WO2023195397A1 - 人工血管 - Google Patents

人工血管 Download PDF

Info

Publication number
WO2023195397A1
WO2023195397A1 PCT/JP2023/012804 JP2023012804W WO2023195397A1 WO 2023195397 A1 WO2023195397 A1 WO 2023195397A1 JP 2023012804 W JP2023012804 W JP 2023012804W WO 2023195397 A1 WO2023195397 A1 WO 2023195397A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
artificial blood
warp
weft
region
Prior art date
Application number
PCT/JP2023/012804
Other languages
English (en)
French (fr)
Inventor
伸作 小嵐
Original Assignee
株式会社ハイレックスコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハイレックスコーポレーション filed Critical 株式会社ハイレックスコーポレーション
Publication of WO2023195397A1 publication Critical patent/WO2023195397A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D3/00Woven fabrics characterised by their shape
    • D03D3/02Tubular fabrics

Definitions

  • the present invention relates to artificial blood vessels.
  • Artificial blood vessels are used, for example, to replace diseased biological blood vessels. Artificial blood vessels are constructed of a woven structure of warp and weft threads, as shown in Patent Document 1, for example. Artificial blood vessels are required to have little leakage of blood from the artificial blood vessels, that is, high blood leakage resistance. Blood leakage resistance of the artificial blood vessel can be improved by increasing the weaving density of the warp and weft.
  • an object of the present invention is to provide an artificial blood vessel that can improve blood leakage resistance while maintaining flexibility.
  • the artificial blood vessel of the present invention is an artificial blood vessel having a predetermined woven structure in which warps and wefts are woven, and at least one of the warp and weft is constituted by a multifilament yarn including a plurality of filament yarns, and the artificial blood vessel has
  • the blood vessel is provided at a plurality of locations on the surface of the artificial blood vessel, each of which covers the multifilament thread in a planar manner, and between the plurality of covering parts on the surface of the artificial blood vessel, and the blood vessel It has an uncovered part which is not covered by a part.
  • blood leakage resistance can be improved while maintaining flexibility.
  • FIG. 1 is a side view of an artificial blood vessel according to an embodiment of the present invention.
  • 2 is a partially enlarged view of region II in FIG. 1.
  • FIG. 2 is a textile structure diagram showing an example of the woven structure of the base material used in the artificial blood vessel of FIG. 1.
  • FIG. 4 is a schematic diagram of a cross section of the base material cut along the line IV-IV in FIG. 3.
  • FIG. 4 is a schematic diagram of a cross section of the base material cut along the line VV in FIG. 3.
  • FIG. This is a SEM photograph of the surface of an artificial blood vessel.
  • an artificial blood vessel according to an embodiment of the present invention will be described with reference to the drawings.
  • the embodiment shown below is an example to the last, and the artificial blood vessel of this invention is not limited to the following embodiment.
  • perpendicular to A and similar expressions do not refer only to a direction completely perpendicular to A, but also include a direction substantially perpendicular to A. do.
  • parallel to B and similar expressions do not refer only to a direction completely parallel to B, but also include a direction substantially parallel to B. do.
  • C-shape and similar expressions do not refer only to a complete C-shape, but also include a shape that visually reminds one of a C-shape (approximately a C-shape).
  • FIG. 1 is a side view of an artificial blood vessel according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged view of region II of the artificial blood vessel in FIG.
  • FIG. 3 is a woven fabric diagram showing an example of the woven structure of the base material used in the artificial blood vessel of FIG. 1.
  • Artificial blood vessels are used, for example, to replace and bypass diseased biological blood vessels.
  • peaks M and valleys V are alternately formed in the direction of the axis X (see FIG. 1) of the artificial blood vessel VE.
  • the artificial blood vessel can be made flexible, and the artificial blood vessel VE is less likely to kink when bent.
  • the artificial blood vessel VE is formed into a cylindrical shape in which the peaks M and the valleys V are spirally formed, but the artificial blood vessel does not have the peaks M and the valleys V. Good too.
  • the diameter of the artificial blood vessel VE can be changed depending on the site where it is used, and is not particularly limited.
  • the artificial blood vessel VE may be a large-caliber artificial blood vessel (for the thoracoabdominal aorta) with an inner diameter of 10 mm or more, or a medium-caliber artificial blood vessel with an inner diameter of 6 mm or more and less than 10 mm (for lower extremities, neck, axilla), such as an inner diameter of 6 mm or more and 8 mm, etc.
  • the artificial blood vessel may be an artificial blood vessel (for arteries in the region) or may be a small-diameter artificial blood vessel with an inner diameter of less than 6 mm.
  • the thickness of the artificial blood vessel VE is appropriately changed depending on the inner diameter and length of the artificial blood vessel used, and is not particularly limited.
  • the thickness of the artificial blood vessel VE can be 0.1 to 2 mm.
  • the length of the artificial blood vessel VE in the axis X direction can be changed depending on the site where it is used, and is not particularly limited.
  • the length of the artificial blood vessel VE in the axis X direction can be 100 to 1000 mm.
  • the artificial blood vessel VE is used after being cut to a predetermined length by a doctor or the like when being transplanted to a desired site.
  • the artificial blood vessel VE may be cut perpendicularly to the axis X direction, or may be cut obliquely at a predetermined angle to the axis X direction, depending on the site to be transplanted.
  • the number of peaks M (or valleys V) (the number of pleats) of the artificial blood vessel VE is not particularly limited, but may be determined as appropriate depending on the required kink performance. Can be set.
  • the number of peaks M (number of pleats) of the artificial blood vessel VE is 20 to 70, preferably 25 to 35, per 100 mm of length in the axis X direction. be able to.
  • the interval (pitch) in the axis (the outer diameter at the top Mt of the mountain portion M), preferably 15 to 25%.
  • the depth from the top Mt of the ridge M to the bottom Vb of the trough V is not particularly limited, but is, for example, 5 to 20%, preferably 5 to 15%, of the outer diameter of the artificial blood vessel VE. %.
  • the curvature at the top Mt of the ridge M is smaller than the curvature at the bottom Vb of the trough V (in this embodiment, the radius of curvature at the top Mt of the ridge M is smaller than the curvature at the bottom Vb of the trough V). (larger than the radius of curvature of Vb).
  • the curvature at the top Mt of the peak M is smaller than the curvature at the bottom Vb of the valley V" means that the degree of curvature along the axis X direction at the top Mt of the peak M This means that the degree of curvature at Vb along the axis It doesn't have to be formed.
  • the curvature at the top Mt of the peak M is smaller than the curvature at the bottom Vb of the valley V, stress will be concentrated at the valley V when an external force is applied to the artificial blood vessel VE.
  • the artificial blood vessel VE becomes easily curved.
  • the curvatures of the peaks M and valleys V are not particularly limited.
  • the radius of curvature of the top Mt of the peak M can be 5 to 8% of the diameter of the artificial blood vessel VE (and larger than the radius of curvature of the bottom Vb of the valley V).
  • the radius of curvature of the bottom portion Vb of the valley portion V can be 2 to 3% of the diameter of the artificial blood vessel VE (and smaller than the radius of curvature of the top portion Mt of the peak portion M).
  • the curved portion at the top Mt of the mountain portion M and the curved portion at the bottom Vb of the valley portion V can be connected by a flat portion PL (see FIG. 2).
  • flexibility and kink resistance can be further improved compared to the case where the curved portions are directly connected to each other.
  • the angle ⁇ between the flat portion PL1 on one side and the flat portion PL2 on the other side can be set to 20° to 40°, preferably 30°, so that the flat portion PL1 on one side and the flat portion PL2 on the other side
  • the angle ⁇ formed with the plane portion PL2 can be appropriately set depending on the diameter of the artificial blood vessel, the height of the ridges, the height of the troughs, the pitch, and the like.
  • the artificial blood vessel VE of this embodiment has a predetermined woven structure in which warp threads 1 and weft threads 2 are woven.
  • the predetermined woven structure of the artificial blood vessel VE may be a known woven structure that can be used for an artificial blood vessel, or a combination of known woven structures.
  • the artificial blood vessel VE may have a plain weave structure, a twill weave structure, a satin weave structure, or a composite structure of these weave structures, in whole or in part.
  • at least one of the warp 1 and the weft 2 constituting the artificial blood vessel VE is composed of a multifilament yarn including a plurality of filament yarns. Note that only one of the warp 1 and the weft 2 may be made of a multifilament yarn, or both the warp 1 and the weft 2 may be made of a multifilament yarn.
  • the artificial blood vessel VE includes warps 1a to 1l (hereinafter collectively referred to as warp 1) extending along the axis X direction (vertical direction in FIG. 3), and the artificial blood vessel VE. It has wefts 2a to 2l (hereinafter collectively referred to as wefts 2) extending along the circumferential direction of the VE (left-right direction in FIG. 3). More specifically, as shown in FIG. 3, the artificial blood vessel VE includes a plurality of warps 1a to 1l and a plurality of wefts 2a to 2l, and has a woven structure in which warp 1 and weft 2 are interlaced. have. In addition, in FIG.
  • the warp threads 1 extend in the vertical direction, and the extending direction of the warp threads 1 (direction of the axis X of the artificial blood vessel VE) is referred to as D1.
  • the weft 2 extends in the left-right direction, and the extending direction of the weft 2 (circumferential direction of the artificial blood vessel VE) is referred to as D2.
  • the part shown in black is the part where the warp 1 comes out to the outer surface (surface) of the artificial blood vessel VE
  • the part shown in white is the part where the weft 2 is exposed. This is the part that appears on the outside of the artificial blood vessel VE.
  • the loom for manufacturing the artificial blood vessel VE is not particularly limited.
  • the warp 1 has portions R21 and R31 that extend across a plurality of wefts 2 (see FIGS. 3 and 5). Specifically, as shown in FIG. 3, the warp 1 has portions R21 and R31 that extend across a plurality of wefts 2, and portions R1, R22, and R32 that extend across one weft 2. ing. Note that the warp threads 1 do not necessarily have to have a portion extending across the plurality of weft threads 2. Further, when the warp threads 1 have a portion extending across a plurality of weft threads 2, the weave structure of the artificial blood vessel VE is not necessarily limited to the weave structure shown in FIG. 3, and may have other weave structures. It's okay.
  • the artificial blood vessel VE has a first region R1 in which warp threads 1 and weft threads 2 are woven in a plain weave, as shown in FIG.
  • the artificial blood vessel VE has a second region side first portion (a plurality of A second region R2 having a second region side second portion (a portion extending across one weft 2) R22 where the warp 1 extends across one weft 2) R21 (a portion extending across one weft 2) have.
  • the artificial blood vessel VE has a first portion on the third region side where the warp 1 straddles the plurality of wefts 2 (the plurality of wefts 2) on one surface of the artificial blood vessel VE (in this embodiment, the outer surface of the artificial blood vessel VE).
  • the warp yarn 1 has a third region R3 having a second portion on the third region side (a portion extending across one weft 2) R32 (a portion extending across one weft 2) R32. ing.
  • the first region R1, the second region R2, and the third region R3 are formed alternately in the extending direction D2 of the weft 2, as shown in FIG.
  • first region R1, the second region R2, and the third region R3 are repeatedly arranged in this order in the extending direction D2 of the weft 2.
  • the second region side first portion R21 is adjacent to the third region side second portion R32 in the extending direction D2 of the weft 2
  • the second region side second portion R22 is adjacent to the third region side second portion R32 in the extending direction D2 of the weft 2. It is adjacent to the region side first portion R31.
  • the warp threads 1 are made of multifilament threads.
  • the multifilament is elongated without being restrained in the first portion R21 on the second region side or the first portion R31 on the third region side.
  • the warp 1 made up of threads spreads to the first region R1 woven in a plain weave. Due to the three-dimensional structure of the warp threads 1, when blood oozes out from the fiber gaps generated in the first region R1 woven in plain weave, the blood is prevented from leaking out and is retained within the three-dimensional structure. By coagulating blood in the retained state, blood leakage resistance can be improved.
  • the configuration and woven structure of each part of the artificial blood vessel VE will be described below.
  • the warp threads 1 are fibers that extend in one direction among the fibers that constitute the artificial blood vessel VE.
  • the warp threads 1 are fibers extending along the length direction (axis X direction) of the artificial blood vessel VE.
  • the warp threads 1 are made of a material applicable to a cloth artificial blood vessel made of a woven structure of fibers.
  • the material of the warp threads 1 is not particularly limited as long as it is applicable to a cloth artificial blood vessel.
  • the material of the warp threads 1 can be polyester, polytetrafluoroethylene, polyamide, etc.
  • a composite material made of two or more applicable materials having different properties such as melting point and expansion/contraction rate may be used.
  • the material of the warp yarn 1 may be a synthetic fiber in which polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), etc. are combined at the spinning stage to form one long fiber with a spiral crimp.
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • the three-dimensional structure formed by the warp 1, which will be described later, will be It is easy to spread in the extending direction D2 of the weft yarn 2, and the ability to retain blood is improved, and blood leakage resistance can be improved.
  • each of the warp threads 1 may be a monofilament thread or a multifilament thread, in this embodiment, the warp threads 1 are composed of a multifilament thread.
  • the warp 1 is a monofilament yarn
  • the weft 2 is a multifilament yarn.
