度为例,以预先设置的基准方向为起始方向,以第二维波束中心的间隔角度为步长,在第二维上按照规定的正方向或负方向,经n个步长后到达某一参考信号的预设位置(例如,该参考信号波束能量最强的方向),则n即为该参考信号的第二维的分量索引值,且n的最大值为360°除以第二维的间隔角度所得的值。
需要说明的是,随着旋转方向的不同,索引值大小变化也会不同。在本公开的一些实施例中,可以预先设置索引值随旋转方向的大小变化规律,例如:可以预先设置按正方向旋转时,索引值逐渐变大,按负正方向旋转,索引值逐渐变小;或者,可以预先设置按正方向旋转时,索引值逐渐变小,按负正方向旋转,索引值逐渐变大。可以根据实际应用来决定该索引值随旋转方向的大小变化规律,对此本公开不做具体限定。其中,参考信号的第二维的分量索引值的实现方式,与上述图3所示实施例中参考信号的第一维的分量索引值的实现方式类似,可参照上述图3所示实施例中参考信号的第一维的分量索引值的实现方式的描述,在此不再赘述。
在一种可选地实现方式中,该基准方向可以为配置的基准参考信号的波束方向;或者,基准方向可以为预设的绝对方向。
举例而言,可以将网络侧设备配置的基准参考信号的波束方向作为基准方向,或者,可以预先设置一个绝对方向作为基准方向;例如:将水平维度的正北方向设置为该基准方向,将垂直维度的天顶方向设置为该基准方向。
步骤S402:根据每个参考信号的第二维的分量索引值,确定配置的参考信号集合之中每个参考信号的索引。
在一种可选地实现方式中,根据每个参考信号的第二维的分量索引值确定配置的参考信号集合之中每个参考信号的索引,包括:将每个参考信号的第二维的分量索引值作为每个参考信号的索引。
举例而言,可将每个参考信号的第二维的分量索引值直接作为对应的每个参考信号的索引。
通过实施本公开的实施例,在参考信号集合中参考信号的发送波束为一维波束时,且该发送波束为第二维(如垂直维度)波束时,可以以基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值,从而可以实现配置的参考信号的索引。
在本公开的一些实施例中,请参见图5,图5为本公开的实施例提供的又一种确定配置的参考信号集合之中每个参考信号的索引的方法的流程图。当参考信号集合中参考信号的波束为二维波束时,可采用该方法确定配置的参考信号集合之中每个参考信号的索引。如图5所示,该确定配置的参考信号集合之中每个参考信号的索引的方法可以包括但不限于以下步骤。
步骤S501:以基准方向为起始方向,以第一维的间隔角度为步长,在第一维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值。
在本公开的实施例中,步骤S501可分别采用本公开的各实施例中的任一种方式实现,本公开的实施例并不对此作出限定,也不再赘述。
步骤S502:以基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值。
在本公开的实施例中,步骤S502可分别采用本公开的各实施例中的任一种方式实现,本公开的实施例并不对此作出限定,也不再赘述。
需要说明的是,在本公开的实施例中,在第一维确定参考信号的第一维的分量索引值按照的方向,和在第二维确定参考信号的第二维的分量索引值按照的方向可以相同也可以不同。
作为一种示例,以第一维的基准方向为起始方向,以第一维的间隔角度为步长,可以在第一维上按照正方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值,并以第二维的基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照负方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值。
作为另一种示例,以第一维的基准方向为起始方向,以第一维的间隔角度为步长,可以在第一维上按照正方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值,并以第二维的基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照正方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值。
作为一种示例,以第一维的基准方向为起始方向,以第一维的间隔角度为步长,可以在第一维上按照负方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值,并以第二维的基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照负方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值。
作为另一种示例,以第一维的基准方向为起始方向,以第一维的间隔角度为步长,可以在第一维上按照负方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值,并以第二维的基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照正方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值。
步骤S503:根据每个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值,确定配置的参考信号集合之中每个参考信号的索引。
在一种可选地实现方式中,可以将每个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值,作为每个参考信号的索引;或者,可以根据每个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值,生成每个参考信号的索引。
