WO2023195202A1 - Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
WO2023195202A1
WO2023195202A1 PCT/JP2022/045898 JP2022045898W WO2023195202A1 WO 2023195202 A1 WO2023195202 A1 WO 2023195202A1 JP 2022045898 W JP2022045898 W JP 2022045898W WO 2023195202 A1 WO2023195202 A1 WO 2023195202A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
group
forming material
acid
organic insulating
Prior art date
Application number
PCT/JP2022/045898
Other languages
French (fr)
Japanese (ja)
Inventor
聡 米田
憲哉 足立
香織 小林
大作 松川
Original Assignee
Hdマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hdマイクロシステムズ株式会社 filed Critical Hdマイクロシステムズ株式会社
Publication of WO2023195202A1 publication Critical patent/WO2023195202A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a hybrid bonding insulating film forming material, a method for manufacturing a semiconductor device, and a semiconductor device.
  • Non-Patent Document 1 discloses an example of three-dimensional mounting of a semiconductor chip.
  • hybrid bonding technology used in W2W (Wafer-to-Wafer) bonding is used to perform fine bonding of wiring between devices. is being considered.
  • Patent Document 1 discloses an example of a technique that can lower the bonding temperature by using a cyclic olefin resin.
  • thermoplastic resin such as polyimide or polybenzoxazole
  • the glass transition temperature of the resin needs to be lowered.
  • lowering the glass transition temperature of the resin may cause problems in heat resistance. Therefore, there is a need for resin materials that can be bonded in a temperature range below the glass transition temperature.
  • the present disclosure has been made in view of the above-mentioned conventional circumstances, and provides a hybrid bonding insulating film forming material that can be bonded in a temperature range below the glass transition temperature, and a semiconductor device using this hybrid bonding insulating film forming material. The purpose is to provide a method for producing the same.
  • ⁇ 3> Prepare a first semiconductor substrate having a first substrate body, a first electrode and a first organic insulating film provided on one surface of the first substrate body, preparing a semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body; bonding the first electrode and the second electrode and bonding the first organic insulating film and the second organic insulating film; A method for manufacturing a semiconductor device using the hybrid bonding insulating film forming material according to ⁇ 1> or ⁇ 2> for producing at least one of a first organic insulating film and a second organic insulating film.
  • ⁇ 4> The method for manufacturing a semiconductor device according to ⁇ 3>, wherein the first electrode and the second electrode are bonded after the first organic insulating film and the second organic insulating film are bonded together.
  • the semiconductor chip is prepared by dividing into pieces a second semiconductor substrate having a second substrate body, a plurality of second electrodes and a second organic insulating region provided on one surface of the second substrate body.
  • ⁇ 6> The first organic insulating film and the second organic insulating film are bonded together at a temperature such that a temperature difference between the semiconductor chip and the first semiconductor substrate is within 10° C.
  • the total thickness of the organic insulating film formed by bonding the first organic insulating film and the second organic insulating film is 0.1 ⁇ m or more ⁇ 3> to ⁇
  • the first semiconductor substrate is The method for manufacturing a semiconductor device according to any one of ⁇ 3> to ⁇ 7>, wherein at least one of the one surface and the one surface of the semiconductor chip is polished.
  • ⁇ 9> The method for manufacturing a semiconductor device according to ⁇ 8>, wherein the polishing includes chemical mechanical polishing.
  • the polishing further includes mechanical polishing.
  • ⁇ 11> At least one of the following is satisfied: the thickness of the first electrode is thicker than the thickness of the first organic insulating film, and the thickness of the second electrode is thicker than the thickness of the second organic insulating film.
  • a first semiconductor substrate having a first substrate body, a first organic insulating film and a first electrode provided on one surface of the first substrate body,
  • a semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body, The first organic insulating film and the second organic insulating film are bonded, the first electrode and the second electrode are bonded,
  • a semiconductor device wherein at least one of the first organic insulating film and the second organic insulating film is a cured product of the hybrid bonding insulating film forming material according to ⁇ 1> or ⁇ 2>.
  • the present disclosure it is possible to provide a hybrid bonding insulating film forming material capable of bonding in a temperature range below the glass transition temperature, a semiconductor device using this hybrid bonding insulating film forming material, and a method for manufacturing the same. .
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device manufactured by a method for manufacturing a semiconductor device according to an embodiment.
  • FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 3 is a diagram showing in more detail the bonding method in the method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram showing the steps after the step shown in FIG. 2 in order.
  • FIG. 5 is a diagram showing an example in which the method for manufacturing a semiconductor device according to an embodiment is applied to Chip-to-Wafer (C2W).
  • C2W Chip-to-Wafer
  • step includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved.
  • numerical ranges indicated using “ ⁇ ” include the numerical values written before and after " ⁇ " as minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
  • the particles corresponding to each component may include multiple types of particles.
  • the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
  • the term "layer” or “film” refers to the case where the layer or film is formed only in a part of the region, in addition to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present.
  • the average thickness of a layer or film is a value given as the arithmetic mean value of the thicknesses measured at five points of the target layer or film.
  • the thickness of a layer or film can be measured using a micrometer or the like. In this disclosure, when the thickness of a layer or film can be measured directly, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer or the total thickness of a plurality of layers, it may be measured by observing a cross section of the measurement target using an electron microscope.
  • the hybrid bonding insulating film forming material of the present disclosure (hereinafter, the hybrid bonding insulating film forming material may be simply referred to as "insulating film forming material”) comprises a thermosetting polyamide having a phenolic hydroxyl group in the molecule; Contains a solvent.
  • the insulating film forming material of the present disclosure may contain other components such as a crosslinking agent and a polymerization initiator as necessary. According to the present disclosure, it is possible to provide an insulating film forming material that can be bonded in a temperature range below the glass transition temperature. Although the reason is not clear, it is inferred as follows.
  • the insulating film forming material of the present disclosure includes a thermosetting polyamide having a phenolic hydroxyl group in the molecule.
  • a thermosetting polyamide having phenolic hydroxyl groups in its molecules is cured by a thermosetting reaction to produce a cured product, some of the phenolic hydroxyl groups are exposed on the surface of the cured product.
  • cured products with phenolic hydroxyl groups exposed on the surface are pressed together while heating, a curing reaction occurs between the unreacted thermosetting polyamides contained in the cured products and having phenolic hydroxyl groups in their molecules.
  • the curing reaction between thermosetting polyamides on the surface of the cured product can proceed even below the glass transition temperature.
  • thermosetting polyamide having a phenolic hydroxyl group in the molecule used in the present disclosure examples include polybenzoxazole precursors, polyimide precursors (polyamic acid, etc.), and the like.
  • the position of the phenolic hydroxyl group in the thermosetting polyamide is not particularly limited, and may be at the end of the thermosetting polyamide or within the main chain skeleton.
  • thermosetting polyamide having a phenolic hydroxyl group in the molecule is a polybenzoxazole precursor and a polyimide precursor (polyamic acid)
  • thermosetting polyamide having a phenolic hydroxyl group in the molecule is a polybenzoxazole precursor
  • polyimide precursor polyamic acid
  • the first insulating film forming material contains (a) a polybenzoxazole precursor as a thermosetting polyamide having a phenolic hydroxyl group in its molecule.
  • a polybenzoxazole precursor as a thermosetting polyamide having a phenolic hydroxyl group in its molecule.
  • one type of compound is sometimes simply referred to as component (a), component (b), component (c), and component (d), respectively.
  • the first insulating film forming material may include a polyimide precursor having a phenolic hydroxyl group in its molecule, or may include a polyimide precursor having no phenolic hydroxyl group in its molecule.
  • the first insulating film forming material contains at least one of a polyimide precursor having phenolic hydroxyl groups in the molecule and a polyimide precursor having no phenolic hydroxyl groups in the molecule, the polyimide precursor having phenolic hydroxyl groups in the molecule
  • the proportion of the polybenzoxazole precursor that has a phenolic hydroxyl group in the molecule in the total of the benzoxazole precursor, the polyimide precursor that has a phenolic hydroxyl group in the molecule, and the polyimide precursor that does not have a phenolic hydroxyl group in the molecule is , preferably 50% by mass or more and less than 100% by mass, more preferably 60% by mass to 90% by mass, even more preferably 65% by mass to 80% by mass.
  • the type of polybenzoxazole precursor is not particularly limited.
  • the polybenzoxazole precursor preferably has a structural unit represented by the following formula (II).
  • U is a tetravalent organic group
  • V is a divalent organic group.
  • At least a portion of the amide unit containing a hydroxy group in formula (II) is converted into an oxazole ring having excellent heat resistance, chemical resistance, and electrical properties by dehydration ring closure in the heating step.
  • the amide unit containing a hydroxy group is effective in improving the solubility of the polymer in an alkaline aqueous solution.
  • the polymer having the structural unit represented by formula (II) may contain only one type of structural unit, or may contain two or more types of structural units. When it is a copolymer having two or more types of structural units, it may be a polymer having at least two types of structural units represented by formula (II), and a polymer having a structure represented by formula (III). It may be.
  • a polymer having a structural unit represented by formula (II) has at least two types of structural units represented by formula (II)
  • the combination of structural units represented by formula (II) is particularly limited. For example, structural units in which the divalent organic group represented by V is a divalent aromatic group, and structural units in which V is a divalent organic group having an aliphatic structure having 6 to 30 carbon atoms. It may be a combination with.
  • U is a tetravalent organic group
  • V and W are each independently a divalent organic group.
  • j and k are mole fractions, and the sum of j and k is 100 moles.
  • % j is 60 to 99.9 mol%
  • k is 0.1 mol% to 40 mol% (preferably j is 80 mol% to 99.9 mol%, k is 0.1 mol% to 20 mol%). %).
  • the tetravalent organic group represented by U is a residue of diamines used in the synthesis of polyhydroxyamide.
  • the tetravalent organic group represented by U is preferably a tetravalent aromatic group or an organic group having 6 to 40 carbon atoms, and preferably a tetravalent aromatic group having 6 to 40 carbon atoms. More preferred.
  • the tetravalent aromatic group one in which all four bonding sites are present on an aromatic ring is preferable. Note that the aromatic group refers to a group containing an aromatic ring.
  • Examples of diamines that provide a tetravalent organic group represented by U include 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, and bis(3 -amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, 2 , 2-bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4-amino-3-hydroxyphenyl)-1,1 , 1,3,3,3-hexafluoropropane and the like, but are not limited to these.
  • the divalent organic group represented by W in formula (III) is a residue of diamines used in the synthesis of polyhydroxyamide.
  • the divalent organic group represented by W is preferably a divalent aromatic group, a divalent aliphatic group, or an organic group having 4 to 20 carbon atoms, and an aromatic group having 4 to 20 carbon atoms. More preferably, it is a group.
  • the divalent organic group represented by W is a residue of diamines other than the diamines that provide the tetravalent organic group represented by U.
  • Examples of diamines that provide a divalent organic group represented by W include 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 4,4'-diaminodiphenyl sulfide.
  • benzicine m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxyphenyl)sulfone, bis(3-aminophenoxyphenyl)sulfone, bis(4-aminophenoxyphenyl)sulfone,
  • aromatic diamine compounds such as -aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, and 1,4-bis(4-aminophenoxy)benzene.
  • diamines having silicone groups LP-7100, X-22-161AS, X-22-161A, X-22-161B, X-22-161C and (manufactured by a company, product name), etc., but is not limited to these.
  • the divalent organic group represented by V is a residue of a dicarboxylic acid or a dicarboxylic acid derivative (hereinafter referred to as dicarboxylic acids) used in the synthesis of polyhydroxyamide.
  • the divalent organic group represented by V is preferably a divalent aromatic group or an organic group having 6 to 40 carbon atoms. From the viewpoint of heat resistance, a divalent aromatic group having 6 to 40 carbon atoms is preferable, and a divalent aromatic group in which both of the two bonding sites are present on an aromatic ring is preferable. preferable.
  • V is a divalent organic group having an aliphatic structure with 6 to 30 carbon atoms. It is preferable that
  • Dicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, those having an aliphatic straight chain structure include malonic acid, dimethylmalonic acid, ethylmalonic acid, Isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid , hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipine Acid, 3-methyladipic acid, pimelic
  • dicarboxylic acids represented by the following formulas, but are not limited thereto. These compounds can be used alone or in combination of two or more. (In the formula, each Z is independently a hydrocarbon group having 1 to 6 carbon atoms, and i is an integer of 1 to 6.)
  • component (a) there are no particular limitations on the method for producing component (a).
  • it can be synthesized by using dicarboxylic acids, hydroxy group-containing diamines, and, if necessary, diamines other than the hydroxy group-containing diamines.
  • it can be synthesized by converting a dicarboxylic acid derivative into a dihalide derivative and then reacting it with diamines.
  • dihalide derivative dichloride derivatives are preferred.
  • Dichloride derivatives can be synthesized by reacting dicarboxylic acids and a halogenating agent in a solvent, or by performing a reaction in an excess of the halogenating agent and then distilling off the excess.
  • a halogenating agent thionyl chloride, phosphoryl chloride, phosphorus oxychloride, phosphorus pentachloride, etc., which are commonly used in the acid chloridation reaction of carboxylic acids, can be used.
  • As the reaction solvent N-methyl-2-pyrrolidone, N-methyl-2-pyridone, N,N-dimethylacetamide, N,N-dimethylformamide, toluene, benzene, etc. can be used.
  • the amount of these halogenating agents used is preferably 1.5 mol to 3.0 mol, and 1.7 mol to 2.5 mol, per 1.0 mol of the dicarboxylic acid derivative. is more preferable, and when the reaction is carried out in a halogenating agent, the amount is preferably 4.0 mol to 50 mol, and more preferably 5.0 mol to 20 mol.
  • the reaction temperature is preferably -10°C to 70°C, more preferably 0°C to 20°C.
  • the reaction between the dichloride derivative and diamines is preferably carried out in an organic solvent in the presence of a dehydrohalogenating agent.
  • a dehydrohalogenating agent organic bases such as pyridine and triethylamine can be used.
  • organic solvent N-methyl-2-pyrrolidone, N-methyl-2-pyridone, N,N-dimethylacetamide, N,N-dimethylformamide, etc. can be used.
  • the reaction temperature is preferably -10°C to 30°C, more preferably 0°C to 20°C.
  • diamines examples include aromatic diamines, aliphatic diamines, and alicyclic diamines.
  • Component (a) may be developed with an alkaline aqueous solution. Therefore, it is preferable that it is soluble in an alkaline aqueous solution.
  • the alkaline aqueous solution include organic ammonium aqueous solutions such as tetramethylammonium hydroxide (TMAH) aqueous solutions, metal hydroxide aqueous solutions, and organic amine aqueous solutions.
  • TMAH tetramethylammonium hydroxide
  • metal hydroxide aqueous solutions metal hydroxide aqueous solutions
  • organic amine aqueous solutions Generally, it is preferable to use a TMAH aqueous solution having a concentration of 2.38% by mass. Therefore, it is preferable that component (a) is soluble in the TMAH aqueous solution.
  • component (a) being soluble in an alkaline aqueous solution.
  • a resin film having a thickness of about 5 ⁇ m is formed by spin coating onto a substrate such as a silicon wafer. This is immersed in any one of a TMAH aqueous solution, a metal hydroxide aqueous solution, and an organic amine aqueous solution at 20°C to 25°C.
  • TMAH aqueous solution a metal hydroxide aqueous solution
  • organic amine aqueous solution at 20°C to 25°C.
  • the molecular weight of the resin soluble in the alkaline aqueous solution of component (a) is preferably a weight average molecular weight of 10,000 to 100,000 in terms of polystyrene, more preferably 12,000 to 100,000. , 14,000 to 85,000 is more preferable.
  • the weight average molecular weight of component (a) is 10,000 or more, appropriate solubility in an alkaline developer can be ensured. Further, when the weight average molecular weight of component (a) is 100,000 or less, good solubility in a solvent tends to be obtained, and it is possible to suppress increase in viscosity of the solution and decrease in handling properties.
  • the weight average molecular weight can be measured by gel permeation chromatography, and can be determined by conversion using a standard polystyrene calibration curve. Further, the dispersity obtained by dividing the weight average molecular weight by the number average molecular weight is preferably 1.0 to 4.0, more preferably 1.0 to 3.5.
  • the first insulating film forming material may contain a photosensitive agent as the component (b) together with a polybenzoxazole precursor or a copolymer of the polybenzoxazole precursor as the component (a).
  • This photosensitizer is one that reacts to light and has a function for developing a film formed from the composition.
  • the photosensitizer used as component (b) in the present disclosure it is preferably one that generates acid or radicals when exposed to light.
  • the photosensitive agent (b) is more preferably one that generates acid when exposed to light (photoacid generator).
  • the photoacid generator has the function of generating an acid upon irradiation with light and increasing the solubility of the irradiated area in an alkaline aqueous solution.
  • photoacid generators include o-quinonediazide compounds, aryldiazonium salts, diaryliodonium salts, triarylsulfonium salts, and o-quinonediazide compounds are preferred due to their high sensitivity.
  • the above o-quinonediazide compound can be obtained, for example, by subjecting an o-quinonediazide sulfonyl chloride to a hydroxy compound, an amino compound, etc. to a condensation reaction in the presence of a dehydrochlorination agent.
  • the o-quinonediazide sulfonyl chloride include benzoquinone-1,2-diazide-4-sulfonyl chloride, naphthoquinone-1,2-diazide-5-sulfonyl chloride, and naphthoquinone-1,2-diazide-4-sulfonyl chloride. etc. can be used.
  • hydroxy compound examples include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, and 2,3,4-trihydroxybenzophenone.
  • amino compound examples include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfide, o-aminophenol, m-aminophenol, p-aminophenol, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, bis(3 -amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, bis (3-amino-4-hydroxyphenyl)hex
  • the o-quinonediazide sulfonyl chloride and the hydroxy compound and/or amino compound are blended such that the total of the hydroxy group and the amino group is 0.5 equivalent to 1 equivalent per 1 mole of the o-quinone diazide sulfonyl chloride. It is preferable.
  • the preferred ratio of dehydrochlorination agent to o-quinonediazide sulfonyl chloride is in the range of 0.95/1 to 1/0.95.
  • the preferred reaction temperature is 0°C to 40°C, and the preferred reaction time is 1 hour to 10 hours.
  • reaction solvent for the above reaction solvents such as dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether, and N-methyl-2-pyrrolidone are used.
  • dehydrochlorination agents include sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine, and pyridine.
  • the component (b) is one that generates radicals or a compound that can be crosslinked or polymerized by the action of an acid.
  • the first insulating film-forming material can be used as a negative photosensitive resin composition by using an acid-generating component as the component (b), that is, as a photopolymerization initiator. .
  • This negative photosensitive resin composition has the function of reducing the solubility of the light irradiated area in an alkaline aqueous solution through a crosslinking reaction caused by light irradiation.
  • the blending amount of component (b) is determined based on the dissolution rate difference between exposed and unexposed areas and the allowable range of sensitivity. It is preferably 5 parts by mass to 100 parts by mass, more preferably 8 parts by mass to 40 parts by mass, based on 100 parts by mass.
  • the first insulating film forming material contains a solvent.
  • Solvents include ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, methyl 3-methoxypropionate, N-methyl-2-pyrrolidone, N,N -Dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphorylamide, tetramethylenesulfone, cyclohexanone, cyclopentanone, diethylketone, diisobutylketone, methylamylketone, 3-methoxy-N,N-dimethylpropanamide etc.
  • solvents can be used alone or in combination of two or more. Further, although there is no particular restriction on the amount of the solvent used, it is generally preferable to adjust the proportion of the solvent in the first insulating film forming material to 20% by mass to 90% by mass.
  • the first insulating film forming material may contain component (d).
  • the heterocyclic compound refers to a cyclic compound in which a ring is composed of atoms of two or more elements (in addition to carbon, nitrogen, oxygen, sulfur, etc.).
  • heterocyclic compounds include triazole ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, and pyrimididine ring.
  • a pyrazine ring a piperidine ring, a piperidine ring, a piperazine ring, a morpholine ring, a 2H-pyran ring, a 6H-pyran ring, a triazine ring, among others, a triazole ring containing a carbon atom and a nitrogen atom, a pyrrole ring, Compounds having a pyrazole ring, thiazole ring, imidazole ring and tetrazole ring are preferred.
  • thioureas include monomethylthiourea, thiourea, dimethylthiourea, diethylthiourea, dibutylthiourea, etc., but are not limited to these.
  • heterocyclic compounds and compounds having a mercapto group include pyrrole, 3-methylpyrrole, 2,4-dimethylpyrrole, 2,5-dimethylpyrrole, 2-ethylpyrrole, and indole.
  • At least one selected from the group consisting of 1H-tetrazole, 5-substituted-1H-tetrazole, 1-substituted-1H-tetrazole and derivatives thereof is preferred, and 1,2,3-triazole, 1 , 2,4-triazole and its derivatives, 1,2,3-benzotriazole, 5-substituted-1H-benzotriazole, 6-substituted-1H-benzotriazole, 5,6-substituted-1H-benzotriazole and its derivatives.
  • At least one selected from the following is more preferred, and 5-methyl-1H-benzotriazole, 1H-tetrazole, 5-methyl-1H-tetrazole, and 5,5'-bis-1H-tetrazole are particularly preferred.
  • Component (d) is used to prevent corrosion between the photosensitive resin and the substrate (for example, copper and copper alloy) and to improve adhesion.
  • the blending amount of component (d) is usually 0.1 parts by mass to 10 parts by mass per 100 parts by mass of component (a) (base resin), and when two or more kinds are combined, the total amount is 0.1 parts by mass.
  • the amount is 1 part by mass to 10 parts by mass. More preferably, the amount is in the range of 0.2 parts by mass to 5 parts by mass. If it is 0.1 part by mass or more, it tends to ensure the effect of improving the adhesion to the metal layer, and if it is 10 parts by mass or less, the effect of improving the adhesion depending on the amount of component (d) added can be enjoyed. There is a tendency.
  • the first insulating film forming material preferably contains a crosslinking agent that can be crosslinked or polymerized by heating.
  • a compound that is a crosslinking agent reacts with the polybenzoxazole precursor or polybenzoxazole, that is, forms a bridge, in the step of applying heat, exposing, and developing the first insulating film forming material.
  • the compound itself that is a crosslinking agent polymerizes. This prevents the brittleness of the film, which is a concern when curing at a relatively low temperature, for example, 200° C. or lower, and improves mechanical properties, chemical resistance, flux resistance, and the like.
  • Component (e) is not particularly limited as long as it is a compound that crosslinks or polymerizes in the heat treatment step, but it is preferably a compound having a methylol group, an alkoxymethyl group, an epoxy group, or a vinyl ether group in the molecule.
  • Compounds in which these groups are bonded to a benzene ring, or melamine resins and urea resins in which the N-position is substituted with a methylol group and/or an alkoxymethyl group are preferred.
  • Compounds in which these groups are bonded to a benzene ring having a phenolic hydroxyl group are more preferable because they can increase the dissolution rate of exposed areas during development and improve sensitivity.
  • compounds having two or more methylol groups or alkoxymethyl groups in the molecule are more preferred in terms of sensitivity and varnish stability, as well as the ability to prevent melting of the film during curing after pattern formation.
  • Such compounds can be represented by the following general formulas (9) to (11).
  • G represents a single bond or a monovalent to tetravalent organic group
  • R 11 and R 12 each independently represent a hydrogen atom or a monovalent organic group
  • o is an integer of 1 to 4
  • p and q are each independently integers from 0 to 4.
  • the two J's are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and may contain an oxygen atom or a fluorine atom
  • R 13 to R 16 are each independently a hydrogen atom or a monovalent represents an organic group
  • r and s are each independently an integer of 1 to 3
  • p and q are each independently an integer of 0 to 3.
  • R 17 and R 18 each independently represent a hydrogen atom or a monovalent organic group, and a plurality of R 18s have a ring structure and may be connected to each other.
  • crosslinking agent examples include, but are not limited to, the following chemical formula (12). Moreover, these compounds can be used alone or in combination of two or more.
  • the blending amount of component (e) is determined from the viewpoints of development time, permissible range of residual film rate in unexposed areas, and physical properties of the cured film. , preferably 1 part by mass to 50 parts by mass per 100 parts by mass of component (a) (base resin).
  • the amount is more preferably 20 parts by mass or more, ie, 20 parts by mass to 50 parts by mass.
  • the crosslinking agent (E) Polymer monomers may also be used.
  • thermo acid generator that generates acid upon heating
  • a thermal acid generator thermal latent acid generator
  • the acid generated from the thermal acid generator is preferably a strong acid, and specifically, examples include p-toluenesulfonic acid, arylsulfonic acid such as benzenesulfonic acid, camphorsulfonic acid, Perfluoroalkylsulfonic acids such as trifluoromethanesulfonic acid and nonafluorobutanesulfonic acid, alkylsulfonic acids such as methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, and the like are preferred. These acids efficiently act as catalysts when the phenolic hydroxyl group-containing polyamide structure of the polybenzoxazole precursor undergoes a dehydration reaction and is cyclized.
  • These acids are added to the first insulating film forming material as a thermal acid generator in the form of a salt such as an onium salt or a covalent bond form such as an imidosulfonate.
  • onium salts examples include diaryliodonium salts such as diphenyliodonium salts, di(alkylaryl)iodonium salts such as di(t-butylphenyl)iodonium salts, trialkylsulfonium salts such as trimethylsulfonium salts, dimethyl Dialkylmonoarylsulfonium salts such as phenylsulfonium salts, diarylmonoalkyliodonium salts such as diphenylmethylsulfonium salts, and the like are preferred. These are preferred because the decomposition initiation temperature is in the range of 150°C to 250°C, and they are efficiently decomposed during the cyclization and dehydration reaction of the polybenzoxazole precursor at 280°C or lower.
  • thermal acid generators in the form of onium salts include, for example, diaryliodonium salts, di(alkylaryl)iodonium salts, trialkyl sulfonic acids, camphorsulfonic acids, perfluoroalkylsulfonic acids, or alkylsulfonic acids.
  • Sulfonium salts, dialkylmonoarylsulfonium salts, and diarylmonoalkyliodonium salts are preferred from the viewpoint of storage stability and developability.
  • di(t-butylphenyl)iodonium salt of para-toluenesulfonic acid 1% weight loss temperature 180°C, 5% weight loss temperature 185°C
  • di(t-butylphenyl) trifluoromethanesulfonic acid Iodonium salt 1% weight loss temperature 151°C, 5% weight loss temperature 173°C
  • trimethylsulfonium salt of trifluoromethanesulfonic acid 1% weight loss temperature 255°C, 5% weight loss temperature 278°C
  • diphenylmethylsulfonium salt of trifluoromethanesulfonic acid 1% weight loss temperature 154°C, 5% weight loss temperature 179°C
  • examples of the imidosulfonate include phthalimide sulfonate and naphthoylimide sulfonate, with naphthoylimide sulfonate being preferred.
  • Specific examples of naphthoylimide sulfonates include 1,8-naphthoylimide trifluoromethylsulfonate (1% weight loss temperature: 189°C, 5% weight loss temperature: 227°C), 2,3-naphthoylimide Preferred examples include trifluoromethylsulfonate (1% weight loss temperature: 185°C, 5% weight loss temperature: 216°C).
  • R 21 is, for example, an aryl group such as a p-methylphenyl group or a phenyl group, an alkyl group such as a methyl group, an ethyl group, or an isopropyl group, or a perfluoroalkyl group such as a trifluoromethyl group or a nonafluorobutyl group. Examples include groups.
  • examples of R 19 include a cyano group
  • examples of R 20 include a methoxyphenyl group and a phenyl group.
  • R 22 includes, for example, an alkyl group such as a methyl group, an ethyl group, and a propyl group, an aryl group such as a methylphenyl group and a phenyl group, and a perfluoroalkyl group such as a trifluoromethyl group and a nonafluorobutyl group. Can be mentioned.
  • -HN-SO 2 -R 22 for example, 2,2,-bis(4-hydroxyphenyl)hexafluoropropane, 2,2,-bis(4-hydroxyphenyl)propane, di- (4-hydroxyphenyl)ether and the like.
  • a salt formed from a strong acid and a base other than onium salts can also be used.
  • strong acids include arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, perfluoroalkylsulfonic acids such as camphorsulfonic acid, trifluoromethanesulfonic acid, and nonafluorobutanesulfonic acid, and methanesulfonic acid.
  • Acid, alkylsulfonic acids such as ethanesulfonic acid, butanesulfonic acid are preferred.
  • Preferred examples of the base include pyridine, alkylpyridine such as 2,4,6-trimethylpyridine, N-alkylpyridine such as 2-chloro-N-methylpyridine, and halogenated-N-alkylpyridine. More specifically, p-toluenesulfonic acid pyridine salt (1% weight loss temperature 147°C, 5% weight loss temperature 190°C), p-toluenesulfonic acid L-aspartic acid dibenzyl ester salt (1% weight loss temperature 190°C), 2,4,6-trimethylpyridine salt of p-toluenesulfonic acid, 1,4-dimethylpyridine salt of p-toluenesulfonic acid, etc. have good storage stability and development. These are preferred from the viewpoint of performance. These also decompose during the cyclization and dehydration reaction of the polybenzoxazole precursor at 280° C. or lower, and can function as a catalyst.
  • the blending amount of component (f) is preferably 0.1 parts by mass to 30 parts by mass, and preferably 0.2 parts by mass to 20 parts by mass, per 100 parts by mass of component (a) (base resin). is more preferable, and even more preferably 0.5 parts by weight to 10 parts by weight.
  • the first insulating film forming material includes (1) a dissolution promoter, (2) a dissolution inhibitor, (3) an adhesion imparting agent, and (4) a surfactant.
  • a dissolution promoter for a dissolution of a dissolution of a dissolution in a dissolution environment.
  • the second insulating film forming material includes (A) a polyimide precursor as a thermosetting polyamide having a phenolic hydroxyl group in its molecule.
  • the polyimide precursor may have a polymerizable unsaturated bond site.
  • the second insulating film forming material may include a polybenzoxazole precursor having a phenolic hydroxyl group in its molecule, or a polyimide precursor having no phenolic hydroxyl group in its molecule.
  • the second insulating film forming material contains at least one of a polybenzoxazole precursor having a phenolic hydroxyl group in its molecule and a polyimide precursor having no phenolic hydroxyl group in its molecule
  • the proportion of the polyimide precursor that has a phenolic hydroxyl group in the molecule in the total of the polyimide precursor that has a phenolic hydroxyl group in the molecule, the polybenzoxazole precursor that has a phenolic hydroxyl group in the molecule, and the polyimide precursor that does not have a phenolic hydroxyl group in the molecule is , preferably 50% by mass or more and less than 100% by mass, more preferably 60% by mass to 90% by mass, even more preferably 65% by mass to 80% by mass.
  • the second insulating film forming material does not need to contain a polybenzoxazole precursor having a phenolic hydroxyl group in its molecule, or it may not contain a polyimide precursor having no phenolic hydroxyl group in its molecule. Good too.
  • the polyimide precursor is preferably at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide.
  • Polyamic acid ester and polyamic acid amide are compounds in which at least some of the carboxy groups in polyamic acid have hydrogen atoms substituted with monovalent organic groups
  • polyamic acid salts are compounds in which at least some of the carboxy groups in polyamic acid have been replaced with monovalent organic groups. It is a compound that forms a salt structure with a basic compound having a pH of 7 or higher.
  • the polyimide precursor preferably contains a compound having a structural unit represented by the following general formula (1). Thereby, a semiconductor device including an insulating film exhibiting high reliability tends to be obtained.
  • X represents a tetravalent organic group
  • Y represents a divalent organic group
  • R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group, and at least one of R 6 and R 7 may have a polymerizable unsaturated bond.
  • the polyimide precursor may have a plurality of structural units represented by the above general formula (1), and X, Y, R 6 and R 7 in the plurality of structural units may be the same or different. You can leave it there. Note that the combination of R 6 and R 7 is not particularly limited as long as they are each independently a hydrogen atom or a monovalent organic group.
  • R 6 and R 7 may be a hydrogen atom, and the rest may be monovalent organic groups described below, both may be the same or different monovalent organic groups, or both may be the same or different monovalent organic groups. may be a hydrogen atom.
  • the combination of R 6 and R 7 of each structural unit may be the same or different. .
  • the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 5 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms. .
  • the tetravalent organic group represented by X may contain an aromatic ring from the viewpoint of heat resistance. Examples of aromatic rings include aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), aromatic heterocyclic groups (for example, the number of atoms constituting the heterocycle is 5 to 20), etc. It will be done.
  • the tetravalent organic group represented by X is preferably an aromatic hydrocarbon group.
  • aromatic hydrocarbon group examples include a benzene ring, a naphthalene ring, and a phenanthrene ring.
  • each aromatic ring may have a substituent or may be unsubstituted.
  • substituents on the aromatic ring include alkyl groups, fluorine atoms, halogenated alkyl groups, hydroxyl groups, and amino groups.
  • the tetravalent organic group represented by X contains a benzene ring
  • the tetravalent organic group represented by X preferably contains one to four benzene rings, and preferably contains one to three benzene rings.
  • ether bond (-O-), sulfide bond (-S-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group.
  • siloxane bond (-O-(Si(R B ) 2 -O-) n ; two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more ), or a composite linking group combining at least two of these linking groups.
  • two benzene rings may be bonded at two locations by at least one of a single bond and a linking group, to form a five-membered ring or a six-membered ring containing a linking group between the two benzene rings.
  • -COOR 6 groups and -CONH- groups are preferably located at ortho positions
  • -COOR 7 groups and -CO- groups are preferably located at ortho positions.
  • tetravalent organic group represented by X include groups represented by the following formulas (A) to (F).
  • a group represented by the following formula (E) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface.
  • a and B are each independently a single bond or a divalent group that is not conjugated with a benzene ring. However, both A and B cannot be a single bond.
  • Divalent groups that are not conjugated with the benzene ring include methylene group, halogenated methylene group, halogenated methylmethylene group, carbonyl group, sulfonyl group, ether bond (-O-), sulfide bond (-S-), and silylene bond.
  • a and B are each independently preferably a methylene group, a bis(trifluoromethyl)methylene group, a difluoromethylene group, an ether bond, a sulfide bond, etc., and an ether bond is more preferable.
  • C preferably contains an ether bond, and is preferably an ether bond. Further, C may have a structure represented by the following formula (
  • the alkylene group represented by C in formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and an alkylene group having 1 to 5 carbon atoms. or 2 alkylene group is more preferable.
  • alkylene group represented by C in formula (E) include linear alkylene groups such as methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and hexamethylene group; methylmethylene group; Methylethylene group, ethylmethylene group, dimethylmethylene group, 1,1-dimethylethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, ethylethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group group, 1-ethyltrimethylene group, 2-ethyltrimethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltramethylene group
  • the halogenated alkylene group represented by C in formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms. Preferably, a halogenated alkylene group having 1 to 3 carbon atoms is more preferable.
  • at least one hydrogen atom contained in the alkylene group represented by C in formula (E) above is a fluorine atom, a chlorine atom, etc.
  • Examples include alkylene groups substituted with halogen atoms. Among these, fluoromethylene group, difluoromethylene group, hexafluorodimethylmethylene group, etc. are preferred.
  • the alkyl group represented by R A or R B included in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms. is more preferable, and even more preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R A or R B include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, etc. Can be mentioned.
  • tetravalent organic group represented by X may be groups represented by the following formulas (J) to (O).
  • the tetravalent organic group represented by X may contain an alicyclic ring from the viewpoint of adjusting the coefficient of thermal expansion when a cured product is formed.
  • the tetravalent organic group represented by Examples include ring structures that do not contain unsaturated bonds, such as a bicyclo[2.2.2]octane ring, and ring structures that contain unsaturated bonds, such as a cyclohexene ring. Also included are spiro ring structures containing these ring structures.
  • an alkyl group such as a fluorine atom, a halogenated alkyl group, a hydroxyl group, or an amino group
  • P a specific example of the case where the tetravalent organic group represented by X has a spiro ring structure is the following formula (P).
  • the divalent organic group represented by Y preferably has 4 to 25 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 12 to 18 carbon atoms.
  • the skeleton of the divalent organic group represented by Y may be the same as the skeleton of the tetravalent organic group represented by X, and the preferable skeleton of the divalent organic group represented by Y is It may be the same as the preferred skeleton of the tetravalent organic group represented by.
  • the skeleton of the divalent organic group represented by Y is a tetravalent organic group represented by X, in which two bonding positions are substituted with atoms (e.g. hydrogen atoms) or functional groups (e.g.
  • the divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance, the divalent organic group represented by Y is preferably a divalent aromatic group.
  • divalent aromatic groups include divalent aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), divalent aromatic heterocyclic groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), The number of atoms is 5 to 20), and divalent aromatic hydrocarbon groups are preferred.
  • divalent aromatic group represented by Y include groups represented by the following formulas (G) to (H).
  • a group represented by the following formula (H) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing a single bond or an ether bond, and even more preferably a single bond or an ether bond.
  • R each independently represents an alkyl group, an alkoxy group, a hydroxyl group, a halogenated alkyl group, a phenyl group, or a halogen atom
  • n each independently represents 0 to 4. Represents an integer.
  • two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ;
  • Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups.
  • D may have a structure represented by the above formula (C1).
  • a specific example of D in formula (H) is a single bond or the same as a specific example of C in formula (E).
  • D in formula (H) is preferably a single bond, an ether bond, a group containing an ether bond and a phenylene group, a group containing an ether bond, a phenylene group, and an alkylene group, etc., each independently.
  • the alkyl group represented by R in formulas (G) to (H) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. , more preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R in formulas (G) to (H) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, Examples include t-butyl group.
  • the alkoxy group represented by R in formulas (G) to (H) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms. , more preferably an alkoxy group having 1 or 2 carbon atoms.
  • Specific examples of the alkoxy group represented by R in formulas (G) to (H) include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and s-butoxy group. , t-butoxy group and the like.
  • the halogenated alkyl group represented by R in formulas (G) to (H) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, and preferably a halogenated alkyl group having 1 to 3 carbon atoms. More preferably, it is a halogenated alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the halogenated alkyl group represented by R in formulas (G) to (H) include at least one hydrogen atom contained in the alkyl group represented by R in formulas (G) to (H). Examples include alkyl groups in which is substituted with a halogen atom such as a fluorine atom or a chlorine atom. Among these, fluoromethyl group, difluoromethyl group, trifluoromethyl group, etc. are preferred.
  • n is each independently preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • divalent aliphatic group represented by Y examples include a linear or branched alkylene group, a cycloalkylene group, a divalent group having a polyalkylene oxide structure, and the like.
  • the linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms, and More preferably, the number is 1 to 10 alkylene groups.
  • Specific examples of the alkylene group represented by Y include tetramethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, 2-methylpentamethylene group. , 2-methylhexamethylene group, 2-methylheptamethylene group, 2-methyloctamethylene group, 2-methylnonamethylene group, 2-methyldecamethylene group, and the like.
  • the cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, more preferably a cycloalkylene group having 3 to 6 carbon atoms.
  • Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group and a cyclohexylene group.
  • the unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and An alkylene oxide structure of 1 to 4 is more preferred.
  • a polyethylene oxide structure or a polypropylene oxide structure is preferable.
  • the alkylene group in the alkylene oxide structure may be linear or branched.
  • the number of unit structures in the polyalkylene oxide structure may be one, or two or more.
  • the divalent organic group represented by Y may be a divalent group having a polysiloxane structure.
  • a divalent group having a polysiloxane structure represented by Y a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. Examples include divalent groups having a polysiloxane structure.
  • alkyl group having 1 to 20 carbon atoms bonded to the silicon atom in the polysiloxane structure include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n- Examples include octyl group, 2-ethylhexyl group, n-dodecyl group, and the like. Among these, methyl group is preferred.
  • the aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent.
  • substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • aryl group having 6 to 18 carbon atoms include phenyl group, naphthyl group, and benzyl group. Among these, phenyl group is preferred.
  • the number of alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 18 carbon atoms in the polysiloxane structure may be one type or two or more types.
  • the silicon atom constituting the divalent group having a polysiloxane structure represented by Y is an NH group in general formula (1) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group. May be combined with
  • the group represented by the formula (G) is preferably a group represented by the following formula (G'), and the group represented by the formula (H) is preferably a group represented by the following formula (H') or the formula (H'). ') or a group represented by the formula (H''') is preferable.
  • R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, a hydroxyl group, or a halogen atom.
  • R is preferably an alkyl group, more preferably a methyl group.
  • the combination of the tetravalent organic group represented by X and the divalent organic group represented by Y in general formula (1) is not particularly limited.
  • X is a group represented by formula (E)
  • Y is a group represented by formula (H). Examples include combinations of groups.
  • R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms or an organic group having an unsaturated double bond, such as a group represented by the following general formula (2), an ethyl group, It is more preferably either an isobutyl group or a t-butyl group, and even more preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms or a group represented by the following general formula (2).
  • the monovalent organic group contains an organic group having an unsaturated double bond, preferably a group represented by the following general formula (2), it has high i-line transmittance and is good even when cured at low temperatures of 400°C or less. It tends to form a cured product.
  • the monovalent organic group includes an organic group having an unsaturated double bond, preferably a group represented by the following general formula (2), at least a portion of the unsaturated double bond moiety is removed by the compound (C). is detached.
  • aliphatic hydrocarbon groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc. Among them, ethyl group, Isobutyl and t-butyl groups are preferred.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
  • the aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (2) has 1 to 3 carbon atoms, preferably 1 or 2 carbon atoms.
  • Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a methyl group is preferred.
  • R 8 to R 10 in general formula (2) is preferably a combination in which R 8 and R 9 are hydrogen atoms, and R 10 is a hydrogen atom or a methyl group.
  • R x in general formula (2) is a divalent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms include linear or branched alkylene groups.
  • the number of carbon atoms in R x is preferably 1 to 10, more preferably 2 to 5, and even more preferably 2 or 3.
  • R 6 and R 7 may be a group represented by the above general formula (2), and both R 6 and R 7 may be a group represented by the above general formula (2). It may be a group represented by
  • the general formula (2) is calculated based on the sum of R 6 and R 7 of all structural units contained in the compound.
  • the ratio of R 6 and R 7 which are the groups represented by, is preferably 60 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit is not particularly limited, and may be 100 mol%.
  • the above-mentioned ratio may be 0 mol% or more and less than 60 mol%.
  • the group represented by general formula (2) is preferably a group represented by general formula (2') below.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.
  • q is an integer of 1 to 10, preferably an integer of 2 to 5, and more preferably 2 or 3.
  • the content of the structural unit represented by the general formula (1) contained in the compound having the structural unit represented by the general formula (1) is preferably 60 mol% or more based on the total structural units, More preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit of the above-mentioned content is not particularly limited, and may be 100 mol%.
  • the polyimide precursor may be synthesized using a tetracarboxylic dianhydride and a diamine compound.
  • X corresponds to a residue derived from a tetracarboxylic dianhydride
  • Y corresponds to a residue derived from a diamine compound.
  • the polyimide precursor may be synthesized using tetracarboxylic acid instead of tetracarboxylic dianhydride.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and 3,3',4,4'-biphenyltetracarboxylic dianhydride.
  • diamine compounds include 2,2'-dimethylbiphenyl-4,4'-diamine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, and 2,2'-difluoro- 4,4'-diaminobiphenyl, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, benzidine, 4,4'-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3
  • diamine compound 2,2'-dimethylbiphenyl-4,4'-diamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether and 1,3-bis(3-aminophenoxy)benzene are preferred.
  • the diamine compounds may be used alone or in combination of two or more.
  • a compound having a structural unit represented by general formula (1) and in which at least one of R 6 and R 7 in general formula (1) is a monovalent organic group is, for example, the following (a) or It can be obtained by the method (b).
  • a diester is produced by reacting a tetracarboxylic dianhydride (preferably a tetracarboxylic dianhydride represented by the following general formula (8)) and a compound represented by R-OH in an organic solvent. After making the derivative, the diester derivative and a diamine compound represented by H 2 N--Y--NH 2 are subjected to a condensation reaction.
  • Tetracarboxylic dianhydride and a diamine compound represented by H 2 N-Y-NH 2 are reacted in an organic solvent to obtain a polyamic acid solution, and the compound represented by R-OH is mixed into polyamide.
  • the reaction is carried out in an organic solvent to introduce an ester group.
  • Y in the diamine compound represented by H 2 N-Y-NH 2 is the same as Y in general formula (1), and specific examples and preferred examples are also the same.
  • R in the compound represented by R-OH represents a monovalent organic group, and specific examples and preferred examples are the same as those for R 6 and R 7 in general formula (1).
  • the tetracarboxylic dianhydride represented by the general formula (8), the diamine compound represented by H 2 N-Y-NH 2 and the compound represented by R-OH may each be used alone. Often, two or more types may be combined. Examples of the organic solvents mentioned above include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, dimethoxyimidazolidinone, 3-methoxy-N,N-dimethylpropionamide, and among others, 3-methoxy-N,N- Dimethylpropionamide is preferred.
  • a polyimide precursor may be synthesized by allowing a dehydration condensation agent to act on a polyamic acid solution together with a compound represented by R-OH.
  • the dehydration condensation agent preferably contains at least one selected from the group consisting of trifluoroacetic anhydride, N,N'-dicyclohexylcarbodiimide (DCC), and 1,3-diisopropylcarbodiimide (DIC).
  • DCC N,N'-dicyclohexylcarbodiimide
  • DIC 1,3-diisopropylcarbodiimide
  • the above-mentioned compound contained in the polyimide precursor is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then converting it into a diester derivative. It can be obtained by converting it into an acid chloride by applying a chlorinating agent such as thionyl, and then reacting the acid chloride with a diamine compound represented by H 2 N-Y-NH 2 .
  • the above-mentioned compound contained in the polyimide precursor is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then converting it into a carbodiimide. It can be obtained by reacting a diamine compound represented by H 2 N-Y-NH 2 with a diester derivative in the presence of the compound.
  • the above-mentioned compound contained in the polyimide precursor is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a diamine compound represented by H 2 N-Y-NH 2 It can be obtained by converting the polyamic acid into isoimidization in the presence of a dehydration condensation agent such as trifluoroacetic anhydride, and then reacting with a compound represented by R-OH. Alternatively, a compound represented by R-OH may be reacted on a portion of the tetracarboxylic dianhydride in advance to form a partially esterified tetracarboxylic dianhydride and a compound represented by H 2 N-Y-NH 2 . may be reacted with a diamine compound.
  • X is the same as X in general formula (1), and specific examples and preferred examples are also the same.
  • Compounds represented by R-OH used in the synthesis of the above-mentioned compounds contained in the polyimide precursor include compounds in which a hydroxy group is bonded to R x of the group represented by general formula (2); It may also be a compound in which a hydroxy group is bonded to the terminal methylene group of the group represented by formula (2').
  • Specific examples of compounds represented by R-OH include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and methacryl.
  • Examples include 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, among others, 2-hydroxyethyl methacrylate and 2-hydroxybutyl acrylate. -Hydroxyethyl is preferred.
  • the weight average molecular weight of the polyimide precursor (A) is preferably 10,000 to 200,000, more preferably 10,000 to 100,000.
  • the weight average molecular weight of the polyimide precursor (A) can be determined in the same manner as for the polybenzoxazole precursor (a).
  • the second insulating film-forming material may further contain dicarboxylic acid
  • the (A) polyimide precursor contained in the second insulating film-forming material is such that some of the amino groups in the (A) polyimide precursor are It may have a structure formed by reacting with a carboxy group in a dicarboxylic acid.
  • the dicarboxylic acid may be a dicarboxylic acid having a (meth)acrylic group, for example, a dicarboxylic acid represented by the following formula.
  • the second insulating film forming material may contain a polyimide resin in addition to the polyimide precursor (A).
  • a polyimide resin By combining a polyimide precursor and a polyimide resin, it is possible to suppress the production of volatiles due to dehydration cyclization during imide ring formation, and therefore it tends to be possible to suppress the generation of voids.
  • the polyimide resin herein refers to a resin having an imide skeleton in all or part of the resin skeleton. It is preferable that the polyimide resin is soluble in a solvent in an insulating film forming material using a polyimide precursor.
  • the polyimide resin is not particularly limited as long as it is a polymeric compound having a plurality of structural units containing imide bonds, and preferably includes, for example, a compound having a structural unit represented by the following general formula (X).
  • X a compound having a structural unit represented by the following general formula (X).
  • X represents a tetravalent organic group
  • Y represents a divalent organic group.
  • Preferred examples of substituents X and Y in general formula (X) are the same as preferred examples of substituents X and Y in general formula (1) described above.
  • the proportion of the polyimide resin to the total of the polyimide precursor and the polyimide resin may be 15% to 50% by mass, or 10% to 20% by mass. There may be.
  • the second insulating film forming material may include (A) a polyimide precursor and a resin other than the polyimide resin.
  • Other resins include, from the viewpoint of heat resistance, the aforementioned polybenzoxazole precursors, novolac resins, acrylic resins, polyether nitrile resins, polyether sulfone resins, epoxy resins, polyethylene terephthalate resins, and polyethylene naphthalate resins. , polyvinyl chloride resin, etc.
  • the other resins may be used alone or in combination of two or more.
  • the content of the polyimide precursor (A) based on the total amount of resin components is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass. , more preferably 90% by mass to 100% by mass.
  • the second insulating film forming material includes a (B) solvent (hereinafter also referred to as "component (B)").
  • Component (B) preferably contains at least one selected from the group consisting of compounds represented by the following formulas (3) to (7).
  • R 1 , R 2 , R 8 and R 10 are each independently an alkyl group having 1 to 4 carbon atoms
  • R 3 to R 7 and R 9 are each independently an alkyl group having 1 to 4 carbon atoms.
  • it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • s is an integer from 0 to 8
  • t is an integer from 0 to 4
  • r is an integer from 0 to 4
  • u is an integer from 0 to 3.
  • the alkyl group having 1 to 4 carbon atoms in R 2 is preferably a methyl group or an ethyl group.
  • t is preferably 0, 1 or 2, more preferably 1.
  • the alkyl group having 1 to 4 carbon atoms for R 3 is preferably a methyl group, ethyl group, propyl group or butyl group.
  • the alkyl group having 1 to 4 carbon atoms for R 4 and R 5 is preferably a methyl group or an ethyl group.
  • the alkyl group having 1 to 4 carbon atoms in R 6 to R 8 is preferably a methyl group or an ethyl group.
  • r is preferably 0 or 1, more preferably 0.
  • the alkyl group having 1 to 4 carbon atoms in R 9 and R 10 is preferably a methyl group or an ethyl group.
  • u is preferably 0 or 1, more preferably 0.
  • Component (B) may be, for example, at least one of the compounds represented by formulas (4), (5), (6), and (7), and may be a compound represented by formula (5) or It may also be a compound represented by formula (7).
  • component (B) include the following compounds.
  • the component (B) contained in the second insulating film forming material is not limited to the above-mentioned compounds, and may be other solvents.
  • Component (B) may be an ester solvent, an ether solvent, a ketone solvent, a hydrocarbon solvent, an aromatic hydrocarbon solvent, a sulfoxide solvent, or the like.
  • Solvents for esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone. , ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkoxy acetates such as methyl alkoxy acetate, ethyl alkoxy acetate, butyl alkoxy acetate (e.g.
  • 3-Alkoxypropionate alkyl esters such as methyl 3-alkoxypropionate, ethyl 3-alkoxypropionate (e.g.
  • 2-alkoxypropionate alkyl esters e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Propyl 2-methoxypropionate, methyl 2-ethoxypropionate and ethyl 2-ethoxypropionate
  • 2-alkoxy-2-methylpropionate such as methyl 2-methoxy-2-methylpropionate
  • 2-ethoxy-2 - Ethyl 2-alkoxy-2-methylpropionate such as ethyl methylpropionate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, etc.
  • 2-alkoxypropionate alkyl esters e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Prop
  • Ether solvents include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene.
  • Examples include glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, and the like.
  • Examples of the ketone solvent include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, and N-methyl-2-pyrrolidone (NMP).
  • Examples of hydrocarbon solvents include limonene and the like.
  • Examples of aromatic hydrocarbon solvents include toluene, xylene, anisole, and the like.
  • Examples of solvents for sulfoxides include dimethyl sulfoxide and the like.
  • Preferred examples of the solvent for component (B) include ⁇ -butyrolactone, cyclopentanone, and ethyl lactate.
  • the content of NMP may be 1% by mass or less based on the total amount of the insulating film forming material. Often, the amount may be 3% by mass or less based on the total amount of the polyimide precursor (A).
  • the content of the component (B) is preferably 1 part by mass to 10,000 parts by mass, and preferably 50 parts by mass to 10,000 parts by mass, based on 100 parts by mass of the polyimide precursor (A). It is more preferable that
  • Component (B) is at least one solvent (1) selected from the group consisting of compounds represented by formulas (3) to (6), as well as ester solvents, ether solvents, and ketone solvents. , a hydrocarbon solvent, an aromatic hydrocarbon solvent, and a sulfoxide solvent. Further, the content of the solvent (1) may be 5% by mass to 100% by mass, or even 5% by mass to 50% by mass, based on the total of the solvent (1) and the solvent (2). good. The content of the solvent (1) may be 10 parts by mass to 1000 parts by mass, 10 parts by mass to 100 parts by mass, and 10 parts by mass based on 100 parts by mass of the polyimide precursor (A). Parts to 50 parts by mass may be used.
  • solvent (1) selected from the group consisting of compounds represented by formulas (3) to (6), as well as ester solvents, ether solvents, and ketone solvents.
  • the content of the solvent (1) may be 5% by mass to 100% by mass, or even 5% by mass to 50% by mass, based on the total
  • the second insulating film forming material may contain the (C) compound.
  • the compound (C) acts on the polymerizable unsaturated bond sites of the polyimide precursor (A) and promotes the elimination of the polymerizable unsaturated bond sites.
  • Examples of the compound (C) include nitrogen-containing compounds.
  • the nitrogen-containing compound may be a thermal base generator. The thermal base generator generates a base by heating, and this base promotes the elimination of unsaturated bond sites in the polyimide precursor (A).
  • nitrogen-containing compounds include aniline diacetic acid, 2-(methylphenylamino)ethanol, 2-(ethylanilino)ethanol, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethyl Aniline, N-phenylethanolamine, 4-phenylmorpholine, 2,2'-(4-methylphenylimino)diethanol, 4-aminobenzamide, 2-aminobenzamide, nicotinamide, 4-amino-N-methylbenzamide, 4-aminoacetanilide, 4-aminoacetophenone, diazabicycloundecene, and salts thereof, among others, aniline diacetic acid, 4-aminobenzamide, nicotinamide, diazabicycloundecene, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethylaniline, N-phenylethanolamine,
  • the nitrogen-containing compound preferably includes a compound represented by the following formula (17) or a compound represented by the following formula (18).
  • R 31A to R 33A each independently represent a hydrogen atom, a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, or a monovalent aliphatic hydrocarbon group. is an aromatic group, and at least one (preferably one) of R 31A to R 33A is a monovalent aromatic group. Adjacent groups of R 31A to R 33A may form a ring structure. Examples of the ring structure formed include a 5-membered ring and a 6-membered ring which may have a substituent such as a methyl group or a phenyl group.
  • the hydrogen atom of the monovalent aliphatic hydrocarbon group may be substituted with a functional group other than a hydroxy group.
  • At least one (preferably one) of R 31A to R 33A is a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, Alternatively, it is preferably a monovalent aromatic group.
  • the monovalent aliphatic hydrocarbon groups R 31A to R 33A preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the monovalent aliphatic hydrocarbon group is preferably a methyl group, an ethyl group, or the like.
  • the monovalent aliphatic hydrocarbon group having a hydroxy group of R 31A to R 33A is one or more monovalent aliphatic hydrocarbon groups having a hydroxy group of R 31A to R 33A.
  • a group having hydroxy groups bonded thereto is preferable, and a group having one to three hydroxy groups bonded is more preferable.
  • Specific examples of the monovalent aliphatic hydrocarbon group having a hydroxy group include a methylol group, a hydroxyethyl group, and the like, with a hydroxyethyl group being preferred.
  • Examples of the monovalent aromatic groups R 31A to R 33A in formulas (17) and (18) include monovalent aromatic hydrocarbon groups, monovalent aromatic heterocyclic groups, etc.
  • An aromatic hydrocarbon group is preferred.
  • the monovalent aromatic hydrocarbon group preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • Examples of the monovalent aromatic hydrocarbon group include a phenyl group and a naphthyl group.
  • the monovalent aromatic groups R 31A to R 33A in formulas (17) and (18) may have a substituent.
  • substituents include monovalent aliphatic hydrocarbon groups represented by R 31A to R 33A in formulas (17) and (18), and hydroxy groups represented by R 31A to R 33A in formulas (17) and (18) described above. The same groups as monovalent aliphatic hydrocarbon groups having groups can be mentioned.
  • the content of the compound (C) is preferably 0.1 parts by mass to 20 parts by mass, and from the viewpoint of storage stability, 0.3 parts by mass to 100 parts by mass of the polyimide precursor (A). It is more preferably 15 parts by weight, and even more preferably 0.5 parts to 10 parts by weight.
  • the second insulating film forming material contains (A) a polyimide precursor, and (B) a solvent, and optionally (C) a compound, (D) a photopolymerization initiator, (E) a polymerizable monomer, and (F ) a thermal polymerization initiator, (G) a polymerization inhibitor, an antioxidant, a coupling agent, a surfactant, a leveling agent, a rust preventive agent, etc., and other components and unavoidable impurities to the extent that they do not impair the effects of the present disclosure. May include. It is preferable that the second insulating film forming material further contains a component (D) and a component (E).
  • the (C) compound is the (C) component
  • the photopolymerization initiator is the (D) component
  • the (E) polymerizable monomer is the (E) component
  • the thermal polymerization initiator is the (F) component
  • Polymerization inhibitor is also referred to as component (G).
  • 80% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more, or 100% by mass of the second insulating film forming material (A) polyimide precursor to (B) component, (A) polyimide precursor to (C) component, (A) polyimide precursor to (E) component, (A) polyimide precursor ⁇ (F) component, (A) polyimide precursor ⁇ (G) component, (A) polyimide precursor to (G) component and at least one selected from the group consisting of an antioxidant, a coupling agent, a surfactant, a leveling agent, and a rust preventive; It may consist of.
  • an antioxidant a coupling agent, a surfactant, a leveling agent, and a rust preventive
  • the second insulating film forming material preferably contains (D) a photopolymerization initiator. This makes it possible to reduce the number of steps for manufacturing electrodes among the steps for manufacturing a semiconductor device, and it is possible to reduce the cost of the entire process when manufacturing a semiconductor device.
  • component (D) examples include benzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N,N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy- 4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, 4,4'-bis(diethylamino)benzophenone, methyl o-benzoylbenzoate, 4-benzoyl- Benzophenone derivatives such as 4'-methyldiphenylketone, dibenzylketone, fluorenone; acetophenone, 2,2-diethoxyacetophenone, 3'-methylacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2- Acetophenone derivatives such as methylpropiophen
  • the content of component (D) is determined based on 100 parts by mass of the polyimide precursor (A) from the viewpoint that photocrosslinking tends to be uniform in the film thickness direction. , is preferably 0.1 parts by weight to 20 parts by weight, more preferably 1 part to 15 parts by weight, and even more preferably 5 parts to 15 parts by weight.
  • the second insulating film forming material may contain an antireflection agent that suppresses reflected light from the substrate direction from the viewpoint of improving photosensitivity.
  • the second insulating film forming material preferably contains (E) a polymerizable monomer.
  • Component (E) preferably has at least one group containing a polymerizable unsaturated double bond, and from the viewpoint of being suitably polymerizable in combination with a photopolymerization initiator, component (E) contains at least one (meth)acrylic group. It is more preferable to have one. From the viewpoint of improving crosslinking density and photosensitivity, it is preferable to have 2 to 6 groups, and more preferably 2 to 4 groups containing polymerizable unsaturated double bonds.
  • the polymerizable monomers may be used alone or in combination of two or more.
  • the polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples thereof include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and tetraethylene glycol diacrylate.
  • the polymerizable monomer other than the polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples include styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N , N-dimethylacrylamide and N-methylolacrylamide.
  • Component (E) is not limited to a compound having a group containing a polymerizable unsaturated double bond, and may be a compound having a polymerizable group other than an unsaturated double bond group (for example, an oxirane ring). .
  • the content of component (E) is not particularly limited, and is 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the polyimide precursor (A).
  • the amount is preferably from 1 part by weight to 75 parts by weight, and even more preferably from 1 part by weight to 50 parts by weight.
  • the second insulating film forming material preferably contains (F) a thermal polymerization initiator from the viewpoint of improving the physical properties of the cured product.
  • component (F) include ketone peroxide such as methyl ethyl ketone peroxide, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy) ) Peroxyketals such as cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide hydroperoxides such as dicumyl peroxide, dialkyl peroxides such as di-t-butyl peroxide, diacyl peroxides such as dilauroyl peroxide and dibenzoyl peroxide, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2- peroxydicarbonates
  • the content of the (F) component may be 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor, The amount may be 1 part by mass to 15 parts by mass, or 1 part by mass to 10 parts by mass.
  • the second insulating film forming material may contain component (G) from the viewpoint of ensuring good storage stability.
  • the polymerization inhibitor include radical polymerization inhibitors and radical polymerization inhibitors.
  • component (G) examples include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N-phenyl- Examples include 2-naphthylamine, cuperone, 2,5-torquinone, tannic acid, parabenzylaminophenol, nitrosamines, and hindered phenol compounds.
  • the polymerization inhibitors may be used alone or in combination of two or more.
  • the hindered phenol compound may have both the function of a polymerization inhibitor and the function of an antioxidant described below, or it may have either one of the functions.
  • the hindered phenol compound is not particularly limited, and examples thereof include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3-(3,5- di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis(2,6-di-t- butylphenol), 4,4'-thio-bis(3-methyl-6-t-butylphenol), 4,4'-butylidene-bis(3-methyl-6-t-butylphenol), triethylene glycol-bis[3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2-
  • the content of the (G) component is determined from the viewpoint of the storage stability of the insulating film forming material and the heat resistance of the resulting cured product.
  • the amount is preferably 0.01 parts by mass to 30 parts by mass, more preferably 0.01 parts by mass to 10 parts by mass, and 0.05 parts by mass to 5 parts by mass, based on 100 parts by mass of the body. It is even more preferable.
  • the second insulating film forming material may further contain an antioxidant, a coupling agent, a surfactant, a leveling agent, or a rust preventive.
  • the second insulating film forming material may contain an antioxidant from the viewpoint of suppressing deterioration of adhesive properties by capturing oxygen radicals and peroxide radicals generated during high-temperature storage, reflow treatment, etc. .
  • an antioxidant By including the antioxidant in the second insulating film forming material, oxidation of the electrode during the insulation reliability test can be suppressed.
  • antioxidants include the compounds exemplified as the aforementioned hindered phenol compounds, N,N'-bis[2-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethyl] carbonyloxy]ethyl]oxamide, N,N'-bis-3-(3,5-di-tert-butyl-4'-hydroxyphenyl)propionylhexamethylenediamine, 1,3,5-tris(3-hydroxy- 4-tert-butyl-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl) -3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid and the like.
  • the antioxidants may be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. , more preferably 0.1 parts by mass to 10 parts by mass, and even more preferably 0.1 parts by mass to 5 parts by mass.
  • the second insulating film forming material may include a coupling agent.
  • the coupling agent reacts with (A) the polyimide precursor to crosslink, or the coupling agent itself polymerizes. This tends to further improve the adhesiveness between the obtained cured product and the substrate.
  • Coupling agents include 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, -Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N-(3-diethoxymethylsilylpropyl) Succinimide, N-[3-(triethoxysilyl)propyl]phthalamic acid, benzophenone-3,3'-bis(N-[3-triethoxysilyl]propylamide)-4,4'-dicarboxylic acid, benzene-1
  • the content of the coupling agent is preferably 0.1 parts by mass to 20 parts by mass, and 0.1 parts by mass to 20 parts by mass, based on 100 parts by mass of the polyimide precursor (A).
  • the amount is more preferably 3 parts by weight to 10 parts by weight, and even more preferably 1 part to 10 parts by weight.
  • the second insulating film forming material may include at least one of a surfactant and a leveling agent.
  • a surfactant and a leveling agent When the insulating film forming material contains at least one of a surfactant and a leveling agent, it improves coating properties (for example, suppressing striae (unevenness in film thickness)), improves adhesion, and improves the compatibility of compounds in the insulating film forming material. etc. can be improved.
  • surfactant or leveling agent examples include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
  • the surfactants and leveling agents may be used alone or in combination of two or more.
  • the second insulating film forming material contains at least one of a surfactant and a leveling agent
  • the total content of the surfactant and the leveling agent is 0.01 mass parts with respect to 100 mass parts of (A) polyimide precursor.
  • the amount is preferably from 10 parts to 10 parts by weight, more preferably from 0.05 parts to 5 parts by weight, even more preferably from 0.05 parts to 3 parts by weight.
  • the second insulating film forming material may contain a rust preventive agent from the viewpoint of suppressing corrosion of metals such as copper and copper alloys, and from the viewpoint of suppressing discoloration of the metals.
  • rust preventive agents include azole compounds and purine derivatives.
  • azole compounds include 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t- Butyl-5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H- Triazole, hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy- 3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)
  • purine derivatives include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N,N-dimethyladenine, 2-fluoroadenine, 9-(2-hydroxyethyl)adenine, guanine oxime, N-(2-hydroxyethyl)adenine, 8-aminoadenine, 6-Amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl) Examples include guanine, N-(3-ethylphenyl)guanine, 2-azaa
  • the rust inhibitors may be used alone or in combination of two or more.
  • the content of the rust preventive agent is preferably 0.01 parts by mass to 10 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. , more preferably 0.1 parts by mass to 5 parts by mass, and even more preferably 0.5 parts by mass to 3 parts by mass.
  • the content of the rust preventive agent is 0.1 parts by mass or more, when the second insulating film forming material is applied on the surface of the copper or copper alloy, discoloration of the surface of the copper or copper alloy is prevented. suppressed.
  • the insulating film forming material of the present disclosure preferably has a glass transition temperature of 100° C. to 400° C., more preferably 150° C. to 350° C., when cured.
  • the glass transition temperature of the cured product is measured as follows. First, an insulating film forming material is heated in a nitrogen atmosphere for 2 hours at a predetermined curing temperature (for example, 150° C. to 375° C.) that allows a curing reaction to occur, to obtain a cured product. The obtained cured product was cut to make a rectangular parallelepiped of 5 mm x 50 mm x 3 mm, and a dynamic viscoelasticity measuring device (for example, RSA-G2 manufactured by TA Instruments) was used with a tension jig at a frequency of 1 Hz. Dynamic viscoelasticity is measured in a temperature range of 50°C to 350°C under the conditions of heating rate: 5°C/min.
  • the glass transition temperature (Tg) is defined as the temperature at the peak top of tan ⁇ , which is determined from the ratio of the storage modulus and loss modulus obtained by the above method.
  • the insulating film forming material of the present disclosure may be a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material. Further, the negative photosensitive insulating film forming material or the positive photosensitive insulating film forming material is used for arranging a plurality of terminal electrodes on a first organic insulating film provided on one surface of the first substrate body, which will be described later. The method is used for at least one of providing a plurality of through holes for arranging a plurality of terminal electrodes in a second organic insulating film provided on one surface of the second substrate body. It's okay.
  • the insulating film forming material of the present disclosure preferably has a coefficient of thermal expansion of 150 ppm/K or less, more preferably 100 ppm/K or less, even more preferably 70 ppm/K or less when cured. .
  • the coefficient of thermal expansion of the insulating film, which is a cured product, and the coefficient of thermal expansion of the electrode are equal to or close to each other, so even if heat generation occurs during use of the semiconductor device, the insulating layer and the electrode Damage to the semiconductor device due to the difference in coefficient of thermal expansion between the two can be suppressed.
  • the coefficient of thermal expansion indicates the rate at which the length of a cured product expands due to temperature rise, per temperature.
  • the coefficient of thermal expansion can be calculated by measuring the amount of change in length of the cured product at 100° C. to 150° C. using a thermomechanical analyzer or the like.
  • a semiconductor device of the present disclosure includes a first semiconductor substrate including a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body, and a semiconductor chip substrate body. , a semiconductor chip having the second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body, wherein the first organic insulating film and the second organic insulating film are bonded. However, the first electrode and the second electrode are bonded to each other, and at least one of the first organic insulating film and the second organic insulating film is a cured product of the insulating film forming material of the present disclosure.
  • the insulating film since at least one of the first organic insulating film and the second organic insulating film (insulating film portion) is a cured product of the insulating film forming material of the present disclosure, the insulating film has excellent heat resistance.
  • a semiconductor device is manufactured using the insulating film forming material of the present disclosure.
  • the method for manufacturing a semiconductor device of the present disclosure includes a first semiconductor device having a first substrate body, a first electrode and a first organic insulating film provided on one surface of the first substrate body.
  • a substrate is prepared, a semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body is prepared, and the first electrode and the second electrode are provided on one surface of the semiconductor chip substrate body.
  • 2 electrodes, and the first organic insulating film and the second organic insulating film are bonded together to form at least one of the first organic insulating film and the second organic insulating film.
  • the disclosed insulating film forming material is used.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device of the present disclosure.
  • the semiconductor device 1 is an example of a semiconductor package, and includes a first semiconductor chip 10 (first semiconductor substrate), a second semiconductor chip 20 (semiconductor chip), a pillar part 30, and a rewiring layer 40. , a substrate 50, and a circuit board 60.
  • the first semiconductor chip 10 is a semiconductor chip such as an LSI (Large Scale Integrated Circuit) chip or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and has a three-dimensional mounting structure in which the second semiconductor chip 20 is mounted downward. There is.
  • the second semiconductor chip 20 is a semiconductor chip such as an LSI or a memory, and is a chip component having a smaller area in plan view than the first semiconductor chip 10.
  • the second semiconductor chip 20 is chip-to-chip (C2C) bonded to the back surface of the first semiconductor chip 10.
  • the first semiconductor chip 10 and the second semiconductor chip 20 have their respective terminal electrodes and their surrounding insulating films firmly and finely bonded to each other by hybrid bonding, which will be described in detail later.
  • the pillar part 30 is a connection part in which a plurality of pillars 31 made of metal such as copper (Cu) are sealed with resin 32.
  • the plurality of pillars 31 are conductive members extending from the upper surface to the lower surface of the pillar section 30.
  • the plurality of pillars 31 may have a cylindrical shape, for example, with a diameter of 3 ⁇ m or more and 20 ⁇ m or less (in one example, a diameter of 5 ⁇ m), and may be arranged such that the distance between the centers of each pillar 31 is 15 ⁇ m or less.
  • the plurality of pillars 31 connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40 by flip-chip connection.
  • connection electrode can be formed in the semiconductor device 1 without using a technique called TMV (Through Mold Via) in which a hole is made in a mold and a solder connection is made.
  • the pillar section 30 has, for example, the same thickness as the second semiconductor chip 20, and is arranged on the side of the second semiconductor chip 20 in the horizontal direction. Note that a plurality of solder balls may be arranged instead of the pillar portion 30, and the solder balls electrically connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40. You may.
  • the rewiring layer 40 is a wiring layer that has a terminal pitch conversion function, which is a function of a package substrate, and is formed by coating polyimide or polybenzoxazole on the lower insulating film of the second semiconductor chip 20 and the lower surface of the pillar section 30. This is a layer in which a rewiring pattern is formed using copper wiring or the like.
  • the rewiring layer 40 is formed by turning the first semiconductor chip 10, the second semiconductor chip 20, etc. upside down (see (d) in FIG. 4).
  • the rewiring layer 40 electrically connects the terminal electrodes of the first semiconductor chip 10 via the terminal electrodes on the lower surface of the second semiconductor chip 20 and the pillar portion 30 to the terminal electrodes of the substrate 50.
  • the terminal pitch of the substrate 50 is wider than the terminal pitch of the pillar 31 and the terminal pitch of the second semiconductor chip 20.
  • various electronic components 51 may be mounted on the board 50.
  • an inorganic interposer or the like may be used between the rewiring layer 40 and the substrate 50 to ensure electrical connection between the rewiring layer 40 and the substrate 50. You can also make a connection.
  • the circuit board 60 has the first semiconductor chip 10 and the second semiconductor chip 20 mounted thereon, and is electrically connected to the board 50 which is connected to the first semiconductor chip 10, the second semiconductor chip 20, the electronic component 51, etc. This is a substrate that has a plurality of through electrodes inside.
  • each terminal electrode of the first semiconductor chip 10 and the second semiconductor chip 20 is electrically connected to a terminal electrode 61 provided on the back surface of the circuit board 60 by a plurality of through electrodes.
  • FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 3 is a diagram showing in more detail the bonding method (hybrid bonding) in the method for manufacturing the semiconductor device shown in FIG.
  • FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram showing the steps after the step shown in FIG. 2 in order.
  • the semiconductor device 1 can be manufactured, for example, through the following steps (a) to (n).
  • step (k) A process of grinding and thinning the resin 301 side of the semi-finished product M1 molded in step (j) to obtain a semi-finished product M2.
  • step (l) A step of forming a wiring layer 400 corresponding to the rewiring layer 40 on the semi-finished product M2 thinned in step (k).
  • step (m) A step of cutting the semi-finished product M3 on which the wiring layer 400 has been formed in step (l) along the cutting line A to form each semiconductor device 1.
  • the insulating film forming material of the present disclosure provides a first organic insulating film and a second organic insulating film in a method for manufacturing a semiconductor device including at least one step corresponding to step (f) and steps (i) to (n). It may be an insulating film forming material for use in producing at least one of the insulating films.
  • Step (a) is a step of preparing a first semiconductor substrate 100, which is a silicon substrate, corresponding to a plurality of first semiconductor chips 10 and on which an integrated circuit including semiconductor elements and wiring connecting them is formed.
  • a plurality of terminal electrodes 103 made of copper, aluminum, etc. are placed on one surface 101a of the first substrate body 101 made of silicon or the like. are provided at predetermined intervals, and an insulating film 102 (first insulating film), which is a cured product of the insulating film forming material of the present disclosure, is provided in the spaced portion.
  • a plurality of terminal electrodes 103 may be provided after the insulating film 102 is provided on one surface 101a of the first substrate main body 101, or a plurality of terminal electrodes 103 may be provided on one surface 101a of the first substrate main body 101.
  • the insulating film 102 may be provided after that. Note that a predetermined interval is provided between the plurality of terminal electrodes 103 in order to form the pillar 300 in a process described later, and another terminal electrode (not shown) connected to the pillar 300 is provided between the plurality of terminal electrodes 103. It is formed.
  • Step (b) is a step of preparing a second semiconductor substrate 200, which is a silicon substrate, on which an integrated circuit corresponding to a plurality of second semiconductor chips 20 and including semiconductor elements and wiring connecting them is formed.
  • a plurality of terminal electrodes 203 a plurality of second An insulating film 202 (second insulating film, organic insulating region) which is a cured product of the insulating film forming material of the present disclosure is provided.
  • the plurality of terminal electrodes 203 may be provided after the insulating film 202 is provided on the one surface 201a of the second substrate main body 201, or the plurality of terminal electrodes 203 may be provided on the one surface 201a of the second substrate main body 201. Alternatively, the insulating film 202 may be provided.
  • one of the insulating films 102 and 202 used in step (a) and step (b) are both cured products of the insulating film forming material of the present disclosure
  • one of the insulating films 102 and 202 is made of the insulating film forming material of the present disclosure.
  • One may be a cured product and the other may be another cured product.
  • Examples of other insulating film forming materials for forming the cured product include insulating film forming materials containing polyamideimide, benzocyclobutene (BCB), and the like.
  • the tensile modulus of the insulating films 102 and 202 at 25° C. is preferably 7.0 GPa or less, more preferably 5.0 GPa or less, even more preferably 3.0 GPa or less, and 2.5 GPa or less. The following is particularly preferable.
  • the coefficient of thermal expansion of the insulating films 102 and 202 is preferably 150 ppm/K or less, more preferably 100 ppm/K or less, and even more preferably 90 ppm/K or less.
  • the thickness of the insulating films 102 and 202 is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m. This makes it possible to reduce the processing time in the subsequent polishing step while ensuring uniformity in the thickness of the insulating film.
  • the polishing rate of the insulating film 102 is 0.1 to 5 times the polishing rate of the terminal electrode 103 in order to facilitate the work in steps (c) and (d) and to simplify these steps. It is preferable that the polishing rate of the insulating film 202 is 0.1 to 5 times the polishing rate of the terminal electrode 203 (preferably both). As an example, if the terminal electrode 103 or 203 is made of copper and the polishing rate of copper is 50 nm/min, the polishing rate of the insulating film 102 or 202 is 200 nm/min or less (4 times the polishing rate of copper or less). It is preferably 100 nm/min or less (twice or less the polishing rate of copper), and even more preferably 50 nm/min or less (equivalent to or less than the polishing rate of copper).
  • the insulating film is obtained by curing an insulating film forming material.
  • the method for producing the above-mentioned insulating film includes, for example, ( ⁇ ) a step of applying an insulating film forming material onto a substrate and drying it to form a resin film, and a step of heat-treating the resin film; ( ⁇ ) After forming a film with a constant thickness using an insulating film forming material on a film that has been subjected to mold release treatment, the process of transferring the resin film to the substrate by lamination method, and the process of forming the resin film on the substrate after transfer. Examples include a method including a step of heat-treating the resin film. From the viewpoint of flatness, the method ( ⁇ ) above is preferred.
  • Examples of the method for applying the insulating film forming material include a spin coating method, an inkjet method, and a slit coating method.
  • the rotation speed is 300 rpm (rotations per minute) to 3,500 rpm, preferably 500 rpm to 1,500 rpm, the acceleration is 500 rpm/second to 15,000 rpm/second, and the rotation time is 30 seconds to 300 seconds.
  • the insulating film forming material may be spin coated under certain conditions.
  • a drying step may be included after applying the insulating film forming material to the support, film, etc. Drying may be performed using a hot plate, oven, or the like.
  • the drying temperature is preferably 75° C. to 130° C., and more preferably 90° C. to 120° C. from the viewpoint of improving the flatness of the insulating film.
  • the drying time is preferably 30 seconds to 5 minutes. Drying may be performed two or more times. Thereby, it is possible to obtain a resin film in which the above-mentioned insulating film forming material is formed into a film shape.
  • the chemical liquid discharge speed is 10 ⁇ L/sec to 400 ⁇ L/sec
  • the chemical liquid discharge part height is 0.1 ⁇ m to 1.0 ⁇ m
  • the stage speed (or chemical liquid discharge part speed) is 1.0 mm/sec to 50.0 mm. /second
  • stage acceleration 10mm/second to 1000mm/second ultimate vacuum during vacuum drying 10Pa to 100Pa
  • vacuum drying time 30 seconds to 600 seconds drying temperature 60°C to 150°C
  • drying time 30 seconds to 300 seconds The insulating film forming material may be slit coated under certain conditions.
  • the formed resin film may be heat-treated.
  • the heating temperature is preferably 150°C to 450°C, more preferably 150°C to 350°C.
  • the insulating film can be suitably produced while suppressing damage to the substrate, devices, etc. and realizing energy saving in the process.
  • the heating time is preferably 5 hours or less, more preferably 30 minutes to 3 hours.
  • the atmosphere for the heat treatment may be the air or an inert atmosphere such as nitrogen, but a nitrogen atmosphere is preferred from the viewpoint of preventing oxidation of the resin film.
  • Devices used for heat treatment include quartz tube furnaces, hot plates, rapid thermal annealing, vertical diffusion furnaces, infrared curing furnaces, electron beam curing furnaces, microwave curing furnaces, and the like.
  • the insulating film forming material of the present disclosure which is a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material
  • the insulating film 202 is provided on one surface 201a of the second substrate main body 201, and then a plurality of
  • a method including a step of obtaining a patterned resin film and a step of heat-treating the patterned resin film may be used. Thereby, a cured patterned insulating film can be obtained.
  • an insulating film forming material other than the insulating film forming material of the present disclosure may be used on the substrate.
  • a method may also be used that includes a step of subsequently performing pattern exposure and developing using a developer to obtain a patterned resin film, and a step of heat-treating the patterned resin film. Thereby, a cured patterned insulating film can be obtained.
  • a predetermined pattern is exposed through a photomask.
  • the active light to be irradiated includes i-line, broadband ultraviolet rays, visible light, radiation, etc., and i-line is preferable.
  • the exposure device a parallel exposure device, a projection exposure device, a stepper, a scanner exposure device, etc. can be used.
  • a patterned resin film which is a patterned resin film
  • the insulating film forming material of the present disclosure is a negative photosensitive insulating film forming material
  • the unexposed portions are removed with a developer.
  • the organic solvent used as the negative developing solution can be used alone as a good solvent for the photosensitive resin film, or in an appropriate mixture of a good solvent and a poor solvent.
  • Good solvents include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone, Examples include 3-methoxy-N,N-dimethylpropanamide, cyclopentanone, cyclohexanone, and cycloheptanone.
  • Examples of the poor solvent include toluene, xylene, methanol, ethanol, isopropanol, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, water, and the like.
  • the exposed portion is removed with a developer.
  • the solution used as a positive developer include a tetramethylammonium hydroxide (TMAH) solution and a sodium carbonate solution.
  • At least one of the negative developer and the positive developer may contain a surfactant.
  • the content of the surfactant is preferably 0.01 parts by mass to 10 parts by mass, more preferably 0.1 parts by mass to 5 parts by mass, based on 100 parts by mass of the developer.
  • the development time can be, for example, twice the time required for the photosensitive resin film to be completely dissolved after being immersed in the developer.
  • the development time may be adjusted depending on the thermosetting polyamide having a phenolic hydroxyl group in the molecule contained in the insulating film forming material of the present disclosure, for example, it is preferably 10 seconds to 15 minutes, and 10 seconds to 5 minutes. is more preferable, and from the viewpoint of productivity, 20 seconds to 5 minutes is even more preferable.
  • the patterned resin film after development may be washed with a rinsing liquid.
  • a rinsing liquid distilled water, methanol, ethanol, isopropanol, toluene, xylene, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, etc. may be used alone or in an appropriate mixture, or they may be used in a stepwise combination. You can.
  • thermosetting non-conductive film NCF
  • thermosetting A synthetic resin may also be used as an organic material constituting the insulating films 102 and 202 other than the cured product of the insulating film forming material of the present disclosure.
  • This organic material may be an underfill material.
  • the organic material forming the insulating films 102 and 202 may be a heat-resistant resin.
  • Step (c) is a step of polishing the first semiconductor substrate 100.
  • step (c) as shown in FIG. 3(a), chemical treatment is applied so that each surface 103a of the terminal electrode 103 is at the same position or slightly higher (protrudes) from the surface 102a of the insulating film 102.
  • One surface 101a side which is the surface of the first semiconductor substrate 100, is polished using a mechanical polishing method (CMP method).
  • CMP method mechanical polishing method
  • the first semiconductor substrate 100 may be polished by CMP under the condition that the terminal electrode 103 made of copper or the like is selectively etched deeply.
  • each surface 103a of the terminal electrode 103 may be polished using a CMP method so as to match the surface 102a of the insulating film 102.
  • the polishing method is not limited to the CMP method, and back grinding or the like may be employed.
  • mechanical polishing may be performed using a polishing device such as a surface planer.
  • each surface 103a of the terminal electrode 103 is located at a slightly higher position than the surface 102a of the insulating film 102 (that is, the thickness of the terminal electrode 103, which is the first electrode, is greater than the thickness of the insulating film 102, which is the first insulating film), (if the thickness is also thick), the difference in height between each surface 103a and the surface 102a (difference in thickness between the terminal electrode 103 and the insulating film 102) may be 1 nm to 150 nm, or even 1 nm to 80 nm. good.
  • the difference in height between the insulating film (surface 102a, etc.) and the electrode (surface 103a, etc.) is determined when five points on a measurement target such as a wafer are measured using an atomic force microscope (AFM). It refers to the arithmetic mean.
  • Step (d) is a step of polishing the second semiconductor substrate 200.
  • step (d) as shown in FIG. 3(a), each surface 203a of the terminal electrode 203 is placed at the same position or slightly higher (protrudes) from the surface 202a of the insulating film 202.
  • One surface 201a side which is the surface of the second semiconductor substrate 200, is polished using the CMP method.
  • the second semiconductor substrate 200 is polished by CMP under conditions that selectively and deeply shave the terminal electrodes 203 made of copper or the like, for example.
  • each surface 203a of the terminal electrode 203 may be polished by a CMP method so as to match the surface 202a of the insulating film 202.
  • the polishing method is not limited to the CMP method, and back grinding or the like may be used.
  • the difference in height between each surface 203a and the surface 202a may be 1 nm to 150 nm, or even 1 nm to 80 nm. good.
  • polishing may be performed so that the thickness of the insulating film 102 and the thickness of the insulating film 202 are the same, but for example, the thickness of the insulating film 202 may be the same as the thickness of the insulating film 102. It may be polished to be larger than the diameter. On the other hand, polishing may be performed so that the thickness of the insulating film 202 is smaller than the thickness of the insulating film 102. If the thickness of the insulating film 202 is greater than the thickness of the insulating film 102, the insulating film 202 will contain most of the foreign matter that adheres to the bonding interface when the second semiconductor substrate 200 is diced or when chips are mounted. This makes it possible to further reduce bonding defects.
  • step (c) and step (d) may be performed, and it is preferable to perform both step (c) and step (d).
  • Step (e) is a step of dividing the second semiconductor substrate 200 into pieces to obtain a plurality of semiconductor chips 205.
  • the second semiconductor substrate 200 is diced into a plurality of semiconductor chips 205 by cutting means such as dicing.
  • the insulating film 202 may be coated with a protective material or the like, and then it may be diced.
  • the insulating film 202 of the second semiconductor substrate 200 is divided into insulating film portions 202b corresponding to each semiconductor chip 205. Examples of the dicing method for dividing the second semiconductor substrate 200 into pieces include plasma dicing, stealth dicing, laser dicing, and the like.
  • the second semiconductor substrate 200 during dicing for example, an organic film that can be removed with water, TMAH, etc., or a thin film such as a carbon film that can be removed with plasma or the like may be provided.
  • a large-area second semiconductor substrate 200 is prepared and then separated into pieces to obtain a plurality of semiconductor chips 205; however, the method for preparing the semiconductor chips 205 is not limited to this.
  • the semiconductor chip 205 includes a semiconductor chip substrate body, and a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body.
  • Step (f) is a step of aligning the terminal electrodes 203 of each of the plurality of semiconductor chips 205 with respect to the terminal electrodes 103 of the first semiconductor substrate 100.
  • step (f) as shown in FIG. 2C, each semiconductor chip 205 is placed so that the terminal electrode 203 of each semiconductor chip 205 faces the corresponding plurality of terminal electrodes 103 of the first semiconductor substrate 100.
  • Perform alignment for this alignment, an alignment mark or the like may be provided on the first semiconductor substrate 100.
  • Step (g) is a step of bonding the insulating film 102 of the first semiconductor substrate 100 and each insulating film portion 202b of the plurality of semiconductor chips 205 to each other.
  • step (g) after removing organic substances, metal oxides, etc. attached to the surface of each semiconductor chip 205, the semiconductor chips 205 are aligned with respect to the first semiconductor substrate 100, as shown in FIG. 2(c).
  • the insulating film portions 202b of each of the plurality of semiconductor chips 205 are bonded to the insulating film 102 of the first semiconductor substrate 100 as hybrid bonding (see FIG. 3(b)).
  • the insulating film portions of the plurality of semiconductor chips 205 and the insulating film 102 of the first semiconductor substrate 100 may be uniformly heated before bonding.
  • the insulating film 102 and the insulating film portion 202b are more easily bonded than the terminal electrodes 103 and 203 due to the difference between the coefficient of thermal expansion of the insulating film 102 and the insulating film portion 202b and that of the terminal electrodes 103 and 203. It also expands.
  • the first semiconductor substrate 100 may be polished in step (c) so that the height of the insulating film 102 becomes equal to or higher than the height of the terminal electrode 103 due to thermal expansion due to heating, and the insulating film portion 202b is polished.
  • the second semiconductor substrate 200 may be polished in step (d) so that the height is approximately equal to or higher than the height of the terminal electrode 203.
  • the temperature difference between the semiconductor chip 205 and the first semiconductor substrate 100 during bonding is preferably within 10° C., for example.
  • the insulating film 102 and the insulating film portion 202b are bonded to form an insulating bonding portion S1, and the plurality of semiconductor chips 205 are mechanically firmly attached to the first semiconductor substrate 100. can be attached to.
  • the bonding is performed by heating at a highly uniform temperature, it is difficult for positional deviations to occur at the bonding location, and highly accurate bonding can be performed.
  • the terminal electrodes 103 of the first semiconductor substrate 100 and the terminal electrodes 203 of the semiconductor chip 205 are separated from each other and are not connected (however, they are aligned).
  • the semiconductor chip 205 may be bonded to the first semiconductor substrate 100 by other bonding methods, for example, by room temperature bonding or the like.
  • the total thickness of the organic insulating film which is the insulating bonding portion where the insulating film 102 and the insulating film portion 202b are bonded, is not particularly limited, and may be, for example, 0.1 ⁇ m or more, from the viewpoint of suppressing the influence of foreign substances. From the viewpoint of device design, the thickness may be 1 ⁇ m to 20 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m.
  • Step (h) is a step of bonding the terminal electrode 103 of the first semiconductor substrate 100 and the terminal electrode 203 of each of the plurality of semiconductor chips 205.
  • step (h) as shown in FIG. 2(d), after the bonding in step (g) is completed, heat H, pressure, or both are applied to bond the terminals of the first semiconductor substrate 100 as hybrid bonding.
  • the electrode 103 and each terminal electrode 203 of the plurality of semiconductor chips 205 are bonded (see FIG. 3C).
  • the annealing temperature in step (g) is preferably 150°C or more and 400°C or less, more preferably 200°C or more and 300°C or less.
  • the terminal electrode 103 and the corresponding terminal electrode 203 are bonded to form an electrode bonding portion S2, and the terminal electrode 103 and the terminal electrode 203 are mechanically and electrically strongly bonded.
  • the electrode bonding in step (h) may be performed after the bonding in step (g), or may be performed simultaneously with the bonding in step (g).
  • the plurality of semiconductor chips 205 are electrically and mechanically installed at predetermined positions on the first semiconductor substrate 100 with high precision.
  • a product reliability test (connection test, etc.) may be performed at the semi-finished product stage shown in FIG. 2(d), and only non-defective products may be used in subsequent steps.
  • a method for manufacturing an example of a semiconductor device using such a semi-finished product will be described with reference to FIG.
  • Step (i) is a step of forming a plurality of pillars 300 on the connection surface 100a of the first semiconductor substrate 100 and between the plurality of semiconductor chips 205.
  • step (i) as shown in FIG. 4A, a large number of pillars 300 made of copper, for example, are formed between a plurality of semiconductor chips 205.
  • Pillar 300 can be formed from copper plating, conductive paste, copper pins, or the like. The pillar 300 is formed such that one end is connected to a terminal electrode of the first semiconductor substrate 100 that is not connected to the terminal electrode 203 of the semiconductor chip 205, and the other end extends upward.
  • the pillar 300 has a diameter of 10 ⁇ m or more and 100 ⁇ m or less, and a height of 10 ⁇ m or more and 1000 ⁇ m or less, for example. Note that, for example, one or more and 10,000 or less pillars 300 may be provided between the pair of semiconductor chips 205.
  • Step (j) is a step of molding resin 301 on the connection surface 100a of the first semiconductor substrate 100 so as to cover the plurality of semiconductor chips 205 and the plurality of pillars 300.
  • step (j) as shown in FIG. 4B, epoxy resin or the like is molded to completely cover the plurality of semiconductor chips 205 and the plurality of pillars 300.
  • the molding method include compression molding, transfer molding, and a method of laminating film-like epoxy films.
  • a curing treatment may be performed after molding the epoxy resin or the like.
  • step (i) and step (j) are performed almost simultaneously, that is, when the pillar 300 is also formed at the same time as resin molding, the pillar is formed using imprint, which is fine transfer, and conductive paste or electrolytic plating. may be formed.
  • step (k) the semi-finished product M1, which is molded in step (j) and includes the resin 301, a plurality of pillars 300, and a plurality of semiconductor chips 205, is ground from the resin 301 side to obtain a semi-finished product M2. It is a process.
  • step (k) as shown in FIG. 4(c), the resin-molded first semiconductor substrate 100 and the like are thinned by polishing the upper part of the semi-finished product M1 with a grinder, etc., to form a semi-finished product M2. .
  • step (k) By polishing in step (k), the thickness of the semiconductor chip 205, the pillar 300, and the resin 301 is reduced to, for example, about several tens of ⁇ m, and the semiconductor chip 205 has a shape corresponding to the second semiconductor chip 20, and the pillar 300 and the resin 301 are thinned. 301 has a shape corresponding to the pillar portion 30.
  • Step (l) is a step of forming a wiring layer 400 corresponding to the rewiring layer 40 on the semi-finished product M2 thinned in step (k).
  • step (l) as shown in FIG. 4(d), a rewiring pattern is formed using polyimide or polybenzoxazole, copper wiring, etc. on the second semiconductor chip 20 and pillar portion 30 of the ground semi-finished product M2. Form.
  • a semi-finished product M3 having a wiring structure in which the terminal pitch of the second semiconductor chip 20 and the pillar portion 30 is widened is formed.
  • Step (m) is a step of cutting the semi-finished product M3 on which the wiring layer 400 was formed in step (l) along the cutting line A to form each semiconductor device 1.
  • step (m) as shown in FIG. 4(d), the semiconductor device substrate is cut along cutting lines A by dicing or the like to form each semiconductor device 1.
  • step (n) the semiconductor devices 1a that were individualized in step (m) are reversed and placed on the substrate 50 and the circuit board 60 to obtain a plurality of semiconductor devices 1 shown in FIG.
  • the insulating film 102 of the first semiconductor substrate 100 and the insulating film 202 of the second semiconductor substrate 200 are made of a cured product of the insulating film forming material of the present disclosure. It is. Since the cured product of the insulating film forming material of the present disclosure has high heat resistance, deterioration of the insulating film due to heating such as bonding is suppressed, and occurrence of peeling, deterioration, etc. of the insulating film is suppressed. Moreover, since the bonding temperature can be lowered by using the insulating film forming material of the present disclosure, the occurrence of defects such as deterioration of the insulating film is further reduced.
  • the present disclosure is not limited to the above embodiment.
  • the step (i) of forming the pillar 300 in the steps shown in FIG. 4, after the step (i) of forming the pillar 300, the step (j) of molding the resin 301 and the step (k) of grinding and thinning the resin 301 etc. were carried out in order, but the step (j) of molding the resin 301 on the connection surface of the first semiconductor substrate 100 was first performed, and then the step (k) of thinning the resin 301 by grinding it to a predetermined thickness.
  • the step (i) of forming the pillar 300 may be performed. In this case, the work of cutting the pillar 300, etc. can be reduced, and since the portion of the pillar 300 to be cut is not necessary, the material cost can be reduced.
  • a semiconductor wafer 410 has a substrate body 411 (first substrate body), an insulating film 412 (first insulating film) provided on one surface of the substrate body 411, and a plurality of terminal electrodes 413 (first electrodes).
  • first semiconductor substrate a substrate body 421 (second substrate body), an insulating film portion 422 (second insulating film) provided on one surface of the substrate body 421, and a plurality of terminal electrodes 423 (first semiconductor substrate).
  • a semiconductor substrate (second semiconductor substrate) before being diced into pieces of a plurality of semiconductor chips 420 having two electrodes) is prepared. Then, one surface side of the semiconductor wafer 410 and one surface side of the second semiconductor substrate before being singulated into semiconductor chips 420 are subjected to the CMP process in the same manner as in the above steps (c) and (d). Polish by etc. Thereafter, the second semiconductor substrate is subjected to the same singulation process as in step (e) to obtain a plurality of semiconductor chips 420.
  • the terminal electrodes 423 of the semiconductor chip 420 are aligned with the terminal electrodes 413 of the semiconductor wafer 410 (step (f)). Then, the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 are bonded together (step (g)), and the terminal electrodes 413 of the semiconductor wafer 410 and the terminal electrodes 423 of the semiconductor chip 420 are bonded. (step (h)) to obtain a semi-finished product shown in FIG. 5(b).
  • the insulating film portion 412 and the insulating film portion 422 become an insulating bonding portion S3, and the semiconductor chip 420 is mechanically firmly attached to the semiconductor wafer 410 with high precision.
  • the terminal electrode 413 and the corresponding terminal electrode 423 are joined to form an electrode joint portion S4, and the terminal electrode 413 and the terminal electrode 423 are mechanically and electrically firmly joined.
  • a semiconductor device 401 is obtained by bonding a plurality of semiconductor chips 420 to a semiconductor wafer 410 in the same manner.
  • the plurality of semiconductor chips 420 may be bonded to the semiconductor wafer 410 one by one by hybrid bonding, or may be bonded to the semiconductor wafer 410 all together by hybrid bonding.
  • the manufacturing method related to C2W described above can perform fine bonding between semiconductor wafer 410 and semiconductor chip 420 while reducing bonding defects.
  • an inorganic material may be included in a part of the insulating film 102 of the semiconductor substrate 100, the insulating film 202 of the semiconductor chip 205, etc., within the range where the effects of the present disclosure are achieved.
  • thermosetting polyamide A1 having a phenolic hydroxyl group in the molecule (Synthesis of thermosetting polyamide A1 having a phenolic hydroxyl group in the molecule)
  • 15.48 g of 4,4'-diphenyl ether dicarboxylic acid and 90 g of N-methyl-2-pyrrolidone were charged, and after cooling the flask to 5°C, 12.64 g of thionyl chloride was added dropwise and reacted for 30 minutes to obtain a solution of 4,4'-diphenyl ether dicarboxylic acid chloride.
  • Polymer A1 polybenzoxazole precursor
  • thermosetting polyamide A2 having a phenolic hydroxyl group in the molecule (Synthesis of thermosetting polyamide A2 having a phenolic hydroxyl group in the molecule) Into a 0.2 liter flask equipped with a stirrer and a thermometer, 60 g of N-methyl-2-pyrrolidone was charged, and 13.92 g of 2,2'-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was added. and stirred to dissolve.
  • the weight average molecular weight of Polymer A3 determined by GPC standard polystyrene conversion was 20,000. Furthermore, the esterification rate was calculated from the NMR results using the measurement conditions described below. The esterification rate of Polymer A3 was 70%, and the proportion of unreacted carboxyl groups was 30 mol%. (Measurement condition) Measuring equipment: Bruker Biospin AV400M Magnetic field strength: 400MHz Reference material: Tetramethylsilane (TMS) Solvent: dimethyl sulfoxide (DMSO)
  • polyimide precursor A5 that does not contain phenolic hydroxyl groups in the molecule
  • DMAP 4,4'-diaminodiphenyl ether
  • MPD m-phenylenediamine
  • Polyimide precursor A6 (Synthesis of polyimide precursor A6 that does not contain phenolic hydroxyl groups in the molecule) Polyimide precursor A6 was obtained by performing the same operation except that DMAP was changed to 3.89 g of ODA in the synthesis of polyimide precursor A3 (hereinafter referred to as polymer A6).
  • the weight average molecular weight of Polymer A6 was 21,000.
  • the esterification rate of Polymer A6 was calculated by performing NMR measurement under the conditions described above. The esterification rate was 70 mol%, and the proportion of unreacted carboxyl groups was 30 mol%.
  • polyimide precursor A7 (Synthesis of polyimide precursor A7 containing no phenolic hydroxyl group in the molecule) Same procedure except that ODPA was changed to 6.71 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and DMAP was changed to 3.89 g of ODA in the synthesis of polyimide precursor A3.
  • Polyimide precursor A7 was obtained (hereinafter referred to as polymer A7).
  • the weight average molecular weight of Polymer A7 was 20,000.
  • the esterification rate of Polymer A7 was calculated by performing NMR measurement under the conditions described above. The esterification rate was 60 mol%, and the proportion of unreacted carboxyl groups was 40 mol%.
  • GPC gel permeation chromatography
  • Example 1 to 6 Comparative Examples 1 to 2
  • Insulating film forming materials of Examples 1 to 6 and Comparative Examples 1 to 2 were prepared as follows using the components and blending amounts shown in Table 1. The unit of the amount of each component in Table 1 is parts by mass. In addition, a blank column in Table 1 means that the corresponding component is not blended.
  • the mixture of each component was kneaded overnight at room temperature (25°C) in a general solvent-resistant container, and then filtered under pressure using a 0.2 ⁇ m pore filter. Ta. The following evaluations were performed using the obtained insulating film forming material.
  • ⁇ Polyimide precursor or polybenzoxazole derivative The above-mentioned polymers A1 to A7 ⁇ Solvent B1: 3-methoxy-N,N-dimethylpropanamide B2: ⁇ -butyrolactone B3: Dimethyl sulfoxide ⁇ Polymerizable monomer C1: 2,2-bis(3,5-bis(hydroxylmethyl)-4-hydroxyphenyl) )-1,1,1,3,3,3-hexafluoropropane (TML-BPAF) C2: Tetraethylene glycol dimethacrylate (TEGDMA) C3: Tricyclodecane dimethanol diacrylate (A-DCP) ⁇ Rust inhibitor D1: Benzotriazole (BT) ⁇ Polymerization initiator E1: The following compound (TPPA428)
  • E2 8-Methoxypyrene-1,3,6-trisulfonic acid trisodium salt (MPTS)
  • E3 Bis(1-phenyl-1-methylethyl) peroxide (PercumylD)
  • E4 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime (PDO)
  • E5 4,4'-bis(diethylamino)benzophenone (EMK)
  • Cured films were formed using the insulating film forming materials of Examples 1 to 6 and Comparative Examples 1 to 2 as follows, and then the glass transition points were measured. First, an insulating film forming material was spin-coated onto a Si substrate, heated and dried on a hot plate at 95°C for 120 seconds, and then further dried at 105°C for 120 seconds, resulting in a resin film with a thickness of about 10 ⁇ m after drying. was formed. The obtained resin film was cured at 350° C. for 2 hours in a nitrogen atmosphere using a vertical diffusion furnace ⁇ -TF to obtain a cured product with a film thickness of 10 ⁇ m.
  • the obtained cured product was immersed in a 4.9% by mass hydrofluoric acid aqueous solution to peel the cured product from the Si substrate.
  • the cured film after peeling was shaped using a razor into a sample length of 15 mm and sample width of 4 mm.
  • TMA7100 model manufactured by Hitachi High-Tech Science Co., Ltd.
  • the sample elongates (expands) in the temperature range of 50°C to 350°C using a tensile jig with an initial sample length of 10 mm, heating rate: 5°C/min, and a load of 10 g.
  • the glass transition temperature (Tg) was defined as the temperature at the starting point of the change determined by the tangential method at a point in the curve obtained by the above method where there was a sudden change in the expansion coefficient.
  • the insulating film forming materials of Examples 1 to 6 and Comparative Examples 1 to 2 were spin-coated onto an 8-inch Si wafer using a spin coater coating device, and dried by heating at 95° C. for 120 seconds on a hot plate. The resin film was further dried at 105° C. for 120 seconds to form a resin film having a thickness of about 10 ⁇ m after drying.
  • the obtained resin films were subjected to broadband (BB) exposure at an exposure dose of 600 mJ/cm 2 using Mask Aligner MA-8 (manufactured by SUSS Microtech).
  • the exposed resin film was developed with cyclopentanone using a developing machine AD1200 (manufactured by Mikasa Co., Ltd.) such that the total development time was 20 seconds.
  • the obtained resin film was cured at 350° C. for 2 hours in a nitrogen atmosphere using a vertical diffusion furnace ⁇ -TF to obtain a cured film.
  • a part of the obtained cured film was diced into 5 mm square pieces using a blade dicer (DISCO DFD-6362) to obtain resin-coated chips.
  • the obtained resin-coated chips were pressed onto the cured film using a thermocompression bonding machine (manufactured by Showa Denko Materials Co., Ltd.) at a predetermined pressure and the bonding temperature shown in Table 1 for 15 seconds to produce a cured film with chips.
  • a thermocompression bonding machine manufactured by Showa Denko Materials Co., Ltd.
  • the below-mentioned evaluation was performed on five chips that were pressure-bonded to the cured film.
  • Chips bonded using a thermocompression bonding machine were judged to be defective if they fell off when force was applied with tweezers.
  • -Evaluation criteria for joining results A: Two or less chips out of five chips were observed to have poor bonding. B: More than two chips out of five chips were observed to have poor bonding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Formation Of Insulating Films (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This hybrid bonding insulation film-forming material contains a thermosetting polyamide having a phenolic hydroxyl group in each molecule, and a solvent.

