WO2023171014A1 - Insulation film forming material, semiconductor device manufacturing method, and semiconductor device - Google Patents

Insulation film forming material, semiconductor device manufacturing method, and semiconductor device Download PDF

Info

Publication number
WO2023171014A1
WO2023171014A1 PCT/JP2022/037511 JP2022037511W WO2023171014A1 WO 2023171014 A1 WO2023171014 A1 WO 2023171014A1 JP 2022037511 W JP2022037511 W JP 2022037511W WO 2023171014 A1 WO2023171014 A1 WO 2023171014A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
insulating film
forming material
film forming
organic
Prior art date
Application number
PCT/JP2022/037511
Other languages
French (fr)
Japanese (ja)
Inventor
香織 小林
大作 松川
聡 米田
憲哉 足立
Original Assignee
Hdマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hdマイクロシステムズ株式会社 filed Critical Hdマイクロシステムズ株式会社
Publication of WO2023171014A1 publication Critical patent/WO2023171014A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation

Definitions

  • the present disclosure relates to an insulating film forming material, a method for manufacturing a semiconductor device, and a semiconductor device.
  • Non-Patent Document 1 discloses an example of three-dimensional mounting of a semiconductor chip.
  • hybrid bonding technology used in W2W (Wafer-to-Wafer) bonding is used to perform fine bonding of wiring between devices. is being considered.
  • Patent Document 1 discloses an example of a technique that can lower the bonding temperature by using a cyclic olefin resin.
  • the heat resistance of the organic material is insufficient, and the organic material may deteriorate due to exposure to high temperatures during C2W bonding. Therefore, there is a risk that a bonding failure may occur at the interface between the substrate and the insulating film.
  • the present inventors have considered the use of an insulating material containing a polyimide precursor, which is an organic material with excellent heat resistance, from the viewpoint of suppressing bonding defects and deterioration of organic materials due to the generation of voids as described above. did.
  • the metal e.g., copper
  • the metal contained in the electrodes to be bonded is diffused into the insulating film formed of the insulating material. There is a problem that resistance tends to decrease.
  • the present disclosure has been made in view of the above, and provides an insulating film forming material capable of forming an insulating film with excellent insulation reliability when performing hybrid bonding, a method for manufacturing a semiconductor device using the insulating film forming material, and the same.
  • An object of the present invention is to provide a semiconductor device including an insulating film formed from an insulating film forming material.
  • a polyimide precursor that is at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide;
  • B a polymerizable monomer; Hybrid bonding, wherein the content of the compound containing an alkylene oxide chain and (meth)acrylic group classified as the polymerizable monomer (B) is less than 20 parts by mass based on 100 parts by mass of the polyimide precursor (A).
  • the polymerizable monomer (B) is a compound containing an alkylene oxide chain and a (meth)acrylic group, a compound containing an alicyclic structure and a (meth)acrylic group, and an aromatic ring structure and a (meth)acrylic group.
  • the insulating film forming material according to ⁇ 1> containing at least one selected from the group consisting of compounds containing.
  • ⁇ 4> The insulation according to any one of ⁇ 1> to ⁇ 3>, wherein the content of the polymerizable monomer (B) is 30 parts by mass or less based on 100 parts by mass of the polyimide precursor (A).
  • the insulating film forming material according to any one of the above.
  • R 1 , R 2 , R 8 and R 10 each independently have a carbon number of 1 to 4
  • R 3 to R 7 and R 9 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • s is an integer from 0 to 8
  • t is an integer from 0 to 4
  • r is an integer from 0 to 4
  • u is an integer from 0 to 3.
  • D The insulating film forming material according to any one of ⁇ 1> to ⁇ 6>, further comprising a photopolymerization initiator.
  • ⁇ 8> The insulating film forming material according to any one of ⁇ 1> to ⁇ 7>, wherein the polyimide precursor (A) contains a compound having a structural unit represented by the following general formula (1).
  • X represents a tetravalent organic group
  • Y represents a divalent organic group
  • R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
  • E The insulating film forming material according to ⁇ 8>, wherein the tetravalent organic group represented by X in the general formula (1) is a group represented by the following formula (E).
  • two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ;
  • Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups.
  • R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom
  • n each independently represents an integer of 0 to 4.
  • two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • Two R B each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or
  • the monovalent organic group in R 6 and R 7 is a group represented by the following general formula (2), an ethyl group, an isobutyl group, or a t-butyl group.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
  • the insulating film forming material according to any one of ⁇ 1> to ⁇ 11> is used for producing at least one of the first organic insulating film and the second organic insulating film, and the following steps ( A method for manufacturing a semiconductor device, which manufactures a semiconductor device through steps 1) to (5).
  • Step (1) A first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body is prepared.
  • Step (2) A second semiconductor substrate having a second substrate body, the second organic insulating film and a plurality of second electrodes provided on one surface of the second substrate body is prepared.
  • Step (3) Cutting the second semiconductor substrate into pieces to obtain a plurality of semiconductor chips each including an organic insulating film portion corresponding to a part of the second organic insulating film and at least one second electrode. do.
  • Step (4) Bonding the first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip to each other.
  • Step (5) Joining the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip.
  • a first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body, a semiconductor chip having a semiconductor chip substrate body, an organic insulating film portion and a second electrode provided on one surface of the semiconductor chip substrate body;
  • the first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip are bonded to each other, and the first electrode of the first semiconductor substrate and the first organic insulating film portion of the semiconductor chip are bonded to each other.
  • a semiconductor device wherein at least one of the first organic insulating film and the organic insulating film portion is an organic insulating film formed by curing the insulating film forming material according to any one of ⁇ 1> to ⁇ 11>.
  • an insulating film forming material capable of forming an insulating film with excellent insulation reliability when performing hybrid bonding, a method for manufacturing a semiconductor device using the insulating film forming material, and a semiconductor device formed from the insulating film forming material.
  • a semiconductor device including an insulating film can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device manufactured by a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 3 is a diagram showing in more detail the bonding method in the method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram showing the steps after the step shown in FIG. 2 in order.
  • FIG. 5 is a diagram showing an example in which the method for manufacturing a semiconductor device according to an embodiment of the present invention is applied to Chip-to-Wafer (C2W).
  • (A) is a top view showing samples produced in each example and comparative example
  • (B) is a cross-sectional view taken along the line AA in (A).
  • a or B may include either A or B, or may include both.
  • step includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved.
  • numerical ranges indicated using “ ⁇ ” include the numerical values written before and after " ⁇ " as minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
  • each component may contain multiple types of applicable substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
  • the term "layer” or “film” refers to the case where the layer or film is formed only in a part of the region, in addition to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present. This also includes cases where it is formed.
  • the thickness of a layer or film is a value given as the arithmetic average value of the thicknesses measured at five points of the target layer or film.
  • the thickness of a layer or film can be measured using a micrometer or the like.
  • the thickness of a layer or film can be measured directly, it is measured using a micrometer.
  • the thickness of one layer or the total thickness of a plurality of layers it may be measured by observing a cross section of the measurement target using an electron microscope.
  • the term "insulating film" is a concept that also includes an insulating layer.
  • (meth)acrylic group means “acrylic group” and "methacrylic group.”
  • the number of carbon atoms in the functional group means the total number of carbon atoms including the number of carbon atoms of the substituent.
  • the insulating film forming material of the present disclosure includes (A) a polyimide precursor that is at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide; and (B) a polymerizable polyimide precursor.
  • the content of the compound containing an alkylene oxide chain and a (meth)acrylic group classified as the polymerizable monomer (B) is 20 parts by mass based on 100 parts by mass of the polyimide precursor (A). It is a material for forming an insulating film by hybrid bonding.
  • the insulating film forming material of the present disclosure can be used to insulate semiconductor chips when three-dimensionally mounting semiconductor chips by applying hybrid bonding technology to W2W (Wafer-to-Wafer) bonding, C2W (Chip-to-Wafer) bonding, etc. It is a material for forming a film.
  • W2W Wafer-to-Wafer
  • C2W Chip-to-Wafer
  • It is a material for forming a film.
  • the insulating film forming material of the present disclosure includes (A) a polyimide precursor and (B) a polymerizable monomer, and when heated etc., these components react to form a crosslinked structure, thereby forming a cured insulating film. It is formed.
  • the content of the compound containing an alkylene oxide chain and (meth)acrylic group classified as (B) a polymerizable monomer is less than 20 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. It is presumed that the metal (for example, copper) contained in the electrodes to be bonded becomes difficult to diffuse into the insulating film, and the reduction in insulation resistance is suppressed, resulting in excellent insulation reliability.
  • the insulating film obtained by curing the insulating film forming material has a lower elastic modulus and is softer than a molded product made of an inorganic material. Therefore, when bonding insulating films together, the surface of one insulating film (hereinafter also referred to as "first insulating film") or the surface of the other insulating film (hereinafter also referred to as "second insulating film”) Even if foreign matter is present in the insulating film, the insulating film at the bonding interface is easily deformed, and the foreign matter tends to be contained within the insulating film without creating large voids in the insulating film. Furthermore, (A) an insulating film forming material containing a polyimide precursor tends to have higher heat resistance than an insulating film obtained by curing an insulating film forming material containing an acrylic resin, an epoxy resin, or the like.
  • the insulating film forming material of the present disclosure may be a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material.
  • the glass transition temperature of the insulating film formed by curing the insulating film forming material of the present disclosure is preferably 100°C to 400°C, more preferably 150°C to 350°C, from the viewpoint of bonding at low temperatures. .
  • the glass transition temperature of the insulating film is measured as follows. First, an insulating film forming material is heated in a nitrogen atmosphere for 2 hours at a predetermined curing temperature (for example, 150° C. to 375° C.) that allows a curing reaction to occur, to obtain an insulating film. The obtained insulating film was cut to create a rectangular parallelepiped of 5 mm x 50 mm x 3 mm, and a dynamic viscoelasticity measurement device (for example, RSA-G2 manufactured by TA Instruments) was used with a tension jig at a frequency of 1 Hz. Dynamic viscoelasticity is measured in a temperature range of 50°C to 350°C under the conditions of heating rate: 5°C/min.
  • the glass transition temperature (Tg) is defined as the temperature at the peak top of tan ⁇ , which is determined from the ratio of the storage modulus and loss modulus obtained by the above method.
  • the thermal expansion coefficient of the insulating film formed by curing is preferably 150 ppm/K or less, more preferably 100 ppm/K or less, and further preferably 70 ppm/K or less. preferable.
  • the coefficient of thermal expansion of the insulating film, which is a cured product, and the coefficient of thermal expansion of the electrode are the same or close to each other, so even if heat generation occurs during use of the semiconductor device, the insulating film and the electrode Damage to the semiconductor device due to the difference in coefficient of thermal expansion between the two can be suppressed.
  • Thermal expansion coefficient indicates the rate at which the length of the insulating film expands due to temperature rise, and the amount of change in the length of the insulating film at 100°C to 150°C is measured using a thermomechanical analyzer etc. It can be calculated by
  • the insulating film forming material of the present disclosure is a polyimide precursor (hereinafter referred to as "(A) component ).
  • Component (A) preferably contains a polyimide precursor having a polymerizable unsaturated bond.
  • the component (A) contained in the insulating film forming material is preferably a component that does not cause problems in polishing steps, bonding steps, and the like.
  • the polyimide precursor is a polyamic acid, a compound in which the hydrogen atoms of at least some of the carboxy groups in the polyamic acid are substituted with monovalent organic groups, or a polyamic acid in which at least some of the carboxy groups have a pH of 7 or more.
  • polyamide acid salts which are compounds that form a salt structure with a basic compound.
  • examples of compounds in which at least some of the hydrogen atoms of carboxy groups in polyamic acids are substituted with monovalent organic groups include polyamic acid esters, polyamic acid amides, and the like. It is preferable that the polyamic acid ester, polyamic acid amide, etc. have a polymerizable unsaturated bond.
  • component (A) contains a compound having a structural unit represented by the following general formula (1). Thereby, a semiconductor device including an insulating film exhibiting high reliability tends to be obtained.
  • X represents a tetravalent organic group
  • Y represents a divalent organic group
  • R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
  • the polyimide precursor may have a plurality of structural units represented by the above general formula (1), and X, Y, R 6 and R 7 in the plurality of structural units may be the same or different. You can leave it there.
  • the combination of R 6 and R 7 is not particularly limited as long as they are each independently a hydrogen atom or a monovalent organic group.
  • R 6 and R 7 may both be hydrogen atoms, one may be a hydrogen atom and the other may be a monovalent organic group described below, and both may be the same or different monovalent organic groups. It may be.
  • the combination of R 6 and R 7 of each structural unit may be the same or different. .
  • the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 5 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms. .
  • the tetravalent organic group represented by X may include an aromatic ring. Examples of aromatic rings include aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), aromatic heterocyclic groups (for example, the number of atoms constituting the heterocycle is 5 to 20), etc. It will be done.
  • the tetravalent organic group represented by X is preferably an aromatic hydrocarbon group.
  • aromatic hydrocarbon group examples include a benzene ring, a naphthalene ring, and a phenanthrene ring.
  • each aromatic ring may have a substituent or may be unsubstituted.
  • substituents on the aromatic ring include alkyl groups, fluorine atoms, halogenated alkyl groups, hydroxyl groups, and amino groups.
  • the tetravalent organic group represented by X contains a benzene ring
  • the tetravalent organic group represented by X preferably contains one to four benzene rings, and preferably contains one to three benzene rings.
  • ether bond (-O-), sulfide bond (-S-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group.
  • siloxane bond (-O-(Si(R B ) 2 -O-) n ; two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more ), or a composite linking group combining at least two of these linking groups.
  • two benzene rings may be bonded at two locations by at least one of a single bond and a linking group, to form a five-membered ring or a six-membered ring containing a linking group between the two benzene rings.
  • -COOR 6 groups and -CONH- groups are preferably located at ortho positions
  • -COOR 7 groups and -CO- groups are preferably located at ortho positions.
  • tetravalent organic group represented by X include groups represented by the following formulas (A) to (F).
  • a group represented by the following formula (E) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing an ether bond, and even more preferably an ether bond.
  • the following formula (F) has a structure in which C in the following formula (E) is a single bond. Note that the present disclosure is not limited to the specific examples below.
  • a and B are each independently a single bond or a divalent group that is not conjugated with a benzene ring. However, both A and B cannot be a single bond.
  • Divalent groups that are not conjugated with the benzene ring include methylene group, halogenated methylene group, halogenated methylmethylene group, carbonyl group, sulfonyl group, ether bond (-O-), sulfide bond (-S-), and silylene bond.
  • a and B are each independently preferably a methylene group, a bis(trifluoromethyl)methylene group, a difluoromethylene group, an ether bond, a sulfide bond, etc., and an ether bond is more preferable.
  • C preferably contains an ether bond, more preferably an ether bond. Further, C may have a structure represented
  • the alkylene group represented by C in formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and an alkylene group having 1 to 5 carbon atoms. or 2 alkylene group is more preferable.
  • alkylene group represented by C in formula (E) include linear alkylene groups such as methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and hexamethylene group; methylmethylene group; Methylethylene group, ethylmethylene group, dimethylmethylene group, 1,1-dimethylethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, ethylethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group group, 1-ethyltrimethylene group, 2-ethyltrimethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltramethylene group
  • the halogenated alkylene group represented by C in formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms. Preferably, a halogenated alkylene group having 1 to 3 carbon atoms is more preferable.
  • at least one hydrogen atom contained in the alkylene group represented by C in formula (E) above is a fluorine atom, a chlorine atom, etc.
  • Examples include alkylene groups substituted with halogen atoms. Among these, fluoromethylene group, difluoromethylene group, hexafluorodimethylmethylene group, etc. are preferred.
  • the alkyl group represented by R A or R B included in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms. is more preferable, and even more preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R A or R B include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, etc. Can be mentioned.
  • tetravalent organic group represented by X may be groups represented by the following formulas (J) to (O).
  • the divalent organic group represented by Y preferably has 4 to 25 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 12 to 18 carbon atoms.
  • the skeleton of the divalent organic group represented by Y may be the same as the skeleton of the tetravalent organic group represented by X, and the preferable skeleton of the divalent organic group represented by Y is It may be the same as the preferred skeleton of the tetravalent organic group represented by.
  • the skeleton of the divalent organic group represented by Y is a tetravalent organic group represented by X, in which two bonding positions are substituted with atoms (e.g. hydrogen atoms) or functional groups (e.g.
  • the divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance, the divalent organic group represented by Y is preferably a divalent aromatic group.
  • divalent aromatic groups include divalent aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), divalent aromatic heterocyclic groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), The number of atoms is 5 to 20), and divalent aromatic hydrocarbon groups are preferred.
  • divalent aromatic group represented by Y include groups represented by the following formulas (G) to (I).
  • a group represented by the following formula (H) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing an ether bond, and even more preferably an ether bond.
  • R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom
  • n each independently represents an integer of 0 to 4.
  • two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ;
  • Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups.
  • D may have a structure represented by the above formula (C1).
  • a specific example of D in formula (H) is the same as a specific example of C in formula (E).
  • D in formula (H) is preferably an ether bond, a group containing an ether bond and a phenylene group, a group containing an ether bond, a phenylene group, and an alkylene group, or the like.
  • the alkyl group represented by R in formulas (G) to (I) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. , more preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R in formulas (G) to (I) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, Examples include t-butyl group.
  • the alkoxy group represented by R in formulas (G) to (I) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms. , more preferably an alkoxy group having 1 or 2 carbon atoms.
  • Specific examples of the alkoxy group represented by R in formulas (G) to (I) include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and s-butoxy group. , t-butoxy group and the like.
  • the halogenated alkyl group represented by R in formulas (G) to (I) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, and a halogenated alkyl group having 1 to 3 carbon atoms. More preferably, it is a halogenated alkyl group having 1 or 2 carbon atoms.
  • Specific examples of halogenated alkyl groups represented by R in formulas (G) to (I) include at least one hydrogen atom contained in the alkyl groups represented by R in formulas (G) to (I). Examples include alkyl groups in which is substituted with a halogen atom such as a fluorine atom or a chlorine atom. Among these, fluoromethyl group, difluoromethyl group, trifluoromethyl group, etc. are preferred.
  • n is each independently preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • divalent aliphatic group represented by Y examples include a linear or branched alkylene group, a cycloalkylene group, a divalent group having a polyalkylene oxide structure, and a divalent group having a polysiloxane structure. Examples include the following groups.
  • the linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms. More preferably, the number is 1 to 10 alkylene groups.
  • Specific examples of the alkylene group represented by Y include tetramethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, 2-methylpentamethylene group. , 2-methylhexamethylene group, 2-methylheptamethylene group, 2-methyloctamethylene group, 2-methylnonamethylene group, 2-methyldecamethylene group, and the like.
  • the cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, more preferably a cycloalkylene group having 3 to 6 carbon atoms.
  • Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group and a cyclohexylene group.
  • the unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and An alkylene oxide structure of 1 to 4 is more preferred.
  • a polyethylene oxide structure or a polypropylene oxide structure is preferable.
  • the alkylene group in the alkylene oxide structure may be linear or branched.
  • the number of unit structures in the polyalkylene oxide structure may be one, or two or more.
  • a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms.
  • Examples include divalent groups having a polysiloxane structure.
  • alkyl group having 1 to 20 carbon atoms bonded to the silicon atom in the polysiloxane structure include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n- Examples include octyl group, 2-ethylhexyl group, n-dodecyl group, and the like. Among these, methyl group is preferred.
  • the aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent.
  • substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • aryl group having 6 to 18 carbon atoms include phenyl group, naphthyl group, and benzyl group. Among these, phenyl group is preferred.
  • the number of alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 18 carbon atoms in the polysiloxane structure may be one type or two or more types.
  • the silicon atom constituting the divalent group having a polysiloxane structure represented by Y is an NH group in general formula (1) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group. May be combined with
  • the group represented by the formula (G) is preferably a group represented by the following formula (G'), and the group represented by the formula (H) is preferably a group represented by the following formula (H') or the formula (H" ), and the group represented by formula (I) is preferably a group represented by formula (I') below.
  • R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom.
  • R is preferably an alkyl group, more preferably a methyl group.
  • the combination of the tetravalent organic group represented by X and the divalent organic group represented by Y in general formula (1) is not particularly limited.
  • X is a group represented by formula (E)
  • Y is a group represented by formula (G).
  • a combination of groups in which X is a group represented by formula (E) and Y is a group represented by formula (H); X is a group represented by formula (E), and Y is a group represented by formula Examples include combinations of groups represented by (I).
  • R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms or an organic group having an unsaturated double bond, such as a group represented by the following general formula (2), an ethyl group, It is more preferable that it is either an isobutyl group or a t-butyl group, and it is even more preferable that it contains an aliphatic hydrocarbon group having 1 or 2 carbon atoms or a group represented by the following general formula (2). It is particularly preferable to include a group represented by (2).
  • the i-line transmittance is high, and even when curing at a low temperature of 400°C or less. It tends to form a good insulating film.
  • Specific examples of aliphatic hydrocarbon groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc. Among them, ethyl group, Isobutyl and t-butyl groups are preferred.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
  • the aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (2) has 1 to 3 carbon atoms, preferably 1 or 2 carbon atoms.
  • Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a methyl group is preferred.
  • R 8 to R 10 in general formula (2) is preferably a combination in which R 8 and R 9 are hydrogen atoms, and R 10 is a hydrogen atom or a methyl group.
  • R x in general formula (2) is a divalent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms include linear or branched alkylene groups.
  • the number of carbon atoms in R x is preferably 1 to 10, more preferably 2 to 5, and even more preferably 2 or 3.
  • R 6 and R 7 are a group represented by the above general formula (2), and both R 6 and R 7 are a group represented by the above general formula (2). It is more preferable to be a group represented by:
  • the component (A) contains a compound having a structural unit represented by the above-mentioned general formula (1), it is expressed by the general formula (2) based on the sum of R 6 and R 7 of all structural units contained in the compound.
  • the proportion of R 6 and R 7 which are the groups to be used, is preferably 60 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit is not particularly limited, and may be 100 mol%.
  • the above-mentioned ratio may be 0 mol% or more and less than 60 mol%.
  • the group represented by general formula (2) is preferably a group represented by general formula (2') below.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.
  • q is an integer of 1 to 10, preferably an integer of 2 to 5, and more preferably 2 or 3.
  • the content of the structural unit represented by the general formula (1) contained in the compound having the structural unit represented by the general formula (1) is preferably 60 mol% or more based on the total structural units, More preferably 70 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit of the above-mentioned content is not particularly limited, and may be 100 mol%.
  • Component (A) may be synthesized using a tetracarboxylic dianhydride and a diamine compound.
  • X corresponds to a residue derived from a tetracarboxylic dianhydride
  • Y corresponds to a residue derived from a diamine compound.
  • component (A) may be synthesized using tetracarboxylic acid instead of tetracarboxylic dianhydride.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and 3,3',4,4'-biphenyltetracarboxylic dianhydride.
  • diamine compounds include 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, p-phenylenediamine, m- Phenylene diamine, p-xylylene diamine, m-xylylene diamine, 1,5-diaminonaphthalene, benzidine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2, 4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,4'-diaminomino
  • diamine compound m-phenylenediamine, 4,4'-diaminodiphenyl ether and 1,3-bis(3-aminophenoxy)benzene are preferred.
  • the diamine compounds may be used alone or in combination of two or more.
  • a compound having a structural unit represented by general formula (1) and in which at least one of R 6 and R 7 in general formula (1) is a monovalent organic group is, for example, the following (a) or It can be obtained by the method (b).
  • a diester is produced by reacting a tetracarboxylic dianhydride (preferably a tetracarboxylic dianhydride represented by the following general formula (8)) and a compound represented by R-OH in an organic solvent. After making the derivative, the diester derivative and a diamine compound represented by H 2 N--Y--NH 2 are subjected to a condensation reaction.
  • Tetracarboxylic dianhydride and a diamine compound represented by H 2 N-Y-NH 2 are reacted in an organic solvent to obtain a polyamic acid solution, and the compound represented by R-OH is mixed into polyamide.
  • the reaction is carried out in an organic solvent to introduce an ester group.
  • Y in the diamine compound represented by H 2 N-Y-NH 2 is the same as Y in general formula (1), and specific examples and preferred examples are also the same.
  • R in the compound represented by R-OH represents a monovalent organic group, and specific examples and preferred examples are the same as those for R 6 and R 7 in general formula (1).
  • the tetracarboxylic dianhydride represented by the general formula (8), the diamine compound represented by H 2 N-Y-NH 2 and the compound represented by R-OH may each be used alone. Often, two or more types may be combined. Examples of the organic solvents mentioned above include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, dimethoxyimidazolidinone, 3-methoxy-N,N-dimethylpropionamide, and among others, 3-methoxy-N,N- Dimethylpropionamide is preferred.
  • a polyimide precursor may be synthesized by allowing a dehydration condensation agent to act on a polyamic acid solution together with a compound represented by R-OH.
  • the dehydration condensation agent preferably contains at least one selected from the group consisting of trifluoroacetic anhydride, N,N'-dicyclohexylcarbodiimide (DCC), and 1,3-diisopropylcarbodiimide (DIC).
  • DCC N,N'-dicyclohexylcarbodiimide
  • DIC 1,3-diisopropylcarbodiimide
  • the above-mentioned compound contained in component (A) is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then forming a diester derivative such as thionyl chloride. It can be obtained by reacting a diamine compound represented by H 2 N-Y-NH 2 with the acid chloride.
  • the above-mentioned compound contained in component (A) is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then converting it into a carbodiimide compound.
  • component (A) It can be obtained by reacting a diamine compound represented by H 2 N—Y—NH 2 with a diester derivative in the presence of H 2 N—Y—NH 2 .
  • the above-mentioned compound contained in component (A) is produced by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a diamine compound represented by H 2 N-Y-NH 2 to form a polyamide acid. After that, the polyamic acid is isoimidized in the presence of a dehydration condensation agent such as trifluoroacetic anhydride, and then a compound represented by R-OH is allowed to act thereon.
  • a dehydration condensation agent such as trifluoroacetic anhydride
  • a compound represented by R-OH may be reacted on a portion of the tetracarboxylic dianhydride in advance to form a partially esterified tetracarboxylic dianhydride and a compound represented by H 2 N-Y-NH 2 . may be reacted with a diamine compound.
  • X is the same as X in general formula (1), and specific examples and preferred examples are also the same.
  • Compounds represented by R-OH used in the synthesis of the above-mentioned compounds contained in component (A) include compounds in which a hydroxy group is bonded to R x of a group represented by general formula (2), and compounds represented by general formula ( It may also be a compound in which a hydroxy group is bonded to the terminal methylene group of the group represented by 2').
  • Specific examples of compounds represented by R-OH include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and acrylic.