举例而言,以参考信号的索引以两个分量索引值表示为例,可将每个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值直接作为对应的每个参考信号的索引。例如,以某个参考信号的第一维的分量索引值为m,该参考信号的第二维的分量索引值为n为例,可将该参考信号的第一维的分量索引值和该参考信号的第二维的分量索引值直接作为该参考信号的索引的两个分量,即该参考信号的索引为(m,n),即用两个分量索引值表示。
又如,以参考信号的索引以一个索引值表示为例,可以根据每个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值,使用预设的生成函数,生成每个参考信号的索引。
在一种实现方式中,可以根据每个参考信号的第一维的分量索引值、第一维的波束数目、以及每个参考信号的第二维的分量索引值,生成每个参考信号的索引;或者,根据每个参考信号的第一维的分量索引值、每个参考信号的第二维的分量索引值以及第二维的波束数目,生成每个参考信号的索引。
作为一种示例,根据每个参考信号的第一维的分量索引值、第一维的波束数目、以及每个参考信号的第二维的分量索引值,生成每个参考信号的索引所用的生成函数的公式可表示如下:
i=m+nM
其中,i为参考信号的索引,m为每个参考信号的第一维的分量索引值,M为第一维的波束数目,n为每个参考信号的第二维的分量索引值,作为一种示例,m和n分别可以从索引序号0开始。
作为另一种示例,根据每个参考信号的第一维的分量索引值、每个参考信号的第二维的分量索引 值以及第二维的波束数目,生成每个参考信号的索引所用的生成函数的公式可表示如下:
i=mN+n
其中,i为参考信号的索引,m为每个参考信号的第一维的分量索引值,M为第一维的波束数目,n为每个参考信号的第二维的分量索引值,作为一种示例,m和n分别可以从索引序号0开始。
通过实施本公开的实施例,在参考信号集合中参考信号的发送波束为二维波束时,可以分别以第一维及第二维的基准方向为起始方向,以对应的第一维及第二维的间隔角度为步长,在第一维及第二维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第一维及第二维的分量索引值,从而可以实现配置的参考信号的索引。
在本公开的一些实施例中,该参考信号的发送方法还可包括:确定参考信号索引的配置方式,该参考信号索引的配置方式为配置每个参考信号的索引时所采用的配置方式;其中,该参考信号配置信息还可包括参考信号索引的配置方式。
可以理解,本公开中的参考信号索引的配置方式可以是协议约定的,或者,该参考信号索引的配置方式该可以是预先设置的。在本公开的实施例中,在参考信号索引的配置方式为由协议约定的时,网络侧设备可以基于协议约定的该配置方式来确定每个参考信号的索引,并在向终端设备发送参考信号配置信息时,无需将该参考信号索引的配置方式发送给终端设备,终端设备在接收到该参考信号配置信息后,基于协议约定的参考信号索引的配置方式即可进行相应处理。在参考信号索引的配置方式为预先设置的时,网络侧设备还需要发送该参考信号索引的配置方式发送给终端设备。例如,网络侧设备向终端设备发送的参考信号配置信息中,还可以包括配置每个参考信号的索引时所采用的配置方式。
请参见图6,图6为本公开的实施例提供的一种参考信号的接收方法的流程图,该方法由终端设备执行。如图6所示,该参考信号的接收方法可以包括但不限于以下步骤。
步骤S601:接收参考信号配置信息;该参考信号配置信息用于指示参考信号的方向信息。
其中,在本公开的一些实施例中,参考信号配置信息可以是由网络侧设备发送的。
其中,在本公开的一些实施例中,参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;配置的参考信号集合之中每个参考信号的波束宽度;配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种实现方式中,每个参考信号的索引可以分别用1个索引值表示,比如用i表示;或者,每个参考信号的索引可以分别用2个分量索引值表示,比如使用(m,n)表示。
在一种实现方式中,配置的基准参考信号的索引可以使用1个索引值表示,比如用i 0表示或者,配置的基准参考信号的索引可以用2个分量索引值表示,比如使用(m 0,n 0)表示。
在一种实现方式中,该波束宽度可理解为两个波束边界之间的夹角。其中,每个参考信号的波束宽度可理解为两个相邻索引的参考信号的发送波束的波束边界之间的夹角Δ。
在一种可选地实现方式中,该间隔角度可包括第一维的间隔角度和/或第二维的间隔角度。可以理解,当参考信号的波束为第一维波束时,则该间隔角度为第一维的间隔角度;当参考信号的波束为第二维波束时,则该间隔角度为第二维的间隔角度;当参考信号的波束为二维波束时,则该间隔角度包括第一维的间隔角度和第二维的间隔角度。
其中,第一维的间隔角度可以为第一维波束中心的间隔角度,第二维的间隔角度可以为第二维波束中心的间隔角度;或者,第一维的间隔角度可以为第一维波束边界的间隔角度,第二维的间隔角度可以为第二维波束边界的间隔角度。
也就是说,该间隔角度的确定方式可以包括以下两种方式:方式1,波束中心的间隔角度,即波束能量最强的方向的间隔角度;方式2,波束边界的间隔角度。
步骤S602:根据参考信号配置信息和参考信号索引的配置方式,确定参考信号的方向信息。
举例而言,可以基于接收到的参考信号配置信息和参考信号索引的配置方式,确定网络侧设备配置的参考信号的各个维的分量索引值,基于参考信号各个分量索引值与对应的对间隔角度,即可得到该参考信号的最强能量方向和/或波束宽度。
作为一种示例,以参考信号的发送波束为一维波束为例,假设该参考信号的索引值为2,间隔角度为10°,则该参考信号波束能量最强的方向即为以基准方向为起始角度,在规定的索引值增大的方向偏移2×10°=20°的方向。
