WO2023197162A1 - 电池单体、电池及用电设备 - Google Patents

电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023197162A1
WO2023197162A1 PCT/CN2022/086391 CN2022086391W WO2023197162A1 WO 2023197162 A1 WO2023197162 A1 WO 2023197162A1 CN 2022086391 W CN2022086391 W CN 2022086391W WO 2023197162 A1 WO2023197162 A1 WO 2023197162A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating member
insulating
electrode assembly
thickness
battery cell
Prior art date
Application number
PCT/CN2022/086391
Other languages
English (en)
French (fr)
Inventor
白璐璐
吴宁生
郑挺
陈新祥
郑于炼
李全坤
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/086391 priority Critical patent/WO2023197162A1/zh
Priority to CN202280034017.1A priority patent/CN117296174A/zh
Publication of WO2023197162A1 publication Critical patent/WO2023197162A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, specifically to a battery cell, a battery and electrical equipment.
  • lithium-ion batteries are increasingly used in applications, which puts higher requirements on lithium-ion batteries.
  • batteries are required to have better safety performance, and internal short circuit of batteries is one of the main causes of electricity safety problems.
  • a short circuit in the battery will generate excessive electric heat and high temperature, which may cause a fire or burn out electrical appliances, posing a threat to property and life safety. Therefore, how to reduce the risk of battery short circuit has become an urgent issue in the field of battery technology.
  • Embodiments of the present application provide a battery cell, a battery and electrical equipment to reduce the risk of battery short circuit.
  • a battery cell including a case, an electrode assembly, a first insulator, and a second insulator;
  • the case includes a bottom wall and a first side wall connected to the bottom wall. , the inner surface of the bottom wall and the inner surface of the first side wall are connected through a first arc transition surface;
  • the electrode assembly is contained in the housing, and the electrode assembly includes a pole piece and an isolation film;
  • the first insulating member includes a first partition, the first partition is used to separate the electrode assembly and the first side wall; the second insulating member is used to separate the electrode assembly and the bottom wall.
  • the isolation film has a stacked portion located between the pole piece and the second insulating member;
  • the radius R1 of the first arc transition surface, the The thickness a1 of the first partition, the thickness b of the stacked part, and the thickness c of the second insulating member satisfy the following relationship:
  • the first insulating member is used to separate the bottom wall of the housing and the electrode assembly.
  • the first insulating member In the thickness direction of the bottom wall, the first insulating member is disposed between the bottom wall and the electrode assembly, which can not only separate the electrode assembly and The bottom wall prevents the battery cells from short-circuiting, and can also raise the position of the electrode assembly relative to the bottom wall of the case, and the radius R1 of the first arc transition surface, the thickness a1 of the first separation part, the thickness b of the stacking part,
  • the thickness c of the second insulating member satisfies R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+b)] 1/2 to avoid the pole piece of the electrode assembly being in contact with the first circle
  • the interference of the arc transition surface will cause the pole piece of the electrode assembly to wrinkle, thereby reducing the extrusion between the pole piece and the first arc transition surface, causing the pole piece to wrinkle, thereby leading to the risk of short
  • the housing includes two first side walls arranged oppositely along a first direction
  • the first insulating member includes two first side walls arranged oppositely along the first direction.
  • Each of the first partitions is used to separate the electrode assembly and one of the first side walls, and the thickness direction of the second insulating member is perpendicular to the first direction.
  • the first arc transition surface between each first side wall and the bottom wall satisfies: R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+ b)] 1/2 , then the pole pieces on both sides of the electrode assembly in the first direction will not interfere with the first arc transition surface, causing the pole pieces of the electrode assembly to wrinkle, thereby reducing the distance between the pole pieces and the first arc transition surface.
  • the arc transition surface is squeezed, causing the pole pieces to wrinkle, which leads to the risk of short circuit of the battery cells and improves the safety performance of the battery cells.
  • the two first partitions independently separate the two first side walls and the electrode assembly, which can provide better insulation between the first side walls and the electrode assembly.
  • the housing further includes a second side wall connected to the bottom wall and adjacent to the first side wall, and the inner surface of the bottom wall and the The inner surfaces of the second side walls are connected by a second arc transition surface;
  • the first insulating member also includes two first insulating parts, and the two first insulating parts at least partially overlap to separate the second side walls. and the electrode assembly; wherein the radius R2 of the second arc transition surface, the thickness a21 of the first insulating part, the thickness b of the stacked part, and the thickness c of the second insulating member, satisfy The following relationship:
  • the radius R2 of the second arc transition surface, the thickness a21 of the first insulating part, the thickness b of the stacked part, and the thickness c of the second insulating member satisfy R2 ⁇ (c+b) 2 +4* (2*a21) 2 +[(2*a21)*(c+b)] 1/2 to avoid the interference between the pole piece of the electrode assembly and the second arc transition surface, causing the pole piece of the electrode assembly to wrinkle, thereby reducing
  • the interference between the pole piece and the second arc transition surface causes the pole piece to wrinkle, thereby causing the risk of short circuit of the battery cell and improving the safety performance of the battery cell.
  • the two first insulating parts at least partially overlap to form a second partition that separates the second side wall and the electrode assembly, and the first insulating member has two second partitions;
  • the housing includes two second side walls arranged oppositely along a second direction, and the electrode assembly and each second side wall pass through one second partition Partially separated, the thickness direction of the second insulating member is perpendicular to the second direction.
  • the second arc transition surface between each second side wall and the bottom wall satisfies: R2 ⁇ (c+b) 2 +4*(2*a21) 2 +[(2*a21) *(c+b)] 1/2 , then the pole pieces on both sides of the electrode assembly in the second direction will not interfere with the second arc transition surface, causing the pole pieces of the electrode assembly to wrinkle, thereby reducing the It is squeezed with the second arc transition surface, causing the pole piece to wrinkle, thereby causing the risk of short circuit of the battery cell and improving the safety performance of the battery cell.
  • the two second partitions independently separate the two second side walls and the electrode assembly, which can provide better insulation between the second side walls and the electrode assembly.
  • the radius R1 of the first arc transition surface and the thickness c of the second insulating member satisfy: 0.3 ⁇ c/R1 ⁇ 1, preferably, 0.35 ⁇ c /R1 ⁇ 0.8.
  • the radius R1 of the first arc transition surface and the thickness c of the second insulating member satisfy: 0.3 ⁇ c/R1 ⁇ 1, preferably, 0.35 ⁇ c/R1 ⁇ 0.8, which can avoid the polarization of the electrode assembly.
  • the interference between the electrode piece and the first arc transition surface causes the pole piece of the electrode assembly to wrinkle, thereby reducing the risk that the pole piece and the first arc transition surface are squeezed, causing the pole piece to wrinkle, thereby causing a short circuit of the battery cell.
  • the second insulating member includes a second insulating part and a folding part that are stacked along a third direction, and the folding part is flippably connected to the second In the insulating part, the third direction is consistent with the thickness direction of the second insulating member.
  • the folding part is foldably connected to the second insulating part, and the folding part is folded relative to the second insulating part and may be stacked or not stacked with the second insulating part.
  • the thickness of the second insulating member is the sum of the thicknesses of the folded portion and the second insulating portion that are stacked in sequence along the third direction.
  • the thickness of the second insulating part is the thickness of the second insulating part. Therefore, the thickness of the first insulating part can be adjusted through the folding part so that the thickness of the second insulating part can be adjusted. This prevents the pole piece from interfering with the first arc transition surface.
  • the second insulating member includes a plurality of the turning portions.
  • the second insulating member includes a plurality of folding parts, and different numbers of folding parts are stacked with the second insulating part in the third direction, thereby changing the thickness of the first insulating part so that the second insulating part The thickness can prevent the pole piece from interfering with the first arc transition surface.
  • some of the plurality of folded portions are located on one side of the second insulating portion, and another portion of the plurality of folded portions is located on one side of the second insulating portion.
  • One part is located on the other side of the second insulating part.
  • a plurality of folding parts are distributed on opposite sides of the second insulating part along the third direction, which facilitates folding of the folding part relative to the second insulating part and reduces the connection position between the folding part and the second insulating part. accumulation amount.
  • the second insulating member includes two folded portions, the second insulating portion has two first edge portions arranged oppositely along the first direction, and two One end of the folded portion is flippably connected to the two first edge portions respectively, and the first direction is perpendicular to the thickness direction of the second insulating member.
  • the two folding parts are respectively foldably connected to the two first edge parts of the second insulating part opposite to each other along the first direction, so as to facilitate the folding of the folding parts relative to the second insulating part and avoid two The folding parts interfere with each other when folded.
  • the first insulating member includes two first partitions, and the two first partitions are respectively flippably connected to the two folding parts.
  • the first end of the folding part is foldably connected to the second insulating part, and the second end of the folding part opposite to the first end is foldable to the first partition part. ground connection.
  • the first insulating member includes two first partitions that are respectively flippably connected to the two folding parts, and the first partition part and the second insulating part are respectively connected to the opposite second ends of the folding parts. and a first end, so that the first dividing portion can be folded relative to the folding portion to separate the first side of the electrode assembly and the housing.
  • the second insulating member includes two folded portions, the second insulating portion has two first edge portions arranged oppositely along the first direction, and two The folding parts are respectively flippably connected to the two first edge parts; the second insulating part has two second edge parts arranged oppositely along the second direction, and the first insulating member includes two The two first partitions are each flippably connected to the two second edge portions, and the first direction is perpendicular to the second direction.
  • the two first partitions are each flippably connected to the two second edge portions of the second insulating part opposite in the second direction, and the two folding parts are respectively flippably connected to the second edge portion.
  • the two first edge portions of the insulating portion facing each other along the first direction can reduce the difficulty of folding the folding portion and reduce the risk of mutual interference between the folding portion and the first partition portion when folding.
  • the second insulating part is provided with a through hole, and the folded part is configured to be stacked with the second insulating part to cover the through hole.
  • the second insulating member can be positioned through the through hole to cooperate with the assembly device for assembling the battery cells, thereby positioning the second insulating member on the assembly device to improve the Battery cell assembly quality.
  • the folded portion When the folded portion is in a stacked state relative to the second insulating portion, the folded portion can cover the through hole, so that ions of the electrode assembly cannot reach the case through the through hole, thereby reducing the risk of short circuit inside the battery cell.
  • the first insulating member and the second insulating member are integrally formed.
  • the first insulating member and the second insulating member are integrally formed to facilitate manufacturing.
  • the thickness of the second insulating member is greater than the thickness of the first insulating member.
  • the thickness of the second insulating member is greater than the thickness of the first insulating member, which can not only prevent the pole pieces of the electrode assembly from interfering with the first arc transition surface and cause the pole pieces of the electrode assembly to wrinkle, but also reduce the impact of the third insulating piece on the electrode assembly.
  • An insulating member occupies space inside the housing.
  • embodiments of the present application provide a battery, which includes the battery cell provided in any embodiment of the first aspect.
  • the pole piece of the electrode assembly of the battery cell in the embodiment of the first aspect interferes with the first arc transition surface, causing the pole piece to wrinkle, resulting in a low risk of short circuit of the battery cell.
  • the safety performance is high, thereby improving the safety performance of the battery.
  • an embodiment of the present application provides an electrical device, which includes the battery cell provided in any embodiment of the first aspect.
  • the pole piece of the electrode assembly of the battery cell in the embodiment of the first aspect interferes with the first arc transition surface, causing the pole piece to wrinkle, resulting in a low risk of short circuit of the battery cell and the safety of the battery cell.
  • the performance is high, thereby improving the electrical safety of electrical equipment.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a partial schematic diagram of a battery cell provided by some embodiments of the present application.
  • FIG. 5 is a partial schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 6 is a schematic structural diagram of a housing provided by some embodiments of the present application.
  • Figure 7 is a schematic diagram of the unfolded state of the first insulating member and the second insulating member provided by some embodiments of the present application;
  • Figure 8 is a schematic view of one folded portion in Figure 7 after being folded relative to the second insulating portion
  • Figure 9 is a schematic view of another folded portion of the insulating member in Figure 8 after being folded relative to the second insulating portion;
  • Figure 10 is a schematic view of the second insulating member in Figure 7 after it is completely folded;
  • Figure 11 is a partial schematic diagram of a battery cell provided in some embodiments of the present application.
  • Figure 12 is a partial schematic diagram of a battery cell provided by some embodiments of the present application.
  • Figure 13 is a schematic diagram of the unfolded state of the first insulating member and the second insulating member provided by other embodiments of the present application;
  • Figure 14 is a flow chart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • Figure 15 is a schematic structural diagram of battery cell manufacturing equipment provided by some embodiments of the present application.
  • Icon 1000-vehicle; 100-battery; 10-box; 11-installation space; 12-first part; 13-second part; 20-battery cell; 21-casing; 211-opening; 212-bottom wall ; 213-first side wall; 214-first arc transition surface; 215-second side wall; 216-second arc transition surface; 22-electrode assembly; 221-stacked portion; I-straight area; II -Bending area; 222-first side; 223-second side; 23-end cover assembly; 231-end cover; 232-electrode terminal; 233-end cover protector; 24-protective film; 25-current collecting member ; 30-first insulating member; 31-first partition; 32-first insulating portion; 33-second partition; 34-first fold; 40-second insulating member; 41-fold portion; 411 -First end; 412-second end; 42-second fold; 43-second insulating part; 431-first side; 432-second side; 433-first edge; 4
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or the orientation or positional relationship in which the product of this application is commonly placed when used, or the orientation or positional relationship of this application.
  • the orientation or positional relationship commonly understood by those skilled in the art is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on this application.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish descriptions and shall not be understood as indicating or implying relative importance.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the battery cell includes a casing, an electrode assembly, a first insulator and a second insulator.
  • the casing has a bottom wall and a side wall, and the side wall is arranged along the edge of the bottom wall.
  • the electrode assembly is contained in the housing.
  • the first insulating member is used to separate the electrode assembly and the side wall; the second insulating member is used to separate the electrode assembly and the bottom wall to prevent short circuit of the battery cells.
  • the casing includes a first side wall, an inner surface of the first side wall and The inner surfaces of the bottom wall are transitionally connected through a first arc transition surface.