Description

ハイブリッドボンディング絶縁膜形成材料、半導体装置の製造方法及び半導体装置Hybrid bonding insulating film forming material, semiconductor device manufacturing method, and semiconductor device
 本開示は、ハイブリッドボンディング絶縁膜形成材料、半導体装置の製造方法及び半導体装置に関する。 The present disclosure relates to a hybrid bonding insulating film forming material, a method for manufacturing a semiconductor device, and a semiconductor device.
 近年、LSI(Large Scale Integrated Circuit)の集積度を向上させるために半導体チップの三次元実装が検討されている。非特許文献1には、半導体チップの三次元実装の一例が開示されている。 In recent years, three-dimensional mounting of semiconductor chips has been studied to improve the degree of integration of LSIs (Large Scale Integrated Circuits). Non-Patent Document 1 discloses an example of three-dimensional mounting of a semiconductor chip.
 C2W(Chip-to-Wafer)接合により半導体チップの三次元実装を行う場合において、デバイス同士の配線の微細接合を行うため、W2W(Wafer-to-Wafer)接合に用いられるハイブリッドボンディング技術を使うことが検討されている。 When performing three-dimensional mounting of semiconductor chips using C2W (Chip-to-Wafer) bonding, hybrid bonding technology used in W2W (Wafer-to-Wafer) bonding is used to perform fine bonding of wiring between devices. is being considered.
 C2Wのハイブリッドボンディングでは、ボンディング時の加熱により基材、チップ等の熱膨張が要因となる位置ズレが発生するおそれがある。このような課題に対し、特許文献1では環状オレフィン系樹脂を用いることでボンディング温度を低温化できる技術の一例が開示されている。 In C2W hybrid bonding, there is a risk that misalignment may occur due to thermal expansion of the base material, chip, etc. due to heating during bonding. In response to such problems, Patent Document 1 discloses an example of a technique that can lower the bonding temperature by using a cyclic olefin resin.
特開2019-204818号公報JP2019-204818A
 有機絶縁膜を用いてハイブリッドボンディング技術によりC2W接合する方法は検討段階であり未だ実用に至っていない。特許文献1に記載の環状オレフィン系樹脂を用いると、得られる有機絶縁膜の耐熱性が充分でなく、C2W接合の際に高温に曝されることで基板と有機絶縁膜との界面等で接合不良が発生する虞がある。一方で、上述のとおり絶縁膜を用いてハイブリッドボンディング技術によりC2W接合する方法では、低い接合温度とすることが求められている。 The method of C2W bonding using hybrid bonding technology using an organic insulating film is still in the study stage and has not yet been put to practical use. When the cyclic olefin resin described in Patent Document 1 is used, the heat resistance of the resulting organic insulating film is insufficient, and bonding occurs at the interface between the substrate and the organic insulating film due to exposure to high temperatures during C2W bonding. There is a risk that defects may occur. On the other hand, as described above, in the C2W bonding method using an insulating film using a hybrid bonding technique, a low bonding temperature is required.
 一般に、樹脂同士の接合は、樹脂のガラス転移温度よりも高い温度域で実施される。また、絶縁膜としてポリイミド、ポリベンゾオキサゾール等の熱可塑性樹脂が用いられる場合、樹脂のガラス転移温度と接合温度との間に相関関係があり、低い接合温度とするためには樹脂のガラス転移温度を低くする必要がある。しかしながら、樹脂のガラス転移温度を低くすると、耐熱性に問題の生ずることがある。そのため、ガラス転移温度以下の温度域で接合が可能となる樹脂材料が求められている。
 本開示は上記従来の事情に鑑みてなされたものであり、ガラス転移温度以下の温度域での接合が可能なハイブリッドボンディング絶縁膜形成材料、並びに、このハイブリッドボンディング絶縁膜形成材料を用いた半導体装置及びその製造方法を提供することを目的とする。
Generally, resins are bonded to each other in a temperature range higher than the glass transition temperature of the resins. Furthermore, when a thermoplastic resin such as polyimide or polybenzoxazole is used as an insulating film, there is a correlation between the glass transition temperature of the resin and the bonding temperature. needs to be lowered. However, lowering the glass transition temperature of the resin may cause problems in heat resistance. Therefore, there is a need for resin materials that can be bonded in a temperature range below the glass transition temperature.
The present disclosure has been made in view of the above-mentioned conventional circumstances, and provides a hybrid bonding insulating film forming material that can be bonded in a temperature range below the glass transition temperature, and a semiconductor device using this hybrid bonding insulating film forming material. The purpose is to provide a method for producing the same.
 前記課題を達成するための具体的手段は以下の通りである。
<1> 分子中にフェノール性水酸基を有する熱硬化性ポリアミドと、溶剤と、を含むハイブリッドボンディング絶縁膜形成材料。
<2> さらに架橋剤を含む<1>に記載のハイブリッドボンディング絶縁膜形成材料。<3> 第1基板本体と、前記第1基板本体の一の面上に設けられる第1電極及び第1有機絶縁膜と、を有する第1半導体基板を準備し、
 半導体チップ基板本体と、前記半導体チップ基板本体の一の面上に設けられる第2有機絶縁膜及び第2電極と、を有する半導体チップを準備し、
 前記第1電極と前記第2電極との接合、及び前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせを行い、
 第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の有機絶縁膜の作製に、<1>又は<2>に記載のハイブリッドボンディング絶縁膜形成材料を用いる半導体装置の製造方法。
<4> 前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせの後で、前記第1電極と前記第2電極との接合を行う<3>に記載の半導体装置の製造方法。
<5> 前記半導体チップは、第2基板本体と前記第2基板本体の一の面上に設けられる複数の第2電極及び第2有機絶縁領域とを有する第2半導体基板を個片化して準備する、<3>又は<4>に記載の半導体装置の製造方法。
<6> 前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせが、前記半導体チップと前記第1半導体基板との温度差が10℃以内となる温度で行われる<3>~<5>のいずれか1項に記載の半導体装置の製造方法。
<7> 製造された半導体装置において、前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせにより形成された有機絶縁膜の総厚さが0.1μm以上である<3>~<6>のいずれか1項に記載の半導体装置の製造方法。
<8> 前記第1電極と前記第2電極との接合、及び前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせのいずれもが実施される前に、前記第1半導体基板の前記一の面、及び前記半導体チップの前記一の面の側の少なくとも一方を研磨する<3>~<7>のいずれか1項に記載の半導体装置の製造方法。
<9> 前記研磨が化学機械研磨を含む<8>に記載の半導体装置の製造方法。
<10> 前記研磨がさらに機械研磨を含む<9>に記載の半導体装置の製造方法。
<11> 前記第1電極の厚さが前記第1有機絶縁膜の厚さよりも厚いこと、及び前記第2電極の厚さが前記第2有機絶縁膜の厚さよりも厚いことの少なくとも一方を満たす<3>~<10>のいずれか1項に記載の半導体装置の製造方法。
<12> 第1基板本体と、前記第1基板本体の一の面に設けられた第1有機絶縁膜及び第1電極とを有する第1半導体基板と、
 半導体チップ基板本体と、前記半導体チップ基板本体の一の面に設けられた第2有機絶縁膜及び第2電極とを有する半導体チップと、を備え、
 前記第1有機絶縁膜と前記第2有機絶縁膜とが接合し、前記第1電極と前記第2電極とが接合し、
 前記第1有機絶縁膜及び前記第2有機絶縁膜の少なくとも一方が、<1>又は<2>に記載のハイブリッドボンディング絶縁膜形成材料の硬化物である半導体装置。
Specific means for achieving the above object are as follows.
<1> A hybrid bonding insulating film forming material containing a thermosetting polyamide having a phenolic hydroxyl group in the molecule and a solvent.
<2> The hybrid bonding insulating film forming material according to <1>, further comprising a crosslinking agent. <3> Prepare a first semiconductor substrate having a first substrate body, a first electrode and a first organic insulating film provided on one surface of the first substrate body,
preparing a semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body;
bonding the first electrode and the second electrode and bonding the first organic insulating film and the second organic insulating film;
A method for manufacturing a semiconductor device using the hybrid bonding insulating film forming material according to <1> or <2> for producing at least one of a first organic insulating film and a second organic insulating film.
<4> The method for manufacturing a semiconductor device according to <3>, wherein the first electrode and the second electrode are bonded after the first organic insulating film and the second organic insulating film are bonded together.
<5> The semiconductor chip is prepared by dividing into pieces a second semiconductor substrate having a second substrate body, a plurality of second electrodes and a second organic insulating region provided on one surface of the second substrate body. The method for manufacturing a semiconductor device according to <3> or <4>.
<6> The first organic insulating film and the second organic insulating film are bonded together at a temperature such that a temperature difference between the semiconductor chip and the first semiconductor substrate is within 10° C. <3> to <5>.The method for manufacturing a semiconductor device according to any one of 5>.
<7> In the manufactured semiconductor device, the total thickness of the organic insulating film formed by bonding the first organic insulating film and the second organic insulating film is 0.1 μm or more <3> to < The method for manufacturing a semiconductor device according to any one of Item 6>.
<8> Before both the first electrode and the second electrode are bonded and the first organic insulating film and the second organic insulating film are bonded, the first semiconductor substrate is The method for manufacturing a semiconductor device according to any one of <3> to <7>, wherein at least one of the one surface and the one surface of the semiconductor chip is polished.
<9> The method for manufacturing a semiconductor device according to <8>, wherein the polishing includes chemical mechanical polishing.
<10> The method for manufacturing a semiconductor device according to <9>, wherein the polishing further includes mechanical polishing.
<11> At least one of the following is satisfied: the thickness of the first electrode is thicker than the thickness of the first organic insulating film, and the thickness of the second electrode is thicker than the thickness of the second organic insulating film. The method for manufacturing a semiconductor device according to any one of <3> to <10>.
<12> A first semiconductor substrate having a first substrate body, a first organic insulating film and a first electrode provided on one surface of the first substrate body,
A semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body,
The first organic insulating film and the second organic insulating film are bonded, the first electrode and the second electrode are bonded,
A semiconductor device, wherein at least one of the first organic insulating film and the second organic insulating film is a cured product of the hybrid bonding insulating film forming material according to <1> or <2>.
 本開示によれば、ガラス転移温度以下の温度域での接合が可能なハイブリッドボンディング絶縁膜形成材料、並びに、このハイブリッドボンディング絶縁膜形成材料を用いた半導体装置及びその製造方法を提供することができる。 According to the present disclosure, it is possible to provide a hybrid bonding insulating film forming material capable of bonding in a temperature range below the glass transition temperature, a semiconductor device using this hybrid bonding insulating film forming material, and a method for manufacturing the same. .
図1は、一実施形態に係る半導体装置の製造方法によって製造される半導体装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device manufactured by a method for manufacturing a semiconductor device according to an embodiment. 図2は、図1に示す半導体装置を製造するための方法を順に示す図である。FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG. 図3は、図2に示す半導体装置の製造方法における接合方法をより詳細に示す図である。FIG. 3 is a diagram showing in more detail the bonding method in the method of manufacturing the semiconductor device shown in FIG. 図4は、図1に示す半導体装置を製造するための方法であり、図2に示す工程の後の工程を順に示す図である。FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram showing the steps after the step shown in FIG. 2 in order. 図5は、一実施形態に係る半導体装置の製造方法をChip-to-Wafer(C2W)に適用した例を示す図である。FIG. 5 is a diagram showing an example in which the method for manufacturing a semiconductor device according to an embodiment is applied to Chip-to-Wafer (C2W).
 以下、本開示について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, the present disclosure will be explained in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the present disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において、各成分に該当する粒子には、複数種の粒子が含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの少なくとも一方を意味し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。
 本開示において、層又は膜の平均厚さは、対象となる層又は膜の5点の厚さを測定し、その算術平均値として与えられる値とする。
 層又は膜の厚さは、マイクロメーター等を用いて測定することができる。本開示において、層又は膜の厚さを直接測定可能な場合には、マイクロメーターを用いて測定する。一方、1つの層の厚さ又は複数の層の総厚さを測定する場合には、電子顕微鏡を用いて、測定対象の断面を観察することで測定してもよい。
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. .
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of applicable substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
In the present disclosure, the particles corresponding to each component may include multiple types of particles. When a plurality of types of particles corresponding to each component are present in the composition, the particle diameter of each component means a value for a mixture of the plurality of types of particles present in the composition, unless otherwise specified.
In this disclosure, the term "layer" or "film" refers to the case where the layer or film is formed only in a part of the region, in addition to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present. This also includes cases where it is formed.
In the present disclosure, "(meth)acryloyl" means at least one of acryloyl and methacryloyl, "(meth)acrylic" means at least one of acrylic and methacrylic, and "(meth)acrylate" means at least one of acrylate and methacrylate. It means at least one of them.
In the present disclosure, the average thickness of a layer or film is a value given as the arithmetic mean value of the thicknesses measured at five points of the target layer or film.
The thickness of a layer or film can be measured using a micrometer or the like. In this disclosure, when the thickness of a layer or film can be measured directly, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer or the total thickness of a plurality of layers, it may be measured by observing a cross section of the measurement target using an electron microscope.
<ハイブリッドボンディング絶縁膜形成材料>
 本開示のハイブリッドボンディング絶縁膜形成材料(以下、ハイブリッドボンディング絶縁膜形成材料を、単に「絶縁膜形成材料」と称することがある。)は、分子中にフェノール性水酸基を有する熱硬化性ポリアミドと、溶剤と、を含む。本開示の絶縁膜形成材料は、必要に応じて架橋剤、重合開始剤等のその他の成分を含んでもよい。
 本開示によれば、ガラス転移温度以下の温度域での接合が可能な絶縁膜形成材料を提供可能となる。その理由は明確ではないが、以下のように推察される。
 本開示の絶縁膜形成材料には、分子中にフェノール性水酸基を有する熱硬化性ポリアミドが含まれる。熱硬化反応により分子中にフェノール性水酸基を有する熱硬化性ポリアミドが硬化して硬化物が生ずると、硬化物表面に一部フェノール性水酸基が露出する。フェノール性水酸基が表面に露出した状態の硬化物同士を加熱しながら圧着すると、硬化物中に含まれる、分子中にフェノール性水酸基を有する未反応の熱硬化性ポリアミド間の硬化反応が生ずる。硬化物表面での熱硬化性ポリアミド間の硬化反応は、ガラス転移温度以下でも進行しうる。その結果、ガラス転移温度以下の温度域での硬化物間の強固な結合が構築され、接合が可能になると推察される。
 また、表面にフェノール性水酸基が露出した状態の硬化物同士を加熱しながら圧着すると、水素結合の寄与により硬化物間が接合しうる。その結果、ガラス転移温度以下の温度域での硬化物間の強固な結合が構築され、接合が可能になると推察される。
<Hybrid bonding insulation film forming material>
The hybrid bonding insulating film forming material of the present disclosure (hereinafter, the hybrid bonding insulating film forming material may be simply referred to as "insulating film forming material") comprises a thermosetting polyamide having a phenolic hydroxyl group in the molecule; Contains a solvent. The insulating film forming material of the present disclosure may contain other components such as a crosslinking agent and a polymerization initiator as necessary.
According to the present disclosure, it is possible to provide an insulating film forming material that can be bonded in a temperature range below the glass transition temperature. Although the reason is not clear, it is inferred as follows.
The insulating film forming material of the present disclosure includes a thermosetting polyamide having a phenolic hydroxyl group in the molecule. When a thermosetting polyamide having phenolic hydroxyl groups in its molecules is cured by a thermosetting reaction to produce a cured product, some of the phenolic hydroxyl groups are exposed on the surface of the cured product. When cured products with phenolic hydroxyl groups exposed on the surface are pressed together while heating, a curing reaction occurs between the unreacted thermosetting polyamides contained in the cured products and having phenolic hydroxyl groups in their molecules. The curing reaction between thermosetting polyamides on the surface of the cured product can proceed even below the glass transition temperature. As a result, it is presumed that a strong bond between the cured products is established in a temperature range below the glass transition temperature, making bonding possible.
Moreover, when cured products with phenolic hydroxyl groups exposed on their surfaces are pressed together while being heated, the cured products can be bonded together due to the contribution of hydrogen bonds. As a result, it is presumed that a strong bond between the cured products is established in a temperature range below the glass transition temperature, making bonding possible.
 本開示で用いられる分子中にフェノール性水酸基を有する熱硬化性ポリアミドとしては、ポリベンゾオキサゾール前駆体、ポリイミド前駆体(ポリアミド酸等)などが挙げられる。
 熱硬化性ポリアミドにおけるフェノール性水酸基の存在する位置は特に限定されるものではなく、熱硬化性ポリアミドの末端であってもよいし、主鎖骨格中であってもよい。
Examples of the thermosetting polyamide having a phenolic hydroxyl group in the molecule used in the present disclosure include polybenzoxazole precursors, polyimide precursors (polyamic acid, etc.), and the like.
The position of the phenolic hydroxyl group in the thermosetting polyamide is not particularly limited, and may be at the end of the thermosetting polyamide or within the main chain skeleton.
 以下、本開示の絶縁膜形成材料の詳細について説明する。以下の説明においては、分子中にフェノール性水酸基を有する熱硬化性ポリアミドが、ポリベンゾオキサゾール前駆体の場合及びポリイミド前駆体(ポリアミド酸)の場合について説明する。以下、分子中にフェノール性水酸基を有する熱硬化性ポリアミドがポリベンゾオキサゾール前駆体の場合を第1の絶縁膜形成材料と、分子中にフェノール性水酸基を有する熱硬化性ポリアミドがポリイミド前駆体(ポリアミド酸)の場合を第2の絶縁膜形成材料と称することがある。 Hereinafter, details of the insulating film forming material of the present disclosure will be explained. In the following description, a case where the thermosetting polyamide having a phenolic hydroxyl group in the molecule is a polybenzoxazole precursor and a polyimide precursor (polyamic acid) will be explained. Hereinafter, the case where the thermosetting polyamide having a phenolic hydroxyl group in the molecule is a polybenzoxazole precursor is used as the first insulating film forming material, and the case where the thermosetting polyamide having a phenolic hydroxyl group in the molecule is a polyimide precursor (polyamide (acid) is sometimes referred to as a second insulating film forming material.
[第1の絶縁膜形成材料]
 第1の絶縁膜形成材料では、分子中にフェノール性水酸基を有する熱硬化性ポリアミドとして、(a)ポリベンゾオキサゾール前駆体が含まれる。
 なお、(a)ポリベンゾオキサゾール前駆体、並びに、後述の(b)感光剤、(c)溶剤及び(d)複素環状化合物、チオ尿素類及びメルカプト基を有する化合物からなる群から選択される少なくとも1種の化合物を、本明細書の記載において、場合によりそれぞれ単に(a)成分、(b)成分、(c)成分及び(d)成分と記す。
 また、第1の絶縁膜形成材料には、分子中にフェノール性水酸基を有するポリイミド前駆体を含んでもよいし、分子中にフェノール性水酸基を有さないポリイミド前駆体を含んでもよい。第1の絶縁膜形成材料が分子中にフェノール性水酸基を有するポリイミド前駆体及び分子中にフェノール性水酸基を有さないポリイミド前駆体の少なくとも一方を含有する場合、分子中にフェノール性水酸基を有するポリベンゾオキサゾール前駆体、分子中にフェノール性水酸基を有するポリイミド前駆体及び分子中にフェノール性水酸基を有さないポリイミド前駆体の合計に占める分子中にフェノール性水酸基を有するポリベンゾオキサゾール前駆体の割合は、50質量%以上100質量%未満が好ましく、60質量%~90質量%がより好ましく、65質量%~80質量%がさらに好ましい。
 なお、第1の絶縁膜形成材料には、分子中にフェノール性水酸基を有するポリイミド前駆体を含まなくてもよいし、分子中にフェノール性水酸基を有さないポリイミド前駆体を含まなくてもよい。
[First insulating film forming material]
The first insulating film forming material contains (a) a polybenzoxazole precursor as a thermosetting polyamide having a phenolic hydroxyl group in its molecule.
In addition, at least one selected from the group consisting of (a) a polybenzoxazole precursor, and (b) a photosensitizer, (c) a solvent, and (d) a heterocyclic compound, a thiourea, and a compound having a mercapto group described below. In the description of this specification, one type of compound is sometimes simply referred to as component (a), component (b), component (c), and component (d), respectively.
Further, the first insulating film forming material may include a polyimide precursor having a phenolic hydroxyl group in its molecule, or may include a polyimide precursor having no phenolic hydroxyl group in its molecule. When the first insulating film forming material contains at least one of a polyimide precursor having phenolic hydroxyl groups in the molecule and a polyimide precursor having no phenolic hydroxyl groups in the molecule, the polyimide precursor having phenolic hydroxyl groups in the molecule The proportion of the polybenzoxazole precursor that has a phenolic hydroxyl group in the molecule in the total of the benzoxazole precursor, the polyimide precursor that has a phenolic hydroxyl group in the molecule, and the polyimide precursor that does not have a phenolic hydroxyl group in the molecule is , preferably 50% by mass or more and less than 100% by mass, more preferably 60% by mass to 90% by mass, even more preferably 65% by mass to 80% by mass.
Note that the first insulating film forming material may not contain a polyimide precursor having a phenolic hydroxyl group in its molecule, or may not contain a polyimide precursor having no phenolic hydroxyl group in its molecule. .
((a)ポリベンゾオキサゾール前駆体)
 ポリベンゾオキサゾール前駆体の種類は特に限定されるものではない。ポリベンゾオキサゾール前駆体は、好ましくは下記式(II)で表される構造単位を有する。

(式(II)中、Uは4価の有機基であり、Vは2価の有機基である。)
 式(II)におけるヒドロキシ基を含有するアミドユニットは、加熱工程における脱水閉環により、その少なくとも一部が耐熱性、耐薬品性及び電気特性に優れるオキサゾール環に変換される。
((a) Polybenzoxazole precursor)
The type of polybenzoxazole precursor is not particularly limited. The polybenzoxazole precursor preferably has a structural unit represented by the following formula (II).

(In formula (II), U is a tetravalent organic group, and V is a divalent organic group.)
At least a portion of the amide unit containing a hydroxy group in formula (II) is converted into an oxazole ring having excellent heat resistance, chemical resistance, and electrical properties by dehydration ring closure in the heating step.
 また、式(II)で表される構造単位において、ヒドロキシ基を含有するアミドユニットは、ポリマーのアルカリ水溶液に対する可溶性向上に効果がある。 Furthermore, in the structural unit represented by formula (II), the amide unit containing a hydroxy group is effective in improving the solubility of the polymer in an alkaline aqueous solution.
 式(II)で表される構造単位を有するポリマーは、構造単位を1種類のみ含有してもよく、2種類以上含有してもよい。2種類以上の構造単位を有する共重合体であるとき、少なくとも2種類の式(II)で表される構造単位を有するポリマーであってもよく、式(III)で表される構造を有するポリマーであってもよい。
 式(II)で表される構造単位を有するポリマーが少なくとも2種類の式(II)で表される構造単位を有する場合、式(II)で表される構造単位の組み合わせは特に限定されるものではなく、例えば、Vで表される2価の有機基が2価の芳香族基である構造単位と、Vが炭素数6~30の脂肪族構造を有する2価の有機基である構造単位との組み合わせであってもよい。
The polymer having the structural unit represented by formula (II) may contain only one type of structural unit, or may contain two or more types of structural units. When it is a copolymer having two or more types of structural units, it may be a polymer having at least two types of structural units represented by formula (II), and a polymer having a structure represented by formula (III). It may be.
When a polymer having a structural unit represented by formula (II) has at least two types of structural units represented by formula (II), the combination of structural units represented by formula (II) is particularly limited. For example, structural units in which the divalent organic group represented by V is a divalent aromatic group, and structural units in which V is a divalent organic group having an aliphatic structure having 6 to 30 carbon atoms. It may be a combination with.

(式(III)中、Uは4価の有機基であり、V及びWは各々独立に2価の有機基である。j及びkはモル分率であり、jとkの和は100モル%であり、jが60~99.9モル%、kが0.1モル%~40モル%(好ましくはjが80モル%~99.9モル%、kが0.1モル%~20モル%)である。)

(In formula (III), U is a tetravalent organic group, and V and W are each independently a divalent organic group. j and k are mole fractions, and the sum of j and k is 100 moles. %, j is 60 to 99.9 mol%, k is 0.1 mol% to 40 mol% (preferably j is 80 mol% to 99.9 mol%, k is 0.1 mol% to 20 mol%). %).
 式(II)及び(III)において、Uで表される4価の有機基は、ポリヒドロキシアミドの合成において用いられるジアミン類の残基である。Uで表される4価の有機基は、4価の芳香族基、又は炭素数6~40の有機基であることが好ましく、炭素数6~40の4価の芳香族基であることがより好ましい。4価の芳香族基としては、4個の結合部位がいずれも芳香環上に存在するものが好ましい。
 尚、芳香族基とは芳香族環を含む基をいう。
In formulas (II) and (III), the tetravalent organic group represented by U is a residue of diamines used in the synthesis of polyhydroxyamide. The tetravalent organic group represented by U is preferably a tetravalent aromatic group or an organic group having 6 to 40 carbon atoms, and preferably a tetravalent aromatic group having 6 to 40 carbon atoms. More preferred. As the tetravalent aromatic group, one in which all four bonding sites are present on an aromatic ring is preferable.
Note that the aromatic group refers to a group containing an aromatic ring.
 Uで表される4価の有機基を与えるジアミン類としては、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン等が挙げられるが、これらに限定されるものではない。 Examples of diamines that provide a tetravalent organic group represented by U include 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, and bis(3 -amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, 2 , 2-bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4-amino-3-hydroxyphenyl)-1,1 , 1,3,3,3-hexafluoropropane and the like, but are not limited to these.
 式(III)においてWで表される2価の有機基は、ポリヒドロキシアミドの合成において用いられるジアミン類の残基である。Wで表される2価の有機基は、2価の芳香族基、2価の脂肪族基、又は、炭素数4~20の有機基であることが好ましく、炭素数4~20の芳香族基であることがより好ましい。Wで表される2価の有機基は、Uで表される4価の有機基を与えるジアミン類以外のジアミン類の残基である。 The divalent organic group represented by W in formula (III) is a residue of diamines used in the synthesis of polyhydroxyamide. The divalent organic group represented by W is preferably a divalent aromatic group, a divalent aliphatic group, or an organic group having 4 to 20 carbon atoms, and an aromatic group having 4 to 20 carbon atoms. More preferably, it is a group. The divalent organic group represented by W is a residue of diamines other than the diamines that provide the tetravalent organic group represented by U.
 Wで表される2価の有機基を与えるジアミン類としては、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、ベンジシン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン等の芳香族ジアミン化合物が挙げられる。また、シリコーン基を有するジアミン類として、LP-7100、X-22-161AS、X-22-161A、X-22-161B、X-22-161C及びX-22-161E(いずれも信越化学工業株式会社製、商品名)等が挙げられるが、これらに限定されるものではない。 Examples of diamines that provide a divalent organic group represented by W include 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, and 4,4'-diaminodiphenyl sulfide. , benzicine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxyphenyl)sulfone, bis(3-aminophenoxyphenyl)sulfone, bis(4-aminophenoxyphenyl)sulfone, Examples include aromatic diamine compounds such as -aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, and 1,4-bis(4-aminophenoxy)benzene. In addition, as diamines having silicone groups, LP-7100, X-22-161AS, X-22-161A, X-22-161B, X-22-161C and (manufactured by a company, product name), etc., but is not limited to these.
 式(II)及び(III)において、Vで表される2価の有機基は、ポリヒドロキシアミドの合成において用いられるジカルボン酸、又はジカルボン酸誘導体(以下、ジカルボン酸類という)の残基である。Vで表される2価の有機基は、2価の芳香族基又は炭素数6~40の有機基であることが好ましい。
 耐熱性の観点からは、炭素数6~40の2価の芳香族基であることが好ましく、2価の芳香族基としては、2個の結合部位がいずれも芳香環上に存在するものが好ましい。
In formulas (II) and (III), the divalent organic group represented by V is a residue of a dicarboxylic acid or a dicarboxylic acid derivative (hereinafter referred to as dicarboxylic acids) used in the synthesis of polyhydroxyamide. The divalent organic group represented by V is preferably a divalent aromatic group or an organic group having 6 to 40 carbon atoms.
From the viewpoint of heat resistance, a divalent aromatic group having 6 to 40 carbon atoms is preferable, and a divalent aromatic group in which both of the two bonding sites are present on an aromatic ring is preferable. preferable.
 低温(例えば200℃以下)での加熱工程において脱水閉環率が高く、良好な耐熱性及び機械強度を有するという観点からは、Vが炭素数6~30の脂肪族構造を有する2価の有機基であることが好ましい。 From the viewpoint of having a high dehydration ring closure rate in a heating process at low temperatures (for example, 200°C or less) and having good heat resistance and mechanical strength, V is a divalent organic group having an aliphatic structure with 6 to 30 carbon atoms. It is preferable that
 Vで表される2価の有機基を与えるジカルボン酸としては、イソフタル酸、テレフタル酸、2,2-ビス(4-カルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ジカルボキシビフェニル、4,4’-ジカルボキシジフェニルエーテル(4,4’-ジフェニルエーテルジカルボン酸)、4,4’-ジカルボキシテトラフェニルシラン、ビス(4-カルボキシフェニル)スルホン、2,2-ビス(p-カルボキシフェニル)プロパン、5-tert-ブチルイソフタル酸、5-ブロモイソフタル酸、5-フルオロイソフタル酸、5-クロロイソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族系ジカルボン酸、1,2-シクロブタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロペンタンジカルボン酸、脂肪族直鎖構造を有するものとしては、マロン酸、ジメチルマロン酸、エチルマロン酸、イソプロピルマロン酸、ジ-n-ブチルマロン酸、スクシン酸、テトラフルオロスクシン酸、メチルスクシン酸、2,2-ジメチルスクシン酸、2,3-ジメチルスクシン酸、ジメチルメチルスクシン酸、グルタル酸、ヘキサフルオログルタル酸、2-メチルグルタル酸、3-メチルグルタル酸、2,2-ジメチルグルタル酸、3,3-ジメチルグルタル酸、3-エチル-3-メチルグルタル酸、アジピン酸、オクタフルオロアジピン酸、3-メチルアジピン酸、ピメリン酸、2,2,6,6-テトラメチルピメリン酸、スベリン酸、ドデカフルオロスベリン酸、アゼライン酸、セバシン酸、ヘキサデカフルオロセバシン酸、1,9-ノナン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンエイコサン二酸、ドコサン二酸、トリコサン二酸、テトラコサン二酸、ペンタコサン二酸、ヘキサコサン二酸、ヘプタコン二酸、オクタコサン二酸、ノナコサン二酸、トリアコンタン二酸、ヘントリアコンタン二酸、ドトリアコンタン二酸、ジグリコール酸等が挙げられ、さらに下記式で示されるジカルボン酸等が挙げられるが、これらに限定されるものではない。これらの化合物を、単独で又は2種以上を組み合わせて使用することができる。

(式中、Zは各々独立に炭素数1~6の炭化水素基であり、iは1~6の整数である。)
Examples of dicarboxylic acids that provide a divalent organic group represented by V include isophthalic acid, terephthalic acid, and 2,2-bis(4-carboxyphenyl)-1,1,1,3,3,3-hexafluoropropane. , 4,4'-dicarboxybiphenyl, 4,4'-dicarboxydiphenyl ether (4,4'-diphenyl ether dicarboxylic acid), 4,4'-dicarboxytetraphenylsilane, bis(4-carboxyphenyl)sulfone, 2 , 2-bis(p-carboxyphenyl)propane, 5-tert-butyl isophthalic acid, 5-bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, 2,6-naphthalene dicarboxylic acid, etc. Dicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, those having an aliphatic straight chain structure include malonic acid, dimethylmalonic acid, ethylmalonic acid, Isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid , hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipine Acid, 3-methyladipic acid, pimelic acid, 2,2,6,6-tetramethylpimelic acid, suberic acid, dodecafluorosuberic acid, azelaic acid, sebacic acid, hexadecafluorosebacic acid, 1,9-nonane Diacid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, heneicosanedioic acid, docosanedioic acid, tricosanedioic acid , tetracosanedioic acid, pentacosanedioic acid, hexacosanedioic acid, heptaconedioic acid, octacosanedioic acid, nonacosanedioic acid, triacontanedioic acid, hentriacontanedioic acid, dotriacontanedioic acid, diglycolic acid, etc. Further examples include dicarboxylic acids represented by the following formulas, but are not limited thereto. These compounds can be used alone or in combination of two or more.