作为另一种示例,以参考信号的发送波束为二维波束为例,假设该参考信号的索引值为(2,3),间隔角度为10°(如第一维波束中心的间隔角度)及15°(如第二维波束中心的间隔),则该参考信号在第一维的波束能量最强的方向为以第一维的基准方向为起始角度,在规定的第一维索引值增大的 方向偏移2×10°=20°的方向;该参考信号在第二维的波束能量最强的方向为以第二维的基准方向为起始角度,在规定的第二维索引值增大的方向偏移3×15°=45°的方向。
在一种实现方式中,参考信号索引的配置方式为由协议约定的配置方式;或者,参考信号索引的配置方式包含于接收的参考信号配置信息中。
可以理解,本公开的实施例中的参考信号索引的配置方式可以是协议约定的,或者,该参考信号索引的配置方式该可以是预先设置的。在本公开的实施例中,在参考信号索引的配置方式为由协议约定的时,终端设备可以基于协议约定的该配置方式来确定每个参考信号的索引,并在接收网络侧设备发送的参考信号配置信息时,基于协议约定的参考信号索引的配置方式进行相应处理。在参考信号索引的配置方式为预先设置的时,终端设备需要从接收的参考信号配置信息中确定该参考信号索引的配置方式,即配置每个参考信号的索引时所采用的配置方式。
步骤S603:基于配置的参考信号的方向信息,接收相应的参考信号。
其中,相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
举例而言,基于配置的参考信号的方向信息,在该方向信息对应的角度方向上,接收参考信号。作为一种示例,终端设备可以利用接收到的参考信号完成基于AI/ML的波束预测、波束管理和上报。
其中,在本公开的实施例中,参考信号可以是由发送参考信号配置信息的网络侧设备发送的,或者,也可以由其它设备(例如,另一网络侧设备)发送。
作为一种示例,终端设备可接收由网络侧设备A发送的参考信号配置信息,并基于该参考信号配置信息,在对应的角度方向上接收网络侧设备B发送的参考信号。
通过实施本公开的实施例,终端设备可以接收网络侧设备发送的参考信号配置信息,基于该配置信息确定网络侧设备配置的参考信号的方向信息,并基于该方向接收相应的参考信号,以便基于该参考信号完成波束测量和/或波束管理。由此可见,本公开中的终端设备可以基于接收的参考信号配置信息确定网络侧设备配置的参考信号的波束信息,从而可以更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
请参见图7,为本公开的实施例提供的一种通信装置700的结构示意图。图7所示的通信装置700可包括收发模块701和处理模块702。收发模块701可包括收发模块和/或收发模块,收发模块用于实现发送功能,收发模块用于实现接收功能,收发模块701可以实现发送功能和/或接收功能。
通信装置700可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置700可以是网络侧设备,也可以是网络侧设备中的装置,还可以是能够与网络侧设备匹配使用的装置。
通信装置700为网络侧设备:在本公开的实施例中,处理模块701,用于确定参考信号配置信息;收发模块702,用于发送参考信号配置信息,参考信号配置信息用于指示参考信号的方向信息;收发模块702,还用于基于参考信号配置信息发送相应的参考信号;其中,相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
在一种实现方式中,参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;配置的参考信号集合之中每个参考信号的波束宽度;配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种可选的实现方式中,间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,第一维的间隔角度为第一维波束中心的间隔角度,第二维的间隔角度为第二维波束中心的间隔角度;或者,第一维的间隔角度为第一维波束边界的间隔角度,第二维的间隔角度为第二维波束边界的间隔角度。
在一种可选地实现方式中,处理模块701具体用于:以基准方向为起始方向,以第一维的间隔角度为步长,在第一维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第一维的分量索引值;和/或,以基准方向为起始方向,以第二维的间隔角度为步长,在第二维上按照正方向或负方向依次确定配置的参考信号集合之中每个参考信号的第二维的分量索引值;根据每个参考信号的第一维的分量索引值和/或每个参考信号的第二维的分量索引值,确定配置的参考信号集合之中每个参考信号的索引。
可选地,基准方向为配置的基准参考信号的波束方向;或者,基准方向为预设的绝对方向。
可选地,每个参考信号的发送波束为一维波束时,处理模块701具体用于:将每个参考信号的第一维的分量索引值或每个参考信号的第二维的分量索引值,作为每个参考信号的索引。
可选地,每个参考信号的发送波束为二维波束时,处理模块701具体用于:将每个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值,作为每个参考信号的索引;或者,根据每 个参考信号的第一维的分量索引值和每个参考信号的第二维的分量索引值,生成每个参考信号的索引。
可选地,处理模块701具体用于:根据每个参考信号的第一维的分量索引值、第一维的波束数目、以及每个参考信号的第二维的分量索引值,生成每个参考信号的索引;或者,根据每个参考信号的第一维的分量索引值、每个参考信号的第二维的分量索引值以及第二维的波束数目,生成每个参考信号的索引。
在一种可选地实现方式中,处理模块701,还用于确定参考信号索引的配置方式,参考信号索引的配置方式为配置每个参考信号的索引时所采用的配置方式;其中,参考信号配置信息还包括参考信号索引的配置方式。
通过本公开的实施例的通信装置,可以确定参考信号配置信息,并发送该配置信息,以使终端设备在接收到该配置信息后,基于该配置信息确定参考信号的方向信息,使得终端设备基于该方向接收相应的参考信号,以便基于该参考信号完成波束测量和/或波束管理。由此可见,本公开通过发送参考信号的波束信息,能够辅助终端设备更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