  • Examples include 2-hydroxypropyl acid, 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, and 4-hydroxybutyl methacrylate. -hydroxyethyl and 2-hydroxyethyl acrylate are preferred.
  • the weight average molecular weight of component (A) is preferably 10,000 to 200,000, more preferably 10,000 to 100,000.
  • the weight average molecular weight can be measured, for example, by gel permeation chromatography, and can be determined by conversion using a standard polystyrene calibration curve.
  • the insulating film forming material of the present disclosure may further contain a dicarboxylic acid, and the (A) polyimide precursor contained in the insulating film forming material is such that some of the amino groups in the (A) polyimide precursor are in the dicarboxylic acid. It may have a structure formed by reacting with a carboxy group. For example, when synthesizing a polyimide precursor, a portion of the amino groups of the diamine compound and the carboxy groups of the dicarboxylic acid may be reacted.
  • the dicarboxylic acid may be a dicarboxylic acid having a (meth)acrylic group, for example, a dicarboxylic acid represented by the following formula.
  • the methacrylic group derived from the dicarboxylic acid is added to the (A) polyimide precursor. can be introduced.
  • the insulating film forming material of the present disclosure may contain a resin component other than the component (A).
  • resin components other than component (A) include polyimide resins, novolac resins, acrylic resins, polyethernitrile resins, polyethersulfone resins, epoxy resins, polyethylene terephthalate resins, polyethylene naphthalate resins, and polychlorinated resins. Examples include vinyl resin. Among these, it is preferable that the resin components other than the component (A) include a polyimide resin. Resin components other than component (A) may be used alone or in combination of two or more.
  • the polyimide resin is not particularly limited as long as it is a polymeric compound having a plurality of structural units containing imide bonds, and preferably includes, for example, a compound having a structural unit represented by the following general formula (X).
  • X a compound having a structural unit represented by the following general formula (X).
  • X represents a tetravalent organic group
  • Y represents a divalent organic group.
  • Preferred examples of substituents X and Y in general formula (X) are the same as preferred examples of substituents X and Y in general formula (1) described above.
  • the polyimide resin herein refers to a resin having an imide skeleton in all or part of the resin skeleton. It is preferable that the polyimide resin is soluble in a solvent in an insulating film forming material using a polyimide precursor.
  • the content of component (A) relative to the total amount of resin components is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and 90% by mass. More preferably, the amount is from % by mass to 100% by mass.
  • the resin component other than the component (A) preferably a polyimide resin
  • the proportion of (preferably polyimide resin) may be 15% by mass to 50% by mass, or 10% by mass to 20% by mass.
  • the insulating film forming material of the present disclosure includes (B) a polymerizable monomer (hereinafter also referred to as "component (B)").
  • Component (B) preferably has at least one group containing a polymerizable unsaturated double bond, and from the viewpoint of being suitably polymerizable in combination with a photopolymerization initiator, component (B) contains at least one (meth)acrylic group. It is more preferable to have one. From the viewpoint of improving crosslinking density and photosensitivity, it is preferable to have 2 to 6 groups, and more preferably 2 to 4 groups containing polymerizable unsaturated double bonds.
  • the polymerizable monomers may be used alone or in combination of two or more.
  • the polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples thereof include diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,4-butane Diol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate ) acrylate, dipentaerythritol hexa(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated isocyanuric acid tri(meth)acrylate, (meth)acryloyloxyethyl iso
  • Component (B) is a compound containing an alkylene oxide chain and a (meth)acrylic group (hereinafter also referred to as “compound (1)”), a compound containing an alicyclic structure and a (meth)acrylic group (hereinafter referred to as “compound (1)”), (2)), and a compound containing an aromatic ring structure and a (meth)acrylic group (hereinafter also referred to as “compound (3)”).
  • compound (1) does not need to contain both an alicyclic structure and an aromatic ring structure
  • compound (2) does not need to contain both an alkylene oxide chain and an aromatic ring structure.
  • Compound (3) may contain an alkylene oxide chain.
  • the alkylene oxide chain in component (B) means a group consisting of an alkylene group and an oxygen atom bonded to the alkylene group (excluding the oxygen atom contained in the (meth)acryloyloxy group).
  • component (B) contains compound (1) and compound (2).
  • the insulating film forming material contains the compound (1), the thermocompression bondability between the substrate and the insulating film tends to improve.
  • the insulating film forming material contains the compound (2), the insulation reliability of the insulating film tends to be more excellent.
  • Examples of the compound (1) include diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and tetraethylene glycol di(meth)acrylate.
  • Examples of the compound (2) include tricyclodecane dimethanol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and 1,3-adamantanedimethanol di(meth)acrylate.
  • Examples of the compound (3) include EO-modified bisphenol A di(meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, and phenoxymethacrylate.
  • Component (B) may contain a polymerizable monomer other than the polymerizable monomer having a (meth)acrylic group.
  • the polymerizable monomer other than the polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples include styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N , N-dimethylacrylamide and N-methylolacrylamide.
  • Component (B) is not limited to a compound having a group containing a polymerizable unsaturated double bond, and may be a compound having a polymerizable group other than an unsaturated double bond group (for example, an oxirane ring). .
  • the content of component (B) may be 30 parts by mass or less, and may be 25 parts by mass or less, from the viewpoint of insulation reliability of the insulating film, with respect to 100 parts by mass of component (A). 20 parts by mass or less, 18 parts by mass or less, or 15 parts by mass or less.
  • the content of component (B) is 30 parts by mass or less per 100 parts by mass of component (A)
  • unreacted polymerizable monomer (B) is less likely to be generated after curing. This makes it difficult for the metal (for example, copper) contained in the electrodes and the like to be bonded to diffuse into the insulating film, and it is presumed that the reduction in insulation resistance is suppressed, resulting in excellent insulation reliability.
  • the lower limit of the content of component (B) may be 1 part by mass or more, or 3 parts by mass or more, based on 100 parts by mass of component (A).
  • the content of compound (1) is less than 20 parts by mass, and when the insulating film forming material of the present disclosure contains compound (1), the content of compound (1) is (A ) may be 0.5 parts by mass to 15 parts by mass, 1 part by mass to 12 parts by mass, or 2 parts by mass to 8 parts by mass, based on 100 parts by mass of the component.
  • the content of compound (2) may be 2 parts by mass to 20 parts by mass, and 5 parts by mass, based on 100 parts by mass of component (A). The amount may be from 8 parts to 12 parts by weight, or from 8 parts to 12 parts by weight.
  • the ratio of the content of compound (1) and the content of compound (2) (compound (1): compound (2)) is , may be 1:20 to 20:20, may be 1:20 to 16:20, or may be 2:20 to 15:20, based on mass.
  • the insulating film forming material of the present disclosure may contain a (C) solvent (hereinafter also referred to as "component (C)").
  • Component (C) preferably contains at least one selected from the group consisting of compounds represented by the following formulas (3) to (7), for example.
  • Component (C) may be used alone or in combination of two or more.
  • R 1 , R 2 , R 8 and R 10 are each independently an alkyl group having 1 to 4 carbon atoms
  • R 3 to R 7 and R 9 are each independently an alkyl group having 1 to 4 carbon atoms.
  • it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • s is an integer from 0 to 8
  • t is an integer from 0 to 4
  • r is an integer from 0 to 4
  • u is an integer from 0 to 3.
  • the alkyl group having 1 to 4 carbon atoms in R 2 is preferably a methyl group or an ethyl group.
  • t is preferably 0, 1 or 2, more preferably 1.
  • the alkyl group having 1 to 4 carbon atoms for R 3 is preferably a methyl group, ethyl group, propyl group or butyl group.
  • the alkyl group having 1 to 4 carbon atoms for R 4 and R 5 is preferably a methyl group or an ethyl group.
  • the alkyl group having 1 to 4 carbon atoms in R 6 to R 8 is preferably a methyl group or an ethyl group.
  • r is preferably 0 or 1, more preferably 0.
  • the alkyl group having 1 to 4 carbon atoms in R 9 and R 10 is preferably a methyl group or an ethyl group.
  • u is preferably 0 or 1, more preferably 0.
  • Component (C) may be, for example, at least one of the compounds represented by formulas (4), (5), (6), and (7), and may be a compound represented by formula (5) or The compound represented by formula (7) may be used, or from the viewpoint of reducing the reproductive toxicity and environmental load of the insulating film forming material, the compound represented by formula (5) may be used.
  • component (C) include the following compounds.
  • component (C) that may be included in the insulating film forming material of the present disclosure is not limited to the above-mentioned compounds, and may be other solvents.
  • Component (C) may be an ester solvent, an ether solvent, a ketone solvent, a hydrocarbon solvent, an aromatic hydrocarbon solvent, a sulfoxide solvent, or the like.
  • Solvents for esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone. , ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkoxy acetates such as methyl alkoxy acetate, ethyl alkoxy acetate, butyl alkoxy acetate (e.g.
  • 3-Alkoxypropionate alkyl esters such as methyl 3-alkoxypropionate, ethyl 3-alkoxypropionate (e.g.
  • 2-alkoxypropionate alkyl esters e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Propyl 2-methoxypropionate, methyl 2-ethoxypropionate and ethyl 2-ethoxypropionate
  • 2-alkoxy-2-methylpropionate such as methyl 2-methoxy-2-methylpropionate
  • 2-ethoxy-2 - Ethyl 2-alkoxy-2-methylpropionate such as ethyl methylpropionate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, etc.
  • 2-alkoxypropionate alkyl esters e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Prop
  • Ether solvents include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene.
  • Examples include glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, and the like.
  • Examples of the ketone solvent include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone (NMP), and 3-methoxy-N,N-dimethylpropionamide.
  • Examples of hydrocarbon solvents include limonene and the like.
  • Examples of aromatic hydrocarbon solvents include toluene, xylene, anisole, and the like.
  • Examples of the sulfoxide solvent include dimethyl sulfoxide.
  • Preferred examples of the solvent for component (C) include 3-methoxy-N,N-dimethylpropionamide, ⁇ -butyrolactone, cyclopentanone, and ethyl lactate.
  • the content of NMP may be 1% by mass or less based on the total amount of the insulating film forming material; It may be 3% by mass or less based on the total amount.
  • the content of component (C) is preferably 1 part by mass to 10,000 parts by mass, and preferably 50 parts by mass to 10,000 parts by mass, per 100 parts by mass of component (A). It is more preferable.
  • Component (C) is at least one solvent (1) selected from the group consisting of compounds represented by formulas (3) to (7), as well as ester solvents, ether solvents, and ketone solvents. , a hydrocarbon solvent, an aromatic hydrocarbon solvent, and a sulfoxide solvent. Further, the content of the solvent (1) may be 5% by mass to 100% by mass, or even 5% by mass to 50% by mass, based on the total of the solvent (1) and the solvent (2). good. The content of the solvent (1) may be 10 parts by mass to 1000 parts by mass, 10 parts by mass to 100 parts by mass, 10 parts by mass to 100 parts by mass, based on 100 parts by mass of component (A). It may be 50 parts by mass.
  • the insulating film forming material of the present disclosure further includes (D) a photopolymerization initiator (hereinafter also referred to as (D) component). Further, the insulating film forming material of the present disclosure may further include (E) a thermal polymerization initiator (hereinafter also referred to as (E) component). Preferred forms of component (D) and component (E) will be described below.
  • the insulating film forming material of the present disclosure preferably contains (D) a photopolymerization initiator.
  • component (D) examples include benzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), 4-methoxy-4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4 Benzophenones such as '-dimethoxybenzophenone, 4,4'-diaminobenzophenone, 4,4'-bis(diethylamino)benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4'-methyldiphenylketone, dibenzylketone, fluorenone, etc.
  • benzophenone N,N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), 4-methoxy-4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4 Benzophenones such as '-dimethoxybenzophen
  • Acetophenone derivatives such as acetophenone, 2,2-diethoxyacetophenone, 3'-methylacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, etc.
  • Thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, diethylthioxanthone; benzyl derivatives such as benzyl, benzyl dimethyl ketal, benzyl- ⁇ -methoxyethyl acetal; benzoin, benzoin methyl ether, benzoin Benzoin derivatives such as ethyl ether, benzoin phenyl ether, methylbenzoin, ethylbenzoin, propylbenzoin; 1-phenyl-1,2-butanedione-2-(O-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione -2-(O-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime, 1-pheny
  • the content of component (D) is 0% based on 100 parts by mass of component (A) from the viewpoint that photocrosslinking tends to be uniform in the film thickness direction. .1 part by weight to 25 parts by weight is preferable, 1 part to 20 parts by weight is more preferable, and even more preferably 5 parts to 15 parts by weight.
  • the insulating film forming material of the present disclosure may contain an antireflection agent that suppresses reflected light from the substrate direction from the viewpoint of improving photosensitivity.
  • the insulating film forming material of the present disclosure preferably contains (E) a thermal polymerization initiator from the viewpoint of improving the physical properties of a cured product.
  • component (E) include ketone peroxide such as methyl ethyl ketone peroxide, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy) ) Peroxyketals such as cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide hydroperoxides such as dicumyl peroxide, dialkyl peroxides such as di-t-butyl peroxide, diacyl peroxides such as dilauroyl peroxide and dibenzoyl peroxide, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2- peroxydicarbonates
  • the content of component (E) may be 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor, The amount may be 1 part by mass to 15 parts by mass, or 5 parts by mass to 10 parts by mass.
  • the insulating film forming material of the present disclosure may contain (F) a polymerization inhibitor (hereinafter also referred to as "component (F)") from the viewpoint of ensuring good storage stability.
  • a polymerization inhibitor hereinafter also referred to as "component (F)”
  • the polymerization inhibitor include radical polymerization inhibitors and radical polymerization inhibitors.
  • component (F) include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N-phenyl- 2-naphthylamine, cuperone, 2,5-torquinone, tannic acid, parabenzylaminophenol, nitrosamines, 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-2 , 3-dioxide, hindered phenol compounds, and the like.
  • the polymerization inhibitors may be used alone or in combination of two or more. By combining two or more polymerization inhibitors, it tends to be easier to adjust the photosensitive characteristics due to the difference in reactivity.
  • the hindered phenol compound may have both the function of a polymerization inhibitor and the function of an antioxidant described below, or it may have either one of the functions.
  • the hindered phenol compound is not particularly limited, and examples thereof include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3-(3,5- di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis(2,6-di- t-butylphenol), 4,4'-thio-bis(3-methyl-6-t-butylphenol), 4,4'-butylidene-bis(3-methyl-6-t-butylphenol), triethylene glycol-bis [3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate ], 2,
  • the content of component (F) is 100% of component (A) from the viewpoint of storage stability of the insulating film forming material and heat resistance of the obtained cured product. It is preferably 0.01 parts by mass to 30 parts by mass, more preferably 0.01 parts by mass to 10 parts by mass, and preferably 0.05 parts by mass to 5 parts by mass. More preferred.
  • the insulating film forming material of the present disclosure may further contain an antioxidant, a coupling agent, a surfactant, a leveling agent, a rust preventive, or a nitrogen-containing compound.
  • the insulating film forming material of the present disclosure may contain an antioxidant from the viewpoint of suppressing deterioration of adhesive properties by capturing oxygen radicals and peroxide radicals generated during high-temperature storage, reflow treatment, etc. . Since the insulating film forming material of the present disclosure contains an antioxidant, oxidation of the electrode during an insulation reliability test can be suppressed.
  • antioxidants include the compounds listed above as the hindered phenol compounds, N,N'-bis[2-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethyl] carbonyloxy]ethyl]oxamide, N,N'-bis-3-(3,5-di-tert-butyl-4'-hydroxyphenyl)propionylhexamethylenediamine, 1,3,5-tris(3-hydroxy- 4-tert-butyl-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl) -3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid and the like.
  • the antioxidants may be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.1 parts by mass to 20 parts by mass, and 0.1 parts by mass to 20 parts by mass, based on 100 parts by mass of component (A).
  • the amount is more preferably from .1 parts by weight to 10 parts by weight, and even more preferably from 0.1 parts by weight to 5 parts by weight.
  • the insulating film forming material of the present disclosure may include a coupling agent.
  • the coupling agent reacts with component (A) and crosslinks, or the coupling agent itself polymerizes. This tends to further improve the adhesiveness between the obtained cured product and the substrate.
  • Coupling agents include 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, -Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N-(3-diethoxymethylsilylpropyl) Succinimide, N-[3-(triethoxysilyl)propyl]phthalamic acid, benzophenone-3,3'-bis(N-[3-triethoxysilyl]propylamide)-4,4'-dicarboxylic acid, benzene-1
  • the content of the coupling agent is preferably 0.1 parts by mass to 20 parts by mass, and 0.3 parts by mass, based on 100 parts by mass of component (A). Parts by weight to 10 parts by weight are more preferable, and 1 part to 10 parts by weight are even more preferable.
  • the insulating film forming material of the present disclosure may include at least one of a surfactant and a leveling agent.
  • a surfactant and a leveling agent When the insulating film forming material contains at least one of a surfactant and a leveling agent, it improves coating properties (for example, suppressing striae (unevenness in film thickness)), improves adhesion, and improves the compatibility of compounds in the insulating film forming material. etc. can be improved.
  • surfactant or leveling agent examples include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
  • the surfactants and leveling agents may be used alone or in combination of two or more.
  • the total content of the surfactant and leveling agent is 0.01 parts by mass to 100 parts by mass of component (A).
  • the amount is preferably 10 parts by weight, more preferably 0.05 parts to 5 parts by weight, and even more preferably 0.05 parts to 3 parts by weight.
  • the insulating film forming material of the present disclosure may contain a rust preventive agent from the viewpoint of suppressing corrosion of metals such as copper and copper alloys, and from the viewpoint of suppressing discoloration of the metals.
  • rust preventive agents include azole compounds and purine derivatives.
  • azole compounds include 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t- Butyl-5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H- Triazole, hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy- 3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)
  • purine derivatives include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N,N-dimethyladenine, 2-fluoroadenine, 9-(2-hydroxyethyl)adenine, guanine oxime, N-(2-hydroxyethyl)adenine, 8-aminoadenine, 6-amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl) Examples include guanine, N-(3-ethylphenyl)guanine, 2-azaa
  • the rust inhibitors may be used alone or in combination of two or more.
  • the content of the rust preventive agent is preferably 0.01 parts by mass to 10 parts by mass, and 0.01 parts by mass to 10 parts by mass, based on 100 parts by mass of component (A).
  • the amount is more preferably from .1 part by weight to 5 parts by weight, and even more preferably from 0.5 parts by weight to 3 parts by weight.
  • the content of the rust preventive agent is 0.1 parts by mass or more, when the insulating film forming material of the present disclosure is applied on the surface of copper or copper alloy, discoloration of the surface of copper or copper alloy is prevented. suppressed.
  • the insulating film forming material of the present disclosure may contain a nitrogen-containing compound from the viewpoint of accelerating the imidization reaction of component (A) and obtaining a highly reliable cured product.
  • nitrogen-containing compounds include 2-(methylphenylamino)ethanol, 2-(ethylanilino)ethanol, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethylaniline, N- Phenylethanolamine, 4-phenylmorpholine, 2,2'-(4-methylphenylimino)diethanol, 4-aminobenzamide, 2-aminobenzamide, nicotinamide, 4-amino-N-methylbenzamide, 4-aminoacetanilide , 4-aminoacetophenone, among others, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethylaniline, N-phenylethanolamine, 4-phenylmorpholine, 2,2 '-(4-methylphenylimino)diethanol and the like are preferred.
  • One type of nitrogen-containing compound may be used alone, or two or more types may be used in combination
  • the nitrogen-containing compound includes a compound represented by the following formula (17).
  • R 31A to R 33A are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, or a monovalent aromatic group. and at least one (preferably one) of R 31A to R 33A is a monovalent aromatic group. Adjacent groups of R 31A to R 33A may form a ring structure. Examples of the ring structure formed include a 5-membered ring and a 6-membered ring which may have a substituent such as a methyl group or a phenyl group.
  • the hydrogen atom of the monovalent aliphatic hydrocarbon group may be substituted with a functional group other than a hydroxy group.
  • At least one (preferably one) of R 31A to R 33A is a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, or a monovalent aromatic A group group is preferred.
  • the monovalent aliphatic hydrocarbon groups R 31A to R 33A preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the monovalent aliphatic hydrocarbon group is preferably a methyl group, an ethyl group, or the like.
  • the monovalent aliphatic hydrocarbon group having a hydroxy group of R 31A to R 33A is one or more hydroxy groups bonded to the monovalent aliphatic hydrocarbon group of R 31A to R 33A . It is preferable that the hydroxyl group is a bonded group, and a group that has one to three hydroxy groups bonded is more preferable. Specific examples of the monovalent aliphatic hydrocarbon group having a hydroxy group include a methylol group, a hydroxyethyl group, and the like, with a hydroxyethyl group being preferred.
  • Examples of the monovalent aromatic group R 31A to R 33A in formula (17) include a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group, etc. Groups are preferred.
  • the monovalent aromatic hydrocarbon group preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
  • Examples of the monovalent aromatic hydrocarbon group include a phenyl group and a naphthyl group.
  • the monovalent aromatic groups R 31A to R 33A in formula (17) may have a substituent.
  • substituents include monovalent aliphatic hydrocarbon groups represented by R 31A to R 33A of formula (17), and monovalent aliphatic hydrocarbon groups having a hydroxy group represented by R 31A to R 33A of formula (17) above. Groups similar to the group are mentioned.
  • the content of the nitrogen-containing compound is preferably 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of component (A). From the viewpoint of stability, the amount is more preferably 0.3 parts by mass to 15 parts by mass, and even more preferably 0.5 parts by mass to 10 parts by mass.
  • a semiconductor device of the present disclosure includes: a first semiconductor substrate having a first substrate body; the first organic insulating film and a first electrode provided on one surface of the first substrate body; a semiconductor chip substrate body; a semiconductor chip having an organic insulating film portion and a second electrode provided on one surface of a semiconductor chip substrate body, the first organic insulating film of the first semiconductor substrate and the organic insulating film of the semiconductor chip; the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip are joined, and at least one of the first organic insulating film and the organic insulating film part is in contact with the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip.
  • the semiconductor device of the present disclosure since at least one of the first organic insulating film and the organic insulating film portion is an insulating film formed by curing the insulating film forming material of the present disclosure, metal (for example, copper) becomes difficult to diffuse into the insulating film, and a decrease in insulation resistance is suppressed. Thereby, a semiconductor device including an insulating film with excellent insulation reliability can be obtained. Further, the semiconductor device of the present disclosure is manufactured, for example, through steps (1) to (5) described below.
  • the semiconductor device of the present disclosure is manufactured using the insulating film forming material of the present disclosure.
  • a semiconductor device can be manufactured through steps (1) to (5) using the insulating film forming material of the present disclosure.
  • Step (1) A first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body is prepared.
  • Step (2) A second semiconductor substrate having a second substrate body, the second organic insulating film and a plurality of second electrodes provided on one surface of the second substrate body is prepared.
  • Step (3) Cutting the second semiconductor substrate into pieces to obtain a plurality of semiconductor chips each including an organic insulating film portion corresponding to a part of the second organic insulating film and at least one second electrode. .
  • Step (5) Joining the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip.
  • FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device of the present disclosure.
  • the semiconductor device 1 is an example of a semiconductor package, and includes a first semiconductor chip 10 (first semiconductor substrate), a second semiconductor chip 20 (semiconductor chip), a pillar part 30, and a rewiring layer 40. , a substrate 50, and a circuit board 60.
  • the first semiconductor chip 10 is a semiconductor chip such as an LSI (Large Scale Integrated Circuit) chip or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and the second semiconductor chip 2 It has a three-dimensional mounting structure in which 0 is mounted downward.
  • the second semiconductor chip 20 is a semiconductor chip such as an LSI or a memory, and is a chip component having a smaller area in plan view than the first semiconductor chip 10.
  • the second semiconductor chip 20 is chip-to-chip (C2C) bonded to the back surface of the first semiconductor chip 10.
  • the first semiconductor chip 10 and the second semiconductor chip 20 are finely bonded to each other by hybrid bonding, the details of which will be described later, so that the respective terminal electrodes and the insulating films around the terminal electrodes are firmly and without misalignment.
  • the pillar part 30 is a connection part in which a plurality of pillars 31 made of metal such as copper (Cu) are sealed with resin 32.
  • the plurality of pillars 31 are conductive members extending from the upper surface to the lower surface of the pillar section 30.
  • the plurality of pillars 31 may have a cylindrical shape, for example, with a diameter of 3 ⁇ m or more and 20 ⁇ m or less (in one example, a diameter of 5 ⁇ m), and may be arranged such that the distance between the centers of each pillar 31 is 15 ⁇ m or less.
  • the plurality of pillars 31 connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40 by flip-chip connection.
  • connection electrode can be formed in the semiconductor device 1 without using a technique called TMV (Through Mold Via) in which a hole is made in a mold and a solder connection is made.
  • the pillar section 30 has, for example, the same thickness as the second semiconductor chip 20, and is arranged on the side of the second semiconductor chip 20 in the horizontal direction. Note that a plurality of solder balls may be arranged instead of the pillar portion 30, and the solder balls electrically connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40. You may.
  • the rewiring layer 40 is a wiring layer that has a terminal pitch conversion function, which is a function of a package substrate, and is made of polyimide, copper wiring, etc. on the insulating film on the lower side of the second semiconductor chip 20 and on the lower surface of the pillar section 30. This is a layer in which a rewiring pattern is formed.
  • the rewiring layer 40 is formed by turning the first semiconductor chip 10 (first semiconductor substrate 100), second semiconductor chip 20, etc. upside down (see (d) in FIG. 4).
  • the rewiring layer 40 electrically connects the terminal electrodes of the first semiconductor chip 10 via the terminal electrodes on the lower surface of the second semiconductor chip 20 and the pillar portion 30 to the terminal electrodes of the substrate 50.
  • the terminal pitch of the substrate 50 is wider than the terminal pitch of the pillar 31 and the terminal pitch of the second semiconductor chip 20.
  • various electronic components 51 may be mounted on the board 50.
  • an inorganic interposer or the like may be used between the rewiring layer 40 and the substrate 50 to ensure electrical connection between the rewiring layer 40 and the substrate 50. You can also make a connection.
  • the circuit board 60 has the first semiconductor chip 10 and the second semiconductor chip 20 mounted thereon, and is electrically connected to the board 50 which is connected to the first semiconductor chip 10, the second semiconductor chip 20, the electronic component 51, etc. This is a substrate that has a plurality of through electrodes inside.
  • each terminal electrode of the first semiconductor chip 10 and the second semiconductor chip 20 is electrically connected to a terminal electrode 61 provided on the back surface of the circuit board 60 by a plurality of through electrodes.
  • FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 3 is a diagram showing in more detail the bonding method (hybrid bonding) in the method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram sequentially showing steps after the step shown in FIG. 2.