  • the fineness of the warp 1 is not particularly limited, but for example, when the warp 1 is a monofilament yarn, the single yarn fineness of the warp can be 15 to 100 dtex, preferably 20 to 75 dtex.
  • the fineness of the warp 1 is, for example, a single yarn fineness of 0.25 to 2.50 dtex, preferably 0.50 to 2.00 dtex, and The total fineness can be set to 2 to 2,500 dtex, preferably 6 to 1,600 dtex, more preferably 10 to 540 dtex, and still more preferably 30 to 200 dtex.
  • the warp yarns 1 in the second region R2 and the third region R3 can be spread out toward the first region R1.
  • the blood is suppressed from leaking out and is held and held by the three-dimensional structure of the warp threads 1.
  • the "single yarn fineness” is the fineness of each filament constituting the warp 1
  • the “total fineness” is the product of the single yarn fineness and the number of filaments constituting the warp 1.
  • the number of filament yarns constituting one warp yarn (hereinafter referred to as the number of filaments) is not particularly limited, but for example, as described later, if the total number of filament yarns of warp yarn 1 is 1 of the number of filaments per one weft yarn 2. .5 times or more, and in the second region R2, when the number of warp threads 1 spanning a plurality of weft threads 2 is one, the number of filaments per warp thread 1 is 8 to 1000, preferably 12
  • the number can be 800 to 800, more preferably 20 to 270, even more preferably 60 to 100.
  • the number of filaments per warp 1 is 0.8 to 1.2 times the number of filaments per weft 2, and in the second region R2, the number of filaments per warp 1 is 0.8 to 1.2 times the number of filaments per one weft 2, and in the second region R2, a plurality of wefts 2 are straddled.
  • the number of filaments per warp 1 is 4 to 500, preferably 6 to 400, more preferably 10 to 135, even more preferably 30 to 500.
  • the number can be 50.
  • the weft yarns 2 are fibers that extend in a direction intersecting the warp yarns 1 among the fibers that constitute the artificial blood vessel VE.
  • the weft 2 is a fiber extending in the circumferential direction of the artificial blood vessel VE.
  • the weft yarn 2 is made of a material applicable to a cloth artificial blood vessel made of a woven structure of fibers.
  • the material of the weft yarn 2 is not particularly limited as long as it is applicable to a cloth artificial blood vessel.
  • the material of the weft yarn 2 can be polyester, polytetrafluoroethylene, polyamide, etc.
  • Each of the weft yarns 2 may be a monofilament yarn or a multifilament yarn, but in this embodiment, the weft yarn 2 is composed of a multifilament yarn.
  • the warp yarn 1 is constituted by a multifilament yarn.
  • the fineness of the weft yarn 2 is not particularly limited, but for example, when the weft yarn 2 is a monofilament yarn, the single yarn fineness of the weft yarn can be 15 to 100 dtex, preferably 20 to 75 dtex.
  • the single yarn fineness of the weft yarn 2 is set to 0.25 to 2.50 dtex, preferably 0.50 to 2.00 dtex, and the total fineness of the weft yarn 2 is can be set to 1 to 1250 dtex, preferably 3 to 800 dtex, more preferably 5 to 270 dtex, and still more preferably 15 to 100 dtex.
  • “single yarn fineness” is the fineness of each filament (monofilament or multifilament) constituting the weft 2
  • total fineness is the combination of the single yarn fineness and the number of filaments constituting the weft 2. It is the product.
  • the number of filament yarns constituting one weft yarn is 4 to 500, preferably 6 to 400, more preferably 10 to 135, and even more preferably 30. ⁇ 50 pieces can be made.
  • the first region R1 is a portion where warp 1 and weft 2 are plain woven.
  • the first region R1 is a region where the warp threads 1a, 1b, 1e, 1f, 1i, and 1j intersect with the weft threads 2 (weft threads 2a to 2l).
  • the warp threads 1 extend from one surface of the artificial blood vessel VE (the outer surface (surface) of the artificial blood vessel VE, the upper surface in FIG. 4) to the other surface ( The inner surface of the artificial blood vessel VE (the lower surface in Fig. 4), and from the other surface to the one surface, straddle only one weft 2 (do not straddle multiple wefts 2).
  • the first region R1 improves the strength of the artificial blood vessel VE, particularly the tensile strength (in the axis X direction of the artificial blood vessel VE).
  • the first region R1 extends along the extending direction D1 of the warp threads 1, and extends in the axis X direction of the artificial blood vessel VE. Further, a plurality of first regions R1 are arranged at predetermined intervals from each other in the extending direction D2 of the weft 2. In the extending direction D2 of the weft 2, a second region R2 and a third region R3 are arranged between one first region R1 and another first region R1.
  • the first region R1 includes two warps 1a and 1b (warps 1e and 1f or warps 1i and 1j) and a plurality of wefts 2a to 2l (and not shown). It is plain woven with no weft.
  • the number of warps 1 provided in one first region R1 can be 2 to 4, preferably 2 to 3, and more preferably 2.
  • the warp 1 is a multifilament yarn
  • the number of warp yarns we do not refer to the number of filaments that make up the multifilament yarn, but to refer to the number of warp yarns 1 made up of a plurality of filament yarns.
  • the first region R1 of the plain weave is easily covered three-dimensionally by the warp 1 of the second region side first portion R21 and the warp 1 of the third region side first portion R31, and blood stains from the first region R1.
  • the blood When the blood comes out, the blood is retained by the three-dimensional structure of the warp 1 of the first portion R21 on the second region side and the warp 1 of the first portion R31 on the third region side, and the blood coagulates in the retained state.
  • the amount of blood leakage from VE can be reduced.
  • the ratio of the number of warps 1 in the first region R1 to the total number of warps 1 arranged in the extending direction D2 of the wefts 2 in the first region R1 to the third region R3 ( The number of warps in the first region R1/total number of warps is not particularly limited, but can be set to, for example, 0.2 to 0.4 (1/3 in this embodiment).
  • the second region R2 includes a second region-side first portion R21 in which the warp 1 extends across a plurality of wefts 2, and a second region-side second portion R22 in which the warp 1 extends across one weft 2.
  • the second region side first portions R21 and the second region side second portions R22 are provided alternately in the extending direction D1 of the warp threads 1, as shown in FIG. Since the second region R2 includes the second region-side first portion R21 and the second region-side second portion R22, the artificial blood vessel VE has a plain weave structure. VE can be made flexible.
  • the portion of the warp 1c provided in the second region R2 may be composed of one warp, or may be composed of a plurality of warps.
  • the number of warps 1 provided in the second region R2 can be, for example, 1 to 4, preferably 2 to 3, and more preferably 2.
  • the first portion R21 on the second region side is a portion woven such that the warp 1 has a portion where it straddles a plurality of wefts 2.
  • the warps 1c, 1g, 1k, etc. straddle a plurality of wefts 2.
  • the warp 1 straddles the plurality of wefts 2, so that the artificial blood vessel VE becomes more flexible in that portion than in a plain weave structure.
  • both ends of the second region side first portion R21 in the extending direction D1 of the warp 1 are the second region side second portion R21.
  • the first portion R21 on the second region side of the warp 1 which is composed of multifilament yarns with both ends tied, has a three-dimensional structure in which the center part in the extending direction D1 of the warp 1 spreads in the extending direction D2 of the weft 2. (Note that this three-dimensional structure extends in the left-right direction and in the front direction of the paper in FIG. 3). Therefore, the first region R1 of the plain weave structure, which is adjacent to the second region side first portion R21 in the extending direction D2 of the weft 2, is partially covered by the multifilament yarn of the second region side first portion R21 that has spread. be done.
  • the seeped blood is retained in the gaps between the filaments of the three-dimensional structure composed of multifilaments. Ru.
  • the third region side second portion R32 adjacent to the second region side first portion R21 in the extending direction D2 of the weft 2 is also multiplied by the expanded second region side first portion R21. Partially covered by filament yarn. As a result, the gap that occurs in the third region side second portion R32 is also covered by the multifilament yarn of the second region side first portion R21, making it difficult for blood in the artificial blood vessel VE to leak to the outside.
  • the warp 1 In the second region side first portion R21 (from when the warp 1 comes out from the other surface of the artificial blood vessel VE to one surface (the surface shown in FIG. 3) to when it goes to the other surface), the warp 1
  • the number of weft threads straddling the weft threads 2 is not particularly limited, but may be, for example, 2 to 5, preferably 3 to 4, and more preferably 3 (as shown in FIG. 3).
  • the second region side first portion R21 by setting the number of wefts 2 that the warp 1 straddles within the above range, it is easy to spread the multifilament yarns of the warp 1 in the extending direction D2 of the weft 2, and the artificial blood vessel VE is A predetermined strength can be maintained.
  • the number of warp threads 1 constituting the second region side first portion R21 is not particularly limited as long as the warp threads 1 have a portion where they straddle a plurality of weft threads 2.
  • the second region side first portion R21 (second region R2) may be composed of a plurality of (two) warps (each of the warps 1c, 1g, and 1k is composed of a plurality of warps). ing).
  • the second region side first portion R21 (second region R2) includes at least one warp 1 extending across (only) one weft 2 and at least one warp 1 extending across a plurality of wefts 2. It may have.
  • the warp 1 straddles only one weft 2 (after the warp 1 comes out from the other surface of the artificial blood vessel VE to one surface (the surface shown in FIG. 3) This is a part that is woven in such a way that it does not straddle multiple weft threads 2 before reaching the other side.
  • the second region side second portion R22 has a length comparable to the length of the second region side first portion R21 in the warp 1 extending direction D1. That is, the number of wefts 2 in the second region side first portion R21 (three in FIG. 3) is equal to the number of wefts 2 in the second region side second portion R22 (three in FIG. 3).
  • the third region R3 includes a first portion R31 on the third region side where the warp 1 extends across a plurality of wefts 2, and a second portion R32 on the third region side where the warp 1 extends across a single weft 2. There is.
  • the third region side first portions R31 and the third region side second portions R32 are provided alternately in the extending direction D1 of the warp threads 1, as shown in FIG. Since the third region R3 includes the third region side first portion R31 and the third region side second portion R32, the artificial blood vessel VE has a plain weave structure. VE can be made flexible.
  • the portion of the warp 1d provided in the third region R3 may be composed of one warp, or may be composed of a plurality of warps.
  • the number of warps 1 provided in the third region R3 can be, for example, 1 to 4, preferably 2 to 3, and more preferably 2.
  • the first portion R31 on the third region side is a portion woven such that the warp 1 has a portion where it straddles a plurality of wefts 2.
  • warps 1d, 1h, 1l, etc. straddle a plurality of wefts 2.
  • the warp 1 straddles the plurality of wefts 2, so that the artificial blood vessel VE becomes more flexible in that portion than in a plain weave structure.
  • both ends of the third region side first portion R31 in the extending direction D1 of the warp 1 are the third region side first portion R31.
  • the first portion R31 on the third region side of the warp 1 which is composed of multifilament yarns tied at both ends, has a three-dimensional structure in which the center part in the extending direction D1 of the warp 1 spreads in the extending direction D2 of the weft 2. form. Therefore, the first region R1 of the plain weave structure, which is adjacent to the third region side first portion R31 in the extending direction D2 of the weft 2, is partially covered by the multifilament yarn of the third region side first portion R31 that has spread. be done.
  • the seeped blood is retained in the gaps between the filaments of the three-dimensional structure made of multifilaments. be done. This allows blood to coagulate in the retained state, thereby improving blood leakage resistance.
  • the second region side second portion R22 adjacent to the third region side first portion R31 in the extending direction D2 of the weft 2 is also multiplied by the expanded third region side first portion R31. Partially covered by filament yarn. As a result, the gap that occurs in the second region side second portion R22 is also covered by the multifilament yarn of the third region side first portion R31, making it difficult for blood in the artificial blood vessel VE to leak to the outside.
  • the warp threads 1 In the third region side first portion R31 (from when the warp threads 1 exit from the other surface of the artificial blood vessel VE to one surface (the surface shown in FIG. 3) to the other surface), the warp threads 1
  • the number of weft threads straddling the weft threads 2 is not particularly limited, but may be, for example, 2 to 5, preferably 3 to 4, and more preferably 3 (as shown in FIG. 3).
  • the third region side first portion R31 by setting the number of wefts 2 that the warp 1 straddles within the above range, it is easy to spread the multifilament yarns of the warp 1 in the extending direction D2 of the weft 2, and the artificial blood vessel VE is A predetermined strength can be maintained.
  • the number of warp threads 1 constituting the third region side first portion R31 is not particularly limited as long as the warp threads 1 have a portion where they straddle a plurality of weft threads 2.
  • the third region side first portion R31 (third region R3) may be composed of a plurality of (two) warps (each of the warps 1d, 1h, and 1l is composed of a plurality of warps). ing).
  • the third region side first portion R31 (third region R3) includes at least one warp 1 extending across (only) one weft 2 and at least one warp 1 extending across a plurality of wefts 2. It may have.
  • the warp 1 straddles only one weft 2 (after the warp 1 comes out from the other surface of the artificial blood vessel VE to one surface (the surface shown in FIG. 3) This is a part that is woven in such a way that it does not straddle multiple weft threads 2 before reaching the other side.
  • the third region side second portion R32 has a length approximately the same as the third region side first portion R31 in the warp 1 extending direction D1. That is, the number of weft threads 2 in the first portion R31 on the third region side (three in FIG. 3) is the same as the number of weft threads in the second portion R32 on the third region side (three in FIG. 3). ing.