通信装置700为终端设备:在本公开的实施例中,收发模块702,用于接收参考信号配置信息;参考信号配置信息用于指示参考信号的方向信息;处理模块701,用于根据参考信号配置信息和参考信号索引的配置方式,确定参考信号的方向信息;收发模块702还用于:基于配置的参考信号的方向信息,接收相应的参考信号;其中,相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
在一种实现方式中,参考信号配置信息至少包括以下至少一项:配置的参考信号集合之中每个参考信号的索引;配置的基准参考信号的索引;配置的参考信号集合之中每个参考信号的波束宽度;配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
在一种可选地实现方式中,第一维的间隔角度为第一维波束中心的间隔角度,第二维的间隔角度为第二维波束中心的间隔角度;或者,第一维的间隔角度为第一维波束边界的间隔角度,第二维的间隔角度为第二维波束边界的间隔角度。
在一种实现方式中,参考信号索引的配置方式为由协议约定的配置方式;或者,参考信号索引的配置方式包含于参考信号配置信息中。
通过本公开的实施例的通信装置,终端设备可以接收网络侧设备发送的参考信号配置信息,基于该配置信息确定网络侧设备配置的参考信号的方向信息,并基于该方向接收相应的参考信号,以便基于该参考信号完成波束测量和/或波束管理。由此可见,本公开中的终端设备可以基于接收的参考信号配置信息确定参考信号的波束信息,可以辅助终端设备更好地进行波束测量、波束预测及波束管理,从而可以提升终端设备波束测量及波束管理的能力,从而可以实现对窄波束的精确对准和实时跟踪更新。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参见图8,图8是本公开的实施例提供的通信装置800的结构示意图。通信装置800可以是网络侧设备,还可以是支持网络侧设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置800可以是终端设备,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置800可以包括一个或多个处理器801。处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,电子设备、电子设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置800中还可以包括一个或多个存储器802,其上可以存有计算机程序803,处理器801执行所述计算机程序803,以使得通信装置800执行上述方法实施例中描述的方法。可选的,所述存储器802中还可以存储有数据。通信装置800和存储器802可以单独设置,也可以集成在一起。
可选的,通信装置800还可以包括收发器804、天线805。收发器804可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器804可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置800中还可以包括一个或多个接口电路806。接口电路806用于接收代码指令 并传输至处理器801。处理器801运行所述代码指令以使通信装置800执行上述方法实施例中描述的方法。
通信装置800为前述方法实施例中的网络侧设备:处理器801用于执行图2中的步骤S201,图3中的步骤S301及步骤S302,图4中的步骤S401及步骤S402,图5中的步骤S501、步骤S502及步骤S503。收发器804用于执行图2中的步骤S202及步骤S203。
通信装置800为前述方法实施例中的终端设备:处理器801用于执行图6中的步骤S602。收发器804用于执行图6中的步骤S601及步骤S603。
在一种实现方式中,处理器801中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器801可以存有计算机程序,计算机程序在处理器801上运行,可使得通信装置800执行上述方法实施例中描述的方法。计算机程序可能固化在处理器801中,该种情况下,处理器801可由硬件实现。
在一种实现方式中,通信装置801可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、通信装置等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络侧设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图8的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
本领域技术人员还可以了解到本公开的实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开的实施例保护的范围。
本公开的实施例还提供一种通信系统,该系统包括前述图7实施例中作为网络侧设备的通信装置和作为终端设备的通信装置,或者,该系统包括前述图8实施例中作为网络侧设备的通信装置和作为终端设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开的实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等) 方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开的实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开的实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种参考信号的发送方法,其特征在于,所述方法由网络侧设备执行,所述方法包括:
    确定参考信号配置信息;
    发送所述参考信号配置信息,所述参考信号配置信息用于指示参考信号的方向信息;
    基于所述参考信号配置信息发送相应的参考信号;其中,所述相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
  2. 如权利要求1所述的方法,其特征在于,所述参考信号配置信息至少包括以下至少一项:
    配置的参考信号集合之中每个参考信号的索引;
    配置的基准参考信号的索引;
    所述配置的参考信号集合之中每个参考信号的波束宽度;
    所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
  3. 如权利要求2所述的方法,其特征在于,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,
    所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;
    或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
  4. 如权利要求2或3所述的方法,其特征在于,确定所述配置的参考信号集合之中每个参考信号的索引,包括:
    以基准方向为起始方向,以第一维的间隔角度为步长,在所述第一维上按照正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第一维的分量索引值;
    和/或,以所述基准方向为起始方向,以第二维的间隔角度为步长,在所述第二维上按照所述正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第二维的分量索引值;
    根据所述每个参考信号的第一维的分量索引值和/或所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引。
  5. 如权利要求4所述的方法,其特征在于,
    所述基准方向为所述配置的基准参考信号的波束方向;
    或者,所述基准方向为预设的绝对方向。
  6. 如权利要求4或5所述的方法,其特征在于,所述每个参考信号的发送波束为一维波束;根据所述每个参考信号的第一维的分量索引值或所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引,包括:
    将所述每个参考信号的第一维的分量索引值或所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引。
  7. 如权利要求4或5所述的方法,其特征在于,所述每个参考信号的发送波束为二维波束;根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引,包括:
    将所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引;
    或者,根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引。
  8. 如权利要求7所述的方法,其特征在于,所述根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引,包括:
    根据所述每个参考信号的第一维的分量索引值、所述第一维的波束数目、以及所述每个参考信号 的第二维的分量索引值,生成所述每个参考信号的索引;
    或者,根据所述每个参考信号的第一维的分量索引值、所述每个参考信号的第二维的分量索引值以及所述第二维的波束数目,生成所述每个参考信号的索引。
  9. 如权利要求4至8中任一项所述的方法,其特征在于,还包括:
    确定参考信号索引的配置方式,所述参考信号索引的配置方式为配置所述每个参考信号的索引时所采用的配置方式;
    其中,所述参考信号配置信息还包括所述参考信号索引的配置方式。
  10. 一种参考信号的接收方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收参考信号配置信息;所述参考信号配置信息用于指示参考信号的方向信息;
    根据所述参考信号配置信息和参考信号索引的配置方式,确定所述参考信号的方向信息;
    基于所述配置的参考信号的方向信息,接收相应的参考信号;其中,所述相应的参考信号用于指示所述终端设备进行波束测量和/或波束管理。
  11. 如权利要求10所述的方法,其特征在于,所述参考信号配置信息至少包括以下至少一项:
    配置的参考信号集合之中每个参考信号的索引;
    配置的基准参考信号的索引;
    所述配置的参考信号集合之中每个参考信号的波束宽度;
    所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
  12. 如权利要求11所述的方法,其特征在于,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,
    所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;
    或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
  13. 如权利要求10至12中任一项所述的方法,其特征在于,
    所述参考信号索引的配置方式为由协议约定的配置方式;
    或者,所述参考信号索引的配置方式包含于所述参考信号配置信息中。
  14. 一种通信装置,其特征在于,包括:
    处理模块,用于确定参考信号配置信息;
    收发模块,用于发送所述参考信号配置信息,所述参考信号配置信息用于指示参考信号的方向信息;