  • the first insulating member includes a first partition, which is used to separate the electrode assembly and the first side wall; the second insulating member is used to separate the electrode assembly and the bottom wall; the electrode assembly includes a pole piece and an isolation film, along the second In the thickness direction of the insulating member, the isolation film has a stacked portion located between the pole piece and the second insulating member.
  • the radius R1 of the first arc transition surface, the thickness a1 of the first partition, the thickness b of the stacked part, and the thickness c of the second insulating member satisfy the relationship: R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+b)] 1/2 .
  • the first insulating member is used to separate the bottom wall of the case and the electrode assembly. In the thickness direction of the bottom wall, the first insulating member is disposed between the bottom wall and the electrode assembly, which not only can separate the electrode assembly and the bottom wall to avoid battery cells Body short circuit.
  • the first insulator can also raise the position of the electrode assembly relative to the bottom wall of the housing, and the radius of the first arc transition surface, the thickness a1 of the first partition, the thickness b of the stacked part, the thickness of the second insulator Thickness c satisfies R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+b)] 1/2 to avoid interference between the pole piece of the electrode assembly and the first arc transition surface
  • This causes the pole pieces of the electrode assembly to be wrinkled, thereby reducing the risk of the pole pieces being wrinkled due to interference between the pole pieces and the first arc transition surface, thereby causing a short circuit of the battery cells, and improving the safety performance of the battery cells.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, vehicles, ships, aircraft, and other electrical equipment.
  • the power supply system of the electrical equipment can be composed of battery cells, batteries, etc. disclosed in this application. In this way, it is helpful to reduce the risk of wrinkles of the pole pieces caused by interference between the pole pieces and the arc transition surface, and reduce the risk of internal short circuits in the battery. , thereby improving the safety performance of the battery cells.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • a battery 100 is disposed inside a vehicle 1000 .
  • the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 includes a case 10 and a battery cell 20 .
  • the battery cell 20 is contained in the case 10 .
  • the box 10 is used to provide an installation space 11 for the battery cells 20 .
  • the box 10 may include a first part 12 and a second part 13 , the first part 12 and the second part 13 covering each other to define an installation space 11 for accommodating the battery cells 20 .
  • the connection between the first part 12 and the second part 13 can be sealed by a sealing member (not shown), and the sealing member can be a sealing ring, sealant, etc.
  • the first part 12 and the second part 13 can be in various shapes, such as cuboid, cylinder, etc.
  • the first part 12 may be open on one side to form a hollow structure having a receiving cavity for accommodating the battery cells 20 .
  • the second part 13 may also be open on one side to form a hollow structure having a receiving cavity for accommodating the battery cells 20 .
  • the open side of the part 13 is covered with the open side of the first part 12 to form a box 10 having an installation space 11 .
  • the first part 12 is open on one side to form a hollow structure with a receiving cavity for accommodating the battery cells 20, and the second part 13 is a plate-like structure, and the second part 13 covers the open side of the first part 12, Then the box 10 with the installation space 11 is formed.
  • the battery 100 there may be one battery cell 20 or a plurality of battery cells 20. If there are multiple battery cells 20, the multiple battery cells 20 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the plurality of battery cells 20 can also be connected in series first.
  • the battery 100 modules are connected in parallel or mixed, and multiple battery 100 modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • FIG. 2 exemplarily shows the case where the battery cell 20 is in the shape of a rectangular body.
  • the battery 100 may further include a bus component (not shown), through which the multiple battery cells 20 may be electrically connected to achieve series, parallel, or mixed connection of the multiple battery cells 20 .
  • a bus component (not shown), through which the multiple battery cells 20 may be electrically connected to achieve series, parallel, or mixed connection of the multiple battery cells 20 .
  • the battery cell 20 may include a case 21 , an electrode assembly 22 and an end cap assembly 23 .
  • the housing 21 has an opening 211
  • the electrode assembly 22 is accommodated in the housing 21
  • the end cap assembly 23 is used to cover the opening 211 .
  • the housing 21 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the shape of the housing 21 can be determined according to the specific shape of the electrode assembly 22 .
  • the housing 21 can have a cylindrical structure; if the electrode assembly 22 has a rectangular parallelepiped structure, the housing 21 can have a rectangular parallelepiped structure.
  • FIG. 3 exemplarily shows the case where the housing 21 and the electrode assembly 22 are square.
  • the housing 21 can also be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc., which are not particularly limited in the embodiment of the present application.
  • the outer surface of the housing 21 is further provided with a protective film 24 , and the protective film 24 covers the outer surface of the housing 21 .
  • the protective film 24 can play the roles of insulation and high temperature resistance.
  • the protective film 24 may be a blue film.
  • the electrode assembly 22 may include a positive electrode sheet (not shown), a negative electrode sheet (not shown), and a separation film (not shown).
  • the electrode assembly 22 may be a rolled structure formed by winding a positive electrode sheet, a separator film, and a negative electrode sheet, or may be a stacked structure formed by a stacked arrangement of positive electrode sheets, a separator film, and a negative electrode sheet.
  • the electrode assembly 22 also includes a positive electrode tab (not shown in the figure) and a negative electrode tab (not shown in the figure), which can be a positive electrode current collector in a positive electrode sheet that is not coated with a positive electrode active material layer.
  • the positive electrode tab can be a negative electrode sheet.
  • the negative electrode current collector that is not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the end cap assembly 23 includes an end cap 231 and an electrode terminal 232.
  • the electrode terminal 232 is provided on the end cap 231.
  • the end cap 231 is used to cover the opening 211 of the housing 21 to form a sealed accommodation space (not shown), and the accommodation space is used to accommodate the electrode assembly 22 .
  • the accommodation space is also used to accommodate electrolytes, such as electrolytes.
  • the end cap assembly 23 serves as a component for outputting electrical energy from the electrode assembly 22.
  • the electrode terminals 232 in the end cap assembly 23 are used to be electrically connected to the electrode assembly 22, that is, the electrode terminals 232 are electrically connected to the tabs of the electrode assembly 22.
  • the electrode terminals 232 and the tab are connected through the current collecting member 25 to realize the electrical connection between the electrode terminal 232 and the tab.
  • the opening 211 of the housing 21 may be one or two. If the opening 211 of the housing 21 is one, the end cover assembly 23 can also be one, and the end cover assembly 23 can be provided with two electrode terminals 232, and the two electrode terminals 232 are respectively used to connect the positive electrode tab and the negative electrode of the electrode assembly 22. The tabs are electrically connected, and the two electrode terminals 232 in the end cover assembly 23 are respectively the positive electrode terminal and the negative electrode terminal. If the number of openings 211 of the housing 21 is two, for example, the two openings 211 are provided on opposite sides of the housing 21, there can also be two end cover assemblies 23, and the two end cover assemblies 23 are respectively covered with the housing 21. There are two openings 211.
  • the electrode terminal 232 in one end cap assembly 23 may be a positive electrode terminal for electrical connection with the positive tab of the electrode assembly 22; the electrode terminal 232 in the other end cap assembly 23 may be a negative electrode.
  • the terminal is used for electrical connection with the negative electrode piece of the electrode assembly 22 .
  • the end cap assembly 23 further includes an end cap protector 233, which is installed on the surface of the end cap 231 to protect the end cap 231.
  • the battery cell 20 includes a case 21 , an electrode assembly 22 , a first insulator 30 and a second insulator 40 ;
  • the case 21 includes a bottom wall 212 connected to the bottom wall 212 The inner surfaces of the first side wall 213, the bottom wall 212 and the first side wall 213 are connected through the first arc transition surface 214;
  • the electrode assembly 22 is accommodated in the housing 21, and the electrode assembly 22 includes a pole piece (in the figure (not shown) and an isolation film (not shown in the figure);
  • the first insulating member 30 includes a first partition 31 for separating the electrode assembly 22 and the first side wall 213;
  • the second insulating member 40 used to separate the electrode assembly 22 and the bottom wall 212; wherein, along the thickness direction X of the second insulating member, the isolation film has a stack portion 221 located between the pole piece and the second insulating member 40;
  • the first partition 31 is used to separate the electrode assembly 22 and the first side wall 213 , which means that the first partition 31 is provided between the first side wall 213 and the electrode assembly 22 , so that the first side wall 213 and the electrode assembly 22 There is no contact between the first side wall 213 and the electrode assembly 22 to avoid short circuiting the battery cell 20 .
  • the second insulating member 40 is used to separate the electrode assembly 22 and the bottom wall 212 , which means that the second insulating member 40 is disposed between the bottom wall 212 and the electrode assembly 22 so that the bottom wall 212 and the electrode assembly 22 cannot contact and prevent the bottom wall from contacting. 212 contacts the electrode assembly 22 causing the battery cell 20 to short circuit.
  • the function of the isolation film is to separate the positive electrode piece and the negative electrode piece to prevent the positive electrode piece and the negative electrode piece from contacting and causing a short circuit. Therefore, for the wound electrode assembly, both ends of the isolation film in the direction of the winding axis exceed the pole piece. In order to reduce the risk of lithium precipitation, generally the two ends of the negative electrode sheet in the direction of the winding axis exceed the positive electrode sheet. Therefore, the isolation film exceeds the electrode sheet in the direction of the winding axis, which can be understood as the two ends of the isolation film in the direction of the winding axis. terminal beyond the negative plate.
  • the portion of the isolation film beyond the pole piece in the winding axis direction is compressed between the pole piece and the second insulating member 40 to form a stacked portion. 221.
  • the thickness b of the stacked portion 221 is the size of the portion of the isolation film beyond the pole piece in the winding axis direction in the thickness direction of the bottom wall 212 after being compressed by the pole piece and the second insulating member 40 .
  • the thickness direction of the bottom wall 212 is consistent with the thickness direction X of the second insulating member.
  • the pole piece has two opposite ends that are not covered by the isolation film, and the isolation film extends beyond the two ends of the pole piece that are not covered by the isolation film.
  • the portion of the isolation film beyond the pole piece is compressed between the pole piece and the second insulating member 40 to form a stack.
  • the thickness b of the stacked portion 221 is the size of the portion of the isolation film beyond the pole piece in the winding axis direction in the thickness direction of the bottom wall 212 after being compressed by the pole piece and the second insulating member 40 .
  • the thickness a1 of the first partition 31 is the size of the first partition 31 in the radial direction. If the first partition 31 has a flat plate structure, the thickness a1 of the first partition 31 is the size of the first partition 31 in a direction perpendicular to the plane where the first partition 31 is located.
  • the thickness c of the second insulating member 40 is the size of the second insulating member 40 along the thickness direction of the bottom wall 212 .
  • the first insulating member 30 is used to separate the bottom wall 212 of the housing 21 from the electrode assembly 22. In the thickness direction of the bottom wall 212, the first insulating member 30 is disposed between the bottom wall 212 and the electrode assembly 22, which can not only separate The electrode assembly 22 and the bottom wall 212 prevent the battery cells 20 from short circuiting.
  • the first insulating member 30 can also raise the position of the electrode assembly 22 relative to the bottom wall 212 of the housing 21 , and the radius R1 of the first arc transition surface 214 , the thickness a1 of the first partition 31 , and the thickness a1 of the stacking portion 221
  • the thickness b and the thickness c of the second insulating member 40 satisfy R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+b)] 1/2 to avoid polarization of the electrode assembly 22
  • the interference between the pole piece and the first arc transition surface 214 causes the pole piece of the electrode assembly 22 to wrinkle, thereby reducing the risk of the pole piece interfering with the first arc transition surface 214 to cause the pole piece to wrinkle, thereby causing a short circuit in the battery cell 20. Improve the safety performance of the battery cell 20 .
  • the interference between the pole piece and the first arc transition surface 214 means that the first arc transition surface 214 causes the pole piece to be squeezed.
  • the housing 21 includes two first side walls 213 oppositely arranged along the first direction Y, and the first insulating member 30 includes two first side walls 213 along the first direction Y.
  • Two first partitions 31 are arranged oppositely in the direction Y. Each first partition 31 is used to separate the electrode assembly 22 and a first side wall 213 .
  • the thickness direction X of the second insulating member is perpendicular to the first direction Y.
  • the first direction Y is parallel to the plane of the second insulating member 40 facing the electrode assembly 22 .
  • the first arc transition surface 214 between each first side wall 213 and the bottom wall 212 satisfies: R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+b) ] 1/2 , then the pole pieces on both sides of the electrode assembly 22 in the first direction Y will not interfere with the first arc transition surface 214 to cause the pole pieces of the electrode assembly 22 to wrinkle, thereby reducing the distance between the pole pieces and the first arc transition surface 214.
  • An arc transition surface 214 is squeezed, causing the pole piece to wrinkle, thereby causing the risk of short circuit of the battery cell 20 and improving the safety performance of the battery cell 20 .
  • the two first partitions 31 independently separate the two first side walls 213 and the electrode assembly 22, which can provide better insulation between the first side walls 213 and the electrode assembly 22.
  • the housing 21 further includes a second side wall 215 connected to the bottom wall 212 and adjacent to the first side wall 213 , the inner surface of the bottom wall 212 and the second side wall 215
  • the inner surfaces are connected by a second arc transition surface 216;
  • the first insulating member 30 also includes two first insulating parts 32, and the two first insulating parts 32 at least partially overlap to separate the second side wall 215 and the electrode assembly 22;
  • the radius R2 of the second arc transition surface 216, the thickness a21 of the first insulating part 32, the thickness b of the stacking part 221, and the thickness c of the second insulating member 40 satisfy the following relationship: R2 ⁇ (c+b) 2 +4*(2*a21) 2 +[(2*a21)*(c+b)] 1/2 .
  • the first side wall 213 and the second side wall 215 are adjacent and connected.
  • the first side wall 213 and the second side wall 215 are perpendicular, and both the first side wall 213 and the second side wall 215 are perpendicular to the bottom wall 212 .
  • the two first insulating portions 32 at least partially overlap to form a second partition 33 that separates the second side wall 215 and the electrode assembly 22 .
  • the second partition 33 is located between the second side wall 215 and the electrode assembly 22 to prevent the second side wall 215 from contacting the electrode assembly 22 and prevent the electrode assembly 22 from contacting the second side wall 215 and causing the battery cell 20 to short-circuit.