  • the artificial blood vessel VE of this embodiment includes a plurality of covering parts C provided on the surface of the artificial blood vessel VE, each of which covers the multifilament yarn in a planar manner, and On the surface of VE, it has an uncoated part UC that is provided between the plurality of covered parts C and is not covered by the covered parts C.
  • the covering portion C partially covers a plurality of filament yarns of multifilament yarns constituting one warp or one weft on the surface of the artificial blood vessel VE.
  • “Covering the multifilament yarn in a planar manner” means that the covering portion C covers the artificial blood vessel so that it closes the gap on the surface side of the artificial blood vessel VE between a plurality of adjacent filament yarns constituting the multifilament yarn.
  • On the surface of VE it extends in the extending direction of the multifilament yarn (the extending direction D1 of the warp 1) and in the direction perpendicular to the extending direction of the multifilament yarn (the extending direction D2 of the weft 2). say.
  • the gaps between the plurality of filament yarns located inside the covering portion C in the radial direction of the artificial blood vessel VE are closed on the surface of the artificial blood vessel VE. It will be done. This improves the blood leakage resistance of the artificial blood vessel VE.
  • the covering portions C are provided at multiple locations on the surface of the artificial blood vessel VE.
  • “multiple locations” means that when the entire surface of the artificial blood vessel VE is divided into multiple portions, the covering portion C is provided on multiple portions.
  • the covering portions C may be separated from each other and provided at multiple locations, or may be provided in the axial direction (the extending direction D1 of the warp 1) and/or the circumferential direction (the extending direction D2 of the weft 2) of the artificial blood vessel VE. They may be provided in a plurality of locations consecutively.
  • the uncoated portion UC is the remaining portion of the covered portion C that is not covered by the covered portion C on the surface of the artificial blood vessel VE.
  • the uncovered portion UC is arranged between the covered portions C provided at a plurality of locations.
  • the uncoated portion UC is arranged, for example, between the covered portions C in the axial direction (the extending direction D1 of the warp 1) and/or the circumferential direction (the extending direction D2 of the weft 2) of the artificial blood vessel VE.
  • the uncoated portion UC is disposed between the covered portions C on the surface of the artificial blood vessel VE, thereby contributing to maintaining the flexibility of the artificial blood vessel VE.
  • the multifilament yarns of the warp 1 and the weft 2 in the region of the uncovered portion UC are exposed on the surface of the artificial blood vessel VE with gaps between adjacent filament yarns maintained (Fig. (see 6).
  • the artificial blood vessel VE of this embodiment has a plurality of covering parts C provided on the surface of the artificial blood vessel VE, each covering a plurality of multifilament threads in a planar manner, and a plurality of covering parts C provided on the surface of the artificial blood vessel VE. , and has an uncoated portion UC that is provided between the plurality of covered portions C and is not covered by the covered portions C. Thereby, in the artificial blood vessel VE, the gaps between the plurality of filament threads constituting the multifilament thread are closed by the covering portion C, thereby improving the blood leakage resistance of the artificial blood vessel VE.
  • the flexibility of the entire artificial blood vessel VE can be maintained. Therefore, according to the artificial blood vessel VE of this embodiment, the blood leakage resistance can be improved while maintaining the flexibility of the artificial blood vessel VE.
  • the ratio of the covering portion C to the surface area of the artificial blood vessel VE is not particularly limited, the total area of the plurality of covering portions C is 50 to 90%, more preferably 60 to 80%, of the surface area of the artificial blood vessel VE. preferable. In this case, the blood leakage resistance of the artificial blood vessel VE can be further improved while the flexibility of the artificial blood vessel VE can be maintained.
  • the artificial blood vessel VE includes a plurality of filament threads of multifilament threads on the radially inner side (lower side in FIG. 5) of the artificial blood vessel VE with respect to the covering portion C. have inner weave parts IW that extend in a state where they are separated from each other.
  • the inner woven part IW constitutes a part of the woven structure of the artificial blood vessel VE, and is covered by the covering part C in a state where a plurality of filament threads are separated from each other with a gap.
  • the plurality of filament threads of the inner weave IW are schematically shown in FIG. 5, they are adjacent to each other in the radial direction (vertical direction in FIG.
  • the inner weave IW is not visible in FIG. 6 because it is covered by the covering portion C, but is located in the depth direction of the paper with respect to the covering portion C.
  • the structure of the inner woven part IW is not particularly limited as long as a plurality of filament threads extend inwardly in the radial direction of the artificial blood vessel VE with respect to the covering part C in a state where they are separated from each other.
  • the inner weave IW has a structure in which the multifilament yarns in the region corresponding to the second region side first portion R21 (and the third region side first portion R31) spread in the extending direction D2 of the weft yarn 2.
  • a plurality of filament yarns constituting the multifilament yarn of the inner weaving section IW extend along the extending direction D1 of the warp 1 in a state that they are separated from each other.
  • the warp 1 is attached to the surface side of the artificial blood vessel VE in the region corresponding to the second region side first portion R21 (and the third region side first portion R31). It has a two-layer structure of a covering part C which is a planar resin layer and an inner woven part IW which is a multifilament layer located radially inside of the covering layer C.
  • the inner woven part IW is provided on the radially inner side of the covering part C, a plurality of filament yarns extend in a separated state with gaps between each other on the radially inner side of the planar covering part C. There is. Therefore, the inner weave IW constituted by the multifilament yarn covered by the covering portion C extends while maintaining a predetermined flexibility. Therefore, even if the planar covering portion C is provided, the flexibility of the artificial blood vessel VE as a whole is unlikely to be impaired, and it is possible to achieve both flexibility and blood leakage resistance of the artificial blood vessel VE. Moreover, by having the inner weave IW, the inner structure of the artificial blood vessel can maintain the weave structure, and can suppress impairing the invasiveness of cells.
  • the covered portion C and the uncoated portion UC are formed in a part of the surface of the artificial blood vessel VE in the axial direction (the extending direction D1 of the warp 1) and/or the circumferential direction (the extending direction D2 of the weft 2) of the artificial blood vessel VE. ) are preferably provided alternately.
  • the covered portion C and the uncoated portion UC are arranged in a well-balanced manner in the axial direction and/or circumferential direction of the artificial blood vessel VE. Therefore, the flexibility and blood leakage resistance of the artificial blood vessel VE are improved in a well-balanced manner, and the artificial blood vessel VE is prevented from becoming locally hard or prone to local blood leakage.
  • the artificial blood vessel VE becomes easy to bend, and the artificial blood vessel VE can be easily placed within the body. Furthermore, when the covered portions C and the uncoated portions UC are provided alternately in the circumferential direction of the artificial blood vessel VE, the artificial blood vessel VE is easily twisted, and deformation (collapse) when the artificial blood vessel VE is twisted is suppressed. . Therefore, for example, even if the artificial blood vessel VE receives a force in a twisting direction due to screwing when connected to an artificial heart-lung machine or the like, collapse of the artificial blood vessel VE due to twisting is suppressed.
  • the artificial blood vessel VE is provided with covered portions C and non-covered portions UC alternately in both the axial direction and the circumferential direction of the artificial blood vessel VE. In this case, the flexibility and blood leakage resistance of the artificial blood vessel VE are improved in a well-balanced manner throughout the artificial blood vessel VE.
  • the region where the covering portion C is provided is not particularly limited as long as the covering portion C is provided at a plurality of locations with a predetermined area on the surface of the artificial blood vessel VE.
  • the covering portions C are provided in portions R21 and R31 of the warp 1 that extend across a plurality of wefts 2 (in FIG. Only the straddling portion R21 is shown). More specifically, the covering portion C is provided at a portion corresponding to the second region side first portion R21 and the third region side first portion R31.
  • the covering portion C does not necessarily need to cover all of the plurality of filament yarns provided in the portion extending across the plurality of wefts 2 (the first portion R21 on the second region side and the first portion R31 on the third region side). It is sufficient to cover most of the plurality of filament yarns (for example, 50% or more, preferably 80% or more), without limitation.
  • the portions R21 and R31 of the warp 1 that extend across a plurality of wefts 2 are, as described above, because the warp 1 straddles a plurality of wefts 2, so that the artificial blood vessel VE has only a plain weave structure in the portions R21 and R31. More flexible than artificial blood vessels. Further, both ends of the portions R21 and R31 extending across the plurality of wefts 2 are bound by the wefts 2 (see portions P1 and P2 in FIG. 3).
  • the portions R21 and R31 extending across a plurality of weft yarns 2 made of multifilament yarns tied at both ends are three-dimensional structures in which the central portion in the extending direction D1 of the warp yarns 1 extends in the extending direction D2 of the weft yarns 2. form a structure.
  • the portions R21 and R31 extending across the plurality of wefts 2 have high blood retention properties due to their flexibility and three-dimensional structure, and are further covered with the covering portion C, which further improves blood leakage resistance. ing. Therefore, the flexibility and blood leakage resistance of the artificial blood vessel VE are further improved.
  • the structure of the covering portion C is not particularly limited as long as it can cover the multifilament yarn in a planar manner.
  • the covering portion C is constituted by a resin layer in which the multifilament yarn is melted and solidified or coated on the surface of the multifilament yarn.
  • the state in which the multifilament yarns are melted and solidified means that a part of the multifilament yarns constituting the warp 1 and/or the weft 2 is once melted by heating, etc., and then solidified to form a planar resin layer. The state that has become.
  • the surface of the artificial blood vessel VE is covered with a plurality of unmelted filament yarns by the planar covering portion C, which is a molten and solidified resin layer.
  • a resin layer coated on the surface refers to a resin layer formed by coating a resin material in a planar manner on the multifilament yarns constituting the warp 1 and/or the weft 2.
  • the manufacturing method of the artificial blood vessel VE is not particularly limited, when the covering portion C is composed of a resin layer in which multifilament threads are melted and solidified, it can be manufactured, for example, by the following manufacturing method.
  • a base material having a predetermined woven structure for example, see the woven structure in FIG. 3
  • a heating medium is brought into contact with the surface of the base material that will become the outer surface (surface) of the artificial blood vessel VE, depending on the position where the covering portion C is provided.
  • the artificial blood vessel VE is manufactured by processing the base material into a cylindrical shape.
  • the heating of the base material with the heating medium may be performed after the base material is processed into a cylindrical shape.
  • the multifilament yarn can be heated in the thickness direction of the base material.
  • an artificial blood vessel VE having a two-layer structure of the covering portion C and the inner woven portion IW is obtained.
  • an artificial blood vessel VE having peaks M and valleys V after placing a cylindrical base material outside the cylindrical core material, the outside of the artificial blood vessel VE is An artificial blood vessel VE having crests M and troughs V can also be manufactured by winding a wire around a position corresponding to the position of the troughs V and heating the wire.
  • the resin material is applied to the base material in a desired pattern.
  • the covering portion C can be formed by applying it to the surface of the multifilament yarn using a known method. Note that the method for manufacturing the artificial blood vessel VE described above is just an example, and the artificial blood vessel VE is not limited to the above manufacturing method.
  • An artificial blood vessel having a predetermined weave structure in which warp and weft are woven, At least one of the warp and weft is constituted by a multifilament yarn including a plurality of filament yarns,
  • the artificial blood vessel is a plurality of covering parts provided at a plurality of locations on the surface of the artificial blood vessel, each covering the multifilament yarn in a planar shape;
  • the artificial blood vessel has, on the surface of the artificial blood vessel, an uncoated part provided between a plurality of covering parts and not covered by the covering parts.
  • the artificial blood vessel has an inner woven part in which the plurality of filament yarns of the multifilament yarn extend in a state separated from each other, on the inside of the artificial blood vessel in the radial direction with respect to the covering part. ).
  • the covered portion and the uncoated portion are provided alternately in the axial direction and/or circumferential direction of the artificial blood vessel on a part of the surface of the artificial blood vessel.
  • the covering portion is constituted by a resin layer in which the multifilament yarn is melted and solidified or coated on the surface of the multifilament yarn, any one of (1) to (4).
  • the artificial blood vessel according to item 1.
  • the warp extends along the length of the artificial blood vessel,
  • the warp is constituted by the multifilament yarn,
  • the warp has a portion extending across a plurality of wefts,
  • the covering portion is provided in a portion extending across the plurality of wefts,
  • the artificial blood vessel according to any one of (1) to (5).