    所述收发模块,还用于基于所述参考信号配置信息发送相应的参考信号;其中,所述相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
  15. 如权利要求14所述的装置,其特征在于,所述参考信号配置信息至少包括以下至少一项:
    配置的参考信号集合之中每个参考信号的索引;
    配置的基准参考信号的索引;
    所述配置的参考信号集合之中每个参考信号的波束宽度;
    所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
  16. 如权利要求15所述的装置,其特征在于,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,
    所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;
    或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
  17. 如权利要求15或16所述的装置,其特征在于,所述处理模块具体用于:
    以基准方向为起始方向,以第一维的间隔角度为步长,在所述第一维上按照正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第一维的分量索引值;
    和/或,以所述基准方向为起始方向,以第二维的间隔角度为步长,在所述第二维上按照所述正方向或负方向依次确定所述配置的参考信号集合之中每个参考信号的第二维的分量索引值;
    根据所述每个参考信号的第一维的分量索引值和/或所述每个参考信号的第二维的分量索引值,确定所述配置的参考信号集合之中每个参考信号的索引。
  18. 如权利要求17所述的装置,其特征在于,
    所述基准方向为所述配置的基准参考信号的波束方向;
    或者,所述基准方向为预设的绝对方向。
  19. 如权利要求17或18所述的装置,其特征在于,所述每个参考信号的发送波束为一维波束;所述处理模块具体用于:
    将所述每个参考信号的第一维的分量索引值或所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引。
  20. 如权利要求17或18所述的装置,其特征在于,所述每个参考信号的发送波束为二维波束;所述处理模块具体用于:
    将所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,作为所述每个参考信号的索引;
    或者,根据所述每个参考信号的第一维的分量索引值和所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引。
  21. 如权利要求20所述的装置,其特征在于,所述处理模块具体用于:根据所述每个参考信号的第一维的分量索引值、所述第一维的波束数目、以及所述每个参考信号的第二维的分量索引值,生成所述每个参考信号的索引;
    或者,根据所述每个参考信号的第一维的分量索引值、所述每个参考信号的第二维的分量索引值以及所述第二维的波束数目,生成所述每个参考信号的索引。
  22. 如权利要求17至21中任一项所述的装置,其特征在于,所述处理模块还用于:
    确定参考信号索引的配置方式,所述参考信号索引的配置方式为配置所述每个参考信号的索引时所采用的配置方式;
    其中,所述参考信号配置信息还包括所述参考信号索引的配置方式。
  23. 一种通信装置,其特征在于,包括:
    收发模块,用于接收参考信号配置信息;所述参考信号配置信息用于指示参考信号的方向信息;
    处理模块,用于根据所述参考信号配置信息和参考信号索引的配置方式,确定参考信号的方向信息;
    所述收发模块,还用于基于所述配置的参考信号的方向信息,接收相应的参考信号;其中,所述相应的参考信号用于指示终端设备进行波束测量和/或波束管理。
  24. 如权利要求23所述的装置,其特征在于,所述参考信号配置信息至少包括以下至少一项:
    配置的参考信号集合之中每个参考信号的索引;
    配置的基准参考信号的索引;
    所述配置的参考信号集合之中每个参考信号的波束宽度;
    所述配置的参考信号集合之中相邻索引的参考信号的发送波束之间的间隔角度。
  25. 如权利要求24所述的装置,其特征在于,所述间隔角度包括第一维的间隔角度和/或第二维的间隔角度;其中,
    所述第一维的间隔角度为第一维波束中心的间隔角度,所述第二维的间隔角度为第二维波束中心的间隔角度;
    或者,所述第一维的间隔角度为第一维波束边界的间隔角度,所述第二维的间隔角度为第二维波束边界的间隔角度。
  26. 如权利要求23至25中任一项所述的装置,其特征在于,
    所述参考信号索引的配置方式为由协议约定的配置方式;
    或者,所述参考信号索引的配置方式包含于所述参考信号配置信息中。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至9中任一项所述的方法。
  28. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求10至13中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至9中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求10至13中任一项所述的方法。
  31. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至9中任一项所述的方法被实现。
  32. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求10至13中任一项所述的方法被实现。