  • the thickness a21 of the first insulating part 32 is the size of the first insulating part 32 in the overlapping direction of the two first insulating parts 32 .
  • the radius R2 of the second arc transition surface 216 and the thickness a2 of the second partition 33 satisfy: R2 ⁇ (c+b) 2 +4(a2) 2 +[(a2)*(c+b)] 1 /2 .
  • the second side wall 215 and the electrode assembly 22 are separated by only one first insulating part 32, or the second side wall 215 and the electrode assembly 22 are separated by two first insulating parts 32, However, the two first insulating parts 32 do not overlap, so the radius R of the second arc transition surface 216 satisfies: R2 ⁇ (c+b) 2 +4(a21) 2 +[(a21)*(c+b)] 1/2 .
  • the two first insulation parts 32 are each flippably connected to the first partition part 31 .
  • the first insulating part 32 can be folded relative to the first partition 31 to change the included angle with the first partition 31 so that the first insulating part 32 can be located between the second side wall 215 and the electrode assembly 22 .
  • Figures 7 to 10 show the case where the first insulating part 32 is flippably connected to the first partition part 31.
  • a first fold 34 is formed between the first insulating part 32 and the first partition 31 .
  • the first insulating part 32 can be rotated and folded around the first fold 34 relative to the first partition 31 so that the first insulating part 32 is located at between the second side wall 215 and the electrode assembly 22 .
  • the first fold 34 extends along the thickness direction X of the second insulating member.
  • the first insulating part 32 may be arranged at an angle with the first partition 31 , and the first insulating part 32 may be located on the second side wall 215 and the electrode assembly 22 without being folded relative to the first partition 31 . between.
  • the first insulating part 32 is connected to one end of the first partition 31 along the second direction Z and is arranged perpendicularly to the first partition 31 .
  • first insulating part 32 and the first partition part 31 may also be provided separately.
  • the two first insulating parts 32 that form one second partition 33 after overlapping are respectively located at the same end of the two first partitions 31 in the second direction Z.
  • the thickness direction X, the first direction Y, and the second direction Z of the second insulating member are each perpendicular to each other.
  • the first partition part 31 and the first insulating part 32 may be integrally formed, or may be separated and then connected to form an integral structure.
  • the radius R2 of the second arc transition surface 216, the thickness a21 of the first insulating part 32, the thickness b of the stacked part 221, and the thickness c of the second insulating member 40 satisfy R2 ⁇ (c+b) 2 +4(2 *a21) 2 +[(2*a21)*(c+b)] 1/2 to prevent the pole pieces of the electrode assembly 22 from interfering with the second arc transition surface 216 and causing the pole pieces of the electrode assembly 22 to wrinkle, thereby The interference between the pole piece and the second arc transition surface 216 is reduced, causing the pole piece to wrinkle, thereby causing the risk of short circuit of the battery cell 20, and improving the safety performance of the battery cell 20.
  • the interference between the pole piece and the second arc transition surface 216 means that the pole piece is squeezed by the second arc transition surface 216 .
  • two first insulating parts 32 at least partially overlap to form a second partition 33 that separates the second side wall 215 and the electrode assembly 22 .
  • the first insulating part 30 has Two second partitions 33; the housing 21 includes two second side walls 215 arranged oppositely along the second direction Z. The electrode assembly 22 and each second side wall 215 are separated by one second partition 33.
  • the thickness direction X of the insulating member is perpendicular to the second direction Z.
  • the first insulating member 30 has two second separation parts 33, then the first insulating member 30 has four first insulating parts 32, and two of the four first insulating parts 32 are connected to one first insulating part 32.
  • the other two first insulating parts 32 of the four first insulating parts 32 are connected to both ends of the other first partition 31 in the second direction Z.
  • the electrode assembly 22 has a straight area I and a bent area II connected to both ends of the straight area I.
  • the straight area I has two opposite first side surfaces 222, each bent area
  • the outer side of area II is an arc-shaped second side 223.
  • the embodiment of the present application shows that the first side 222 and the first side wall 213 are arranged oppositely and the first partition is used to separate the first side 222 and the first sidewall 213, the second side 223 and the third sidewall are arranged oppositely and the second The partition is used to separate the second side 223 and the second side wall 215 .
  • the second arc transition surface 216 between each second side wall 215 and the bottom wall 212 satisfies: R2 ⁇ (c+b) 2 +4*(2*a21) 2 +[(2*a21)*( c+b)] 1/2 , then the pole pieces on both sides of the electrode assembly 22 in the second direction Z will not interfere with the second arc transition surface 216 to cause the pole pieces of the electrode assembly 22 to wrinkle, thereby reducing the The pole piece and the second arc transition surface 216 are squeezed, causing the pole piece to wrinkle, thereby causing the risk of short circuit of the battery cell 20 and improving the safety performance of the battery cell 20 .
  • the two second partitions 33 independently separate the two second side walls 215 and the electrode assembly 22, which can provide better insulation between the second side walls 215 and the electrode assembly 22.
  • the radius R1 of the first arc transition surface 214 and the thickness c of the second insulating member 40 satisfy: 0.3 ⁇ c/R1 ⁇ 1, preferably, 0.35 ⁇ c/R1 ⁇ 0.8.
  • the radius R2 of the second arc transition surface 216 and the thickness c of the second insulating member 40 satisfy: 0.3 ⁇ c/R2 ⁇ 1, preferably, 0.35 ⁇ c/R2 ⁇ 0.8.
  • the radius R1 of the first arc transition surface 214, the radius R2 of the second arc transition surface 216, and the thickness c of the second insulating member 40 can have different values to satisfy 0.3 ⁇ c/R1 ⁇ 1 and 0.3 ⁇ c/R2 ⁇ 1. Among them, c/R1 and c/R2 may be equal or unequal.
  • the second insulating member 40 can satisfy: 1.2mm ⁇ c ⁇ 1.5mm; if the radius R1 of the first arc transition surface 214 satisfies 1.3mm ⁇ R1 ⁇ 2.0mm, the thickness c of the second insulating member 40 can satisfy: 0.8mm ⁇ c ⁇ 1.3mm; if the radius R1 of the first arc transition surface 214 satisfies 0.8mm ⁇ R1 ⁇ 1.2mm, the thickness c of the second insulating member 40 can satisfy: 0.35mm ⁇ c ⁇ 0.55mm; if the first arc The radius R1 of the transition surface 214 satisfies 0.3mm ⁇ R1 ⁇ 0.7mm, and the thickness c of the second insulating member 40 can satisfy: 0.05mm ⁇ c ⁇ 0.3
  • the thickness c of the second insulating member 40 can satisfy: 1.2mm ⁇ c ⁇ 1.5mm; if the radius R2 of the second arc transition surface 216 satisfies 1.3mm ⁇ R2 ⁇ 2.0mm, the thickness c of the second insulating member 40 can satisfy: 0.8mm ⁇ c ⁇ 1.3mm.
  • the thickness c of the second insulating member 40 can satisfy: 0.35mm ⁇ c ⁇ 0.55mm; if the second arc transition surface 216 The radius R2 satisfies 0.3mm ⁇ R2 ⁇ 0.7mm, and the thickness c of the second insulating member 40 can satisfy: 0.05mm ⁇ c ⁇ 0.3mm.
  • the radius R1 of the first arc transition surface 214 and the thickness c of the second insulating member 40 satisfy: 0.3 ⁇ c/R1 ⁇ 1, preferably, 0.35 ⁇ c/R1 ⁇ 0.8, which can avoid the contact between the pole piece of the electrode assembly 22 and
  • the first arc transition surface 214 interferes and causes the pole pieces of the electrode assembly 22 to wrinkle, thereby reducing the risk of the pole pieces being squeezed against the first arc transition surface 214 and causing the pole pieces to wrinkle, thereby causing the battery cells 20 to short circuit. .
  • the radius R2 of the second arc transition surface 216 and the thickness c of the second insulating member 40 satisfy: 0.3 ⁇ c/R2 ⁇ 1, preferably, 0.35 ⁇ c/R2 ⁇ 0.8, which can avoid the contact between the pole piece of the electrode assembly 22 and
  • the second arc transition surface 216 interferes and causes the pole pieces of the electrode assembly 22 to wrinkle, thereby reducing the risk of the pole pieces being squeezed between the second arc transition surface 216 and causing the pole pieces to wrinkle, thereby causing the battery cells 20 to short-circuit. .
  • the second insulating member 40 includes a second insulating part 43 and a folding part 41 that are stacked along the third direction.
  • the folding part 41 is flippably connected to the second insulating part 43 .
  • the third direction of the insulating portion 43 is consistent with the thickness direction X of the second insulating member.
  • the third direction is also consistent with the thickness direction of the bottom wall 212 .
  • the folding part 41 is foldably connected to the second insulating part 43, which means that the folding part 41 can be rotated and folded around a certain crease relative to the second insulating part 43.
  • the folding part 41 is folded relative to the second insulating part 43 so that the second insulating part 43 and the folding part 41 are in a stacked state and an unfolded state.
  • the stacked state means that the folded portion 41 and the second insulating portion 43 are both located between the electrode assembly 22 and the bottom wall 212 , and the folded portion 41 is located on the side of the second insulating portion 43 away from the electrode assembly 22 and/or on the second
  • the insulating portion 43 faces the side of the electrode assembly 22 .
  • the unfolded state refers to other states of the folded portion 41 and the second insulating portion 43 except for the stacked state, including a state in which the folded portion 41 and the second insulating portion 43 are coplanar.
  • the folding portion 41 is foldably connected to the second insulating portion 43 , and the folding portion 41 is folded relative to the second insulating portion 43 and can be stacked or not stacked with the second insulating portion 43 .
  • the thickness of the second insulating member 40 is the sum of the thicknesses of the folded portion 41 and the second insulating portion 43 that are stacked in sequence along the third direction.
  • the thickness of the second insulating member 40 is the thickness of the second insulating portion 43 . Therefore, the thickness of the first insulating member 30 can be adjusted through the folded portion 41 .
  • the thickness is such that the thickness of the second insulating member 40 can prevent the pole piece from interfering with the first arc transition surface 214 .
  • the number of the turning portion 41 may be one or multiple.
  • the second insulating member 40 includes multiple turning portions 41 .
  • the plurality of folded portions 41 may all be in a stacked state with the second insulating portion 43 .
  • part of the plurality of folding parts 41 and the second insulating part 43 are in a stacked state, and another part of the folding part 41 and the second insulating part 43 are in an unfolded state.
  • all of the plurality of folding portions 41 and the second insulating portion 43 are in an unfolded state.
  • the thickness c of the second insulating member 40 is the sum of the thicknesses of the stacked folded portion 41 and the second insulating portion 43 located between the electrode assembly 22 and the bottom wall 212 in the thickness direction of the bottom wall 212 .
  • the thickness direction of the bottom wall 212 is consistent with the thickness direction X and the third direction of the second insulating member.
  • the second insulating member 40 includes a plurality of folding parts 41 , and different numbers of the folding parts 41 and the second insulating part 43 are stacked in the third direction, thereby changing the thickness of the first insulating part 30 so that the second insulating part The thickness of 40 can prevent the pole piece from interfering with the first arc transition surface 214.
  • part of the plurality of folded parts 41 is located on one side of the second insulating part 43 , and another part of the plurality of folded parts 41 is located on the other side of the second insulating part 43 .
  • the plurality of folded portions 41 are distributed on both sides of the second insulating portion 43 along the third direction. All the folded portions 41 located on the same side of the second insulating portion 43 may be arranged in a stack or side by side.
  • the second insulating member 40 has three folding parts 41 , and one of the three folding parts 41 is stacked with the second insulating part 43 on the first side 431 of the second insulating part 43 along the third direction. , the other two folding parts 41 of the three folding parts 41 are stacked with the second insulating part 43 on the second side 432 of the second insulating part 43 along the third direction, and the first side 431 and the second side 432 are opposite to each other. set up. As shown in FIG.
  • the two folded portions 41 located on the second side 432 may be stacked along the third direction, and one of the two folded portions 41 is closer to the electrode assembly 22 than the other.
  • the thickness c of the second insulating member 40 is the thickness of one folded portion 41 located on the first side 431 of the second insulating portion 43 and the thickness of two folded portions located on the second side 432 of the second insulating portion 43 .
  • the sum of the thickness of the first insulating portion 41 and the thickness of the second insulating portion 43 may be arranged side by side on the second side 432 , and the distance between the two folded portions 41 relative to the electrode assembly 22 is the same.
  • the thickness c of the second insulating member 40 is the thickness of a folded portion 41 located on the first side 431 of the second insulating portion 43 and a thickness of a folded portion located on the second side 432 of the second insulating portion 43 .
  • all the folding parts 41 may also be located on the same side of the second insulating part 43 along the third direction.
  • the plurality of folding parts 41 are distributed on opposite sides of the second insulating part 43 along the third direction, which facilitates folding of the folding parts 41 relative to the second insulating part 43 and reduces the connection between the folding parts 41 and the second insulating part 43 The amount of accumulation at the location.
  • the second insulating member 40 includes two folded portions 41, and the second insulating portion 43 has two first edge portions 433 arranged oppositely along the first direction Y, One ends of the two folding portions 41 are respectively flippably connected to the two first edge portions 433 , and the first direction Y is perpendicular to the thickness direction X of the second insulating member.
  • the two folding portions 41 are respectively foldably connected to the two first edge portions 433, which means that when the folding portion 41 and the second insulating portion 43 are stacked, the folding portion 41 is in the first direction Y.
  • One end is connected to the first edge portion 433 .
  • connection position between the folded portion 41 and the first edge portion 433 forms a second fold 42 , and the second fold 42 extends along the second direction Z.
  • the folded portion 41 can be rotated and folded relative to the second insulating portion 43 around the second fold 42 to be stacked with the second insulating portion 43 in the third direction or to be in an unfolded state relative to the second insulating portion 43 .
  • the second fold 42 may be formed at a connection position between the folded portion 41 and the first edge portion 433 .
  • the second fold 42 can also be provided at other positions of the second insulating member 40 .