(In the formula, each Z is independently a hydrocarbon group having 1 to 6 carbon atoms, and i is an integer of 1 to 6.)
 本開示において、(a)成分の製造方法に特に制限はない。一般的にはジカルボン酸類とヒドロキシ基含有ジアミン類と、必要に応じてヒドロキシ基含有ジアミン類以外のジアミン類を用いることで合成できる。具体的には、ジカルボン酸誘導体をジハライド誘導体に変換後、ジアミン類との反応を行うことにより合成できる。ジハライド誘導体としては、ジクロリド誘導体が好ましい。 In the present disclosure, there are no particular limitations on the method for producing component (a). Generally, it can be synthesized by using dicarboxylic acids, hydroxy group-containing diamines, and, if necessary, diamines other than the hydroxy group-containing diamines. Specifically, it can be synthesized by converting a dicarboxylic acid derivative into a dihalide derivative and then reacting it with diamines. As the dihalide derivative, dichloride derivatives are preferred.
 ジクロリド誘導体を合成する方法としては、ジカルボン酸類とハロゲン化剤を溶剤中で反応させるか、過剰のハロゲン化剤中で反応を行った後、過剰分を留去する方法で合成できる。ハロゲン化剤としては通常のカルボン酸の酸クロリド化反応に使用される、塩化チオニル、塩化ホスホリル、オキシ塩化リン、五塩化リン等が使用できる。反応溶剤としては、N-メチル-2-ピロリドン、N-メチル-2-ピリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、トルエン、ベンゼン等が使用できる。 Dichloride derivatives can be synthesized by reacting dicarboxylic acids and a halogenating agent in a solvent, or by performing a reaction in an excess of the halogenating agent and then distilling off the excess. As the halogenating agent, thionyl chloride, phosphoryl chloride, phosphorus oxychloride, phosphorus pentachloride, etc., which are commonly used in the acid chloridation reaction of carboxylic acids, can be used. As the reaction solvent, N-methyl-2-pyrrolidone, N-methyl-2-pyridone, N,N-dimethylacetamide, N,N-dimethylformamide, toluene, benzene, etc. can be used.
 これらのハロゲン化剤の使用量は、溶剤中で反応させる場合は、ジカルボン酸誘導体1.0モルに対して、1.5モル~3.0モルが好ましく、1.7モル~2.5モルがより好ましく、ハロゲン化剤中で反応させる場合は、4.0モル~50モルが好ましく、5.0モル~20モルがより好ましい。反応温度は、-10℃~70℃が好ましく、0℃~20℃がより好ましい。 When the reaction is carried out in a solvent, the amount of these halogenating agents used is preferably 1.5 mol to 3.0 mol, and 1.7 mol to 2.5 mol, per 1.0 mol of the dicarboxylic acid derivative. is more preferable, and when the reaction is carried out in a halogenating agent, the amount is preferably 4.0 mol to 50 mol, and more preferably 5.0 mol to 20 mol. The reaction temperature is preferably -10°C to 70°C, more preferably 0°C to 20°C.
 ジクロリド誘導体とジアミン類との反応は、脱ハロゲン化水素剤の存在下に、有機溶剤中で行うことが好ましい。脱ハロゲン化水素剤としては、ピリジン、トリエチルアミン等の有機塩基を用いることができる。また、有機溶剤としては、N-メチル-2-ピロリドン、N-メチル-2-ピリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を用いることができる。反応温度は、-10℃~30℃が好ましく、0℃~20℃がより好ましい。 The reaction between the dichloride derivative and diamines is preferably carried out in an organic solvent in the presence of a dehydrohalogenating agent. As the dehydrohalogenation agent, organic bases such as pyridine and triethylamine can be used. Further, as the organic solvent, N-methyl-2-pyrrolidone, N-methyl-2-pyridone, N,N-dimethylacetamide, N,N-dimethylformamide, etc. can be used. The reaction temperature is preferably -10°C to 30°C, more preferably 0°C to 20°C.
 ジアミンとしては、芳香族ジアミン、脂肪族ジアミン及び脂環式ジアミンが挙げられる。具体的には、2,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,5-ジアミノテレフタル酸、ビス(4-アミノ-3-カルボキシフェニル)メチレン、ビス(4-アミノ-3-カルボキシフェニル)エーテル、4,4’-ジアミノ-3,3’-ジカルボキシビフェニル、4,4’-ジアミノ-5,5’-ジカルボキシ-2,2’-ジメチルビフェニル、1,3-ジアミノ-4-ヒドロキシベンゼン、1,3-ジアミノ-5-ヒドロキシベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(4-アミノ-3-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、1,4-ジアミノシクロヘキサン、1,1,3,3,-テトラメチル1,3-ビス(4-アミノフェニル)ジシロキサン、ポリ(プロピレングリコール)ジアミン等が挙げられ、これらを単独で又は2種以上組み合わせて使用することができる。 Examples of diamines include aromatic diamines, aliphatic diamines, and alicyclic diamines. Specifically, 2,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2,5-diaminoterephthalic acid, bis(4-amino-3-carboxyphenyl)methylene, Bis(4-amino-3-carboxyphenyl) ether, 4,4'-diamino-3,3'-dicarboxybiphenyl, 4,4'-diamino-5,5'-dicarboxy-2,2'-dimethyl Biphenyl, 1,3-diamino-4-hydroxybenzene, 1,3-diamino-5-hydroxybenzene, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3' -dihydroxybiphenyl, bis(3-amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3) -hydroxyphenyl) sulfone, bis(3-amino-4-hydroxyphenyl) ether, bis(4-amino-3-hydroxyphenyl) ether, bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(4-hydroxyphenyl) ether, bis(3-amino-4-hydroxyphenyl)hexafluoropropane, -Amino-3-hydroxyphenyl)hexafluoropropane, 1,4-diaminocyclohexane, 1,1,3,3,-tetramethyl1,3-bis(4-aminophenyl)disiloxane, poly(propylene glycol) diamine These can be used alone or in combination of two or more.
 (a)成分は、アルカリ水溶液で現像してもよい。そのため、アルカリ水溶液に可溶であることが好ましい。アルカリ水溶液としては、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液等の有機アンモニウム水溶液、金属水酸化物水溶液、有機アミン水溶液などが挙げられる。
 一般には、濃度が2.38質量%のTMAH水溶液を用いることが好ましい。よって、(a)成分はTMAH水溶液に対して可溶であることが好ましい。
Component (a) may be developed with an alkaline aqueous solution. Therefore, it is preferable that it is soluble in an alkaline aqueous solution. Examples of the alkaline aqueous solution include organic ammonium aqueous solutions such as tetramethylammonium hydroxide (TMAH) aqueous solutions, metal hydroxide aqueous solutions, and organic amine aqueous solutions.
Generally, it is preferable to use a TMAH aqueous solution having a concentration of 2.38% by mass. Therefore, it is preferable that component (a) is soluble in the TMAH aqueous solution.
 (a)成分がアルカリ水溶液に可溶であることの1つの基準を以下に説明する。(a)成分を任意の溶剤に溶かして溶液とした後、シリコンウエハ等の基板上にスピン塗布して膜厚5μm程度の樹脂膜を形成する。これをTMAH水溶液、金属水酸化物水溶液、有機アミン水溶液のいずれか1つに、20℃~25℃で浸漬する。この結果、溶解して溶液となったとき、用いた(a)成分はアルカリ水溶液に可溶であると判断する。 One criterion for component (a) being soluble in an alkaline aqueous solution will be explained below. After the component (a) is dissolved in an arbitrary solvent to form a solution, a resin film having a thickness of about 5 μm is formed by spin coating onto a substrate such as a silicon wafer. This is immersed in any one of a TMAH aqueous solution, a metal hydroxide aqueous solution, and an organic amine aqueous solution at 20°C to 25°C. As a result, when the component (a) is dissolved to form a solution, it is determined that the component (a) used is soluble in the alkaline aqueous solution.
 (a)成分のアルカリ性水溶液に可溶な樹脂の分子量は、ポリスチレン換算での重量平均分子量が10,000~100,000であることが好ましく、12,000~100,000であることがより好ましく、14,000~85,000であることがさらに好ましい。(a)成分の重量平均分子量が10,000以上の場合、アルカリ現像液への適度な溶解性が確保できる。また、(a)成分の重量平均分子量が100,000以下の場合、溶剤への良好な溶解性が得られる傾向にあり、溶液の粘度が増大して取り扱い性が低下することを抑制できる。
 重量平均分子量は、ゲルパーミエーションクロマトグラフ法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
 また、重量平均分子量を数平均分子量で除した分散度は1.0~4.0が好ましく、1.0~3.5がより好ましい。
The molecular weight of the resin soluble in the alkaline aqueous solution of component (a) is preferably a weight average molecular weight of 10,000 to 100,000 in terms of polystyrene, more preferably 12,000 to 100,000. , 14,000 to 85,000 is more preferable. When the weight average molecular weight of component (a) is 10,000 or more, appropriate solubility in an alkaline developer can be ensured. Further, when the weight average molecular weight of component (a) is 100,000 or less, good solubility in a solvent tends to be obtained, and it is possible to suppress increase in viscosity of the solution and decrease in handling properties.
The weight average molecular weight can be measured by gel permeation chromatography, and can be determined by conversion using a standard polystyrene calibration curve.
Further, the dispersity obtained by dividing the weight average molecular weight by the number average molecular weight is preferably 1.0 to 4.0, more preferably 1.0 to 3.5.
((b)成分:感光剤)
 第1の絶縁膜形成材料は、(a)成分であるポリベンゾオキサゾール前駆体又はポリベンゾオキサゾール前駆体の共重合体と共に、(b)成分である感光剤を含んでもよい。この感光剤とは、光に反応して、その組成物から形成された膜の現像液に対する機能を有するものである。本開示で(b)成分として用いられる感光剤に特に制限はないが、光により酸又はラジカルを発生するものであることが好ましい。
(Component (b): photosensitizer)
The first insulating film forming material may contain a photosensitive agent as the component (b) together with a polybenzoxazole precursor or a copolymer of the polybenzoxazole precursor as the component (a). This photosensitizer is one that reacts to light and has a function for developing a film formed from the composition. Although there are no particular limitations on the photosensitizer used as component (b) in the present disclosure, it is preferably one that generates acid or radicals when exposed to light.
 第1の絶縁膜形成材料がポジ型の感光性樹脂組成物の場合は、(b)感光剤は、光により酸を発生するもの(光酸発生剤)であることがより好ましい。光酸発生剤は、ポジ型においては、光の照射により酸を発生し、光の照射部のアルカリ水溶液への可溶性を増大させる機能を有するものである。そのような光酸発生剤としては、o-キノンジアジド化合物、アリールジアゾニウム塩、ジアリールヨードニウム塩、トリアリールスルホニウム塩などが挙げられ、o-キノンジアジド化合物が感度が高く好ましいものとして挙げられる。 When the first insulating film-forming material is a positive photosensitive resin composition, the photosensitive agent (b) is more preferably one that generates acid when exposed to light (photoacid generator). In the case of a positive type, the photoacid generator has the function of generating an acid upon irradiation with light and increasing the solubility of the irradiated area in an alkaline aqueous solution. Examples of such photoacid generators include o-quinonediazide compounds, aryldiazonium salts, diaryliodonium salts, triarylsulfonium salts, and o-quinonediazide compounds are preferred due to their high sensitivity.
 上記o-キノンジアジド化合物は、例えば、o-キノンジアジドスルホニルクロリド類とヒドロキシ化合物、アミノ化合物などとを脱塩酸剤の存在下で縮合反応させることで得られる。前記o-キノンジアジドスルホニルクロリド類としては、例えば、ベンゾキノン-1,2-ジアジド-4-スルホニルクロリド、ナフトキノン-1,2-ジアジド-5-スルホニルクロリド、ナフトキノン-1,2-ジアジド-4-スルホニルクロリド等が使用できる。 The above o-quinonediazide compound can be obtained, for example, by subjecting an o-quinonediazide sulfonyl chloride to a hydroxy compound, an amino compound, etc. to a condensation reaction in the presence of a dehydrochlorination agent. Examples of the o-quinonediazide sulfonyl chloride include benzoquinone-1,2-diazide-4-sulfonyl chloride, naphthoquinone-1,2-diazide-5-sulfonyl chloride, and naphthoquinone-1,2-diazide-4-sulfonyl chloride. etc. can be used.
 前記ヒドロキシ化合物としては、例えば、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4'-テトラヒドロキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,3,4,2',3'-ペンタヒドロキシベンゾフェノン,2,3,4,3',4',5'-ヘキサヒドロキシベンゾフェノン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)プロパン、4b,5,9b,10-テトラヒドロ-1,3,6,8-テトラヒドロキシ-5,10-ジメチルインデノ[2,1-a]インデン、トリス(4-ヒドロキシフェニル)メタン、トリス(4-ヒドロキシフェニル)エタンなどが使用できる。 Examples of the hydroxy compound include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, and 2,3,4-trihydroxybenzophenone. , 2,3,4,4'-tetrahydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2,3,4,2',3'-pentahydroxybenzophenone, 2,3,4, 3',4',5'-hexahydroxybenzophenone, bis(2,3,4-trihydroxyphenyl)methane, bis(2,3,4-trihydroxyphenyl)propane, 4b,5,9b,10-tetrahydro -1,3,6,8-tetrahydroxy-5,10-dimethylindeno[2,1-a]indene, tris(4-hydroxyphenyl)methane, tris(4-hydroxyphenyl)ethane, etc. can be used.
 前記アミノ化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルスルホン、4,4'-ジアミノジフェニルスルフィド、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、3,3'-ジアミノ-4,4'-ジヒドロキシビフェニル、4,4'-ジアミノ-3,3'-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパンなどが使用できる。 Examples of the amino compound include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl Sulfide, o-aminophenol, m-aminophenol, p-aminophenol, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, bis(3 -amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, bis (3-amino-4-hydroxyphenyl)hexafluoropropane, bis(4-amino-3-hydroxyphenyl)hexafluoropropane, etc. can be used.
 前記o-キノンジアジドスルホニルクロリドとヒドロキシ化合物及び/又はアミノ化合物とは、o-キノンジアジドスルホニルクロリド1モルに対して、ヒドロキシ基とアミノ基の合計が0.5当量~1当量になるように配合されることが好ましい。脱塩酸剤とo-キノンジアジドスルホニルクロリドの好ましい割合は、0.95/1~1/0.95の範囲である。好ましい反応温度は0℃~40℃、好ましい反応時間は1時間~10時間である。 The o-quinonediazide sulfonyl chloride and the hydroxy compound and/or amino compound are blended such that the total of the hydroxy group and the amino group is 0.5 equivalent to 1 equivalent per 1 mole of the o-quinone diazide sulfonyl chloride. It is preferable. The preferred ratio of dehydrochlorination agent to o-quinonediazide sulfonyl chloride is in the range of 0.95/1 to 1/0.95. The preferred reaction temperature is 0°C to 40°C, and the preferred reaction time is 1 hour to 10 hours.
 上記反応の反応溶剤としては,ジオキサン,アセトン,メチルエチルケトン,テトラヒドロフラン,ジエチルエーテル,N-メチル-2-ピロリドン等の溶剤が用いられる。脱塩酸剤としては,炭酸ナトリウム,水酸化ナトリウム,炭酸水素ナトリウム,炭酸カリウム,水酸化カリウム,トリメチルアミン,トリエチルアミン,ピリジンなどが挙げられる。 As the reaction solvent for the above reaction, solvents such as dioxane, acetone, methyl ethyl ketone, tetrahydrofuran, diethyl ether, and N-methyl-2-pyrrolidone are used. Examples of dehydrochlorination agents include sodium carbonate, sodium hydroxide, sodium hydrogen carbonate, potassium carbonate, potassium hydroxide, trimethylamine, triethylamine, and pyridine.
 また、ポリベンゾオキサゾール前駆体がアクリロイル基又はメタクリロイル基のような光架橋性基を含む場合は(b)成分としてラジカルを発生するものを、または、酸の作用により架橋または重合し得る化合物を架橋剤として使用する場合は、(b)成分として、酸を発生するものを、それぞれ即ち光重合開始剤として用いることで第1の絶縁膜形成材料をネガ型感光性樹脂組成物として用いることができる。このネガ型感光性樹脂組成物は、光の照射による架橋反応によって、光の照射部のアルカリ水溶液への可溶性を低下させる機能を有するものである。 In addition, when the polybenzoxazole precursor contains a photocrosslinkable group such as an acryloyl group or a methacryloyl group, the component (b) is one that generates radicals or a compound that can be crosslinked or polymerized by the action of an acid. When used as an agent, the first insulating film-forming material can be used as a negative photosensitive resin composition by using an acid-generating component as the component (b), that is, as a photopolymerization initiator. . This negative photosensitive resin composition has the function of reducing the solubility of the light irradiated area in an alkaline aqueous solution through a crosslinking reaction caused by light irradiation.
 第1の絶縁膜形成材料において、(b)成分(感光剤)の配合量は、露光部と未露光部の溶解速度差と、感度の許容幅の点から、(a)成分(ベース樹脂)100質量部に対して5質量部~100質量部が好ましく、8質量部~40質量部がより好ましい。 In the first insulating film forming material, the blending amount of component (b) (photosensitive agent) is determined based on the dissolution rate difference between exposed and unexposed areas and the allowable range of sensitivity. It is preferably 5 parts by mass to 100 parts by mass, more preferably 8 parts by mass to 40 parts by mass, based on 100 parts by mass.
((c)成分:溶剤)
 第1の絶縁膜形成材料は、溶剤を含有する。溶剤としては、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、メチル3-メトキシプロピオネート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、シクロヘキサノン、シクロペンタノン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、3-メトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
((c) component: solvent)
The first insulating film forming material contains a solvent. Solvents include γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, methyl 3-methoxypropionate, N-methyl-2-pyrrolidone, N,N -Dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphorylamide, tetramethylenesulfone, cyclohexanone, cyclopentanone, diethylketone, diisobutylketone, methylamylketone, 3-methoxy-N,N-dimethylpropanamide etc.
 これらの溶剤は、単独で又は2種以上併用して用いることができる。また、使用する溶剤の量は特に制限はないが、一般に、第1の絶縁膜形成材料における溶剤の割合が20質量%~90質量%となるように調整されることが好ましい。 These solvents can be used alone or in combination of two or more. Further, although there is no particular restriction on the amount of the solvent used, it is generally preferable to adjust the proportion of the solvent in the first insulating film forming material to 20% by mass to 90% by mass.
((d)成分:複素環状化合物、チオ尿素類及びメルカプト基を有する化合物からなる群から選択される少なくとも1種の化合物)
 第1の絶縁膜形成材料は、(d)成分を含有してもよい。
 (d)成分の中で、複素環式化合物とは、2種又はそれ以上の元素の原子(炭素のほか、窒素、酸素、硫黄など)から環が構成されてなる環式化合物をいう。複素環式化合物としては、トリアゾール環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジジン環、ピラジン環、ピペリジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環及び6H-ピラン環、トリアジン環を有する化合物等が挙げられ、中でも炭素原子と窒素原子を含むトリアゾール環、ピロール環、ピラゾール環、チアゾール環、イミダゾール環及びテトラゾール環を有する化合物が好ましい。
(Component (d): at least one compound selected from the group consisting of heterocyclic compounds, thioureas, and compounds having a mercapto group)
The first insulating film forming material may contain component (d).
Among components (d), the heterocyclic compound refers to a cyclic compound in which a ring is composed of atoms of two or more elements (in addition to carbon, nitrogen, oxygen, sulfur, etc.). Examples of heterocyclic compounds include triazole ring, pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, and pyrimididine ring. , a pyrazine ring, a piperidine ring, a piperidine ring, a piperazine ring, a morpholine ring, a 2H-pyran ring, a 6H-pyran ring, a triazine ring, among others, a triazole ring containing a carbon atom and a nitrogen atom, a pyrrole ring, Compounds having a pyrazole ring, thiazole ring, imidazole ring and tetrazole ring are preferred.
 (d)成分の中で、チオ尿素類としては、モノメチルチオ尿素、チオ尿素、ジメチルチオ尿素、ジエチルチオ尿素、ジブチルチオ尿素等が挙げられるが、これらに限定されるものではない。 Among component (d), thioureas include monomethylthiourea, thiourea, dimethylthiourea, diethylthiourea, dibutylthiourea, etc., but are not limited to these.
 (d)成分の中で、複素環状化合物及びメルカプト基を有する化合物として具体的には、ピロール、3-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、2-エチルピロール、インドール、5-ヒドロキシインドール、ピラゾール、4-メチルピラゾール、3-アミノピラゾール、3-メチルピラゾール、3,5-ジイソプロピルピラゾール、3-アミノ-5-ヒドロキシピラゾール、インダゾール、5-アミノインダゾール、6-アミノインダゾール、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-ブチルイミダゾール、4-イミダゾールカルボン酸、4-メチルイミダゾール、ベンズイミダゾール、5-メチルベンズイミダゾール、2-アミノベンズイミダゾール、5,6-ジメチルベンズイミダゾール、2-メルカプト-1,3,4-チアジアゾール、2,5-ジメチル-1,3,4-チアジゾール、4-フェニル-1,2,3-チアジゾール、2-アミノ-1,3,4-チアジゾール、2-アミノ-5-エチル-1,3,4-オキサジアゾール、チアゾール、2-アミノチアゾール、2-メチルチアゾール、2-メトキシチアゾール、2-エトキシチアゾール、2-イソブチルチアゾール、2-トリメチルシリルチアゾール、5-トリメチルシリルチアゾール、4-メチルチアゾール、4,5-ジメチルチアゾール、2-エチルチアゾール、2,4-ジメチルチアゾール、2-アミノ-5-メチルチアゾール、2-アミノ-4-メチルチアゾール、2,4,5-トリメチルチアゾール、ベンゾチアゾール、2-メチルベンゾチアゾール、2,5-ジメチルベンゾチアゾール、1,2,4-トリアゾール、1,2,3-トリアゾール、1,2,5-トリアゾール、3-メルカプト-4-メチル-4H-1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、4-アミノ-3,5-ジメチル-4H-1,2,4-トリアゾール、4-アミノ-3,5-ジプロピル-4H-1,2,4-トリアゾール、3-アミノ-5-イソプロピル-1,2,4-トリアゾール、4-アミノ-3-メルカプト-5-メチル-4H-1,2,4-トリアゾール、3-アミノ-5-メルカプト-1,2,4-トリアゾール、3-アミノ-5-メチル-4H-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾール、4-アミノ-3,5-ジメチル-1,2,4-トリアゾール、4-アミノ-5-メチル-4H-1,2,4-トリアゾール-3-チオール、3,5-ジアミノ-1H-1,2,4-トリアゾール、ベンゾトリアゾール、5-メチル-1H-ベンゾトリアゾール、5,6-ジメチルベンゾトリアゾール、5-アミノ-1H-ベンゾトリアゾール、ベンゾトリゾール-4-スルホン酸、1H-テトラゾール、5-メチル-1H-テトラゾール、5-(メチルチオ)-1H-テトラゾール、5-(エチルチオ)-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、5-ニトロ-1H-テトラゾール、1-メチル-1H-テトラゾール、5,5’-ビス-1H-テトラゾール等が挙げられるが、これらに限定されるものではない。これらは単独で又は2種類以上を組み合わせて使用される。 Among the components (d), specific examples of heterocyclic compounds and compounds having a mercapto group include pyrrole, 3-methylpyrrole, 2,4-dimethylpyrrole, 2,5-dimethylpyrrole, 2-ethylpyrrole, and indole. , 5-hydroxyindole, pyrazole, 4-methylpyrazole, 3-aminopyrazole, 3-methylpyrazole, 3,5-diisopropylpyrazole, 3-amino-5-hydroxypyrazole, indazole, 5-aminoindazole, 6-aminoindazole , imidazole, 2-methylimidazole, 2-ethylimidazole, 2-butylimidazole, 4-imidazolecarboxylic acid, 4-methylimidazole, benzimidazole, 5-methylbenzimidazole, 2-aminobenzimidazole, 5,6-dimethylbenz Imidazole, 2-mercapto-1,3,4-thiadiazole, 2,5-dimethyl-1,3,4-thiazizole, 4-phenyl-1,2,3-thiazizole, 2-amino-1,3,4- Thiadizole, 2-amino-5-ethyl-1,3,4-oxadiazole, thiazole, 2-aminothiazole, 2-methylthiazole, 2-methoxythiazole, 2-ethoxythiazole, 2-isobutylthiazole, 2-trimethylsilyl Thiazole, 5-trimethylsilylthiazole, 4-methylthiazole, 4,5-dimethylthiazole, 2-ethylthiazole, 2,4-dimethylthiazole, 2-amino-5-methylthiazole, 2-amino-4-methylthiazole, 2 , 4,5-trimethylthiazole, benzothiazole, 2-methylbenzothiazole, 2,5-dimethylbenzothiazole, 1,2,4-triazole, 1,2,3-triazole, 1,2,5-triazole, 3 -Mercapto-4-methyl-4H-1,2,4-triazole, 3-mercapto-1,2,4-triazole, 4-amino-3,5-dimethyl-4H-1,2,4-triazole, 4 -amino-3,5-dipropyl-4H-1,2,4-triazole, 3-amino-5-isopropyl-1,2,4-triazole, 4-amino-3-mercapto-5-methyl-4H-1 , 2,4-triazole, 3-amino-5-mercapto-1,2,4-triazole, 3-amino-5-methyl-4H-1,2,4-triazole, 4-amino-1,2,4 -triazole, 4-amino-3,5-dimethyl-1,2,4-triazole, 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol, 3,5-diamino-1H -1,2,4-triazole, benzotriazole, 5-methyl-1H-benzotriazole, 5,6-dimethylbenzotriazole, 5-amino-1H-benzotriazole, benzotrizole-4-sulfonic acid, 1H-tetrazole , 5-methyl-1H-tetrazole, 5-(methylthio)-1H-tetrazole, 5-(ethylthio)-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-amino-1H-tetrazole, 5-nitro-1H Examples include, but are not limited to, -tetrazole, 1-methyl-1H-tetrazole, 5,5'-bis-1H-tetrazole, and the like. These may be used alone or in combination of two or more.
 (d)成分の中で、1H-テトラゾール、5置換-1H-テトラゾール、1置換-1H-テトラゾール及びその誘導体からなる群から選択される少なくとも1種が好ましく、1,2,3-トリアゾール、1,2,4-トリアゾール及びその誘導体、1,2,3-ベンゾトリアゾール、5置換-1H-ベンゾトリアゾール、6置換-1H-ベンゾトリアゾール、5,6置換-1H-ベンゾトリアゾール及びその誘導体からなる群から選択される少なくとも1種がさらに好ましく、5-メチル-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール又は5,5’-ビス-1H-テトラゾールが特に好ましい。 Among the components (d), at least one selected from the group consisting of 1H-tetrazole, 5-substituted-1H-tetrazole, 1-substituted-1H-tetrazole and derivatives thereof is preferred, and 1,2,3-triazole, 1 , 2,4-triazole and its derivatives, 1,2,3-benzotriazole, 5-substituted-1H-benzotriazole, 6-substituted-1H-benzotriazole, 5,6-substituted-1H-benzotriazole and its derivatives. At least one selected from the following is more preferred, and 5-methyl-1H-benzotriazole, 1H-tetrazole, 5-methyl-1H-tetrazole, and 5,5'-bis-1H-tetrazole are particularly preferred.
 (d)成分は、感光性樹脂と基板(例えば、銅及び銅合金)との腐食を防ぎ、かつ密着性を向上させるために用いられるものである。 Component (d) is used to prevent corrosion between the photosensitive resin and the substrate (for example, copper and copper alloy) and to improve adhesion.
 (d)成分の配合量は、(a)成分(ベース樹脂)100質量部に対して、通常1種類につき、0.1質量部~10質量部、2種類以上を組み合わせる場合は合計で0.1質量部~10質量部である。より好ましくは0.2質量部~5質量部の範囲である。0.1質量部以上であれば金属層への密着性の向上効果を確保できる傾向があり、10質量部以下であれば(d)成分の添加量に応じた密着性の向上効果を享受できる傾向にある。 The blending amount of component (d) is usually 0.1 parts by mass to 10 parts by mass per 100 parts by mass of component (a) (base resin), and when two or more kinds are combined, the total amount is 0.1 parts by mass. The amount is 1 part by mass to 10 parts by mass. More preferably, the amount is in the range of 0.2 parts by mass to 5 parts by mass. If it is 0.1 part by mass or more, it tends to ensure the effect of improving the adhesion to the metal layer, and if it is 10 parts by mass or less, the effect of improving the adhesion depending on the amount of component (d) added can be enjoyed. There is a tendency.
((e)成分:加熱により架橋又は重合し得る架橋剤)
 第1の絶縁膜形成材料は、加熱により架橋又は重合し得る架橋剤を含むことが好ましい。この成分は、第1の絶縁膜形成材料を塗布、露光、現像後に加熱処理する工程において、架橋剤である化合物がポリベンゾオキサゾール前駆体又はポリベンゾオキサゾールと反応、すなわち橋架けをする。又は加熱処理する工程において、架橋剤である化合物自身が重合する。これによって、比較的低い温度、例えば200℃以下の硬化において懸念される膜の脆さを防ぎ、機械特性、薬品耐性、フラックス耐性等を向上させることができる。
(Component (e): crosslinking agent that can be crosslinked or polymerized by heating)
The first insulating film forming material preferably contains a crosslinking agent that can be crosslinked or polymerized by heating. In this component, a compound that is a crosslinking agent reacts with the polybenzoxazole precursor or polybenzoxazole, that is, forms a bridge, in the step of applying heat, exposing, and developing the first insulating film forming material. Alternatively, in the step of heat treatment, the compound itself that is a crosslinking agent polymerizes. This prevents the brittleness of the film, which is a concern when curing at a relatively low temperature, for example, 200° C. or lower, and improves mechanical properties, chemical resistance, flux resistance, and the like.
 この(e)成分は、加熱処理する工程において架橋又は重合する化合物である以外に特に制限はないが、分子内にメチロール基、アルコキシメチル基、エポキシ基又はビニルエーテル基を有する化合物であると好ましい。これらの基がベンゼン環に結合している化合物、あるいはN位がメチロール基及び/又はアルコキシメチル基で置換されたメラミン樹脂、尿素樹脂が好ましい。また、これらの基がフェノール性水酸基を有するベンゼン環に結合している化合物は、現像する際に露光部の溶解速度が増加して感度を向上させることが出来る点でより好ましい。中でも感度とワニスの安定性、加えてパターン形成後の膜の硬化時に、膜の溶融を防ぐことができる点で、分子内に2個以上のメチロール基又はアルコキシメチル基を有する化合物がより好ましい。 Component (e) is not particularly limited as long as it is a compound that crosslinks or polymerizes in the heat treatment step, but it is preferably a compound having a methylol group, an alkoxymethyl group, an epoxy group, or a vinyl ether group in the molecule. Compounds in which these groups are bonded to a benzene ring, or melamine resins and urea resins in which the N-position is substituted with a methylol group and/or an alkoxymethyl group are preferred. Compounds in which these groups are bonded to a benzene ring having a phenolic hydroxyl group are more preferable because they can increase the dissolution rate of exposed areas during development and improve sensitivity. Among these, compounds having two or more methylol groups or alkoxymethyl groups in the molecule are more preferred in terms of sensitivity and varnish stability, as well as the ability to prevent melting of the film during curing after pattern formation.
 そのような化合物は、下記一般式(9)~(11)で表すことができる。 Such compounds can be represented by the following general formulas (9) to (11).

(式中、Gは単結合又は1価~4価の有機基を示し、R11、R12は各々独立に水素原子又は一価の有機基を示し、oは1~4の整数であり、p及びqは各々独立に0~4の整数である。)

(In the formula, G represents a single bond or a monovalent to tetravalent organic group, R 11 and R 12 each independently represent a hydrogen atom or a monovalent organic group, o is an integer of 1 to 4, p and q are each independently integers from 0 to 4.)

(式中、2つのJは各々独立に水素原子又は炭素原子数1~10のアルキル基で酸素原子、フッ素原子を含んでいてもよく、R13~R16は各々独立に水素原子又は一価の有機基を示し、r及びsは各々独立に1~3の整数であり、p及びqは各々独立に0~3の整数である。)

(In the formula, the two J's are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and may contain an oxygen atom or a fluorine atom, and R 13 to R 16 are each independently a hydrogen atom or a monovalent represents an organic group, r and s are each independently an integer of 1 to 3, and p and q are each independently an integer of 0 to 3.)

(式中、R17、R18は各々独立に水素原子又は一価の有機基を示し、複数あるR18は環構造を有して、互いに連結していてもよい。)