  • the semiconductor device 1 can be manufactured, for example, through the following steps (a) to (n).
  • (a) A step of preparing a first semiconductor substrate 100 corresponding to the first semiconductor chip 10.
  • (b) A step of preparing a second semiconductor substrate 200 corresponding to the second semiconductor chip 20.
  • (c) One surface 101a side, which is the surface of the first semiconductor substrate 100, is polished using the CMP method so that each surface 103a of the terminal electrode 103 is at the same position or in a protruding position with respect to the surface 102a of the insulating film 102. (see FIG. 3(a)).
  • One surface 201a which is the surface of the second semiconductor substrate 200, is polished using a CMP method so that each surface 203a of the terminal electrode 203 is at the same position or in a protruding position with respect to the surface 202a of the insulating film 202. Polishing step (see FIG. 3(a)).
  • step (j) A step of molding resin 301 on the connection surface of first semiconductor substrate 100 so as to cover semiconductor chip 205 and pillar 300 to obtain semi-finished product M1 (see (b) of FIG. 4).
  • step (k) A process of grinding and thinning the resin 301 side of the semi-finished product M1 molded in step (j) to obtain a semi-finished product M2 (see (c) in FIG. 4).
  • step (l) A step of forming a wiring layer 400 corresponding to the rewiring layer 40 on the semi-finished product M2 thinned in step (k) (see (d) in FIG. 4).
  • step (m) A step of cutting the semi-finished product M3 on which the wiring layer 400 was formed in step (l) along the cutting line A to form each semiconductor device 1 (see (d) in FIG. 4).
  • step (n) A step of inverting the semiconductor device 1a individualized in step (m) and placing it on the substrate 50 and the circuit board 60 (see FIG. 1).
  • step (1) corresponds to the above-mentioned step (a) and step (c)
  • step (2) corresponds to the above-mentioned step (b) and step (d)
  • step (3) corresponds to step (e)
  • step (4) corresponds to step (g)
  • step (5) corresponds to step (h).
  • the insulating film forming material of the present disclosure may be an insulating film forming material for use in manufacturing at least one of a first organic insulating film and a second organic insulating film in a method for manufacturing a semiconductor device. .
  • Step (a) is a step of preparing a first semiconductor substrate 100, which is a silicon substrate, corresponding to a plurality of first semiconductor chips 10 and on which an integrated circuit consisting of semiconductor elements and wiring connecting them is formed.
  • a plurality of terminal electrodes 103 made of copper, aluminum, etc. are placed on one surface 101a of the first substrate body 101 made of silicon etc. in a predetermined manner.
  • An insulating film 102 (first insulating film) is provided at intervals and is a cured product obtained by curing the insulating film forming material of the present disclosure.
  • the plural terminal electrodes 103 may be provided after the insulating film 102 is provided on the one surface 101a of the first substrate main body 101, or the plural terminal electrodes 103 may be provided on the one surface 101a of the first substrate main body 101 and then the insulating film is provided. 102 may be provided.
  • Step (b) is a step of preparing a second semiconductor substrate 200, which is a silicon substrate, on which an integrated circuit corresponding to a plurality of second semiconductor chips 20 and including semiconductor elements and wiring connecting them is formed.
  • a plurality of terminal electrodes 203 (a plurality of second electrodes) made of copper, aluminum, etc. are formed on one surface 201a of the second substrate main body 201 made of silicon or the like. are continuously provided, and an insulating film 202 (second insulating film) which is a cured product obtained by curing the insulating film forming material of the present disclosure is provided.
  • a plurality of terminal electrodes 203 may be provided after the insulating film 202 is provided on the one surface 201a of the second substrate main body 201, or a plurality of terminal electrodes 203 may be provided on the one surface 201a of the second substrate main body 201 and then the insulating film 202 is provided. may be provided.
  • the insulating films 102 and 202 used in step (a) and step (b) are not limited to a structure in which both are cured products obtained by curing the insulating film forming material of the present disclosure, and at least one of the insulating films 102 and 202 is The structure may be a cured product obtained by curing the insulating film forming material of the present disclosure.
  • FIG. 1 shows an example of C2C bonding
  • FIG. The present invention may be applied to bonding with 2W).
  • C2W a semiconductor wafer 410 (first substrate body) having a substrate body 411 (first substrate body), an insulating film 412 (first insulating film) provided on one surface of the substrate body 411, and a plurality of terminal electrodes 413 (first electrodes) is used.
  • 1 semiconductor substrate is prepared.
  • a plurality of semiconductor chips each having a substrate body 421 (second substrate body), an insulating film portion 422 (second insulating film) provided on one surface of the substrate body 421, and a plurality of terminal electrodes 423 (second electrodes).
  • semiconductor substrates (second semiconductor substrates) before being separated into individual pieces are prepared. Then, one side of the semiconductor wafer 410 and one side of the second semiconductor substrate before being singulated into semiconductor chips 420 are polished by CMP or the like in the same manner as in the above steps (c) and (d). . Thereafter, the second semiconductor substrate is subjected to the same singulation process as in step (e) to obtain a plurality of semiconductor chips 420.
  • the terminal electrodes 423 of the semiconductor chip 420 are aligned with the terminal electrodes 413 of the semiconductor wafer 410 (step (f)). Then, the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 are bonded together (step (g)), and the terminal electrodes 413 of the semiconductor wafer 410 and the terminal electrodes 423 of the semiconductor chip 420 are bonded. (step (h)) to obtain a semi-finished product shown in FIG. 5(b).
  • the insulating film portion 412 and the insulating film portion 422 become an insulating bonding portion S3, and the semiconductor chip 420 is mechanically firmly attached to the semiconductor wafer 410 with high precision.
  • the terminal electrode 413 and the corresponding terminal electrode 423 are joined to form an electrode joint portion S4, and the terminal electrode 413 and the terminal electrode 423 are mechanically and electrically firmly joined.
  • a semiconductor device 401 is obtained by bonding a plurality of semiconductor chips 420 to a semiconductor wafer 410 in the same manner.
  • the plurality of semiconductor chips 420 may be bonded to the semiconductor wafer 410 one by one by hybrid bonding, or may be bonded to the semiconductor wafer 410 all together by hybrid bonding.
  • At least one of the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 is made of the insulating film of the present disclosure.
  • This is an insulating film that is a cured product obtained by curing the forming material. Therefore, a semiconductor device including an insulating film with excellent insulation reliability can be obtained.
  • the present invention is not limited to these configurations.
  • the first electrode and the second electrode may be through electrodes that penetrate the first semiconductor substrate and the second semiconductor substrate.
  • the method for manufacturing a semiconductor device of the present disclosure includes, for example, using the insulating film forming material of the present disclosure for producing at least one of a first organic insulating film and a second organic insulating film, and performing the following step (1)' It may be a method of manufacturing a semiconductor device through steps (5)'.
  • Step (1)' A first semiconductor substrate having a first substrate body and the first organic insulating film provided on one surface of the first substrate body is prepared.
  • Step (2)' A second semiconductor substrate having a second substrate body and the second organic insulating film provided on one surface of the second substrate body is prepared.
  • Step (3)' The second semiconductor substrate is cut into pieces to obtain a plurality of semiconductor chips each having an organic insulating film portion corresponding to a part of the second organic insulating film.
  • Step (4)' The first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip are bonded together.
  • Step (5)' A through hole is provided in a part of the first semiconductor substrate and the second semiconductor substrate that are bonded together, and a through electrode is provided in the through hole.
  • a through hole may be provided by etching or the like, or a through electrode may be provided by electrolytic plating, electroless plating, sputtering, or the like.
  • Example 1 to 19 Comparative Example 1
  • Insulating film forming materials of Examples 1 to 19 and Comparative Example 1 were prepared as follows using the components and blending amounts shown in Tables 1 and 2. The unit of the amount of each component in Tables 1 and 2 is parts by mass. In addition, a blank column in Tables 1 and 2 means that the corresponding component was not blended.
  • the mixture of each component was kneaded overnight at room temperature in a general solvent-resistant container, and then filtered under pressure using a 0.2 ⁇ m pore filter. The following evaluations were performed using the obtained insulating film forming material.
  • HAST test HAST (Highly Accelerated Temperature and The insulation reliability of the insulating film was evaluated by a Humidity Stress Test) test. After sputtering titanium and copper on one side of a silicon wafer (Si substrate with a SiO 2 film) and polyimide as shown in FIG. 6, a plurality of copper electrodes are formed by electroplating at the intervals shown in FIG. The unnecessary sputtered layer was removed. An insulating film formed by curing the insulating film forming material of each Example and Comparative Example between electrodes was produced under the following conditions. First, an insulating film forming material was spin-coated onto a silicon wafer using a spin coater coating device, and a drying process was performed to form a resin film.
  • the obtained resin film was exposed using a proximity exposure machine "Mask Aligner MA8" (manufactured by SUSS Microtech Co., Ltd.) at an exposure amount such that the residual film rate after development was approximately 80% or more. Ta. Thereafter, the resin film was cured by heating at 230° C. for a predetermined time in a nitrogen atmosphere in a clean oven, thereby producing an insulating film. Furthermore, the insulating film provided between the electrodes was treated under HAST conditions of 130° C., 85% RH, 3.3 V, 5 V, or 10 V for 300 hours. Further, under HAST conditions, the insulation resistance value of the insulation film was observed for 100 hours or 300 hours, and the insulation reliability in each Example and Comparative Example was evaluated based on the following criteria.
  • thermocompression bondability (Preparation of insulating film with chip)
  • the insulating film forming materials of Examples 1 to 19 and Comparative Example 1 were spin-coated onto a 6-inch silicon wafer or glass substrate using a spin coater coating device, and a drying process was performed to form a resin film.
  • the obtained resin film was exposed using a proximity exposure machine "Mask Aligner MA8" (manufactured by SUSS Microtech Co., Ltd.) at an exposure amount such that the residual film rate after development was approximately 80% or more. Ta. Thereafter, the resin film was cured by heating at 230° C.
  • thermocompression adhesion between the insulating films was evaluated as described below.
  • thermocompression bondability was evaluated multiple times and evaluated as (number of times the thermocompression bondability was good/number of times the thermocompression bondability was evaluated). Specifically, after thermocompression bonding, only the resin-coated chip is grabbed using tweezers, and when the resin-coated chip is lifted, the silicon wafer or glass substrate is lifted together with the resin-coated chip, and the thermocompression bondability is evaluated. was judged to be good. On the other hand, when the silicon wafer or glass substrate peeled off when the resin-coated chip was lifted using tweezers, and only the resin-coated chip was lifted, the evaluation of thermocompression bondability was determined to be poor. The results are shown in Tables 1 and 2.
  • first semiconductor substrate 411...Substrate body (first substrate body), 412...Insulating film (first insulating film), 413...Terminal electrode (first electrode), 420...Semiconductor chip (second semiconductor substrate) , 421... Substrate body (second substrate body), 422... Insulating film portion (second insulating film), 423... Terminal electrode (second electrode), A... Cutting line, H... Heat, M1 to M3... Semi-finished product, S1...Insulating bonding portion, S2...Electrode bonding portion, S3...Insulating bonding portion, S4...Electrode bonding portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

This insulation film forming material is for forming an insulation film through hybrid bonding, and contains: a polyimide precursor (A) which is at least one resin selected from the group consisting of polyamic acid, polyamic acid esters, polyamic acid salts, and polyamic acid amides; and a polymerizable monomer (B). The contained amount of a compound that includes a (meth)acrylic group and an alkylene oxide chain classified as the polymerizable monomer (B) is less than 20 parts by mass with respect to 100 parts by mass of the polyimide precursor (A).

Description

絶縁膜形成材料、半導体装置の製造方法及び半導体装置Insulating film forming material, semiconductor device manufacturing method, and semiconductor device
 本開示は、絶縁膜形成材料、半導体装置の製造方法及び半導体装置に関する。 The present disclosure relates to an insulating film forming material, a method for manufacturing a semiconductor device, and a semiconductor device.
 近年、LSI(Large Scale Integrated Circuit)の集積度を向上させるために半導体チップの三次元実装が検討されている。非特許文献1には、半導体チップの三次元実装の一例が開示されている。 In recent years, three-dimensional mounting of semiconductor chips has been studied to improve the degree of integration of LSIs (Large Scale Integrated Circuits). Non-Patent Document 1 discloses an example of three-dimensional mounting of a semiconductor chip.
 C2W(Chip-to-Wafer)接合により半導体チップの三次元実装を行う場合において、デバイス同士の配線の微細接合を行うため、W2W(Wafer-to-Wafer)接合に用いられるハイブリッドボンディング技術を使うことが検討されている。 When performing three-dimensional mounting of semiconductor chips using C2W (Chip-to-Wafer) bonding, hybrid bonding technology used in W2W (Wafer-to-Wafer) bonding is used to perform fine bonding of wiring between devices. is being considered.
 C2Wのハイブリッドボンディングでは、ボンディング時の加熱により基材、チップ等の熱膨張が要因となる位置ズレが発生するおそれがある。このような課題に対し、特許文献1では環状オレフィン系樹脂を用いることでボンディング温度を低温化できる技術の一例が開示されている。 In C2W hybrid bonding, there is a risk that misalignment may occur due to thermal expansion of the base material, chip, etc. due to heating during bonding. In response to such problems, Patent Document 1 discloses an example of a technique that can lower the bonding temperature by using a cyclic olefin resin.
特開2019-204818号公報JP2019-204818A
 C2W接合により半導体チップの三次元実装を行う場合、W2W接合と異なり、半導体チップへの個片化を行う工程にて異物(切断破片)が発生することがあり、この異物が半導体チップ等の接合界面(ハイブリッドボンディングの絶縁膜の表面)に付着してしまうおそれがある。この絶縁膜には二酸化ケイ素(SiO)等の無機材料を用いることが検討されているが、無機材料は硬い材料であることから、付着した異物が絶縁膜に大きな空隙、例えば異物高さの1000倍近い幅の空隙を接合界面に生じさせてしまう。このため、W2W接合に用いられているハイブリッドボンディング技術を単にC2W接合に適用しても、このような空隙の発生により接合不良を引き起こしてしまうおそれがあり、これにより半導体装置製造の歩留まりが低下するという問題がある。一方、これらの接合不良を防ぐために高い清浄度を持つクリーンルーム及び装置を利用する場合、クリーンルーム等に対する設備投資により多額の費用が必要となる。 When performing three-dimensional mounting of semiconductor chips by C2W bonding, unlike W2W bonding, foreign matter (cutting fragments) may be generated during the process of singulating semiconductor chips, and this foreign matter may interfere with the bonding of semiconductor chips, etc. There is a risk that it may adhere to the interface (the surface of the insulating film of hybrid bonding). The use of inorganic materials such as silicon dioxide (SiO 2 ) for this insulating film is being considered, but since inorganic materials are hard materials, attached foreign matter can cause large voids in the insulating film, such as the height of the foreign matter. A gap nearly 1000 times wider is created at the bonding interface. For this reason, even if the hybrid bonding technology used in W2W bonding is simply applied to C2W bonding, there is a risk of bonding failure due to the generation of such voids, which reduces the yield of semiconductor device manufacturing. There is a problem. On the other hand, when using a clean room and equipment with high cleanliness to prevent these bonding defects, a large amount of capital is required due to equipment investment for the clean room and the like.
 また、絶縁膜の材料に環状オレフィン系樹脂等の有機材料を用いた場合、有機材料の耐熱性が充分でなく、C2W接合の際に絶縁膜が高温に曝されることで有機材料が変質して基板と絶縁膜との界面等で接合不良が発生したりするおそれがある。 Furthermore, when an organic material such as a cyclic olefin resin is used for the insulating film, the heat resistance of the organic material is insufficient, and the organic material may deteriorate due to exposure to high temperatures during C2W bonding. Therefore, there is a risk that a bonding failure may occur at the interface between the substrate and the insulating film.
 本発明者らは、前述のような空隙の発生による接合不良、有機材料の変質等を抑制する観点から、耐熱性に優れる有機材料であるポリイミド前駆体を含む絶縁性材料を使用することを検討した。しかし、ポリイミド前駆体を含む絶縁性材料をC2W接合に適用した際、接合対象となる電極等に含まれる金属(例えば、銅)が絶縁性材料により形成された絶縁膜に拡散されてしまい、絶縁抵抗が低下しやすくなるという問題がある。 The present inventors have considered the use of an insulating material containing a polyimide precursor, which is an organic material with excellent heat resistance, from the viewpoint of suppressing bonding defects and deterioration of organic materials due to the generation of voids as described above. did. However, when an insulating material containing a polyimide precursor is applied to C2W bonding, the metal (e.g., copper) contained in the electrodes to be bonded is diffused into the insulating film formed of the insulating material. There is a problem that resistance tends to decrease.
 本開示は上記に鑑みてなされたものであり、ハイブリッドボンディングを行う際に絶縁信頼性に優れる絶縁膜を形成可能な絶縁膜形成材料、当該絶縁膜形成材料を用いた半導体装置の製造方法及び当該絶縁膜形成材料より形成された絶縁膜を備える半導体装置を提供することを目的とする。 The present disclosure has been made in view of the above, and provides an insulating film forming material capable of forming an insulating film with excellent insulation reliability when performing hybrid bonding, a method for manufacturing a semiconductor device using the insulating film forming material, and the same. An object of the present invention is to provide a semiconductor device including an insulating film formed from an insulating film forming material.
 前記課題を達成するための具体的手段は以下の通りである。
<1> (A)ポリアミド酸、ポリアミド酸エステル、ポリアミド酸塩及びポリアミド酸アミドからなる群より選択される少なくとも1種の樹脂であるポリイミド前駆体と、
 (B)重合性モノマーと、を含み、
 前記(B)重合性モノマーに分類されるアルキレンオキシド鎖及び(メタ)アクリル基を含む化合物の含有量は、前記(A)ポリイミド前駆体100質量部に対して20質量部未満である、ハイブリッドボンディングにより絶縁膜を形成するための絶縁膜形成材料。<2> 前記(B)重合性モノマーは、アルキレンオキシド鎖及び(メタ)アクリル基を含む化合物、脂環式構造及び(メタ)アクリル基を含む化合物、並びに、芳香環構造及び(メタ)アクリル基を含む化合物からなる群より選択される少なくとも1種を含む<1>に記載の絶縁膜形成材料。
<3> 前記(B)重合性モノマーは、アルキレンオキシド鎖及び(メタ)アクリル基を含む化合物並びに脂環式構造及び(メタ)アクリル基を含む化合物を含む<1>に記載の絶縁膜形成材料。
<4> 前記(B)重合性モノマーの含有量は、前記(A)ポリイミド前駆体100質量部に対して30質量部以下である<1>~<3>のいずれか1つに記載の絶縁膜形成材料。
<5> (C)溶剤をさらに含み、前記(C)溶剤は下記式(3)~式(7)で表される化合物からなる群より選択される少なくとも一種を含む<1>~<4>のいずれか1つに記載の絶縁膜形成材料。
Specific means for achieving the above object are as follows.
<1> (A) A polyimide precursor that is at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide;
(B) a polymerizable monomer;
Hybrid bonding, wherein the content of the compound containing an alkylene oxide chain and (meth)acrylic group classified as the polymerizable monomer (B) is less than 20 parts by mass based on 100 parts by mass of the polyimide precursor (A). An insulating film forming material for forming an insulating film. <2> The polymerizable monomer (B) is a compound containing an alkylene oxide chain and a (meth)acrylic group, a compound containing an alicyclic structure and a (meth)acrylic group, and an aromatic ring structure and a (meth)acrylic group. The insulating film forming material according to <1>, containing at least one selected from the group consisting of compounds containing.
<3> The insulating film forming material according to <1>, wherein the polymerizable monomer (B) includes a compound containing an alkylene oxide chain and a (meth)acrylic group, and a compound containing an alicyclic structure and a (meth)acrylic group. .
<4> The insulation according to any one of <1> to <3>, wherein the content of the polymerizable monomer (B) is 30 parts by mass or less based on 100 parts by mass of the polyimide precursor (A). Film-forming material.
<5><1> to <4> further comprising a (C) solvent, wherein the (C) solvent contains at least one type selected from the group consisting of compounds represented by the following formulas (3) to (7). The insulating film forming material according to any one of the above.
 式(3)~(7)中、R、R、R及びR10は、それぞれ独立に、炭素数1~4
のアルキル基であり、R~R及びRは、それぞれ独立に、水素原子又は炭素数1~4のアルキル基である。sは0~8の整数であり、tは0~4の整数であり、rは0~4の整数であり、uは0~3の整数である。
<6> 前記(C)溶剤は前記式(5)で表される化合物を少なくとも含む<5>に記載の絶縁膜形成材料。
<7> (D)光重合開始剤をさらに含む<1>~<6>のいずれか1つに記載の絶縁膜形成材料。
<8> 前記(A)ポリイミド前駆体は、下記一般式(1)で表される構造単位を有する化合物を含む<1>~<7>のいずれか1つに記載の絶縁膜形成材料。
In formulas (3) to (7), R 1 , R 2 , R 8 and R 10 each independently have a carbon number of 1 to 4
R 3 to R 7 and R 9 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. s is an integer from 0 to 8, t is an integer from 0 to 4, r is an integer from 0 to 4, and u is an integer from 0 to 3.
<6> The insulating film forming material according to <5>, wherein the solvent (C) contains at least a compound represented by the formula (5).
<7> (D) The insulating film forming material according to any one of <1> to <6>, further comprising a photopolymerization initiator.
<8> The insulating film forming material according to any one of <1> to <7>, wherein the polyimide precursor (A) contains a compound having a structural unit represented by the following general formula (1).
 一般式(1)中、Xは4価の有機基を表し、Yは2価の有機基を表し、R及びRは、それぞれ独立に、水素原子、又は1価の有機基を表す。
<9> 前記一般式(1)中、前記Xで表される4価の有機基は、下記式(E)で表される基である<8>に記載の絶縁膜形成材料。
In general formula (1), X represents a tetravalent organic group, Y represents a divalent organic group, and R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
<9> The insulating film forming material according to <8>, wherein the tetravalent organic group represented by X in the general formula (1) is a group represented by the following formula (E).
 式(E)において、Cは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。
<10> 前記一般式(1)中、前記Yで表される2価の有機基は、下記式(H)で表される基である<8>又は<9>に記載の絶縁膜形成材料。
In formula (E), C represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a phenylene group, an ester bond (-O -C(=O)-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ; Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups.
<10> The insulating film forming material according to <8> or <9>, wherein the divalent organic group represented by Y in the general formula (1) is a group represented by the following formula (H). .
 式(H)において、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基、フェニル基又はハロゲン原子を表し、nは、それぞれ独立に、0~4の整数を表す。Dは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。
<11> 前記一般式(1)中、前記R及び前記Rにおける前記1価の有機基は、下記一般式(2)で表される基、エチル基、イソブチル基又はt-ブチル基のいずれかである<8>~<10>のいずれか1つに記載の絶縁膜形成材料。
In formula (H), R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom, and n each independently represents an integer of 0 to 4. D is a single bond, alkylene group, halogenated alkylene group, carbonyl group, sulfonyl group, ether bond (-O-), sulfide bond (-S-), phenylene group, ester bond (-O-C(=O) -), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), siloxane bond (-O-(Si(R B ) 2 -O-) n ; Two R B each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or a divalent combination of at least two of these. represents the group of
<11> In the general formula (1), the monovalent organic group in R 6 and R 7 is a group represented by the following general formula (2), an ethyl group, an isobutyl group, or a t-butyl group. The insulating film forming material according to any one of <8> to <10>.
 一般式(2)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、Rは2価の連結基を表す。
<12> <1>~<11>のいずれか1つに記載の絶縁膜形成材料を第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の有機絶縁膜の作製に用い、以下の工程(1)~工程(5)を経て半導体装置を製造する半導体装置の製造方法。
 工程(1) 第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板を準備する。
 工程(2) 第2基板本体と、前記第2基板本体の一面に設けられた前記第2有機絶縁膜及び複数の第2電極とを有する第2半導体基板を準備する。
 工程(3) 前記第2半導体基板を個片化し、前記第2有機絶縁膜の一部に対応する有機絶縁膜部分と少なくとも1つの前記第2電極とをそれぞれが備えた複数の半導体チップを取得する。
 工程(4) 前記第1半導体基板の前記第1有機絶縁膜と前記半導体チップの前記有機絶縁膜部分とを互いに貼り合わせる。
 工程(5) 前記第1半導体基板の前記第1電極と前記半導体チップの前記第2電極とを接合する。
<13> 第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板と、
 半導体チップ基板本体と、前記半導体チップ基板本体の一面に設けられた有機絶縁膜部
分及び第2電極とを有する半導体チップと、
 を備え、前記第1半導体基板の前記第1有機絶縁膜と、前記半導体チップの前記有機絶縁膜部分と、が接合し、前記第1半導体基板の前記第1電極と、前記半導体チップの前記第2電極と、が接合し、
 前記第1有機絶縁膜及び前記有機絶縁膜部分の少なくとも一方が<1>~<11>のいずれか1つに記載の絶縁膜形成材料を硬化してなる有機絶縁膜である半導体装置。
In general formula (2), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
<12> The insulating film forming material according to any one of <1> to <11> is used for producing at least one of the first organic insulating film and the second organic insulating film, and the following steps ( A method for manufacturing a semiconductor device, which manufactures a semiconductor device through steps 1) to (5).
Step (1) A first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body is prepared.
Step (2) A second semiconductor substrate having a second substrate body, the second organic insulating film and a plurality of second electrodes provided on one surface of the second substrate body is prepared.
Step (3) Cutting the second semiconductor substrate into pieces to obtain a plurality of semiconductor chips each including an organic insulating film portion corresponding to a part of the second organic insulating film and at least one second electrode. do.
Step (4) Bonding the first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip to each other.
Step (5) Joining the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip.
<13> A first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body,
a semiconductor chip having a semiconductor chip substrate body, an organic insulating film portion and a second electrode provided on one surface of the semiconductor chip substrate body;
The first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip are bonded to each other, and the first electrode of the first semiconductor substrate and the first organic insulating film portion of the semiconductor chip are bonded to each other. 2 electrodes are joined,
A semiconductor device, wherein at least one of the first organic insulating film and the organic insulating film portion is an organic insulating film formed by curing the insulating film forming material according to any one of <1> to <11>.
 本開示によれば、ハイブリッドボンディングを行う際に絶縁信頼性に優れる絶縁膜を形成可能な絶縁膜形成材料、当該絶縁膜形成材料を用いた半導体装置の製造方法及び当該絶縁膜形成材料より形成された絶縁膜を備える半導体装置を提供することができる。 According to the present disclosure, an insulating film forming material capable of forming an insulating film with excellent insulation reliability when performing hybrid bonding, a method for manufacturing a semiconductor device using the insulating film forming material, and a semiconductor device formed from the insulating film forming material. A semiconductor device including an insulating film can be provided.