  • the distance between the end of the folded portion 41 located on the side of the second insulating portion 43 away from the electrode assembly 22 and close to the second arc transition surface 216 in the second direction Z and the second arc transition surface 216 is greater than the distance between the second insulating portion 43 and the second arc transition surface 216 .
  • the distance between the end of the portion 43 close to the second arc transition surface 216 in the second direction Z and the second arc transition surface 216 is the folded portion 41 located on the side of the second insulating portion 43 away from the electrode assembly 22
  • the end of the second insulating part 43 close to the second arc transition surface 216 in the second direction Z is suspended to avoid contact and extrusion between the second insulating part 43 and the second arc transition surface 216, thereby causing the pole piece to be squeezed. Press and wrinkle.
  • the folding directions of the two folding parts 41 relative to the second insulating part 43 are opposite.
  • one of the two folding parts 41 is folded along the first folding direction relative to the second insulating part 43 and is located on one side of the second insulating part 43 in the third direction.
  • the other of the two folding parts 41 is folded along the second folding direction relative to the second insulating part 43 and is located on the other side of the first insulating part 32 in the third direction.
  • the first turning direction and the second turning direction are opposite, for example, the first turning direction is clockwise and the second turning direction is counterclockwise.
  • the two folding parts 41 can also be foldably connected to the same first edge part 433 .
  • the two folding portions 41 are respectively foldably connected to the two first edge portions 433 of the second insulating portion 43 facing each other along the first direction Y, so that the folding portions 41 can be folded relative to the second insulating portion 43 to avoid both sides.
  • the two folding parts 41 interfere with each other when folded.
  • the first insulating member 30 includes two first partitions 31 , and the two first partitions 31 are respectively flippably connected to the two folding parts 41 .
  • the first end 411 of the folding portion 41 is flippably connected to the second insulating portion 43
  • the second end 412 of the folding portion 41 opposite to the first end 411 is flippably connected to the first partition 31 .
  • the first partition 31 is flippably connected to the second end 412 of the fold 41 so that the first partition 31 can be rotated and folded relative to the fold 41 around a certain crease.
  • both ends of the second insulating part 43 may be flush with or not flush with both ends of the folded part 41 .
  • the two ends of the second insulating part 43 are not flush, and the two ends of the second insulating part 43 exceed the two ends of the folded part 41 .
  • a third fold 434 is formed at the connection position between the first partition 31 and the folded portion 41; the third fold 434 extends along the second direction Z.
  • the first crease 34, the second crease 42 and the third crease 434 are formed before folding, so that the folding position can be clearly and accurately known, and the folding is easier.
  • the folding part 41 can be folded around the first fold 34 relative to the second insulating part 43
  • the first partition 31 can be folded around the second fold 42 relative to the folding part 41
  • the first fold 34 and the second fold 42 extend in the same direction, which can prevent the folding action of the folding portion 41 relative to the first insulating portion 32 and the folding action of the first partition 31 relative to the folding portion 41 from interfering with each other.
  • the first insulating member 30 includes two first partition parts 31 that are flippably connected to the two folding parts 41 respectively.
  • the first partition part 31 and the second insulating part 43 are respectively connected to the second opposite part of the folding part 41 .
  • the end 412 and the first end 411 facilitate the first partition 31 to be folded relative to the folding portion 41 to separate the first side 222 of the electrode assembly 22 from the housing 21 .
  • the folding portion 41 and the first dividing portion 31 can also be arranged in other ways.
  • the second insulating member 40 includes two folding portions 41 .
  • the insulating part 43 has two first edge parts 433 arranged oppositely along the first direction Y, and the two folding parts 41 are respectively flippably connected to the two first edge parts 433;
  • the second insulating part 43 has two first edge parts 433 arranged along the second direction Y.
  • Two second edge portions 435 are oppositely arranged in the direction Z.
  • the first insulating member 30 includes two first partition portions 31 .
  • the two first partition portions 31 are respectively flippably connected to the two second edge portions 435 .
  • One direction Y is perpendicular to the second direction Z.
  • the two folding portions 41 are each flippably connected to the two first edge portions 433 of the second insulating portion 43 facing each other along the first direction Y.
  • the folding portion 41 and the first edge portion 433 form a first edge portion 433 at the connection position.
  • the fold 34 extends in the second direction Z.
  • the two first partitions 31 are respectively connected to the two second edge portions 435 opposite to the second insulating portion 43 along the second direction Z.
  • the fourth fold formed at the connection position of the first partition 31 and the second edge portion 435 436. When the second insulating member 40 is in the unfolded state, the fourth fold 436 extends along the first direction Y.
  • the two first partition parts 31 are each flippably connected to the two second edge parts 435 of the second insulating part 43 opposite in the second direction Z, and the two folding parts 41 are respectively flippably connected to the second
  • the two first edge portions 433 of the insulating portion 43 facing each other along the first direction Y can reduce the difficulty of folding the folding portion 41 and reduce the risk of mutual interference between the folding portion 41 and the first partition portion 31 when folding.
  • the second insulating member 40 is provided with a through hole 437.
  • the through hole 437 is used for positioning in cooperation with the assembly device 2200 for assembling the battery cell 20, so that the second insulating member 40 can be assembled.
  • An insulating member 30 is positioned on the assembly device 2200 to improve assembly quality.
  • ions from the electrode assembly 22 will reach the casing 21 through the through holes 437, causing an internal short circuit in the battery cell 20, causing safety issues.
  • the second insulating part 43 is provided with a through hole 437
  • the folded part 41 is configured to be stacked with the second insulating part 43 to cover the through hole 437 .
  • the folded portion 41 covers the through hole 437 , preventing the ions of the electrode assembly 22 and the through hole 437 from reaching the casing 21 .
  • the plurality of folding parts 41 are distributed on both sides in the third direction and can cover the through hole 437 from both axial ends of the through hole 437 , further preventing ions from passing through the electrode assembly 22
  • the through hole 437 reaches the housing 21 .
  • the second insulating member 40 can be positioned through the through hole 437 to cooperate with the assembly device 2200 for assembling the battery cell 20, thereby positioning the second insulating member 40 on the assembly device 2200.
  • the assembly quality of the battery cells 20 is improved.
  • the folded portion 41 When the folded portion 41 is in a stacked state relative to the second insulating portion 43, the folded portion 41 can cover the through hole 437, so that ions of the electrode assembly 22 cannot reach the case 21 through the through hole 437, reducing the risk of internal short circuit of the battery cell 20. risk.
  • the first insulating member 30 and the second insulating member 40 are integrally formed.
  • first insulating member 30 and the second insulating member 40 may also be provided separately and then connected to form an integral structure.
  • the first insulating member 30 and the second insulating member 40 are integrally formed to facilitate manufacturing.
  • the thickness of the second insulating member 40 is greater than the thickness of the first insulating member 30 .
  • the thickness of the second insulating member 40 is greater than the thickness of the first separation portion 31 of the first insulating member 30 , and the thickness of the second insulating member 40 is greater than the thickness of the second separation portion 33 of the first insulating member 30 .
  • the thickness of the second insulating member 40 is greater than the thickness of the first insulating member 30 , which can not only prevent the pole pieces of the electrode assembly 22 from interfering with the first arc transition surface 214 and cause the pole pieces of the electrode assembly 22 to wrinkle, but also reduce the third An insulating member 30 occupies the space inside the housing 21 .
  • An embodiment of the present application also provides a battery 100.
  • the battery 100 includes the battery cell 20 provided in the above embodiment.
  • the interference between the pole piece of the electrode assembly 22 of the battery cell 20 and the first arc transition surface 214 causes the pole piece to wrinkle, resulting in a low risk of short circuit of the battery cell 20 and the safety performance of the battery cell 20 higher, thereby improving the safety performance of the battery 100.
  • An embodiment of the present application also provides an electrical device.
  • the electrical device includes the battery cell 20 provided in any of the above embodiments.
  • the pole piece of the electrode assembly 22 of the battery cell 20 interferes with the first arc transition surface 214, causing the pole piece to wrinkle, resulting in a low risk of short circuit of the battery cell 20 and improving the safety performance of the battery cell 20. Higher, thereby improving the electrical safety of electrical equipment.
  • the embodiment of the present application also provides a method of manufacturing the battery cell 20.
  • the manufacturing method of the battery cell 20 includes:
  • the housing 21 includes a bottom wall 212 and a first side wall 213 connected to the bottom wall 212.
  • the inner surface of the bottom wall 212 and the second insulating member 40 are provided.
  • the inner surfaces of the side walls 213 are connected through the first arc transition surface 214;
  • the electrode assembly 22 includes a pole piece and an isolation film;
  • the first insulating member 30 includes a first partition 31;
  • the isolation film has a stacked portion 221 located between the pole piece and the second insulating member 40;
  • the radius R1 of the first arc transition surface 214, the thickness a1 of the first separation part 31, the thickness b of the stacking part 221, and the thickness c of the second insulating member 40 satisfy the following relationship:
  • the embodiment of the present application also provides a battery cell manufacturing equipment 2000.
  • the battery cell manufacturing equipment 2000 includes a providing device 2100 and an assembly device 2200; the providing device 2100 is configured to provide a case 21, an electrode
  • the assembly 22, the first insulating member 30 and the second insulating member 40, the housing 21 includes a bottom wall 212 and a first side wall 213 connected to the bottom wall 212, and the inner surface of the bottom wall 212 and the inner surface of the first side wall 213 pass through The first arc transition surface 214 is connected;
  • the electrode assembly 22 includes a pole piece and an isolation film;
  • the first insulating member 30 includes a first partition 31;
  • the assembly device 2200 is configured to accommodate the electrode assembly 22 in the housing 21, and the third A partition 31 is disposed between the electrode assembly 22 and the first side wall 213 to separate the electrode assembly 22 and the first side wall 213 and the second insulating member 40 is disposed between the electrode assembly 22 and the bottom wall 212 to separate the electrode assembly 22 and the first side wall 213.
  • the isolation film has a stack portion 221 located between the pole piece and the second insulating member 40; R1, the thickness a1 of the first partition 31, the thickness b of the stacked part 221, and the thickness c of the second insulating member 40 satisfy the following relationship:
  • the embodiment of the present application provides a battery cell 20.
  • the battery cell 20 includes a case 21, an electrode assembly 22, a first insulating member 30 and a second insulating member 40.
  • the housing 21 includes a bottom wall 212, two first side walls 213 and two second side walls 215.
  • the two first side walls 213 are arranged oppositely along the first direction Y, and the two second side walls 215 are arranged along the second direction Y.
  • Z are arranged oppositely, and the first direction Y and the second direction Z are perpendicular.
  • the inner surface of each first side wall 213 and the inner surface of the bottom wall 212 are connected through a first arc transition surface 214, and the radius of the first arc transition surface 214 is R1.
  • the inner surface of each second side wall 215 and the inner surface of the bottom wall 212 are connected through a second arc transition surface 216, and the radius of the second arc transition surface 216 is R2.
  • the first insulator 30 includes two first partitions 31 and four first insulators 32 .
  • the two first partitions 31 are respectively used to separate the electrode assembly 22 and the two first side walls 213 .
  • Two of the four first insulating parts 32 are flippably connected to both ends of one first partition 31 along the second direction Z, and the other two of the four first insulating parts 32 are An insulating part 32 is flippably connected to both ends of the other first partition part 31 along the second direction Z.
  • the two first insulation portions 32 whose first partitions 31 are located at the same end are stacked in the second direction Z to form a second partition 33 that separates the second side wall 215 .
  • the thickness of the first partition part 31 is a1, and the thickness of the first insulating part 32 is a21.
  • the second insulating member 40 includes a second insulating part 43 and two folding parts 41. Both of the two folding parts 41 are flippably connected to the second insulating part 43.
  • the two folding parts 41 are along the edges of the second insulating part.