PCT/CN2022/086461 2022-04-12 2022-04-12 参考信号的发送方法、接收方法及其装置 WO2023197186A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086461 WO2023197186A1 (zh) 2022-04-12 2022-04-12 参考信号的发送方法、接收方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086461 WO2023197186A1 (zh) 2022-04-12 2022-04-12 参考信号的发送方法、接收方法及其装置

Publications (1)

Publication Number Publication Date
WO2023197186A1 true WO2023197186A1 (zh) 2023-10-19

Family

ID=88328747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086461 WO2023197186A1 (zh) 2022-04-12 2022-04-12 参考信号的发送方法、接收方法及其装置

Country Status (1)

Country Link
WO (1) WO2023197186A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863727A (zh) * 2016-10-14 2019-06-07 高通股份有限公司 参考信号测量
CN110447280A (zh) * 2017-02-15 2019-11-12 瑞典爱立信有限公司 管理无线通信网络中的通信
CN111867017A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种发送和接收参考信号集合的方法及装置
WO2021081811A1 (zh) * 2019-10-30 2021-05-06 华为技术有限公司 一种角度定位的方法、装置以及设备
WO2021151230A1 (en) * 2020-01-30 2021-08-05 Qualcomm Incorporated Sounding reference signal configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863727A (zh) * 2016-10-14 2019-06-07 高通股份有限公司 参考信号测量
CN110447280A (zh) * 2017-02-15 2019-11-12 瑞典爱立信有限公司 管理无线通信网络中的通信
CN111867017A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 一种发送和接收参考信号集合的方法及装置
WO2021081811A1 (zh) * 2019-10-30 2021-05-06 华为技术有限公司 一种角度定位的方法、装置以及设备
WO2021151230A1 (en) * 2020-01-30 2021-08-05 Qualcomm Incorporated Sounding reference signal configuration

Similar Documents

Publication Publication Date Title
WO2023130322A1 (zh) 确定共享信道占用时间的方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023201753A1 (zh) 一种终端能力上报方法、确定方法及其装置
WO2023201497A1 (zh) 一种确定非授权频谱中频域资源的方法及装置
WO2023201756A1 (zh) 一种用于基于条件的移动性的信息的处理方法及装置
WO2023197186A1 (zh) 参考信号的发送方法、接收方法及其装置
WO2023010499A1 (zh) 一种无线资源管理测量方法及其装置
WO2023216165A1 (zh) 一种控制智能超表面ris发射参考信号的方法及装置
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2023197121A1 (zh) 一种发送直连测距信号的方法及装置
WO2023015424A1 (zh) 一种定位方法及其装置
WO2023201752A1 (zh) 一种信息处理方法及其装置
WO2023201502A1 (zh) 测量配置的处理方法和装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023044621A1 (zh) 一种波束测量和上报的方法及其装置
WO2023283827A1 (zh) 一种定时误差的上报方法及其装置
WO2023201755A1 (zh) 一种移动性管理的配置方法及装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2024020747A1 (zh) 一种模型的生成方法及装置
WO2023004548A1 (zh) 一种上行发送的控制方法及其装置
WO2023123476A1 (zh) 一种时域资源传输位置的确定方法和装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2024026795A1 (zh) 一种侧行链路sl定位参考信号prs的发送方法及装置
WO2023220899A1 (zh) 发送和接收参考信号配置信息的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936840

Country of ref document: EP

Kind code of ref document: A1