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Textile Engineering (AREA)
  • Biomedical Technology (AREA)
  • Prostheses (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cardiology (AREA)
  • Materials For Medical Uses (AREA)
  • Woven Fabrics (AREA)

Abstract

本発明の人工血管は、経糸1および緯糸2が織られた所定の織構造を有する人工血管であって、経糸1および緯糸2の少なくとも一方は、複数のフィラメント糸を含むマルチフィラメント糸によって構成され、人工血管は、人工血管の表面に複数箇所設けられ、それぞれがマルチフィラメント糸を面状に覆う複数の被覆部Cと、人工血管の表面において、複数の被覆部Cの間に設けられ、被覆部Cによって覆われていない非被覆部UCとを有する構造である。このような構造により、柔軟性を維持しつつ、耐漏血性を向上させることが可能な人工血管を提供することができる。

Description

人工血管
 本発明は人工血管に関する。
 人工血管は、例えば病的な生体血管を取り替えるために用いられている。人工血管は、例えば、特許文献1に示されるように、経糸および緯糸の織構造によって構成されている。人工血管は、人工血管からの血液の漏れが少ないこと、すなわち高い耐漏血性が要求される。人工血管は、経糸および緯糸の織密度を高くすることによって耐漏血性を向上させることができる。
特開2012-139498号公報
 しかし、人工血管の織密度を高くすると、耐漏血性を向上させることはできるが、人工血管に求められる柔軟性が損なわれてしまう。
 そこで、本発明は、柔軟性を維持しつつ、耐漏血性を向上させることが可能な人工血管の提供を目的とする。
 本発明の人工血管は、経糸および緯糸が織られた所定の織構造を有する人工血管であって、前記経糸および緯糸の少なくとも一方は、複数のフィラメント糸を含むマルチフィラメント糸によって構成され、前記人工血管は、前記人工血管の表面に複数箇所設けられ、それぞれが前記マルチフィラメント糸を面状に覆う複数の被覆部と、前記人工血管の表面において、複数の被覆部の間に設けられ、前記被覆部によって覆われていない非被覆部とを有している。
 本発明の人工血管によれば、柔軟性を維持しつつ、耐漏血性を向上させることができる。
本発明の一実施形態の人工血管の側面図である。 図1の領域IIの部分拡大図である。 図1の人工血管に用いられる基材の織構造の一例を示す、織物組織図である。 図3のIV-IV線に沿って基材を切断した基材断面の模式図である。 図3のV-V線に沿って基材を切断した基材断面の模式図である。 人工血管表面のSEM写真である。
 以下、図面を参照し、本発明の一実施形態の人工血管を説明する。なお、以下に示す実施形態はあくまで一例であり、本発明の人工血管は、以下の実施形態に限定されるものではない。
 なお、本明細書において、「Aに垂直」およびこれに類する表現は、Aに対して完全に垂直な方向のみを指すのではなく、Aに対して略垂直であることを含んで指すものとする。また、本明細書において、「Bに平行」およびこれに類する表現は、Bに対して完全に平行な方向のみを指すのではなく、Bに対して略平行であることを含んで指すものとする。また、本明細書において、「C形状」およびこれに類する表現は、完全なC形状のみを指すのではなく、見た目にC形状を連想させる形状(略C形状)を含んで指すものとする。
 図1は、本発明の一実施形態の人工血管の側面図である。図2は、図1の人工血管の領域IIの部分拡大図である。図3は、図1の人工血管に用いられる基材の織構造の一例を示す、織物組織図である。
 人工血管は、例えば、病的な生体血管と取り替えて、生体血管をバイパスするためなどに用いられる。図1および図2に示されるように、本実施形態の人工血管VEは、人工血管VEの軸X(図1参照)方向に山部Mと谷部Vとが交互に形成されている。人工血管VEに山部Mと谷部Vとが交互に形成される場合、柔軟性がある人工血管とすることができ、人工血管VEを曲げたときにキンクしにくい。本実施形態では、人工血管VEは、山部Mおよび谷部Vが螺旋状に形成された円筒状に形成されているが、人工血管は、山部Mおよび谷部Vを有していなくてもよい。
 人工血管VEの直径は、用いられる部位等に応じて変更可能であり、特に限定されない。例えば、人工血管VEは、内径10mm以上の大口径(胸腹部大動脈用)の人工血管であってもよいし、内径6mm、8mmなど、内径6mm以上10mm未満の中口径(下肢、頸部、腋窩領域における動脈用)の人工血管であってもよいし、内径6mm未満の小口径の人工血管であってもよい。人工血管VEの厚さは、用いられる人工血管の内径や長さに応じて適宜変更され、特に限定されない。例えば、人工血管VEの厚さは、0.1~2mmとすることができる。
 人工血管VEの軸X方向の長さは、用いられる部位等に応じて変更が可能であり、特に限定されない。例えば、人工血管VEの軸X方向の長さは、100~1000mmとすることができる。なお、人工血管VEは、所望の部位に移植される際に、医師等によって所定の長さにカットされて用いられる。人工血管VEは移植される部位によって、軸X方向に対して垂直にカットされる場合もあれば、軸X方向に対して所定の角度で傾斜して斜めにカットされる場合もある。
 人工血管VEが山部Mおよび谷部Vを有する場合、人工血管VEの山部M(または谷部V)の数(プリーツの数)は、特に限定されないが、必要なキンク性能に応じて適宜設定することができる。例えば、人工血管VEの山部Mの数(プリーツの数)は、外径が15mmの人工血管の場合、軸X方向の長さ100mmあたり、20~70個、好ましくは25~35個とすることができる。また、人工血管VEの山部Mの頂部Mt(図2参照)と隣接する山部Mの頂部Mtとの間の軸X方向の間隔(ピッチ)は、特に限定されないが、例えば、人工血管VEの外径(山部Mの頂部Mtにおける外径)の10~30%、好ましくは15~25%とすることができる。また、山部Mの頂部Mtから谷部Vの底部Vb(図2参照)までの深さは、特に限定されないが、例えば、人工血管VEの外径の5~20%、好ましくは5~15%とすることができる。
 また、本実施形態では、山部Mの頂部Mtにおける曲率が、谷部Vの底部Vbにおける曲率よりも小さい(本実施形態では、山部Mの頂部Mtにおける曲率半径は、谷部Vの底部Vbの曲率半径よりも大きい)。なお、「山部Mの頂部Mtにおける曲率が、谷部Vの底部Vbにおける曲率より小さい」とは、山部Mの頂部Mtにおける軸X方向に沿った湾曲の度合いが、谷部Vの底部Vbにおける軸X方向に沿った湾曲の度合よりも小さい(山部Mのカーブが谷部Vのカーブよりも緩やか)ということを意味し、山部Mおよび谷部Vは、完全な円弧面を形成している必要はない。山部Mの頂部Mtにおける曲率が、谷部Vの底部Vbにおける曲率よりも小さい場合、人工血管VEに外力が加わったときに、谷部Vに応力が集中するため、谷部Vを起点として人工血管VEが湾曲しやすくなる。山部Mおよび谷部Vの曲率は、特に限定されない。例えば、山部Mの頂部Mtの曲率半径は、人工血管VEの直径の5~8%(かつ谷部Vの底部Vbの曲率半径よりも大きい)とすることができる。また、谷部Vの底部Vbの曲率半径は、人工血管VEの直径の2~3%(かつ山部Mの頂部Mtの曲率半径よりも小さい)とすることができる。人工血管VEが湾曲し易くなることで、湾曲した人工血管VEが元に戻りにくくなり、人工血管VEと血管等の接続部位への負荷を軽減することができる。
 なお、山部Mの頂部Mtにおける湾曲部と、谷部Vの底部Vbにおける湾曲部とは、平面部PL(図2参照)により接続することができる。これにより、湾曲部同士を直接接続する場合と比べて、より柔軟性と耐キンク性能とを向上させることができる。なお、一方側の平面部PL1と他方側の平面部PL2とのなす角θを20°~40°、好ましくは30°となるようにすることができ、一方側の平面部PL1と他方側の平面部PL2とのなす角θは、人工血管の径、山部の高さ、谷部の高さ、ピッチ等により適宜設定することができる。
 次に、人工血管VEを構成する基材の構成について説明する。
 本実施形態の人工血管VEは、経糸1および緯糸2が織られた所定の織構造を有する。人工血管VEの所定の織構造は、人工血管に用いることが可能な公知の織構造、または公知の織構造を組み合わせた構造を採用することができる。例えば、人工血管VEは、全体的または部分的に、平織構造、綾織り構造、朱子織構造、またはこれらの織構造の複合構造を有していてもよい。本実施形態では、人工血管VEを構成する経糸1および緯糸2の少なくとも一方は、複数のフィラメント糸を含むマルチフィラメント糸によって構成されている。なお、経糸1および緯糸2のいずれか一方のみがマルチフィラメント糸によって構成されていてもよいし、経糸1および緯糸2の両方がマルチフィラメント糸によって構成されていてもよい。
 本実施形態では、図3に示されるように、人工血管VEは、軸X方向(図3では上下方向)に沿って延びる経糸1a~1l(以下、まとめて経糸1と呼ぶ)と、人工血管VEの周方向(図3では左右方向)に沿って延びる緯糸2a~2l(以下、まとめて緯糸2と呼ぶ)とを有している。より具体的には、図3に示されるように、人工血管VEは、複数の経糸1a~1lと複数の緯糸2a~2lとを有し、経糸1と緯糸2とを交錯させた織構造を有している。なお、図3において、経糸1は上下方向に延びており、経糸1の延在方向(人工血管VEの軸X方向)をD1と呼ぶ。また、図3において、緯糸2は左右方向に延びており、緯糸2の延在方向(人工血管VEの周方向)をD2と呼ぶ。図3において、黒(ドットが付された部分)で示されているのが、経糸1が人工血管VEの外面(表面)に出る部分であり、白で示されているのが、緯糸2が人工血管VEの外面に出る部分である。なお、人工血管VEを製造するための織機は、特に限定されない。
 後述するように、本実施形態では、経糸1は、複数の緯糸2を跨いで延びる部分R21、R31を有している(図3および図5参照)。具体的には、経糸1は、図3に示されるように、複数の緯糸2を跨いで延びる部分R21、R31と、1本の緯糸2を跨いで延びる部分R1、R22、R32とを有している。なお、経糸1は、必ずしも複数の緯糸2を跨いで延びる部分を有していなくてもよい。また、経糸1が複数の緯糸2を跨いで延びる部分を有している場合、人工血管VEの織構造は、必ずしも図3に示される織構造に限定されず、他の織構造を有していてもよい。