  • the thickness direction Among them, R1 ⁇ (c+b) 2 +4*(a1) 2 +[(a1)*(c+b)] 1/2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种电池单体、电池及用电设备,涉及电池技术领域。电池单体包括壳体、电极组件、第一绝缘件和第二绝缘件;壳体的底壁的内表面和第一侧壁的内表面通过第一圆弧过渡面连接;第一绝缘件的第一分隔部分隔电极组件和第一侧壁;第二绝缘件分隔电极组件和底壁;沿第二绝缘件的厚度方向,电极组件的隔离膜具有位于极片与第二绝缘件之间的堆叠部;第一圆弧过渡面的半径R1、第一分隔部的厚度a1、堆叠部的厚度b以及第二绝缘件的厚度c,满足R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2,避免电极组件的极片与第一圆弧过渡面干涉而导致电极组件的极片打皱,从而降低极片与第一圆弧过渡面干涉而打皱导致电池单体短路的风险。

Description

电池单体、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体、电池及用电设备。
背景技术
目前,智能手机、平板电脑和电动汽车等的迅猛发展,锂离子电池的应用也日益广泛,因此对锂离子电池也提出了更高的要求。比如,要求电池具有更好的安全性能,而电池的内部短路是导致用电安全问题的主要原因之一。
电池短路会产生过多的电热,产生高温,可能会造成火灾,也可能会烧坏用电器,使得财产和生命安全受到威胁。因此,如何降低电池短路的风险成为电池技术领域亟待解决的问题。
发明内容
本申请实施例提供一种电池单体、电池及用电设备,以降低电池短路的风险。
第一方面,本申请实施例提供一种电池单体,包括壳体、电极组件、第一绝缘件和第二绝缘件;所述壳体包括底壁与所述底壁相连的第一侧壁,所述底壁的内表面和所述第一侧壁的内表面通过第一圆弧过渡面连接;所述电极组件容纳于所述壳体内,所述电极组件包括极片和隔离膜;所述第一绝缘件包括第一分隔部,所述第一分隔部用于分隔所述电极组件和所述第一侧壁;所述第二绝缘件用于分隔所述电极组件和所述底壁;其中,沿所述第二绝缘件的厚度方向,所述隔离膜具有位于所述极片与所述第二绝缘件之间的堆叠部;所述第一圆弧过渡面的半径R1、所述第一分隔部的厚度a1、所述堆叠部的厚度b、以及所述第二绝缘件的厚度c,满足如下关系:
R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2
上述技术方案中,第一绝缘件用于分隔壳体的底壁和电极组件,则在底壁的厚度方向上,第一绝缘件设置在底壁和电极组件之间,不仅能够分隔电极组件和底壁避免电池单体短路,还能使电极组件相对壳体的底壁的位置被抬高,且第一圆弧过渡面的半径R1、第一分隔部的厚度a1、堆叠部的厚度b、第二绝缘件的厚度c,满足R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2,避免电极组件的极片与第一圆弧过渡面干涉而导致电极组件的极片打皱,从而降低极片与第一圆弧过渡面挤压,而导致极片打皱,从而导致电池单体短路的风险,提高电池单体的安全性能。
在本申请第一方面的一些实施例中,所述壳体包括沿第一方向相对布置的两个所述第一侧壁,所述第一绝缘件包括沿所述第一方向相对布置的两个所述第一分隔部,每个所述第一分隔部用于分隔所述电极组件和一个所述第一侧壁,所述第二绝缘件的厚度方向和所述第一方向垂直。
上述技术方案中,每个第一侧壁和底壁之间的第一圆弧过渡面均满足:R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2,则电极组件在第一方向上的两侧的极片均不会与第一圆弧过渡面干涉而导致电极组件的极片打皱,从而降低极片与第一圆弧过渡面挤压,而导致极片打皱,从而导致电池单体短路的风险,提高电池单体的安全性能。两个第一分隔部分别独立地分隔两个第一侧壁和电极组件,能够在第一侧壁和电极组件之间更好的绝缘。
在本申请第一方面的一些实施例中,所述壳体还包括与所述底壁相连并与所述第一侧壁相邻的第二侧壁,所述底壁的内表面和所述第二侧壁的内表面通过第二圆弧过渡面连接;所述第一绝缘件还包括两个第一绝缘部,所述两个第一绝缘部至少部分重叠以分隔所述第二侧壁和所述电极组件;其中,所述第二圆弧过渡面的半径R2、所述第一绝缘部的厚度a21、所述堆叠部的厚度b、以及所述第二绝缘件的厚度c,满足如下关系:
R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2
上述技术方案中,第二圆弧过渡面的半径R2、第一绝缘部的厚度a21、堆叠部的厚度b、以及第二绝缘件的厚度c,满足R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2,避免电极组件的极片与 第二圆弧过渡面干涉而导致电极组件的极片打皱,从而降低极片与第二圆弧过渡面干涉导致极片打皱,从而导致电池单体短路的风险,提高电池单体的安全性能。
在本申请第一方面的一些实施例中,所述两个第一绝缘部至少部分重叠以形成分隔所述第二侧壁和所述电极组件的第二分隔部,所述第一绝缘件具有两个所述第二分隔部;所述壳体包括沿第二方向相对布置的两个所述第二侧壁,所述电极组件和每个所述第二侧壁通过一个所述第二分隔部分隔,所述第二绝缘件的厚度方向和所述第二方向垂直。
上述技术方案中,每个第二侧壁和底壁之间的第二圆弧过渡面均满足:R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2,则电极组件在第二方向上的两侧的极片均不会与第二圆弧过渡面干涉而导致电极组件的极片打皱,从而降低极片与第二圆弧过渡面挤压,而导致极片打皱,从而导致电池单体短路的风险,提高电池单体的安全性能。此外,两个第二分隔部分别独立地分隔两个第二侧壁和电极组件,能够在第二侧壁和电极组件之间更好的绝缘。
在本申请第一方面的一些实施例中,所述第一圆弧过渡面的半径R1和所述第二绝缘件的厚度c,满足:0.3≤c/R1≤1,优选地,0.35≤c/R1≤0.8。
上述技术方案中,第一圆弧过渡面的半径R1和第二绝缘件的厚度c,满足:0.3≤c/R1≤1,优选地,0.35≤c/R1≤0.8,能够避免电极组件的极片与第一圆弧过渡面干涉而导致电极组件的极片打皱,从而降低极片与第一圆弧过渡面挤压,而导致极片打皱,从而导致电池单体短路的风险。
在本申请第一方面的一些实施例中,所述第二绝缘件包括沿第三方向层叠设置的第二绝缘部和翻折部,所述翻折部可翻折地连接于所述第二绝缘部,所述第三方向与所述第二绝缘件的厚度方向一致。
上述技术方案中,翻折部可翻折地连接于第二绝缘部,则翻折部相对第二绝缘部翻折可以和第二绝缘部层叠设置或者非层叠设置。当翻折部与第二绝缘部在第三方向层叠设置时,第二绝缘件的厚度为沿第三方向依次层叠设置的翻折部和第二绝缘部的厚度之和,当翻折部与第二绝缘部不是处于层叠设置的状态时,第二绝缘件的厚度为第二绝缘部的厚度,因此,通过翻折部能够调节第一绝缘件的厚度,以使第二绝缘件的厚度能够使得极片和第一圆弧过渡面不干涉。
在本申请第一方面的一些实施例中,所述第二绝缘件包括多个所述翻折部。
上述技术方案中,第二绝缘件包括多个翻折部,采用不同数量的翻折部与第二绝缘部在第三方向层叠设置,从而改变第一绝缘件的厚度,以使第二绝缘件的厚度能够使得极片和第一圆弧过渡面不干涉。
在本申请第一方面的一些实施例中,沿所述第三方向,多个所述翻折部中的部分位于所述第二绝缘部的一侧,多个所述翻折部中的另一部分位于所述第二绝缘部的另一侧。
上述技术方案中,多个翻折部分布在第二绝缘部沿第三方向相对的两侧,方便翻折部相对第二绝缘部翻折,减小翻折部与第二绝缘部的连接位置的堆积量。
在本申请第一方面的一些实施例中,所述第二绝缘件包括两个所述翻折部,所述第二绝缘部具有沿第一方向相对布置的两个第一边缘部,两个所述翻折部的一端分别可翻折地连接于两个所述第一边缘部,所述第一方向与所述第二绝缘件的厚度方向垂直。
上述技术方案中,两个翻折部分别可翻折地连接于第二绝缘部沿第一方向相对的两个第一边缘部,方便翻折部相对第二绝缘部翻折以,避免两个翻折部翻折时相互干涉。
在本申请第一方面的一些实施例中,所述第一绝缘件包括两个所述第一分隔部,两个所述第一分隔部分别可翻折地连接于两个所述翻折部,所述翻折部的第一端与所述第二绝缘部可翻折地连接,所述翻折部的与所述第一端相对的第二端与所述第一分隔部可翻折地连接。
上述技术方案中,第一绝缘件包括分别可翻折地连接于两个翻折部的两个第一分隔部,第一分隔部和第二绝缘部分别连接于翻折部相对的第二端和第一端,方便第一分隔部相对翻折部翻折以分隔电极组件的第一侧面和壳体。
在本申请第一方面的一些实施例中,所述第二绝缘件包括两个所述翻折部,所述第二绝缘部具有沿第一方向相对布置的两个第一边缘部,两个所述翻折部分别可翻折地连接于两个所述第一边缘部;所述第二绝缘部具有沿第二方向相对布置的两个第二边缘部,所述第一绝缘件包括两个所述第一分隔部,两个所述第一分隔部分别可翻折地连接于两个所述第二边缘部,所述第一方向垂直所述第二方向。
上述技术方案中,两个第一分隔部分别可翻折地连接于第二绝缘部在第二方向上相对的两个第二边缘部,两个翻折部分别可翻折地连接于第二绝缘部沿第一方向相对的两个第一边缘部,能够降低翻折部的翻折难度以及降低翻折部和第一分隔部翻折时相互干涉的风险。
在本申请第一方面的一些实施例中,所述第二绝缘部设有通孔,所述翻折部被配置为与所述第二绝缘部层叠设置,以覆盖所述通孔。
上述技术方案中,组装电池单体的过程中第二绝缘件可以通过通孔定位,以实现与组装电池单体的组装装置配合定位,从而将第二绝缘件定位在组装装置上,以使提高电池单体组装质量。当翻折部相对第二绝缘部处于层叠状态时,翻折部能够覆盖通孔,使得电极组件的离子不能经过通孔到达壳体,降低电池单体内部短路的风险。
在本申请第一方面的一些实施例中,所述第一绝缘件和所述第二绝缘件一体成型。
上述技术方案中,第一绝缘件和第二绝缘件一体成型,方便制造。
在本申请第一方面的一些实施例中,所述第二绝缘件的厚度大于所述第一绝缘件的厚度。
上述技术方案中,第二绝缘件的厚度大于第一绝缘件的厚度,既能避免电极组件的极片与第一圆弧过渡面干涉而导致电极组件的极片打皱,还能减小第一绝缘件占用壳体内部的空间。
第二方面,本申请实施例提供一种电池,所述电池包括第一方面任意实施例提供的电池单体。
上述技术方案中,第一方面实施例中的电池单体的电极组件的极片与第一圆弧过渡面干涉导致极片打皱,从而导致电池单体短路的风险较低,电池单体的安全性能较高,从而提高了电池的安全性能。
第三方面,本申请实施例提供一种用电设备,所述用电设备包括第一方面任意实施例提供的电池单体。
上述技术方案中,第一方面实施例中的电池单体的电极组件的极片与第一圆弧过渡面干涉导致极片打皱,从而导致电池单体短路风险较低,电池单体的安全性能较高,从而提高了用电设备的用电安全。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构示意图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的电池单体的局部示意图;
图5为本申请另一些实施例提供的电池单体的局部示意图;
图6为本申请一些实施例提供的壳体的结构示意图;
图7为本申请一些实施例提供的第一绝缘件和第二绝缘件的展开状态的示意图;
图8为图7中的一个翻折部相对第二绝缘部翻折后的示意图;
图9为图8中的绝缘件的另一个翻折部相对第二绝缘部翻折后的示意图;
图10为图7中的第二绝缘件完全翻折后的示意图;
图11为本申请再一些实施例提供的电池单体的局部示意图;
图12为本申请又一些实施例提供的电池单体的局部示意图;
图13为本申请另一些实施例提供的第一绝缘件和第二绝缘件的展开状态的示意图;
图14为本申请一些实施例提供的电池单体的制造方法的流程框图;
图15为本申请一些实施例提供的电池单体的制造设备的结构示意图。
图标:1000-车辆;100-电池;10-箱体;11-安装空间;12-第一部分;13-第二部分;20-电池单体;21-壳体;211-开口;212-底壁;213-第一侧壁;214-第一圆弧过渡面;215-第二侧壁;216-第二圆弧过渡面;22-电极组件;221-堆叠部;I-平直区;II-弯折区;222-第一侧面;223-第二侧面;23-端盖组件;231-端盖;232-电极端子;233-端盖保护件;24-保护膜;25-集流构件;30-第一绝缘件;31-第一分隔部;32-第一绝缘部;33-第二分隔部;34-第一折痕;40-第二绝缘件;41-翻折部;411-第一端;412-第二端;42-第二折痕;43-第二绝缘部;431-第一侧;432-第二侧;433-第一边缘部;434-第三折痕;435-第二边缘部;436-第四折痕;437-通孔;200-控制器;300-马达;2000-电池单体的制造设备;2100-提供装置;2200-组装装置;X-第二绝缘件的厚度方向;Y-第一方向;Z-第二方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
电池单体包括壳体、电极组件、第一绝缘件和第二绝缘件,壳体具有底壁和侧壁,侧壁沿底壁的边缘设置。电极组件容纳于壳体内。第一绝缘件用于分隔所述电极组件和侧壁;第二绝缘件用于分隔电极组件和底壁,以使防止电池单体短路。
发明人发现,壳体的底壁的内表面和侧壁的内表面通过圆弧过渡面过渡连接,圆弧过渡面相对底壁的内表面和侧壁的内表面更加靠近电池单体的内部,使得电极组件和圆弧过渡面干涉,从而导致电极组件的极片被圆弧过渡挤压而打皱,进而导致电池单体短路。
基于上述考虑,为了缓解电极组件的极片和圆弧过渡面干涉的问题,发明人经过深入研究,设计了一种电池单体,壳体包括第一侧壁,第一侧壁的内表面和底壁的内表面通过第一圆弧过渡面过渡连接。第一绝缘件包括第一分隔部,第一分隔部用于分隔电极组件和第一侧壁;第二绝缘件用于分隔电极组件和底壁;电极组件包括极片和隔离膜,沿第二绝缘件的厚度方向,隔离膜具有位于极片与第二绝缘件之间的堆叠部。第一圆弧过渡面的半径R1、第一分隔部的厚度a1、堆叠部的厚度b、以及第二绝缘件的厚度c,满足关系:R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2
第一绝缘件用于分隔壳体的底壁和电极组件,则在底壁的厚度方向上,第一绝缘件设置在底壁和电极组件之间,不仅能够分隔电极组件和底壁避免电池单体短路。第一绝缘件还能使电极组件相对壳体的底壁的位置被抬高,且第一圆弧过渡面的半径、第一分隔部的厚度a1、堆叠部的厚度b、第二绝缘件的厚度c,满足R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2,避免电极组件的极片与第一圆弧过渡面而干涉导致电极组件的极片打皱,从而降低极片与第一圆弧过渡面干涉导致极片打皱,从而导致电池单体短路的风险,提高电池单体的安全性能。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源系统,这样,有利于降低极片和圆弧过渡面干涉而导致极片打皱的风险,降低电池内部短路的风险,从而提高电池单体的安全性能。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,电池100包括箱体10和电池单体20,电池单体20收容于箱体10内。