(In the formula, R 17 and R 18 each independently represent a hydrogen atom or a monovalent organic group, and a plurality of R 18s have a ring structure and may be connected to each other.)
 上述の架橋剤として、例えば下記化学式(12)等が挙げられるが、これらに限定されるものではない。また、これらの化合物を、単独で又は2種以上を組み合わせて使用することができる。 Examples of the above-mentioned crosslinking agent include, but are not limited to, the following chemical formula (12). Moreover, these compounds can be used alone or in combination of two or more.
 第1の絶縁膜形成材料において、(e)成分(加熱により架橋又は重合し得る架橋剤)の配合量は、現像時間と、未露光部残膜率の許容幅、及び硬化膜物性の点から、(a)成分(ベース樹脂)100質量部に対して1質量部~50質量部が好ましい。
 一方、230℃以下での硬化膜の薬品耐性、フラックス耐性の観点では、20質量部以上、すなわち、20質量部~50質量部とすることがさらに好ましい。
 第1の絶縁膜形成材料が分子中にフェノール性水酸基を有するポリイミド前駆体及び分子中にフェノール性水酸基を有さないポリイミド前駆体の少なくとも一方を含む場合、架橋剤として、後述の(E)重合性モノマー(架橋剤)を用いてもよい。
In the first insulating film forming material, the blending amount of component (e) (a crosslinking agent that can be crosslinked or polymerized by heating) is determined from the viewpoints of development time, permissible range of residual film rate in unexposed areas, and physical properties of the cured film. , preferably 1 part by mass to 50 parts by mass per 100 parts by mass of component (a) (base resin).
On the other hand, from the viewpoint of chemical resistance and flux resistance of the cured film at 230° C. or lower, the amount is more preferably 20 parts by mass or more, ie, 20 parts by mass to 50 parts by mass.
When the first insulating film forming material contains at least one of a polyimide precursor having a phenolic hydroxyl group in its molecule and a polyimide precursor not having a phenolic hydroxyl group in its molecule, the crosslinking agent (E) Polymer monomers (crosslinking agents) may also be used.
((f)成分:加熱により酸を発生する熱酸発生剤)
 第1の絶縁膜形成材料は、加熱により酸を発生する熱酸発生剤(熱潜在酸発生剤)を使用することができる。熱酸発生剤を使用すると、ポリベンゾオキサゾール前駆体のフェノール性水酸基含有ポリアミド構造が脱水反応を起こして環化する際の触媒として効率的に働くので好ましい。
(Component (f): thermal acid generator that generates acid upon heating)
As the first insulating film forming material, a thermal acid generator (thermal latent acid generator) that generates acid when heated can be used. It is preferable to use a thermal acid generator because it effectively acts as a catalyst when the phenolic hydroxyl group-containing polyamide structure of the polybenzoxazole precursor undergoes a dehydration reaction and undergoes cyclization.
 上記熱酸発生剤(熱潜在酸発生剤)から発生する酸としては、強酸が好ましく、具体的には、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸のようなアリールスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸のようなパーフルオロアルキルスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸のようなアルキルスルホン酸等が好ましい。これらの酸は、ポリベンゾオキサゾール前駆体のフェノール性水酸基含有ポリアミド構造が脱水反応を起こして環化する際の触媒として効率的に働く。 The acid generated from the thermal acid generator (thermal latent acid generator) is preferably a strong acid, and specifically, examples include p-toluenesulfonic acid, arylsulfonic acid such as benzenesulfonic acid, camphorsulfonic acid, Perfluoroalkylsulfonic acids such as trifluoromethanesulfonic acid and nonafluorobutanesulfonic acid, alkylsulfonic acids such as methanesulfonic acid, ethanesulfonic acid, butanesulfonic acid, and the like are preferred. These acids efficiently act as catalysts when the phenolic hydroxyl group-containing polyamide structure of the polybenzoxazole precursor undergoes a dehydration reaction and is cyclized.
 これらの酸は、熱酸発生剤として、オニウム塩としての塩の形又はイミドスルホナートのような共有結合の形で第1の絶縁膜形成材料に添加される。 These acids are added to the first insulating film forming material as a thermal acid generator in the form of a salt such as an onium salt or a covalent bond form such as an imidosulfonate.
 上記オニウム塩としては、例えば、ジフェニルヨードニウム塩のようなジアリールヨードニウム塩、ジ(t-ブチルフェニル)ヨードニウム塩のようなジ(アルキルアリール)ヨードニウム塩、トリメチルスルホニウム塩のようなトリアルキルスルホニウム塩、ジメチルフェニルスルホニウム塩のようなジアルキルモノアリールスルホニウム塩、ジフェニルメチルスルホニウム塩のようなジアリールモノアルキルヨードニウム塩等が好ましい。これらが好ましいのは、分解開始温度が150℃~250℃の範囲にあり、280℃以下でのポリベンゾオキサゾール前駆体の環化脱水反応に際して効率的に分解するためである。 Examples of the onium salts include diaryliodonium salts such as diphenyliodonium salts, di(alkylaryl)iodonium salts such as di(t-butylphenyl)iodonium salts, trialkylsulfonium salts such as trimethylsulfonium salts, dimethyl Dialkylmonoarylsulfonium salts such as phenylsulfonium salts, diarylmonoalkyliodonium salts such as diphenylmethylsulfonium salts, and the like are preferred. These are preferred because the decomposition initiation temperature is in the range of 150°C to 250°C, and they are efficiently decomposed during the cyclization and dehydration reaction of the polybenzoxazole precursor at 280°C or lower.
 以上の点から、オニウム塩としての熱酸発生剤としては、例えば、アリールスルホン酸、カンファースルホン酸、パーフルオロアルキルスルホン酸又はアルキルスルホン酸のジアリールヨードニウム塩、ジ(アルキルアリール)ヨードニウム塩、トリアルキルスルホニウム塩、ジアルキルモノアリールスルホニウム塩又はジアリールモノアルキルヨードニウム塩が保存安定性、現像性の点から好ましい。さらに具体的には、パラトルエンスルホン酸のジ(t-ブチルフェニル)ヨードニウム塩(1%重量減少温度180℃、5%重量減少温度185℃)、トリフルオロメタンスルホン酸のジ(t-ブチルフェニル)ヨードニウム塩(1%重量減少温度151℃、5%重量減少温度173℃)、トリフルオロメタンスルホン酸のトリメチルスルホニウム塩(1%重量減少温度255℃、5%重量減少温度278℃)、トリフルオロメタンスルホン酸のジメチルフェニルスルホニウム塩(1%重量減少温度186℃、5%重量減少温度214℃)、トリフルオロメタンスルホン酸のジフェニルメチルスルホニウム塩(1%重量減少温度154℃、5%重量減少温度179℃)、ノナフルオロブタンスルホン酸のジ(t-ブチルフェニル)ヨードニウム塩、カンファースルホン酸のジフェニルヨードニウム塩、エタンスルホン酸のジフェニルヨードニウム塩、ベンゼンスルホン酸のジメチルフェニルスルホニウム塩、トルエンスルホン酸のジフェニルメチルスルホニウム塩等を好ましいものとして挙げることができる。 From the above points, thermal acid generators in the form of onium salts include, for example, diaryliodonium salts, di(alkylaryl)iodonium salts, trialkyl sulfonic acids, camphorsulfonic acids, perfluoroalkylsulfonic acids, or alkylsulfonic acids. Sulfonium salts, dialkylmonoarylsulfonium salts, and diarylmonoalkyliodonium salts are preferred from the viewpoint of storage stability and developability. More specifically, di(t-butylphenyl)iodonium salt of para-toluenesulfonic acid (1% weight loss temperature 180°C, 5% weight loss temperature 185°C), di(t-butylphenyl) trifluoromethanesulfonic acid Iodonium salt (1% weight loss temperature 151°C, 5% weight loss temperature 173°C), trimethylsulfonium salt of trifluoromethanesulfonic acid (1% weight loss temperature 255°C, 5% weight loss temperature 278°C), trifluoromethanesulfonic acid dimethylphenylsulfonium salt of (1% weight loss temperature 186°C, 5% weight loss temperature 214°C), diphenylmethylsulfonium salt of trifluoromethanesulfonic acid (1% weight loss temperature 154°C, 5% weight loss temperature 179°C), Di(t-butylphenyl)iodonium salt of nonafluorobutanesulfonic acid, diphenyliodonium salt of camphorsulfonic acid, diphenyliodonium salt of ethanesulfonic acid, dimethylphenylsulfonium salt of benzenesulfonic acid, diphenylmethylsulfonium salt of toluenesulfonic acid, etc. can be mentioned as preferred.
 また、上記イミドスルホナートとしては、フタルイミドスルホナート及びナフトイルイミドスルホナートが挙げられ、ナフトイルイミドスルホナートが望ましい。ナフトイルイミドスルホナートの具体例としては、例えば、1,8-ナフトイルイミドトリフルオロメチルスルホナート(1%重量減少温度189℃、5%重量減少温度227℃)、2,3-ナフトイルイミドトリフルオロメチルスルホナート(1%重量減少温度185℃、5%重量減少温度216℃)などを好ましいものとして挙げることができる。 Further, examples of the imidosulfonate include phthalimide sulfonate and naphthoylimide sulfonate, with naphthoylimide sulfonate being preferred. Specific examples of naphthoylimide sulfonates include 1,8-naphthoylimide trifluoromethylsulfonate (1% weight loss temperature: 189°C, 5% weight loss temperature: 227°C), 2,3-naphthoylimide Preferred examples include trifluoromethylsulfonate (1% weight loss temperature: 185°C, 5% weight loss temperature: 216°C).
 また、上記(f)成分(熱酸発生剤)として、下記の化学式(13)に示すように、R1920C=N-O-SO-R21の構造を持つ化合物(1%重量減少温度204℃、5%重量減少温度235℃)を用いることもできる。ここで、R21としては、例えば、p-メチルフェニル基、フェニル基等のアリール基、メチル基、エチル基、イソプロピル基等のアルキル基、トリフルオロメチル基、ノナフルオロブチル基等のパーフルオロアルキル基などが挙げられる。また、R19としては、シアノ基、R20としては、例えば、メトキシフェニル基、フェニル基等が挙げられる。 In addition, as the component (f) (thermal acid generator), a compound having the structure R 19 R 20 C=N-O-SO 2 -R 21 (1% weight A reduction temperature of 204°C, a 5% weight loss temperature of 235°C) can also be used. Here, R 21 is, for example, an aryl group such as a p-methylphenyl group or a phenyl group, an alkyl group such as a methyl group, an ethyl group, or an isopropyl group, or a perfluoroalkyl group such as a trifluoromethyl group or a nonafluorobutyl group. Examples include groups. Further, examples of R 19 include a cyano group, and examples of R 20 include a methoxyphenyl group and a phenyl group.
 また、上記(f)成分(熱酸発生剤)として、下記の化学式(14)に示すように、アミド構造-HN-SO-R22をもつ化合物(1%重量減少温度104℃、5%重量減少温度270℃)を用いることもできる。ここで、R22としては、例えば、メチル基、エチル基、プロピル基等のアルキル基、メチルフェニル基、フェニル基等のアリール基、トリフルオロメチル基、ノナフルオロブチル等のパーフルオロアルキル基などが挙げられる。また、-HN-SO-R22の結合する基としては、例えば、2,2,-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2,-ビス(4-ヒドロキシフェニル)プロパン、ジ(4-ヒドロキシフェニル)エーテル等が挙げられる。 In addition, as the above component (f) (thermal acid generator), as shown in the following chemical formula (14), a compound having an amide structure -HN-SO 2 -R 22 (1% weight loss temperature 104°C, 5% A weight loss temperature of 270° C.) can also be used. Here, R 22 includes, for example, an alkyl group such as a methyl group, an ethyl group, and a propyl group, an aryl group such as a methylphenyl group and a phenyl group, and a perfluoroalkyl group such as a trifluoromethyl group and a nonafluorobutyl group. Can be mentioned. Furthermore, as the group to which -HN-SO 2 -R 22 is bonded, for example, 2,2,-bis(4-hydroxyphenyl)hexafluoropropane, 2,2,-bis(4-hydroxyphenyl)propane, di- (4-hydroxyphenyl)ether and the like.
 また、本開示で用いる(f)成分(熱酸発生剤)としては、オニウム塩以外の強酸と塩基から形成された塩を用いることもできる。このような強酸としては、例えば、p-トルエンスルホン酸、ベンゼンスルホン酸のようなアリールスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸のようなパーフルオロアルキルスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸のようなアルキルスルホン酸が好ましい。塩基としては、例えば、ピリジン、2,4,6-トリメチルピリジンのようなアルキルピリジン、2-クロロ-N-メチルピリジンのようなN-アルキルピリジン、ハロゲン化-N-アルキルピリジン等が好ましい。さらに具体的には、p-トルエンスルホン酸のピリジン塩(1%重量減少温度147℃、5%重量減少温度190℃)、p-トルエンスルホン酸のL-アスパラギン酸ジベンジルエステル塩(1%重量減少温度202℃、5%重量減少温度218℃)、p-トルエンスルホン酸の2,4,6-トリメチルピリジン塩、p-トルエンスルホン酸の1,4-ジメチルピリジン塩などが保存安定性、現像性の点から好ましいものとして挙げられる。これらも280℃以下でのポリベンゾオキサゾール前駆体の環化脱水反応に際して分解し、触媒として働くことができる。 Furthermore, as the component (f) (thermal acid generator) used in the present disclosure, a salt formed from a strong acid and a base other than onium salts can also be used. Examples of such strong acids include arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, perfluoroalkylsulfonic acids such as camphorsulfonic acid, trifluoromethanesulfonic acid, and nonafluorobutanesulfonic acid, and methanesulfonic acid. Acid, alkylsulfonic acids such as ethanesulfonic acid, butanesulfonic acid are preferred. Preferred examples of the base include pyridine, alkylpyridine such as 2,4,6-trimethylpyridine, N-alkylpyridine such as 2-chloro-N-methylpyridine, and halogenated-N-alkylpyridine. More specifically, p-toluenesulfonic acid pyridine salt (1% weight loss temperature 147°C, 5% weight loss temperature 190°C), p-toluenesulfonic acid L-aspartic acid dibenzyl ester salt (1% weight loss temperature 190°C), 2,4,6-trimethylpyridine salt of p-toluenesulfonic acid, 1,4-dimethylpyridine salt of p-toluenesulfonic acid, etc. have good storage stability and development. These are preferred from the viewpoint of performance. These also decompose during the cyclization and dehydration reaction of the polybenzoxazole precursor at 280° C. or lower, and can function as a catalyst.
 (f)成分(熱酸発生剤)の配合量は、(a)成分(ベース樹脂)100質量部に対して0.1質量部~30質量部が好ましく、0.2質量部~20質量部がより好ましく、0.5質量部~10質量部がさらに好ましい。 The blending amount of component (f) (thermal acid generator) is preferably 0.1 parts by mass to 30 parts by mass, and preferably 0.2 parts by mass to 20 parts by mass, per 100 parts by mass of component (a) (base resin). is more preferable, and even more preferably 0.5 parts by weight to 10 parts by weight.
(その他の成分)
 第1の絶縁膜形成材料は、上記(a)~(f)成分に加えて、(1)溶解促進剤、(2)溶解阻害剤、(3)密着性付与剤、(4)界面活性剤又はレベリング剤などの従来から公知のその他の成分を配合してもよい。
(Other ingredients)
In addition to the above components (a) to (f), the first insulating film forming material includes (1) a dissolution promoter, (2) a dissolution inhibitor, (3) an adhesion imparting agent, and (4) a surfactant. Alternatively, other conventionally known components such as a leveling agent may be added.
[第2の絶縁膜形成材料]
 第2の絶縁膜形成材料では、分子中にフェノール性水酸基を有する熱硬化性ポリアミドとして、(A)ポリイミド前駆体が含まれる。ポリイミド前駆体は、重合性の不飽和結合部位を有してもよい。また、第2の絶縁膜形成材料には、分子中にフェノール性水酸基を有するポリベンゾオキサゾール前駆体を含んでもよいし、分子中にフェノール性水酸基を有さないポリイミド前駆体を含んでもよい。第2の絶縁膜形成材料が分子中にフェノール性水酸基を有するポリベンゾオキサゾール前駆体及び分子中にフェノール性水酸基を有さないポリイミド前駆体の少なくとも一方を含有する場合、分子中にフェノール性水酸基を有するポリイミド前駆体、分子中にフェノール性水酸基を有するポリベンゾオキサゾール前駆体及び分子中にフェノール性水酸基を有さないポリイミド前駆体の合計に占める分子中にフェノール性水酸基を有するポリイミド前駆体の割合は、50質量%以上100質量%未満が好ましく、60質量%~90質量%がより好ましく、65質量%~80質量%がさらに好ましい。
 なお、第2の絶縁膜形成材料には、分子中にフェノール性水酸基を有するポリベンゾオキサゾール前駆体を含まなくてもよいし、分子中にフェノール性水酸基を有さないポリイミド前駆体を含まなくてもよい。
[Second insulation film forming material]
The second insulating film forming material includes (A) a polyimide precursor as a thermosetting polyamide having a phenolic hydroxyl group in its molecule. The polyimide precursor may have a polymerizable unsaturated bond site. Further, the second insulating film forming material may include a polybenzoxazole precursor having a phenolic hydroxyl group in its molecule, or a polyimide precursor having no phenolic hydroxyl group in its molecule. When the second insulating film forming material contains at least one of a polybenzoxazole precursor having a phenolic hydroxyl group in its molecule and a polyimide precursor having no phenolic hydroxyl group in its molecule, The proportion of the polyimide precursor that has a phenolic hydroxyl group in the molecule in the total of the polyimide precursor that has a phenolic hydroxyl group in the molecule, the polybenzoxazole precursor that has a phenolic hydroxyl group in the molecule, and the polyimide precursor that does not have a phenolic hydroxyl group in the molecule is , preferably 50% by mass or more and less than 100% by mass, more preferably 60% by mass to 90% by mass, even more preferably 65% by mass to 80% by mass.
Note that the second insulating film forming material does not need to contain a polybenzoxazole precursor having a phenolic hydroxyl group in its molecule, or it may not contain a polyimide precursor having no phenolic hydroxyl group in its molecule. Good too.
 (A)ポリイミド前駆体は、ポリアミド酸、ポリアミド酸エステル、ポリアミド酸塩及びポリアミド酸アミドからなる群より選択される少なくとも1種の樹脂であることが好ましい。ポリアミド酸エステル及びポリアミド酸アミドは、ポリアミド酸における少なくとも一部のカルボキシ基の水素原子が1価の有機基に置換された化合物であり、ポリアミド酸塩は、ポリアミド酸における少なくとも一部のカルボキシ基がpH7以上の塩基性化合物と塩構造を形成している化合物である。 (A) The polyimide precursor is preferably at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide. Polyamic acid ester and polyamic acid amide are compounds in which at least some of the carboxy groups in polyamic acid have hydrogen atoms substituted with monovalent organic groups, and polyamic acid salts are compounds in which at least some of the carboxy groups in polyamic acid have been replaced with monovalent organic groups. It is a compound that forms a salt structure with a basic compound having a pH of 7 or higher.
 (A)ポリイミド前駆体は、下記一般式(1)で表される構造単位を有する化合物を含むことが好ましい。これにより、高い信頼性を示す絶縁膜を備える半導体装置が得られる傾向がある。 (A) The polyimide precursor preferably contains a compound having a structural unit represented by the following general formula (1). Thereby, a semiconductor device including an insulating film exhibiting high reliability tends to be obtained.
 一般式(1)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、又は1価の有機基を表し、R及びRの少なくとも1つは、重合性の不飽和結合を有してもよい。
 ポリイミド前駆体は、上記一般式(1)で表される構造単位を複数有していてもよく、複数の構造単位におけるX、Y、R及びRはそれぞれ同じであってもよく、異なっていてもよい。
 なお、R及びRは、それぞれ独立に水素原子、又は1価の有機基であればその組み合わせは特に限定されない。例えば、R及びRは、少なくとも1つが水素原子であり、残りが後述する1価の有機基であってもよく、いずれも同じ又は互いに異なる1価の有機基であってもよく、両方が水素原子であってもよい。前述のようにポリイミド前駆体が上記一般式(1)で表される構造単位を複数有する場合、各構造単位のR及びRの組み合わせはそれぞれ同じであってもよく、異なっていてもよい。
In the general formula (1), X represents a tetravalent organic group, and Y represents a divalent organic group. R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group, and at least one of R 6 and R 7 may have a polymerizable unsaturated bond.
The polyimide precursor may have a plurality of structural units represented by the above general formula (1), and X, Y, R 6 and R 7 in the plurality of structural units may be the same or different. You can leave it there.
Note that the combination of R 6 and R 7 is not particularly limited as long as they are each independently a hydrogen atom or a monovalent organic group. For example, at least one of R 6 and R 7 may be a hydrogen atom, and the rest may be monovalent organic groups described below, both may be the same or different monovalent organic groups, or both may be the same or different monovalent organic groups. may be a hydrogen atom. As mentioned above, when the polyimide precursor has a plurality of structural units represented by the above general formula (1), the combination of R 6 and R 7 of each structural unit may be the same or different. .
 一般式(1)において、Xで表される4価の有機基は、炭素数が4~25であることが好ましく、5~13であることがより好ましく、6~12であることがさらに好ましい。
 Xで表される4価の有機基は、耐熱性の観点からは、芳香環を含んでもよい。芳香環としては、芳香族炭化水素基(例えば、芳香環を構成する炭素数は6~20)、芳香族複素環式基(例えば、複素環を構成する原子数は5~20)等が挙げられる。Xで表される4価の有機基は、芳香族炭化水素基であることが好ましい。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、フェナントレン環等が挙げられる。
 Xで表される4価の有機基が芳香環を含む場合、各芳香環は、置換基を有していてもよいし、無置換であってもよい。芳香環の置換基としては、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等が挙げられる。
 Xで表される4価の有機基がベンゼン環を含む場合、Xで表される4価の有機基は1つ~4つのベンゼン環を含むことが好ましく、1つ~3つのベンゼン環を含むことがより好ましく、1つ又は2つのベンゼン環を含むことがさらに好ましい。
 Xで表される4価の有機基が2つ以上のベンゼン環を含む場合、各ベンゼン環は、単結合により連結されていてもよいし、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)等の連結基、これら連結基を少なくとも2つ組み合わせた複合連結基などにより結合されていてもよい。また、2つのベンゼン環が単結合及び連結基の少なくとも一方により2箇所で結合されて、2つのベンゼン環の間に連結基を含む5員環又は6員環が形成されていてもよい。
In general formula (1), the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 5 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms. .
The tetravalent organic group represented by X may contain an aromatic ring from the viewpoint of heat resistance. Examples of aromatic rings include aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), aromatic heterocyclic groups (for example, the number of atoms constituting the heterocycle is 5 to 20), etc. It will be done. The tetravalent organic group represented by X is preferably an aromatic hydrocarbon group. Examples of the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, and a phenanthrene ring.
When the tetravalent organic group represented by X contains an aromatic ring, each aromatic ring may have a substituent or may be unsubstituted. Examples of substituents on the aromatic ring include alkyl groups, fluorine atoms, halogenated alkyl groups, hydroxyl groups, and amino groups.
When the tetravalent organic group represented by X contains a benzene ring, the tetravalent organic group represented by X preferably contains one to four benzene rings, and preferably contains one to three benzene rings. More preferably, it contains one or two benzene rings.
When the tetravalent organic group represented by , ether bond (-O-), sulfide bond (-S-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group. ), siloxane bond (-O-(Si(R B ) 2 -O-) n ; two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more ), or a composite linking group combining at least two of these linking groups. Furthermore, two benzene rings may be bonded at two locations by at least one of a single bond and a linking group, to form a five-membered ring or a six-membered ring containing a linking group between the two benzene rings.
 一般式(1)において、-COOR基と-CONH-基とは互いにオルト位置にあることが好ましく、-COOR基と-CO-基とは互いにオルト位置にあることが好ましい。 In general formula (1), -COOR 6 groups and -CONH- groups are preferably located at ortho positions, and -COOR 7 groups and -CO- groups are preferably located at ortho positions.
 Xで表される4価の有機基の具体例としては、下記式(A)~式(F)で表される基を挙げられる。中でも、柔軟性に優れ、接合界面での空隙の発生がより抑制された絶縁膜が得られる観点から、下記式(E)で表される基が好ましく、下記式(E)で表され、Cは、エーテル結合を含む基であることがより好ましく、エーテル結合であることがさらに好ましい。
 なお、本開示は下記具体例に限定されるものではない。
Specific examples of the tetravalent organic group represented by X include groups represented by the following formulas (A) to (F). Among these, a group represented by the following formula (E) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing an ether bond, and even more preferably an ether bond.
Note that the present disclosure is not limited to the specific examples below.
 式(D)において、A及びBは、それぞれ独立に、単結合又はベンゼン環と共役しない2価の基である。ただし、A及びBの両方が単結合となることはない。ベンゼン環と共役しない2価の基としては、メチレン基、ハロゲン化メチレン基、ハロゲン化メチルメチレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)等が挙げられる。中でも、A及びBは、それぞれ独立に、メチレン基、ビス(トリフルオロメチル)メチレン基、ジフルオロメチレン基、エーテル結合、スルフィド結合等が好ましく、エーテル結合がより好ましい。 In formula (D), A and B are each independently a single bond or a divalent group that is not conjugated with a benzene ring. However, both A and B cannot be a single bond. Divalent groups that are not conjugated with the benzene ring include methylene group, halogenated methylene group, halogenated methylmethylene group, carbonyl group, sulfonyl group, ether bond (-O-), sulfide bond (-S-), and silylene bond. (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), and the like. Among these, A and B are each independently preferably a methylene group, a bis(trifluoromethyl)methylene group, a difluoromethylene group, an ether bond, a sulfide bond, etc., and an ether bond is more preferable.
 式(E)において、Cは、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。Cは、エーテル結合を含むことが好ましく、エーテル結合であることが好ましい。
 また、Cは、下記式(C1)で表される構造であってもよい。
In formula (E), C represents an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a phenylene group, an ester bond (-OC( =O)-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si( R B ) 2 -O-) n ; Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or a combination of at least two of these. represents a divalent group. C preferably contains an ether bond, and is preferably an ether bond.
Further, C may have a structure represented by the following formula (C1).
 式(E)におけるCで表されるアルキレン基としては、炭素数が1~10のアルキレン基であることが好ましく、炭素数が1~5のアルキレン基であることがより好ましく、炭素数が1又は2のアルキレン基であることがさらに好ましい。
 式(E)におけるCで表されるアルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖状アルキレン基;メチルメチレン基、メチルエチレン基、エチルメチレン基、ジメチルメチレン基、1,1-ジメチルエチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、エチルエチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,3-ジメチルテトラメチレン基、2,3-ジメチルテトラメチレン基、1,4-ジメチルテトラメチレン基等の分岐鎖状アルキレン基;などが挙げられる。これらの中でも、メチレン基が好ましい。
The alkylene group represented by C in formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and an alkylene group having 1 to 5 carbon atoms. or 2 alkylene group is more preferable.
Specific examples of the alkylene group represented by C in formula (E) include linear alkylene groups such as methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and hexamethylene group; methylmethylene group; Methylethylene group, ethylmethylene group, dimethylmethylene group, 1,1-dimethylethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, ethylethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group group, 1-ethyltrimethylene group, 2-ethyltrimethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2- Branched alkylene groups such as dimethyltetramethylene group, 1,3-dimethyltetramethylene group, 2,3-dimethyltetramethylene group, and 1,4-dimethyltetramethylene group; and the like. Among these, methylene group is preferred.
 式(E)におけるCで表されるハロゲン化アルキレン基としては、炭素数が1~10のハロゲン化アルキレン基であることが好ましく、炭素数が1~5のハロゲン化アルキレン基であることがより好ましく、炭素数が1~3のハロゲン化アルキレン基であることがさらに好ましい。
 式(E)におけるCで表されるハロゲン化アルキレン基の具体例としては、上述の式(E)におけるCで表されるアルキレン基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキレン基が挙げられる。これらの中でも、フルオロメチレン基、ジフルオロメチレン基、ヘキサフルオロジメチルメチレン基等が好ましい。
The halogenated alkylene group represented by C in formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms. Preferably, a halogenated alkylene group having 1 to 3 carbon atoms is more preferable.
As a specific example of the halogenated alkylene group represented by C in formula (E), at least one hydrogen atom contained in the alkylene group represented by C in formula (E) above is a fluorine atom, a chlorine atom, etc. Examples include alkylene groups substituted with halogen atoms. Among these, fluoromethylene group, difluoromethylene group, hexafluorodimethylmethylene group, etc. are preferred.
 上記シリレン結合又はシロキサン結合に含まれるR又はRで表されるアルキル基としては、炭素数が1~5のアルキル基であることが好ましく、炭素数が1~3のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。R又はRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。 The alkyl group represented by R A or R B included in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms. is more preferable, and even more preferably an alkyl group having 1 or 2 carbon atoms. Specific examples of the alkyl group represented by R A or R B include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, etc. Can be mentioned.
 Xで表される4価の有機基の具体例は、下記式(J)~式(O)で表される基であってもよい。 Specific examples of the tetravalent organic group represented by X may be groups represented by the following formulas (J) to (O).
 Xで表される4価の有機基は、硬化物としたときの熱膨張率の調整の観点から、脂環を含んでもよい。Xで表される4価の有機基が脂環を含む場合、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、デカヒドロナフタレン環、ノルボルナン環、アダマンタン環、ビシクロ[2.2.2]オクタン環等の不飽和結合を含まない環構造、シクロヘキセン環等の不飽和結合を含む環構造などが挙げられる。また、これら環構造を含むスピロ環構造も挙げられる。脂環は、オキソ基(=O)、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等の置換基を有していてもよいし、無置換であってもよい。
 Xで表される4価の有機基がスピロ環構造を有する場合の具体例として、下記式(P)が挙げられる。
The tetravalent organic group represented by X may contain an alicyclic ring from the viewpoint of adjusting the coefficient of thermal expansion when a cured product is formed. When the tetravalent organic group represented by Examples include ring structures that do not contain unsaturated bonds, such as a bicyclo[2.2.2]octane ring, and ring structures that contain unsaturated bonds, such as a cyclohexene ring. Also included are spiro ring structures containing these ring structures. The alicyclic ring may have a substituent such as an oxo group (=O), an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, or an amino group, or may be unsubstituted.
A specific example of the case where the tetravalent organic group represented by X has a spiro ring structure is the following formula (P).
 一般式(1)において、Yで表される2価の有機基は、炭素数が4~25であることが好ましく、6~20であることがより好ましく、12~18であることがさらに好ましい。
 Yで表される2価の有機基の骨格は、Xで表される4価の有機基の骨格と同様であってもよく、Yで表される2価の有機基の好ましい骨格は、Xで表される4価の有機基の好ましい骨格と同様であってもよい。Yで表される2価の有機基の骨格は、Xで表される4価の有機基にて、2つの結合位置が原子(例えば水素原子)又は官能基(例えばアルキル基)に置換された構造であってもよい。
 Yで表される2価の有機基は、2価の脂肪族基であってもよく、2価の芳香族基であってもよい。耐熱性の観点から、Yで表される2価の有機基は、2価の芳香族基であることが好ましい。2価の芳香族基としては、2価の芳香族炭化水素基(例えば、芳香環を構成する炭素数は6~20)、2価の芳香族複素環式基(例えば、複素環を構成する原子数は5~20)等が挙げられ、2価の芳香族炭化水素基が好ましい。
In general formula (1), the divalent organic group represented by Y preferably has 4 to 25 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 12 to 18 carbon atoms. .
The skeleton of the divalent organic group represented by Y may be the same as the skeleton of the tetravalent organic group represented by X, and the preferable skeleton of the divalent organic group represented by Y is It may be the same as the preferred skeleton of the tetravalent organic group represented by. The skeleton of the divalent organic group represented by Y is a tetravalent organic group represented by X, in which two bonding positions are substituted with atoms (e.g. hydrogen atoms) or functional groups (e.g. alkyl groups). It may be a structure.
The divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance, the divalent organic group represented by Y is preferably a divalent aromatic group. Examples of divalent aromatic groups include divalent aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), divalent aromatic heterocyclic groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), The number of atoms is 5 to 20), and divalent aromatic hydrocarbon groups are preferred.
 Yで表される2価の芳香族基の具体例としては、下記式(G)~下記式(H)で表される基を挙げることができる。中でも、柔軟性に優れ、接合界面での空隙の発生がより抑制された絶縁膜が得られる観点から、下記式(H)で表される基が好ましく、下記式(H)で表され、Dは、単結合又はエーテル結合を含む基であることがより好ましく、単結合又はエーテル結合であることがさらに好ましい。 Specific examples of the divalent aromatic group represented by Y include groups represented by the following formulas (G) to (H). Among these, a group represented by the following formula (H) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing a single bond or an ether bond, and even more preferably a single bond or an ether bond.
 式(G)~式(H)において、Rは、それぞれ独立に、アルキル基、アルコキシ基、水酸基、ハロゲン化アルキル基、フェニル基又はハロゲン原子を表し、nは、それぞれ独立に、0~4の整数を表す。
 式(H)において、Dは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。また、Dは、上記式(C1)で表される構造であってもよい。式(H)におけるDの具体例は、単結合か、又は、式(E)におけるCの具体例と同様である。
 式(H)におけるDとしては、各々独立に、単結合、エーテル結合、エーテル結合とフェニレン基とを含む基、エーテル結合とフェニレン基とアルキレン基とを含む基等であることが好ましい。
In formulas (G) to (H), R each independently represents an alkyl group, an alkoxy group, a hydroxyl group, a halogenated alkyl group, a phenyl group, or a halogen atom, and n each independently represents 0 to 4. Represents an integer.
In formula (H), D represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a phenylene group, an ester bond (-O -C(=O)-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ; Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups. Further, D may have a structure represented by the above formula (C1). A specific example of D in formula (H) is a single bond or the same as a specific example of C in formula (E).
D in formula (H) is preferably a single bond, an ether bond, a group containing an ether bond and a phenylene group, a group containing an ether bond, a phenylene group, and an alkylene group, etc., each independently.
 式(G)~式(H)におけるRで表されるアルキル基としては、炭素数が1~10のアルキル基であることが好ましく、炭素数が1~5のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。
 式(G)~式(H)におけるRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。
The alkyl group represented by R in formulas (G) to (H) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. , more preferably an alkyl group having 1 or 2 carbon atoms.
Specific examples of the alkyl group represented by R in formulas (G) to (H) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, Examples include t-butyl group.
 式(G)~式(H)におけるRで表されるアルコキシ基としては、炭素数が1~10のアルコキシ基であることが好ましく、炭素数が1~5のアルコキシ基であることがより好ましく、炭素数が1又は2のアルコキシ基であることがさらに好ましい。
 式(G)~式(H)におけるRで表されるアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基等が挙げられる。
The alkoxy group represented by R in formulas (G) to (H) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms. , more preferably an alkoxy group having 1 or 2 carbon atoms.
Specific examples of the alkoxy group represented by R in formulas (G) to (H) include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and s-butoxy group. , t-butoxy group and the like.
 式(G)~式(H)におけるRで表されるハロゲン化アルキル基としては、炭素数が1~5のハロゲン化アルキル基であることが好ましく、炭素数が1~3のハロゲン化アルキル基であることがより好ましく、炭素数が1又は2のハロゲン化アルキル基であることがさらに好ましい。
 式(G)~式(H)におけるRで表されるハロゲン化アルキル基の具体例としては、式(G)~式(H)におけるRで表されるアルキル基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキル基が挙げられる。これらの中でも、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が好ましい。
The halogenated alkyl group represented by R in formulas (G) to (H) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, and preferably a halogenated alkyl group having 1 to 3 carbon atoms. More preferably, it is a halogenated alkyl group having 1 or 2 carbon atoms.
Specific examples of the halogenated alkyl group represented by R in formulas (G) to (H) include at least one hydrogen atom contained in the alkyl group represented by R in formulas (G) to (H). Examples include alkyl groups in which is substituted with a halogen atom such as a fluorine atom or a chlorine atom. Among these, fluoromethyl group, difluoromethyl group, trifluoromethyl group, etc. are preferred.
 式(G)~式(H)におけるnは、それぞれ独立に、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。 In formulas (G) to (H), n is each independently preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
 Yで表される2価の脂肪族基の具体例としては、直鎖状又は分岐鎖状のアルキレン基、シクロアルキレン基、ポリアルキレンオキサイド構造を有する2価の基等が挙げられる。 Specific examples of the divalent aliphatic group represented by Y include a linear or branched alkylene group, a cycloalkylene group, a divalent group having a polyalkylene oxide structure, and the like.
 Yで表される直鎖状又は分岐鎖状のアルキレン基としては、炭素数が1~20のアルキレン基であることが好ましく、炭素数が1~15のアルキレン基であることがより好ましく、炭素数が1~10のアルキレン基であることがさらに好ましい。
 Yで表されるアルキレン基の具体例としては、テトラメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、2-メチルペンタメチレン基、2-メチルヘキサメチレン基、2-メチルヘプタメチレン基、2-メチルオクタメチレン基、2-メチルノナメチレン基、2-メチルデカメチレン基等が挙げられる。
The linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms, and More preferably, the number is 1 to 10 alkylene groups.
Specific examples of the alkylene group represented by Y include tetramethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, 2-methylpentamethylene group. , 2-methylhexamethylene group, 2-methylheptamethylene group, 2-methyloctamethylene group, 2-methylnonamethylene group, 2-methyldecamethylene group, and the like.
 Yで表されるシクロアルキレン基としては、炭素数が3~10のシクロアルキレン基であることが好ましく、炭素数が3~6のシクロアルキレン基であることがより好ましい。
 Yで表されるシクロアルキレン基の具体例としては、シクロプロピレン基、シクロヘキシレン基等が挙げられる。
The cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, more preferably a cycloalkylene group having 3 to 6 carbon atoms.
Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group and a cyclohexylene group.
 Yで表されるポリアルキレンオキサイド構造を有する2価の基に含まれる単位構造としては、炭素数1~10のアルキレンオキサイド構造が好ましく、炭素数1~8のアルキレンオキサイド構造がより好ましく、炭素数1~4のアルキレンオキサイド構造がさらに好ましい。なかでも、ポリアルキレンオキサイド構造としてはポリエチレンオキサイド構造又はポリプロピレンオキサイド構造が好ましい。アルキレンオキサイド構造中のアルキレン基は直鎖状であっても分岐状であってもよい。ポリアルキレンオキサイド構造中の単位構造は1種類でもよく、2種類以上であってもよい。 The unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and An alkylene oxide structure of 1 to 4 is more preferred. Among these, as the polyalkylene oxide structure, a polyethylene oxide structure or a polypropylene oxide structure is preferable. The alkylene group in the alkylene oxide structure may be linear or branched. The number of unit structures in the polyalkylene oxide structure may be one, or two or more.
 Yで表される2価の有機基は、ポリシロキサン構造を有する2価の基であってもよい。Yで表されるポリシロキサン構造を有する2価の基としては、ポリシロキサン構造中のケイ素原子が水素原子、炭素数1~20のアルキル基又は炭素数6~18のアリール基と結合しているポリシロキサン構造を有する2価の基が挙げられる。
 ポリシロキサン構造中のケイ素原子と結合する炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基が好ましい。
 ポリシロキサン構造中のケイ素原子と結合する炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基の具体例としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。炭素数6~18のアリール基の具体例としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 ポリシロキサン構造中の炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種類でもよく、2種類以上であってもよい。
 Yで表されるポリシロキサン構造を有する2価の基を構成するケイ素原子は、メチレン基、エチレン基等のアルキレン基、フェニレン基等のアリーレン基などを介して一般式(1)中のNH基と結合していてもよい。
The divalent organic group represented by Y may be a divalent group having a polysiloxane structure. As a divalent group having a polysiloxane structure represented by Y, a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. Examples include divalent groups having a polysiloxane structure.
Specific examples of the alkyl group having 1 to 20 carbon atoms bonded to the silicon atom in the polysiloxane structure include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n- Examples include octyl group, 2-ethylhexyl group, n-dodecyl group, and the like. Among these, methyl group is preferred.
The aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent. Specific examples of the substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group. Specific examples of the aryl group having 6 to 18 carbon atoms include phenyl group, naphthyl group, and benzyl group. Among these, phenyl group is preferred.
The number of alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 18 carbon atoms in the polysiloxane structure may be one type or two or more types.
The silicon atom constituting the divalent group having a polysiloxane structure represented by Y is an NH group in general formula (1) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group. May be combined with
 式(G)で表される基は、下記式(G’)で表される基であることが好ましく、式(H)で表される基は、下記式(H’)、式(H'')又は式(H''')で表される基であることが好ましい。 The group represented by the formula (G) is preferably a group represented by the following formula (G'), and the group represented by the formula (H) is preferably a group represented by the following formula (H') or the formula (H'). ') or a group represented by the formula (H''') is preferable.
 式(H’’’)中、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基、フェニル基、水酸基又はハロゲン原子を表す。Rは、好ましくはアルキル基であり、より好ましくはメチル基である。 In formula (H'''), R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, a hydroxyl group, or a halogen atom. R is preferably an alkyl group, more preferably a methyl group.
 一般式(1)における、Xで表される4価の有機基とYで表される2価の有機基との組み合わせは特に限定されない。Xで表される4価の有機基とYで表される2価の有機基との組み合わせとしては、Xが式(E)で表される基であり、Yが式(H)で表される基の組み合わせ等が挙げられる。 The combination of the tetravalent organic group represented by X and the divalent organic group represented by Y in general formula (1) is not particularly limited. As a combination of a tetravalent organic group represented by X and a divalent organic group represented by Y, X is a group represented by formula (E), and Y is a group represented by formula (H). Examples include combinations of groups.
 R及びRは、それぞれ独立に、水素原子又は1価の有機基を表す。1価の有機基としては、炭素数1~4の脂肪族炭化水素基又は不飽和二重結合を有する有機基であることが好ましく、下記一般式(2)で表される基、エチル基、イソブチル基又はt-ブチル基のいずれかであることがより好ましく、炭素数1若しくは2の脂肪族炭化水素基又は下記一般式(2)で表される基を含むことがさらに好ましい。
 1価の有機基が不飽和二重結合を有する有機基、好ましくは下記一般式(2)で表される基を含むことでi線の透過率が高く、400℃以下の低温硬化時にも良好な硬化物を形成できる傾向にある。また、1価の有機基が不飽和二重結合を有する有機基、好ましくは下記一般式(2)で表される基を含む場合、(C)化合物によって不飽和二重結合部分の少なくとも一部が脱離する。
R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group. The monovalent organic group is preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms or an organic group having an unsaturated double bond, such as a group represented by the following general formula (2), an ethyl group, It is more preferably either an isobutyl group or a t-butyl group, and even more preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms or a group represented by the following general formula (2).
Since the monovalent organic group contains an organic group having an unsaturated double bond, preferably a group represented by the following general formula (2), it has high i-line transmittance and is good even when cured at low temperatures of 400°C or less. It tends to form a cured product. In addition, when the monovalent organic group includes an organic group having an unsaturated double bond, preferably a group represented by the following general formula (2), at least a portion of the unsaturated double bond moiety is removed by the compound (C). is detached.
 炭素数1~4の脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等が挙げられ、中でも、エチル基、イソブチル基及びt-ブチル基が好ましい。 Specific examples of aliphatic hydrocarbon groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc. Among them, ethyl group, Isobutyl and t-butyl groups are preferred.
 一般式(2)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、Rは2価の連結基を表す。 In general formula (2), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
 一般式(2)におけるR~R10で表される脂肪族炭化水素基の炭素数は1~3であり、1又は2であることが好ましい。R~R10で表される脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、メチル基が好ましい。 The aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (2) has 1 to 3 carbon atoms, preferably 1 or 2 carbon atoms. Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a methyl group is preferred.
 一般式(2)におけるR~R10の組み合わせとしては、R及びRが水素原子であり、R10が水素原子又はメチル基の組み合わせが好ましい。 The combination of R 8 to R 10 in general formula (2) is preferably a combination in which R 8 and R 9 are hydrogen atoms, and R 10 is a hydrogen atom or a methyl group.
 一般式(2)におけるRは、2価の連結基であり、好ましくは、炭素数1~10の炭化水素基であることが好ましい。炭素数1~10の炭化水素基としては、例えば、直鎖状又は分岐鎖状のアルキレン基が挙げられる。
 Rにおける炭素数は、1つ~10つが好ましく、2つ~5つがより好ましく、2つ又は3つがさらに好ましい。
R x in general formula (2) is a divalent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms. Examples of the hydrocarbon group having 1 to 10 carbon atoms include linear or branched alkylene groups.
The number of carbon atoms in R x is preferably 1 to 10, more preferably 2 to 5, and even more preferably 2 or 3.
 一般式(1)においては、R及びRの少なくとも一方が、前記一般式(2)で表される基であってもよく、R及びRの両方が前記一般式(2)で表される基であってもよい。 In general formula (1), at least one of R 6 and R 7 may be a group represented by the above general formula (2), and both R 6 and R 7 may be a group represented by the above general formula (2). It may be a group represented by
 (A)ポリイミド前駆体が前述の一般式(1)で表される構造単位を有する化合物を含む場合、当該化合物に含有される全構造単位のR及びRの合計に対する一般式(2)で表される基であるR及びRの割合は、60モル%以上であることが好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。上限は特に限定されず、100モル%でもよい。
 なお、前述の割合は、0モル%以上60モル%未満であってもよい。
(A) When the polyimide precursor contains a compound having a structural unit represented by the above-mentioned general formula (1), the general formula (2) is calculated based on the sum of R 6 and R 7 of all structural units contained in the compound. The ratio of R 6 and R 7 , which are the groups represented by, is preferably 60 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more. The upper limit is not particularly limited, and may be 100 mol%.
In addition, the above-mentioned ratio may be 0 mol% or more and less than 60 mol%.
 一般式(2)で表される基は、下記一般式(2’)で表される基であることが好ましい。 The group represented by general formula (2) is preferably a group represented by general formula (2') below.
 一般式(2’)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。 In the general formula (2'), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.
 一般式(2’)におけるqは1~10の整数であり、2~5の整数であることが好ましく、2又は3であることがより好ましい。 In general formula (2'), q is an integer of 1 to 10, preferably an integer of 2 to 5, and more preferably 2 or 3.
 一般式(1)で表される構造単位を有する化合物に含まれる一般式(1)で表される構造単位の含有率は、全構造単位に対して、60モル%以上であることが好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。前述の含有率の上限は特に限定されず、100モル%でもよい。 The content of the structural unit represented by the general formula (1) contained in the compound having the structural unit represented by the general formula (1) is preferably 60 mol% or more based on the total structural units, More preferably 70 mol% or more, and even more preferably 80 mol% or more. The upper limit of the above-mentioned content is not particularly limited, and may be 100 mol%.
 (A)ポリイミド前駆体は、テトラカルボン酸二無水物と、ジアミン化合物とを用いて合成されたものであってもよい。この場合、一般式(1)において、Xは、テトラカルボン酸二無水物由来の残基に該当し、Yは、ジアミン化合物由来の残基に該当する。なお、(A)ポリイミド前駆体は、テトラカルボン酸二無水物に替えて、テトラカルボン酸を用いて合成されたものであってもよい。 (A) The polyimide precursor may be synthesized using a tetracarboxylic dianhydride and a diamine compound. In this case, in general formula (1), X corresponds to a residue derived from a tetracarboxylic dianhydride, and Y corresponds to a residue derived from a diamine compound. Note that (A) the polyimide precursor may be synthesized using tetracarboxylic acid instead of tetracarboxylic dianhydride.
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、p-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、4,4’-オキシジフタル酸二無水物、4,4’-スルホニルジフタル酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物等が挙げられる。
 テトラカルボン酸二無水物は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and 3,3',4,4'-biphenyltetracarboxylic dianhydride. Anhydride, 3,3',4,4'-biphenylethertetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetra Carboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, m-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, p-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, 1, 1,1,3,3,3-hexafluoro-2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2 -Bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane Dianhydride, 2,2-bis{4'-(2,3-dicarboxyphenoxy)phenyl}propane dianhydride, 2,2-bis{4'-(3,4-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis{4'-(2,3-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1, 3,3,3-hexafluoro-2,2-bis{4'-(3,4-dicarboxyphenoxy)phenyl}propane dianhydride, 4,4'-oxydiphthalic dianhydride, 4,4'- Examples include sulfonyl diphthalic dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, and the like.
One type of tetracarboxylic dianhydride may be used alone or two or more types may be used in combination.
 ジアミン化合物の具体例としては、2,2’-ジメチルビフェニル-4,4’-ジアミン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、1,5-ジアミノナフタレン、ベンジジン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,4’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、2,4’-ジアミノジフェニルスルフィド、2,2’-ジアミノジフェニルスルフィド、o-トリジン、o-トリジンスルホン、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2,6-ジイソプロピルアニリン)、2,4-ジアミノメシチレン、1,5-ジアミノナフタレン、4,4’-ベンゾフェノンジアミン、ビス-{4-(4’-アミノフェノキシ)フェニル}スルホン、2,2-ビス{4-(4’-アミノフェノキシ)フェニル}プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス{4-(3’-アミノフェノキシ)フェニル}スルホン、2,2-ビス(4-アミノフェニル)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,6-ジアミノヘキサン、2-メチル-1,7-ジアミノヘプタン、2-メチル-1,8-ジアミノオクタン、2-メチル-1,9-ジアミノノナン、2-メチル-1,10-ジアミノデカン、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、ジアミノポリシロキサン等が挙げられる。ジアミン化合物としては、2,2’-ジメチルビフェニル-4,4’-ジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル及び1,3-ビス(3-アミノフェノキシ)ベンゼンが好ましい。
 ジアミン化合物は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of diamine compounds include 2,2'-dimethylbiphenyl-4,4'-diamine, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, and 2,2'-difluoro- 4,4'-diaminobiphenyl, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, benzidine, 4,4'-diaminodiphenyl ether, 3,4 '-Diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3 '-Diaminodiphenylsulfone, 2,4'-diaminodiphenylsulfone, 2,2'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfide , 2,4'-diaminodiphenylsulfide, 2,2'-diaminodiphenylsulfide, o-tolidine, o-tolidine sulfone, 4,4'-methylenebis(2,6-diethylaniline), 4,4'-methylenebis( 2,6-diisopropylaniline), 2,4-diaminomesitylene, 1,5-diaminonaphthalene, 4,4'-benzophenonediamine, bis-{4-(4'-aminophenoxy)phenyl}sulfone, 2,2- Bis{4-(4'-aminophenoxy)phenyl}propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane , bis{4-(3'-aminophenoxy)phenyl}sulfone, 2,2-bis(4-aminophenyl)propane, 9,9-bis(4-aminophenyl)fluorene, 1,3-bis(3- aminophenoxy)benzene, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11- Diaminoundecane, 1,12-diaminododecane, 2-methyl-1,5-diaminopentane, 2-methyl-1,6-diaminohexane, 2-methyl-1,7-diaminoheptane, 2-methyl-1,8 -diaminooctane, 2-methyl-1,9-diaminononane, 2-methyl-1,10-diaminodecane, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, diaminopolysiloxane and the like. As the diamine compound, 2,2'-dimethylbiphenyl-4,4'-diamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether and 1,3-bis(3-aminophenoxy)benzene are preferred.
The diamine compounds may be used alone or in combination of two or more.
 一般式(1)で表される構造単位を有し、且つ一般式(1)中のR及びRの少なくとも一方は1価の有機基である化合物は、例えば、以下の(a)又は(b)の方法にて得ることができる。
(a) テトラカルボン酸二無水物(好ましくは、下記一般式(8)で表されるテトラカルボン酸二無水物)とR-OHで表される化合物とを、有機溶剤中にて反応させジエステル誘導体とした後、ジエステル誘導体とHN-Y-NHで表されるジアミン化合物とを縮合反応させる。
(b) テトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを有機溶剤中にて反応させポリアミド酸溶液を得て、R-OHで表される化合物をポリアミド酸溶液に加え、有機溶剤中で反応させエステル基を導入する。
 ここで、HN-Y-NHで表されるジアミン化合物におけるYは、一般式(1)におけるYと同様であり、具体例及び好ましい例も同様である。また、R-OHで表される化合物におけるRは、1価の有機基を表し、具体例及び好ましい例は、一般式(1)におけるR及びRの場合と同様である。
 一般式(8)で表されるテトラカルボン酸二無水物、HN-Y-NHで表されるジアミン化合物及びR-OHで表される化合物は、各々、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 前述の有機溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、ジメトキシイミダゾリジノン、3-メトキシ-N,N-ジメチルプロピオンアミド等が挙げられ、中でも、3-メトキシ-N,N-ジメチルプロピオンアミドが好ましい。
 R-OHで表される化合物とともに脱水縮合剤をポリアミド酸溶液に作用させてポリイミド前駆体を合成してもよい。脱水縮合剤は、トリフルオロ酢酸無水物、N,N’-ジシクロヘキシルカルボジイミド(DCC)及び1,3-ジイソプロピルカルボジイミド(DIC)からなる群より選択される少なくとも1種を含むことが好ましい。
A compound having a structural unit represented by general formula (1) and in which at least one of R 6 and R 7 in general formula (1) is a monovalent organic group is, for example, the following (a) or It can be obtained by the method (b).
(a) A diester is produced by reacting a tetracarboxylic dianhydride (preferably a tetracarboxylic dianhydride represented by the following general formula (8)) and a compound represented by R-OH in an organic solvent. After making the derivative, the diester derivative and a diamine compound represented by H 2 N--Y--NH 2 are subjected to a condensation reaction.
(b) Tetracarboxylic dianhydride and a diamine compound represented by H 2 N-Y-NH 2 are reacted in an organic solvent to obtain a polyamic acid solution, and the compound represented by R-OH is mixed into polyamide. In addition to an acid solution, the reaction is carried out in an organic solvent to introduce an ester group.
Here, Y in the diamine compound represented by H 2 N-Y-NH 2 is the same as Y in general formula (1), and specific examples and preferred examples are also the same. Further, R in the compound represented by R-OH represents a monovalent organic group, and specific examples and preferred examples are the same as those for R 6 and R 7 in general formula (1).
The tetracarboxylic dianhydride represented by the general formula (8), the diamine compound represented by H 2 N-Y-NH 2 and the compound represented by R-OH may each be used alone. Often, two or more types may be combined.
Examples of the organic solvents mentioned above include N-methyl-2-pyrrolidone, γ-butyrolactone, dimethoxyimidazolidinone, 3-methoxy-N,N-dimethylpropionamide, and among others, 3-methoxy-N,N- Dimethylpropionamide is preferred.
A polyimide precursor may be synthesized by allowing a dehydration condensation agent to act on a polyamic acid solution together with a compound represented by R-OH. The dehydration condensation agent preferably contains at least one selected from the group consisting of trifluoroacetic anhydride, N,N'-dicyclohexylcarbodiimide (DCC), and 1,3-diisopropylcarbodiimide (DIC).
 (A)ポリイミド前駆体に含まれる前述の化合物は、下記一般式(8)で表されるテトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、塩化チオニル等の塩素化剤を作用させて酸塩化物に変換し、次いで、HN-Y-NHで表されるジアミン化合物と酸塩化物とを反応させることで得ることができる。
 (A)ポリイミド前駆体に含まれる前述の化合物は、下記一般式(8)で表されるテトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、カルボジイミド化合物の存在下でHN-Y-NHで表されるジアミン化合物とジエステル誘導体とを反応させることで得ることができる。
 (A)ポリイミド前駆体に含まれる前述の化合物は、下記一般式(8)で表されるテトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを反応させてポリアミド酸とした後、トリフルオロ酢酸無水物等の脱水縮合剤の存在下でポリアミド酸をイソイミド化し、次いでR-OHで表される化合物を作用させて得ることができる。あるいは、テトラカルボン酸二無水物の一部に予めR-OHで表される化合物を作用させて、部分的にエステル化されたテトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを反応させてもよい。
(A) The above-mentioned compound contained in the polyimide precursor is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then converting it into a diester derivative. It can be obtained by converting it into an acid chloride by applying a chlorinating agent such as thionyl, and then reacting the acid chloride with a diamine compound represented by H 2 N-Y-NH 2 .
(A) The above-mentioned compound contained in the polyimide precursor is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then converting it into a carbodiimide. It can be obtained by reacting a diamine compound represented by H 2 N-Y-NH 2 with a diester derivative in the presence of the compound.
(A) The above-mentioned compound contained in the polyimide precursor is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a diamine compound represented by H 2 N-Y-NH 2 It can be obtained by converting the polyamic acid into isoimidization in the presence of a dehydration condensation agent such as trifluoroacetic anhydride, and then reacting with a compound represented by R-OH. Alternatively, a compound represented by R-OH may be reacted on a portion of the tetracarboxylic dianhydride in advance to form a partially esterified tetracarboxylic dianhydride and a compound represented by H 2 N-Y-NH 2 . may be reacted with a diamine compound.
 一般式(8)において、Xは、一般式(1)におけるXと同様であり、具体例及び好ましい例も同様である。 In general formula (8), X is the same as X in general formula (1), and specific examples and preferred examples are also the same.
 (A)ポリイミド前駆体に含まれる前述の化合物の合成に用いられるR-OHで表される化合物としては、一般式(2)で表される基のRにヒドロキシ基が結合した化合物、一般式(2’)で表される基の末端メチレン基にヒドロキシ基が結合した化合物等であってもよい。R-OHで表される化合物の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシプロピル、アクリル酸2-ヒドロキシブチル、メタクリル酸2-ヒドロキシブチル、アクリル酸4-ヒドロキシブチル、メタクリル酸4-ヒドロキシブチル等が挙げられ、中でも、メタクリル酸2-ヒドロキシエチル及びアクリル酸2-ヒドロキシエチルが好ましい。 (A) Compounds represented by R-OH used in the synthesis of the above-mentioned compounds contained in the polyimide precursor include compounds in which a hydroxy group is bonded to R x of the group represented by general formula (2); It may also be a compound in which a hydroxy group is bonded to the terminal methylene group of the group represented by formula (2'). Specific examples of compounds represented by R-OH include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, and methacryl. Examples include 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, among others, 2-hydroxyethyl methacrylate and 2-hydroxybutyl acrylate. -Hydroxyethyl is preferred.
 (A)ポリイミド前駆体の分子量には特に制限はなく、例えば、重量平均分子量で10,000~200,000であることが好ましく、10,000~100,000であることがより好ましい。(A)ポリイミド前駆体の重量平均分子量は、(a)ポリベンゾオキサゾール前駆体と同様の方法で求めることができる。 There is no particular restriction on the molecular weight of the polyimide precursor (A), and for example, the weight average molecular weight is preferably 10,000 to 200,000, more preferably 10,000 to 100,000. The weight average molecular weight of the polyimide precursor (A) can be determined in the same manner as for the polybenzoxazole precursor (a).
 第2の絶縁膜形成材料はジカルボン酸をさらに含んでいてもよく、第2の絶縁膜形成材料に含まれる(A)ポリイミド前駆体は、(A)ポリイミド前駆体中のアミノ基の一部がジカルボン酸におけるカルボキシ基と反応してなる構造を有してもよい。例えば、ポリイミド前駆体を合成する際に、ジアミン化合物のアミノ基の一部とジカルボン酸のカルボキシ基とを反応させてもよい。
 ジカルボン酸は、(メタ)アクリル基を有するジカルボン酸であってもよく、例えば、以下の式で表されるジカルボン酸であってもよい。このとき、(A)ポリイミド前駆体を合成する際に、ジアミン化合物のアミノ基の一部とジカルボン酸のカルボキシ基とを反応させることで、(A)ポリイミド前駆体にジカルボン酸由来のメタクリル基を導入することができる。
The second insulating film-forming material may further contain dicarboxylic acid, and the (A) polyimide precursor contained in the second insulating film-forming material is such that some of the amino groups in the (A) polyimide precursor are It may have a structure formed by reacting with a carboxy group in a dicarboxylic acid. For example, when synthesizing a polyimide precursor, a portion of the amino groups of the diamine compound and the carboxy groups of the dicarboxylic acid may be reacted.
The dicarboxylic acid may be a dicarboxylic acid having a (meth)acrylic group, for example, a dicarboxylic acid represented by the following formula. At this time, when synthesizing the (A) polyimide precursor, a part of the amino group of the diamine compound and the carboxy group of the dicarboxylic acid are reacted, so that the methacrylic group derived from the dicarboxylic acid is added to the polyimide precursor (A). can be introduced.
 第2の絶縁膜形成材料は、(A)ポリイミド前駆体に加えて、ポリイミド樹脂を含んでいてもよい。ポリイミド前駆体及びポリイミド樹脂を組み合わせることで、イミド環形成時の脱水環化による揮発物の生成を抑制することが可能であるため、ボイドの発生を抑制することができる傾向にある。ここでいうポリイミド樹脂は樹脂骨格の全部、又は一部にイミド骨格を持つ樹脂をいう。ポリイミド樹脂はポリイミド前駆体を用いた絶縁膜形成材料中の溶剤に溶解可能であることが好ましい。 The second insulating film forming material may contain a polyimide resin in addition to the polyimide precursor (A). By combining a polyimide precursor and a polyimide resin, it is possible to suppress the production of volatiles due to dehydration cyclization during imide ring formation, and therefore it tends to be possible to suppress the generation of voids. The polyimide resin herein refers to a resin having an imide skeleton in all or part of the resin skeleton. It is preferable that the polyimide resin is soluble in a solvent in an insulating film forming material using a polyimide precursor.
 ポリイミド樹脂としては、イミド結合を含む構造単位を複数備える高分子化合物であれば特に限定されず、例えば、下記一般式(X)で表される構造単位を有する化合物を含むことが好ましい。これにより、高い信頼性を示す絶縁膜を備える半導体装置が得られる傾向がある。 The polyimide resin is not particularly limited as long as it is a polymeric compound having a plurality of structural units containing imide bonds, and preferably includes, for example, a compound having a structural unit represented by the following general formula (X). Thereby, a semiconductor device including an insulating film exhibiting high reliability tends to be obtained.
 一般式(X)中、Xは4価の有機基を表し、Yは2価の有機基を表す。一般式(X)における置換基X及びYの好ましい例は、前述の一般式(1)における置換基X及びYの好ましい例と同様である。 In the general formula (X), X represents a tetravalent organic group, and Y represents a divalent organic group. Preferred examples of substituents X and Y in general formula (X) are the same as preferred examples of substituents X and Y in general formula (1) described above.
 第2の絶縁膜形成材料がポリイミド樹脂を含む場合、ポリイミド前駆体及びポリイミド樹脂の合計に対するポリイミド樹脂の割合は、15質量%~50質量%であってもよく、10質量%~20質量%であってもよい。 When the second insulating film forming material contains a polyimide resin, the proportion of the polyimide resin to the total of the polyimide precursor and the polyimide resin may be 15% to 50% by mass, or 10% to 20% by mass. There may be.
 第2の絶縁膜形成材料は、(A)ポリイミド前駆体及びポリイミド樹脂以外のその他の樹脂を含んでいてもよい。その他の樹脂としては、例えば、耐熱性の観点から、既述のポリベンゾオキサゾール前駆体、ノボラック樹脂、アクリル樹脂、ポリエーテルニトリル樹脂、ポリエーテルスルホン樹脂、エポキシ樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリ塩化ビニル樹脂等が挙げられる。その他の樹脂は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 The second insulating film forming material may include (A) a polyimide precursor and a resin other than the polyimide resin. Other resins include, from the viewpoint of heat resistance, the aforementioned polybenzoxazole precursors, novolac resins, acrylic resins, polyether nitrile resins, polyether sulfone resins, epoxy resins, polyethylene terephthalate resins, and polyethylene naphthalate resins. , polyvinyl chloride resin, etc. The other resins may be used alone or in combination of two or more.
 第2の絶縁膜形成材料では、樹脂成分全量に対する(A)ポリイミド前駆体の含有率は、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。 In the second insulating film forming material, the content of the polyimide precursor (A) based on the total amount of resin components is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass. , more preferably 90% by mass to 100% by mass.
((B)溶剤)
 第2の絶縁膜形成材料は(B)溶剤(以下、「(B)成分」とも称する。)を含む。(B)成分は、下記式(3)~式(7)で表される化合物からなる群より選択される少なくとも一種を含むことが好ましい。
((B) Solvent)
The second insulating film forming material includes a (B) solvent (hereinafter also referred to as "component (B)"). Component (B) preferably contains at least one selected from the group consisting of compounds represented by the following formulas (3) to (7).
 式(3)~(7)中、R、R、R及びR10は、それぞれ独立に、炭素数1~4のアルキル基であり、R~R及びRは、それぞれ独立に、水素原子又は炭素数1~4のアルキル基である。sは0~8の整数であり、tは0~4の整数であり、rは0~4の整数であり、uは0~3の整数である。 In formulas (3) to (7), R 1 , R 2 , R 8 and R 10 are each independently an alkyl group having 1 to 4 carbon atoms, and R 3 to R 7 and R 9 are each independently an alkyl group having 1 to 4 carbon atoms. In addition, it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. s is an integer from 0 to 8, t is an integer from 0 to 4, r is an integer from 0 to 4, and u is an integer from 0 to 3.
 式(3)において、sは、好ましくは0である。
 式(4)において、Rの炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。tは好ましくは0、1又は2であり、より好ましくは1である。
 式(5)において、Rの炭素数1~4のアルキル基としては、好ましくはメチル基、エチル基、プロピル基又はブチル基である。R及びRの炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。
 式(6)において、R~Rの炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。rは好ましくは0又は1であり、より好ましくは0である。
 式(7)において、R及びR10の炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。uは好ましくは0又は1であり、より好ましくは0である。
In formula (3), s is preferably 0.
In formula (4), the alkyl group having 1 to 4 carbon atoms in R 2 is preferably a methyl group or an ethyl group. t is preferably 0, 1 or 2, more preferably 1.
In formula (5), the alkyl group having 1 to 4 carbon atoms for R 3 is preferably a methyl group, ethyl group, propyl group or butyl group. The alkyl group having 1 to 4 carbon atoms for R 4 and R 5 is preferably a methyl group or an ethyl group.
In formula (6), the alkyl group having 1 to 4 carbon atoms in R 6 to R 8 is preferably a methyl group or an ethyl group. r is preferably 0 or 1, more preferably 0.