 本実施形態では、人工血管VEは、図3に示されるように、経糸1と緯糸2とが平織で織られた第1領域R1を有している。また、人工血管VEは、人工血管VEの一方の面(本実施形態では、人工血管VEの外面(表面))において、経糸1が複数の緯糸2を跨ぐ第2領域側第1部分(複数の緯糸2を跨いで延びる部分)R21、および、経糸1が1本の緯糸2を跨いで延びる第2領域側第2部分(1本の緯糸2を跨いで延びる部分)R22を有する第2領域R2を有している。さらに、人工血管VEは、人工血管VEの一方の面(本実施形態では、人工血管VEの外面)において、経糸1が複数の緯糸2を跨ぐ第3領域側第1部分(複数の緯糸2を跨いで延びる部分)R31、および、経糸1が1本の緯糸2を跨いで延びる第3領域側第2部分(1本の緯糸2を跨いで延びる部分)R32を有する第3領域R3を有している。第1領域R1、第2領域R2および第3領域R3は、図3に示されるように、緯糸2の延在方向D2で交互に形成されている。すなわち、第1領域R1、第2領域R2および第3領域R3は、緯糸2の延在方向D2にこの順に繰り返し配置されている。第2領域側第1部分R21は、緯糸2の延在方向D2で第3領域側第2部分R32に隣接し、第2領域側第2部分R22は、緯糸2の延在方向D2で第3領域側第1部分R31に隣接している。また、本実施形態では、経糸1は、マルチフィラメント糸によって構成されている。本実施形態の人工血管VEが上記構成を有している場合、後述するように、第2領域側第1部分R21または第3領域側第1部分R31において拘束されずに長く延びた、マルチフィラメント糸によって構成された経糸1が、平織で織られた第1領域R1へと広がる。この経糸1の立体構造によって、平織で織られた第1領域R1において生じる繊維間隙から血液が染み出たとき、血液は漏れ出ることが抑制され、立体構造内に保持される。保持された状態で血液が凝固することで、耐漏血性を向上させることができる。以下、人工血管VEの各部の構成および織構造について説明する。
 経糸1は、人工血管VEを構成する繊維のうち、一方向に延びる繊維である。本実施形態では、経糸1は、人工血管VEの長さ方向(軸X方向)に沿って延びる繊維である。経糸1は、繊維の織構造によって構成される布製人工血管に適用可能な材料によって構成される。経糸1の材料は、布製人工血管に適用可能な材料であれば、特に限定されない。例えば、経糸1の材料は、ポリエステル、ポリテトラフルオロエチレン、ポリアミド等とすることができる。また、経糸1の材料として、融点や伸縮率など異なる性質を持つ適用可能な2種類以上の材料によって構成された複合材料が用いられても良い。例えば、経糸1の材料は、ポリエチレンテレフタレート(PET)とポリトリメチレンテレフタレート(PTT)等が紡糸段階で複合されて、らせん状のクリンプを有する1本の長繊維を形成する合成繊維とすることができる。例えば、らせん状のクリンプを有する、融点や伸縮率が異なる性質を持つ2種類の材料によって構成された複合材料が経糸1の材料として用いられた場合、後述する経糸1によって構成される立体構造が緯糸2の延在方向D2で広がりやすく、より血液を保持する性能が高まり、耐漏血性を向上させることができる。
 経糸1のそれぞれは、モノフィラメント糸であっても、マルチフィラメント糸であってもよいが、本実施形態では、経糸1は、マルチフィラメント糸によって構成されている。なお、経糸1がモノフィラメント糸である場合は、緯糸2がマルチフィラメント糸によって構成される。経糸1の繊度は特に限定されないが、例えば、経糸1がモノフィラメント糸である場合は、経糸の単糸繊度は、15~100dtex、好ましくは20~75dtexとすることができる。また、経糸1がマルチフィラメント糸である場合は、経糸1の繊度は、例えば、経糸1の単糸繊度を0.25~2.50dtex、好ましくは0.50~2.00dtexとし、経糸1の総繊度を2~2500dtex、好ましくは6~1600dtex、より好ましくは10~540dtex、さらに好ましくは30~200dtexとすることができる。経糸1の単糸繊度および経糸1の総繊度を上記範囲することにより、第2領域R2および第3領域R3の経糸1を第1領域R1に向かって良好に広げることができる。したがって、第2領域R2および第3領域R3の経糸1によって第1領域R1の間隙から血液が染み出たとき、血液は漏れ出ることが抑制され、経糸1の立体構造によって保持され、保持された状態で血液が凝固することで、耐漏血性を向上することができる。なお、「単糸繊度」は、経糸1を構成するフィラメント1本あたりの繊度であり、「総繊度」は、単糸繊度と、経糸1を構成するフィラメントの本数との積である。なお、経糸1本を構成するフィラメント糸の本数(以下、フィラメント本数という)は特に限定されないが、例えば、後述するように、経糸1の総フィラメント本数が緯糸2の1本あたりのフィラメント本数の1.5倍以上であり、第2領域R2において、複数の緯糸2を跨ぐ経糸1の経糸本数が1本である場合、経糸1の1本あたりのフィラメント本数は、8~1000本、好ましくは12~800本、より好ましくは20~270本、さらに好ましくは60~100本とすることができる。なお、後述するように、経糸1の1本あたりのフィラメント本数が、緯糸2の1本あたりのフィラメント本数の0.8~1.2倍であり第2領域R2において、複数の緯糸2を跨ぐ経糸1の経糸本数が2本以上である場合は、経糸1の1本あたりのフィラメント本数は、4~500本、好ましくは6~400本、より好ましくは10~135本、さらに好ましくは30~50本とすることができる。
 緯糸2は、人工血管VEを構成する繊維のうち、経糸1と交差する方向に延びる繊維である。本実施形態では、緯糸2は人工血管VEの周方向に延びる繊維である。緯糸2は、繊維の織構造によって構成される布製人工血管に適用可能な材料によって構成される。緯糸2の材料は、布製人工血管に適用可能な材料であれば、特に限定されない。例えば、緯糸2の材料は、ポリエステル、ポリテトラフルオロエチレン、ポリアミド等とすることができる。
 緯糸2のそれぞれは、モノフィラメント糸であっても、マルチフィラメント糸であってもよいが、本実施形態では、緯糸2は、マルチフィラメント糸によって構成されている。なお、緯糸2がモノフィラメント糸である場合は、経糸1がマルチフィラメント糸によって構成される。緯糸2の繊度は特に限定されないが、例えば、緯糸2がモノフィラメント糸である場合は、緯糸の単糸繊度は、15~100dtex、好ましくは20~75dtexとすることができる。また、緯糸2のそれぞれがマルチフィラメント糸によって構成されている場合、例えば、緯糸2の単糸繊度を0.25~2.50dtex、好ましくは0.50~2.00dtexとし、緯糸2の総繊度を1~1250dtex、好ましくは3~800dtex、より好ましくは5~270dtex、さらに好ましくは15~100dtexとすることができる。なお、「単糸繊度」は、緯糸2を構成するフィラメント(モノフィラメントまたはマルチフィラメント)1本あたりの繊度であり、「総繊度」は、単糸繊度と、緯糸2を構成するフィラメントの本数との積である。なお、緯糸2がマルチフィラメント糸によって構成される場合、緯糸1本を構成するフィラメント糸の本数は、4~500本、好ましくは6~400本、より好ましくは10~135本、さらに好ましくは30~50本とすることができる。
 第1領域R1は、経糸1と緯糸2とが平織された部分である。図3において、第1領域R1は、経糸1a、1b、1e、1f、1i、1jと緯糸2(緯糸2a~2l)とが交錯する領域である。平織構造の第1領域R1において、経糸1は、図4に示されるように、人工血管VEの一方の面(人工血管VEの外面(表面)。図4において上側の面)から他方の面(人工血管VEの内面。図4において下側の面)に行くまで、他方の面から一方の面に行くまでに、1本のみの緯糸2を跨ぐ(複数本の緯糸2を跨がない)ように延びている。第1領域R1は、人工血管VEの強度、特に(人工血管VEの軸X方向の)引張強度を向上させる。第1領域R1は、経糸1の延在方向D1に沿って延びており、人工血管VEの軸X方向に延びている。また、第1領域R1は、緯糸2の延在方向D2において所定間隔で互いに離間して複数配置されている。緯糸2の延在方向D2で、1つの第1領域R1と、他の1つの第1領域R1との間には、第2領域R2と第3領域R3とが配置されている。
 本実施形態では、第1領域R1は、図3に示されるように、2本の経糸1a、1b(経糸1e、1fまたは経糸1i、1j)と、複数の緯糸2a~2l(および図示されていない緯糸)とが平織されている。1つの第1領域R1に設けられる経糸1の経糸本数は、2~4本、好ましくは2~3本、より好ましくは2本とすることができる。なお、本明細書において、経糸1がマルチフィラメント糸である場合に、「経糸本数」という場合、マルチフィラメント糸を構成するフィラメント本数ではなく、複数のフィラメント糸によって構成されて纏まった経糸1を1本とし、そのフィラメント糸が纏まった経糸1が何本あるかをいう。経糸1の経糸本数を上述した範囲とすることにより、第2領域側第1部分R21の経糸1および第3領域側第1部分R31の経糸1によって覆われない第1領域R1の範囲を小さくすることができる。したがって、平織の第1領域R1が、第2領域側第1部分R21の経糸1および第3領域側第1部分R31の経糸1によって立体的にカバーされやすくなり、第1領域R1から血液が染み出たとき、第2領域側第1部分R21の経糸1および第3領域側第1部分R31の経糸1の立体構造によって血液が保持され、保持された状態で血液が凝固することから、人工血管VEからの漏血量を低減することができる。また、人工血管VEにおいて、第1領域R1~第3領域R3における緯糸2の延在方向D2において配列された経糸1の全経糸本数に対する、第1領域R1での経糸1の経糸本数の比率(第1領域R1での経糸本数/全経糸本数)は、特に限定されないが、例えば0.2~0.4(本実施形態では、1/3)とすることができる。第1領域R1での経糸1の経糸本数および経糸本数の比率を上記範囲とすることにより、人工血管VEの強度を高めつつ、人工血管VEからの漏血量を低減することができる。
 第2領域R2は、経糸1が複数の緯糸2を跨ぐ第2領域側第1部分R21と、経糸1が1本の緯糸2を跨いで延びる第2領域側第2部分R22とを有している。第2領域側第1部分R21および第2領域側第2部分R22は、図3に示されるように、経糸1の延在方向D1で交互に設けられている。第2領域R2が、第2領域側第1部分R21と第2領域側第2部分R22とを有していることにより、人工血管VEの全てが平織構造であるものと比較して、人工血管VEを柔軟にすることができる。なお、第2領域R2に設けられた経糸1cの部分は、1本の経糸によって構成されていてもよいし、複数本の経糸によって構成されていてもよい。第2領域R2に設けられる経糸1の経糸本数は、例えば1~4本、好ましくは2~3本、より好ましくは2本とすることができる。