箱体10用于为电池单体20提供安装空间11。在一些实施例中,箱体10可以包括第一部分12和第二部分13,第一部分12与第二部分13相互盖合,以限定出用于容纳电池单体20的安装空间11。当然,第一部分12与第二部分13的连接处可通过密封件(图未示出)来实现密封,密封件可以是密封圈、密封胶等。
第一部分12和第二部分13可以是多种形状,比如,长方体、圆柱体等。第一部分12可以是一侧开口以形成具有容纳电池单体20的容纳腔的空心结构,第二部分13也可以是一侧开口以形成具有容纳电池单体20的容纳腔的空心结构,第二部分13的开口侧盖合于第一部分12的开口侧,则形成具有安装空间11的箱体10。当然,也可以是第一部分12为一侧开口以形成具有容纳电池单体20的容纳腔的空心结构,第二部分13为板状结构,第二部分13盖合于第一部分12的开口侧,则形成具有安装空间11的箱体10。
在电池100中,电池单体20可以是一个、也可以是多个。若电池单体20为多个,多个电 池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,也可以是多个电池单体20先串联或并联或混联组成电池100模块,多个电池100模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。图2示例性的示出了电池单体20呈方体的情况。
在一些实施例中,电池100还可以包括汇流部件(图未示出),多个电池单体20之间可通过汇流部件实现电连接,以实现多个电池单体20的串联或并联或混联。
请参照图3,电池单体20可以包括壳体21、电极组件22和端盖组件23。壳体21具有开口211,电极组件22容纳于壳体21内,端盖组件23用于封盖于开口211。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件22的具体形状来确定。比如,若电极组件22为圆柱体结构,壳体21则可选用为圆柱体结构;若电极组件22为长方体结构,壳体21则可选用长方体结构。图3示例性的示出了壳体21和电极组件22为方形的情况。
壳体21的材质也可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
在一些实施例中,壳体21的外表面还设有保护膜24,保护膜24包覆于壳体21的外表面。保护膜24能够起到绝缘、耐高温等作用。保护膜24可以是蓝膜。
电极组件22可以包括正极片(图未示出)、负极片(图未示出)和隔离膜(图未示出)。电极组件22可以是由正极片、隔离膜和负极片通过卷绕形成的卷绕式结构,也可以是由正极片、隔离膜和负极片通过层叠布置形成的层叠式结构。电极组件22还包括正极极耳(图未示出)和负极极耳(图未示出),可以是正极片中未涂覆正极活性物质层的正极集流体作为正极极耳,可以是负极片中未涂覆负极活性物质层的负极集流体作为负极极耳。
端盖组件23包括端盖231和电极端子232,电极端子232设置于端盖231。端盖231用于封盖壳体21的开口211,以形成一密闭的容纳空间(图未示出),容纳空间用于容纳电极组件22。容纳空间还用于容纳电解质,例如电解液。端盖组件23作为输出电极组件22的电能的部件,端盖组件23中的电极端子232用于与电极组件22电连接,即电极端子232与电极组件22的极耳电连接,比如,电极端子232与极耳通过集流构件25连接,以实现电极端子232与极耳的电连接。
需要说明的,壳体21的开口211可以是一个,也可以是两个。若壳体21的开口211为一个,端盖组件23也可以为一个,端盖组件23中则可设置两个电极端子232,两个电极端子232分别用于与电极组件22正极极耳和负极极耳电连接,端盖组件23中的两个电极端子232分别为正极电极端子和负极电极端子。若壳体21的开口211为两个,比如,两个开口211设置在壳体21相对的两侧,端盖组件23也可以为两个,两个端盖组件23分别盖合于壳体21的两个开口211处。在这种情况下,可以是一个端盖组件23中的电极端子232为正极电极端子,用于与电极组件22的正极极耳电连接;另一个端盖组件23中的电极端子232为负极电极端子,用于与电极组件22的负极片电连接。
在一些实施例中,端盖组件23还包括端盖保护件233,端盖保护件233安装于端盖231的表面,对端盖231起到保护作用。
如图4所示,在一些实施例中,电池单体20包括壳体21、电极组件22、第一绝缘件30和第二绝缘件40;壳体21包括底壁212与底壁212相连的第一侧壁213,底壁212的内表面和第一侧壁213的内表面通过第一圆弧过渡面214连接;电极组件22容纳于壳体21内,电极组件22包括极片(图中未示出)和隔离膜(图中未示出);第一绝缘件30包括第一分隔部31,第一分隔部31用于分隔电极组件22和第一侧壁213;第二绝缘件40用于分隔电极组件22和底壁212;其中,沿第二绝缘件的厚度方向X,隔离膜具有位于极片与第二绝缘件40之间的堆叠部221;第一圆弧过渡面214的半径R1、第一分隔部31的厚度a1、堆叠部221的厚度b、以及第二绝缘件40的厚度c,满足如下关系:R1≤(c+b) 2+4(a1) 2+[(a1)*(c+b)] 1/2
第一分隔部31用于分隔电极组件22和第一侧壁213,是指第一分隔部31设置于第一侧壁213和电极组件22之间,以使第一侧壁213和电极组件22不能接触,避免第一侧壁213和电极组件22接触导致电池单体20短路。第二绝缘件40用于分隔电极组件22和底壁212,是指第二绝缘件40设置于底壁212和电极组件22之间,以使底壁212和电极组件22不能接触,避免底壁212和电极组件22接触导致电池单体20短路。
对电极组件22而言,隔离膜的作用是用于分隔正极片和负极片,以防止正极片和负极片接触,导致短路。因此在对卷绕式电极组件而言,隔离膜在卷绕轴线方向上的两端均超出极片。为降低析锂的风险,一般负极片在卷绕轴线方向上的两端超出正极片,因此,隔离膜在卷绕轴线方向上超出极片,可以理解为隔离膜在卷绕轴线方向上的两端超出负极片。当卷绕式电极组件轴向的一端与第二绝缘件40相抵后,隔离膜在卷绕轴线方向上超出极片的部分被压缩在极片和第二绝缘件40之间,并形成堆叠部221。堆叠部221的厚度b即为隔离膜在卷绕轴线方向上超出极片的部分被极片和第二绝缘件40压缩后的在底壁212的厚度方向的尺寸。底壁212的厚度方向与第二绝缘件的厚度方向X一致。
在另一些实施例中,隔离膜在卷绕轴线方向上的两端未超出极片,则当卷绕式电极组件的轴向的一端与第二绝缘件40相抵时,极片和第二绝缘件40之间没有堆叠部221,可以理解为堆叠部221的厚度b=0mm。
对叠片式电极组件而言,极片具有未被隔离膜包覆的相对的两端,隔离膜超出极片未被隔离膜包覆的两端。当叠片式电极组件的极片未被隔离膜包覆的一端与第二绝缘件40相抵后,隔离膜超出极片的部分被压缩在极片和第二绝缘件40之间,并形成堆叠部221。堆叠部221的厚度b即为隔离膜在卷绕轴线方向上超出极片的部分被极片和第二绝缘件40压缩后的在底壁212的厚度方向的尺寸。
在另一些实施例中,隔离膜未超出极片未被隔离膜包覆的两端,则当叠片式电极组件22的极片未被隔离膜包覆的一端与第二绝缘件40相抵时,极片和第二绝缘件40之间没有堆叠部221,可以理解为堆叠部221的厚度b=0mm。
若是第一分隔部31圆弧结构,则第一分隔部31的厚度a1为第一分隔部31沿径向的尺寸。若是第一分隔部31平板结构,第一分隔部31的厚度a1为第一分隔部31在垂直第一分隔部31所在平面的方向上的尺寸。
在一些实施例中,电池单体20可以不包括第一分隔部31,可以理解为第一分隔部31的厚度a1=0mm。
第二绝缘件40的厚度c为第二绝缘件40沿底壁212的厚度方向的尺寸。
第一绝缘件30用于分隔壳体21的底壁212和电极组件22,则在底壁212的厚度方向上,第一绝缘件30设置在底壁212和电极组件22之间,不仅能够分隔电极组件22和底壁212避免电池单体20短路。第一绝缘件30还能使电极组件22相对壳体21的底壁212的位置被抬高,且第一圆弧过渡面214的半径R1、第一分隔部31的厚度a1、堆叠部221的厚度b、第二绝缘件40的厚度c,满足R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2,避免电极组件22的极片与第一圆弧过渡面214干涉而导致电极组件22的极片打皱,从而降低极片与第一圆弧过渡面214干涉导致极片打皱,从而导致电池单体20短路的风险,提高电池单体20的安全性能。
极片和第一圆弧过渡面214干涉,是指第一圆弧过渡面214使得极片受到挤压。
如图5-图10所示,在一些实施例中,在一些实施例中,壳体21包括沿第一方向Y相对布置的两个第一侧壁213,第一绝缘件30包括沿第一方向Y相对布置的两个第一分隔部31,每个第一分隔部31用于分隔电极组件22和一个第一侧壁213,第二绝缘件的厚度方向X和第一方向Y垂直。
第一方向Y平行第二绝缘件40面向电极组件22的平面。
每个第一侧壁213和底壁212之间的第一圆弧过渡面214均满足:R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2,则电极组件22在第一方向Y上的两侧的极片均不会与第一圆弧过渡 面214干涉而导致电极组件22的极片打皱,从而降低极片与第一圆弧过渡面214挤压,而导致极片打皱,从而导致电池单体20短路的风险,提高电池单体20的安全性能。两个第一分隔部31分别独立的分隔两个第一侧壁213和电极组件22,能够在第一侧壁213和电极组件22之间更好的绝缘。
如图5所示,在一些实施例中,壳体21还包括与底壁212相连并与第一侧壁213相邻的第二侧壁215,底壁212的内表面和第二侧壁215的内表面通过第二圆弧过渡面216连接;第一绝缘件30还包括两个第一绝缘部32,两个第一绝缘部32至少部分重叠以分隔第二侧壁215和电极组件22;其中,第二圆弧过渡面216的半径R2、第一绝缘部32的厚度a21、堆叠部221的厚度b、以及第二绝缘件40的厚度c,满足如下关系:R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2
第一侧壁213和第二侧壁215相邻并相连。在壳体21为矩形的实施例中,第一侧壁213和第二侧壁215垂直,第一侧壁213和第二侧壁215均与底壁212垂直。
两个第一绝缘部32至少部分重叠,以形成分隔第二侧壁215和电极组件22的第二分隔部33。第二分隔部33位于第二侧壁215和电极组件22之间,以使第二侧壁215和电极组件22不能接触,避免电极组件22和第二侧壁215接触导致电池单体20短路。第一绝缘部32的厚度a21为第一绝缘部32在两个第一绝缘部32的重叠方向上的尺寸。第二圆弧过渡面216的半径R2与第二分隔部33的厚度a2,并满足:R2≤(c+b) 2+4(a2) 2+[(a2)*(c+b)] 1/2。第二分隔部33的厚度a2为两个第一绝缘部32重叠区域的厚度,即a2=2*a21,因此,第二圆弧过渡面216的半径R满足:R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2
在另一些实施例中,第二侧壁215和电极组件22之间仅通过一个第一绝缘部32分隔,或者第二侧壁215和电极组件22之间通过两个第一绝缘部32分隔,但是两个第一绝缘部32不重叠,则第二圆弧过渡面216的半径R满足:R2≤(c+b) 2+4(a21) 2+[(a21)*(c+b)] 1/2
在一些实施例中,两个第一绝缘部32分别可翻折地连接于第一分隔部31。第一绝缘部32相对第一分隔部31翻折能够改变与第一分隔部31的夹角,以使第一绝缘部32能够位于第二侧壁215和电极组件22之间。图7-图10中示出了第一绝缘部32可翻折地连接于第一分隔部31的情况。第一绝缘部32和第一分隔部31之间形成第一折痕34,第一绝缘部32能够绕第一折痕34相对第一分隔部31转动翻折,以使第一绝缘部32位于第二侧壁215和电极组件22之间。当第一绝缘部32位于第二侧壁215和电极组件22之间时,第一折痕34沿第二绝缘件的厚度方向X延伸。
在另一些实施例中,第一绝缘部32可以与第一分隔部31呈夹角布置,第一绝缘部32不用相对第一分隔部31翻折就可以位于第二侧壁215和电极组件22之间。比如,在第一侧壁213和第二侧壁215垂直连接的实施例中,第一绝缘部32连接于第一分隔部31沿第二方向Z的一端并与第一分隔部31垂直布置。
在另一些实施例中,第一绝缘部32和第一分隔部31也可以是分体设置。
重叠后形成一个第二分隔部33的两个第一绝缘部32分别位于两个第一分隔部31在第二方向Z的同一端。第二绝缘件的厚度方向X、第一方向Y和第二方向Z两两垂直。
第一分隔部31和第一绝缘部32可以是一体成型,也可以是分体设置后连接为一整体结构。
第二圆弧过渡面216的半径R2、第一绝缘部32的厚度a21、堆叠部221的厚度b、以及第二绝缘件40的厚度c,满足R2≤(c+b) 2+4(2*a21) 2+[(2*a21)*(c+b)] 1/2,避免电极组件22的极片与第二圆弧过渡面216干涉而导致电极组件22的极片打皱,从而降低极片与第二圆弧过渡面216干涉导致极片打皱,从而导致电池单体20短路风险,提高电池单体20的安全性能。
极片和第二圆弧过渡面216干涉,是指第二圆弧过渡面216使得极片受到挤压。
请继续参照图6-图10,在一些实施例中,两个第一绝缘部32至少部分重叠以形成分隔第二侧壁215和电极组件22的第二分隔部33,第一绝缘件30具有两个第二分隔部33;壳体21包括沿第二方向Z相对布置的两个第二侧壁215,电极组件22和每个第二侧壁215通过一个第二分隔部33分隔,第二绝缘件的厚度方向X和第二方向Z垂直。
第一绝缘件30具有两个第二分隔部33,则第一绝缘件30具有四个第一绝缘部32,四个第一绝缘部32中的两个第一绝缘部32连接于一个第一分隔部31在第二方向Z上的两端,四个第一绝缘部32中的另外两个第一绝缘部32连接于另一个第一分隔部31在第二方向Z上的两端。
对方形的卷绕式电极组件22,电极组件22具有平直区I和连接于平直区I两端的弯折区II,平直区I具相对的两个第一侧面222,每个弯折区II的外侧面为弧形的第二侧面223。其中,若是第一分隔部31用于分隔第一侧面222和第一侧壁213,则第二分隔部33用于分隔第二侧面223和第二侧壁215;若是第二分隔部33用于分隔第一侧面222和第一侧壁213,则第一分隔部31用于分隔第二侧面223和第二侧壁215。本申请实施例示出了第一侧面222和第一侧壁213相对设置且第一分隔用于分隔第一侧面222和第一侧壁213、第二侧面223和第人侧壁相对设置且第二分隔用于分隔第二侧面223和第二侧壁215的情况。