In formula (7), the alkyl group having 1 to 4 carbon atoms in R 9 and R 10 is preferably a methyl group or an ethyl group. u is preferably 0 or 1, more preferably 0.
 (B)成分は、例えば、式(4)、(5)、(6)及び(7)で表される化合物の内の少なくとも一種であってもよく、式(5)で表される化合物又は式(7)で表される化合物であってもよい。 Component (B) may be, for example, at least one of the compounds represented by formulas (4), (5), (6), and (7), and may be a compound represented by formula (5) or It may also be a compound represented by formula (7).
 (B)成分の具体例としては、以下の化合物が挙げられる。 Specific examples of component (B) include the following compounds.
 第2の絶縁膜形成材料に含まれる(B)成分としては、前述の化合物に限定されず、他の溶剤であってもよい。(B)成分は、エステル類の溶剤、エーテル類の溶剤、ケトン類の溶剤、炭化水素類の溶剤、芳香族炭化水素類の溶剤、スルホキシド類の溶剤等であってもよい。 The component (B) contained in the second insulating film forming material is not limited to the above-mentioned compounds, and may be other solvents. Component (B) may be an ester solvent, an ether solvent, a ketone solvent, a hydrocarbon solvent, an aromatic hydrocarbon solvent, a sulfoxide solvent, or the like.
 エステル類の溶剤としては、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルコキシ酢酸メチル、アルコキシ酢酸エチル、アルコキシ酢酸ブチル等のアルコキシ酢酸アルキル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル及びエトキシ酢酸エチル)、3-アルコキシプロピオン酸メチル、3-アルコキシプロピオン酸エチル等の3-アルコキシプロピオン酸アルキルエステル(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル及び3-エトキシプロピオン酸エチル)、2-アルコキシプロピオン酸メチル、2-アルコキシプロピオン酸エチル、2-アルコキシプロピオン酸プロピル等の2-アルコキシプロピオン酸アルキルエステル(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル及び2-エトキシプロピオン酸エチル)、2-メトキシ-2-メチルプロピオン酸メチル等の2-アルコキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等の2-アルコキシ-2-メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が挙げられる。 Solvents for esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, γ-butyrolactone. , ε-caprolactone, δ-valerolactone, alkyl alkoxy acetates such as methyl alkoxy acetate, ethyl alkoxy acetate, butyl alkoxy acetate (e.g. methyl methoxy acetate, ethyl methoxy acetate, butyl methoxy acetate, methyl ethoxy acetate and ethyl ethoxy acetate), 3-Alkoxypropionate alkyl esters such as methyl 3-alkoxypropionate, ethyl 3-alkoxypropionate (e.g. methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate and 3-ethoxypropionate) 2-alkoxypropionate alkyl esters (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Propyl 2-methoxypropionate, methyl 2-ethoxypropionate and ethyl 2-ethoxypropionate), methyl 2-alkoxy-2-methylpropionate such as methyl 2-methoxy-2-methylpropionate, 2-ethoxy-2 - Ethyl 2-alkoxy-2-methylpropionate such as ethyl methylpropionate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, etc. can be mentioned.
 エーテル類の溶剤としては、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が挙げられる。
 ケトン類の溶剤として、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン(NMP)等が挙げられる。
 炭化水素類の溶剤としては、リモネン等が挙げられる。
 芳香族炭化水素類の溶剤として、トルエン、キシレン、アニソール等が挙げられる。
 スルホキシド類の溶剤として、ジメチルスルホキシド等が挙げられる。
Ether solvents include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene. Examples include glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, and the like.
Examples of the ketone solvent include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, and N-methyl-2-pyrrolidone (NMP).
Examples of hydrocarbon solvents include limonene and the like.
Examples of aromatic hydrocarbon solvents include toluene, xylene, anisole, and the like.
Examples of solvents for sulfoxides include dimethyl sulfoxide and the like.
 (B)成分の溶剤として、好ましくはγ-ブチロラクトン、シクロペンタノン、乳酸エチル等が挙げられる。 Preferred examples of the solvent for component (B) include γ-butyrolactone, cyclopentanone, and ethyl lactate.
 第2の絶縁膜形成材料において、生殖毒性等の毒性を低減する観点及び環境負荷を低減させる観点から、NMPの含有率は、絶縁膜形成材料の全量に対して1質量%以下であってもよく、(A)ポリイミド前駆体の全量に対して3質量%以下であってもよい。 In the second insulating film forming material, from the viewpoint of reducing toxicity such as reproductive toxicity and reducing environmental load, the content of NMP may be 1% by mass or less based on the total amount of the insulating film forming material. Often, the amount may be 3% by mass or less based on the total amount of the polyimide precursor (A).
 第2の絶縁膜形成材料において、(B)成分の含有量は、(A)ポリイミド前駆体100質量部に対して1質量部~10000質量部であることが好ましく、50質量部~10000質量部であることがより好ましい。 In the second insulating film forming material, the content of the component (B) is preferably 1 part by mass to 10,000 parts by mass, and preferably 50 parts by mass to 10,000 parts by mass, based on 100 parts by mass of the polyimide precursor (A). It is more preferable that
 (B)成分は、式(3)~式(6)で表される化合物からなる群より選択される少なくとも一種である溶剤(1)並びにエステル類の溶剤、エーテル類の溶剤、ケトン類の溶剤、炭化水素類の溶剤、芳香族炭化水素類の溶剤、及びスルホキシド類の溶剤からなる群より選択される少なくとも一種である溶剤(2)の少なくとも一方を含んでいることが好ましい。
 また、溶剤(1)の含有率は、溶剤(1)及び溶剤(2)の合計に対して、5質量%~100質量%であってもよく、5質量%~50質量%であってもよい。
 溶剤(1)の含有量は、(A)ポリイミド前駆体100質量部に対して、10質量部~1000質量部であってもよく、10質量部~100質量部であってもよく、10質量部~50質量部であってもよい。
Component (B) is at least one solvent (1) selected from the group consisting of compounds represented by formulas (3) to (6), as well as ester solvents, ether solvents, and ketone solvents. , a hydrocarbon solvent, an aromatic hydrocarbon solvent, and a sulfoxide solvent.
Further, the content of the solvent (1) may be 5% by mass to 100% by mass, or even 5% by mass to 50% by mass, based on the total of the solvent (1) and the solvent (2). good.
The content of the solvent (1) may be 10 parts by mass to 1000 parts by mass, 10 parts by mass to 100 parts by mass, and 10 parts by mass based on 100 parts by mass of the polyimide precursor (A). Parts to 50 parts by mass may be used.
((C)化合物)
 第2の絶縁膜形成材料は(C)化合物を含有してもよい。(C)化合物は、(A)ポリイミド前駆体が有する重合性の不飽和結合部位に対して作用し、重合性の不飽和結合部位の脱離を促進する。
 (C)化合物としては、例えば含窒素化合物が挙げられる。含窒素化合物は熱塩基発生剤であってもよい。熱塩基発生剤は、加熱によって塩基を発生させ、この塩基が(A)ポリイミド前駆体の不飽和結合部位の脱離を促進させる。
((C) compound)
The second insulating film forming material may contain the (C) compound. The compound (C) acts on the polymerizable unsaturated bond sites of the polyimide precursor (A) and promotes the elimination of the polymerizable unsaturated bond sites.
Examples of the compound (C) include nitrogen-containing compounds. The nitrogen-containing compound may be a thermal base generator. The thermal base generator generates a base by heating, and this base promotes the elimination of unsaturated bond sites in the polyimide precursor (A).
 含窒素化合物の具体例としては、アニリン2酢酸、2-(メチルフェニルアミノ)エタノール、2-(エチルアニリノ)エタノール、N-フェニルジエタノールアミン、N-メチルアニリン、N-エチルアニリン、N,N’-ジメチルアニリン、N-フェニルエタノールアミン、4-フェニルモルフォリン、2,2’-(4-メチルフェニルイミノ)ジエタノール、4-アミノベンズアミド、2-アミノベンズアミド、ニコチンアミド、4-アミノ-N-メチルベンズアミド、4-アミノアセトアニリド、4-アミノアセトフェノン、ジアザビシクロウンデセン、及びこれらの塩等が挙げられ、中でも、アニリン2酢酸、4-アミノベンズアミド、ニコチンアミド、ジアザビシクロウンデセン、N-フェニルジエタノールアミン、N-メチルアニリン、N-エチルアニリン、N,N’-ジメチルアニリン、N-フェニルエタノールアミン、4-フェニルモルフォリン、2,2’-(4-メチルフェニルイミノ)ジエタノール、これらの塩等が好ましい。含窒素化合物は1種単独で用いてもよく、2種以上を組み合わせてもよい。 Specific examples of nitrogen-containing compounds include aniline diacetic acid, 2-(methylphenylamino)ethanol, 2-(ethylanilino)ethanol, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethyl Aniline, N-phenylethanolamine, 4-phenylmorpholine, 2,2'-(4-methylphenylimino)diethanol, 4-aminobenzamide, 2-aminobenzamide, nicotinamide, 4-amino-N-methylbenzamide, 4-aminoacetanilide, 4-aminoacetophenone, diazabicycloundecene, and salts thereof, among others, aniline diacetic acid, 4-aminobenzamide, nicotinamide, diazabicycloundecene, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethylaniline, N-phenylethanolamine, 4-phenylmorpholine, 2,2'-(4-methylphenylimino)diethanol, salts thereof, etc. are preferred. . One type of nitrogen-containing compound may be used alone, or two or more types may be used in combination.
 含窒素化合物は、下記式(17)で表される化合物又は下記式(18)で表される化合物を含むことが好ましい。 The nitrogen-containing compound preferably includes a compound represented by the following formula (17) or a compound represented by the following formula (18).
 式(17)及び式(18)中、R31A~R33Aは、それぞれ独立に、水素原子、1価の脂肪族炭化水素基、ヒドロキシ基を有する1価の脂肪族炭化水素基、又は1価の芳香族基であり、R31A~R33Aの少なくとも1つ(好ましくは1つ)が1価の芳香族基である。R31A~R33Aは隣接する基同士で環構造を形成していてもよい。形成される環構造としては、メチル基、フェニル基等の置換基を有していてもよい5員環、6員環等が挙げられる。1価の脂肪族炭化水素基の水素原子は、ヒドロキシ基以外の官能基で置換されていてもよい。 In formulas (17) and (18), R 31A to R 33A each independently represent a hydrogen atom, a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, or a monovalent aliphatic hydrocarbon group. is an aromatic group, and at least one (preferably one) of R 31A to R 33A is a monovalent aromatic group. Adjacent groups of R 31A to R 33A may form a ring structure. Examples of the ring structure formed include a 5-membered ring and a 6-membered ring which may have a substituent such as a methyl group or a phenyl group. The hydrogen atom of the monovalent aliphatic hydrocarbon group may be substituted with a functional group other than a hydroxy group.
 式(17)及び式(18)中、R31A~R33Aの少なくとも1つ(好ましくは1つ)が、1価の脂肪族炭化水素基、ヒドロキシ基を有する1価の脂肪族炭化水素基、又は1価の芳香族基であることが好ましい。 In formula (17) and formula (18), at least one (preferably one) of R 31A to R 33A is a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, Alternatively, it is preferably a monovalent aromatic group.
 式(17)及び式(18)中、R31A~R33Aの1価の脂肪族炭化水素基について、炭素数1~10が好ましく、炭素数1~6がより好ましい。1価の脂肪族炭化水素基は、メチル基、エチル基等が好ましい。 In formulas (17) and (18), the monovalent aliphatic hydrocarbon groups R 31A to R 33A preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. The monovalent aliphatic hydrocarbon group is preferably a methyl group, an ethyl group, or the like.
 式(17)及び式(18)中、R31A~R33Aのヒドロキシ基を有する1価の脂肪族炭化水素基は、R31A~R33Aの1価の脂肪族炭化水素基に、1つ以上のヒドロキシ基が結合した基であることが好ましく、1つ~3つのヒドロキシ基が結合した基であることがより好ましい。ヒドロキシ基を有する1価の脂肪族炭化水素基の具体例としては、メチロール基、ヒドロキシエチル基等が挙げられ、中でも、ヒドロキシエチル基が好ましい。 In formulas (17) and (18), the monovalent aliphatic hydrocarbon group having a hydroxy group of R 31A to R 33A is one or more monovalent aliphatic hydrocarbon groups having a hydroxy group of R 31A to R 33A. A group having hydroxy groups bonded thereto is preferable, and a group having one to three hydroxy groups bonded is more preferable. Specific examples of the monovalent aliphatic hydrocarbon group having a hydroxy group include a methylol group, a hydroxyethyl group, and the like, with a hydroxyethyl group being preferred.
 式(17)及び式(18)のR31A~R33Aの1価の芳香族基としては、1価の芳香族炭化水素基、1価の芳香族複素環式基等が挙げられ、1価の芳香族炭化水素基が好ましい。1価の芳香族炭化水素基について、炭素数6~12が好ましく、炭素数6~10がより好ましい。
 1価の芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられる。
Examples of the monovalent aromatic groups R 31A to R 33A in formulas (17) and (18) include monovalent aromatic hydrocarbon groups, monovalent aromatic heterocyclic groups, etc. An aromatic hydrocarbon group is preferred. The monovalent aromatic hydrocarbon group preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
Examples of the monovalent aromatic hydrocarbon group include a phenyl group and a naphthyl group.
 式(17)及び式(18)のR31A~R33Aの1価の芳香族基は、置換基を有してもよい。置換基としては、式(17)及び式(18)のR31A~R33Aの1価の脂肪族炭化水素基、及び上述の式(17)及び式(18)のR31A~R33Aのヒドロキシ基を有する1価の脂肪族炭化水素基と同様の基が挙げられる。 The monovalent aromatic groups R 31A to R 33A in formulas (17) and (18) may have a substituent. Examples of substituents include monovalent aliphatic hydrocarbon groups represented by R 31A to R 33A in formulas (17) and (18), and hydroxy groups represented by R 31A to R 33A in formulas (17) and (18) described above. The same groups as monovalent aliphatic hydrocarbon groups having groups can be mentioned.
 (C)化合物の含有量は、(A)ポリイミド前駆体100質量部に対して、0.1質量部~20質量部であることが好ましく、保存安定性の観点から、0.3質量部~15質量部であることがより好ましく、0.5質量部~10質量部であることがさらに好ましい。 The content of the compound (C) is preferably 0.1 parts by mass to 20 parts by mass, and from the viewpoint of storage stability, 0.3 parts by mass to 100 parts by mass of the polyimide precursor (A). It is more preferably 15 parts by weight, and even more preferably 0.5 parts to 10 parts by weight.
 第2の絶縁膜形成材料は、(A)ポリイミド前駆体、及び(B)溶剤を含み、必要に応じて(C)化合物、(D)光重合開始剤、(E)重合性モノマー、(F)熱重合開始剤、(G)重合禁止剤、酸化防止剤、カップリング剤、界面活性剤、レベリング剤、防錆剤等を含み、本開示の効果を損なわない範囲でその他の成分及び不可避不純物を含んでもよい。第2の絶縁膜形成材料は、(D)成分及び(E)成分をさらに含むことが好ましい。
 以下、(C)化合物を(C)成分、(D)光重合開始剤を(D)成分、(E)重合性モノマーを(E)成分、(F)熱重合開始剤を(F)成分、(G)重合禁止剤を(G)成分とも称する。
The second insulating film forming material contains (A) a polyimide precursor, and (B) a solvent, and optionally (C) a compound, (D) a photopolymerization initiator, (E) a polymerizable monomer, and (F ) a thermal polymerization initiator, (G) a polymerization inhibitor, an antioxidant, a coupling agent, a surfactant, a leveling agent, a rust preventive agent, etc., and other components and unavoidable impurities to the extent that they do not impair the effects of the present disclosure. May include. It is preferable that the second insulating film forming material further contains a component (D) and a component (E).
Hereinafter, the (C) compound is the (C) component, (D) the photopolymerization initiator is the (D) component, the (E) polymerizable monomer is the (E) component, (F) the thermal polymerization initiator is the (F) component, (G) Polymerization inhibitor is also referred to as component (G).
 第2の絶縁膜形成材料の、例えば、80質量%以上、90質量%以上、95質量%以上、98質量%以上又は100質量%が、
 (A)ポリイミド前駆体~(B)成分、
 (A)ポリイミド前駆体~(C)成分、
 (A)ポリイミド前駆体~(E)成分、
 (A)ポリイミド前駆体~(F)成分、
 (A)ポリイミド前駆体~(G)成分、
 (A)ポリイミド前駆体~(G)成分並びに酸化防止剤、カップリング剤、界面活性剤、レベリング剤、及び防錆剤からなる群より選択される少なくともいずれか1つ、
 からなっていてもよい。
 以下、各成分の好ましい形態について説明する。
For example, 80% by mass or more, 90% by mass or more, 95% by mass or more, 98% by mass or more, or 100% by mass of the second insulating film forming material,
(A) polyimide precursor to (B) component,
(A) polyimide precursor to (C) component,
(A) polyimide precursor to (E) component,
(A) polyimide precursor ~ (F) component,
(A) polyimide precursor ~ (G) component,
(A) polyimide precursor to (G) component and at least one selected from the group consisting of an antioxidant, a coupling agent, a surfactant, a leveling agent, and a rust preventive;
It may consist of.
Hereinafter, preferred forms of each component will be explained.
((D)光重合開始剤)
 第2の絶縁膜形成材料は、(D)光重合開始剤を含むことが好ましい。これにより、半導体装置を作製する工程の中で電極を作製する工程数を低減することができ、半導体装置を作製する際のプロセス全体のコストを低減することができる。
((D) Photopolymerization initiator)
The second insulating film forming material preferably contains (D) a photopolymerization initiator. This makes it possible to reduce the number of steps for manufacturing electrodes among the steps for manufacturing a semiconductor device, and it is possible to reduce the cost of the entire process when manufacturing a semiconductor device.
 (D)成分の具体例としては、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体;アセトフェノン、2,2-ジエトキシアセトフェノン、3’-メチルアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体;チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体;ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル、メチルベンゾイン、エチルベンゾイン、プロピルベンゾイン等のベンゾイン誘導体;1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(O-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)等のオキシム誘導体;N-フェニルグリシン等のN-アリールグリシン類;ベンゾイルパークロライド等の過酸化物類;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-又はp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の芳香族ビイミダゾール類;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体、Irgacure OXE03(BASF社製)、Irgacure OXE04(BASF社製)等が挙げられる。
 (D)成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 これらの中でも、金属元素を含まず、且つ反応性が高く高感度の観点からオキシム化合物誘導体が好ましい。
Specific examples of component (D) include benzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N,N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy- 4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, 4,4'-bis(diethylamino)benzophenone, methyl o-benzoylbenzoate, 4-benzoyl- Benzophenone derivatives such as 4'-methyldiphenylketone, dibenzylketone, fluorenone; acetophenone, 2,2-diethoxyacetophenone, 3'-methylacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2- Acetophenone derivatives such as methylpropiophenone and 1-hydroxycyclohexylphenyl ketone; Thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, and diethylthioxanthone; benzyl, benzyl dimethyl ketal, benzyl-β- Benzyl derivatives such as methoxyethyl acetal; benzoin derivatives such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin phenyl ether, methylbenzoin, ethylbenzoin, propylbenzoin; 1-phenyl-1,2-butanedione-2-(O- methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(O-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime, 1-phenyl -1,2-propanedione-2-(O-benzoyl)oxime, 1,3-diphenylpropanetrione-2-(O-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(O- Oxime derivatives such as benzoyl)oxime, 1,2-octanedione, 1-[4-(phenylthio)phenyl]-,2-(O-benzoyloxime); N-arylglycines such as N-phenylglycine; benzoylper Peroxides such as chloride; 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o- or aromatic biimidazole such as p-methoxyphenyl)-4,5-diphenylimidazole dimer; 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine Examples include acylphosphine oxide derivatives such as oxide, Irgacure OXE03 (manufactured by BASF), Irgacure OXE04 (manufactured by BASF), and the like.
Component (D) may be used alone or in combination of two or more.
Among these, oxime compound derivatives are preferred from the viewpoints of not containing metal elements and having high reactivity and high sensitivity.
 第2の絶縁膜形成材料が(D)成分を含む場合、(D)成分の含有量は、光架橋が膜厚方向で均一となりやすい観点から、(A)ポリイミド前駆体100質量部に対して、0.1質量部~20質量部が好ましく、1質量部~15質量部がより好ましく、5質量部~15質量部がさらに好ましい。 When the second insulating film forming material contains component (D), the content of component (D) is determined based on 100 parts by mass of the polyimide precursor (A) from the viewpoint that photocrosslinking tends to be uniform in the film thickness direction. , is preferably 0.1 parts by weight to 20 parts by weight, more preferably 1 part to 15 parts by weight, and even more preferably 5 parts to 15 parts by weight.
 第2の絶縁膜形成材料は、感光特性向上の観点から、基板方向からの反射光を抑制する反射防止剤を含んでもよい。 The second insulating film forming material may contain an antireflection agent that suppresses reflected light from the substrate direction from the viewpoint of improving photosensitivity.
((E)重合性モノマー(架橋剤))
 第2の絶縁膜形成材料は、(E)重合性モノマーを含むことが好ましい。(E)成分は、重合性の不飽和二重結合を含む基を少なくとも1つ有することが好ましく、光重合開始剤との併用によって好適に重合可能である観点から、(メタ)アクリル基を少なくとも1つ有することがより好ましい。架橋密度の向上及び光感度の向上の観点から、重合性の不飽和二重結合を含む基を、2つ~6つ有することが好ましく、2つ~4つ有することがより好ましい。
 重合性モノマーは、1種単独で用いてもよく、2種以上を組み合わせてもよい。
((E) Polymerizable monomer (crosslinking agent))
The second insulating film forming material preferably contains (E) a polymerizable monomer. Component (E) preferably has at least one group containing a polymerizable unsaturated double bond, and from the viewpoint of being suitably polymerizable in combination with a photopolymerization initiator, component (E) contains at least one (meth)acrylic group. It is more preferable to have one. From the viewpoint of improving crosslinking density and photosensitivity, it is preferable to have 2 to 6 groups, and more preferably 2 to 4 groups containing polymerizable unsaturated double bonds.
The polymerizable monomers may be used alone or in combination of two or more.
 (メタ)アクリル基を有する重合性モノマーとしては、特に限定されず、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化イソシアヌル酸トリアクリレート、エトキシ化イソシアヌル酸トリメタクリレート、アクリロイルオキシエチルイソシアヌレート、メタクリロイルオキシエチルイソシアヌレート、トリシクロデカンジメタノールジアクリレート、2-ヒドロキシエチル(メタ)アクリレート、1,3-ビス((メタ)アクリロイルオキシ)-2-ヒドロキシプロパン、エチレンオキシド(EO)変性ビスフェノールAジアクリレート及びエチレンオキシド(EO)変性ビスフェノールAジメタクリレートが挙げられる。 The polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples thereof include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and tetraethylene glycol diacrylate. Methacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane triacrylate, Trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, ethoxylated pentaerythritol tetraacrylate , ethoxylated isocyanuric acid triacrylate, ethoxylated isocyanuric acid trimethacrylate, acryloyloxyethyl isocyanurate, methacryloyloxyethyl isocyanurate, tricyclodecane dimethanol diacrylate, 2-hydroxyethyl (meth)acrylate, 1,3-bis( (Meth)acryloyloxy)-2-hydroxypropane, ethylene oxide (EO) modified bisphenol A diacrylate, and ethylene oxide (EO) modified bisphenol A dimethacrylate.
 (メタ)アクリル基を有する重合性モノマー以外の重合性モノマーとしては、特に限定されず、例えば、スチレン、ジビニルベンゼン、4-ビニルトルエン、4-ビニルピリジン、N-ビニルピロリドン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド及びN-メチロールアクリルアミドが挙げられる。 The polymerizable monomer other than the polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples include styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N , N-dimethylacrylamide and N-methylolacrylamide.
 (E)成分は、重合性の不飽和二重結合を含む基を有する化合物に限定されず、不飽和二重結合基以外の重合性基(例えば、オキシラン環)を有する化合物であってもよい。 Component (E) is not limited to a compound having a group containing a polymerizable unsaturated double bond, and may be a compound having a polymerizable group other than an unsaturated double bond group (for example, an oxirane ring). .
 第2の絶縁膜形成材料が(E)成分を含む場合、(E)成分の含有量は特に限定されず、(A)ポリイミド前駆体100質量部に対して、1質量部~100質量部であることが好ましく、1質量部~75質量部であることがより好ましく、1質量部~50質量部であることがさらに好ましい。 When the second insulating film forming material contains component (E), the content of component (E) is not particularly limited, and is 1 part by mass to 100 parts by mass with respect to 100 parts by mass of the polyimide precursor (A). The amount is preferably from 1 part by weight to 75 parts by weight, and even more preferably from 1 part by weight to 50 parts by weight.
((F)熱重合開始剤)
 第2の絶縁膜形成材料は、硬化物の物性を向上させる観点から、(F)熱重合開始剤を含むことが好ましい。
((F) Thermal polymerization initiator)
The second insulating film forming material preferably contains (F) a thermal polymerization initiator from the viewpoint of improving the physical properties of the cured product.
 (F)成分の具体例としては、メチルエチルケトンペルオキシド等のケトンペルオキシド、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール、1,1,3,3-テトラメチルブチルハイドロペルオキシド、クメンハイドロペルオキシド、p-メンタンハイドロペルオキシド、ジイソプロピルベンゼンハイドロペルオキシド等のハイドロペルオキシド、ジクミルペルオキシド、ジ-t-ブチルペルオキシド等のジアルキルペルオキシド、ジラウロイルペルオキシド、ジベンゾイルペルオキシド等のジアシルペルオキシド、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート等のパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等のパーオキシエステル、ビス(1-フェニル-1-メチルエチル)ペルオキシドなどが挙げられる。熱重合開始剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 Specific examples of component (F) include ketone peroxide such as methyl ethyl ketone peroxide, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy) ) Peroxyketals such as cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide hydroperoxides such as dicumyl peroxide, dialkyl peroxides such as di-t-butyl peroxide, diacyl peroxides such as dilauroyl peroxide and dibenzoyl peroxide, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2- peroxydicarbonates such as ethylhexyl) peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxybenzoate, 1,1,3,3- Examples include peroxy esters such as tetramethylbutyl peroxy-2-ethylhexanoate, bis(1-phenyl-1-methylethyl) peroxide, and the like. Thermal polymerization initiators may be used alone or in combination of two or more.
 第2の絶縁膜形成材料が(F)成分を含む場合、(F)成分の含有量は、ポリイミド前駆体100質量部に対して、0.1質量部~20質量部であってもよく、1質量部~15質量部であってもよく、1質量部~10質量部であってもよい。 When the second insulating film forming material contains the (F) component, the content of the (F) component may be 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor, The amount may be 1 part by mass to 15 parts by mass, or 1 part by mass to 10 parts by mass.
((G)重合禁止剤)
 第2の絶縁膜形成材料は、良好な保存安定性を確保する観点から、(G)成分を含んでいてもよい。重合禁止剤としては、ラジカル重合禁止剤、ラジカル重合抑制剤等が挙げられる。
((G) Polymerization inhibitor)
The second insulating film forming material may contain component (G) from the viewpoint of ensuring good storage stability. Examples of the polymerization inhibitor include radical polymerization inhibitors and radical polymerization inhibitors.
 (G)成分の具体例としては、p-メトキシフェノール、ジフェニル-p-ベンゾキノン、ベンゾキノン、ハイドロキノン、ピロガロール、フェノチアジン、レゾルシノール、オルトジニトロベンゼン、パラジニトロベンゼン、メタジニトロベンゼン、フェナントラキノン、N-フェニル-2-ナフチルアミン、クペロン、2,5-トルキノン、タンニン酸、パラベンジルアミノフェノール、ニトロソアミン類、ヒンダードフェノール系化合物等が挙げられる。重合禁止剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。2以上の重合禁止剤を組み合わせることで反応性の違いから、感光特性を調整しやすい傾向にある。ヒンダードフェノール系化合物は、重合禁止剤の機能及び後述の酸化防止剤の機能の両方を有していてもよく、どちらか一方の機能を有していてもよい。 Specific examples of component (G) include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N-phenyl- Examples include 2-naphthylamine, cuperone, 2,5-torquinone, tannic acid, parabenzylaminophenol, nitrosamines, and hindered phenol compounds. The polymerization inhibitors may be used alone or in combination of two or more. By combining two or more polymerization inhibitors, it tends to be easier to adjust the photosensitive characteristics due to the difference in reactivity. The hindered phenol compound may have both the function of a polymerization inhibitor and the function of an antioxidant described below, or it may have either one of the functions.
 ヒンダードフェノール系化合物としては特に限定されず、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4、4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t- ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、及びN,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]が挙げられる。
 これらの中でもN,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]が好ましい。
The hindered phenol compound is not particularly limited, and examples thereof include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3-(3,5- di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis(2,6-di-t- butylphenol), 4,4'-thio-bis(3-methyl-6-t-butylphenol), 4,4'-butylidene-bis(3-methyl-6-t-butylphenol), triethylene glycol-bis[3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-t-butyl-4 -hydroxy-hydrocinnamamide), 2,2'-methylene-bis(4-methyl-6-t-butylphenol), 2,2'-methylene-bis(4-ethyl-6-t-butylphenol), penta Erythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, 1 , 3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(3-hydroxy-2,6-dimethyl- 4-isopropylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-3-hydroxy-2, 6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-s-butyl-3-hydroxy-2, 6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris[4-(1-ethylpropyl)-3-hydroxy -2,6-dimethylbenzyl]-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris[4-triethylmethyl-3-hydroxy- 2,6-dimethylbenzyl]-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(3-hydroxy-2,6-dimethyl- 4-phenylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-3-hydroxy-2, 5,6-trimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-5-ethyl- 3-Hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl- 6-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t- Butyl-6-ethyl-3-hydroxy-2,5-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris( 4-t-butyl-5,6-diethyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3, 5-tris(4-t-butyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5- Tris(4-t-butyl-3-hydroxy-2,5-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5- Tris(4-t-butyl-5-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, and N,N '-hexane-1,6-diylbis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide].
Among these, N,N'-hexane-1,6-diylbis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide] is preferred.
 第2の絶縁膜形成材料が(G)成分を含む場合、(G)成分の含有量は、絶縁膜形成材料の保存安定性及び得られる硬化物の耐熱性の観点から、(A)ポリイミド前駆体100質量部に対して、0.01質量部~30質量部であることが好ましく、0.01質量部~10質量部であることがより好ましく、0.05質量部~5質量部であることがさらに好ましい。 When the second insulating film forming material contains the (G) component, the content of the (G) component is determined from the viewpoint of the storage stability of the insulating film forming material and the heat resistance of the resulting cured product. The amount is preferably 0.01 parts by mass to 30 parts by mass, more preferably 0.01 parts by mass to 10 parts by mass, and 0.05 parts by mass to 5 parts by mass, based on 100 parts by mass of the body. It is even more preferable.
 第2の絶縁膜形成材料は、さらに、酸化防止剤、カップリング剤、界面活性剤、レベリング剤又は防錆剤を含んでもよい。 The second insulating film forming material may further contain an antioxidant, a coupling agent, a surfactant, a leveling agent, or a rust preventive.
(酸化防止剤)
 第2の絶縁膜形成材料は、高温保存、リフロー処理等で発生する酸素ラジカル及び過酸化物ラジカルを捕捉することで、接着性の低下を抑制できる観点から、酸化防止剤を含んでいてもよい。第2の絶縁膜形成材料が酸化防止剤を含むことで、絶縁信頼性試験時の電極の酸化を抑制することができる。
(Antioxidant)
The second insulating film forming material may contain an antioxidant from the viewpoint of suppressing deterioration of adhesive properties by capturing oxygen radicals and peroxide radicals generated during high-temperature storage, reflow treatment, etc. . By including the antioxidant in the second insulating film forming material, oxidation of the electrode during the insulation reliability test can be suppressed.
 酸化防止剤の具体例としては、前述のヒンダードフェノール系化合物として例示した化合物、N,N’-ビス[2-[2-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エチルカルボニルオキシ]エチル]オキサミド、N,N’-ビス-3-(3,5-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、1,3,5-トリス(3-ヒドロキシ-4-tert-ブチル-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸等が挙げられる。
 酸化防止剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
Specific examples of antioxidants include the compounds exemplified as the aforementioned hindered phenol compounds, N,N'-bis[2-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethyl] carbonyloxy]ethyl]oxamide, N,N'-bis-3-(3,5-di-tert-butyl-4'-hydroxyphenyl)propionylhexamethylenediamine, 1,3,5-tris(3-hydroxy- 4-tert-butyl-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl) -3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid and the like.
The antioxidants may be used alone or in combination of two or more.
 第2の絶縁膜形成材料が酸化防止剤を含む場合、酸化防止剤の含有量は、(A)ポリイミド前駆体100質量部に対して、0.1質量部~20質量部であることが好ましく、0.1質量部~10質量部であることがより好ましく、0.1質量部~5質量部であることがさらに好ましい。 When the second insulating film forming material contains an antioxidant, the content of the antioxidant is preferably 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. , more preferably 0.1 parts by mass to 10 parts by mass, and even more preferably 0.1 parts by mass to 5 parts by mass.
(カップリング剤)
 第2の絶縁膜形成材料は、カップリング剤を含んでもよい。カップリング剤は、加熱処理において、(A)ポリイミド前駆体と反応して架橋する、又はカップリング剤自体が重合する。これにより、得られる硬化物と基板との接着性をより向上させることができる傾向にある。
(coupling agent)
The second insulating film forming material may include a coupling agent. During the heat treatment, the coupling agent reacts with (A) the polyimide precursor to crosslink, or the coupling agent itself polymerizes. This tends to further improve the adhesiveness between the obtained cured product and the substrate.
 カップリング剤の具体例は特に限定されるものではない。カップリング剤としては、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-〔3-(トリエトキシシリル)プロピル〕フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン、N,N’-ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等のシランカップリング剤;アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤;などが挙げられる。
 カップリング剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
Specific examples of the coupling agent are not particularly limited. Coupling agents include 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, -Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N-(3-diethoxymethylsilylpropyl) Succinimide, N-[3-(triethoxysilyl)propyl]phthalamic acid, benzophenone-3,3'-bis(N-[3-triethoxysilyl]propylamide)-4,4'-dicarboxylic acid, benzene-1 ,4-bis(N-[3-triethoxysilyl]propylamide)-2,5-dicarboxylic acid, 3-(triethoxysilyl)propyl succinic anhydride, N-phenylaminopropyltrimethoxysilane, N,N '-Bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane and other silane coupling agents; aluminum tris(ethyl acetoacetate), aluminum tris(acetylacetonate), ethyl acetate Aluminum adhesive aids such as acetate aluminum diisopropylate; and the like.
The coupling agents may be used alone or in combination of two or more.
 第2の絶縁膜形成材料がカップリング剤を含む場合、カップリング剤の含有量は、(A)ポリイミド前駆体100質量部に対して、0.1質量部~20質量部が好ましく、0.3質量部~10質量部がより好ましく、1質量部~10質量部がさらに好ましい。 When the second insulating film forming material contains a coupling agent, the content of the coupling agent is preferably 0.1 parts by mass to 20 parts by mass, and 0.1 parts by mass to 20 parts by mass, based on 100 parts by mass of the polyimide precursor (A). The amount is more preferably 3 parts by weight to 10 parts by weight, and even more preferably 1 part to 10 parts by weight.
(界面活性剤及びレベリング剤)
 第2の絶縁膜形成材料は、界面活性剤及びレベリング剤の少なくとも一方を含んでもよい。絶縁膜形成材料が界面活性剤及びレベリング剤の少なくとも一方を含むことにより、塗布性(例えばストリエーション(膜厚のムラ)の抑制)、接着性の改善、絶縁膜形成材料中の化合物の相溶性等を向上させることができる。
(Surfactant and leveling agent)
The second insulating film forming material may include at least one of a surfactant and a leveling agent. When the insulating film forming material contains at least one of a surfactant and a leveling agent, it improves coating properties (for example, suppressing striae (unevenness in film thickness)), improves adhesion, and improves the compatibility of compounds in the insulating film forming material. etc. can be improved.
 界面活性剤又はレベリング剤としては、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられる。 Examples of the surfactant or leveling agent include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
 界面活性剤及びレベリング剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 The surfactants and leveling agents may be used alone or in combination of two or more.
 第2の絶縁膜形成材料が界面活性剤及びレベリング剤の少なくとも一方を含む場合、界面活性剤及びレベリング剤の合計の含有量は、(A)ポリイミド前駆体100質量部に対して0.01質量部~10質量部であることが好ましく、0.05質量部~5質量部であることがより好ましく、0.05質量部~3質量部であることがさらに好ましい。 When the second insulating film forming material contains at least one of a surfactant and a leveling agent, the total content of the surfactant and the leveling agent is 0.01 mass parts with respect to 100 mass parts of (A) polyimide precursor. The amount is preferably from 10 parts to 10 parts by weight, more preferably from 0.05 parts to 5 parts by weight, even more preferably from 0.05 parts to 3 parts by weight.
(防錆剤)
 第2の絶縁膜形成材料は、銅、銅合金等の金属の腐食を抑制する観点、及び、当該金属の変色を抑制する観点から、防錆剤を含んでもよい。防錆剤としては、アゾール化合物、プリン誘導体等が挙げられる。
(anti-rust)
The second insulating film forming material may contain a rust preventive agent from the viewpoint of suppressing corrosion of metals such as copper and copper alloys, and from the viewpoint of suppressing discoloration of the metals. Examples of rust preventive agents include azole compounds and purine derivatives.
 アゾール化合物の具体例としては、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α―ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール等が挙げられる。 Specific examples of azole compounds include 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t- Butyl-5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H- Triazole, hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy- 3,5-bis(α,α-dimethylbenzyl)phenyl]-benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-5 -Methyl-2-hydroxyphenyl)-benzotriazole, 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-t-octylphenyl)benzo Triazole, hydroxyphenylbenzotriazole, tolyltriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 4-carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 1H-tetrazole, Examples include 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-amino-1H-tetrazole, and 1-methyl-1H-tetrazole.
 プリン誘導体の具体例としては、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、2,6-ジアミノプリン、9-メチルアデニン、2-ヒドロキシアデニン、2-メチルアデニン、1-メチルアデニン、N-メチルアデニン、N,N-ジメチルアデニン、2-フルオロアデニン、9-(2-ヒドロキシエチル)アデニン、グアニンオキシム、N-(2-ヒドロキシエチル)アデニン、8-アミノアデニン、6-アミノ-8-フェニル‐9H-プリン、1-エチルアデニン、6-エチルアミノプリン、1-ベンジルアデニン、N-メチルグアニン、7-(2-ヒドロキシエチル)グアニン、N-(3-クロロフェニル)グアニン、N-(3-エチルフェニル)グアニン、2-アザアデニン、5-アザアデニン、8-アザアデニン、8-アザグアニン、8-アザプリン、8-アザキサンチン、8-アザヒポキサンチン等、これらの誘導体などが挙げられる。 Specific examples of purine derivatives include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N,N-dimethyladenine, 2-fluoroadenine, 9-(2-hydroxyethyl)adenine, guanine oxime, N-(2-hydroxyethyl)adenine, 8-aminoadenine, 6-Amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl) Examples include guanine, N-(3-ethylphenyl)guanine, 2-azaadenine, 5-azaadenine, 8-azaadenine, 8-azaguanine, 8-azapurine, 8-azaxanthin, 8-azahypoxanthine, and derivatives thereof. It will be done.
 防錆剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 The rust inhibitors may be used alone or in combination of two or more.
 第2の絶縁膜形成材料が防錆剤を含む場合、防錆剤の含有量は、(A)ポリイミド前駆体100質量部に対して、0.01質量部~10質量部であることが好ましく、0.1質量部~5質量部であることがより好ましく、0.5質量部~3質量部であることがさらに好ましい。特に、防錆剤の含有量が0.1質量部以上であることで、第2の絶縁膜形成材料を銅又は銅合金の表面上に付与した場合に、銅又は銅合金の表面の変色が抑制される。 When the second insulating film forming material contains a rust preventive agent, the content of the rust preventive agent is preferably 0.01 parts by mass to 10 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. , more preferably 0.1 parts by mass to 5 parts by mass, and even more preferably 0.5 parts by mass to 3 parts by mass. In particular, when the content of the rust preventive agent is 0.1 parts by mass or more, when the second insulating film forming material is applied on the surface of the copper or copper alloy, discoloration of the surface of the copper or copper alloy is prevented. suppressed.
(絶縁膜形成材料の特性)
 本開示の絶縁膜形成材料は、低温での接合の観点から、硬化物としたときのガラス転移温度が100℃~400℃であることが好ましく、150℃~350℃であることがより好ましい。
(Characteristics of insulation film forming material)
From the viewpoint of bonding at low temperatures, the insulating film forming material of the present disclosure preferably has a glass transition temperature of 100° C. to 400° C., more preferably 150° C. to 350° C., when cured.
 硬化物のガラス転移温度は、以下のようにして測定する。まず、絶縁膜形成材料を窒素雰囲気下にて2時間、硬化反応が可能な所定の硬化温度(例えば、150℃~375℃)で加熱して硬化物を得る。得られた硬化物を切断して5mm×50mm×3mmの直方体を作製し、動的粘弾性測定装置(例えば、TAインスツルメント製、RSA-G2)にて引張冶具を用い、周波数:1Hz、昇温速度:5℃/分の条件で、50℃~350℃の温度範囲で動的粘弾性を測定する。ガラス転移温度(Tg)は、上記方法で得られた貯蔵弾性率と損失弾性率との比より求められるtanδにおいて、ピークトップ部分の温度とする。 The glass transition temperature of the cured product is measured as follows. First, an insulating film forming material is heated in a nitrogen atmosphere for 2 hours at a predetermined curing temperature (for example, 150° C. to 375° C.) that allows a curing reaction to occur, to obtain a cured product. The obtained cured product was cut to make a rectangular parallelepiped of 5 mm x 50 mm x 3 mm, and a dynamic viscoelasticity measuring device (for example, RSA-G2 manufactured by TA Instruments) was used with a tension jig at a frequency of 1 Hz. Dynamic viscoelasticity is measured in a temperature range of 50°C to 350°C under the conditions of heating rate: 5°C/min. The glass transition temperature (Tg) is defined as the temperature at the peak top of tan δ, which is determined from the ratio of the storage modulus and loss modulus obtained by the above method.
 本開示の絶縁膜形成材料は、ネガ型感光性絶縁膜形成材料又はポジ型感光性絶縁膜形成材料であってもよい。また、ネガ型感光性絶縁膜形成材料又はポジ型感光性絶縁膜形成材料は、後述する第1基板本体の一の面上に設けられた第1有機絶縁膜に複数の端子電極を配置するための貫通孔を複数設けること、及び、第2基板本体の一の面上に設けられた第2有機絶縁膜に複数の端子電極を配置するための貫通孔を複数設けることの少なくとも一方に用いられてもよい。 The insulating film forming material of the present disclosure may be a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material. Further, the negative photosensitive insulating film forming material or the positive photosensitive insulating film forming material is used for arranging a plurality of terminal electrodes on a first organic insulating film provided on one surface of the first substrate body, which will be described later. The method is used for at least one of providing a plurality of through holes for arranging a plurality of terminal electrodes in a second organic insulating film provided on one surface of the second substrate body. It's okay.
 本開示の絶縁膜形成材料は、硬化物としたときの熱膨張率が150ppm/K以下であることが好ましく、100ppm/K以下であることがより好ましく、70ppm/K以下であることがさらに好ましい。これにより、硬化物である絶縁膜の熱膨張率と、電極の熱膨張率とが同等又は近い値となるため、半導体装置の使用時に発熱等が生じた場合であっても、絶縁層と電極との熱膨張率の違いによる半導体装置の破損を抑制できる。熱膨張率は、温度上昇による硬化物の長さが膨張する割合を温度あたりで示したものである。熱膨張率は、熱機械分析装置等を用いて100℃~150℃における硬化物の長さの変化量を測定することで算出できる。 The insulating film forming material of the present disclosure preferably has a coefficient of thermal expansion of 150 ppm/K or less, more preferably 100 ppm/K or less, even more preferably 70 ppm/K or less when cured. . As a result, the coefficient of thermal expansion of the insulating film, which is a cured product, and the coefficient of thermal expansion of the electrode are equal to or close to each other, so even if heat generation occurs during use of the semiconductor device, the insulating layer and the electrode Damage to the semiconductor device due to the difference in coefficient of thermal expansion between the two can be suppressed. The coefficient of thermal expansion indicates the rate at which the length of a cured product expands due to temperature rise, per temperature. The coefficient of thermal expansion can be calculated by measuring the amount of change in length of the cured product at 100° C. to 150° C. using a thermomechanical analyzer or the like.
<半導体装置>
 本開示の半導体装置は、第1基板本体と、前記第1基板本体の一の面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板と、半導体チップ基板本体と、前記半導体チップ基板本体の一の面に設けられた前記第2有機絶縁膜及び第2電極とを有する半導体チップと、を備え、前記第1有機絶縁膜と前記第2有機絶縁膜とが接合し、前記第1電極と前記第2電極とが接合し、前記第1有機絶縁膜及び前記第2有機絶縁膜の少なくとも一方が、本開示の絶縁膜形成材料の硬化物である。
 本開示の半導体装置は、第1有機絶縁膜及び第2有機絶縁膜(絶縁膜部分)の少なくとも一方が本開示の絶縁膜形成材料の硬化物であるため、絶縁膜の耐熱性に優れる。
<Semiconductor device>
A semiconductor device of the present disclosure includes a first semiconductor substrate including a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body, and a semiconductor chip substrate body. , a semiconductor chip having the second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body, wherein the first organic insulating film and the second organic insulating film are bonded. However, the first electrode and the second electrode are bonded to each other, and at least one of the first organic insulating film and the second organic insulating film is a cured product of the insulating film forming material of the present disclosure.
In the semiconductor device of the present disclosure, since at least one of the first organic insulating film and the second organic insulating film (insulating film portion) is a cured product of the insulating film forming material of the present disclosure, the insulating film has excellent heat resistance.
<半導体装置の製造方法>
 本開示の半導体装置の製造方法では、本開示の絶縁膜形成材料を用いて半導体装置を製造する。具体的には、本開示の半導体装置の製造方法は、第1基板本体と、前記第1基板本体の一の面上に設けられる第1電極及び第1有機絶縁膜と、を有する第1半導体基板を準備し、半導体チップ基板本体と、前記半導体チップ基板本体の一の面上に設けられる第2有機絶縁膜及び第2電極と、を有する半導体チップを準備し、前記第1電極と前記第2電極との接合、及び前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせを行い、第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の有機絶縁膜の作製に、本開示の絶縁膜形成材料を用いる。
<Method for manufacturing semiconductor devices>
In the method for manufacturing a semiconductor device of the present disclosure, a semiconductor device is manufactured using the insulating film forming material of the present disclosure. Specifically, the method for manufacturing a semiconductor device of the present disclosure includes a first semiconductor device having a first substrate body, a first electrode and a first organic insulating film provided on one surface of the first substrate body. A substrate is prepared, a semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body is prepared, and the first electrode and the second electrode are provided on one surface of the semiconductor chip substrate body. 2 electrodes, and the first organic insulating film and the second organic insulating film are bonded together to form at least one of the first organic insulating film and the second organic insulating film. The disclosed insulating film forming material is used.
 以下、図面を参照しながら本開示の半導体装置の一実施形態、及び本開示の半導体装置の製造方法の一実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, an embodiment of the semiconductor device of the present disclosure and an embodiment of the method of manufacturing the semiconductor device of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are given the same reference numerals, and overlapping description will be omitted. In addition, the positional relationships such as top, bottom, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the illustrated ratios.
(半導体装置の一例)
 図1は、本開示の半導体装置の一例を模式的に示す断面図である。図1に示すように、半導体装置1は、例えば半導体パッケージの一例であり、第1半導体チップ10(第1半導体基板)、第2半導体チップ20(半導体チップ)、ピラー部30、再配線層40、基板50、及び、回路基板60を備えている。
(Example of semiconductor device)
FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device of the present disclosure. As shown in FIG. 1, the semiconductor device 1 is an example of a semiconductor package, and includes a first semiconductor chip 10 (first semiconductor substrate), a second semiconductor chip 20 (semiconductor chip), a pillar part 30, and a rewiring layer 40. , a substrate 50, and a circuit board 60.
 第1半導体チップ10は、LSI(大規模集積回路)チップ又はCMOS(Complementary Metal Oxide Semiconductor)センサ等の半導体チップであり、第2半導体チップ20が下方向に実装された三次元実装構造になっている。第2半導体チップ20は、LSI、メモリ等の半導体チップであり、第1半導体チップ10よりも平面視における面積が小さいチップ部品である。第2半導体チップ20は、第1半導体チップ10の裏面にChip-to-Chip(C2C)接合されている。第1半導体チップ10と第2半導体チップ20とは、詳細を後述するハイブリッドボンディングにより、それぞれの端子電極とその周りの絶縁膜同士が強固に微細接合されている。 The first semiconductor chip 10 is a semiconductor chip such as an LSI (Large Scale Integrated Circuit) chip or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and has a three-dimensional mounting structure in which the second semiconductor chip 20 is mounted downward. There is. The second semiconductor chip 20 is a semiconductor chip such as an LSI or a memory, and is a chip component having a smaller area in plan view than the first semiconductor chip 10. The second semiconductor chip 20 is chip-to-chip (C2C) bonded to the back surface of the first semiconductor chip 10. The first semiconductor chip 10 and the second semiconductor chip 20 have their respective terminal electrodes and their surrounding insulating films firmly and finely bonded to each other by hybrid bonding, which will be described in detail later.
 ピラー部30は、銅(Cu)等の金属により形成された複数のピラー31が樹脂32によって封止されている接続部である。複数のピラー31は、ピラー部30の上面から下面に向けて延在する導電性部材である。複数のピラー31は、例えば直径3μm以上20μm以下(一例では直径5μm)の円柱形状を有していてもよく、各ピラー31の中心間距離が15μm以下となるように配置されてもよい。複数のピラー31は、第1半導体チップ10の下側の端子電極と再配線層40の上側の端子電極とをフリップチップ接続する。ピラー部30を用いることにより、半導体装置1では、TMV(Through mold via)と呼ばれるモールドに穴明けしてはんだ接続する技術を使用せずに接続電極を形成することができる。ピラー部30は、例えば第2半導体チップ20と同程度の厚さを有し、水平方向にて第2半導体チップ20の横側に配置される。なお、ピラー部30に替えて複数のはんだボールが配置されていてもよく、はんだボールによって第1半導体チップ10の下側の端子電極と再配線層40の上側の端子電極とを電気的に接続してもよい。 The pillar part 30 is a connection part in which a plurality of pillars 31 made of metal such as copper (Cu) are sealed with resin 32. The plurality of pillars 31 are conductive members extending from the upper surface to the lower surface of the pillar section 30. The plurality of pillars 31 may have a cylindrical shape, for example, with a diameter of 3 μm or more and 20 μm or less (in one example, a diameter of 5 μm), and may be arranged such that the distance between the centers of each pillar 31 is 15 μm or less. The plurality of pillars 31 connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40 by flip-chip connection. By using the pillar section 30, the connection electrode can be formed in the semiconductor device 1 without using a technique called TMV (Through Mold Via) in which a hole is made in a mold and a solder connection is made. The pillar section 30 has, for example, the same thickness as the second semiconductor chip 20, and is arranged on the side of the second semiconductor chip 20 in the horizontal direction. Note that a plurality of solder balls may be arranged instead of the pillar portion 30, and the solder balls electrically connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40. You may.
 再配線層40は、パッケージ基板の機能である端子ピッチ変換の機能を有する配線層であり、第2半導体チップ20の下側の絶縁膜上及びピラー部30の下面上にポリイミド又はポリベンゾオキサゾール及び銅配線等で再配線パターンを形成した層である。再配線層40は、第1半導体チップ10、第2半導体チップ20等を上下反転した状態で形成される(図4の(d)参照)。 The rewiring layer 40 is a wiring layer that has a terminal pitch conversion function, which is a function of a package substrate, and is formed by coating polyimide or polybenzoxazole on the lower insulating film of the second semiconductor chip 20 and the lower surface of the pillar section 30. This is a layer in which a rewiring pattern is formed using copper wiring or the like. The rewiring layer 40 is formed by turning the first semiconductor chip 10, the second semiconductor chip 20, etc. upside down (see (d) in FIG. 4).
 再配線層40は、第2半導体チップ20の下面の端子電極及びピラー部30を介した第1半導体チップ10の端子電極を、基板50の端子電極に電気的に接続する。基板50の端子ピッチは、ピラー31の端子ピッチ及び第2半導体チップ20の端子ピッチよりも広くなっている。なお、基板50上には、各種の電子部品51が実装されていてもよい。また、再配線層40と基板50との端子ピッチに大きな開きがある場合は再配線層40と基板50との間に無機インターポーザ―等を使用して再配線層40と基板50との電気的接続をとってもよい。 The rewiring layer 40 electrically connects the terminal electrodes of the first semiconductor chip 10 via the terminal electrodes on the lower surface of the second semiconductor chip 20 and the pillar portion 30 to the terminal electrodes of the substrate 50. The terminal pitch of the substrate 50 is wider than the terminal pitch of the pillar 31 and the terminal pitch of the second semiconductor chip 20. Note that various electronic components 51 may be mounted on the board 50. In addition, if there is a large difference in the terminal pitch between the rewiring layer 40 and the substrate 50, an inorganic interposer or the like may be used between the rewiring layer 40 and the substrate 50 to ensure electrical connection between the rewiring layer 40 and the substrate 50. You can also make a connection.
 回路基板60は、第1半導体チップ10及び第2半導体チップ20をその上に搭載し、第1半導体チップ10、第2半導体チップ20及び電子部品51等に接続された基板50に電気的に接続される複数の貫通電極を内部に有する基板である。回路基板60では、複数の貫通電極により、第1半導体チップ10及び第2半導体チップ20の各端子電極が回路基板60の裏面に設けられた端子電極61に電気的に接続される。 The circuit board 60 has the first semiconductor chip 10 and the second semiconductor chip 20 mounted thereon, and is electrically connected to the board 50 which is connected to the first semiconductor chip 10, the second semiconductor chip 20, the electronic component 51, etc. This is a substrate that has a plurality of through electrodes inside. In the circuit board 60, each terminal electrode of the first semiconductor chip 10 and the second semiconductor chip 20 is electrically connected to a terminal electrode 61 provided on the back surface of the circuit board 60 by a plurality of through electrodes.
(半導体装置の製造方法の一例)
 次に、半導体装置1の製造方法の一例について、図2~図4を参照して、説明する。図2は、図1に示す半導体装置を製造するための方法を順に示す図である。図3は、図2に示す半導体装置の製造方法における接合方法(ハイブリッドボンディング)をより詳細に示す図である。図4は、図1に示す半導体装置を製造するための方法であり、図2に示す工程の後の工程を順に示す図である。
(An example of a method for manufacturing a semiconductor device)
Next, an example of a method for manufacturing the semiconductor device 1 will be described with reference to FIGS. 2 to 4. FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG. FIG. 3 is a diagram showing in more detail the bonding method (hybrid bonding) in the method for manufacturing the semiconductor device shown in FIG. FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram showing the steps after the step shown in FIG. 2 in order.
 半導体装置1は、例えば、以下の工程(a)~工程(n)を経て製造することができる。
(a)第1半導体チップ10に対応する第1半導体基板100を準備する工程。
(b)第2半導体チップ20に対応する第2半導体基板200を準備する工程。
(c)第1半導体基板100を研磨する工程。
(d)第2半導体基板200を研磨する工程。
(e)第2半導体基板200を個片化し、複数の半導体チップ205を取得する工程。
(f)第1半導体基板100の端子電極103に対して複数の半導体チップ205それぞれの端子電極203の位置合わせを行う工程。
(g)第1半導体基板100の絶縁膜102と複数の半導体チップ205の各絶縁膜部分202bとを互いに貼り合わせる工程(図3の(b)参照)。
(h)第1半導体基板100の端子電極103と複数の半導体チップ205それぞれの端子電極203とを接合する工程(図3の(c)参照)。
(i)第1半導体基板100の接続面上であって複数の半導体チップ205の間に複数のピラー300(ピラー31に対応)を形成する工程。
(j)半導体チップ205とピラー300とを覆うように、第1半導体基板100の接続面上に樹脂301をモールドして半製品M1を取得する工程。
(k)工程(j)でモールドがされた半製品M1の樹脂301側を研削して薄化し、半製品M2を取得する工程。
(l)工程(k)で薄化された半製品M2に再配線層40に対応する配線層400を形成する工程。
(m)工程(l)で配線層400が形成された半製品M3を各半導体装置1となるように切断線Aに沿って切断する工程。
(n)工程(m)で個別化された半導体装置1aを反転して基板50及び回路基板60上に設置する工程(図1参照)。
The semiconductor device 1 can be manufactured, for example, through the following steps (a) to (n).
(a) A step of preparing a first semiconductor substrate 100 corresponding to the first semiconductor chip 10.
(b) A step of preparing a second semiconductor substrate 200 corresponding to the second semiconductor chip 20.
(c) A step of polishing the first semiconductor substrate 100.
(d) A step of polishing the second semiconductor substrate 200.
(e) A step of dividing the second semiconductor substrate 200 into pieces to obtain a plurality of semiconductor chips 205.
(f) A step of aligning the terminal electrodes 203 of the plurality of semiconductor chips 205 with respect to the terminal electrodes 103 of the first semiconductor substrate 100.
(g) A step of bonding the insulating film 102 of the first semiconductor substrate 100 and each insulating film portion 202b of the plurality of semiconductor chips 205 to each other (see (b) of FIG. 3).
(h) A step of bonding the terminal electrode 103 of the first semiconductor substrate 100 and the terminal electrode 203 of each of the plurality of semiconductor chips 205 (see (c) of FIG. 3).
(i) A step of forming a plurality of pillars 300 (corresponding to the pillars 31) on the connection surface of the first semiconductor substrate 100 and between the plurality of semiconductor chips 205.
(j) A step of molding resin 301 on the connection surface of first semiconductor substrate 100 so as to cover semiconductor chip 205 and pillar 300 to obtain semi-finished product M1.
(k) A process of grinding and thinning the resin 301 side of the semi-finished product M1 molded in step (j) to obtain a semi-finished product M2.
(l) A step of forming a wiring layer 400 corresponding to the rewiring layer 40 on the semi-finished product M2 thinned in step (k).
(m) A step of cutting the semi-finished product M3 on which the wiring layer 400 has been formed in step (l) along the cutting line A to form each semiconductor device 1.
(n) A step of inverting the semiconductor device 1a that has been individualized in step (m) and placing it on the substrate 50 and the circuit board 60 (see FIG. 1).
 本開示の絶縁膜形成材料は、工程(f)及び工程(i)~工程(n)に対応する工程を少なくとも1つ含む半導体装置の製造方法での第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の絶縁膜の作製に用いるための絶縁膜形成材料であってもよい。 The insulating film forming material of the present disclosure provides a first organic insulating film and a second organic insulating film in a method for manufacturing a semiconductor device including at least one step corresponding to step (f) and steps (i) to (n). It may be an insulating film forming material for use in producing at least one of the insulating films.
[工程(a)及び工程(b)]
 工程(a)は、複数の第1半導体チップ10に対応し、半導体素子及びそれらを接続する配線等からなる集積回路が形成されたシリコン基板である第1半導体基板100を準備する工程である。工程(a)では、図2の(a)に示すように、シリコン等からなる第1基板本体101の一の面101aには、銅、アルミニウム等からなる複数の端子電極103(第1電極)を所定の間隔で設けられ、かつその間隔部分に本開示の絶縁膜形成材料の硬化物である絶縁膜102(第1絶縁膜)が設けられる。絶縁膜102を第1基板本体101の一の面101a上に設けてから、複数の端子電極103を設けてもよいし、複数の端子電極103を第1基板本体101の一の面101aに設けてから絶縁膜102を設けてもよい。なお、複数の端子電極103の間には、後述する工程でピラー300を形成するため、所定の間隔が設けられており、その間にはピラー300に接続される別の端子電極(不図示)が形成されている。
[Step (a) and step (b)]
Step (a) is a step of preparing a first semiconductor substrate 100, which is a silicon substrate, corresponding to a plurality of first semiconductor chips 10 and on which an integrated circuit including semiconductor elements and wiring connecting them is formed. In step (a), as shown in FIG. 2(a), a plurality of terminal electrodes 103 (first electrodes) made of copper, aluminum, etc. are placed on one surface 101a of the first substrate body 101 made of silicon or the like. are provided at predetermined intervals, and an insulating film 102 (first insulating film), which is a cured product of the insulating film forming material of the present disclosure, is provided in the spaced portion. A plurality of terminal electrodes 103 may be provided after the insulating film 102 is provided on one surface 101a of the first substrate main body 101, or a plurality of terminal electrodes 103 may be provided on one surface 101a of the first substrate main body 101. The insulating film 102 may be provided after that. Note that a predetermined interval is provided between the plurality of terminal electrodes 103 in order to form the pillar 300 in a process described later, and another terminal electrode (not shown) connected to the pillar 300 is provided between the plurality of terminal electrodes 103. It is formed.
 工程(b)は、複数の第2半導体チップ20に対応し、半導体素子及びそれらを接続する配線を備える集積回路が形成されたシリコン基板である第2半導体基板200を準備する工程である。工程(b)では、図2の(a)に示すように、シリコン等からなる第2基板本体201の一の面201a上に、銅、アルミニウム等からなる複数の端子電極203(複数の第2電極)を連続的に設けると共に本開示の絶縁膜形成材料の硬化物である絶縁膜202(第2絶縁膜、有機絶縁領域)を設ける。絶縁膜202を第2基板本体201の一の面201a上に設けてから複数の端子電極203を設けてもよいし、複数の端子電極203を第2基板本体201の一の面201aに設けてから絶縁膜202を設けてもよい。 Step (b) is a step of preparing a second semiconductor substrate 200, which is a silicon substrate, on which an integrated circuit corresponding to a plurality of second semiconductor chips 20 and including semiconductor elements and wiring connecting them is formed. In step (b), as shown in FIG. 2(a), a plurality of terminal electrodes 203 (a plurality of second An insulating film 202 (second insulating film, organic insulating region) which is a cured product of the insulating film forming material of the present disclosure is provided. The plurality of terminal electrodes 203 may be provided after the insulating film 202 is provided on the one surface 201a of the second substrate main body 201, or the plurality of terminal electrodes 203 may be provided on the one surface 201a of the second substrate main body 201. Alternatively, the insulating film 202 may be provided.
 工程(a)及び工程(b)で用いられる絶縁膜102及び202が共に本開示の絶縁膜形成材料の硬化物であっても、絶縁膜102及び202の一方が本開示の絶縁膜形成材料の硬化物であり他方が他の硬化物であってもよい。他の硬化物を形成するための絶縁膜形成材料としては、ポリアミドイミド、ベンゾシクロブテン(BCB)等を含む絶縁膜形成材料が挙げられる。絶縁膜102及び202の25℃での引張弾性率は、7.0GPa以下であることが好ましく、5.0GPa以下であることがより好ましく、3.0GPa以下であることがさらに好ましく、2.5GPa以下であることが特に好ましい。 Even if the insulating films 102 and 202 used in step (a) and step (b) are both cured products of the insulating film forming material of the present disclosure, one of the insulating films 102 and 202 is made of the insulating film forming material of the present disclosure. One may be a cured product and the other may be another cured product. Examples of other insulating film forming materials for forming the cured product include insulating film forming materials containing polyamideimide, benzocyclobutene (BCB), and the like. The tensile modulus of the insulating films 102 and 202 at 25° C. is preferably 7.0 GPa or less, more preferably 5.0 GPa or less, even more preferably 3.0 GPa or less, and 2.5 GPa or less. The following is particularly preferable.
 絶縁膜102及び202の熱膨張率は150ppm/K以下であることが好ましく、100ppm/K以下であることがより好ましく、90ppm/K以下であることがさらに好ましい。 The coefficient of thermal expansion of the insulating films 102 and 202 is preferably 150 ppm/K or less, more preferably 100 ppm/K or less, and even more preferably 90 ppm/K or less.
 絶縁膜102及び202の厚さは、0.1μm~50μmが好ましく、1μm~15μmがより好ましい。これにより、絶縁膜の膜厚の均一性を担保しつつ、以後の研磨工程において処理時間を短縮することができる。 The thickness of the insulating films 102 and 202 is preferably 0.1 μm to 50 μm, more preferably 1 μm to 15 μm. This makes it possible to reduce the processing time in the subsequent polishing step while ensuring uniformity in the thickness of the insulating film.
 工程(c)及び工程(d)での作業が行い易くなり、これらの工程を簡略化できる観点から、絶縁膜102の研磨レートは端子電極103の研磨レートの0.1倍~5倍であること、及び、絶縁膜202の研磨レートは端子電極203の研磨レートの0.1倍~5倍であることの少なくとも一方を満たすこと(好ましくは両方を満たすこと)が好ましい。
 一例として、端子電極103又は203が銅からなり、銅の研磨レートが50nm/minの場合、絶縁膜102又は202の研磨レートは、200nm/min以下(銅の研磨レートの4倍以下)であることが好ましく、100nm/min以下(銅の研磨レートの2倍以下)であることがより好ましく、50nm/min以下(銅の研磨レートの同等以下)であることがさらに好ましい。
The polishing rate of the insulating film 102 is 0.1 to 5 times the polishing rate of the terminal electrode 103 in order to facilitate the work in steps (c) and (d) and to simplify these steps. It is preferable that the polishing rate of the insulating film 202 is 0.1 to 5 times the polishing rate of the terminal electrode 203 (preferably both).