 第2領域側第1部分R21は、経糸1が複数の緯糸2を跨ぐ部分を有するように織られた部分である。本実施形態では、経糸1c、1g、1k等が複数の緯糸2を跨いでいる。第2領域側第1部分R21において、経糸1が複数の緯糸2を跨ぐことにより、平織構造よりも人工血管VEがその部分で柔軟になる。また、第2領域側第1部分R21の経糸1がマルチフィラメント糸によって構成されている場合、経糸1の延在方向D1で第2領域側第1部分R21の両端は、第2領域側第2部分R22の緯糸2(図3の部分P1参照)によって縛られた状態となる。その場合、両端が縛られたマルチフィラメント糸によって構成された経糸1の第2領域側第1部分R21は、経糸1の延在方向D1の中央部が緯糸2の延在方向D2に広がる立体構造を形成する(なお、この立体構造は図3において左右方向および紙面手前方向にも広がっている)。したがって、第2領域側第1部分R21に緯糸2の延在方向D2で隣接する、平織構造の第1領域R1は、広がった第2領域側第1部分R21のマルチフィラメント糸によって部分的に被覆される。この経糸1の立体構造によって、平織で織られた第1領域R1において生じる繊維間隙から血液が染み出たとき、染み出た血液はマルチフィラメントによって構成された立体構造のフィラメント間の隙間に保持される。これにより、保持された状態で血液が凝固することで、耐漏血性を向上させることができる。また、本実施形態では、第2領域側第1部分R21に緯糸2の延在方向D2で隣接する第3領域側第2部分R32も同様に、広がった第2領域側第1部分R21のマルチフィラメント糸によって部分的に被覆される。これにより、第3領域側第2部分R32において生じる隙間についても、第2領域側第1部分R21のマルチフィラメント糸によって被覆され、人工血管VE内の血液が、外部に漏出しにくくなる。
 第2領域側第1部分R21において(経糸1が人工血管VEの他方の面から一方の面(図3において示されている面)に出てから他方の面に行くまでに)、経糸1が跨ぐ緯糸2の緯糸本数は、特に限定されないが、例えば、2~5本、好ましくは3~4本、より好ましくは3本(図3に示される状態)とすることができる。第2領域側第1部分R21において、経糸1が跨ぐ緯糸2の緯糸本数を上記範囲とすることによって、経糸1のマルチフィラメント糸を緯糸2の延在方向D2に広げやすいとともに、人工血管VEを所定の強度に維持することができる。
 第2領域側第1部分R21は、経糸1が複数の緯糸2を跨ぐ部分を有していれば、第2領域側第1部分R21を構成する経糸1の本数は特に限定されない。例えば、第2領域側第1部分R21(第2領域R2)は、複数(2本)の経糸によって構成されていてもよい(経糸1c、1g、1kのそれぞれが、複数本の経糸によって構成されている)。また、第2領域側第1部分R21(第2領域R2)は、1本(のみ)の緯糸2を跨いで延びる少なくとも1本の経糸1と、複数の緯糸2を跨ぐ少なくとも1本の経糸1とを有していてもよい。
 第2領域側第2部分R22は、経糸1が1本のみの緯糸2を跨ぐ(経糸1が人工血管VEの他方の面から一方の面(図3において示されている面)に出てから他方の面に行くまでに複数の緯糸2を跨がない)ように織られた部分である。第2領域側第2部分R22は、経糸1の延在方向D1で、第2領域側第1部分R21の長さと同程度の長さとされている。すなわち、第2領域側第1部分R21における緯糸2の緯糸本数(図3では3本)は、第2領域側第2部分R22における緯糸2の緯糸本数(図3では3本)と等しい。
 第3領域R3は、経糸1が複数の緯糸2を跨ぐ第3領域側第1部分R31と、経糸1が1本の緯糸2を跨いで延びる第3領域側第2部分R32とを有している。第3領域側第1部分R31および第3領域側第2部分R32は、図3に示されるように、経糸1の延在方向D1で交互に設けられている。第3領域R3が、第3領域側第1部分R31と第3領域側第2部分R32とを有していることにより、人工血管VEの全てが平織構造であるものと比較して、人工血管VEを柔軟にすることができる。なお、第3領域R3に設けられた経糸1dの部分は、1本の経糸によって構成されていてもよいし、複数本の経糸によって構成されていてもよい。第3領域R3に設けられる経糸1の経糸本数は、例えば1~4本、好ましくは2~3本、より好ましくは2本とすることができる。
 第3領域側第1部分R31は、経糸1が複数の緯糸2を跨ぐ部分を有するように織られた部分である。本実施形態では、経糸1d、1h、1l等が複数の緯糸2を跨いでいる。第3領域側第1部分R31において、経糸1が複数の緯糸2を跨ぐことにより、平織構造よりも人工血管VEがその部分で柔軟になる。また、第3領域側第1部分R31の経糸1は、マルチフィラメント糸によって構成されている場合、経糸1の延在方向D1で第3領域側第1部分R31の両端は、第3領域側第2部分R32の緯糸2(図3の部分P2参照)によって縛られた状態となる。その場合、両端が縛られたマルチフィラメント糸によって構成された経糸1の第3領域側第1部分R31は、経糸1の延在方向D1の中央部が緯糸2の延在方向D2に広がる立体構造を形成する。したがって、第3領域側第1部分R31に緯糸2の延在方向D2で隣接する、平織構造の第1領域R1は、広がった第3領域側第1部分R31のマルチフィラメント糸によって部分的に被覆される。この経糸1の立体構造によって、平織で織られた第1領域R1において生じる繊維間隙から血液が染み出たとき、染み出た血液が、マルチフィラメントによって構成された立体構造のフィラメント間の隙間に保持される。これにより、保持された状態で血液が凝固することで、耐漏血性を向上させることができる。また、本実施形態では、第3領域側第1部分R31に緯糸2の延在方向D2で隣接する第2領域側第2部分R22も同様に、広がった第3領域側第1部分R31のマルチフィラメント糸によって部分的に被覆される。これにより、第2領域側第2部分R22において生じる隙間についても、第3領域側第1部分R31のマルチフィラメント糸によって被覆され、人工血管VE内の血液が、外部に漏出しにくくなる。
 第3領域側第1部分R31において(経糸1が人工血管VEの他方の面から一方の面(図3において示されている面)に出てから他方の面に行くまでに)、経糸1が跨ぐ緯糸2の緯糸本数は、特に限定されないが、例えば、2~5本、好ましくは3~4本、より好ましくは3本(図3に示される状態)とすることができる。第3領域側第1部分R31において、経糸1が跨ぐ緯糸2の緯糸本数を上記範囲とすることによって、経糸1のマルチフィラメント糸を緯糸2の延在方向D2に広げやすいとともに、人工血管VEを所定の強度に維持することができる。
 第3領域側第1部分R31は、経糸1が複数の緯糸2を跨ぐ部分を有していれば、第3領域側第1部分R31を構成する経糸1の本数は特に限定されない。例えば、第3領域側第1部分R31(第3領域R3)は、複数(2本)の経糸によって構成されていてもよい(経糸1d、1h、1lのそれぞれが、複数本の経糸によって構成されている)。また、第3領域側第1部分R31(第3領域R3)は、1本(のみ)の緯糸2を跨いで延びる少なくとも1本の経糸1と、複数の緯糸2を跨ぐ少なくとも1本の経糸1とを有していてもよい。
 第3領域側第2部分R32は、経糸1が1本のみの緯糸2を跨ぐ(経糸1が人工血管VEの他方の面から一方の面(図3において示されている面)に出てから他方の面に行くまでに複数の緯糸2を跨がない)ように織られた部分である。第3領域側第2部分R32は、経糸1の延在方向D1で、第3領域側第1部分R31の長さと同程度の長さとされている。すなわち、第3領域側第1部分R31における緯糸2の緯糸本数(図3では3本)は、第3領域側第2部分R32における緯糸2の緯糸本数(図3では3本)と同じになっている。
 本実施形態の人工血管VEは、図5および図6に示されるように、人工血管VEの表面に複数箇所設けられ、それぞれがマルチフィラメント糸を面状に覆う複数の被覆部Cと、人工血管VEの表面において、複数の被覆部Cの間に設けられ、被覆部Cによって覆われていない非被覆部UCとを有している。
 被覆部Cは、人工血管VEの表面において、経糸1本または緯糸1本を構成するマルチフィラメント糸の複数のフィラメント糸を部分的に覆う。「マルチフィラメント糸を面状に覆う」とは、被覆部Cが、マルチフィラメント糸を構成する複数の隣接するフィラメント糸の間の、人工血管VEの表面側での隙間を塞ぐように、人工血管VEの表面において、マルチフィラメント糸の延在方向(経糸1の延在方向D1)およびマルチフィラメント糸の延在方向に垂直な方向(緯糸2の延在方向D2)に延在していることをいう。詳細は後述するが、被覆部Cが設けられていることによって、人工血管VEの径方向で被覆部Cの内側に位置する複数のフィラメント糸の間の隙間が、人工血管VEの表面において塞がれる。これにより、人工血管VEの耐漏血性が向上する。
 被覆部Cは、図5および図6に示されるように、人工血管VEの表面において、複数箇所設けられている。ここで、「複数箇所」とは、人工血管VEの表面全体を複数の部分に分けたときに、被覆部Cが複数の部分に設けられていることをいう。被覆部Cは、互いに分離して複数箇所に設けられていてもよいし、人工血管VEの軸方向(経糸1の延在方向D1)および/または周方向(緯糸2の延在方向D2)で互いに連続して複数箇所に設けられていてもよい。
 非被覆部UCは、図6に示されるように、人工血管VEの表面において、被覆部Cによって被覆されていない、被覆部Cに対する残りの部分である。非被覆部UCは、図6に示されるように、複数箇所設けられた被覆部Cの間に配置されている。非被覆部UCは、例えば、人工血管VEの軸方向(経糸1の延在方向D1)および/または周方向(緯糸2の延在方向D2)で、被覆部Cの間に配置される。詳細は後述するが、非被覆部UCは、人工血管VEの表面において、被覆部Cの間に配置されることで、人工血管VEの柔軟性を維持することに寄与する。本実施形態では、非被覆部UCの領域における経糸1および緯糸2のマルチフィラメント糸は、隣接するフィラメント糸の間の隙間が維持された状態で、人工血管VEの表面において露出している(図6参照)。
 上述したように、本実施形態の人工血管VEは、人工血管VEの表面に複数箇所設けられ、それぞれが複数のマルチフィラメント糸を面状に覆う複数の被覆部Cと、人工血管VEの表面において、複数の被覆部Cの間に設けられ、被覆部Cによって覆われていない非被覆部UCとを有している。これにより、人工血管VEは、被覆部Cによってマルチフィラメント糸を構成する複数のフィラメント糸の間の隙間が塞がれることで、人工血管VEの耐漏血性が向上する。また、複数箇所の被覆部Cの間には非被覆部UCが設けられることで、人工血管VE全体として、柔軟性を維持させることができる。したがって、本実施形態の人工血管VEによれば、人工血管VEの柔軟性を維持しつつ、耐漏血性を向上させることができる。
 被覆部Cの人工血管VEの表面積に対する割合は特に限定されないが、複数の被覆部Cの総面積が、人工血管VEの表面積の50~90%、より好ましくは、60~80%であることが好ましい。この場合、人工血管VEの耐漏血性がより向上しつつ、人工血管VEの柔軟性を維持することができる。