每个第二侧壁215和底壁212之间的第二圆弧过渡面216均满足:R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2,则电极组件22在第二方向Z上的两侧的极片均不会与第二圆弧过渡面216干涉而导致电极组件22的极片打皱,从而降低极片与第二圆弧过渡面216挤压,而导致极片打皱,从而导致电池单体20短路的风险,提高电池单体20的安全性能。此外,两个第二分隔部33分别独立的分隔两个第二侧壁215和电极组件22,能够在第二侧壁215和电极组件22之间更好的绝缘。
在一些实施例中,第一圆弧过渡面214的半径R1和第二绝缘件40的厚度c,满足:0.3≤c/R1≤1,优选地,0.35≤c/R1≤0.8。和/或,第二圆弧过渡面216的半径R2和第二绝缘件40的厚度c,满足:0.3≤c/R2≤1,优选地,0.35≤c/R2≤0.8。
第一圆弧过渡面214的半径R1、第二圆弧过渡面216的半径R2和第二绝缘件40的厚度c,可以有不同的取值,以满足0.3≤c/R1≤1和0.3≤c/R2≤1。其中,c/R1与c/R2可以相等,也可以不相等。
示例性地,对于第一圆弧过渡面214的半径R1和第二绝缘件40的厚度c,若第一圆弧过渡面214的半径R1,满足2.1mm≤R1≤2.5mm,第二绝缘件40的厚度c可以满足:1.2mm≤c≤1.5mm;若第一圆弧过渡面214的半径R1,满足1.3mm≤R1≤2.0mm,第二绝缘件40的厚度c可以满足:0.8mm≤c≤1.3mm;若第一圆弧过渡面214的半径R1,满足0.8mm≤R1≤1.2mm,第二绝缘件40的厚度c可以满足:0.35mm≤c≤0.55mm;若第一圆弧过渡面214的半径R1,满足0.3mm≤R1≤0.7mm,第二绝缘件40的厚度c可以满足:0.05mm≤c≤0.3mm。
对于第二圆弧过渡面216的半径R2和第二绝缘件40的厚度c,若第二圆弧过渡面216的半径R2,满足2.1mm≤R2≤2.5mm,第二绝缘件40的厚度c可以满足:1.2mm≤c≤1.5mm;若第二圆弧过渡面216的半径R2,满足1.3mm≤R2≤2.0mm,第二绝缘件40的厚度c可以满足:0.8mm≤c≤1.3mm;若第二圆弧过渡面216的半径R2,满足0.8mm≤R1≤1.2mm,第二绝缘件40的厚度c可以满足:0.35mm≤c≤0.55mm;若第二圆弧过渡面216的半径R2,满足0.3mm≤R2≤0.7mm,第二绝缘件40的厚度c可以满足:0.05mm≤c≤0.3mm。
第一圆弧过渡面214的半径R1和第二绝缘件40的厚度c,满足:0.3≤c/R1≤1,优选地,0.35≤c/R1≤0.8,能够避免电极组件22的极片与第一圆弧过渡面214干涉而导致电极组件22的极片打皱,从而降低极片与第一圆弧过渡面214挤压,而导致极片打皱,从而导致电池单体20短路的风险。第二圆弧过渡面216的半径R2和第二绝缘件40的厚度c,满足:0.3≤c/R2≤1,优选地,0.35≤c/R2≤0.8,能够避免电极组件22的极片与第二圆弧过渡面216干涉而导致电极组件22的极片打皱,从而降低极片与第二圆弧过渡面216挤压,而导致极片打皱,从而导致电池单体20短路的风险。
请参照图7-图10,在一些实施例中,第二绝缘件40包括沿第三方向层叠设置的第二绝缘部43和翻折部41,翻折部41可翻折地连接于第二绝缘部43,第三方向与第二绝缘件的厚度方向X一致。
第三方向也与底壁212的厚度方向一致。
翻折部41可翻折地连接于第二绝缘部43,是指翻折部41能够相对第二绝缘部43绕某一 折痕转动翻折。翻折部41相对第二绝缘部43翻折能够使得第二绝缘部43和翻折部41处于层叠状态和展开状态。层叠状态是指翻折部41和第二绝缘部43均位于电极组件22和底壁212之间,翻折部41位于第二绝缘部43的背离电极组件22的一侧和/或位于第二绝缘部43面向电极组件22的一侧。展开状态是指翻折部41和第二绝缘部43除开层叠状态以外的其他状态,包括翻折部41和第二绝缘部43共面的状态。
翻折部41可翻折地连接于第二绝缘部43,则翻折部41相对第二绝缘部43翻折可以和第二绝缘部43层叠设置或者非层叠设置。当翻折部41与第二绝缘部43在第三方向层叠设置时,第二绝缘件40的厚度为沿第三方向依次层叠设置的翻折部41和第二绝缘部43的厚度之和,当翻折部41与第二绝缘部43不是处于层叠设置的状态时,第二绝缘件40的厚度为第二绝缘部43的厚度,因此,通过翻折部41能够调节第一绝缘件30的厚度,以使第二绝缘件40的厚度能够使得极片和第一圆弧过渡面214不干涉。
翻折部41的数量可以是一个,也可以是多个,在一些实施例中,第二绝缘件40包括多个翻折部41。
多个是指两个及两个以上。多个翻折部41可以全部与第二绝缘部43处于层叠状态。或者,多个翻折部41中的部分翻折部41与第二绝缘部43处于层叠状态,另一部分翻折部41与第二绝缘部43处于展开状态。或者,多个翻折部41全部与第二绝缘部43处于展开状态。第二绝缘件40的厚度c沿底壁212的厚度方向上位于电极组件22和底壁212之间的且层叠设置的翻折部41和第二绝缘部43的厚度之和。底壁212的厚度方向与第二绝缘件的厚度方向X和第三方向一致。
第二绝缘件40包括多个翻折部41,采用不同数量的翻折部41与第二绝缘部43在第三方向层叠设置,从而改变第一绝缘件30的厚度,以使第二绝缘件40的厚度能够使得极片和第一圆弧过渡面214不干涉。
在一些实施例中,沿第三方向,多个翻折部41中的部分位于第二绝缘部43的一侧,多个翻折部41中的另一部分位于第二绝缘部43的另一侧。
多个翻折部41分布在第二绝缘部43沿第三方向的两侧。位于第二绝缘部43的同一侧的所有的翻折部41可以是层叠布置,也可以并排布置。比如第二绝缘件40具有三个翻折部41,三个翻折部41中的一个翻折部41在第二绝缘部43沿第三方向的第一侧431与第二绝缘部43层叠设置,三个翻折部41中的另外两个翻折部41在第二绝缘部43沿第三方向的第二侧432与第二绝缘部43层叠设置,第一侧431和第二侧432相对设置。其中,如图11所示,位于第二侧432的两个翻折部41可以是沿第三方向层叠布置,两个翻折部41中的一者相对另一者更加靠近电极组件22,这种实施例中,第二绝缘件40的厚度c为位于第二绝缘部43的第一侧431的一个翻折部41的厚度、位于第二绝缘部43的第二侧432的两个翻折部41的厚度和第二绝缘部43的厚度之和。在另一些实施例中,如图12所示,位于第二侧432的两个翻折部41可以是并排布置于第二侧432,两个翻折部41中相对电极组件22的距离相同,这种实施例中,第二绝缘件40的厚度c为位于第二绝缘部43的第一侧431的一个翻折部41的厚度、位于第二绝缘部43的第二侧432的一个翻折部41的厚度和第二绝缘部43的厚度之和。
在另一些实施例中,所有的翻折部41也可以位于第二绝缘部43沿第三方向的同侧。
多个翻折部41分布在第二绝缘部43沿第三方向相对的两侧,方便翻折部41相对第二绝缘部43翻折,减小翻折部41与第二绝缘部43的连接位置的堆积量。
请继续参见图7-图10,在一些实施例中,第二绝缘件40包括两个翻折部41,第二绝缘部43具有沿第一方向Y相对布置的两个第一边缘部433,两个翻折部41的一端分别可翻折地连接于两个第一边缘部433,第一方向Y与第二绝缘件的厚度方向X垂直。
两个翻折部41分别可翻折地连接于两个第一边缘部433,是指在翻折部41与第二绝缘部43层叠设置的情况下,翻折部41在第一方向Y的一端与第一边缘部433连接。
翻折部41与第一边缘部433的连接位置形成第二折痕42,第二折痕42沿第二方向Z延伸。翻折部41能够绕第二折痕42相对第二绝缘部43转动翻折至与第二绝缘部43在第三方向层叠 设置或者相对第二绝缘部43处于展开状态。第二折痕42可以形成于翻折部41和第一边缘部433的连接位置。当然,第二折痕42也可以设置在第二绝缘件40的其他位置。
位于第二绝缘部43背离电极组件22的一侧的翻折部41在第二方向Z的靠近第二圆弧过渡面216的一端与第二圆弧过渡面216之间的距离大于第二绝缘部43在第二方向Z的靠近第二圆弧过渡面216的一端与第二圆弧过渡面216之间的距离,则位于第二绝缘部43背离电极组件22的一侧的翻折部41使得第二绝缘部43在第二方向Z上的靠近第二圆弧过渡面216的一端悬空设置,避免第二绝缘部43和第二圆弧过渡面216接触挤压,从而导致极片被挤压打皱。
在这种实施例中,为了使得两个翻折部41分别位于第二绝缘部43沿第三方向的两侧,两个翻折部41相对第二绝缘部43的翻折方向相反。如图8所示,两个翻折部41中的一个翻折部41相对第二绝缘部43沿第一翻折方向翻折后位于第二绝缘部43在第三方向的一侧。如图9所示,两个翻折部41中的另一个翻折部41相对第二绝缘部43沿第二翻折方向翻折后位于第一绝缘部32在第三方向的另一侧。第一翻折方向和第二翻折方向相反,比如第一翻折方向为顺时针方向,第二翻折方向为逆时针方向。
当然,两个翻折部41也可以可翻折地连接于同一个第一边缘部433。
两个翻折部41分别可翻折地连接于第二绝缘部43沿第一方向Y相对的两个第一边缘部433,方便翻折部41相对第二绝缘部43翻折以,避免两个翻折部41翻折时相互干涉。
请结合参照图7-图10,在一些实施例中,第一绝缘件30包括两个第一分隔部31,两个第一分隔部31分别可翻折地连接于两个翻折部41,翻折部41的第一端411与第二绝缘部43可翻折地连接,翻折部41的与第一端411相对的第二端412与第一分隔部31可翻折地连接。
在本实施例中,第一分隔部31可翻折地连接于翻折部41的第二端412,以使第一分隔部31能够相对翻折部41绕某一折痕转动翻折。在这种实施例中,沿第二方向Z,第二绝缘部43的两端可以与翻折部41的两端平齐或者不平齐。示例性地,如图7-图10所示,沿第二方向Z,第二绝缘部43的两端不平齐,且第二绝缘部43的两端超出翻折部41的两端。
第一分隔部31与翻折部41连接位置形成第三折痕434;第三折痕434沿第二方向Z延伸。
第一折痕34、第二折痕42和第三折痕434是在翻折前形成的,能够明显地、准确地知道翻折的位置,且使得翻折更加容易。翻折部41能够绕第一折痕34相对第二绝缘部43翻折,第一分隔部31能够绕第二折痕42相对翻折部41翻折,第一折痕34和第二折痕42的延伸方向相同,能够避免翻折部41相对第一绝缘部32的翻折动作和第一分隔部31相对翻折部41的翻折动作互不干涉。
第一绝缘件30包括分别可翻折地连接于两个翻折部41的两个第一分隔部31,第一分隔部31和第二绝缘部43分别连接于翻折部41相对的第二端412和第一端411,方便第一分隔部31相对翻折部41翻折以分隔电极组件22的第一侧面222和壳体21。
当然,翻折部41和第一分隔部31还可以有其他的布置方式,比如,如图13所示,在另一些实施例中,第二绝缘件40包括两个翻折部41,第二绝缘部43具有沿第一方向Y相对布置的两个第一边缘部433,两个翻折部41分别可翻折地连接于两个第一边缘部433;第二绝缘部43具有沿第二方向Z相对布置的两个第二边缘部435,第一绝缘件30包括两个第一分隔部31,两个第一分隔部31分别可翻折地连接于两个第二边缘部435,第一方向Y垂直第二方向Z。
两个翻折部41分别可翻折地连接于第二绝缘部43沿第一方向Y相对的两个第一边缘部433,翻折部41和第一边缘部433在连接位置形成的第一折痕34沿第二方向Z延伸。两个第一分隔部31分别连接于第二绝缘部43沿第二方向Z相对的两个第二边缘部435,第一分隔部31和第二边缘部435的连接位置形成的第四折痕436,在第二绝缘件40处于展开状态时,第四折痕436沿第一方向Y延伸。
两个第一分隔部31分别可翻折地连接于第二绝缘部43在第二方向Z上相对的两个第二边缘部435,两个翻折部41分别可翻折地连接于第二绝缘部43沿第一方向Y相对的两个第一边缘部 433,能够降低翻折部41的翻折难度以及降低翻折部41和第一分隔部31翻折时相互干涉的风险。
在组装电池单体20的过程中,为了方便电池单体20组装,第二绝缘件40设有通孔437,通孔437用于与组装电池单体20的组装装置2200配合定位,从而将第一绝缘件30定位在组装装置2200上,以使提高组装质量。但是电极组件22的离子会通过通孔437到达壳体21,从而导致电池单体20内部短路,引发安全问题。
基于此,如图13所示,在一些实施例中,第二绝缘部43设有通孔437,翻折部41被配置为与第二绝缘部43层叠设置,以覆盖通孔437。
翻折部41覆盖通孔437,阻止了电极组件22的离子和通孔437到达壳体21的可能。在翻折部41为多个的情况下,多个翻折部41分布第三方向的两侧,能够从通孔437的轴向的两端覆盖通孔437,进一步阻止电极组件22的离子通过通孔437到达壳体21。
组装电池单体20的过程中第二绝缘件40可以通过通孔437定位,以实现与组装电池单体20的组装装置2200配合定位,从而将第二绝缘件40定位在组装装置2200上,以使提高电池单体20组装质量。当翻折部41相对第二绝缘部43处于层叠状态时,翻折部41能够覆盖通孔437,使得电极组件22的离子不能经过通孔437到达壳体21,降低电池单体20内部短路的风险。
在一些实施例中,第一绝缘件30和第二绝缘件40一体成型。
在另一些实施例中,第一绝缘件30和第二绝缘件40也可以是分体设置后连接为整体结构。
第一绝缘件30和第二绝缘件40一体成型,方便制造。
在一些实施例中,第二绝缘件40的厚度大于第一绝缘件30的厚度。
第二绝缘件40的厚度大于第一绝缘件30的第一分隔部31的厚度,且第二绝缘件40的厚度大于第一绝缘件30的第二分隔部33的厚度。
第二绝缘件40的厚度大于第一绝缘件30的厚度,既能避免电极组件22的极片与第一圆弧过渡面214干涉而导致电极组件22的极片打皱,还能减小第一绝缘件30占用壳体21内部的空间。
本申请实施例还提供一种电池100,电池100包括上述实施例提供的电池单体20。
上述实施例中的电池单体20的电极组件22的极片与第一圆弧过渡面214干涉导致极片打皱,从而导致电池单体20短路的风险较低,电池单体20的安全性能较高,从而提高了电池100的安全性能。
本申请实施例还提供一种用电设备,用电设备包括上述任意实施例提供的电池单体20。
上述任意实施例中的电池单体20的电极组件22的极片与第一圆弧过渡面214干涉导致极片打皱,从而导致电池单体20短路风险较低,电池单体20的安全性能较高,从而提高了用电设备的用电安全。
如图14所示,本申请实施例还提供一种电池单体20的制造方法,电池单体20的制造方法包括:
S100,提供壳体21、电极组件22、第一绝缘件30和第二绝缘件40,壳体21包括底壁212和底壁212相连的第一侧壁213,底壁212的内表面和第一侧壁213的内表面通过第一圆弧过渡面214连接;电极组件22包括极片和隔离膜;第一绝缘件30包括第一分隔部31;