図1は、本発明の一実施形態に係る半導体装置の製造方法によって製造される半導体装置の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device manufactured by a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図2は、図1に示す半導体装置を製造するための方法を順に示す図である。FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG. 図3は、図2に示す半導体装置の製造方法における接合方法をより詳細に示す図である。FIG. 3 is a diagram showing in more detail the bonding method in the method of manufacturing the semiconductor device shown in FIG. 図4は、図1に示す半導体装置を製造するための方法であり、図2に示す工程の後の工程を順に示す図である。FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram showing the steps after the step shown in FIG. 2 in order. 図5は、本発明の一実施形態に係る半導体装置の製造方法をChip-to-Wafer(C2W)に適用した例を示す図である。FIG. 5 is a diagram showing an example in which the method for manufacturing a semiconductor device according to an embodiment of the present invention is applied to Chip-to-Wafer (C2W). (A)各実施例及び比較例にて作製したサンプルを示す上面図であり、(B)(A)のA-A線断面図である。(A) is a top view showing samples produced in each example and comparative example, and (B) is a cross-sectional view taken along the line AA in (A).
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, modes for carrying out the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the constituent elements (including elemental steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the present disclosure.
 本開示において「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において、層又は膜の厚さは、対象となる層又は膜の5点の厚さを測定し、その算術平均値として与えられる値とする。
 層又は膜の厚さは、マイクロメーター等を用いて測定することができる。本開示におい
て、層又は膜の厚さを直接測定可能な場合には、マイクロメーターを用いて測定する。一方、1つの層の厚さ又は複数の層の総厚さを測定する場合には、電子顕微鏡を用いて、測定対象の断面を観察することで測定してもよい。
 本開示において、「絶縁膜」は絶縁層も包含する概念である。
 本開示において「(メタ)アクリル基」とは、「アクリル基」及び「メタクリル基」を意味する。
 本開示において官能基が置換基を有する場合、官能基中の炭素数は、置換基の炭素数も含んだ全体の炭素数を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
In the present disclosure, "A or B" may include either A or B, or may include both.
In this disclosure, the term "step" includes not only a step that is independent from other steps, but also a step that cannot be clearly distinguished from other steps, as long as the purpose of the step is achieved. .
In the present disclosure, numerical ranges indicated using "~" include the numerical values written before and after "~" as minimum and maximum values, respectively.
In the numerical ranges described step by step in this disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step. . Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In the present disclosure, each component may contain multiple types of applicable substances. If there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition, unless otherwise specified. means quantity.
In this disclosure, the term "layer" or "film" refers to the case where the layer or film is formed only in a part of the region, in addition to the case where the layer or film is formed in the entire region when observing the region where the layer or film is present. This also includes cases where it is formed.
In the present disclosure, the thickness of a layer or film is a value given as the arithmetic average value of the thicknesses measured at five points of the target layer or film.
The thickness of a layer or film can be measured using a micrometer or the like. In this disclosure, when the thickness of a layer or film can be measured directly, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer or the total thickness of a plurality of layers, it may be measured by observing a cross section of the measurement target using an electron microscope.
In the present disclosure, the term "insulating film" is a concept that also includes an insulating layer.
In the present disclosure, "(meth)acrylic group" means "acrylic group" and "methacrylic group."
In the present disclosure, when a functional group has a substituent, the number of carbon atoms in the functional group means the total number of carbon atoms including the number of carbon atoms of the substituent.
In the present disclosure, when embodiments are described with reference to drawings, the configuration of the embodiments is not limited to the configuration shown in the drawings. Furthermore, the sizes of the members in each figure are conceptual, and the relative size relationships between the members are not limited thereto.
<絶縁膜形成材料>
 本開示の絶縁膜形成材料は、(A)ポリアミド酸、ポリアミド酸エステル、ポリアミド酸塩及びポリアミド酸アミドからなる群より選択される少なくとも1種の樹脂であるポリイミド前駆体と、(B)重合性モノマーと、を含み、前記(B)重合性モノマーに分類されるアルキレンオキシド鎖及び(メタ)アクリル基を含む化合物の含有量は、前記(A)ポリイミド前駆体100質量部に対して20質量部未満である、ハイブリッドボンディングにより絶縁膜を形成するための材料である。
<Insulating film forming material>
The insulating film forming material of the present disclosure includes (A) a polyimide precursor that is at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide; and (B) a polymerizable polyimide precursor. The content of the compound containing an alkylene oxide chain and a (meth)acrylic group classified as the polymerizable monomer (B) is 20 parts by mass based on 100 parts by mass of the polyimide precursor (A). It is a material for forming an insulating film by hybrid bonding.
 本開示の絶縁膜形成材料は、ハイブリッドボンディング技術をW2W(Wafer-to-Wafer)接合、C2W(Chip-to-Wafer)接合等に適用することで半導体チップの三次元実装を行う際に、絶縁膜を形成するための材料である。絶縁膜同士を貼り合わせてハイブリッドボンディングする際、少なくとも一方の絶縁膜が本開示の絶縁膜形成材料によって形成されていればよく、両方の絶縁膜が本開示の絶縁膜形成材料によって形成されていることが好ましい。 The insulating film forming material of the present disclosure can be used to insulate semiconductor chips when three-dimensionally mounting semiconductor chips by applying hybrid bonding technology to W2W (Wafer-to-Wafer) bonding, C2W (Chip-to-Wafer) bonding, etc. It is a material for forming a film. When bonding insulating films together and performing hybrid bonding, it is sufficient that at least one insulating film is formed of the insulating film forming material of the present disclosure, and both insulating films are formed of the insulating film forming material of the present disclosure. It is preferable.
 本開示の絶縁膜形成材料を用いることで絶縁信頼性に優れる絶縁膜を形成することができる。この理由としては、以下のように推測される。但し、下記の推測は、本開示の絶縁膜形成材料を限定的に解釈するものではなく、一例として説明するものである。
 本開示の絶縁膜形成材料は(A)ポリイミド前駆体と(B)重合性モノマーとを含み、加熱等によってこれらの成分が反応して架橋構造が形成されることで硬化物である絶縁膜が形成される。このとき、(B)重合性モノマーに分類されるアルキレンオキシド鎖及び(メタ)アクリル基を含む化合物の含有量が、(A)ポリイミド前駆体100質量部に対して20質量部未満であることにより、接合対象となる電極等に含まれる金属(例えば、銅)が絶縁膜に拡散しにくくなり、絶縁抵抗の低下が抑制されることで絶縁信頼性に優れると推測される。
By using the insulating film forming material of the present disclosure, an insulating film with excellent insulation reliability can be formed. The reason for this is assumed to be as follows. However, the following speculations are not intended to limit the insulating film forming material of the present disclosure, but are explained as an example.
The insulating film forming material of the present disclosure includes (A) a polyimide precursor and (B) a polymerizable monomer, and when heated etc., these components react to form a crosslinked structure, thereby forming a cured insulating film. It is formed. At this time, the content of the compound containing an alkylene oxide chain and (meth)acrylic group classified as (B) a polymerizable monomer is less than 20 parts by mass with respect to 100 parts by mass of (A) polyimide precursor. It is presumed that the metal (for example, copper) contained in the electrodes to be bonded becomes difficult to diffuse into the insulating film, and the reduction in insulation resistance is suppressed, resulting in excellent insulation reliability.
 絶縁膜形成材料を硬化して得られる絶縁膜は、無機材料からなる成形物よりも弾性率が低く、柔らかい。そのため、絶縁膜同士を貼り合わせる際に、一方の絶縁膜(以下、「第1絶縁膜」とも称する。)の表面又は他方の絶縁膜(以下、「第2絶縁膜」とも称する。)の表面に異物等が存在する場合であっても、接合界面の絶縁膜が容易に変形し、絶縁膜に大きな空隙を生じさせることなく異物を絶縁膜内に包含させることができる傾向にある。さらに、(A)ポリイミド前駆体を含む絶縁膜形成材料は、アクリル樹脂、エポキシ樹脂等を含む絶縁膜形成材料を硬化して得られた絶縁膜と比較して耐熱性が高い傾向にある。 The insulating film obtained by curing the insulating film forming material has a lower elastic modulus and is softer than a molded product made of an inorganic material. Therefore, when bonding insulating films together, the surface of one insulating film (hereinafter also referred to as "first insulating film") or the surface of the other insulating film (hereinafter also referred to as "second insulating film") Even if foreign matter is present in the insulating film, the insulating film at the bonding interface is easily deformed, and the foreign matter tends to be contained within the insulating film without creating large voids in the insulating film. Furthermore, (A) an insulating film forming material containing a polyimide precursor tends to have higher heat resistance than an insulating film obtained by curing an insulating film forming material containing an acrylic resin, an epoxy resin, or the like.
 本開示の絶縁膜形成材料は、ネガ型感光性絶縁膜形成材料又はポジ型感光性絶縁膜形成材料であってもよい。 The insulating film forming material of the present disclosure may be a negative photosensitive insulating film forming material or a positive photosensitive insulating film forming material.
 本開示の絶縁膜形成材料を硬化してなる絶縁膜のガラス転移温度は、低温での接合の観点から、100℃~400℃であることが好ましく、150℃~350℃であることがより好ましい。 The glass transition temperature of the insulating film formed by curing the insulating film forming material of the present disclosure is preferably 100°C to 400°C, more preferably 150°C to 350°C, from the viewpoint of bonding at low temperatures. .
 絶縁膜のガラス転移温度は、以下のようにして測定する。まず、絶縁膜形成材料を窒素雰囲気下にて2時間、硬化反応が可能な所定の硬化温度(例えば、150℃~375℃)で加熱して絶縁膜を得る。得られた絶縁膜を切断して5mm×50mm×3mmの直方体を作製し、動的粘弾性測定装置(例えば、TAインスツルメント製、RSA-G2)にて引張冶具を用い、周波数:1Hz、昇温速度:5℃/分の条件で、50℃~350℃の温度範囲で動的粘弾性を測定する。ガラス転移温度(Tg)は、上記方法で得られた貯蔵弾性率と損失弾性率との比より求められるtanδにおいて、ピークトップ部分の温度とする。 The glass transition temperature of the insulating film is measured as follows. First, an insulating film forming material is heated in a nitrogen atmosphere for 2 hours at a predetermined curing temperature (for example, 150° C. to 375° C.) that allows a curing reaction to occur, to obtain an insulating film. The obtained insulating film was cut to create a rectangular parallelepiped of 5 mm x 50 mm x 3 mm, and a dynamic viscoelasticity measurement device (for example, RSA-G2 manufactured by TA Instruments) was used with a tension jig at a frequency of 1 Hz. Dynamic viscoelasticity is measured in a temperature range of 50°C to 350°C under the conditions of heating rate: 5°C/min. The glass transition temperature (Tg) is defined as the temperature at the peak top of tan δ, which is determined from the ratio of the storage modulus and loss modulus obtained by the above method.
 本開示の絶縁膜形成材料は、硬化してなる絶縁膜の熱膨張率が150ppm/K以下であることが好ましく、100ppm/K以下であることがより好ましく、70ppm/K以下であることがさらに好ましい。これにより、硬化物である絶縁膜の熱膨張率と、電極の熱膨張率とが同等又は近い値となるため、半導体装置の使用時に発熱等が生じた場合であっても、絶縁膜と電極との熱膨張率の違いによる半導体装置の破損を抑制できる。熱膨張率は、温度上昇による絶縁膜の長さが膨張する割合を温度あたりで示したもので、100℃~150℃における絶縁膜の長さの変化量を熱機械分析装置等を用いて測定することで算出できる。 In the insulating film forming material of the present disclosure, the thermal expansion coefficient of the insulating film formed by curing is preferably 150 ppm/K or less, more preferably 100 ppm/K or less, and further preferably 70 ppm/K or less. preferable. As a result, the coefficient of thermal expansion of the insulating film, which is a cured product, and the coefficient of thermal expansion of the electrode are the same or close to each other, so even if heat generation occurs during use of the semiconductor device, the insulating film and the electrode Damage to the semiconductor device due to the difference in coefficient of thermal expansion between the two can be suppressed. Thermal expansion coefficient indicates the rate at which the length of the insulating film expands due to temperature rise, and the amount of change in the length of the insulating film at 100°C to 150°C is measured using a thermomechanical analyzer etc. It can be calculated by
 以下、本開示の絶縁膜形成材料に含まれる成分及び含まれ得る成分について説明する。 Hereinafter, the components contained in the insulating film forming material of the present disclosure and the components that can be contained will be explained.
((A)ポリイミド前駆体)
 本開示の絶縁膜形成材料は(A)ポリアミド酸、ポリアミド酸エステル、ポリアミド酸塩及びポリアミド酸アミドからなる群より選択される少なくとも1種の樹脂であるポリイミド前駆体(以下、「(A)成分」とも称する。)を含む。(A)成分は、重合性の不飽和結合を有するポリイミド前駆体を含むことが好ましい。絶縁膜形成材料に含まれる(A)成分は、研磨工程、ボンディング工程等において不具合を起こさない成分であることが好ましい。
 本開示において、ポリイミド前駆体は、ポリアミド酸、ポリアミド酸における少なくとも一部のカルボキシ基の水素原子が1価の有機基に置換された化合物、又はポリアミド酸における少なくとも一部のカルボキシ基がpH7以上の塩基性化合物と塩構造を形成している化合物であるポリアミド酸塩のいずれかに該当する化合物を意味する。
 ポリアミド酸における少なくとも一部のカルボキシ基の水素原子が1価の有機基に置換された化合物としては、ポリアミド酸エステル、ポリアミド酸アミド等が挙げられる。
 ポリアミド酸エステル、ポリアミド酸アミド等は、重合性の不飽和結合を有することが好ましい。
((A) Polyimide precursor)
The insulating film forming material of the present disclosure is a polyimide precursor (hereinafter referred to as "(A) component ). Component (A) preferably contains a polyimide precursor having a polymerizable unsaturated bond. The component (A) contained in the insulating film forming material is preferably a component that does not cause problems in polishing steps, bonding steps, and the like.
In the present disclosure, the polyimide precursor is a polyamic acid, a compound in which the hydrogen atoms of at least some of the carboxy groups in the polyamic acid are substituted with monovalent organic groups, or a polyamic acid in which at least some of the carboxy groups have a pH of 7 or more. It means a compound that falls under any of the polyamide acid salts, which are compounds that form a salt structure with a basic compound.
Examples of compounds in which at least some of the hydrogen atoms of carboxy groups in polyamic acids are substituted with monovalent organic groups include polyamic acid esters, polyamic acid amides, and the like.
It is preferable that the polyamic acid ester, polyamic acid amide, etc. have a polymerizable unsaturated bond.
 (A)成分は、下記一般式(1)で表される構造単位を有する化合物を含むことが好ましい。これにより、高い信頼性を示す絶縁膜を備える半導体装置が得られる傾向がある。 It is preferable that component (A) contains a compound having a structural unit represented by the following general formula (1). Thereby, a semiconductor device including an insulating film exhibiting high reliability tends to be obtained.
 一般式(1)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、又は1価の有機基を表す。
 ポリイミド前駆体は、上記一般式(1)で表される構造単位を複数有していてもよく、複数の構造単位におけるX、Y、R及びRはそれぞれ同じであってもよく、異なっていてもよい。
 なお、R及びRは、それぞれ独立に水素原子、又は1価の有機基であればその組み合わせは特に限定されない。例えば、R及びRは、いずれも水素原子であってもよく、一方が水素原子かつ他方が後述する1価の有機基であってもよく、いずれも同じ又は互いに異なる1価の有機基であってもよい。前述のようにポリイミド前駆体が上記一般式(1)で表される構造単位を複数有する場合、各構造単位のR及びRの組み合わせはそれぞれ同じであってもよく、異なっていてもよい。
In the general formula (1), X represents a tetravalent organic group, and Y represents a divalent organic group. R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
The polyimide precursor may have a plurality of structural units represented by the above general formula (1), and X, Y, R 6 and R 7 in the plurality of structural units may be the same or different. You can leave it there.
Note that the combination of R 6 and R 7 is not particularly limited as long as they are each independently a hydrogen atom or a monovalent organic group. For example, R 6 and R 7 may both be hydrogen atoms, one may be a hydrogen atom and the other may be a monovalent organic group described below, and both may be the same or different monovalent organic groups. It may be. As mentioned above, when the polyimide precursor has a plurality of structural units represented by the above general formula (1), the combination of R 6 and R 7 of each structural unit may be the same or different. .
 一般式(1)において、Xで表される4価の有機基は、炭素数が4~25であることが好ましく、5~13であることがより好ましく、6~12であることがさらに好ましい。
 Xで表される4価の有機基は、芳香環を含んでもよい。芳香環としては、芳香族炭化水素基(例えば、芳香環を構成する炭素数は6~20)、芳香族複素環式基(例えば、複素環を構成する原子数は5~20)等が挙げられる。Xで表される4価の有機基は、芳香族炭化水素基であることが好ましい。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、フェナントレン環等が挙げられる。
 Xで表される4価の有機基が芳香環を含む場合、各芳香環は、置換基を有していてもよいし、無置換であってもよい。芳香環の置換基としては、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等が挙げられる。
 Xで表される4価の有機基がベンゼン環を含む場合、Xで表される4価の有機基は1つ~4つのベンゼン環を含むことが好ましく、1つ~3つのベンゼン環を含むことがより好ましく、1つ又は2つのベンゼン環を含むことがさらに好ましい。
 Xで表される4価の有機基が2つ以上のベンゼン環を含む場合、各ベンゼン環は、単結合により連結されていてもよいし、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)等の連結基、これら連結基を少なくとも2つ組み合わせた複合連結基などにより結合されていてもよい。また、2つのベンゼン環が単結合及び連結基の少なくとも一方により2箇所で結合されて、2つのベンゼン環の間に連結基を含む5員環又は6員環が形成されていてもよい。
In general formula (1), the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 5 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms. .
The tetravalent organic group represented by X may include an aromatic ring. Examples of aromatic rings include aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), aromatic heterocyclic groups (for example, the number of atoms constituting the heterocycle is 5 to 20), etc. It will be done. The tetravalent organic group represented by X is preferably an aromatic hydrocarbon group. Examples of the aromatic hydrocarbon group include a benzene ring, a naphthalene ring, and a phenanthrene ring.
When the tetravalent organic group represented by X contains an aromatic ring, each aromatic ring may have a substituent or may be unsubstituted. Examples of substituents on the aromatic ring include alkyl groups, fluorine atoms, halogenated alkyl groups, hydroxyl groups, and amino groups.
When the tetravalent organic group represented by X contains a benzene ring, the tetravalent organic group represented by X preferably contains one to four benzene rings, and preferably contains one to three benzene rings. More preferably, it contains one or two benzene rings.
When the tetravalent organic group represented by , ether bond (-O-), sulfide bond (-S-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group. ), siloxane bond (-O-(Si(R B ) 2 -O-) n ; two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more ), or a composite linking group combining at least two of these linking groups. Furthermore, two benzene rings may be bonded at two locations by at least one of a single bond and a linking group, to form a five-membered ring or a six-membered ring containing a linking group between the two benzene rings.
 一般式(1)において、-COOR基と-CONH-基とは互いにオルト位置にあることが好ましく、-COOR基と-CO-基とは互いにオルト位置にあることが好ましい。 In general formula (1), -COOR 6 groups and -CONH- groups are preferably located at ortho positions, and -COOR 7 groups and -CO- groups are preferably located at ortho positions.
 Xで表される4価の有機基の具体例としては、下記式(A)~式(F)で表される基を挙げられる。中でも、柔軟性に優れ、接合界面での空隙の発生がより抑制された絶縁膜が得られる観点から、下記式(E)で表される基が好ましく、下記式(E)で表され、Cは、エーテル結合を含む基であることがより好ましく、エーテル結合であることがさらに好ましい。下記式(F)は、下記式(E)中のCが単結合である構造である。
 なお、本開示は下記具体例に限定されるものではない。
Specific examples of the tetravalent organic group represented by X include groups represented by the following formulas (A) to (F). Among these, a group represented by the following formula (E) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing an ether bond, and even more preferably an ether bond. The following formula (F) has a structure in which C in the following formula (E) is a single bond.
Note that the present disclosure is not limited to the specific examples below.
 式(D)において、A及びBは、それぞれ独立に、単結合又はベンゼン環と共役しない2価の基である。ただし、A及びBの両方が単結合となることはない。ベンゼン環と共役しない2価の基としては、メチレン基、ハロゲン化メチレン基、ハロゲン化メチルメチレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)等が挙げられる。中でも、A及びBは、それぞれ独立に、メチレン基、ビス(トリフルオロメチル)メチレン基、ジフルオロメチレン基、エーテル結合、スルフィド結合等が好ましく、エーテル結合がより好ましい。 In formula (D), A and B are each independently a single bond or a divalent group that is not conjugated with a benzene ring. However, both A and B cannot be a single bond. Divalent groups that are not conjugated with the benzene ring include methylene group, halogenated methylene group, halogenated methylmethylene group, carbonyl group, sulfonyl group, ether bond (-O-), sulfide bond (-S-), and silylene bond. (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), and the like. Among these, A and B are each independently preferably a methylene group, a bis(trifluoromethyl)methylene group, a difluoromethylene group, an ether bond, a sulfide bond, etc., and an ether bond is more preferable.
 式(E)において、Cは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。Cは、エーテル結合を含むことが好ましく、エーテル結合であることがより好ましい。
 また、Cは、下記式(C1)で表される構造であってもよい。
In formula (E), C represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a phenylene group, an ester bond (-O -C(=O)-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ; Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups. C preferably contains an ether bond, more preferably an ether bond.
Further, C may have a structure represented by the following formula (C1).
 式(E)におけるCで表されるアルキレン基としては、炭素数が1~10のアルキレン基であることが好ましく、炭素数が1~5のアルキレン基であることがより好ましく、炭素数が1又は2のアルキレン基であることがさらに好ましい。
 式(E)におけるCで表されるアルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖状アルキレン基;メチルメチレン基、メチルエチレン基、エチルメチレン基、ジメチルメチレン基、1,1-ジメチルエチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、エチルエチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,3-ジメチルテトラメチレン基、2,3-ジメチルテトラメチレン基、1,4-ジメチルテトラメチレン基等の分岐鎖状アルキレン基;などが挙げられる。これらの中でも、メチレン基が好ましい。
The alkylene group represented by C in formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and an alkylene group having 1 to 5 carbon atoms. or 2 alkylene group is more preferable.
Specific examples of the alkylene group represented by C in formula (E) include linear alkylene groups such as methylene group, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, and hexamethylene group; methylmethylene group; Methylethylene group, ethylmethylene group, dimethylmethylene group, 1,1-dimethylethylene group, 1-methyltrimethylene group, 2-methyltrimethylene group, ethylethylene group, 1-methyltetramethylene group, 2-methyltetramethylene group group, 1-ethyltrimethylene group, 2-ethyltrimethylene group, 1,1-dimethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2- Branched alkylene groups such as dimethyltetramethylene group, 1,3-dimethyltetramethylene group, 2,3-dimethyltetramethylene group, and 1,4-dimethyltetramethylene group; and the like. Among these, methylene group is preferred.
 式(E)におけるCで表されるハロゲン化アルキレン基としては、炭素数が1~10のハロゲン化アルキレン基であることが好ましく、炭素数が1~5のハロゲン化アルキレン基であることがより好ましく、炭素数が1~3のハロゲン化アルキレン基であることがさらに好ましい。
 式(E)におけるCで表されるハロゲン化アルキレン基の具体例としては、上述の式(E)におけるCで表されるアルキレン基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキレン基が挙げられる。これらの中でも、フルオロメチレン基、ジフルオロメチレン基、ヘキサフルオロジメチルメチレン基等が好ましい。
The halogenated alkylene group represented by C in formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms. Preferably, a halogenated alkylene group having 1 to 3 carbon atoms is more preferable.
As a specific example of the halogenated alkylene group represented by C in formula (E), at least one hydrogen atom contained in the alkylene group represented by C in formula (E) above is a fluorine atom, a chlorine atom, etc. Examples include alkylene groups substituted with halogen atoms. Among these, fluoromethylene group, difluoromethylene group, hexafluorodimethylmethylene group, etc. are preferred.
 上記シリレン結合又はシロキサン結合に含まれるR又はRで表されるアルキル基としては、炭素数が1~5のアルキル基であることが好ましく、炭素数が1~3のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。R又はRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。 The alkyl group represented by R A or R B included in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, and preferably an alkyl group having 1 to 3 carbon atoms. is more preferable, and even more preferably an alkyl group having 1 or 2 carbon atoms. Specific examples of the alkyl group represented by R A or R B include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, etc. Can be mentioned.
 Xで表される4価の有機基の具体例は、下記式(J)~式(O)で表される基であってもよい。 Specific examples of the tetravalent organic group represented by X may be groups represented by the following formulas (J) to (O).
 一般式(1)において、Yで表される2価の有機基は、炭素数が4~25であることが好ましく、6~20であることがより好ましく、12~18であることがさらに好ましい。
 Yで表される2価の有機基の骨格は、Xで表される4価の有機基の骨格と同様であってもよく、Yで表される2価の有機基の好ましい骨格は、Xで表される4価の有機基の好ましい骨格と同様であってもよい。Yで表される2価の有機基の骨格は、Xで表される4価の有機基にて、2つの結合位置が原子(例えば水素原子)又は官能基(例えばアルキル基)に置換された構造であってもよい。
 Yで表される2価の有機基は、2価の脂肪族基であってもよく、2価の芳香族基であってもよい。耐熱性の観点から、Yで表される2価の有機基は、2価の芳香族基であることが好ましい。2価の芳香族基としては、2価の芳香族炭化水素基(例えば、芳香環を構成する炭素数は6~20)、2価の芳香族複素環式基(例えば、複素環を構成する原子数は5~20)等が挙げられ、2価の芳香族炭化水素基が好ましい。
In general formula (1), the divalent organic group represented by Y preferably has 4 to 25 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 12 to 18 carbon atoms. .
The skeleton of the divalent organic group represented by Y may be the same as the skeleton of the tetravalent organic group represented by X, and the preferable skeleton of the divalent organic group represented by Y is It may be the same as the preferred skeleton of the tetravalent organic group represented by. The skeleton of the divalent organic group represented by Y is a tetravalent organic group represented by X, in which two bonding positions are substituted with atoms (e.g. hydrogen atoms) or functional groups (e.g. alkyl groups). It may be a structure.
The divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance, the divalent organic group represented by Y is preferably a divalent aromatic group. Examples of divalent aromatic groups include divalent aromatic hydrocarbon groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), divalent aromatic heterocyclic groups (for example, the number of carbon atoms constituting the aromatic ring is 6 to 20), The number of atoms is 5 to 20), and divalent aromatic hydrocarbon groups are preferred.