 また、本実施形態では、図5に示されるように、人工血管VEは、被覆部Cに対して人工血管VEの径方向内側(図5における下側)に、マルチフィラメント糸の複数のフィラメント糸が互いに分離した状態で延びる内側織部IWを有している。内側織部IWは、人工血管VEの織構造の一部を構成し、複数のフィラメント糸が互いに隙間をあけて分離した状態で、被覆部Cに被覆されている。内側織部IWの複数のフィラメント糸は、図5では模式的に示されているが、人工血管VEの径方向(図5における上下方向)に複数本隣接し、緯糸2の延在方向D2(図5における紙面奥行方向)に複数本隣接するような束状に延びている。なお、内側織部IWは、図6においては、被覆部Cによって被覆されており見えていないが、被覆部Cに対して紙面奥行方向に位置している。内側織部IWの構造は、被覆部Cに対して人工血管VEの径方向内側に、複数のフィラメント糸が互いに分離した状態で延びていれば、特に限定されない。本実施形態では、内側織部IWは、第2領域側第1部分R21(および第3領域側第1部分R31)に対応する領域のマルチフィラメント糸が緯糸2の延在方向D2に広がって構造を有し、内側織部IWのマルチフィラメント糸を構成する複数のフィラメント糸は互いにばらけた状態で経糸1の延在方向D1に沿って延びている。なお、本実施形態では、図5に示されるように、経糸1は、第2領域側第1部分R21(および第3領域側第1部分R31)に対応する領域において、人工血管VEの表面側の面状の樹脂層である被覆部Cと、被覆層Cに対して径方向内側に位置するマルチフィラメント層である内側織部IWとの二層構造を有している。
 内側織部IWが被覆部Cの径方向内側に設けられていることによって、面状の被覆部Cの径方向内側には、複数のフィラメント糸が互いに隙間を有するように、分離した状態で延びている。したがって、被覆部Cによって被覆されたマルチフィラメント糸によって構成された内側織部IWは、所定の柔軟性を維持した状態で延びている。したがって、面状の被覆部Cが設けられていても、人工血管VE全体としての柔軟性が損なわれにくく、人工血管VEの柔軟性と耐漏血性の両立が可能となる。また、内側織部IWを有することにより人工血管内側構造は、織構造を維持することができ、細胞の侵入性を損なうことを抑制できる。
 また、被覆部Cおよび非被覆部UCは、人工血管VEの表面の一部において、人工血管VEの軸方向(経糸1の延在方向D1)および/または周方向(緯糸2の延在方向D2)で交互に設けられていることが好ましい。この場合、被覆部Cおよび非被覆部UCが、人工血管VEの軸方向および/または周方向でバランス良く配置される。したがって、人工血管VEの柔軟性および耐漏血性がバランスよく向上し、人工血管VEが局所的に硬くなったり、局所的に漏血しやすくなったりすることが抑制される。特に、被覆部Cおよび非被覆部UCが人工血管VEの軸方向で交互に設けられている場合、人工血管VEを曲げやすくなり、体内での人工血管VEの配置が容易になる。また、被覆部Cおよび非被覆部UCが人工血管VEの周方向で交互に設けられている場合、人工血管VEを捩りやすくなり、人工血管VEが捩れたときの変形(潰れ)が抑制される。したがって、例えば、人工血管VEが、人工心肺装置などに接続されるときのねじ止めなどによって捩れる方向の力を受けた場合であっても、人工血管VEの捻じれによる潰れが抑制される。したがって、人工血管VEが捩れて潰れることによって、当該潰れた箇所で血液が固まって人工血管VEが閉塞されてしまうような、人工血管VEの捩れによる弊害が抑制される。本実施形態では、人工血管VEは、被覆部Cおよび非被覆部UCが、人工血管VEの軸方向および周方向の両方で交互に設けられている。この場合、人工血管VEの柔軟性および耐漏血性が、人工血管VE全体でバランス良く向上する。
 被覆部Cが設けられる領域は、被覆部Cが人工血管VEの表面において、所定の面積で複数箇所設けられていれば、特に限定されない。本実施形態では、被覆部Cは、図5に示されるように、経糸1のうち、複数の緯糸2を跨いで延びる部分R21、R31に設けられている(図5では、複数の緯糸2を跨いで延びる部分R21のみが示されている)。より具体的には、被覆部Cは、第2領域側第1部分R21および第3領域側第1部分R31に対応する部分に設けられている。なお、被覆部Cは、必ずしも複数の緯糸2を跨いで延びる部分(第2領域側第1部分R21および第3領域側第1部分R31)に設けられた複数のフィラメント糸の全てを覆う必要はなく、複数のフィラメント糸の大部分(限定されないが、例えば50%以上、好ましくは80%以上)を覆っていればよい。
 経糸1の、複数の緯糸2を跨いで延びる部分R21、R31は、上述したように、経糸1が複数の緯糸2を跨ぐことにより、人工血管VEは、部分R21、R31において、平織構造のみの人工血管よりも柔軟になる。また、複数の緯糸2を跨いで延びる部分R21、R31の両端は緯糸2(図3の部分P1、P2参照)によって縛られた状態となる。この場合、両端が縛られたマルチフィラメント糸によって構成された複数の緯糸2を跨いで延びる部分R21、R31は、経糸1の延在方向D1の中央部が緯糸2の延在方向D2に広がる立体構造を形成する。このように、複数の緯糸2を跨いで延びる部分R21、R31は、柔軟性と立体構造による血液の高い保持性を有し、さらに被覆部Cによって被覆されることで、さらに耐漏血性が向上している。したがって、より人工血管VEの柔軟性および耐漏血性が向上する。
 なお、被覆部Cの構造は、マルチフィラメント糸を面状に覆うことができれば、特に限定されない。本実施形態では、被覆部Cは、マルチフィラメント糸が溶融固化された状態の、または、マルチフィラメント糸の表面にコートされた樹脂層によって構成されている。「マルチフィラメント糸が溶融固化された状態」とは、経糸1および/または緯糸2を構成するマルチフィラメント糸の一部が加熱等によって一旦溶融されて、その後固化することで面状の樹脂層となった状態をいう。この場合、溶融固化した樹脂層である面状の被覆部Cによって、溶融されていない状態の複数のフィラメント糸が人工血管VEの表面において被覆される。また、「表面にコートされた樹脂層」とは、経糸1および/または緯糸2を構成するマルチフィラメント糸に対して樹脂材料が面状にコートされることで形成された樹脂層をいう。
 人工血管VEの製造方法は特に限定されないが、被覆部Cが、マルチフィラメント糸が溶融固化された状態の樹脂層によって構成される場合、例えば、以下の製造方法によって製造することができる。まず、人工血管VEを構成する所定の織構造(例えば、図3の織構造参照)を有する基材を用意する。次に、基材を筒状に加工する前に、被覆部Cを設ける位置に応じて、基材のうち、人工血管VEの外面(表面)となる側の面に加熱媒体を接触させる。加熱された加熱媒体によって、基材表面のマルチフィラメント糸の一部が溶融され、冷却固化することで、所望のパターンの被覆部Cが形成される。次に、基材を筒状に加工することで、人工血管VEが製造される。なお、加熱媒体による基材の加熱は、基材を筒状に加工した後に行われてもよい。加熱媒体による基材の加熱工程(マルチフィラメント糸の一部を溶融する工程)の際に、加熱媒体の温度や加熱時間等が調整されることで、マルチフィラメント糸は、基材の厚さ方向で、人工血管VEの外面側の一部(表層部分)が溶融するが、厚さ方向で、人工血管VEの内面側までは溶融せず、基材のマルチフィラメント糸のうち、人工血管VEの内面側の部分は、複数のフィラメント糸がばらけた状態のままとなる。これにより、被覆部Cと内側織部IWとの二層構造を有する人工血管VEが得られる。なお、山部Mおよび谷部Vを有する人工血管VEを製造する場合は、例えば、上記工程に加えて、筒状の心材の外側に筒状の基材を配置した後、人工血管VEの外側から谷部Vの位置に応じた位置にワイヤを巻き付けて加熱することで、山部Mおよび谷部Vを有する人工血管VEを製造することもできる。樹脂層をマルチフィラメント糸の表面にコートする場合は、上述した基材の加熱工程(マルチフィラメント糸の一部を溶融する工程)に代えて、基材に対して、所望のパターンで樹脂材料を公知の方法でマルチフィラメント糸の表面に塗布することで、被覆部Cを形成することができる。なお、上述した人工血管VEの製造方法はあくまで一例であり、上記製造方法によって、人工血管VEが限定されるものではない。
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されない。なお、上記した実施形態は、以下の構成を有する発明を主に説明するものである。
 (1)経糸および緯糸が織られた所定の織構造を有する人工血管であって、
 前記経糸および緯糸の少なくとも一方は、複数のフィラメント糸を含むマルチフィラメント糸によって構成され、
 前記人工血管は、
 前記人工血管の表面に複数箇所設けられ、それぞれが前記マルチフィラメント糸を面状に覆う複数の被覆部と、
 前記人工血管の表面において、複数の被覆部の間に設けられ、前記被覆部によって覆われていない非被覆部と
を有している、人工血管。
 (2)前記人工血管は、前記被覆部に対して前記人工血管の径方向内側に、前記マルチフィラメント糸の前記複数のフィラメント糸が互いに分離した状態で延びる内側織部を有している、(1)に記載の人工血管。
 (3)前記被覆部および前記非被覆部は、前記人工血管の表面の一部において、前記人工血管の軸方向および/または周方向で交互に設けられている、(1)または(2)に記載の人工血管。
 (4)複数の前記被覆部の総面積が、前記人工血管の表面積の50~90%、好ましくは60~80%である、(1)~(3)のいずれか1つに記載の人工血管。
 (5)前記被覆部は、前記マルチフィラメント糸が溶融固化された状態の、または、前記マルチフィラメント糸の表面にコートされた樹脂層によって構成されている、(1)~(4)のいずれか1つに記載の人工血管。
 (6)前記経糸は、前記人工血管の長さ方向に沿って延びており、
前記経糸は、前記マルチフィラメント糸によって構成され、
前記経糸は、複数の緯糸を跨いで延びる部分を有し、
前記複数の緯糸を跨いで延びる部分に、前記被覆部が設けられている、
(1)~(5)のいずれか1つに記載の人工血管。
 (7)前記人工血管は、前記人工血管の軸方向に山部と谷部とが交互に形成されている、(1)~(6)のいずれか1つに記載の人工血管。
 1、1a、1b、1c、1d、1e、1f、1g、1h、1i、1j、1k、1l 経糸
 2、2a、2b、2c、2d、2e、2f、2g、2h、2i、2j、2k、2l 緯糸
 C 被覆部
 D1 経糸の延在方向(人工血管の軸方向)
 D2 緯糸の延在方向(人工血管の周方向)
 IW 内側織部
 M 山部
 Mt 山部の頂部
 P1 第2領域側第1部分の両端を縛る緯糸の部分
 P2 第3領域側第1部分の両端を縛る緯糸の部分
 PL、PL1、PL2 平面部
 R1 第1領域
 R2 第2領域
 R21 第2領域側第1部分(複数の緯糸を跨いで延びる部分)
 R22 第2領域側第2部分(1本の緯糸を跨いで延びる部分)
 R3 第3領域
 R31 第3領域側第1部分(複数の緯糸を跨いで延びる部分)
 R32 第3領域側第2部分(1本の緯糸を跨いで延びる部分)
 UC 非被覆部
 V 谷部
 Vb 谷部の底部
 VE 人工血管
 X 人工血管の軸
 θ 一方側の平面部と他方側の平面部とのなす角