As an example, if the terminal electrode 103 or 203 is made of copper and the polishing rate of copper is 50 nm/min, the polishing rate of the insulating film 102 or 202 is 200 nm/min or less (4 times the polishing rate of copper or less). It is preferably 100 nm/min or less (twice or less the polishing rate of copper), and even more preferably 50 nm/min or less (equivalent to or less than the polishing rate of copper).
 次に絶縁膜の作製方法について説明する。絶縁膜は絶縁膜形成材料を硬化することで得られる。上述の絶縁膜の作製方法としては、例えば、(α)絶縁膜形成材料を、基板上に塗布、乾燥して樹脂膜を形成する工程と、樹脂膜を加熱処理する工程と、を含む方法、(β)離型処理が施されたフィルム上に絶縁膜形成材料を用いて一定膜厚で成膜した後、樹脂膜を基板へラミネート方式により転写する工程と、転写後に基板上に形成された樹脂膜を加熱処理する工程と、を含む方法が挙げられる。平坦性の点から、前記(α)の方法が好ましい。 Next, the method for manufacturing the insulating film will be explained. The insulating film is obtained by curing an insulating film forming material. The method for producing the above-mentioned insulating film includes, for example, (α) a step of applying an insulating film forming material onto a substrate and drying it to form a resin film, and a step of heat-treating the resin film; (β) After forming a film with a constant thickness using an insulating film forming material on a film that has been subjected to mold release treatment, the process of transferring the resin film to the substrate by lamination method, and the process of forming the resin film on the substrate after transfer. Examples include a method including a step of heat-treating the resin film. From the viewpoint of flatness, the method (α) above is preferred.
 絶縁膜形成材料の塗布方法としては、例えば、スピンコート法、インクジェット法、及びスリットコート法が挙げられる。 Examples of the method for applying the insulating film forming material include a spin coating method, an inkjet method, and a slit coating method.
 スピンコート法では、例えば、回転速度が300rpm(回転毎分)~3,500rpm、好ましくは500rpm~1,500rpm、加速度が500rpm/秒~15,000rpm/秒、回転時間が30秒~300秒という条件にて、前記絶縁膜形成材料をスピンコーティングしてもよい。 In the spin coating method, for example, the rotation speed is 300 rpm (rotations per minute) to 3,500 rpm, preferably 500 rpm to 1,500 rpm, the acceleration is 500 rpm/second to 15,000 rpm/second, and the rotation time is 30 seconds to 300 seconds. The insulating film forming material may be spin coated under certain conditions.
 絶縁膜形成材料を支持体、フィルム等に塗布した後に乾燥工程を含んでもいてもよい。ホットプレート、オーブン等を用いて乾燥を行ってもよい。乾燥温度は、75℃~130℃が好ましく、絶縁膜の平坦性向上の観点から、90℃~120℃がより好ましい。乾燥時間は、30秒間~5分間が好ましい。
 乾燥は、2回以上行ってもよい。これにより、上述の絶縁膜形成材料を膜状に形成した樹脂膜を得ることができる。
A drying step may be included after applying the insulating film forming material to the support, film, etc. Drying may be performed using a hot plate, oven, or the like. The drying temperature is preferably 75° C. to 130° C., and more preferably 90° C. to 120° C. from the viewpoint of improving the flatness of the insulating film. The drying time is preferably 30 seconds to 5 minutes.
Drying may be performed two or more times. Thereby, it is possible to obtain a resin film in which the above-mentioned insulating film forming material is formed into a film shape.
 スリットコート法では、例えば、薬液吐出速度10μL/秒~400μL/秒、薬液吐出部高さ0.1μm~1.0μm、ステージ速度(又は、薬液吐出部速度)1.0mm/秒~50.0mm/秒、ステージ加速度10mm/秒~1000mm/秒、減圧乾燥時の到達真空度10Pa~100Pa、減圧乾燥時間30秒~600秒、乾燥温度60℃~150℃、及び乾燥時間30秒~300秒という条件にて、前記絶縁膜形成材料をスリットコーティングしてもよい。 In the slit coating method, for example, the chemical liquid discharge speed is 10 μL/sec to 400 μL/sec, the chemical liquid discharge part height is 0.1 μm to 1.0 μm, and the stage speed (or chemical liquid discharge part speed) is 1.0 mm/sec to 50.0 mm. /second, stage acceleration 10mm/second to 1000mm/second, ultimate vacuum during vacuum drying 10Pa to 100Pa, vacuum drying time 30 seconds to 600 seconds, drying temperature 60°C to 150°C, and drying time 30 seconds to 300 seconds. The insulating film forming material may be slit coated under certain conditions.
 形成された樹脂膜を加熱処理してもよい。加熱温度は、150℃~450℃が好ましく、150℃~350℃がより好ましい。加熱温度が上記範囲内であることにより、基板、デバイス等へのダメージを抑制してプロセスの省エネルギー化を実現しつつ、絶縁膜を好適に作製することができる。 The formed resin film may be heat-treated. The heating temperature is preferably 150°C to 450°C, more preferably 150°C to 350°C. When the heating temperature is within the above range, the insulating film can be suitably produced while suppressing damage to the substrate, devices, etc. and realizing energy saving in the process.
 加熱時間は、5時間以下が好ましく、30分間~3時間がより好ましい。加熱処理の時間が上記範囲内であることにより、架橋反応又は脱水閉環反応を充分に進行させることができる。
 加熱処理の雰囲気は大気中であっても、窒素等の不活性雰囲気中であってもよいが、樹脂膜の酸化を防ぐことができる観点から、窒素雰囲気下が好ましい。
The heating time is preferably 5 hours or less, more preferably 30 minutes to 3 hours. When the heat treatment time is within the above range, the crosslinking reaction or dehydration ring closure reaction can proceed sufficiently.
The atmosphere for the heat treatment may be the air or an inert atmosphere such as nitrogen, but a nitrogen atmosphere is preferred from the viewpoint of preventing oxidation of the resin film.
 加熱処理に用いられる装置としては、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等が挙げられる。 Devices used for heat treatment include quartz tube furnaces, hot plates, rapid thermal annealing, vertical diffusion furnaces, infrared curing furnaces, electron beam curing furnaces, microwave curing furnaces, and the like.
 ネガ型感光性絶縁膜形成材料又はポジ型感光性絶縁膜形成材料である本開示の絶縁膜形成材料を用いる場合、絶縁膜202を第2基板本体201の一の面201a上に設けてから複数の端子電極203を設けるときに、例えば、絶縁膜形成材料を基板上に塗布する工程と、乾燥して樹脂膜を形成する工程と、樹脂膜をパターン露光し、現像液を用いて現像してパターン樹脂膜を得る工程と、パターン樹脂膜を加熱処理する工程とを含む方法を用いてもよい。これにより、硬化されたパターン絶縁膜を得ることができる。 When using the insulating film forming material of the present disclosure, which is a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material, the insulating film 202 is provided on one surface 201a of the second substrate main body 201, and then a plurality of When providing the terminal electrode 203, for example, there are a step of applying an insulating film forming material onto the substrate, a step of drying to form a resin film, and a step of exposing the resin film to pattern light and developing it using a developer. A method including a step of obtaining a patterned resin film and a step of heat-treating the patterned resin film may be used. Thereby, a cured patterned insulating film can be obtained.
 あるいは、絶縁膜202を第2基板本体201の一の面201a上に設けてから複数の端子電極203を設けるときに、例えば、本開示の絶縁膜形成材料以外の絶縁膜形成材料を基板上に塗布する工程と、乾燥して樹脂膜を形成する工程と、樹脂膜上にネガ型感光性絶縁膜形成材料又はポジ型感光性絶縁膜形成材料である本開示の絶縁膜形成材料を塗布及び乾燥後にパターン露光し、現像液を用いて現像してパターン樹脂膜を得る工程と、パターン樹脂膜を加熱処理する工程とを含む方法を用いてもよい。これにより、硬化されたパターン絶縁膜を得ることができる。 Alternatively, when providing the plurality of terminal electrodes 203 after providing the insulating film 202 on the one surface 201a of the second substrate main body 201, for example, an insulating film forming material other than the insulating film forming material of the present disclosure may be used on the substrate. a step of coating, a step of drying to form a resin film, and a step of applying and drying the insulating film forming material of the present disclosure, which is a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material, on the resin film. A method may also be used that includes a step of subsequently performing pattern exposure and developing using a developer to obtain a patterned resin film, and a step of heat-treating the patterned resin film. Thereby, a cured patterned insulating film can be obtained.
 パターン露光は、例えばフォトマスクを介して所定のパターンに露光する。
 照射する活性光線は、i線、広帯域等の紫外線、可視光線、放射線などが挙げられ、i線であることが好ましい。露光装置としては、平行露光機、投影露光機、ステッパ、スキャナ露光機等を用いることができる。
In the pattern exposure, for example, a predetermined pattern is exposed through a photomask.
The active light to be irradiated includes i-line, broadband ultraviolet rays, visible light, radiation, etc., and i-line is preferable. As the exposure device, a parallel exposure device, a projection exposure device, a stepper, a scanner exposure device, etc. can be used.
 露光後現像することで、パターン形成された樹脂膜であるパターン樹脂膜を得ることができる。本開示の絶縁膜形成材料がネガ型感光性絶縁膜形成材料である場合、未露光部を現像液で除去する。
 ネガ型の現像液として用いる有機溶剤は、感光性樹脂膜の良溶媒を単独で、又は良溶媒と貧溶媒とを適宜混合して用いることができる。
 良溶媒としては、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、3-メトキシ-N、N-ジメチルプロパンアミド、シクロペンタノン、シクロヘキサノン、シクロヘプタノン等が挙げられる。
 貧溶媒としては、トルエン、キシレン、メタノール、エタノール、イソプロパノール、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、水等が挙げられる。
By developing after exposure, a patterned resin film, which is a patterned resin film, can be obtained. When the insulating film forming material of the present disclosure is a negative photosensitive insulating film forming material, the unexposed portions are removed with a developer.
The organic solvent used as the negative developing solution can be used alone as a good solvent for the photosensitive resin film, or in an appropriate mixture of a good solvent and a poor solvent.
Good solvents include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethylsulfoxide, γ-butyrolactone, α-acetyl-γ-butyrolactone, Examples include 3-methoxy-N,N-dimethylpropanamide, cyclopentanone, cyclohexanone, and cycloheptanone.
Examples of the poor solvent include toluene, xylene, methanol, ethanol, isopropanol, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, water, and the like.
 本開示の絶縁膜形成材料がポジ型感光性絶縁膜形成材料である場合、露光部を現像液で除去する。
 ポジ型の現像液として用いる溶液としては水酸化テトラメチルアンモニウム(TMAH)溶液、炭酸ナトリウム溶液等が挙げられる。
When the insulating film forming material of the present disclosure is a positive photosensitive insulating film forming material, the exposed portion is removed with a developer.
Examples of the solution used as a positive developer include a tetramethylammonium hydroxide (TMAH) solution and a sodium carbonate solution.
 ネガ型の現像液及びポジ型の現像液の少なくとも一方は、界面活性剤を含んでいてもよい。界面活性剤の含有量は、現像液100質量部に対して、0.01質量部~10質量部が好ましく、0.1質量部~5質量部がより好ましい。 At least one of the negative developer and the positive developer may contain a surfactant. The content of the surfactant is preferably 0.01 parts by mass to 10 parts by mass, more preferably 0.1 parts by mass to 5 parts by mass, based on 100 parts by mass of the developer.
 現像時間は、例えば感光性の樹脂膜を現像液に浸漬し、当該樹脂膜が完全に溶解するまでの時間の2倍とすることができる。
 現像時間は、本開示の絶縁膜形成材料に含まれる分子中にフェノール性水酸基を有する熱硬化性ポリアミドに応じて調節してもよく、例えば、10秒間~15分間が好ましく、10秒間~5分間がより好ましく、生産性の観点から、20秒間~5分間がさらに好ましい。
The development time can be, for example, twice the time required for the photosensitive resin film to be completely dissolved after being immersed in the developer.
The development time may be adjusted depending on the thermosetting polyamide having a phenolic hydroxyl group in the molecule contained in the insulating film forming material of the present disclosure, for example, it is preferably 10 seconds to 15 minutes, and 10 seconds to 5 minutes. is more preferable, and from the viewpoint of productivity, 20 seconds to 5 minutes is even more preferable.
 現像後のパターン樹脂膜をリンス液により洗浄してもよい。
 リンス液としては、蒸留水、メタノール、エタノール、イソプロパノール、トルエン、キシレン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等を単独又は適宜混合して用いてもよく、またこれらを段階的に組み合わせて用いてもよい。
The patterned resin film after development may be washed with a rinsing liquid.
As the rinsing liquid, distilled water, methanol, ethanol, isopropanol, toluene, xylene, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, etc. may be used alone or in an appropriate mixture, or they may be used in a stepwise combination. You can.
 なお、本開示の絶縁膜形成材料の硬化物以外で絶縁膜102及び202を構成する有機材料として、感光性樹脂、熱硬化性の非導電性フィルム(NCF:Non Conductive Film)、又は、熱硬化性樹脂を用いてもよい。この有機材料は、アンダーフィル材であってもよい。また、絶縁膜102及び202を構成する有機材料は耐熱性の樹脂であってもよい。 In addition, as an organic material constituting the insulating films 102 and 202 other than the cured product of the insulating film forming material of the present disclosure, photosensitive resin, thermosetting non-conductive film (NCF), or thermosetting A synthetic resin may also be used. This organic material may be an underfill material. Further, the organic material forming the insulating films 102 and 202 may be a heat-resistant resin.
[工程(c)及び工程(d)]
 工程(c)は、第1半導体基板100を研磨する工程である。工程(c)では、図3の(a)に示すように、端子電極103の各表面103aが絶縁膜102の表面102aに対して同等の位置か少し高い(突き出た)位置となるように化学機械研磨法(CMP法)を用いて第1半導体基板100の表面である一の面101a側を研磨する。工程(c)では、例えば、銅等からなる端子電極103を選択的に深く削る条件でCMP法によって第1半導体基板100を研磨することもできる。工程(c)において、端子電極103の各表面103aが絶縁膜102の表面102aと一致するようにCMP法で研磨してもよい。研磨方法はCMP法に限定されず、バックグラインド等を採用してもよい。CMP法による研磨に先立って、サーフェスプレーナー等の研磨装置により機械研磨を行ってもよい。
 端子電極103の各表面103aが絶縁膜102の表面102aに対して少し高い位置である場合(つまり、第1電極である端子電極103の厚さが第1絶縁膜である絶縁膜102の厚さよりも厚い場合)、各表面103aと表面102aとの高さの差(端子電極103と絶縁膜102との厚さの差)は、1nm~150nmであってもよく、1nm~80nmであってもよい。
 本開示において、絶縁膜(表面102a等)と電極(表面103a等)との高さの差は、ウェハー等の測定対象物中の5点を、原子間力顕微鏡(AFM)で測定した際の算術平均をいう。
[Step (c) and step (d)]
Step (c) is a step of polishing the first semiconductor substrate 100. In step (c), as shown in FIG. 3(a), chemical treatment is applied so that each surface 103a of the terminal electrode 103 is at the same position or slightly higher (protrudes) from the surface 102a of the insulating film 102. One surface 101a side, which is the surface of the first semiconductor substrate 100, is polished using a mechanical polishing method (CMP method). In step (c), for example, the first semiconductor substrate 100 may be polished by CMP under the condition that the terminal electrode 103 made of copper or the like is selectively etched deeply. In step (c), each surface 103a of the terminal electrode 103 may be polished using a CMP method so as to match the surface 102a of the insulating film 102. The polishing method is not limited to the CMP method, and back grinding or the like may be employed. Prior to polishing by CMP, mechanical polishing may be performed using a polishing device such as a surface planer.
When each surface 103a of the terminal electrode 103 is located at a slightly higher position than the surface 102a of the insulating film 102 (that is, the thickness of the terminal electrode 103, which is the first electrode, is greater than the thickness of the insulating film 102, which is the first insulating film), (if the thickness is also thick), the difference in height between each surface 103a and the surface 102a (difference in thickness between the terminal electrode 103 and the insulating film 102) may be 1 nm to 150 nm, or even 1 nm to 80 nm. good.
In the present disclosure, the difference in height between the insulating film (surface 102a, etc.) and the electrode (surface 103a, etc.) is determined when five points on a measurement target such as a wafer are measured using an atomic force microscope (AFM). It refers to the arithmetic mean.
 工程(d)は、第2半導体基板200を研磨する工程である。工程(d)では、図3の(a)に示すように、端子電極203の各表面203aが絶縁膜202の表面202aに対して、同等の位置か少し高い(突き出た)位置となるようにCMP法を用いて第2半導体基板200の表面である一の面201a側を研磨する。工程(d)では、例えば、銅等からなる端子電極203を選択的に深く削る条件でCMP法によって第2半導体基板200を研磨する。工程(d)において、端子電極203の各表面203aが絶縁膜202の表面202aと一致するようにCMP法で研磨してもよい。研磨方法はCMP法に限定されず、バックグラインド等を採用してもよい。
 端子電極203の各表面203aが絶縁膜202の表面202aに対して少し高い位置である場合(つまり、第2電極である端子電極203の厚さが第2絶縁膜である絶縁膜202の厚さよりも厚い場合)、各表面203aと表面202aとの高さの差(端子電極203と絶縁膜202との厚さの差)は、1nm~150nmであってもよく、1nm~80nmであってもよい。
Step (d) is a step of polishing the second semiconductor substrate 200. In step (d), as shown in FIG. 3(a), each surface 203a of the terminal electrode 203 is placed at the same position or slightly higher (protrudes) from the surface 202a of the insulating film 202. One surface 201a side, which is the surface of the second semiconductor substrate 200, is polished using the CMP method. In step (d), the second semiconductor substrate 200 is polished by CMP under conditions that selectively and deeply shave the terminal electrodes 203 made of copper or the like, for example. In step (d), each surface 203a of the terminal electrode 203 may be polished by a CMP method so as to match the surface 202a of the insulating film 202. The polishing method is not limited to the CMP method, and back grinding or the like may be used.
When each surface 203a of the terminal electrode 203 is located at a slightly higher position than the surface 202a of the insulating film 202 (in other words, the thickness of the terminal electrode 203, which is the second electrode, is greater than the thickness of the insulating film 202, which is the second insulating film), (if the thickness is also thick), the difference in height between each surface 203a and the surface 202a (difference in thickness between the terminal electrode 203 and the insulating film 202) may be 1 nm to 150 nm, or even 1 nm to 80 nm. good.
 工程(c)及び工程(d)では、絶縁膜102の厚さと絶縁膜202の厚さが同じになるように研磨してもよいが、例えば、絶縁膜202の厚さが絶縁膜102の厚さよりも大きくなるように研磨してもよい。一方、絶縁膜202の厚さが絶縁膜102の厚さよりも小さくなるように研磨してもよい。絶縁膜202の厚さが絶縁膜102の厚さよりも大きい場合には、第2半導体基板200を個片化する際又はチップ実装の際に接合界面に付着する異物の多くを絶縁膜202によって包含することができ、接合不良をより一層低減することができる。一方、絶縁膜202の厚さが絶縁膜102の厚さよりも小さい場合には、実装される半導体チップ205、つまり半導体装置1の低背化を図ることができる。
 工程(c)及び工程(d)は少なくとも一方を実行してもよく、工程(c)及び工程(d)の双方を実行することが好ましい。
In step (c) and step (d), polishing may be performed so that the thickness of the insulating film 102 and the thickness of the insulating film 202 are the same, but for example, the thickness of the insulating film 202 may be the same as the thickness of the insulating film 102. It may be polished to be larger than the diameter. On the other hand, polishing may be performed so that the thickness of the insulating film 202 is smaller than the thickness of the insulating film 102. If the thickness of the insulating film 202 is greater than the thickness of the insulating film 102, the insulating film 202 will contain most of the foreign matter that adheres to the bonding interface when the second semiconductor substrate 200 is diced or when chips are mounted. This makes it possible to further reduce bonding defects. On the other hand, when the thickness of the insulating film 202 is smaller than the thickness of the insulating film 102, it is possible to reduce the height of the semiconductor chip 205 to be mounted, that is, the semiconductor device 1.
At least one of step (c) and step (d) may be performed, and it is preferable to perform both step (c) and step (d).
[工程(e)]
 工程(e)は、第2半導体基板200を個片化し、複数の半導体チップ205を取得する工程である。工程(e)では、図2の(b)に示すように、第2半導体基板200をダイシング等の切断手段により複数の半導体チップ205に個片化する。第2半導体基板200をダイシングする際に絶縁膜202に保護材等を被覆して、それから個片化してもよい。工程(e)により、第2半導体基板200の絶縁膜202は、各半導体チップ205に対応する絶縁膜部分202bへと分割される。第2半導体基板200を個片化するダイシング方法としては、プラズマダイシング、ステルスダイシング、レーザーダイシング等が挙げられる。ダイシングの際の第2半導体基板200の表面保護材としては、例えば、水、TMAH等で除去可能な有機膜、又は、プラズマ等で除去可能な炭素膜などの薄膜を設けてもよい。
 なお、この実施形態では、大面積の第2半導体基板200を準備した後、個片化して複数の半導体チップ205を得ているが、半導体チップ205の準備方法はこれに限定されない。
 半導体チップ205は、半導体チップ基板本体と、半導体チップ基板本体の一の面上に設けられる第2有機絶縁膜及び第2電極と、を有する
[Step (e)]
Step (e) is a step of dividing the second semiconductor substrate 200 into pieces to obtain a plurality of semiconductor chips 205. In step (e), as shown in FIG. 2B, the second semiconductor substrate 200 is diced into a plurality of semiconductor chips 205 by cutting means such as dicing. When dicing the second semiconductor substrate 200, the insulating film 202 may be coated with a protective material or the like, and then it may be diced. In step (e), the insulating film 202 of the second semiconductor substrate 200 is divided into insulating film portions 202b corresponding to each semiconductor chip 205. Examples of the dicing method for dividing the second semiconductor substrate 200 into pieces include plasma dicing, stealth dicing, laser dicing, and the like. As a surface protection material for the second semiconductor substrate 200 during dicing, for example, an organic film that can be removed with water, TMAH, etc., or a thin film such as a carbon film that can be removed with plasma or the like may be provided.
Note that in this embodiment, a large-area second semiconductor substrate 200 is prepared and then separated into pieces to obtain a plurality of semiconductor chips 205; however, the method for preparing the semiconductor chips 205 is not limited to this.
The semiconductor chip 205 includes a semiconductor chip substrate body, and a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body.
[工程(f)]
 工程(f)は、第1半導体基板100の端子電極103に対して複数の半導体チップ205それぞれの端子電極203の位置合わせを行う工程である。工程(f)では、図2の(c)に示すように、各半導体チップ205の端子電極203が第1半導体基板100の対応する複数の端子電極103に対向するように、各半導体チップ205の位置合わせを行う。この位置合わせ用に、第1半導体基板100上にアライアメントマーク等を設けてもよい。
[Step (f)]
Step (f) is a step of aligning the terminal electrodes 203 of each of the plurality of semiconductor chips 205 with respect to the terminal electrodes 103 of the first semiconductor substrate 100. In step (f), as shown in FIG. 2C, each semiconductor chip 205 is placed so that the terminal electrode 203 of each semiconductor chip 205 faces the corresponding plurality of terminal electrodes 103 of the first semiconductor substrate 100. Perform alignment. For this alignment, an alignment mark or the like may be provided on the first semiconductor substrate 100.
[工程(g)]
 工程(g)は、第1半導体基板100の絶縁膜102と複数の半導体チップ205の各絶縁膜部分202bとを互いに貼り合わせる工程である。工程(g)では、各半導体チップ205の表面に付着した有機物、金属酸化物等を除去した後、図2の(c)に示すように、第1半導体基板100に対する半導体チップ205の位置合わせを行い、その後、ハイブリッドボンディングとして複数の半導体チップ205それぞれの絶縁膜部分202bを第1半導体基板100の絶縁膜102に接合する(図3の(b)参照)。この際、複数の半導体チップ205の絶縁膜部分と第1半導体基板100の絶縁膜102とを均一に加熱してから接合を行ってもよい。加熱しながら接合を行うことで絶縁膜102及び絶縁膜部分202bの熱膨張率と端子電極103、203の熱膨張率との差により、絶縁膜102及び絶縁膜部分202bが端子電極103、203よりも膨張する。加熱による熱膨張により、絶縁膜102の高さが端子電極103の高さと同程度以上となるように、工程(c)にて第1半導体基板100を研磨してもよく、絶縁膜部分202bの高さが端子電極203の高さと同程度以上となるように、工程(d)にて第2半導体基板200を研磨してもよい。接合の際の半導体チップ205と第1半導体基板100との温度差は、例えば10℃以内が好ましい。このような均一性の高い温度での加熱接合により、絶縁膜102と絶縁膜部分202bが接合された絶縁接合部分S1となり、複数の半導体チップ205が第1半導体基板100に対して機械的に強固に取り付けられる。また、均一性の高い温度での加熱接合であることから、接合箇所における位置ズレ等が生じ難く、高精度な接合を行うことができる。この取り付けの段階では、第1半導体基板100の端子電極103と半導体チップ205の端子電極203とは互いに離間しており、接続されていない(但し位置合わせはされている)。半導体チップ205の第1半導体基板100への貼り合わせは、他の接合方法によって行ってもよく、例えば常温接合等で接合してもよい。
[Step (g)]
Step (g) is a step of bonding the insulating film 102 of the first semiconductor substrate 100 and each insulating film portion 202b of the plurality of semiconductor chips 205 to each other. In step (g), after removing organic substances, metal oxides, etc. attached to the surface of each semiconductor chip 205, the semiconductor chips 205 are aligned with respect to the first semiconductor substrate 100, as shown in FIG. 2(c). After that, the insulating film portions 202b of each of the plurality of semiconductor chips 205 are bonded to the insulating film 102 of the first semiconductor substrate 100 as hybrid bonding (see FIG. 3(b)). At this time, the insulating film portions of the plurality of semiconductor chips 205 and the insulating film 102 of the first semiconductor substrate 100 may be uniformly heated before bonding. By performing the bonding while heating, the insulating film 102 and the insulating film portion 202b are more easily bonded than the terminal electrodes 103 and 203 due to the difference between the coefficient of thermal expansion of the insulating film 102 and the insulating film portion 202b and that of the terminal electrodes 103 and 203. It also expands. The first semiconductor substrate 100 may be polished in step (c) so that the height of the insulating film 102 becomes equal to or higher than the height of the terminal electrode 103 due to thermal expansion due to heating, and the insulating film portion 202b is polished. The second semiconductor substrate 200 may be polished in step (d) so that the height is approximately equal to or higher than the height of the terminal electrode 203. The temperature difference between the semiconductor chip 205 and the first semiconductor substrate 100 during bonding is preferably within 10° C., for example. By heating and bonding at such a highly uniform temperature, the insulating film 102 and the insulating film portion 202b are bonded to form an insulating bonding portion S1, and the plurality of semiconductor chips 205 are mechanically firmly attached to the first semiconductor substrate 100. can be attached to. In addition, since the bonding is performed by heating at a highly uniform temperature, it is difficult for positional deviations to occur at the bonding location, and highly accurate bonding can be performed. At this stage of attachment, the terminal electrodes 103 of the first semiconductor substrate 100 and the terminal electrodes 203 of the semiconductor chip 205 are separated from each other and are not connected (however, they are aligned). The semiconductor chip 205 may be bonded to the first semiconductor substrate 100 by other bonding methods, for example, by room temperature bonding or the like.
 絶縁膜102と絶縁膜部分202bが接合された絶縁接合部分である有機絶縁膜の総厚さは、特に限定されず、例えば、0.1μm以上であってもよく、異物の影響を抑制する観点及びデバイス設計の観点から、1μm~20μmであってもよく、好ましくは1μm~5μmである。 The total thickness of the organic insulating film, which is the insulating bonding portion where the insulating film 102 and the insulating film portion 202b are bonded, is not particularly limited, and may be, for example, 0.1 μm or more, from the viewpoint of suppressing the influence of foreign substances. From the viewpoint of device design, the thickness may be 1 μm to 20 μm, preferably 1 μm to 5 μm.
[工程(h)]
 工程(h)は、第1半導体基板100の端子電極103と複数の半導体チップ205それぞれの端子電極203とを接合する工程である。工程(h)では、図2の(d)に示すように、工程(g)の貼り合わせが終了すると、熱H、圧力又はその両方を付与して、ハイブリッドボンディングとして第1半導体基板100の端子電極103と複数の半導体チップ205の各端子電極203とを接合する(図3の(c)参照)。端子電極103及び203が銅から構成されている場合、工程(g)でのアニーリング温度は、150℃以上400℃以下であることが好ましく、200℃以上300℃以下であることがより好ましい。このような接合処理により、端子電極103とそれに対応する端子電極203とが接合された電極接合部分S2となり、端子電極103と端子電極203とが機械的且つ電気的に強固に接合される。なお、工程(h)の電極接合は、工程(g)の貼り合わせ後に行われてもよく、工程(g)の貼り合わせと同時に行われてもよい。
[Process (h)]
Step (h) is a step of bonding the terminal electrode 103 of the first semiconductor substrate 100 and the terminal electrode 203 of each of the plurality of semiconductor chips 205. In step (h), as shown in FIG. 2(d), after the bonding in step (g) is completed, heat H, pressure, or both are applied to bond the terminals of the first semiconductor substrate 100 as hybrid bonding. The electrode 103 and each terminal electrode 203 of the plurality of semiconductor chips 205 are bonded (see FIG. 3C). When the terminal electrodes 103 and 203 are made of copper, the annealing temperature in step (g) is preferably 150°C or more and 400°C or less, more preferably 200°C or more and 300°C or less. Through such a bonding process, the terminal electrode 103 and the corresponding terminal electrode 203 are bonded to form an electrode bonding portion S2, and the terminal electrode 103 and the terminal electrode 203 are mechanically and electrically strongly bonded. Note that the electrode bonding in step (h) may be performed after the bonding in step (g), or may be performed simultaneously with the bonding in step (g).
 以上により、第1半導体基板100に複数の半導体チップ205が電気的且つ機械的に所定の位置に高精度に設置される。図2の(d)に示す半製品の段階で例えば製品の信頼性試験(接続試験等)を行い、良品のみを以降の工程に用いてもよい。続いて、このような半製品を用いた半導体装置の一例の製造方法を、図4を参照して説明する。 Through the above steps, the plurality of semiconductor chips 205 are electrically and mechanically installed at predetermined positions on the first semiconductor substrate 100 with high precision. For example, a product reliability test (connection test, etc.) may be performed at the semi-finished product stage shown in FIG. 2(d), and only non-defective products may be used in subsequent steps. Next, a method for manufacturing an example of a semiconductor device using such a semi-finished product will be described with reference to FIG.
[工程(i)]
 工程(i)は、第1半導体基板100の接続面100a上であって複数の半導体チップ205の間に複数のピラー300を形成する工程である。工程(i)では、図4の(a)に示すように、複数の半導体チップ205の間に、例えば銅製の多数のピラー300を形成する。ピラー300は、銅めっき、導電体ペースト、銅ピン等から形成することができる。ピラー300は、一端が第1半導体基板100の端子電極のうち半導体チップ205の端子電極203に接続されていない端子電極に接続されるように形成され、他端が上方に向かって延在する。ピラー300は、例えば、直径10μm以上100μm以下であり、また、高さ10μm以上1000μm以下である。なお、一対の半導体チップ205の間には、例えば1個以上10000個以下のピラー300が設けられてもよい。
[Step (i)]
Step (i) is a step of forming a plurality of pillars 300 on the connection surface 100a of the first semiconductor substrate 100 and between the plurality of semiconductor chips 205. In step (i), as shown in FIG. 4A, a large number of pillars 300 made of copper, for example, are formed between a plurality of semiconductor chips 205. Pillar 300 can be formed from copper plating, conductive paste, copper pins, or the like. The pillar 300 is formed such that one end is connected to a terminal electrode of the first semiconductor substrate 100 that is not connected to the terminal electrode 203 of the semiconductor chip 205, and the other end extends upward. The pillar 300 has a diameter of 10 μm or more and 100 μm or less, and a height of 10 μm or more and 1000 μm or less, for example. Note that, for example, one or more and 10,000 or less pillars 300 may be provided between the pair of semiconductor chips 205.
[工程(j)]
 工程(j)は、複数の半導体チップ205と複数のピラー300とを覆うように、第1半導体基板100の接続面100a上に樹脂301をモールドする工程である。工程(j)では、図4の(b)に示すように、エポキシ樹脂等をモールドして、複数の半導体チップ205と複数のピラー300とを全体的に覆う。モールド方法としては、例えば、コンプレッションモールド、トランスファモールド、フィルム状のエポキシフィルムをラミネートする方法等が挙げられる。この樹脂モールドにより、複数のピラー300の間及びピラー300と半導体チップ205との間が樹脂301によって充填される。
 これにより、樹脂が充填された半製品M1が形成される。なお、エポキシ樹脂等をモールドした後に硬化処理を行ってもよい。また、工程(i)と工程(j)とを略同時に行う場合、すなわち樹脂モールドするタイミングでピラー300も形成する場合、微細転写であるインプリントと導電性ペースト若しくは電解めっきとを用いてピラーを形成してもよい。
[Process (j)]
Step (j) is a step of molding resin 301 on the connection surface 100a of the first semiconductor substrate 100 so as to cover the plurality of semiconductor chips 205 and the plurality of pillars 300. In step (j), as shown in FIG. 4B, epoxy resin or the like is molded to completely cover the plurality of semiconductor chips 205 and the plurality of pillars 300. Examples of the molding method include compression molding, transfer molding, and a method of laminating film-like epoxy films. With this resin mold, the spaces between the plurality of pillars 300 and between the pillars 300 and the semiconductor chip 205 are filled with the resin 301.
As a result, a semifinished product M1 filled with resin is formed. Note that a curing treatment may be performed after molding the epoxy resin or the like. In addition, when step (i) and step (j) are performed almost simultaneously, that is, when the pillar 300 is also formed at the same time as resin molding, the pillar is formed using imprint, which is fine transfer, and conductive paste or electrolytic plating. may be formed.
[工程(k)]
 工程(k)は、工程(j)でモールドがされた樹脂301、複数のピラー300及び複数の半導体チップ205からなる半製品M1を樹脂301側から研削して薄化し、半製品M2を取得する工程である。工程(k)では、図4の(c)に示すように、半製品M1の上方をグランダー等で研磨することにより、樹脂モールドされた第1半導体基板100等を薄化し、半製品M2とする。工程(k)での研磨により、半導体チップ205、ピラー300及び樹脂301の厚さは例えば数10μm程度に薄化され、半導体チップ205は第2半導体チップ20に対応する形状となり、ピラー300及び樹脂301は、ピラー部30に対応する形状となる。
[Step (k)]
In step (k), the semi-finished product M1, which is molded in step (j) and includes the resin 301, a plurality of pillars 300, and a plurality of semiconductor chips 205, is ground from the resin 301 side to obtain a semi-finished product M2. It is a process. In step (k), as shown in FIG. 4(c), the resin-molded first semiconductor substrate 100 and the like are thinned by polishing the upper part of the semi-finished product M1 with a grinder, etc., to form a semi-finished product M2. . By polishing in step (k), the thickness of the semiconductor chip 205, the pillar 300, and the resin 301 is reduced to, for example, about several tens of μm, and the semiconductor chip 205 has a shape corresponding to the second semiconductor chip 20, and the pillar 300 and the resin 301 are thinned. 301 has a shape corresponding to the pillar portion 30.
[工程(l)]
 工程(l)は、工程(k)で薄化された半製品M2に再配線層40に対応する配線層400を形成する工程である。工程(l)では、図4の(d)に示すように、研削された半製品M2の第2半導体チップ20及びピラー部30の上にポリイミド又はポリベンゾオキサゾール、銅配線等で再配線パターンを形成する。これにより、第2半導体チップ20及びピラー部30の端子ピッチを広げた配線構造を有する半製品M3が形成される。
[Step (l)]
Step (l) is a step of forming a wiring layer 400 corresponding to the rewiring layer 40 on the semi-finished product M2 thinned in step (k). In step (l), as shown in FIG. 4(d), a rewiring pattern is formed using polyimide or polybenzoxazole, copper wiring, etc. on the second semiconductor chip 20 and pillar portion 30 of the ground semi-finished product M2. Form. As a result, a semi-finished product M3 having a wiring structure in which the terminal pitch of the second semiconductor chip 20 and the pillar portion 30 is widened is formed.
[工程(m)及び工程(n)]
 工程(m)は、工程(l)で配線層400が形成された半製品M3を各半導体装置1となるように切断線Aに沿って切断する工程である。工程(m)では、図4の(d)に示すように、ダイシング等によって、各半導体装置1となるように、半導体装置基板を切断線Aに沿って切断する。その後、工程(n)では、工程(m)で個別化された半導体装置1aを反転して基板50及び回路基板60上に設置し、図1に示す半導体装置1を複数取得する。
[Step (m) and step (n)]
Step (m) is a step of cutting the semi-finished product M3 on which the wiring layer 400 was formed in step (l) along the cutting line A to form each semiconductor device 1. In step (m), as shown in FIG. 4(d), the semiconductor device substrate is cut along cutting lines A by dicing or the like to form each semiconductor device 1. Thereafter, in step (n), the semiconductor devices 1a that were individualized in step (m) are reversed and placed on the substrate 50 and the circuit board 60 to obtain a plurality of semiconductor devices 1 shown in FIG.
 半導体装置の製造方法の一例である上記実施形態によれば、第1半導体基板100の絶縁膜102と、第2半導体基板200の絶縁膜202と、が、本開示の絶縁膜形成材料の硬化物である。本開示の絶縁膜形成材料の硬化物は耐熱性が高いため、接合等の加熱に起因する絶縁膜の変質等が抑えられ、絶縁膜の剥離、劣化等の発生が抑制される。また、本開示の絶縁膜形成材料を用いると接合温度を低くすることが可能であるため、絶縁膜の変質等の不具合の発生がさらに低減される。 According to the above embodiment, which is an example of a method for manufacturing a semiconductor device, the insulating film 102 of the first semiconductor substrate 100 and the insulating film 202 of the second semiconductor substrate 200 are made of a cured product of the insulating film forming material of the present disclosure. It is. Since the cured product of the insulating film forming material of the present disclosure has high heat resistance, deterioration of the insulating film due to heating such as bonding is suppressed, and occurrence of peeling, deterioration, etc. of the insulating film is suppressed. Moreover, since the bonding temperature can be lowered by using the insulating film forming material of the present disclosure, the occurrence of defects such as deterioration of the insulating film is further reduced.
 以上、本開示の半導体装置の製造方法の一実施形態について詳細に説明したが、本開示は上記実施形態に限定されるものではない。例えば、上記実施形態では、図4に示す工程において、ピラー300を形成する工程(i)の後に、樹脂301をモールドする工程(j)と樹脂301等を研削して薄化する工程(k)を順に行っていたが、樹脂301を第1半導体基板100の接続面上にモールドする工程(j)をまず行い、続いて、樹脂301を所定の厚さまで研削して薄化する工程(k)を行い、その後に、ピラー300を形成する工程(i)を行うようにしてもよい。この場合、ピラー300を削る作業等を減らすことができ、また、ピラー300のうち削る部分が不要となることから、材料費を低減することができる。 Although one embodiment of the method for manufacturing a semiconductor device of the present disclosure has been described above in detail, the present disclosure is not limited to the above embodiment. For example, in the above embodiment, in the steps shown in FIG. 4, after the step (i) of forming the pillar 300, the step (j) of molding the resin 301 and the step (k) of grinding and thinning the resin 301 etc. were carried out in order, but the step (j) of molding the resin 301 on the connection surface of the first semiconductor substrate 100 was first performed, and then the step (k) of thinning the resin 301 by grinding it to a predetermined thickness. After that, the step (i) of forming the pillar 300 may be performed. In this case, the work of cutting the pillar 300, etc. can be reduced, and since the portion of the pillar 300 to be cut is not necessary, the material cost can be reduced.
 また、上記の実施形態では、C2Cでの接合例を説明したが、図5に示すChip-to-Wafer(C2W)での接合に本開示を適用してもよい。C2Wでは、基板本体411(第1基板本体)と基板本体411の一の面に設けられた絶縁膜412(第1絶縁膜)及び複数の端子電極413(第1電極)とを有する半導体ウェハー410(第1半導体基板)を準備すると共に、基板本体421(第2基板本体)と基板本体421の一の面に設けられた絶縁膜部分422(第2絶縁膜)及び複数の端子電極423(第2電極)とを有する複数の半導体チップ420の個片化前の半導体基板(第2半導体基板)を準備する。そして、半導体ウェハー410の一の面側と半導体チップ420に個片化する前の第2半導体基板の一の面側とを、上記の工程(c)及び工程(d)と同様に、CMP法等により研磨する。その後、工程(e)と同様な個片化処理を第2半導体基板に対して行い、複数の半導体チップ420を取得する。 Further, in the above embodiment, an example of bonding using C2C was described, but the present disclosure may be applied to bonding using Chip-to-Wafer (C2W) shown in FIG. 5. In C2W, a semiconductor wafer 410 has a substrate body 411 (first substrate body), an insulating film 412 (first insulating film) provided on one surface of the substrate body 411, and a plurality of terminal electrodes 413 (first electrodes). (first semiconductor substrate), a substrate body 421 (second substrate body), an insulating film portion 422 (second insulating film) provided on one surface of the substrate body 421, and a plurality of terminal electrodes 423 (first semiconductor substrate). A semiconductor substrate (second semiconductor substrate) before being diced into pieces of a plurality of semiconductor chips 420 having two electrodes) is prepared. Then, one surface side of the semiconductor wafer 410 and one surface side of the second semiconductor substrate before being singulated into semiconductor chips 420 are subjected to the CMP process in the same manner as in the above steps (c) and (d). Polish by etc. Thereafter, the second semiconductor substrate is subjected to the same singulation process as in step (e) to obtain a plurality of semiconductor chips 420.
 続いて、図5の(a)に示すように、半導体ウェハー410の端子電極413に対して半導体チップ420の端子電極423の位置合わせを行う(工程(f))。そして、半導体ウェハー410の絶縁膜412と半導体チップ420の絶縁膜部分422とを互いに貼り合わると共に(工程(g))、半導体ウェハー410の端子電極413と半導体チップ420の端子電極423とを接合し(工程(h))、図5の(b)に示す半製品を取得する。これにより、絶縁膜412と絶縁膜部分422とが接合された絶縁接合部分S3となり、半導体チップ420が半導体ウェハー410に対して機械的に強固に且つ高精度に取り付けられる。また、端子電極413とそれに対応する端子電極423とが接合された電極接合部分S4となり、端子電極413と端子電極423とが機械的且つ電気的に強固に接合される。 Subsequently, as shown in FIG. 5A, the terminal electrodes 423 of the semiconductor chip 420 are aligned with the terminal electrodes 413 of the semiconductor wafer 410 (step (f)). Then, the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 are bonded together (step (g)), and the terminal electrodes 413 of the semiconductor wafer 410 and the terminal electrodes 423 of the semiconductor chip 420 are bonded. (step (h)) to obtain a semi-finished product shown in FIG. 5(b). As a result, the insulating film portion 412 and the insulating film portion 422 become an insulating bonding portion S3, and the semiconductor chip 420 is mechanically firmly attached to the semiconductor wafer 410 with high precision. Further, the terminal electrode 413 and the corresponding terminal electrode 423 are joined to form an electrode joint portion S4, and the terminal electrode 413 and the terminal electrode 423 are mechanically and electrically firmly joined.
 その後、図5の(c)及び(d)に示すように、複数の半導体チップ420を同様の方法で半導体ウェハーである半導体ウェハー410に接合することにより、半導体装置401を取得する。なお、複数の半導体チップ420は、一個ずつ半導体ウェハー410にハイブリッドボンディングにより接合されてもよいが、まとめて半導体ウェハー410にハイブリッドボンディングにより接合されてもよい。 Thereafter, as shown in FIGS. 5(c) and 5(d), a semiconductor device 401 is obtained by bonding a plurality of semiconductor chips 420 to a semiconductor wafer 410 in the same manner. Note that the plurality of semiconductor chips 420 may be bonded to the semiconductor wafer 410 one by one by hybrid bonding, or may be bonded to the semiconductor wafer 410 all together by hybrid bonding.
 このような半導体装置401の製造方法においても、上記の半導体装置1の製造方法と同様に、半導体ウェハー410の絶縁膜412及び半導体チップ420の絶縁膜部分422の少なくとも一方が、本開示の絶縁膜形成材料の硬化物である絶縁膜である。そのため、半導体チップ420への個片化の際のダイシングによって発生する異物が絶縁膜に付着しても、異物周辺の絶縁膜が容易に変形し、絶縁膜に大きな空隙を生じさせることなく異物を絶縁膜内に包含させることができる。すなわち、絶縁膜によって異物の影響を抑えることが可能となる。よって、上記のC2Wに係る製造方法でも、C2Cと同様に、半導体ウェハー410と半導体チップ420の微細接合を行いつつ、接合不良を低減することができる。 Also in this method of manufacturing the semiconductor device 401, as in the method of manufacturing the semiconductor device 1 described above, at least one of the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 is made of the insulating film of the present disclosure. This is an insulating film that is a cured material. Therefore, even if foreign matter generated by dicing during singulation into semiconductor chips 420 adheres to the insulating film, the insulating film around the foreign matter is easily deformed, and the foreign matter can be removed without creating large gaps in the insulating film. It can be included within an insulating film. In other words, the influence of foreign matter can be suppressed by the insulating film. Therefore, similarly to C2C, the manufacturing method related to C2W described above can perform fine bonding between semiconductor wafer 410 and semiconductor chip 420 while reducing bonding defects.
 更に、上記の半導体装置の製造方法では、本開示の効果を奏する範囲において、半導体基板100の絶縁膜102、半導体チップ205の絶縁膜202等の一部に無機材料が含まれていてもよい。 Further, in the method for manufacturing a semiconductor device described above, an inorganic material may be included in a part of the insulating film 102 of the semiconductor substrate 100, the insulating film 202 of the semiconductor chip 205, etc., within the range where the effects of the present disclosure are achieved.
 以下、実施例及び比較例に基づき、本開示についてさらに具体的に説明する。尚、本開示は下記実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail based on Examples and Comparative Examples. Note that the present disclosure is not limited to the following examples.
(分子中にフェノール性水酸基を有する熱硬化性ポリアミドA1の合成)
 攪拌機、温度計を備えた0.5リットルのフラスコ中に、4,4’-ジフェニルエーテルジカルボン酸15.48gと、N-メチル-2-ピロリドン90gとを仕込み、フラスコを5℃に冷却した後、塩化チオニル12.64gを滴下し、30分間反応させて、4,4’-ジフェニルエーテルジカルボン酸クロリドの溶液を得た。次いで、攪拌機、温度計を備えた0.5リットルのフラスコ中に、N-メチル-2-ピロリドン87.5gを仕込み、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン18.30gを添加し、攪拌溶解した。次いで、ピリジン8.53gを添加し、温度を0~5℃に保ちながら、4,4’-ジフェニルエーテルジカルボン酸クロリドの溶液を30分間で滴下した後、30分間攪拌を続けた。得られた溶液を3リットルの水に投入し、析出物を回収、純水で3回洗浄した後、減圧乾燥してポリヒドロキシアミド(ポリベンゾオキサゾール前駆体)を得た(以下、ポリマーA1とする)。ポリマーA1のGPC法標準ポリスチレン換算により求めた重量平均分子量は15,000であった。ポリマーA1の構造式を、以下に示す。
(Synthesis of thermosetting polyamide A1 having a phenolic hydroxyl group in the molecule)
In a 0.5 liter flask equipped with a stirrer and a thermometer, 15.48 g of 4,4'-diphenyl ether dicarboxylic acid and 90 g of N-methyl-2-pyrrolidone were charged, and after cooling the flask to 5°C, 12.64 g of thionyl chloride was added dropwise and reacted for 30 minutes to obtain a solution of 4,4'-diphenyl ether dicarboxylic acid chloride. Next, 87.5 g of N-methyl-2-pyrrolidone was placed in a 0.5 liter flask equipped with a stirrer and a thermometer, and 18.30 g of bis(3-amino-4-hydroxyphenyl)hexafluoropropane was added. The mixture was stirred and dissolved. Next, 8.53 g of pyridine was added, and a solution of 4,4'-diphenyl ether dicarboxylic acid chloride was added dropwise over 30 minutes while maintaining the temperature at 0 to 5° C., and stirring was continued for 30 minutes. The obtained solution was poured into 3 liters of water, the precipitate was collected, washed three times with pure water, and then dried under reduced pressure to obtain polyhydroxyamide (polybenzoxazole precursor) (hereinafter referred to as Polymer A1). do). The weight average molecular weight of Polymer A1 determined by GPC standard polystyrene conversion was 15,000. The structural formula of polymer A1 is shown below.
(分子中にフェノール性水酸基を有する熱硬化性ポリアミドA2の合成)
 攪拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチル-2-ピロリドン60gを仕込み、2,2'-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン13.92gを添加し、攪拌溶解した。続いて、この溶液を温度を0~5℃に保ちながら、ドデカン二酸ジクロリド8.12g及び4,4'-ジフェニルエーテルジカルボン酸ジクロリド2.24g(ドデカン二酸ジクロリドと4,4'-ジフェニルエーテルジカルボン酸ジクロリドとのモル比は8:2)を10分間で滴下した後、60分間攪拌を続けた。得られた溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧してポリヒドロキシアミド(ポリベンゾオキサゾール前駆体)を得た(以下、ポリマーA2とする)。ポリマーA2のGPC法標準ポリスチレン換算により求めた重量平均分子量は33,000であった。ポリマーA2の構造式を、以下に示す。
(Synthesis of thermosetting polyamide A2 having a phenolic hydroxyl group in the molecule)
Into a 0.2 liter flask equipped with a stirrer and a thermometer, 60 g of N-methyl-2-pyrrolidone was charged, and 13.92 g of 2,2'-bis(3-amino-4-hydroxyphenyl)hexafluoropropane was added. and stirred to dissolve. Subsequently, while maintaining the temperature of this solution at 0 to 5°C, 8.12 g of dodecanedioic acid dichloride and 2.24 g of 4,4'-diphenyl ether dicarboxylic acid dichloride (dodecanedioic acid dichloride and 4,4'-diphenyl ether dicarboxylic acid The molar ratio with dichloride was 8:2) was added dropwise over 10 minutes, and stirring was continued for 60 minutes. The obtained solution was poured into 3 liters of water, the precipitate was collected, and the precipitate was washed three times with pure water, and then the pressure was reduced to obtain polyhydroxyamide (polybenzoxazole precursor) (hereinafter referred to as polymer). A2). The weight average molecular weight of Polymer A2 was determined by GPC standard polystyrene conversion to be 33,000. The structural formula of polymer A2 is shown below.
(分子中にフェノール性水酸基を含まないポリイミド前駆体A3の合成)
 3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物(ODPA)7.07gと2,2’-ジメチルビフェニル-4,4’-ジアミン(DMAP)4.12gとをN-メチル-2-ピロリドン(NMP)30gに溶解させた。得られた溶液を30℃で4時間撹拌し、ポリアミド酸を得た。そこに室温(25℃)にてトリフルオロ酢酸無水物9.45gを加えたのち、メタクリル酸2-ヒドロキシエチル(HEMA)7.08gを加え、45℃で10時間撹拌した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリイミド前駆体A3を得た(以下、ポリマーA3とする)。ポリマーA3のGPC法標準ポリスチレン換算により求めた重量平均分子量は20,000であった。
 またエステル化率を後述の測定条件を用いてNMRの結果から算出した。ポリマーA3のエステル化率は70%であり未反応のカルボキシ基の割合は30モル%であった。
(測定条件)
測定機器:ブルカー・バイオスピン社 AV400M
磁場強度:400MHz
基準物質:テトラメチルシラン(TMS)
溶剤:ジメチルスルホキシド(DMSO)
(Synthesis of polyimide precursor A3 that does not contain phenolic hydroxyl groups in the molecule)
N-methyl It was dissolved in 30 g of -2-pyrrolidone (NMP). The resulting solution was stirred at 30° C. for 4 hours to obtain polyamic acid. After 9.45 g of trifluoroacetic anhydride was added thereto at room temperature (25°C), 7.08 g of 2-hydroxyethyl methacrylate (HEMA) was added, and the mixture was stirred at 45°C for 10 hours. This reaction solution was added dropwise to distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyimide precursor A3 (hereinafter referred to as polymer A3). The weight average molecular weight of Polymer A3 determined by GPC standard polystyrene conversion was 20,000.
Furthermore, the esterification rate was calculated from the NMR results using the measurement conditions described below. The esterification rate of Polymer A3 was 70%, and the proportion of unreacted carboxyl groups was 30 mol%.
(Measurement condition)
Measuring equipment: Bruker Biospin AV400M
Magnetic field strength: 400MHz
Reference material: Tetramethylsilane (TMS)
Solvent: dimethyl sulfoxide (DMSO)
(分子中にフェノール性水酸基を含まないポリイミド前駆体A4の合成)
 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物6.71gと、パラフェニレンジアミン1.97gとを3-メトキシ-N,N-ジメチルプロパンアミド100gに溶解させながら攪拌した。30℃で一晩撹拌したのち、反応溶液を脱水エタノールに滴下し析出物をろ別後、減圧乾燥させる事で、ポリイミド前駆体A4を得た(以下、ポリマーA4とする)。ポリマーA4のGPC法標準ポリスチレン換算により求めた重量平均分子量は20,000であった。
(Synthesis of polyimide precursor A4 that does not contain phenolic hydroxyl groups in the molecule)
6.71 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride and 1.97 g of paraphenylenediamine were dissolved in 100 g of 3-methoxy-N,N-dimethylpropanamide and stirred. After stirring overnight at 30° C., the reaction solution was added dropwise to dehydrated ethanol, and the precipitate was filtered off and dried under reduced pressure to obtain polyimide precursor A4 (hereinafter referred to as polymer A4). The weight average molecular weight of Polymer A4 determined by GPC standard polystyrene conversion was 20,000.
(分子中にフェノール性水酸基を含まないポリイミド前駆体A5の合成)
 分子中にフェノール性水酸基を含まないポリイミド前駆体A3の合成において、DMAPを、4,4’-ジアミノジフェニルエーテル(ODA)3.6g及びm-フェニレンジアミン(MPD)0.2gに変更した以外は同様の操作を行い、ポリイミド前駆体A5を得た(以下、ポリマーA5とする)。ポリマーA5のGPC法標準ポリスチレン換算により求めた重量平均分子量は25,000であった。
(Synthesis of polyimide precursor A5 that does not contain phenolic hydroxyl groups in the molecule)
In the synthesis of polyimide precursor A3 that does not contain a phenolic hydroxyl group in the molecule, the same except that DMAP was changed to 3.6 g of 4,4'-diaminodiphenyl ether (ODA) and 0.2 g of m-phenylenediamine (MPD). The following operations were performed to obtain polyimide precursor A5 (hereinafter referred to as polymer A5). The weight average molecular weight of Polymer A5 determined by GPC standard polystyrene conversion was 25,000.
(分子中にフェノール性水酸基を含まないポリイミド前駆体A6の合成)
 ポリイミド前駆体A3の合成においてDMAPを、ODA3.89gに変更した以外は同様の操作を行い、ポリイミド前駆体A6を得た(以下、ポリマーA6とする)。ポリマーA6の重量平均分子量は21,000であった。前述の条件でNMR測定を行うことで、ポリマーA6のエステル化率を算出した。エステル化率は70モル%であり、未反応のカルボキシ基の割合は30モル%であった。
(Synthesis of polyimide precursor A6 that does not contain phenolic hydroxyl groups in the molecule)
Polyimide precursor A6 was obtained by performing the same operation except that DMAP was changed to 3.89 g of ODA in the synthesis of polyimide precursor A3 (hereinafter referred to as polymer A6). The weight average molecular weight of Polymer A6 was 21,000. The esterification rate of Polymer A6 was calculated by performing NMR measurement under the conditions described above. The esterification rate was 70 mol%, and the proportion of unreacted carboxyl groups was 30 mol%.
(分子中にフェノール性水酸基を含まないポリイミド前駆体A7の合成)
 ポリイミド前駆体A3の合成においてODPAを3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)6.71gに変更し、DMAPを、ODA3.89gに変更した以外は同様の操作を行い、ポリイミド前駆体A7を得た(以下、ポリマーA7とする)。ポリマーA7の重量平均分子量は20,000であった。前述の条件でNMR測定を行うことで、ポリマーA7のエステル化率を算出した。エステル化率は60モル%であり、未反応のカルボキシ基の割合は40モル%であった。
(Synthesis of polyimide precursor A7 containing no phenolic hydroxyl group in the molecule)
Same procedure except that ODPA was changed to 6.71 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and DMAP was changed to 3.89 g of ODA in the synthesis of polyimide precursor A3. Polyimide precursor A7 was obtained (hereinafter referred to as polymer A7). The weight average molecular weight of Polymer A7 was 20,000. The esterification rate of Polymer A7 was calculated by performing NMR measurement under the conditions described above. The esterification rate was 60 mol%, and the proportion of unreacted carboxyl groups was 40 mol%.
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。具体的には、ポリマーA1~ポリマーA7各0.5mgを溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mLに溶解させた溶液を用い、以下の条件で測定した。 The weight average molecular weight was determined in terms of standard polystyrene using gel permeation chromatography (GPC). Specifically, measurements were made under the following conditions using a solution in which 0.5 mg each of Polymers A1 to A7 were dissolved in 1 mL of a solvent [tetrahydrofuran (THF)/dimethylformamide (DMF) = 1/1 (volume ratio)]. did.
(測定条件)
測定装置:株式会社島津製作所SPD-M20A
ポンプ:株式会社島津製作所LC-20AD
カラムオーブン:株式会社島津製作所:CTO-20A
測定条件:カラムGelpack GL-S300MDT-5×2本
溶離液:THF/DMF=1/1(容積比)
    LiBr(0.03mol/L)、HPO(0.06mol/L)
 流速:1.0mL/min、検出器:UV270nm、カラム温度:40℃
 標準ポリスチレン:東ソー製 TSKgel standard Polystyrene Type F-1,F-4,F-20,F-80,A-2500にて検量線を作成
(Measurement condition)
Measuring device: Shimadzu Corporation SPD-M20A
Pump: Shimadzu Corporation LC-20AD
Column oven: Shimadzu Corporation: CTO-20A
Measurement conditions: Column Gelpack GL-S300MDT-5 x 2 Eluent: THF/DMF = 1/1 (volume ratio)
LiBr (0.03mol/L), H3PO4 ( 0.06mol /L)
Flow rate: 1.0 mL/min, detector: UV270 nm, column temperature: 40°C
Standard polystyrene: Create a calibration curve using Tosoh TSKgel standard Polystyrene Type F-1, F-4, F-20, F-80, A-2500
[実施例1~6、比較例1~2]
(絶縁膜形成材料の調製)
 表1に示した成分及び配合量にて、実施例1~6及び比較例1~2の絶縁膜形成材料を以下のようにして調製した。表1の各成分の配合量の単位は質量部である。また、表1中の空欄は該当成分が未配合であることを意味する。各実施例及び比較例にて、各成分の混合物を一般的な耐溶剤性容器内にて室温(25℃)で一晩混練した後、0.2μm孔のフィルターを用いて加圧ろ過を行った。得られた絶縁膜形成材料を用いて以下の評価を行った。
[Examples 1 to 6, Comparative Examples 1 to 2]
(Preparation of insulating film forming material)
Insulating film forming materials of Examples 1 to 6 and Comparative Examples 1 to 2 were prepared as follows using the components and blending amounts shown in Table 1. The unit of the amount of each component in Table 1 is parts by mass. In addition, a blank column in Table 1 means that the corresponding component is not blended. In each example and comparative example, the mixture of each component was kneaded overnight at room temperature (25°C) in a general solvent-resistant container, and then filtered under pressure using a 0.2 μm pore filter. Ta. The following evaluations were performed using the obtained insulating film forming material.
 表1中の各成分は以下の通りである。
・ポリイミド前駆体又はポリベンゾオキサゾール誘導体
 上述のポリマーA1~ポリマーA7
・溶剤
 B1:3-メトキシ-N,N-ジメチルプロパンアミド
 B2:γ-ブチロラクトン
 B3:ジメチルスルホキシド
・重合性モノマー
 C1:2,2-ビス(3,5-ビス(ヒドロキシルメチル)-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン(TML-BPAF)
 C2:テトラエチレングリコールジメタクリレート(TEGDMA)
 C3:トリシクロデカンジメタノールジアクリレート(A-DCP)
・防錆剤
 D1:ベンゾトリアゾール(BT)
・重合開始剤
 E1:下記化合物(TPPA428)
Each component in Table 1 is as follows.
・Polyimide precursor or polybenzoxazole derivative The above-mentioned polymers A1 to A7
・Solvent B1: 3-methoxy-N,N-dimethylpropanamide B2: γ-butyrolactone B3: Dimethyl sulfoxide ・Polymerizable monomer C1: 2,2-bis(3,5-bis(hydroxylmethyl)-4-hydroxyphenyl) )-1,1,1,3,3,3-hexafluoropropane (TML-BPAF)
C2: Tetraethylene glycol dimethacrylate (TEGDMA)
C3: Tricyclodecane dimethanol diacrylate (A-DCP)
・Rust inhibitor D1: Benzotriazole (BT)
・Polymerization initiator E1: The following compound (TPPA428)
 E2:8-メトキシピレン-1,3,6-トリスルホン酸トリナトリウム塩(8-Methoxypyrene-1,3,6-trisulfonic acid trisodium salt、MPTS)
 E3:ビス(1-フェニル-1-メチルエチル)ペルオキシド(PercumylD)
 E4:1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム(PDO)
 E5:4,4’-ビス(ジエチルアミノ)ベンゾフェノン(EMK)
E2: 8-Methoxypyrene-1,3,6-trisulfonic acid trisodium salt (MPTS)
E3: Bis(1-phenyl-1-methylethyl) peroxide (PercumylD)
E4: 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime (PDO)
E5: 4,4'-bis(diethylamino)benzophenone (EMK)
(硬化膜のガラス転移温度(Tg)の測定)
 実施例1~6及び比較例1~2の絶縁膜形成材料を用いて以下のように硬化膜を形成し、次いでガラス転移点について測定を行った。
 まず、絶縁膜形成材料をSi基板上にスピンコートし、ホットプレート上で、95℃で120秒加熱乾燥したのち、さらに105℃で120秒乾燥し、乾燥後の膜厚が約10μmの樹脂膜を形成した。
 得られた樹脂膜を、縦型拡散炉μ-TFを用いて、窒素雰囲気下、350℃で2時間硬化し、膜厚10μmの硬化物を得た。得られた硬化物を、4.9質量%フッ酸水溶液に浸漬して、硬化物をSi基板から剥離した。剥離後の硬化膜をサンプル長15mm、サンプル幅4mmに剃刀を用いて成形した。
 日立ハイテクサイエンス社製、TMA7100型を用い、引張冶具を用い、初期サンプル長10mm、昇温速度:5℃/分、荷重10gの条件で、50℃~350℃の温度範囲でサンプルの伸び(膨張)を測定した。ガラス転移温度(Tg)は、上記方法で得られた曲線の中で膨張率に急激な変化があった箇所について、接線法で求めたその変化の開始点の温度とした。
(Measurement of glass transition temperature (Tg) of cured film)
Cured films were formed using the insulating film forming materials of Examples 1 to 6 and Comparative Examples 1 to 2 as follows, and then the glass transition points were measured.
First, an insulating film forming material was spin-coated onto a Si substrate, heated and dried on a hot plate at 95°C for 120 seconds, and then further dried at 105°C for 120 seconds, resulting in a resin film with a thickness of about 10 μm after drying. was formed.
The obtained resin film was cured at 350° C. for 2 hours in a nitrogen atmosphere using a vertical diffusion furnace μ-TF to obtain a cured product with a film thickness of 10 μm. The obtained cured product was immersed in a 4.9% by mass hydrofluoric acid aqueous solution to peel the cured product from the Si substrate. The cured film after peeling was shaped using a razor into a sample length of 15 mm and sample width of 4 mm.
Using TMA7100 model manufactured by Hitachi High-Tech Science Co., Ltd., the sample elongates (expands) in the temperature range of 50°C to 350°C using a tensile jig with an initial sample length of 10 mm, heating rate: 5°C/min, and a load of 10 g. ) was measured. The glass transition temperature (Tg) was defined as the temperature at the starting point of the change determined by the tangential method at a point in the curve obtained by the above method where there was a sudden change in the expansion coefficient.
(チップ付き硬化膜の作製)
 実施例1~6及び比較例1~2の絶縁膜形成材料を、塗布装置スピンコーターを用いて、8インチSiウェハー上にスピンコートし、ホットプレート上で、95℃で120秒加熱乾燥したのち、さらに105℃で120秒乾燥し、乾燥後の膜厚が約10μmの樹脂膜を形成した。
 比較例1、2については、得られた樹脂膜を、マスクアライナーMA-8(ズース・マイクロテック社製)を用いて、露光量600mJ/cmにて広帯域(BB)露光した。露光後の樹脂膜をシクロペンタノンにより、現像機AD1200(ミカサ株式会社製)を用いて総現像時間が20秒となるよう現像を実施した。
 得られた樹脂膜を、縦型拡散炉μ-TFを用いて、窒素雰囲気下、350℃で2時間硬化し硬化膜を得た。
(Preparation of cured film with chips)
The insulating film forming materials of Examples 1 to 6 and Comparative Examples 1 to 2 were spin-coated onto an 8-inch Si wafer using a spin coater coating device, and dried by heating at 95° C. for 120 seconds on a hot plate. The resin film was further dried at 105° C. for 120 seconds to form a resin film having a thickness of about 10 μm after drying.
For Comparative Examples 1 and 2, the obtained resin films were subjected to broadband (BB) exposure at an exposure dose of 600 mJ/cm 2 using Mask Aligner MA-8 (manufactured by SUSS Microtech). The exposed resin film was developed with cyclopentanone using a developing machine AD1200 (manufactured by Mikasa Co., Ltd.) such that the total development time was 20 seconds.
The obtained resin film was cured at 350° C. for 2 hours in a nitrogen atmosphere using a vertical diffusion furnace μ-TF to obtain a cured film.
 得られた硬化膜の一部をブレードダイサー(DISCO DFD-6362)によって5mm角に個片化することで樹脂付きチップを得た。得られた樹脂付きチップを硬化膜に対し、熱圧着機(昭和電工マテリアルズ株式会社製)によって所定圧力及び表1に示す接合温度で15秒間圧着しチップ付き硬化膜を作製した。各絶縁膜形成材料について硬化膜に圧着させた5個のチップずつ後述の評価を実施した。 A part of the obtained cured film was diced into 5 mm square pieces using a blade dicer (DISCO DFD-6362) to obtain resin-coated chips. The obtained resin-coated chips were pressed onto the cured film using a thermocompression bonding machine (manufactured by Showa Denko Materials Co., Ltd.) at a predetermined pressure and the bonding temperature shown in Table 1 for 15 seconds to produce a cured film with chips. For each insulating film forming material, the below-mentioned evaluation was performed on five chips that were pressure-bonded to the cured film.
(評価)
 熱圧着機を用いて接合したチップに対し、ピンセットによって力を加えチップが脱落したものを接合不良と判断した。
-接合結果の評価基準-
A:5個のチップの中で接合不良が観察されたチップが2個以下である。
B:5個のチップの中で接合不良が観察されたチップが2個超である。
(evaluation)
Chips bonded using a thermocompression bonding machine were judged to be defective if they fell off when force was applied with tweezers.
-Evaluation criteria for joining results-
A: Two or less chips out of five chips were observed to have poor bonding.
B: More than two chips out of five chips were observed to have poor bonding.
 表1に示すように、実施例1~6では、比較例1~2と比較して、接合温度を樹脂のガラス転移温度以下の条件とした場合であっても、接合が可能であることがわかる。 As shown in Table 1, in Examples 1 to 6, compared to Comparative Examples 1 to 2, it was found that bonding was possible even when the bonding temperature was set to be below the glass transition temperature of the resin. Recognize.
 2022年4月6日に出願された日本国特許出願2022-063655号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2022-063655 filed on April 6, 2022 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
 1,1a,401…半導体装置、10…第1半導体チップ、20…第2半導体チップ、30…ピラー部、40…再配線層、50…基板、60…回路基板、61…端子電極、100…第1半導体基板、101…第1基板本体、101a…一の面、102…絶縁膜(第1絶縁膜)、103…端子電極(第1電極)、103a…表面、200…第2半導体基板、201…第2基板本体、201a…一の面、202…絶縁膜(第2絶縁膜)、203…端子電極(第2電極)、203a…表面、205…半導体チップ、300…ピラー、301…樹脂、410…半導体ウェハー(第1半導体基板)、411…基板本体(第1基板本体)、412…絶縁膜(第1絶縁膜)、413…端子電極(第1電極)、420…半導体チップ(第2半導体基板)、421…基板本体(第2基板本体)、422…絶縁膜部分(第2絶縁膜)、423…端子電極(第2電極)、A…切断線、H…熱、M1~M3…半製品、S1…絶縁接合部分、S2…電極接合部分、S3…絶縁接合部分、S4…電極接合部分 DESCRIPTION OF SYMBOLS 1, 1a, 401... Semiconductor device, 10... First semiconductor chip, 20... Second semiconductor chip, 30... Pillar part, 40... Rewiring layer, 50... Substrate, 60... Circuit board, 61... Terminal electrode, 100... First semiconductor substrate, 101... First substrate body, 101a... One surface, 102... Insulating film (first insulating film), 103... Terminal electrode (first electrode), 103a... Surface, 200... Second semiconductor substrate, 201... Second substrate main body, 201a... One surface, 202... Insulating film (second insulating film), 203... Terminal electrode (second electrode), 203... Surface, 205... Semiconductor chip, 300... Pillar, 301... Resin , 410...Semiconductor wafer (first semiconductor substrate), 411...Substrate body (first substrate body), 412...Insulating film (first insulating film), 413...Terminal electrode (first electrode), 420...Semiconductor chip (first substrate body) 2 semiconductor substrate), 421...Substrate body (second substrate body), 422...Insulating film portion (second insulating film), 423...Terminal electrode (second electrode), A...Cutting line, H...Heat, M1 to M3 …Semi-finished product, S1…Insulating joint part, S2…Electrode joint part, S3…Insulating joint part, S4…Electrode joint part