 Yで表される2価の芳香族基の具体例としては、下記式(G)~下記式(I)で表される基を挙げることができる。中でも、柔軟性に優れ、接合界面での空隙の発生がより抑制された絶縁膜が得られる観点から、下記式(H)で表される基が好ましく、下記式(H)で表され、Dは、エーテル結合を含む基であることがより好ましく、エーテル結合であることがさらに好ましい。 Specific examples of the divalent aromatic group represented by Y include groups represented by the following formulas (G) to (I). Among these, a group represented by the following formula (H) is preferable from the viewpoint of obtaining an insulating film that has excellent flexibility and further suppresses the generation of voids at the bonding interface. is more preferably a group containing an ether bond, and even more preferably an ether bond.
 式(G)~式(I)において、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基、フェニル基又はハロゲン原子を表し、nは、それぞれ独立に、0~4の整数を表す。
 式(H)において、Dは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。また、Dは、上記式(C1)で表される構造であってもよい。式(H)におけるDの具体例は、式(E)におけるCの具体例と同様である。
 式(H)におけるDとしては、エーテル結合、エーテル結合とフェニレン基とを含む基、エーテル結合とフェニレン基とアルキレン基とを含む基等であることが好ましい。
In formulas (G) to (I), R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom, and n each independently represents an integer of 0 to 4. represent.
In formula (H), D represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a phenylene group, an ester bond (-O -C(=O)-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ; Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups. Further, D may have a structure represented by the above formula (C1). A specific example of D in formula (H) is the same as a specific example of C in formula (E).
D in formula (H) is preferably an ether bond, a group containing an ether bond and a phenylene group, a group containing an ether bond, a phenylene group, and an alkylene group, or the like.
 式(G)~式(I)におけるRで表されるアルキル基としては、炭素数が1~10のアルキル基であることが好ましく、炭素数が1~5のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。
 式(G)~式(I)におけるRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。
The alkyl group represented by R in formulas (G) to (I) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. , more preferably an alkyl group having 1 or 2 carbon atoms.
Specific examples of the alkyl group represented by R in formulas (G) to (I) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, Examples include t-butyl group.
 式(G)~式(I)におけるRで表されるアルコキシ基としては、炭素数が1~10のアルコキシ基であることが好ましく、炭素数が1~5のアルコキシ基であることがより好ましく、炭素数が1又は2のアルコキシ基であることがさらに好ましい。
 式(G)~式(I)におけるRで表されるアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基等が挙げられる。
The alkoxy group represented by R in formulas (G) to (I) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms. , more preferably an alkoxy group having 1 or 2 carbon atoms.
Specific examples of the alkoxy group represented by R in formulas (G) to (I) include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and s-butoxy group. , t-butoxy group and the like.
 式(G)~式(I)におけるRで表されるハロゲン化アルキル基としては、炭素数が1~5のハロゲン化アルキル基であることが好ましく、炭素数が1~3のハロゲン化アルキル基であることがより好ましく、炭素数が1又は2のハロゲン化アルキル基であることがさらに好ましい。
 式(G)~式(I)におけるRで表されるハロゲン化アルキル基の具体例としては、式(G)~式(I)におけるRで表されるアルキル基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキル基が挙げられる。これらの中でも、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が好ましい。
The halogenated alkyl group represented by R in formulas (G) to (I) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, and a halogenated alkyl group having 1 to 3 carbon atoms. More preferably, it is a halogenated alkyl group having 1 or 2 carbon atoms.
Specific examples of halogenated alkyl groups represented by R in formulas (G) to (I) include at least one hydrogen atom contained in the alkyl groups represented by R in formulas (G) to (I). Examples include alkyl groups in which is substituted with a halogen atom such as a fluorine atom or a chlorine atom. Among these, fluoromethyl group, difluoromethyl group, trifluoromethyl group, etc. are preferred.
 式(G)~式(I)におけるnは、それぞれ独立に、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。 In formulas (G) to (I), n is each independently preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
 Yで表される2価の脂肪族基の具体例としては、直鎖状又は分岐鎖状のアルキレン基、シクロアルキレン基、ポリアルキレンオキサイド構造を有する2価の基、ポリシロキサン構造を有する2価の基等が挙げられる。 Specific examples of the divalent aliphatic group represented by Y include a linear or branched alkylene group, a cycloalkylene group, a divalent group having a polyalkylene oxide structure, and a divalent group having a polysiloxane structure. Examples include the following groups.
 Yで表される直鎖状又は分岐鎖状のアルキレン基としては、炭素数が1~20のアルキレン基であることが好ましく、炭素数が1~15のアルキレン基であることがより好ましく、炭素数が1~10のアルキレン基であることがさらに好ましい。
 Yで表されるアルキレン基の具体例としては、テトラメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、2-メチルペンタメチレン基、2-メチルヘキサメチレン基、2-メチルヘプタメチレン基、2-メチルオクタメチレン基、2-メチルノナメチレン基、2-メチルデカメチレン基等が挙げられる。
The linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms. More preferably, the number is 1 to 10 alkylene groups.
Specific examples of the alkylene group represented by Y include tetramethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, 2-methylpentamethylene group. , 2-methylhexamethylene group, 2-methylheptamethylene group, 2-methyloctamethylene group, 2-methylnonamethylene group, 2-methyldecamethylene group, and the like.
 Yで表されるシクロアルキレン基としては、炭素数が3~10のシクロアルキレン基であることが好ましく、炭素数が3~6のシクロアルキレン基であることがより好ましい。
 Yで表されるシクロアルキレン基の具体例としては、シクロプロピレン基、シクロヘキシレン基等が挙げられる。
The cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, more preferably a cycloalkylene group having 3 to 6 carbon atoms.
Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group and a cyclohexylene group.
 Yで表されるポリアルキレンオキサイド構造を有する2価の基に含まれる単位構造としては、炭素数1~10のアルキレンオキサイド構造が好ましく、炭素数1~8のアルキレンオキサイド構造がより好ましく、炭素数1~4のアルキレンオキサイド構造がさらに好ましい。なかでも、ポリアルキレンオキサイド構造としてはポリエチレンオキサイド構造又はポリプロピレンオキサイド構造が好ましい。アルキレンオキサイド構造中のアルキレン基は直鎖状であっても分岐状であってもよい。ポリアルキレンオキサイド構造中の単位構造は1種類でもよく、2種類以上であってもよい。 The unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and An alkylene oxide structure of 1 to 4 is more preferred. Among these, as the polyalkylene oxide structure, a polyethylene oxide structure or a polypropylene oxide structure is preferable. The alkylene group in the alkylene oxide structure may be linear or branched. The number of unit structures in the polyalkylene oxide structure may be one, or two or more.
 Yで表されるポリシロキサン構造を有する2価の基としては、ポリシロキサン構造中のケイ素原子が水素原子、炭素数1~20のアルキル基又は炭素数6~18のアリール基と結合しているポリシロキサン構造を有する2価の基が挙げられる。
 ポリシロキサン構造中のケイ素原子と結合する炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基が好ましい。
 ポリシロキサン構造中のケイ素原子と結合する炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基の具体例としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。炭素数6~18のアリール基の具体例としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 ポリシロキサン構造中の炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種類でもよく、2種類以上であってもよい。
 Yで表されるポリシロキサン構造を有する2価の基を構成するケイ素原子は、メチレン基、エチレン基等のアルキレン基、フェニレン基等のアリーレン基などを介して一般式(1)中のNH基と結合していてもよい。
As a divalent group having a polysiloxane structure represented by Y, a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms. Examples include divalent groups having a polysiloxane structure.
Specific examples of the alkyl group having 1 to 20 carbon atoms bonded to the silicon atom in the polysiloxane structure include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n- Examples include octyl group, 2-ethylhexyl group, n-dodecyl group, and the like. Among these, methyl group is preferred.
The aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent. Specific examples of the substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group. Specific examples of the aryl group having 6 to 18 carbon atoms include phenyl group, naphthyl group, and benzyl group. Among these, phenyl group is preferred.
The number of alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 18 carbon atoms in the polysiloxane structure may be one type or two or more types.
The silicon atom constituting the divalent group having a polysiloxane structure represented by Y is an NH group in general formula (1) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group. May be combined with
 式(G)で表される基は、下記式(G’)で表される基であることが好ましく、式(H)で表される基は、下記式(H’)又は式(H”)で表される基であることが好ましく、式(I)で表される基は、下記式(I’)で表される基であることが好ましい。 The group represented by the formula (G) is preferably a group represented by the following formula (G'), and the group represented by the formula (H) is preferably a group represented by the following formula (H') or the formula (H" ), and the group represented by formula (I) is preferably a group represented by formula (I') below.
 式(I’)中、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基、フェニル基又はハロゲン原子を表す。Rは、好ましくはアルキル基であり、より好ましくはメチル基である。 In formula (I'), R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom. R is preferably an alkyl group, more preferably a methyl group.
 一般式(1)における、Xで表される4価の有機基とYで表される2価の有機基との組み合わせは特に限定されない。Xで表される4価の有機基とYで表される2価の有機基との組み合わせとしては、Xが式(E)で表される基であり、Yが式(G)で表される基の組み合わせ;Xが式(E)で表される基であり、Yが式(H)で表される基の組み合わせ;Xが式(E)で表される基であり、Yが式(I)で表される基の組み合わせ等が挙げられる。 The combination of the tetravalent organic group represented by X and the divalent organic group represented by Y in general formula (1) is not particularly limited. As a combination of a tetravalent organic group represented by X and a divalent organic group represented by Y, X is a group represented by formula (E), and Y is a group represented by formula (G). A combination of groups in which X is a group represented by formula (E) and Y is a group represented by formula (H); X is a group represented by formula (E), and Y is a group represented by formula Examples include combinations of groups represented by (I).
 R及びRは、それぞれ独立に、水素原子又は1価の有機基を表す。1価の有機基としては、炭素数1~4の脂肪族炭化水素基又は不飽和二重結合を有する有機基であることが好ましく、下記一般式(2)で表される基、エチル基、イソブチル基又はt-ブチル基のいずれかであることがより好ましく、炭素数1若しくは2の脂肪族炭化水素基又は下記一般式(2)で表される基を含むことがさらに好ましく、下記一般式(2)で表される基を含むことが特に好ましい。特に1価の有機基が不飽和二重結合を有する有機基、好ましくは下記一般式(2)で表される基を含むことでi線の透過率が高く、400℃以下の低温硬化時にも良好な絶縁膜を形成できる傾向にある。
 炭素数1~4の脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等が挙げられ、中でも、エチル基、イソブチル基及びt-ブチル基が好ましい。
R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group. The monovalent organic group is preferably an aliphatic hydrocarbon group having 1 to 4 carbon atoms or an organic group having an unsaturated double bond, such as a group represented by the following general formula (2), an ethyl group, It is more preferable that it is either an isobutyl group or a t-butyl group, and it is even more preferable that it contains an aliphatic hydrocarbon group having 1 or 2 carbon atoms or a group represented by the following general formula (2). It is particularly preferable to include a group represented by (2). In particular, when the monovalent organic group contains an organic group having an unsaturated double bond, preferably a group represented by the following general formula (2), the i-line transmittance is high, and even when curing at a low temperature of 400°C or less. It tends to form a good insulating film.
Specific examples of aliphatic hydrocarbon groups having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, etc. Among them, ethyl group, Isobutyl and t-butyl groups are preferred.
 一般式(2)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、Rは2価の連結基を表す。 In general formula (2), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
 一般式(2)におけるR~R10で表される脂肪族炭化水素基の炭素数は1~3であり、1又は2であることが好ましい。R~R10で表される脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、メチル基が好ましい。 The aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (2) has 1 to 3 carbon atoms, preferably 1 or 2 carbon atoms. Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a methyl group is preferred.
 一般式(2)におけるR~R10の組み合わせとしては、R及びRが水素原子であり、R10が水素原子又はメチル基の組み合わせが好ましい。 The combination of R 8 to R 10 in general formula (2) is preferably a combination in which R 8 and R 9 are hydrogen atoms, and R 10 is a hydrogen atom or a methyl group.
 一般式(2)におけるRは、2価の連結基であり、好ましくは、炭素数1~10の炭化水素基であることが好ましい。炭素数1~10の炭化水素基としては、例えば、直鎖状又は分岐鎖状のアルキレン基が挙げられる。
 Rにおける炭素数は、1つ~10つが好ましく、2つ~5つがより好ましく、2つ又は3つがさらに好ましい。
R x in general formula (2) is a divalent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms. Examples of the hydrocarbon group having 1 to 10 carbon atoms include linear or branched alkylene groups.
The number of carbon atoms in R x is preferably 1 to 10, more preferably 2 to 5, and even more preferably 2 or 3.
 一般式(1)においては、R及びRの少なくとも一方が、前記一般式(2)で表される基であることが好ましく、R及びRの両方が前記一般式(2)で表される基であることがより好ましい。 In general formula (1), it is preferable that at least one of R 6 and R 7 is a group represented by the above general formula (2), and both R 6 and R 7 are a group represented by the above general formula (2). It is more preferable to be a group represented by:
 (A)成分が前述の一般式(1)で表される構造単位を有する化合物を含む場合、当該化合物に含有される全構造単位のR及びRの合計に対する一般式(2)で表される基であるR及びRの割合は、60モル%以上であることが好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。上限は特に限定されず、100モル%でもよい。
 なお、前述の割合は、0モル%以上60モル%未満であってもよい。
When the component (A) contains a compound having a structural unit represented by the above-mentioned general formula (1), it is expressed by the general formula (2) based on the sum of R 6 and R 7 of all structural units contained in the compound. The proportion of R 6 and R 7 , which are the groups to be used, is preferably 60 mol% or more, more preferably 70 mol% or more, and even more preferably 80 mol% or more. The upper limit is not particularly limited, and may be 100 mol%.
In addition, the above-mentioned ratio may be 0 mol% or more and less than 60 mol%.
 一般式(2)で表される基は、下記一般式(2’)で表される基であることが好ましい。 The group represented by general formula (2) is preferably a group represented by general formula (2') below.
 一般式(2’)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。 In general formula (2'), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.
 一般式(2’)におけるqは1~10の整数であり、2~5の整数であることが好ましく、2又は3であることがより好ましい。 In general formula (2'), q is an integer of 1 to 10, preferably an integer of 2 to 5, and more preferably 2 or 3.
 一般式(1)で表される構造単位を有する化合物に含まれる一般式(1)で表される構造単位の含有率は、全構造単位に対して、60モル%以上であることが好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。前述の含有率の上限は特に限定されず、100モル%でもよい。 The content of the structural unit represented by the general formula (1) contained in the compound having the structural unit represented by the general formula (1) is preferably 60 mol% or more based on the total structural units, More preferably 70 mol% or more, and even more preferably 80 mol% or more. The upper limit of the above-mentioned content is not particularly limited, and may be 100 mol%.
 (A)成分は、テトラカルボン酸二無水物と、ジアミン化合物とを用いて合成されたものであってもよい。この場合、一般式(1)において、Xは、テトラカルボン酸二無水物由来の残基に該当し、Yは、ジアミン化合物由来の残基に該当する。なお、(A)成分は、テトラカルボン酸二無水物に替えて、テトラカルボン酸を用いて合成されたものであってもよい。 Component (A) may be synthesized using a tetracarboxylic dianhydride and a diamine compound. In this case, in general formula (1), X corresponds to a residue derived from a tetracarboxylic dianhydride, and Y corresponds to a residue derived from a diamine compound. Note that component (A) may be synthesized using tetracarboxylic acid instead of tetracarboxylic dianhydride.
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、p-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、4,4’-オキシジフタル酸二無水物、4,4’-スルホニルジフタル酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物等が挙げられる。
 テトラカルボン酸二無水物は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, and 3,3',4,4'-biphenyltetracarboxylic dianhydride. Anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3',4,4'- Diphenylsulfonetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalene Tetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, m-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, p-terphenyl- 3,3',4,4'-tetracarboxylic dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis(2,3-dicarboxyphenyl)propane dianhydride , 1,1,1,3,3,3-hexafluoro-2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis{4'-(2,3-dicarboxyphenoxy)phenyl}propane dianhydride, 2, 2-bis{4'-(3,4-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis{4'-(2, 3-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis{4'-(3,4-dicarboxyphenoxy)phenyl}propane dianhydride Examples thereof include anhydride, 4,4'-oxydiphthalic dianhydride, 4,4'-sulfonyldiphthalic dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, and the like.
One type of tetracarboxylic dianhydride may be used alone or two or more types may be used in combination.
 ジアミン化合物の具体例としては、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、1,5-ジアミノナフタレン、ベンジジン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,4’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、2,4’-ジアミノジフェニルスルフィド、2,2’-ジアミノジフェニルスルフィド、o-トリジン、o-トリジンスルホン、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2,6-ジイソプロピルアニリン)、2,4-ジアミノメシチレン、1,5-ジアミノナフタレン、4,4’-ベンゾフェノンジアミン、ビス-{4-(4’-アミノフェノキシ)フェニル}スルホン、2,2-ビス{4-(4’-アミノフェノキシ)フェニル}プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス{4-(3’-アミノフェノキシ)フェニル}スルホン、2,2-ビス(4-アミノフェニル)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,6-ジアミノヘキサン、2-メチル-1,7-ジアミノヘプタン、2-メチル-1,8-ジアミノオクタン、2-メチル-1,9-ジアミノノナン、2-メチル-1,10-ジアミノデカン、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、ジアミノポリシロキサン等が挙げられる。ジアミン化合物としては、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル及び1,3-ビス(3-アミノフェノキシ)ベンゼンが好ましい。
 ジアミン化合物は、1種を単独で用いても2種以上を併用してもよい。
Specific examples of diamine compounds include 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, p-phenylenediamine, m- Phenylene diamine, p-xylylene diamine, m-xylylene diamine, 1,5-diaminonaphthalene, benzidine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2, 4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,4'-diaminodiphenylsulfone, 2,2'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfide, 2,4'-diaminodiphenylsulfide, 2,2'- Diaminodiphenylsulfide, o-tolidine, o-tolidine sulfone, 4,4'-methylenebis(2,6-diethylaniline), 4,4'-methylenebis(2,6-diisopropylaniline), 2,4-diaminomesitylene, 1,5-diaminonaphthalene, 4,4'-benzophenone diamine, bis-{4-(4'-aminophenoxy)phenyl}sulfone, 2,2-bis{4-(4'-aminophenoxy)phenyl}propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis{4-(3'-aminophenoxy)phenyl}sulfone , 2,2-bis(4-aminophenyl)propane, 9,9-bis(4-aminophenyl)fluorene, 1,3-bis(3-aminophenoxy)benzene, 1,4-diaminobutane, 1,6 - Diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 2-methyl-1 , 5-diaminopentane, 2-methyl-1,6-diaminohexane, 2-methyl-1,7-diaminoheptane, 2-methyl-1,8-diaminooctane, 2-methyl-1,9-diaminononane, 2 -Methyl-1,10-diaminodecane, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, diaminopolysiloxane and the like. As the diamine compound, m-phenylenediamine, 4,4'-diaminodiphenyl ether and 1,3-bis(3-aminophenoxy)benzene are preferred.
The diamine compounds may be used alone or in combination of two or more.
 一般式(1)で表される構造単位を有し、且つ一般式(1)中のR及びRの少なくとも一方は1価の有機基である化合物は、例えば、以下の(a)又は(b)の方法にて得ることができる。
(a) テトラカルボン酸二無水物(好ましくは、下記一般式(8)で表されるテトラカルボン酸二無水物)とR-OHで表される化合物とを、有機溶剤中にて反応させジエステル誘導体とした後、ジエステル誘導体とHN-Y-NHで表されるジアミン化合物とを縮合反応させる。
(b) テトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを有機溶剤中にて反応させポリアミド酸溶液を得て、R-OHで表される化合物をポリアミド酸溶液に加え、有機溶剤中で反応させエステル基を導入する。
 ここで、HN-Y-NHで表されるジアミン化合物におけるYは、一般式(1)におけるYと同様であり、具体例及び好ましい例も同様である。また、R-OHで表される化合物におけるRは、1価の有機基を表し、具体例及び好ましい例は、一般式(1)におけるR及びRの場合と同様である。
 一般式(8)で表されるテトラカルボン酸二無水物、HN-Y-NHで表されるジアミン化合物及びR-OHで表される化合物は、各々、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 前述の有機溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、ジメトキシイミダゾリジノン、3-メトキシ-N,N-ジメチルプロピオンアミド等が挙げられ、中でも、3-メトキシ-N,N-ジメチルプロピオンアミドが好ましい。
 R-OHで表される化合物とともに脱水縮合剤をポリアミド酸溶液に作用させてポリイミド前駆体を合成してもよい。脱水縮合剤は、トリフルオロ酢酸無水物、N,N’-ジシクロヘキシルカルボジイミド(DCC)及び1,3-ジイソプロピルカルボジイミド(DIC)からなる群より選択される少なくとも1種を含むことが好ましい。
A compound having a structural unit represented by general formula (1) and in which at least one of R 6 and R 7 in general formula (1) is a monovalent organic group is, for example, the following (a) or It can be obtained by the method (b).
(a) A diester is produced by reacting a tetracarboxylic dianhydride (preferably a tetracarboxylic dianhydride represented by the following general formula (8)) and a compound represented by R-OH in an organic solvent. After making the derivative, the diester derivative and a diamine compound represented by H 2 N--Y--NH 2 are subjected to a condensation reaction.
(b) Tetracarboxylic dianhydride and a diamine compound represented by H 2 N-Y-NH 2 are reacted in an organic solvent to obtain a polyamic acid solution, and the compound represented by R-OH is mixed into polyamide. In addition to an acid solution, the reaction is carried out in an organic solvent to introduce an ester group.
Here, Y in the diamine compound represented by H 2 N-Y-NH 2 is the same as Y in general formula (1), and specific examples and preferred examples are also the same. Further, R in the compound represented by R-OH represents a monovalent organic group, and specific examples and preferred examples are the same as those for R 6 and R 7 in general formula (1).
The tetracarboxylic dianhydride represented by the general formula (8), the diamine compound represented by H 2 N-Y-NH 2 and the compound represented by R-OH may each be used alone. Often, two or more types may be combined.
Examples of the organic solvents mentioned above include N-methyl-2-pyrrolidone, γ-butyrolactone, dimethoxyimidazolidinone, 3-methoxy-N,N-dimethylpropionamide, and among others, 3-methoxy-N,N- Dimethylpropionamide is preferred.
A polyimide precursor may be synthesized by allowing a dehydration condensation agent to act on a polyamic acid solution together with a compound represented by R-OH. The dehydration condensation agent preferably contains at least one selected from the group consisting of trifluoroacetic anhydride, N,N'-dicyclohexylcarbodiimide (DCC), and 1,3-diisopropylcarbodiimide (DIC).
 (A)成分に含まれる前述の化合物は、下記一般式(8)で表されるテトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、塩化チオニル等の塩素化剤を作用させて酸塩化物に変換し、次いで、HN-Y-NHで表されるジアミン化合物と酸塩化物とを反応させることで得ることができる。
 (A)成分に含まれる前述の化合物は、下記一般式(8)で表されるテトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、カルボジイミド化合物の存在下でHN-Y-NHで表されるジアミン化合物とジエステル誘導体とを反応させることで得ることができる。
 (A)成分に含まれる前述の化合物は、下記一般式(8)で表されるテトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを反応させてポリアミド酸とした後、トリフルオロ酢酸無水物等の脱水縮合剤の存在下でポリアミド酸をイソイミド化し、次いでR-OHで表される化合物を作用させて得ることができる。あるいは、テトラカルボン酸二無水物の一部に予めR-OHで表される化合物を作用させて、部分的にエステル化されたテトラカルボン酸二無水物とHN-Y-NHで表されるジアミン化合物とを反応させてもよい。
The above-mentioned compound contained in component (A) is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then forming a diester derivative such as thionyl chloride. It can be obtained by reacting a diamine compound represented by H 2 N-Y-NH 2 with the acid chloride.
The above-mentioned compound contained in component (A) is obtained by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a compound represented by R-OH to form a diester derivative, and then converting it into a carbodiimide compound. It can be obtained by reacting a diamine compound represented by H 2 N—Y—NH 2 with a diester derivative in the presence of H 2 N—Y—NH 2 .
The above-mentioned compound contained in component (A) is produced by reacting a tetracarboxylic dianhydride represented by the following general formula (8) with a diamine compound represented by H 2 N-Y-NH 2 to form a polyamide acid. After that, the polyamic acid is isoimidized in the presence of a dehydration condensation agent such as trifluoroacetic anhydride, and then a compound represented by R-OH is allowed to act thereon. Alternatively, a compound represented by R-OH may be reacted on a portion of the tetracarboxylic dianhydride in advance to form a partially esterified tetracarboxylic dianhydride and a compound represented by H 2 N-Y-NH 2 . may be reacted with a diamine compound.
 一般式(8)において、Xは、一般式(1)におけるXと同様であり、具体例及び好ましい例も同様である。 In general formula (8), X is the same as X in general formula (1), and specific examples and preferred examples are also the same.
 (A)成分に含まれる前述の化合物の合成に用いられるR-OHで表される化合物としては、一般式(2)で表される基のRにヒドロキシ基が結合した化合物、一般式(2’)で表される基の末端メチレン基にヒドロキシ基が結合した化合物等であってもよい。R-OHで表される化合物の具体例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシプロピル、アクリル酸2-ヒドロキシブチル、メタクリル酸2-ヒドロキシブチル、アクリル酸4-ヒドロキシブチル、メタクリル酸4-ヒドロキシブチル等が挙げられ、中でも、メタクリル酸2-ヒドロキシエチル及びアクリル酸2-ヒドロキシエチルが好ましい。 Compounds represented by R-OH used in the synthesis of the above-mentioned compounds contained in component (A) include compounds in which a hydroxy group is bonded to R x of a group represented by general formula (2), and compounds represented by general formula ( It may also be a compound in which a hydroxy group is bonded to the terminal methylene group of the group represented by 2'). Specific examples of compounds represented by R-OH include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and acrylic. Examples include 2-hydroxypropyl acid, 2-hydroxypropyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, and 4-hydroxybutyl methacrylate. -hydroxyethyl and 2-hydroxyethyl acrylate are preferred.
 (A)成分の分子量には特に制限はなく、例えば、重量平均分子量で10,000~200,000であることが好ましく、10,000~100,000であることがより好ましい。
 重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
There is no particular restriction on the molecular weight of component (A), and for example, the weight average molecular weight is preferably 10,000 to 200,000, more preferably 10,000 to 100,000.
The weight average molecular weight can be measured, for example, by gel permeation chromatography, and can be determined by conversion using a standard polystyrene calibration curve.