S200,将电极组件22容纳于壳体21内;
S300,将第一分隔部31设置于电极组件22与第一侧壁213之间,以使分隔电极组件22和第一侧壁213;
S400,将第二绝缘件40设置于电极组件22和底壁212之间,以使分隔电极组件22和底壁212;
其中,沿第二绝缘件的厚度方向X,隔离膜具有位于极片与第二绝缘件40之间的堆叠部221;
第一圆弧过渡面214的半径R1、第一分隔部31的厚度a1、堆叠部221的厚度b、以及第二绝缘件40的厚度c,满足如下关系:
R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2
如图15所示,本申请实施例还提供一种电池单体的制造设备2000,电池单体的制造设备2000包括提供装置2100和组装装置2200;提供装置2100被配置为提供壳体21、电极组件22、第一绝缘件30和第二绝缘件40,壳体21包括底壁212和底壁212相连的第一侧壁213,底壁212的内表面和第一侧壁213的内表面通过第一圆弧过渡面214连接;电极组件22包括极片和隔离膜;第一绝缘件30包括第一分隔部31;组装装置2200被配置为将电极组件22容纳于壳体21内、将第一分隔部31设置于电极组件22与第一侧壁213之间,以使分隔电极组件22和第一侧壁213以及将第二绝缘件40设置于电极组件22和底壁212之间,以使分隔电极组件22和底壁212;其中,沿第二绝缘件的厚度方向X,隔离膜具有位于极片与第二绝缘件40之间的堆叠部221;第一圆弧过渡面214的半径R1、第一分隔部31的厚度a1、堆叠部221的厚度b、以及第二绝缘件40的厚度c,满足如下关系:
R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2
本申请实施例提供一种电池单体20,电池单体20包括壳体21、电极组件22、第一绝缘件30和第二绝缘件40。壳体21包括底壁212、两个第一侧壁213和两个第二侧壁215,两个第一侧壁213沿第一方向Y相对布置,两个第二侧壁215沿第二方向Z相对布置,第一方向Y和第二方向Z垂直。每个第一侧壁213的内表面和底壁212的内表面通过第一圆弧过渡面214连接,第一圆弧过渡面214的半径为R1。每个第二侧壁215的内表面和底壁212的内表面通过第二圆弧过渡面216连接,第二圆弧过渡面216的半径为R2。第一绝缘件30包括两个第一分隔部31和四个第一绝缘部32,两个第一分隔部31分别用于分隔电极组件22和两个第一侧壁213。四个第一绝缘部32中的两个第一绝缘部32可翻折地连接于一个第一分隔部31沿第二方向Z的两端,四个第一绝缘部32中的另外两个第一绝缘部32可翻折地连接于另一个第一分隔部31沿第二方向Z的两端。两个第一分隔部31位于同一端的第一绝缘部32在第二方向Z层叠设置,以形成分隔第二侧壁215的第二分隔部33。第一分隔部31的厚度为a1,第一绝缘部32的厚度为a21。第二绝缘件40包括第二绝缘部43和两个翻折部41,两个翻折部41均可翻折地连接于第二绝缘部43,两个翻折部41沿第二绝缘件的厚度方向X层叠设置于第二绝缘部43相对的两侧,第二绝缘部43的厚度c为第二绝缘部43的厚度和两个翻折部41的厚度之和。其中,R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2
R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2,从而避免电极组件22的极片与第一圆弧过渡面214和第二圆弧过渡面216干涉而导致电极组件22的极片打皱,从而降低极片与第一圆弧过渡面214和第二圆弧过渡面216干涉挤压,导致极片打皱,从而导致电池单体20短路的风险,提高电池单体20的安全性能。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电池单体,其中,包括:
    壳体,包括底壁与所述底壁相连的第一侧壁,所述底壁的内表面和所述第一侧壁的内表面通过第一圆弧过渡面连接;
    电极组件,容纳于所述壳体内,所述电极组件包括极片和隔离膜;
    第一绝缘件,包括第一分隔部,所述第一分隔部用于分隔所述电极组件和所述第一侧壁;以及
    第二绝缘件,用于分隔所述电极组件和所述底壁;
    其中,沿所述第二绝缘件的厚度方向,所述隔离膜具有位于所述极片与所述第二绝缘件之间的堆叠部;
    所述第一圆弧过渡面的半径R1、所述第一分隔部的厚度a1、所述堆叠部的厚度b、以及所述第二绝缘件的厚度c,满足如下关系:
    R1≤(c+b) 2+4*(a1) 2+[(a1)*(c+b)] 1/2
  2. 根据权利要求1所述的电池单体,其中,所述壳体包括沿第一方向相对布置的两个所述第一侧壁,所述第一绝缘件包括沿所述第一方向相对布置的两个所述第一分隔部,每个所述第一分隔部用于分隔所述电极组件和一个所述第一侧壁,所述第二绝缘件的厚度方向和所述第一方向垂直。
  3. 根据权利要求1或2所述的电池单体,其中,所述壳体还包括与所述底壁相连并与所述第一侧壁相邻的第二侧壁,所述底壁的内表面和所述第二侧壁的内表面通过第二圆弧过渡面连接;
    所述第一绝缘件还包括两个第一绝缘部,所述两个第一绝缘部至少部分重叠以分隔所述第二侧壁和所述电极组件;
    其中,所述第二圆弧过渡面的半径R2、所述第一绝缘部的厚度a21、所述堆叠部的厚度b、以及所述第二绝缘件的厚度c,满足如下关系:
    R2≤(c+b) 2+4*(2*a21) 2+[(2*a21)*(c+b)] 1/2
  4. 根据权利要求3所述的电池单体,其中,所述两个第一绝缘部至少部分重叠以形成分隔所述第二侧壁和所述电极组件的第二分隔部,所述第一绝缘件具有两个所述第二分隔部;
    所述壳体包括沿第二方向相对布置的两个所述第二侧壁,所述电极组件和每个所述第二侧壁通过一个所述第二分隔部分隔,所述第二绝缘件的厚度方向和所述第二方向垂直。
  5. 根据权利要求1-4任一项所述的电池单体,其中,所述第一圆弧过渡面的半径R1和所述第二绝缘件的厚度c,满足:0.3≤c/R1≤1,优选地,0.35≤c/R1≤0.8。
  6. 根据权利要求1-5任一项所述的电池单体,其中,所述第二绝缘件包括沿第三方向层叠设置的第二绝缘部和翻折部,所述翻折部可翻折地连接于所述第二绝缘部,所述第三方向与所述第二绝缘件的厚度方向一致。
  7. 根据权利要求6所述的电池单体,其中,所述第二绝缘件包括多个所述翻折部。
  8. 根据权利要求7所述的电池单体,其中,沿所述第三方向,多个所述翻折部中的部分位于所述第二绝缘部的一侧,多个所述翻折部中的另一部分位于所述第二绝缘部的另一侧。
  9. 根据权利要求6所述的电池单体,其中,所述第二绝缘件包括两个所述翻折部,所述第二绝缘部具有沿第一方向相对布置的两个第一边缘部,两个所述翻折部的一端分别可翻折地连接于两个所述第一边缘部,所述第一方向与所述第二绝缘件的厚度方向垂直。
  10. 根据权利要求9所述的电池单体,其中,所述第一绝缘件包括两个所述第一分隔部,两个所述第一分隔部分别可翻折地连接于两个所述翻折部,所述翻折部的第一端与所述第二绝缘部可翻折地连接,所述翻折部的与所述第一端相对的第二端与所述第一分隔部可翻折地连接。
  11. 根据权利要求6所述的电池单体,其中,所述第二绝缘件包括两个所述翻折部,所述第二绝缘部具有沿第一方向相对布置的两个第一边缘部,两个所述翻折部分别可翻折地连接于两个所述第一边缘部;
    所述第二绝缘部具有沿第二方向相对布置的两个第二边缘部,所述第一绝缘件包括两个所述第一分隔部,两个所述第一分隔部分别可翻折地连接于两个所述第二边缘部,所述第一方向垂直所述第二方向。
  12. 根据权利要求6-11任一项所述的电池单体,其中,所述第二绝缘部设有通孔,所述翻折部被配置为与所述第二绝缘部层叠设置,以覆盖所述通孔。
  13. 根据权利要求1-12任一项所述的电池单体,其中,所述第一绝缘件和所述第二绝缘件一体成型。
  14. 根据权利要求13所述的电池单体,其中,所述第二绝缘件的厚度大于所述第一绝缘件的厚度。
  15. 一种电池,其中,所述电池包括根据权利要求1-14任一项所述的电池单体。
  16. 一种用电设备,其中,所述用电设备包括根据权利要求1-14任一项所述的电池单体。
PCT/CN2022/086391 2022-04-12 2022-04-12 电池单体、电池及用电设备 WO2023197162A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/086391 WO2023197162A1 (zh) 2022-04-12 2022-04-12 电池单体、电池及用电设备
CN202280034017.1A CN117296174A (zh) 2022-04-12 2022-04-12 电池单体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/086391 WO2023197162A1 (zh) 2022-04-12 2022-04-12 电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023197162A1 true WO2023197162A1 (zh) 2023-10-19

Family

ID=88328708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086391 WO2023197162A1 (zh) 2022-04-12 2022-04-12 电池单体、电池及用电设备

Country Status (2)

Country Link
CN (1) CN117296174A (zh)
WO (1) WO2023197162A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015217A (ja) * 2013-07-08 2015-01-22 株式会社豊田自動織機 蓄電装置
JP2015032386A (ja) * 2013-07-31 2015-02-16 株式会社豊田自動織機 蓄電装置
JP2018142512A (ja) * 2017-02-28 2018-09-13 株式会社豊田自動織機 蓄電装置
WO2018180475A1 (ja) * 2017-03-27 2018-10-04 株式会社 豊田自動織機 蓄電装置
CN110337749A (zh) * 2017-02-28 2019-10-15 株式会社丰田自动织机 蓄电装置和蓄电装置的制造方法
CN209592090U (zh) * 2019-04-03 2019-11-05 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015217A (ja) * 2013-07-08 2015-01-22 株式会社豊田自動織機 蓄電装置
JP2015032386A (ja) * 2013-07-31 2015-02-16 株式会社豊田自動織機 蓄電装置
JP2018142512A (ja) * 2017-02-28 2018-09-13 株式会社豊田自動織機 蓄電装置
CN110337749A (zh) * 2017-02-28 2019-10-15 株式会社丰田自动织机 蓄电装置和蓄电装置的制造方法
WO2018180475A1 (ja) * 2017-03-27 2018-10-04 株式会社 豊田自動織機 蓄電装置
CN209592090U (zh) * 2019-04-03 2019-11-05 宁德时代新能源科技股份有限公司 二次电池

Also Published As

Publication number Publication date
CN117296174A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2023137950A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
CN215896628U (zh) 一种电池单体、电池及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
CN219067168U (zh) 电池单体、电池和用电设备
WO2022116473A1 (zh) 电池、用电设备及电池的制造方法
WO2023005464A1 (zh) 电池单体、电池和用电装置
WO2022127403A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023029795A1 (zh) 电极组件、电池单体、电池及用电设备
CN115275092A (zh) 电极组件、电池单体、电池及用电设备
WO2023087285A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023028815A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US20230223669A1 (en) Battery cell, battery, electrical device, and method and device for manufacturing battery cell
CN219017777U (zh) 电池单体、电池、用电设备以及制备电池单体的装置
CN217788494U (zh) 电极组件、电池单体、电池和用电设备
WO2023197162A1 (zh) 电池单体、电池及用电设备
CN116745953A (zh) 电极片、电极组件、电池单体、电池、用电装置和制造方法
WO2023159644A1 (zh) 电池单体、电池、用电设备、电池单体的制造设备及方法
WO2023197161A1 (zh) 电池单体、电池及用电设备
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2023206949A1 (zh) 圆柱电极组件、电池单体、电池、用电设备和制造方法
CN221508323U (zh) 电池单体、电池和用电装置
CN219393650U (zh) 一种绝缘膜、电芯、电池及用电设备
CN221102270U (zh) 电池单体、电池及用电装置
CN220569871U (zh) 电池单体、电池和用电设备
CN220291038U (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280034017.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936816

Country of ref document: EP

Kind code of ref document: A1