Claims (12)

  1.  分子中にフェノール性水酸基を有する熱硬化性ポリアミドと、溶剤と、を含むハイブリッドボンディング絶縁膜形成材料。 A hybrid bonding insulating film forming material containing a thermosetting polyamide having a phenolic hydroxyl group in the molecule and a solvent.
  2.  さらに架橋剤を含む請求項1に記載のハイブリッドボンディング絶縁膜形成材料。 The hybrid bonding insulating film forming material according to claim 1, further comprising a crosslinking agent.
  3.  第1基板本体と、前記第1基板本体の一の面上に設けられる第1電極及び第1有機絶縁膜と、を有する第1半導体基板を準備し、
     半導体チップ基板本体と、前記半導体チップ基板本体の一の面上に設けられる第2有機絶縁膜及び第2電極と、を有する半導体チップを準備し、
     前記第1電極と前記第2電極との接合、及び前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせを行い、
     第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の有機絶縁膜の作製に、請求項1又は請求項2に記載のハイブリッドボンディング絶縁膜形成材料を用いる半導体装置の製造方法。
    preparing a first semiconductor substrate having a first substrate body, a first electrode and a first organic insulating film provided on one surface of the first substrate body;
    preparing a semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body;
    bonding the first electrode and the second electrode and bonding the first organic insulating film and the second organic insulating film;
    A method of manufacturing a semiconductor device using the hybrid bonding insulating film forming material according to claim 1 or 2 for producing at least one of the first organic insulating film and the second organic insulating film.
  4.  前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせの後で、前記第1電極と前記第2電極との接合を行う請求項3に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 3, wherein the first electrode and the second electrode are bonded after the first organic insulating film and the second organic insulating film are bonded together.
  5.  前記半導体チップは、第2基板本体と前記第2基板本体の一の面上に設けられる複数の第2電極及び第2有機絶縁領域とを有する第2半導体基板を個片化して準備する、請求項3に記載の半導体装置の製造方法。 The semiconductor chip is prepared by dividing into pieces a second semiconductor substrate having a second substrate body, a plurality of second electrodes and a second organic insulating region provided on one surface of the second substrate body. Item 3. A method for manufacturing a semiconductor device according to item 3.
  6.  前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせが、前記半導体チップと前記第1半導体基板との温度差が10℃以内となる温度で行われる請求項3に記載の半導体装置の製造方法。 4. The semiconductor device according to claim 3, wherein the first organic insulating film and the second organic insulating film are bonded together at a temperature such that a temperature difference between the semiconductor chip and the first semiconductor substrate is within 10°C. manufacturing method.
  7.  製造された半導体装置において、前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせにより形成された有機絶縁膜の総厚さが0.1μm以上である請求項3に記載の半導体装置の製造方法。 4. The semiconductor device according to claim 3, wherein in the manufactured semiconductor device, the total thickness of the organic insulating film formed by bonding the first organic insulating film and the second organic insulating film is 0.1 μm or more. manufacturing method.
  8.  前記第1電極と前記第2電極との接合、及び前記第1有機絶縁膜と前記第2有機絶縁膜との貼り合わせのいずれもが実施される前に、前記第1半導体基板の前記一の面、及び前記半導体チップの前記一の面の側の少なくとも一方を研磨する請求項3に記載の半導体装置の製造方法。 Before any of the bonding of the first electrode and the second electrode and the bonding of the first organic insulating film and the second organic insulating film are performed, the first electrode of the first semiconductor substrate is 4. The method of manufacturing a semiconductor device according to claim 3, wherein at least one of a surface and a side of the one surface of the semiconductor chip is polished.
  9.  前記研磨が化学機械研磨を含む請求項8に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 8, wherein the polishing includes chemical mechanical polishing.
  10.  前記研磨がさらに機械研磨を含む請求項9に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 9, wherein the polishing further includes mechanical polishing.
  11.  前記第1電極の厚さが前記第1有機絶縁膜の厚さよりも厚いこと、及び前記第2電極の厚さが前記第2有機絶縁膜の厚さよりも厚いことの少なくとも一方を満たす請求項3に記載の半導体装置の製造方法。 Claim 3: The thickness of the first electrode is thicker than the thickness of the first organic insulating film, and the thickness of the second electrode is thicker than the thickness of the second organic insulating film. A method for manufacturing a semiconductor device according to.
  12.  第1基板本体と、前記第1基板本体の一の面に設けられた第1有機絶縁膜及び第1電極とを有する第1半導体基板と、
     半導体チップ基板本体と、前記半導体チップ基板本体の一の面に設けられた第2有機絶縁膜及び第2電極とを有する半導体チップと、を備え、
     前記第1有機絶縁膜と前記第2有機絶縁膜とが接合し、前記第1電極と前記第2電極とが接合し、
     前記第1有機絶縁膜及び前記第2有機絶縁膜の少なくとも一方が、請求項1又は請求項2に記載のハイブリッドボンディング絶縁膜形成材料の硬化物である半導体装置。
    a first semiconductor substrate having a first substrate body, a first organic insulating film and a first electrode provided on one surface of the first substrate body;
    A semiconductor chip having a semiconductor chip substrate body, a second organic insulating film and a second electrode provided on one surface of the semiconductor chip substrate body,
    The first organic insulating film and the second organic insulating film are bonded, the first electrode and the second electrode are bonded,
    A semiconductor device, wherein at least one of the first organic insulating film and the second organic insulating film is a cured product of the hybrid bonding insulating film forming material according to claim 1 or 2.
PCT/JP2022/045898 2022-04-06 2022-12-13 Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device WO2023195202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-063655 2022-04-06
JP2022063655 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023195202A1 true WO2023195202A1 (en) 2023-10-12