 本開示の絶縁膜形成材料はジカルボン酸をさらに含んでいてもよく、絶縁膜形成材料に含まれる(A)ポリイミド前駆体は、(A)ポリイミド前駆体中のアミノ基の一部がジカルボン酸におけるカルボキシ基と反応してなる構造を有してもよい。例えば、ポリイミド前駆体を合成する際に、ジアミン化合物のアミノ基の一部とジカルボン酸のカルボキシ基とを反応させてもよい。
 ジカルボン酸は、(メタ)アクリル基を有するジカルボン酸であってもよく、例えば、以下の式で表されるジカルボン酸であってもよい。このとき、(A)ポリイミド前駆体を合成する際に、ジアミン化合物のアミノ基の一部とジカルボン酸のカルボキシ基とを反応させることで、(A)ポリイミド前駆体にジカルボン酸由来のメタクリル基を導入することができる。
The insulating film forming material of the present disclosure may further contain a dicarboxylic acid, and the (A) polyimide precursor contained in the insulating film forming material is such that some of the amino groups in the (A) polyimide precursor are in the dicarboxylic acid. It may have a structure formed by reacting with a carboxy group. For example, when synthesizing a polyimide precursor, a portion of the amino groups of the diamine compound and the carboxy groups of the dicarboxylic acid may be reacted.
The dicarboxylic acid may be a dicarboxylic acid having a (meth)acrylic group, for example, a dicarboxylic acid represented by the following formula. At this time, when synthesizing the (A) polyimide precursor, by reacting a part of the amino group of the diamine compound with the carboxy group of the dicarboxylic acid, the methacrylic group derived from the dicarboxylic acid is added to the (A) polyimide precursor. can be introduced.
 本開示の絶縁膜形成材料は、(A)成分以外の樹脂成分を含んでいてもよい。(A)成分以外の樹脂成分としては、耐熱性の観点から、ポリイミド樹脂、ノボラック樹脂、アクリル樹脂、ポリエーテルニトリル樹脂、ポリエーテルスルホン樹脂、エポキシ樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリ塩化ビニル樹脂等が挙げられる。中でも、(A)成分以外の樹脂成分は、ポリイミド樹脂を含むことが好ましい。
 (A)成分以外の樹脂成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
The insulating film forming material of the present disclosure may contain a resin component other than the component (A). From the viewpoint of heat resistance, resin components other than component (A) include polyimide resins, novolac resins, acrylic resins, polyethernitrile resins, polyethersulfone resins, epoxy resins, polyethylene terephthalate resins, polyethylene naphthalate resins, and polychlorinated resins. Examples include vinyl resin. Among these, it is preferable that the resin components other than the component (A) include a polyimide resin.
Resin components other than component (A) may be used alone or in combination of two or more.
 ポリイミド樹脂としては、イミド結合を含む構造単位を複数備える高分子化合物であれば特に限定されず、例えば、下記一般式(X)で表される構造単位を有する化合物を含むことが好ましい。これにより、高い信頼性を示す絶縁膜を備える半導体装置が得られる傾向がある。 The polyimide resin is not particularly limited as long as it is a polymeric compound having a plurality of structural units containing imide bonds, and preferably includes, for example, a compound having a structural unit represented by the following general formula (X). Thereby, a semiconductor device including an insulating film exhibiting high reliability tends to be obtained.
 一般式(X)中、Xは4価の有機基を表し、Yは2価の有機基を表す。一般式(X)における置換基X及びYの好ましい例は、前述の一般式(1)における置換基X及びYの好ましい例と同様である。 In the general formula (X), X represents a tetravalent organic group, and Y represents a divalent organic group. Preferred examples of substituents X and Y in general formula (X) are the same as preferred examples of substituents X and Y in general formula (1) described above.
 (A)成分であるポリイミド前駆体と、ポリイミド樹脂と、を組み合わせることで、イミド環形成時の脱水環化による揮発物の生成を抑制することが可能である。これにより、ボイドの発生を抑制することができる傾向にある。ここでいうポリイミド樹脂は樹脂骨格の全部、又は一部にイミド骨格を持つ樹脂をいう。ポリイミド樹脂はポリイミド前駆体を用いた絶縁膜形成材料中の溶媒に溶解可能であることが好ましい。 By combining the polyimide precursor that is the component (A) and the polyimide resin, it is possible to suppress the production of volatiles due to dehydration cyclization during imide ring formation. This tends to suppress the generation of voids. The polyimide resin herein refers to a resin having an imide skeleton in all or part of the resin skeleton. It is preferable that the polyimide resin is soluble in a solvent in an insulating film forming material using a polyimide precursor.
 本開示の絶縁膜形成材料では、樹脂成分全量に対する(A)成分の含有率は、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、90質量%~100質量%であることがさらに好ましい。 In the insulating film forming material of the present disclosure, the content of component (A) relative to the total amount of resin components is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and 90% by mass. More preferably, the amount is from % by mass to 100% by mass.
 本開示の絶縁膜形成材料が(A)成分以外の樹脂成分(好ましくはポリイミド樹脂)を含む場合、(A)成分及び(A)成分以外の樹脂成分の合計に対する(A)成分以外の樹脂成分(好ましくはポリイミド樹脂)の割合は、15質量%~50質量%であってもよく、10質量%~20質量%であってもよい。 When the insulating film forming material of the present disclosure contains a resin component other than the component (A) (preferably a polyimide resin), the resin component other than the component (A) relative to the total of the component (A) and the resin component other than the component (A). The proportion of (preferably polyimide resin) may be 15% by mass to 50% by mass, or 10% by mass to 20% by mass.
((B)重合性モノマー)
 本開示の絶縁膜形成材料は、(B)重合性モノマー(以下、「(B)成分」とも称する。)を含む。(B)成分は、重合性の不飽和二重結合を含む基を少なくとも1つ有することが好ましく、光重合開始剤との併用によって好適に重合可能である観点から、(メタ)アクリル基を少なくとも1つ有することがより好ましい。架橋密度の向上及び光感度の向上の観点から、重合性の不飽和二重結合を含む基を、2つ~6つ有することが好ましく、2つ~4つ有することがより好ましい。
 重合性モノマーは、1種単独で用いてもよく、2種以上を組み合わせてもよい。
((B) Polymerizable monomer)
The insulating film forming material of the present disclosure includes (B) a polymerizable monomer (hereinafter also referred to as "component (B)"). Component (B) preferably has at least one group containing a polymerizable unsaturated double bond, and from the viewpoint of being suitably polymerizable in combination with a photopolymerization initiator, component (B) contains at least one (meth)acrylic group. It is more preferable to have one. From the viewpoint of improving crosslinking density and photosensitivity, it is preferable to have 2 to 6 groups, and more preferably 2 to 4 groups containing polymerizable unsaturated double bonds.
The polymerizable monomers may be used alone or in combination of two or more.
 (メタ)アクリル基を有する重合性モノマーとしては、特に限定されず、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、(メタ)アクリロイルオキシエチルイソシアヌレート、2-ヒドロキシエチル(メタ)アクリレート、1,3-ビス((メタ)アクリロイルオキシ)-2-ヒドロキシプロパン、エチレンオキシド(EO)変性ビスフェノールAジ(メタ)アクリレート、ベンジル(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートが挙げられる。 The polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples thereof include diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, 1,4-butane Diol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate ) acrylate, dipentaerythritol hexa(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated isocyanuric acid tri(meth)acrylate, (meth)acryloyloxyethyl isocyanurate, 2-hydroxyethyl(meth)acrylate, Examples include 1,3-bis((meth)acryloyloxy)-2-hydroxypropane, ethylene oxide (EO) modified bisphenol A di(meth)acrylate, benzyl(meth)acrylate and phenoxyethyl(meth)acrylate.
 (B)成分は、アルキレンオキシド鎖及び(メタ)アクリル基を含む化合物(以下、「化合物(1)」とも称する。)、脂環式構造及び(メタ)アクリル基を含む化合物(以下、「化合物(2)」とも称する。)、並びに、芳香環構造及び(メタ)アクリル基を含む化合物(以下、「化合物(3)」とも称する。)からなる群より選択される少なくとも1種を含んでいてもよい。
 なお、化合物(1)は脂環式構造及び芳香環構造の両方を含まなくてもよく、化合物(2)はアルキレンオキシド鎖及び芳香環構造の両方を含まなくてもよい。化合物(3)はアルキレンオキシド鎖を含んでいてもよい。
 (B)成分におけるアルキレンオキシド鎖とは、アルキレン基と当該アルキレン基に結合した酸素原子((メタ)アクリロイルオキシ基に含まれる酸素原子を除く)からなる基を意味する。
Component (B) is a compound containing an alkylene oxide chain and a (meth)acrylic group (hereinafter also referred to as "compound (1)"), a compound containing an alicyclic structure and a (meth)acrylic group (hereinafter referred to as "compound (1)"), (2)), and a compound containing an aromatic ring structure and a (meth)acrylic group (hereinafter also referred to as "compound (3)"). Good too.
Note that compound (1) does not need to contain both an alicyclic structure and an aromatic ring structure, and compound (2) does not need to contain both an alkylene oxide chain and an aromatic ring structure. Compound (3) may contain an alkylene oxide chain.
The alkylene oxide chain in component (B) means a group consisting of an alkylene group and an oxygen atom bonded to the alkylene group (excluding the oxygen atom contained in the (meth)acryloyloxy group).
 (B)成分は、化合物(1)及び化合物(2)を含むことが好ましい。
 絶縁膜形成材料が化合物(1)を含むことで、基板と絶縁膜との熱圧着性が向上する傾向にある。
 絶縁膜形成材料が化合物(2)を含むことで、絶縁膜の絶縁信頼性により優れる傾向にある。
It is preferable that component (B) contains compound (1) and compound (2).
When the insulating film forming material contains the compound (1), the thermocompression bondability between the substrate and the insulating film tends to improve.
When the insulating film forming material contains the compound (2), the insulation reliability of the insulating film tends to be more excellent.
 化合物(1)としては、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート及びテトラエチレングリコールジ(メタ)アクリレートが挙げられる。 Examples of the compound (1) include diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and tetraethylene glycol di(meth)acrylate.
 化合物(2)としては、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート及び1,3-アダマンタンジメタノールジ(メタ)アクリレートが挙げられる。 Examples of the compound (2) include tricyclodecane dimethanol di(meth)acrylate, cyclohexanedimethanol di(meth)acrylate, and 1,3-adamantanedimethanol di(meth)acrylate.
 化合物(3)としては、例えば、EO変性ビスフェノールAジ(メタ)アクリレート、ベンジル(メタ)アクリレート及びフェノキシエチル(メタ)アクリレート及びフェノキシメタクリレートが挙げられる。 Examples of the compound (3) include EO-modified bisphenol A di(meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, and phenoxymethacrylate.
 (B)成分は、(メタ)アクリル基を有する重合性モノマー以外の重合性モノマーを含んでいてもよい。(メタ)アクリル基を有する重合性モノマー以外の重合性モノマーとしては、特に限定されず、例えば、スチレン、ジビニルベンゼン、4-ビニルトルエン、4-ビニルピリジン、N-ビニルピロリドン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド及びN-メチロールアクリルアミドが挙げられる。 Component (B) may contain a polymerizable monomer other than the polymerizable monomer having a (meth)acrylic group. The polymerizable monomer other than the polymerizable monomer having a (meth)acrylic group is not particularly limited, and examples include styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N , N-dimethylacrylamide and N-methylolacrylamide.
 (B)成分は、重合性の不飽和二重結合を含む基を有する化合物に限定されず、不飽和二重結合基以外の重合性基(例えば、オキシラン環)を有する化合物であってもよい。 Component (B) is not limited to a compound having a group containing a polymerizable unsaturated double bond, and may be a compound having a polymerizable group other than an unsaturated double bond group (for example, an oxirane ring). .
 本開示の絶縁膜形成材料において、(B)成分の含有量は(A)成分100質量部に対して、絶縁膜の絶縁信頼性の観点から、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよく、18質量部以下であってもよく、15質量部以下であってもよい。(B)成分の含有量が(A)成分100質量部に対して30質量部以下であることにより、硬化後に未反応の(B)重合性モノマーが発生しにくくなる。これにより、接合対象となる電極等に含まれる金属(例えば、銅)が絶縁膜に拡散しにくくなり、絶縁抵抗の低下が抑制されることで絶縁信頼性に優れると推測される。
 (B)成分の含有量の下限は、(A)成分100質量部に対して、1質量部以上であってもよく、3質量部以上であってもよい。
In the insulating film forming material of the present disclosure, the content of component (B) may be 30 parts by mass or less, and may be 25 parts by mass or less, from the viewpoint of insulation reliability of the insulating film, with respect to 100 parts by mass of component (A). 20 parts by mass or less, 18 parts by mass or less, or 15 parts by mass or less. When the content of component (B) is 30 parts by mass or less per 100 parts by mass of component (A), unreacted polymerizable monomer (B) is less likely to be generated after curing. This makes it difficult for the metal (for example, copper) contained in the electrodes and the like to be bonded to diffuse into the insulating film, and it is presumed that the reduction in insulation resistance is suppressed, resulting in excellent insulation reliability.
The lower limit of the content of component (B) may be 1 part by mass or more, or 3 parts by mass or more, based on 100 parts by mass of component (A).
 本開示の絶縁膜形成材料では、化合物(1)の含有量は20質量部未満であり、本開示の絶縁膜形成材料が化合物(1)を含む場合、化合物(1)の含有量は(A)成分100質量部に対して、0.5質量部~15質量部であってもよく、1質量部~12質量部であってもよく、2質量部~8質量部であってもよい。
 本開示の絶縁膜形成材料が化合物(2)を含む場合、化合物(2)の含有量は(A)成分100質量部に対して、2質量部~20質量部であってもよく、5質量部~15質量部であってもよく、8質量部~12質量部であってもよい。
 本開示の絶縁膜形成材料が化合物(1)及び化合物(2)を含む場合、化合物(1)の含有量及び化合物(2)の含有量の比率(化合物(1):化合物(2))は、質量基準にて、1:20~20:20であってもよく、1:20~16:20であってもよく、2:20~15:20であってもよい。
In the insulating film forming material of the present disclosure, the content of compound (1) is less than 20 parts by mass, and when the insulating film forming material of the present disclosure contains compound (1), the content of compound (1) is (A ) may be 0.5 parts by mass to 15 parts by mass, 1 part by mass to 12 parts by mass, or 2 parts by mass to 8 parts by mass, based on 100 parts by mass of the component.
When the insulating film forming material of the present disclosure contains compound (2), the content of compound (2) may be 2 parts by mass to 20 parts by mass, and 5 parts by mass, based on 100 parts by mass of component (A). The amount may be from 8 parts to 12 parts by weight, or from 8 parts to 12 parts by weight.
When the insulating film forming material of the present disclosure contains compound (1) and compound (2), the ratio of the content of compound (1) and the content of compound (2) (compound (1): compound (2)) is , may be 1:20 to 20:20, may be 1:20 to 16:20, or may be 2:20 to 15:20, based on mass.
((C)溶剤)
 本開示の絶縁膜形成材料は(C)溶剤(以下、「(C)成分」とも称する。)を含んでいてもよい。(C)成分は、例えば、下記式(3)~式(7)で表される化合物からなる群より選択される少なくとも一種を含むことが好ましい。
 (C)成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
((C) Solvent)
The insulating film forming material of the present disclosure may contain a (C) solvent (hereinafter also referred to as "component (C)"). Component (C) preferably contains at least one selected from the group consisting of compounds represented by the following formulas (3) to (7), for example.
Component (C) may be used alone or in combination of two or more.
 式(3)~(7)中、R、R、R及びR10は、それぞれ独立に、炭素数1~4のアルキル基であり、R~R及びRは、それぞれ独立に、水素原子又は炭素数1~4のアルキル基である。sは0~8の整数であり、tは0~4の整数であり、rは0~4の整数であり、uは0~3の整数である。 In formulas (3) to (7), R 1 , R 2 , R 8 and R 10 are each independently an alkyl group having 1 to 4 carbon atoms, and R 3 to R 7 and R 9 are each independently an alkyl group having 1 to 4 carbon atoms. In addition, it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. s is an integer from 0 to 8, t is an integer from 0 to 4, r is an integer from 0 to 4, and u is an integer from 0 to 3.
 式(3)において、sは、好ましくは0である。
 式(4)において、Rの炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。tは好ましくは0、1又は2であり、より好ましくは1である。
 式(5)において、Rの炭素数1~4のアルキル基としては、好ましくはメチル基、エチル基、プロピル基又はブチル基である。R及びRの炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。
 式(6)において、R~Rの炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。rは好ましくは0又は1であり、より好ましくは0である。
 式(7)において、R及びR10の炭素数1~4のアルキル基としては、好ましくはメチル基又はエチル基である。uは好ましくは0又は1であり、より好ましくは0である。
In formula (3), s is preferably 0.
In formula (4), the alkyl group having 1 to 4 carbon atoms in R 2 is preferably a methyl group or an ethyl group. t is preferably 0, 1 or 2, more preferably 1.
In formula (5), the alkyl group having 1 to 4 carbon atoms for R 3 is preferably a methyl group, ethyl group, propyl group or butyl group. The alkyl group having 1 to 4 carbon atoms for R 4 and R 5 is preferably a methyl group or an ethyl group.
In formula (6), the alkyl group having 1 to 4 carbon atoms in R 6 to R 8 is preferably a methyl group or an ethyl group. r is preferably 0 or 1, more preferably 0.
In formula (7), the alkyl group having 1 to 4 carbon atoms in R 9 and R 10 is preferably a methyl group or an ethyl group. u is preferably 0 or 1, more preferably 0.
 (C)成分は、例えば、式(4)、(5)、(6)及び(7)で表される化合物の内の少なくとも一種であってもよく、式(5)で表される化合物又は式(7)で表される化合物であってもよく、絶縁膜形成材料の生殖毒性及び環境負荷を低減させる観点から、式(5)で表される化合物であってもよい。 Component (C) may be, for example, at least one of the compounds represented by formulas (4), (5), (6), and (7), and may be a compound represented by formula (5) or The compound represented by formula (7) may be used, or from the viewpoint of reducing the reproductive toxicity and environmental load of the insulating film forming material, the compound represented by formula (5) may be used.
 (C)成分の具体例としては、以下の化合物が挙げられる。 Specific examples of component (C) include the following compounds.
 本開示の絶縁膜形成材料に含まれ得る(C)成分としては、前述の化合物に限定されず、他の溶剤であってもよい。(C)成分は、エステル類の溶剤、エーテル類の溶剤、ケトン類の溶剤、炭化水素類の溶剤、芳香族炭化水素類の溶剤、スルホキシド類の溶剤等であってもよい。 The component (C) that may be included in the insulating film forming material of the present disclosure is not limited to the above-mentioned compounds, and may be other solvents. Component (C) may be an ester solvent, an ether solvent, a ketone solvent, a hydrocarbon solvent, an aromatic hydrocarbon solvent, a sulfoxide solvent, or the like.
 エステル類の溶剤としては、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルコキシ酢酸メチル、アルコキシ酢酸エチル、アルコキシ酢酸ブチル等のアルコキシ酢酸アルキル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル及びエトキシ酢酸エチル)、3-アルコキシプロピオン酸メチル、3-アルコキシプロピオン酸エチル等の3-アルコキシプロピオン酸アルキルエステル(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル及び3-エトキシプロピオン酸エチル)、2-アルコキシプロピオン酸メチル、2-アルコキシプロピオン酸エチル、2-アルコキシプロピオン酸プロピル等の2-アルコキシプロピオン酸アルキルエステル(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル及び2-エトキシプロピオン酸エチル)、2-メトキシ-2-メチルプロピオン酸メチル等の2-アルコキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等の2-アルコキシ-2-メチルプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が挙げられる。 Solvents for esters include ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, γ-butyrolactone. , ε-caprolactone, δ-valerolactone, alkyl alkoxy acetates such as methyl alkoxy acetate, ethyl alkoxy acetate, butyl alkoxy acetate (e.g. methyl methoxy acetate, ethyl methoxy acetate, butyl methoxy acetate, methyl ethoxy acetate and ethyl ethoxy acetate), 3-Alkoxypropionate alkyl esters such as methyl 3-alkoxypropionate, ethyl 3-alkoxypropionate (e.g. methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate and 3-ethoxypropionate) 2-alkoxypropionate alkyl esters (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Propyl 2-methoxypropionate, methyl 2-ethoxypropionate and ethyl 2-ethoxypropionate), methyl 2-alkoxy-2-methylpropionate such as methyl 2-methoxy-2-methylpropionate, 2-ethoxy-2 - Ethyl 2-alkoxy-2-methylpropionate such as ethyl methylpropionate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, etc. can be mentioned.
 エーテル類の溶剤としては、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が挙げられる。
 ケトン類の溶剤として、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン(NMP)、3-メトキシ-N,N-ジメチルプロピオンアミド等が挙げられる。
 炭化水素類の溶剤としては、リモネン等が挙げられる。
 芳香族炭化水素類の溶剤として、トルエン、キシレン、アニソール等が挙げられる。
 スルホキシド類の溶剤として、ジメチルスルホキシド等が挙げられる。
Ether solvents include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene. Examples include glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, and the like.
Examples of the ketone solvent include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone (NMP), and 3-methoxy-N,N-dimethylpropionamide.
Examples of hydrocarbon solvents include limonene and the like.
Examples of aromatic hydrocarbon solvents include toluene, xylene, anisole, and the like.
Examples of the sulfoxide solvent include dimethyl sulfoxide.
 (C)成分の溶剤として、好ましくは、3-メトキシ-N,N-ジメチルプロピオンアミド、γ-ブチロラクトン、シクロペンタノン、乳酸エチル等が挙げられる。 Preferred examples of the solvent for component (C) include 3-methoxy-N,N-dimethylpropionamide, γ-butyrolactone, cyclopentanone, and ethyl lactate.
 本開示の絶縁膜形成材料において、生殖毒性等の毒性を低減する観点から、NMPの含有率は、絶縁膜形成材料の全量に対して1質量%以下であってもよく、(A)成分の全量に対して3質量%以下であってもよい。 In the insulating film forming material of the present disclosure, from the viewpoint of reducing toxicity such as reproductive toxicity, the content of NMP may be 1% by mass or less based on the total amount of the insulating film forming material; It may be 3% by mass or less based on the total amount.
 本開示の絶縁膜形成材料において、(C)成分の含有量は、(A)成分100質量部に対して1質量部~10000質量部であることが好ましく、50質量部~10000質量部であることがより好ましい。 In the insulating film forming material of the present disclosure, the content of component (C) is preferably 1 part by mass to 10,000 parts by mass, and preferably 50 parts by mass to 10,000 parts by mass, per 100 parts by mass of component (A). It is more preferable.
 (C)成分は、式(3)~式(7)で表される化合物からなる群より選択される少なくとも一種である溶剤(1)並びにエステル類の溶剤、エーテル類の溶剤、ケトン類の溶剤、炭化水素類の溶剤、芳香族炭化水素類の溶剤、及びスルホキシド類の溶剤からなる群より選択される少なくとも一種である溶剤(2)の少なくとも一方を含んでいることが好ましい。
 また、溶剤(1)の含有率は、溶剤(1)及び溶剤(2)の合計に対して、5質量%~100質量%であってもよく、5質量%~50質量%であってもよい。
 溶剤(1)の含有量は、(A)成分100質量部に対して、10質量部~1000質量部であってもよく、10質量部~100質量部であってもよく、10質量部~50質量部であってもよい。
Component (C) is at least one solvent (1) selected from the group consisting of compounds represented by formulas (3) to (7), as well as ester solvents, ether solvents, and ketone solvents. , a hydrocarbon solvent, an aromatic hydrocarbon solvent, and a sulfoxide solvent.
Further, the content of the solvent (1) may be 5% by mass to 100% by mass, or even 5% by mass to 50% by mass, based on the total of the solvent (1) and the solvent (2). good.
The content of the solvent (1) may be 10 parts by mass to 1000 parts by mass, 10 parts by mass to 100 parts by mass, 10 parts by mass to 100 parts by mass, based on 100 parts by mass of component (A). It may be 50 parts by mass.
 本開示の絶縁膜形成材料は、(D)光重合開始剤(以下(D)成分とも称する。)をさらに含むことが好ましい。また、本開示の絶縁膜形成材料は、(E)熱重合開始剤(以下、(E)成分とも称する。)をさらに含んでいてもよい。以下、(D)成分及び(E)成分の好ましい形態について説明する。 It is preferable that the insulating film forming material of the present disclosure further includes (D) a photopolymerization initiator (hereinafter also referred to as (D) component). Further, the insulating film forming material of the present disclosure may further include (E) a thermal polymerization initiator (hereinafter also referred to as (E) component). Preferred forms of component (D) and component (E) will be described below.
((D)光重合開始剤)
 本開示の絶縁膜形成材料は、(D)光重合開始剤を含むことが好ましい。これにより、半導体装置を作製する工程の中で電極を作製する工程数を低減することができ、半導体装置を作製する際のプロセス全体のコストを低減することができる。
((D) Photopolymerization initiator)
The insulating film forming material of the present disclosure preferably contains (D) a photopolymerization initiator. Thereby, the number of steps for manufacturing electrodes among the steps for manufacturing a semiconductor device can be reduced, and the cost of the entire process for manufacturing a semiconductor device can be reduced.
 (D)成分の具体例としては、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体;アセトフェノン、2,2-ジエトキシアセトフェノン、3’-メチルアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体;チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体;ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル、メチルベンゾイン、エチルベンゾイン、プロピルベンゾイン等のベンゾイン誘導体;1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(O-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシム誘導体;N-フェニルグリシン等のN-アリールグリシン類;ベンゾイルパーオキサイド等の過酸化物類;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-又はp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の芳香族ビイミダゾール類;2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体、Irgacure OXE03(BASF社製)、Irgacure OXE04(BASF社製)等が挙げられる。
 (D)成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 これらの中でも、金属元素を含まず、且つ反応性が高く高感度の観点からオキシム化合物誘導体が好ましい。
Specific examples of component (D) include benzophenone, N,N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), 4-methoxy-4'-dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4 Benzophenones such as '-dimethoxybenzophenone, 4,4'-diaminobenzophenone, 4,4'-bis(diethylamino)benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4'-methyldiphenylketone, dibenzylketone, fluorenone, etc. Derivatives: Acetophenone derivatives such as acetophenone, 2,2-diethoxyacetophenone, 3'-methylacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, etc. ; Thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, diethylthioxanthone; benzyl derivatives such as benzyl, benzyl dimethyl ketal, benzyl-β-methoxyethyl acetal; benzoin, benzoin methyl ether, benzoin Benzoin derivatives such as ethyl ether, benzoin phenyl ether, methylbenzoin, ethylbenzoin, propylbenzoin; 1-phenyl-1,2-butanedione-2-(O-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione -2-(O-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(O-benzoyl) Oxime, 1,3-diphenylpropanetrione-2-(O-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(O-benzoyl)oxime, 1,2-octanedione, 1-[4 -(phenylthio)phenyl]-,2-(O-benzoyloxime), ethanone 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime) ); N-arylglycines such as N-phenylglycine; peroxides such as benzoyl peroxide; 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(o-chlorophenyl)-4,5-diphenylimidazole dimer; -chlorophenyl)-4,5-di(methoxyphenyl)imidazole dimer, 2-(o-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(o- or p-methoxyphenyl)-4 , 5-diphenylimidazole dimer; acylphosphine oxide derivatives such as 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide; Examples include Irgacure OXE03 (manufactured by BASF) and Irgacure OXE04 (manufactured by BASF).