Claims (7)

  1.  経糸および緯糸が織られた所定の織構造を有する人工血管であって、
     前記経糸および緯糸の少なくとも一方は、複数のフィラメント糸を含むマルチフィラメント糸によって構成され、
     前記人工血管は、
     前記人工血管の表面に複数箇所設けられ、それぞれが前記マルチフィラメント糸を面状に覆う複数の被覆部と、
     前記人工血管の表面において、複数の被覆部の間に設けられ、前記被覆部によって覆われていない非被覆部と
    を有している、人工血管。
  2. 前記人工血管は、前記被覆部に対して前記人工血管の径方向内側に、前記マルチフィラメント糸の前記複数のフィラメント糸が互いに分離した状態で延びる内側織部を有している、請求項1に記載の人工血管。
  3. 前記被覆部および前記非被覆部は、前記人工血管の表面の一部において、前記人工血管の軸方向および/または周方向で交互に設けられている、請求項1に記載の人工血管。
  4. 複数の前記被覆部の総面積が、前記人工血管の表面積の50~90%である、請求項1に記載の人工血管。
  5. 前記被覆部は、前記マルチフィラメント糸が溶融固化された状態の、または、前記マルチフィラメント糸の表面にコートされた樹脂層によって構成されている、請求項1に記載の人工血管。
  6. 前記経糸は、前記人工血管の長さ方向に沿って延びており、
    前記経糸は、前記マルチフィラメント糸によって構成され、
    前記経糸は、複数の緯糸を跨いで延びる部分を有し、
    前記複数の緯糸を跨いで延びる部分に、前記被覆部が設けられている、
    請求項1に記載の人工血管。
  7. 前記人工血管は、前記人工血管の軸方向に山部と谷部とが交互に形成されている、請求項1に記載の人工血管。
PCT/JP2023/012804 2022-04-07 2023-03-29 人工血管 WO2023195397A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-064118 2022-04-07
JP2022064118A JP2023154652A (ja) 2022-04-07 2022-04-07 人工血管

Publications (1)

Publication Number Publication Date
WO2023195397A1 true WO2023195397A1 (ja) 2023-10-12

Family

ID=88242933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012804 WO2023195397A1 (ja) 2022-04-07 2023-03-29 人工血管

Country Status (2)

Country Link
JP (1) JP2023154652A (ja)
WO (1) WO2023195397A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501031A (ja) * 2017-10-31 2021-01-14 ホットハウス メディカル リミテッドHothouse Medical Limited シーラント又はコーティングを有する繊維製品及び製造方法
WO2022004684A1 (ja) * 2020-06-29 2022-01-06 株式会社ハイレックスコーポレーション 人工血管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501031A (ja) * 2017-10-31 2021-01-14 ホットハウス メディカル リミテッドHothouse Medical Limited シーラント又はコーティングを有する繊維製品及び製造方法
WO2022004684A1 (ja) * 2020-06-29 2022-01-06 株式会社ハイレックスコーポレーション 人工血管

Also Published As

Publication number Publication date
JP2023154652A (ja) 2023-10-20

Similar Documents

Publication Publication Date Title
ES2225987T3 (es) Fieltros para maquinas de fabricacion de papel construidos con fibras entrelazadas de dos componentes.
RU2202663C2 (ru) Тканый рукав
BE1005292A3 (fr) Greffes vasculaires et leur procede de preparation.
JPH06169943A (ja) 織られた二重ベロア人造移植片
JP3839722B2 (ja) 予めクリンプされている構成要素から組み上げられている工業用テキスタイル
JP6367911B2 (ja) 自己巻き付き可能なePTFE繊維スリーブおよびその構成方法
AU7205487A (en) Vascular prostheses apparatus and method of manufacture
JP2006144145A (ja) 工業用二層織物
JPH10503560A (ja) 減じられた断面領域を備えたフィン部を有する糸を含む製紙用布
KR100305120B1 (ko) 제지기크로딩용직물
ZA200502657B (en) On-machine-seamable industrial fabric comprised of interconnected rings
US8991440B2 (en) Industrial two-layer fabric
EP1726697A1 (en) Industrial single-layer fabric having concave-convex surface
WO2023195397A1 (ja) 人工血管
KR20020075915A (ko) 솔기가 있는 산업용 직물
WO2022004684A1 (ja) 人工血管
JPH08302537A (ja) 炭素繊維織物と、その製造方法および製造装置
RU2663401C1 (ru) Многослойная трубчатая тканая конструкция
US11970796B2 (en) Two-layer fabric for unwoven fabric
JP7425770B2 (ja) 人工血管
WO2019188278A1 (ja) 工業用二層織物
WO2023149582A1 (ja) 人工血管および人工血管の製造方法
JP6597109B2 (ja) パイピングテープ及びその製造方法並びに起毛マット
US20140170364A1 (en) Homogeneous and stretchable high modulus material structure
JP2006026155A (ja) 管状の人工器官

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784685

Country of ref document: EP

Kind code of ref document: A1