Family

ID=88242644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045898 WO2023195202A1 (en) 2022-04-06 2022-12-13 Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device

Country Status (2)

Country Link
TW (1) TW202341284A (en)
WO (1) WO2023195202A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188633A (en) * 2011-03-14 2012-10-04 Panasonic Corp Thermosetting resin composition, resin sheet with metal foil, and flexible printed wiring board
JP2014052592A (en) * 2012-09-10 2014-03-20 Hitachi Chemical Co Ltd Photosensitive resin composition, film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, and semiconductor device
WO2016001949A1 (en) * 2014-07-02 2016-01-07 東洋インキScホールディングス株式会社 Heat-curable resin composition, polyamide, adhesive sheet, cured article, and printed wiring board
JP2016009159A (en) * 2014-06-26 2016-01-18 日立化成株式会社 Positive photosensitive adhesive composition, adhesive pattern, semiconductor wafer with adhesive layer and semiconductor device
JP2021197430A (en) * 2020-06-12 2021-12-27 昭和電工マテリアルズ株式会社 Method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188633A (en) * 2011-03-14 2012-10-04 Panasonic Corp Thermosetting resin composition, resin sheet with metal foil, and flexible printed wiring board
JP2014052592A (en) * 2012-09-10 2014-03-20 Hitachi Chemical Co Ltd Photosensitive resin composition, film adhesive, adhesive sheet, adhesive pattern, semiconductor wafer with adhesive layer, and semiconductor device
JP2016009159A (en) * 2014-06-26 2016-01-18 日立化成株式会社 Positive photosensitive adhesive composition, adhesive pattern, semiconductor wafer with adhesive layer and semiconductor device
WO2016001949A1 (en) * 2014-07-02 2016-01-07 東洋インキScホールディングス株式会社 Heat-curable resin composition, polyamide, adhesive sheet, cured article, and printed wiring board
JP2021197430A (en) * 2020-06-12 2021-12-27 昭和電工マテリアルズ株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW202341284A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
WO2022071329A1 (en) Resin composition, method for producing semiconductor device, cured object, semiconductor device, and method for synthesizing polyimide precursor
TWI658063B (en) Photosensitive resin composition, production method of patterned hardened film using the same, patterned hardened film and semiconductor device
TWI744366B (en) Photosensitive resin composition, its cured product, interlayer insulating film, surface protection film, and electronic parts
JP2018084626A (en) Photosensitive resin composition, method for producing patterned cured film, cured film, interlayer insulation film, cover coat layer, surface protective film and electronic component
TWI751341B (en) Photosensitive resin composition, polymer precursor, cured film, laminate, cured film manufacturing method and semiconductor device
WO2007034604A1 (en) Negative photosensitive resin composition, method of pattern forming and electronic part
TWI779162B (en) Photosensitive resin composition, cured film, laminated body, manufacturing method of cured film, manufacturing method of laminated body, semiconductor device
JP2023151490A (en) Polyimide precursor, hybrid bonding insulation film-forming material, method for producing semiconductor device, and semiconductor device
TW202028863A (en) Photosensitive resin composition, method for manufacturing pattern-cured product, cured product, interlayer insulation film, cover coat layer, surface protection film, and electronic component
JP2018146964A (en) Photosensitive resin composition, method for producing pattern cured product, cured product, interlayer insulation film, cover coat layer, surface protective film and electronic component
WO2023195202A1 (en) Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device
KR20200119202A (en) Negative photosensitive resin composition, method of producing polyimide and method of producing cured relief pattern
TW202028862A (en) Photosensitive resin composition, method for producing patterned cured product, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component
WO2018179330A1 (en) Photosensitive resin composition, method for manufacturing pattern cured film, cured product, interlayer insulation film, cover coating layer, surface protective film, and electronic component
WO2023181637A1 (en) Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device
JP2001110898A (en) Semiconductor device and its material
WO2023171014A1 (en) Insulation film forming material, semiconductor device manufacturing method, and semiconductor device
WO2023195322A1 (en) Method for manufacturing semiconductor device, hybrid bonding insulating film forming material, and semiconductor device
JP2023151489A (en) Hybrid bonding insulating film forming material, semiconductor device manufacturing method, and semiconductor device
JP2023132964A (en) Insulation film-forming material, method for producing semiconductor device and semiconductor device
JP2023136961A (en) Insulation film formation material, method for manufacturing semiconductor device, and semiconductor device
JP2005099353A (en) Photosensitive resin composition, method for manufacturing pattern using the same, and electronic component
JP2023136962A (en) Insulation film formation material, method for manufacturing semiconductor device, and semiconductor device
JP2020064205A (en) Photosensitive resin composition, and method for producing cured relief pattern
US20240339368A1 (en) Manufacturing method for bonded body, bonded body, manufacturing method for laminate, laminate, manufacturing method for device, and device, and composition for forming polyimide-containing precursor portion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024514151

Country of ref document: JP

Kind code of ref document: A