Component (D) may be used alone or in combination of two or more.
Among these, oxime compound derivatives are preferred from the viewpoints of not containing metal elements and having high reactivity and high sensitivity.
 本開示の絶縁膜形成材料が(D)成分を含む場合、(D)成分の含有量は、光架橋が膜厚方向で均一となりやすい観点から、(A)成分100質量部に対して、0.1質量部~25質量部が好ましく、1質量部~20質量部がより好ましく、5質量部~15質量部がさらに好ましい。 When the insulating film-forming material of the present disclosure contains component (D), the content of component (D) is 0% based on 100 parts by mass of component (A) from the viewpoint that photocrosslinking tends to be uniform in the film thickness direction. .1 part by weight to 25 parts by weight is preferable, 1 part to 20 parts by weight is more preferable, and even more preferably 5 parts to 15 parts by weight.
 本開示の絶縁膜形成材料は、感光特性向上の観点から、基板方向からの反射光を抑制する反射防止剤を含んでもよい。 The insulating film forming material of the present disclosure may contain an antireflection agent that suppresses reflected light from the substrate direction from the viewpoint of improving photosensitivity.
((E)熱重合開始剤)
 本開示の絶縁膜形成材料は、硬化物の物性を向上させる観点から、(E)熱重合開始剤を含むことが好ましい。
((E) Thermal polymerization initiator)
The insulating film forming material of the present disclosure preferably contains (E) a thermal polymerization initiator from the viewpoint of improving the physical properties of a cured product.
 (E)成分の具体例としては、メチルエチルケトンペルオキシド等のケトンペルオキシド、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール、1,1,3,3-テトラメチルブチルハイドロペルオキシド、クメンハイドロペルオキシド、p-メンタンハイドロペルオキシド、ジイソプロピルベンゼンハイドロペルオキシド等のハイドロペルオキシド、ジクミルペルオキシド、ジ-t-ブチルペルオキシド等のジアルキルペルオキシド、ジラウロイルペルオキシド、ジベンゾイルペルオキシド等のジアシルペルオキシド、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート等のパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等のパーオキシエステル、ビス(1-フェニル-1-メチルエチル)ペルオキシド、ジクミルパーオキシド、ジ-t-ブチルパーオキシド、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼンなどが挙げられる。熱重合開始剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 Specific examples of component (E) include ketone peroxide such as methyl ethyl ketone peroxide, 1,1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy) ) Peroxyketals such as cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide hydroperoxides such as dicumyl peroxide, dialkyl peroxides such as di-t-butyl peroxide, diacyl peroxides such as dilauroyl peroxide and dibenzoyl peroxide, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2- peroxydicarbonates such as ethylhexyl) peroxydicarbonate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropyl monocarbonate, t-butylperoxybenzoate, 1,1,3,3- Peroxy esters such as tetramethylbutyl peroxy-2-ethylhexanoate, bis(1-phenyl-1-methylethyl) peroxide, dicumyl peroxide, di-t-butyl peroxide, di(2-t- Examples include butylperoxyisopropyl)benzene. Thermal polymerization initiators may be used alone or in combination of two or more.
 本開示の絶縁膜形成材料が(E)成分を含む場合、(E)成分の含有量は、ポリイミド前駆体100質量部に対して、0.1質量部~20質量部であってもよく、1質量部~15質量部であってもよく、5質量部~10質量部であってもよい。 When the insulating film forming material of the present disclosure contains component (E), the content of component (E) may be 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of the polyimide precursor, The amount may be 1 part by mass to 15 parts by mass, or 5 parts by mass to 10 parts by mass.
((F)重合禁止剤)
 本開示の絶縁膜形成材料は、良好な保存安定性を確保する観点から、(F)重合禁止剤(以下、「(F)成分」とも称する。)を含んでいてもよい。重合禁止剤としては、ラジカル重合禁止剤、ラジカル重合抑制剤等が挙げられる。
((F) Polymerization inhibitor)
The insulating film forming material of the present disclosure may contain (F) a polymerization inhibitor (hereinafter also referred to as "component (F)") from the viewpoint of ensuring good storage stability. Examples of the polymerization inhibitor include radical polymerization inhibitors and radical polymerization inhibitors.
 (F)成分の具体例としては、p-メトキシフェノール、ジフェニル-p-ベンゾキノン、ベンゾキノン、ハイドロキノン、ピロガロール、フェノチアジン、レゾルシノール、オルトジニトロベンゼン、パラジニトロベンゼン、メタジニトロベンゼン、フェナントラキノン、N-フェニル-2-ナフチルアミン、クペロン、2,5-トルキノン、タンニン酸、パラベンジルアミノフェノール、ニトロソアミン類、1,4,4-トリメチル-2,3-ジアザビシクロ[3.2.2]ノナ-2-エン-2,3-ジオキシド、ヒンダードフェノール系化合物等が挙げられる。重合禁止剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。2以上の重合禁止剤を組み合わせることで反応性の違いから、感光特性を調整しやすい傾向にある。ヒンダードフェノール系化合物は、重合禁止剤の機能及び後述の酸化防止剤の機能の両方を有していてもよく、どちらか一方の機能を有していてもよい。 Specific examples of component (F) include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N-phenyl- 2-naphthylamine, cuperone, 2,5-torquinone, tannic acid, parabenzylaminophenol, nitrosamines, 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-2 , 3-dioxide, hindered phenol compounds, and the like. The polymerization inhibitors may be used alone or in combination of two or more. By combining two or more polymerization inhibitors, it tends to be easier to adjust the photosensitive characteristics due to the difference in reactivity. The hindered phenol compound may have both the function of a polymerization inhibitor and the function of an antioxidant described below, or it may have either one of the functions.
 ヒンダードフェノール系化合物としては特に限定されず、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,5-ジ-t-ブチル-ハイドロキノン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネ-ト、イソオクチル-3-(3,5-ジ-t -ブチル-4-ヒドロキシフェニル)プロピオネート、4、4’-メチレンビス(2、6-ジ-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t- ブチル-4-ヒドロキシフェニル)プロピオネート]、
2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-イソプロピルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-s-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-(1-エチルプロピル)-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス[4-トリエチルメチル-3-ヒドロキシ-2,6-ジメチルベンジル]-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(3-ヒドロキシ-2,6-ジメチル-4-フェニルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5,6-トリメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2,6-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-6-エチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5,6-ジエチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,5-ジメチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、1,3,5-トリス(4-t-ブチル-5-エチル-3-ヒドロキシ-2-メチルベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、及びN,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]が挙げられる。
 これらの中でもN,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド]が好ましい。
The hindered phenol compound is not particularly limited, and examples thereof include 2,6-di-t-butyl-4-methylphenol, 2,5-di-t-butyl-hydroquinone, octadecyl-3-(3,5- di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 4,4'-methylenebis(2,6-di- t-butylphenol), 4,4'-thio-bis(3-methyl-6-t-butylphenol), 4,4'-butylidene-bis(3-methyl-6-t-butylphenol), triethylene glycol-bis [3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate ],
2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-t-butyl-4 -hydroxy-hydrocinnamamide), 2,2'-methylene-bis(4-methyl-6-t-butylphenol), 2,2'-methylene-bis(4-ethyl-6-t-butylphenol), penta Erythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, 1 , 3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(3-hydroxy-2,6-dimethyl- 4-isopropylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-3-hydroxy-2, 6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-s-butyl-3-hydroxy-2, 6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris[4-(1-ethylpropyl)-3-hydroxy -2,6-dimethylbenzyl]-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris[4-triethylmethyl-3-hydroxy- 2,6-dimethylbenzyl]-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(3-hydroxy-2,6-dimethyl- 4-phenylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-3-hydroxy-2, 5,6-trimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl-5-ethyl- 3-Hydroxy-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl- 6-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-t- Butyl-6-ethyl-3-hydroxy-2,5-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris( 4-t-butyl-5,6-diethyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3, 5-tris(4-t-butyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5- Tris(4-t-butyl-3-hydroxy-2,5-dimethylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, 1,3,5- Tris(4-t-butyl-5-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione, and N,N '-hexane-1,6-diylbis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide].
Among these, N,N'-hexane-1,6-diylbis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide] is preferred.
 本開示の絶縁膜形成材料が(F)成分を含む場合、(F)成分の含有量は、絶縁膜形成材料の保存安定性及び得られる硬化物の耐熱性の観点から、(A)成分100質量部に対して、0.01質量部~30質量部であることが好ましく、0.01質量部~10質量部であることがより好ましく、0.05質量部~5質量部であることがさらに好ましい。 When the insulating film forming material of the present disclosure contains component (F), the content of component (F) is 100% of component (A) from the viewpoint of storage stability of the insulating film forming material and heat resistance of the obtained cured product. It is preferably 0.01 parts by mass to 30 parts by mass, more preferably 0.01 parts by mass to 10 parts by mass, and preferably 0.05 parts by mass to 5 parts by mass. More preferred.
 本開示の絶縁膜形成材料は、さらに、酸化防止剤、カップリング剤、界面活性剤、レベリング剤、防錆剤又は含窒素化合物を含んでもよい。 The insulating film forming material of the present disclosure may further contain an antioxidant, a coupling agent, a surfactant, a leveling agent, a rust preventive, or a nitrogen-containing compound.
(酸化防止剤)
 本開示の絶縁膜形成材料は、高温保存、リフロー処理等で発生する酸素ラジカル及び過酸化物ラジカルを捕捉することで、接着性の低下を抑制できる観点から、酸化防止剤を含んでいてもよい。本開示の絶縁膜形成材料が酸化防止剤を含むことで、絶縁信頼性試験時の電極の酸化を抑制することができる。
(Antioxidant)
The insulating film forming material of the present disclosure may contain an antioxidant from the viewpoint of suppressing deterioration of adhesive properties by capturing oxygen radicals and peroxide radicals generated during high-temperature storage, reflow treatment, etc. . Since the insulating film forming material of the present disclosure contains an antioxidant, oxidation of the electrode during an insulation reliability test can be suppressed.
 酸化防止剤の具体例としては、前述のヒンダードフェノール系化合物として例示した化合物、N,N’-ビス[2-[2-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エチルカルボニルオキシ]エチル]オキサミド、N,N’-ビス-3-(3,5-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、1、3、5-トリス(3-ヒドロキシ-4-tert-ブチル-2,6-ジメチルベンジル)-1、3、5-トリアジン-2、4、6(1H、3H、5H)-トリオン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸等が挙げられる。
 酸化防止剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
Specific examples of antioxidants include the compounds listed above as the hindered phenol compounds, N,N'-bis[2-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethyl] carbonyloxy]ethyl]oxamide, N,N'-bis-3-(3,5-di-tert-butyl-4'-hydroxyphenyl)propionylhexamethylenediamine, 1,3,5-tris(3-hydroxy- 4-tert-butyl-2,6-dimethylbenzyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-tris(4-t-butyl) -3-hydroxy-2,6-dimethylbenzyl)isocyanuric acid and the like.
The antioxidants may be used alone or in combination of two or more.
 本開示の絶縁膜形成材料が酸化防止剤を含む場合、酸化防止剤の含有量は、(A)成分100質量部に対して、0.1質量部~20質量部であることが好ましく、0.1質量部~10質量部であることがより好ましく、0.1質量部~5質量部であることがさらに好ましい。 When the insulating film forming material of the present disclosure contains an antioxidant, the content of the antioxidant is preferably 0.1 parts by mass to 20 parts by mass, and 0.1 parts by mass to 20 parts by mass, based on 100 parts by mass of component (A). The amount is more preferably from .1 parts by weight to 10 parts by weight, and even more preferably from 0.1 parts by weight to 5 parts by weight.
(カップリング剤)
 本開示の絶縁膜形成材料は、カップリング剤を含んでもよい。カップリング剤は、加熱処理において、(A)成分と反応して架橋する、又はカップリング剤自体が重合する。これにより、得られる硬化物と基板との接着性をより向上させることができる傾向にある。
(coupling agent)
The insulating film forming material of the present disclosure may include a coupling agent. In the heat treatment, the coupling agent reacts with component (A) and crosslinks, or the coupling agent itself polymerizes. This tends to further improve the adhesiveness between the obtained cured product and the substrate.
 カップリング剤の具体例は特に限定されるものではない。カップリング剤としては、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、ジメトキシメチル-3-ピペリジノプロピルシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、N-(3-ジエトキシメチルシリルプロピル)スクシンイミド、N-〔3-(トリエトキシシリル)プロピル〕フタルアミド酸、ベンゾフェノン-3,3’-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-4,4’-ジカルボン酸、ベンゼン-1,4-ビス(N-〔3-トリエトキシシリル〕プロピルアミド)-2,5-ジカルボン酸、3-(トリエトキシシリル)プロピルスクシニックアンハイドライド、N-フェニルアミノプロピルトリメトキシシラン、N,N’-ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン等のシランカップリング剤;アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等のアルミニウム系接着助剤;などが挙げられる。
 カップリング剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
Specific examples of the coupling agent are not particularly limited. Coupling agents include 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, -Methacryloxypropyldimethoxymethylsilane, 3-methacryloxypropyltrimethoxysilane, dimethoxymethyl-3-piperidinopropylsilane, diethoxy-3-glycidoxypropylmethylsilane, N-(3-diethoxymethylsilylpropyl) Succinimide, N-[3-(triethoxysilyl)propyl]phthalamic acid, benzophenone-3,3'-bis(N-[3-triethoxysilyl]propylamide)-4,4'-dicarboxylic acid, benzene-1 ,4-bis(N-[3-triethoxysilyl]propylamide)-2,5-dicarboxylic acid, 3-(triethoxysilyl)propyl succinic anhydride, N-phenylaminopropyltrimethoxysilane, N,N '-Bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane and other silane coupling agents; aluminum tris(ethyl acetoacetate), aluminum tris(acetylacetonate), ethyl acetate Aluminum adhesive aids such as acetate aluminum diisopropylate; and the like.
The coupling agents may be used alone or in combination of two or more.
 本開示の絶縁膜形成材料がカップリング剤を含む場合、カップリング剤の含有量は、(A)成分100質量部に対して、0.1質量部~20質量部が好ましく、0.3質量部~10質量部がより好ましく、1質量部~10質量部がさらに好ましい。 When the insulating film forming material of the present disclosure contains a coupling agent, the content of the coupling agent is preferably 0.1 parts by mass to 20 parts by mass, and 0.3 parts by mass, based on 100 parts by mass of component (A). Parts by weight to 10 parts by weight are more preferable, and 1 part to 10 parts by weight are even more preferable.
(界面活性剤及びレベリング剤)
 本開示の絶縁膜形成材料は、界面活性剤及びレベリング剤の少なくとも一方を含んでもよい。絶縁膜形成材料が界面活性剤及びレベリング剤の少なくとも一方を含むことにより、塗布性(例えばストリエーション(膜厚のムラ)の抑制)、接着性の改善、絶縁膜形成材料中の化合物の相溶性等を向上させることができる。
(Surfactant and leveling agent)
The insulating film forming material of the present disclosure may include at least one of a surfactant and a leveling agent. When the insulating film forming material contains at least one of a surfactant and a leveling agent, it improves coating properties (for example, suppressing striae (unevenness in film thickness)), improves adhesion, and improves the compatibility of compounds in the insulating film forming material. etc. can be improved.
 界面活性剤又はレベリング剤としては、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられる。 Examples of the surfactant or leveling agent include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
 界面活性剤及びレベリング剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 The surfactants and leveling agents may be used alone or in combination of two or more.
 本開示の絶縁膜形成材料が界面活性剤及びレベリング剤の少なくとも一方を含む場合、界面活性剤及びレベリング剤の合計の含有量は、(A)成分100質量部に対して0.01質量部~10質量部であることが好ましく、0.05質量部~5質量部であることがより好ましく、0.05質量部~3質量部であることがさらに好ましい。 When the insulating film forming material of the present disclosure includes at least one of a surfactant and a leveling agent, the total content of the surfactant and leveling agent is 0.01 parts by mass to 100 parts by mass of component (A). The amount is preferably 10 parts by weight, more preferably 0.05 parts to 5 parts by weight, and even more preferably 0.05 parts to 3 parts by weight.
(防錆剤)
 本開示の絶縁膜形成材料は、銅、銅合金等の金属の腐食を抑制する観点、及び、当該金属の変色を抑制する観点から、防錆剤を含んでもよい。防錆剤としては、アゾール化合物、プリン誘導体等が挙げられる。
(anti-rust)
The insulating film forming material of the present disclosure may contain a rust preventive agent from the viewpoint of suppressing corrosion of metals such as copper and copper alloys, and from the viewpoint of suppressing discoloration of the metals. Examples of rust preventive agents include azole compounds and purine derivatives.
 アゾール化合物の具体例としては、1H-トリアゾール、5-メチル-1H-トリアゾール、5-エチル-1H-トリアゾール、4,5-ジメチル-1H-トリアゾール、5-フェニル-1H-トリアゾール、4-t-ブチル-5-フェニル-1H-トリアゾール、5-ヒロキシフェニル-1H-トリアゾール、フェニルトリアゾール、p-エトキシフェニルトリアゾール、5-フェニル-1-(2-ジメチルアミノエチル)トリアゾール、5-ベンジル-1H-トリアゾール、ヒドロキシフェニルトリアゾール、1,5-ジメチルトリアゾール、4,5-ジエチル-1H-トリアゾール、1H-ベンゾトリアゾール、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α―ジメチルベンジル)フェニル]-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール、トリルトリアゾール、5-メチル-1H-ベンゾトリアゾール、4-メチル-1H-ベンゾトリアゾール、4-カルボキシ-1H-ベンゾトリアゾール、5-カルボキシ-1H-ベンゾトリアゾール、1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、5-アミノ-1H-テトラゾール、1-メチル-1H-テトラゾール等が挙げられる。 Specific examples of azole compounds include 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl-1H-triazole, 4-t- Butyl-5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5-phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H- Triazole, hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-diethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy- 3,5-bis(α,α-dimethylbenzyl)phenyl]-benzotriazole, 2-(3,5-di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-t-butyl-5 -Methyl-2-hydroxyphenyl)-benzotriazole, 2-(3,5-di-t-amyl-2-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-t-octylphenyl)benzo Triazole, hydroxyphenylbenzotriazole, tolyltriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole, 4-carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 1H-tetrazole, Examples include 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5-amino-1H-tetrazole, and 1-methyl-1H-tetrazole.
 プリン誘導体の具体例としては、プリン、アデニン、グアニン、ヒポキサンチン、キサンチン、テオブロミン、カフェイン、尿酸、イソグアニン、2,6-ジアミノプリン、9-メチルアデニン、2-ヒドロキシアデニン、2-メチルアデニン、1-メチルアデニン、N-メチルアデニン、N,N-ジメチルアデニン、2-フルオロアデニン、9-(2-ヒドロキシエチル)アデニン、グアニンオキシム、N-(2-ヒドロキシエチル)アデニン、8-アミノアデニン、6-アミノ‐8-フェニル‐9H-プリン、1-エチルアデニン、6-エチルアミノプリン、1-ベンジルアデニン、N-メチルグアニン、7-(2-ヒドロキシエチル)グアニン、N-(3-クロロフェニル)グアニン、N-(3-エチルフェニル)グアニン、2-アザアデニン、5-アザアデニン、8-アザアデニン、8-アザグアニン、8-アザプリン、8-アザキサンチン、8-アザヒポキサンチン等、これらの誘導体などが挙げられる。 Specific examples of purine derivatives include purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methyladenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N,N-dimethyladenine, 2-fluoroadenine, 9-(2-hydroxyethyl)adenine, guanine oxime, N-(2-hydroxyethyl)adenine, 8-aminoadenine, 6-amino-8-phenyl-9H-purine, 1-ethyladenine, 6-ethylaminopurine, 1-benzyladenine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl) Examples include guanine, N-(3-ethylphenyl)guanine, 2-azaadenine, 5-azaadenine, 8-azaadenine, 8-azaguanine, 8-azapurine, 8-azaxanthin, 8-azahypoxanthine, and derivatives thereof. It will be done.
 防錆剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。 The rust inhibitors may be used alone or in combination of two or more.
 本開示の絶縁膜形成材料が防錆剤を含む場合、防錆剤の含有量は、(A)成分100質量部に対して、0.01質量部~10質量部であることが好ましく、0.1質量部~5質量部であることがより好ましく、0.5質量部~3質量部であることがさらに好ましい。特に、防錆剤の含有量が0.1質量部以上であることで、本開示の絶縁膜形成材料を銅又は銅合金の表面上に付与した場合に、銅又は銅合金の表面の変色が抑制される。 When the insulating film forming material of the present disclosure contains a rust preventive agent, the content of the rust preventive agent is preferably 0.01 parts by mass to 10 parts by mass, and 0.01 parts by mass to 10 parts by mass, based on 100 parts by mass of component (A). The amount is more preferably from .1 part by weight to 5 parts by weight, and even more preferably from 0.5 parts by weight to 3 parts by weight. In particular, when the content of the rust preventive agent is 0.1 parts by mass or more, when the insulating film forming material of the present disclosure is applied on the surface of copper or copper alloy, discoloration of the surface of copper or copper alloy is prevented. suppressed.
 本開示の絶縁膜形成材料は、(A)成分のイミド化反応を促進させて高い信頼性を有する硬化物を得る観点から、含窒素化合物を含んでもよい。 The insulating film forming material of the present disclosure may contain a nitrogen-containing compound from the viewpoint of accelerating the imidization reaction of component (A) and obtaining a highly reliable cured product.
 含窒素化合物の具体例としては、2-(メチルフェニルアミノ)エタノール、2-(エチルアニリノ)エタノール、N-フェニルジエタノールアミン、N-メチルアニリン、N-エチルアニリン、N,N’-ジメチルアニリン、N-フェニルエタノールアミン、4-フェニルモルフォリン、2,2’-(4-メチルフェニルイミノ)ジエタノール、4-アミノベンズアミド、2-アミノベンズアミド、ニコチンアミド、4-アミノ-N-メチルベンズアミド、4-アミノアセトアニリド、4-アミノアセトフェノン等が挙げられ、中でも、N-フェニルジエタノールアミン、N-メチルアニリン、N-エチルアニリン、N,N’-ジメチルアニリン、N-フェニルエタノールアミン、4-フェニルモルフォリン、2,2’-(4-メチルフェニルイミノ)ジエタノール等が好ましい。含窒素化合物は1種単独で用いてもよく、2種以上を組み合わせてもよい。 Specific examples of nitrogen-containing compounds include 2-(methylphenylamino)ethanol, 2-(ethylanilino)ethanol, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethylaniline, N- Phenylethanolamine, 4-phenylmorpholine, 2,2'-(4-methylphenylimino)diethanol, 4-aminobenzamide, 2-aminobenzamide, nicotinamide, 4-amino-N-methylbenzamide, 4-aminoacetanilide , 4-aminoacetophenone, among others, N-phenyldiethanolamine, N-methylaniline, N-ethylaniline, N,N'-dimethylaniline, N-phenylethanolamine, 4-phenylmorpholine, 2,2 '-(4-methylphenylimino)diethanol and the like are preferred. One type of nitrogen-containing compound may be used alone, or two or more types may be used in combination.
 含窒素化合物は、下記式(17)で表される化合物を含むことが好ましい。 It is preferable that the nitrogen-containing compound includes a compound represented by the following formula (17).
 式(17)中、R31A~R33Aは、それぞれ独立に、水素原子、1価の脂肪族炭化水素基、ヒドロキシ基を有する1価の脂肪族炭化水素基、又は1価の芳香族基であり、R31A~R33Aの少なくとも1つ(好ましくは1つ)が1価の芳香族基である。R31A~R33Aは隣接する基同士で環構造を形成していてもよい。形成される環構造としては、メチル基、フェニル基等の置換基を有していてもよい5員環、6員環等が挙げられる。1価の脂肪族炭化水素基の水素原子は、ヒドロキシ基以外の官能基で置換されていてもよい。 In formula (17), R 31A to R 33A are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, or a monovalent aromatic group. and at least one (preferably one) of R 31A to R 33A is a monovalent aromatic group. Adjacent groups of R 31A to R 33A may form a ring structure. Examples of the ring structure formed include a 5-membered ring and a 6-membered ring which may have a substituent such as a methyl group or a phenyl group. The hydrogen atom of the monovalent aliphatic hydrocarbon group may be substituted with a functional group other than a hydroxy group.
 式(17)中、R31A~R33Aの少なくとも1つ(好ましくは1つ)が、1価の脂肪族炭化水素基、ヒドロキシ基を有する1価の脂肪族炭化水素基、又は1価の芳香族基であることが好ましい。 In formula (17), at least one (preferably one) of R 31A to R 33A is a monovalent aliphatic hydrocarbon group, a monovalent aliphatic hydrocarbon group having a hydroxy group, or a monovalent aromatic A group group is preferred.
 式(17)中、R31A~R33Aの1価の脂肪族炭化水素基について、炭素数1~10が好ましく、炭素数1~6がより好ましい。1価の脂肪族炭化水素基は、メチル基、エチル基等が好ましい。 In formula (17), the monovalent aliphatic hydrocarbon groups R 31A to R 33A preferably have 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. The monovalent aliphatic hydrocarbon group is preferably a methyl group, an ethyl group, or the like.
 式(17)中、R31A~R33Aのヒドロキシ基を有する1価の脂肪族炭化水素基は、R31A~R33Aの1価の脂肪族炭化水素基に、1つ以上のヒドロキシ基が結合した基であることが好ましく、1つ~3つのヒドロキシ基が結合した基であることがより好ましい。ヒドロキシ基を有する1価の脂肪族炭化水素基の具体例としては、メチロール基、ヒドロキシエチル基等が挙げられ、中でも、ヒドロキシエチル基が好ましい。 In formula (17), the monovalent aliphatic hydrocarbon group having a hydroxy group of R 31A to R 33A is one or more hydroxy groups bonded to the monovalent aliphatic hydrocarbon group of R 31A to R 33A . It is preferable that the hydroxyl group is a bonded group, and a group that has one to three hydroxy groups bonded is more preferable. Specific examples of the monovalent aliphatic hydrocarbon group having a hydroxy group include a methylol group, a hydroxyethyl group, and the like, with a hydroxyethyl group being preferred.
 式(17)のR31A~R33Aの1価の芳香族基としては、1価の芳香族炭化水素基、1価の芳香族複素環式基等が挙げられ、1価の芳香族炭化水素基が好ましい。1価の芳香族炭化水素基について、炭素数6~12が好ましく、炭素数6~10がより好ましい。
 1価の芳香族炭化水素基としては、フェニル基、ナフチル基等が挙げられる。
Examples of the monovalent aromatic group R 31A to R 33A in formula (17) include a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group, etc. Groups are preferred. The monovalent aromatic hydrocarbon group preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms.
Examples of the monovalent aromatic hydrocarbon group include a phenyl group and a naphthyl group.
 式(17)のR31A~R33Aの1価の芳香族基は、置換基を有してもよい。置換基としては、式(17)のR31A~R33Aの1価の脂肪族炭化水素基、及び上述の式(17)のR31A~R33Aのヒドロキシ基を有する1価の脂肪族炭化水素基と同様の基が挙げられる。 The monovalent aromatic groups R 31A to R 33A in formula (17) may have a substituent. Examples of the substituent include monovalent aliphatic hydrocarbon groups represented by R 31A to R 33A of formula (17), and monovalent aliphatic hydrocarbon groups having a hydroxy group represented by R 31A to R 33A of formula (17) above. Groups similar to the group are mentioned.
 本開示の絶縁膜形成材料が含窒素化合物を含む場合、含窒素化合物の含有量は、(A)成分100質量部に対して、0.1質量部~20質量部であることが好ましく、保存安定性の観点から、0.3質量部~15質量部であることがより好ましく、0.5質量部~10質量部であることがさらに好ましい。 When the insulating film-forming material of the present disclosure contains a nitrogen-containing compound, the content of the nitrogen-containing compound is preferably 0.1 parts by mass to 20 parts by mass with respect to 100 parts by mass of component (A). From the viewpoint of stability, the amount is more preferably 0.3 parts by mass to 15 parts by mass, and even more preferably 0.5 parts by mass to 10 parts by mass.
<半導体装置>
 本開示の半導体装置は、第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板と、半導体チップ基板本体と、前記半導体チップ基板本体の一面に設けられた有機絶縁膜部分及び第2電極とを有する半導体チップと、を備え、前記第1半導体基板の前記第1有機絶縁膜と、前記半導体チップの前記有機絶縁膜部分と、が接合し、前記第1半導体基板の前記第1電極と、前記半導体チップの前記第2電極と、が接合し、前記第1有機絶縁膜及び前記有機絶縁膜部分の少なくとも一方が本開示の絶縁膜形成材料を硬化してなる絶縁膜である半導体装置である。
 本開示の半導体装置は、第1有機絶縁膜及び有機絶縁膜部分の少なくとも一方が本開示の絶縁膜形成材料を硬化してなる絶縁膜であるため、接合対象となる電極等に含まれる金属(例えば、銅)が絶縁膜に拡散しにくくなり、絶縁抵抗の低下が抑制される。これにより、絶縁信頼性に優れる絶縁膜を備える半導体装置が得られる。また、本開示の半導体装置は、例えば、後述の工程(1)~工程(5)を経て製造される。
<Semiconductor device>
A semiconductor device of the present disclosure includes: a first semiconductor substrate having a first substrate body; the first organic insulating film and a first electrode provided on one surface of the first substrate body; a semiconductor chip substrate body; a semiconductor chip having an organic insulating film portion and a second electrode provided on one surface of a semiconductor chip substrate body, the first organic insulating film of the first semiconductor substrate and the organic insulating film of the semiconductor chip; the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip are joined, and at least one of the first organic insulating film and the organic insulating film part is in contact with the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip. This is a semiconductor device having an insulating film formed by curing the disclosed insulating film forming material.
In the semiconductor device of the present disclosure, since at least one of the first organic insulating film and the organic insulating film portion is an insulating film formed by curing the insulating film forming material of the present disclosure, metal ( For example, copper) becomes difficult to diffuse into the insulating film, and a decrease in insulation resistance is suppressed. Thereby, a semiconductor device including an insulating film with excellent insulation reliability can be obtained. Further, the semiconductor device of the present disclosure is manufactured, for example, through steps (1) to (5) described below.
<半導体装置の製造方法>
 本開示の半導体装置は、本開示の絶縁膜形成材料を用いて半導体装置を製造する。具体的には、本開示の絶縁膜形成材料を用いて工程(1)~工程(5)を経ることで半導体装置を製造することができる。
 工程(1) 第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板を準備する。
 工程(2) 第2基板本体と、前記第2基板本体の一面に設けられた前記第2有機絶縁膜及び複数の第2電極とを有する第2半導体基板を準備する。
 工程(3) 前記第2半導体基板を個片化し、前記第2有機絶縁膜の一部に対応する有機絶縁膜部分と少なくとも1つの前記第2電極とをそれぞれ備えた複数の半導体チップを取得する。
 工程(4) 前記第1半導体基板の前記第1有機絶縁膜と前記半導体チップの前記有機絶縁膜部分とを互いに貼り合わせる。
 工程(5) 前記第1半導体基板の前記第1電極と前記半導体チップの前記第2電極とを接合する。
<Method for manufacturing semiconductor devices>
The semiconductor device of the present disclosure is manufactured using the insulating film forming material of the present disclosure. Specifically, a semiconductor device can be manufactured through steps (1) to (5) using the insulating film forming material of the present disclosure.
Step (1) A first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body is prepared.
Step (2) A second semiconductor substrate having a second substrate body, the second organic insulating film and a plurality of second electrodes provided on one surface of the second substrate body is prepared.
Step (3) Cutting the second semiconductor substrate into pieces to obtain a plurality of semiconductor chips each including an organic insulating film portion corresponding to a part of the second organic insulating film and at least one second electrode. .
Step (4) Bonding the first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip to each other.
Step (5) Joining the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip.
 以下、図面を参照しながら本開示の半導体装置の一実施形態、及び本開示の半導体装置の製造方法の一実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, an embodiment of the semiconductor device of the present disclosure and an embodiment of the method of manufacturing the semiconductor device of the present disclosure will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are given the same reference numerals, and overlapping description will be omitted. In addition, the positional relationships such as top, bottom, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the illustrated ratios.
(半導体装置の一例)
 図1は、本開示の半導体装置の一例を模式的に示す断面図である。図1に示すように、半導体装置1は、例えば半導体パッケージの一例であり、第1半導体チップ10(第1半導体基板)、第2半導体チップ20(半導体チップ)、ピラー部30、再配線層40、基板50、及び、回路基板60を備えている。
(Example of semiconductor device)
FIG. 1 is a cross-sectional view schematically showing an example of a semiconductor device of the present disclosure. As shown in FIG. 1, the semiconductor device 1 is an example of a semiconductor package, and includes a first semiconductor chip 10 (first semiconductor substrate), a second semiconductor chip 20 (semiconductor chip), a pillar part 30, and a rewiring layer 40. , a substrate 50, and a circuit board 60.
 第1半導体チップ10は、LSI(大規模集積回路)チップ又はCMOS(Complementary Metal Oxide Semiconductor)センサ等の半導体チップであり、第2半導体チップ2
0が下方向に実装された三次元実装構造になっている。第2半導体チップ20は、LSI、メモリ等の半導体チップであり、第1半導体チップ10よりも平面視における面積が小さいチップ部品である。第2半導体チップ20は、第1半導体チップ10の裏面にChip-to-Chip(C2C)接合されている。第1半導体チップ10と第2半導体チップ20とは、詳細を後述するハイブリッドボンディングにより、それぞれの端子電極とその周りの絶縁膜同士が強固且つ位置ズレせずに微細接合されている。
The first semiconductor chip 10 is a semiconductor chip such as an LSI (Large Scale Integrated Circuit) chip or a CMOS (Complementary Metal Oxide Semiconductor) sensor, and the second semiconductor chip 2
It has a three-dimensional mounting structure in which 0 is mounted downward. The second semiconductor chip 20 is a semiconductor chip such as an LSI or a memory, and is a chip component having a smaller area in plan view than the first semiconductor chip 10. The second semiconductor chip 20 is chip-to-chip (C2C) bonded to the back surface of the first semiconductor chip 10. The first semiconductor chip 10 and the second semiconductor chip 20 are finely bonded to each other by hybrid bonding, the details of which will be described later, so that the respective terminal electrodes and the insulating films around the terminal electrodes are firmly and without misalignment.
 ピラー部30は、銅(Cu)等の金属により形成された複数のピラー31が樹脂32によって封止されている接続部である。複数のピラー31は、ピラー部30の上面から下面に向けて延在する導電性部材である。複数のピラー31は、例えば直径3μm以上20μm以下(一例では直径5μm)の円柱形状を有していてもよく、各ピラー31の中心間距離が15μm以下となるように配置されてもよい。複数のピラー31は、第1半導体チップ10の下側の端子電極と再配線層40の上側の端子電極とをフリップチップ接続する。ピラー部30を用いることにより、半導体装置1では、TMV(Through mold via)と呼ばれるモールドに穴明けして半田接続する技術を使用せずに接続電極を形成することができる。ピラー部30は、例えば第2半導体チップ20と同程度の厚さを有し、水平方向にて第2半導体チップ20の横側に配置される。なお、ピラー部30に替えて複数の半田ボールが配置されていてもよく、半田ボールによって第1半導体チップ10の下側の端子電極と再配線層40の上側の端子電極とを電気的に接続してもよい。 The pillar part 30 is a connection part in which a plurality of pillars 31 made of metal such as copper (Cu) are sealed with resin 32. The plurality of pillars 31 are conductive members extending from the upper surface to the lower surface of the pillar section 30. The plurality of pillars 31 may have a cylindrical shape, for example, with a diameter of 3 μm or more and 20 μm or less (in one example, a diameter of 5 μm), and may be arranged such that the distance between the centers of each pillar 31 is 15 μm or less. The plurality of pillars 31 connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40 by flip-chip connection. By using the pillar portion 30, the connection electrode can be formed in the semiconductor device 1 without using a technique called TMV (Through Mold Via) in which a hole is made in a mold and a solder connection is made. The pillar section 30 has, for example, the same thickness as the second semiconductor chip 20, and is arranged on the side of the second semiconductor chip 20 in the horizontal direction. Note that a plurality of solder balls may be arranged instead of the pillar portion 30, and the solder balls electrically connect the lower terminal electrode of the first semiconductor chip 10 and the upper terminal electrode of the rewiring layer 40. You may.
 再配線層40は、パッケージ基板の機能である端子ピッチ変換の機能を有する配線層であり、第2半導体チップ20の下側の絶縁膜上及びピラー部30の下面上にポリイミド及び銅配線等で再配線パターンを形成した層である。再配線層40は、第1半導体チップ10(第1半導体基板100)、第2半導体チップ20等を上下反転した状態で形成される(図4の(d)参照)。 The rewiring layer 40 is a wiring layer that has a terminal pitch conversion function, which is a function of a package substrate, and is made of polyimide, copper wiring, etc. on the insulating film on the lower side of the second semiconductor chip 20 and on the lower surface of the pillar section 30. This is a layer in which a rewiring pattern is formed. The rewiring layer 40 is formed by turning the first semiconductor chip 10 (first semiconductor substrate 100), second semiconductor chip 20, etc. upside down (see (d) in FIG. 4).
 再配線層40は、第2半導体チップ20の下面の端子電極及びピラー部30を介した第1半導体チップ10の端子電極を、基板50の端子電極に電気的に接続する。基板50の端子ピッチは、ピラー31の端子ピッチ及び第2半導体チップ20の端子ピッチよりも広くなっている。なお、基板50上には、各種の電子部品51が実装されていてもよい。また、再配線層40と基板50との端子ピッチに大きな開きがある場合は再配線層40と基板50との間に無機インターポーザ―等を使用して再配線層40と基板50との電気的接続をとってもよい。 The rewiring layer 40 electrically connects the terminal electrodes of the first semiconductor chip 10 via the terminal electrodes on the lower surface of the second semiconductor chip 20 and the pillar portion 30 to the terminal electrodes of the substrate 50. The terminal pitch of the substrate 50 is wider than the terminal pitch of the pillar 31 and the terminal pitch of the second semiconductor chip 20. Note that various electronic components 51 may be mounted on the board 50. In addition, if there is a large difference in the terminal pitch between the rewiring layer 40 and the substrate 50, an inorganic interposer or the like may be used between the rewiring layer 40 and the substrate 50 to ensure electrical connection between the rewiring layer 40 and the substrate 50. You can also make a connection.
 回路基板60は、第1半導体チップ10及び第2半導体チップ20をその上に搭載し、第1半導体チップ10、第2半導体チップ20及び電子部品51等に接続された基板50に電気的に接続される複数の貫通電極を内部に有する基板である。回路基板60では、複数の貫通電極により、第1半導体チップ10及び第2半導体チップ20の各端子電極が回路基板60の裏面に設けられた端子電極61に電気的に接続される。 The circuit board 60 has the first semiconductor chip 10 and the second semiconductor chip 20 mounted thereon, and is electrically connected to the board 50 which is connected to the first semiconductor chip 10, the second semiconductor chip 20, the electronic component 51, etc. This is a substrate that has a plurality of through electrodes inside. In the circuit board 60, each terminal electrode of the first semiconductor chip 10 and the second semiconductor chip 20 is electrically connected to a terminal electrode 61 provided on the back surface of the circuit board 60 by a plurality of through electrodes.
(半導体装置の製造方法の一例)
 次に、半導体装置1の製造方法の一例について、図2~図4を参照して、説明する。図2は、図1に示す半導体装置を製造するための方法を順に示す図である。図3は、図2に示す半導体装置の製造方法における接合方法(ハイブリッドボンディング)をより詳細に示す図である。図4は、図1に示す半導体装置を製造するための方法であり、図2に示す工程の後の工程を順に示す図である。
(An example of a method for manufacturing a semiconductor device)
Next, an example of a method for manufacturing the semiconductor device 1 will be described with reference to FIGS. 2 to 4. FIG. 2 is a diagram sequentially showing a method for manufacturing the semiconductor device shown in FIG. FIG. 3 is a diagram showing in more detail the bonding method (hybrid bonding) in the method of manufacturing the semiconductor device shown in FIG. FIG. 4 shows a method for manufacturing the semiconductor device shown in FIG. 1, and is a diagram sequentially showing steps after the step shown in FIG. 2.
 半導体装置1は、例えば、以下の工程(a)~工程(n)を経て製造することができる。
(a)第1半導体チップ10に対応する第1半導体基板100を準備する工程。
(b)第2半導体チップ20に対応する第2半導体基板200を準備する工程。
(c)端子電極103の各表面103aが絶縁膜102の表面102aに対して同等の位置か突き出た位置となるようにCMP法を用いて第1半導体基板100の表面である一面101a側を研磨する工程(図3の(a)参照)。
(d)端子電極203の各表面203aが絶縁膜202の表面202aに対して、同等の位置又は突き出た位置となるようにCMP法を用いて第2半導体基板200の表面である一面201a側を研磨する工程(図3の(a)参照)。
(e)図2の(b)に示すように、第2半導体基板200を個片化し、複数の半導体チップ205を取得する工程。
(f)図2の(c)に示すように、第1半導体基板100の端子電極103に対して複数の半導体チップ205それぞれの端子電極203の位置合わせを行う工程。
(g)第1半導体基板100の絶縁膜102と複数の半導体チップ205の各絶縁膜部分202bとを互いに貼り合わせる工程(図2の(d)及び図3の(b)参照)。このとき、熱H、圧力又はその両方を付与してもよい。
(h)第1半導体基板100の端子電極103と複数の半導体チップ205それぞれの端子電極203とを接合する工程(図3の(c)参照)。
(i)第1半導体基板100の接続面上であって複数の半導体チップ205の間に複数のピラー300(ピラー31に対応)を形成する工程(図4の(a)参照)。
(j)半導体チップ205とピラー300とを覆うように、第1半導体基板100の接続面上に樹脂301をモールドして半製品M1を取得する工程(図4の(b)参照)。
(k)工程(j)でモールドがされた半製品M1の樹脂301側を研削して薄化し、半製品M2を取得する工程(図4の(c)参照)。
(l)工程(k)で薄化された半製品M2に再配線層40に対応する配線層400を形成する工程(図4の(d)参照)。
(m)工程(l)で配線層400が形成された半製品M3を各半導体装置1となるように切断線Aに沿って切断する工程(図4の(d)参照)。
(n)工程(m)で個体化された半導体装置1aを反転して基板50及び回路基板60上に設置する工程(図1参照)。
The semiconductor device 1 can be manufactured, for example, through the following steps (a) to (n).
(a) A step of preparing a first semiconductor substrate 100 corresponding to the first semiconductor chip 10.
(b) A step of preparing a second semiconductor substrate 200 corresponding to the second semiconductor chip 20.
(c) One surface 101a side, which is the surface of the first semiconductor substrate 100, is polished using the CMP method so that each surface 103a of the terminal electrode 103 is at the same position or in a protruding position with respect to the surface 102a of the insulating film 102. (see FIG. 3(a)).
(d) One surface 201a, which is the surface of the second semiconductor substrate 200, is polished using a CMP method so that each surface 203a of the terminal electrode 203 is at the same position or in a protruding position with respect to the surface 202a of the insulating film 202. Polishing step (see FIG. 3(a)).
(e) As shown in FIG. 2B, a step of dividing the second semiconductor substrate 200 into pieces to obtain a plurality of semiconductor chips 205.
(f) As shown in FIG. 2C, a step of aligning the terminal electrodes 203 of each of the plurality of semiconductor chips 205 with respect to the terminal electrodes 103 of the first semiconductor substrate 100.
(g) A step of bonding the insulating film 102 of the first semiconductor substrate 100 and each insulating film portion 202b of the plurality of semiconductor chips 205 to each other (see (d) of FIG. 2 and (b) of FIG. 3). At this time, heat H, pressure, or both may be applied.
(h) A step of bonding the terminal electrode 103 of the first semiconductor substrate 100 and the terminal electrode 203 of each of the plurality of semiconductor chips 205 (see (c) of FIG. 3).
(i) A step of forming a plurality of pillars 300 (corresponding to the pillars 31) on the connection surface of the first semiconductor substrate 100 and between the plurality of semiconductor chips 205 (see (a) of FIG. 4).
(j) A step of molding resin 301 on the connection surface of first semiconductor substrate 100 so as to cover semiconductor chip 205 and pillar 300 to obtain semi-finished product M1 (see (b) of FIG. 4).
(k) A process of grinding and thinning the resin 301 side of the semi-finished product M1 molded in step (j) to obtain a semi-finished product M2 (see (c) in FIG. 4).
(l) A step of forming a wiring layer 400 corresponding to the rewiring layer 40 on the semi-finished product M2 thinned in step (k) (see (d) in FIG. 4).
(m) A step of cutting the semi-finished product M3 on which the wiring layer 400 was formed in step (l) along the cutting line A to form each semiconductor device 1 (see (d) in FIG. 4).
(n) A step of inverting the semiconductor device 1a individualized in step (m) and placing it on the substrate 50 and the circuit board 60 (see FIG. 1).
 例えば、本開示の半導体装置の製造方法において、工程(1)が前述の工程(a)及び工程(c)に対応し、工程(2)が前述の工程(b)及び工程(d)に対応し、工程(3)が工程(e)に対応し、工程(4)が工程(g)に対応し、工程(5)が工程(h)に対応する。さらに、本開示の絶縁膜形成材料は、半導体装置の製造方法での第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の絶縁膜の作製に用いるための絶縁膜形成材料であってもよい。 For example, in the method for manufacturing a semiconductor device of the present disclosure, step (1) corresponds to the above-mentioned step (a) and step (c), and step (2) corresponds to the above-mentioned step (b) and step (d). However, step (3) corresponds to step (e), step (4) corresponds to step (g), and step (5) corresponds to step (h). Furthermore, the insulating film forming material of the present disclosure may be an insulating film forming material for use in manufacturing at least one of a first organic insulating film and a second organic insulating film in a method for manufacturing a semiconductor device. .
 工程(a)は、複数の第1半導体チップ10に対応し、半導体素子及びそれらを接続する配線等からなる集積回路が形成されたシリコン基板である第1半導体基板100を準備する工程である。工程(a)では、図2の(a)に示すように、シリコン等からなる第1基板本体101の一面101aに、銅、アルミニウム等からなる複数の端子電極103(第1電極)を所定の間隔で設けると共に本開示の絶縁膜形成材料を硬化してなる硬化物である絶縁膜102(第1絶縁膜)を設ける。絶縁膜102を第1基板本体101の一面101a上に設けてから、複数の端子電極103を設けてもよいし、複数の端子電極103を第1基板本体101の一面101aに設けてから絶縁膜102を設けてもよい。 Step (a) is a step of preparing a first semiconductor substrate 100, which is a silicon substrate, corresponding to a plurality of first semiconductor chips 10 and on which an integrated circuit consisting of semiconductor elements and wiring connecting them is formed. In step (a), as shown in FIG. 2(a), a plurality of terminal electrodes 103 (first electrodes) made of copper, aluminum, etc. are placed on one surface 101a of the first substrate body 101 made of silicon etc. in a predetermined manner. An insulating film 102 (first insulating film) is provided at intervals and is a cured product obtained by curing the insulating film forming material of the present disclosure. The plural terminal electrodes 103 may be provided after the insulating film 102 is provided on the one surface 101a of the first substrate main body 101, or the plural terminal electrodes 103 may be provided on the one surface 101a of the first substrate main body 101 and then the insulating film is provided. 102 may be provided.
 工程(b)は、複数の第2半導体チップ20に対応し、半導体素子及びそれらを接続する配線を備える集積回路が形成されたシリコン基板である第2半導体基板200を準備する工程である。工程(b)では、図2の(a)に示すように、シリコン等からなる第2基板本体201の一面201a上に、銅、アルミニウム等からなる複数の端子電極203(複数の第2電極)を連続的に設けると共に本開示の絶縁膜形成材料を硬化してなる硬化物である絶縁膜202(第2絶縁膜)を設ける。絶縁膜202を第2基板本体201の一面201a上に設けてから複数の端子電極203を設けてもよいし、複数の端子電極203を第2基板本体201の一面201aに設けてから絶縁膜202を設けてもよい。 Step (b) is a step of preparing a second semiconductor substrate 200, which is a silicon substrate, on which an integrated circuit corresponding to a plurality of second semiconductor chips 20 and including semiconductor elements and wiring connecting them is formed. In step (b), as shown in FIG. 2(a), a plurality of terminal electrodes 203 (a plurality of second electrodes) made of copper, aluminum, etc. are formed on one surface 201a of the second substrate main body 201 made of silicon or the like. are continuously provided, and an insulating film 202 (second insulating film) which is a cured product obtained by curing the insulating film forming material of the present disclosure is provided. A plurality of terminal electrodes 203 may be provided after the insulating film 202 is provided on the one surface 201a of the second substrate main body 201, or a plurality of terminal electrodes 203 may be provided on the one surface 201a of the second substrate main body 201 and then the insulating film 202 is provided. may be provided.
 工程(a)及び工程(b)で用いられる絶縁膜102及び202が共に本開示の絶縁膜形成材料を硬化してなる硬化物である構成に限定されず、絶縁膜102及び202の少なくとも一方が本開示の絶縁膜形成材料を硬化してなる硬化物である構成であってもよい。 The insulating films 102 and 202 used in step (a) and step (b) are not limited to a structure in which both are cured products obtained by curing the insulating film forming material of the present disclosure, and at least one of the insulating films 102 and 202 is The structure may be a cured product obtained by curing the insulating film forming material of the present disclosure.
 また、図1ではC2Cでの接合例が図示されているが、図5に示すChip-to-Wafer(C
2W)での接合に本発明を適用してもよい。C2Wでは、基板本体411(第1基板本体)と基板本体411の一面に設けられた絶縁膜412(第1絶縁膜)及び複数の端子電極413(第1電極)とを有する半導体ウェハー410(第1半導体基板)を準備する。さらに、基板本体421(第2基板本体)と基板本体421の一面に設けられた絶縁膜部分422(第2絶縁膜)及び複数の端子電極423(第2電極)とを有する、複数の半導体チップ420の個片化前の半導体基板(第2半導体基板)を準備する。そして、半導体ウェハー410の一面側と半導体チップ420に個片化する前の第2半導体基板の一面側とを、上記の工程(c)及び工程(d)と同様に、CMP法等により研磨する。その後、工程(e)と同様な個片化処理を第2半導体基板に対して行い、複数の半導体チップ420を取得する。
In addition, although FIG. 1 shows an example of C2C bonding, FIG.
The present invention may be applied to bonding with 2W). In C2W, a semiconductor wafer 410 (first substrate body) having a substrate body 411 (first substrate body), an insulating film 412 (first insulating film) provided on one surface of the substrate body 411, and a plurality of terminal electrodes 413 (first electrodes) is used. 1 semiconductor substrate) is prepared. Furthermore, a plurality of semiconductor chips each having a substrate body 421 (second substrate body), an insulating film portion 422 (second insulating film) provided on one surface of the substrate body 421, and a plurality of terminal electrodes 423 (second electrodes). 420 semiconductor substrates (second semiconductor substrates) before being separated into individual pieces are prepared. Then, one side of the semiconductor wafer 410 and one side of the second semiconductor substrate before being singulated into semiconductor chips 420 are polished by CMP or the like in the same manner as in the above steps (c) and (d). . Thereafter, the second semiconductor substrate is subjected to the same singulation process as in step (e) to obtain a plurality of semiconductor chips 420.
 続いて、図5の(a)に示すように、半導体ウェハー410の端子電極413に対して半導体チップ420の端子電極423の位置合わせを行う(工程(f))。そして、半導体ウェハー410の絶縁膜412と半導体チップ420の絶縁膜部分422とを互いに貼り合わると共に(工程(g))、半導体ウェハー410の端子電極413と半導体チップ420の端子電極423とを接合し(工程(h))、図5の(b)に示す半製品を取得する。これにより、絶縁膜412と絶縁膜部分422とが接合された絶縁接合部分S3となり、半導体チップ420が半導体ウェハー410に対して機械的に強固に且つ高精度に取り付けられる。また、端子電極413とそれに対応する端子電極423とが接合された電極接合部分S4となり、端子電極413と端子電極423とが機械的且つ電気的に強固に接合される。 Subsequently, as shown in FIG. 5A, the terminal electrodes 423 of the semiconductor chip 420 are aligned with the terminal electrodes 413 of the semiconductor wafer 410 (step (f)). Then, the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 are bonded together (step (g)), and the terminal electrodes 413 of the semiconductor wafer 410 and the terminal electrodes 423 of the semiconductor chip 420 are bonded. (step (h)) to obtain a semi-finished product shown in FIG. 5(b). As a result, the insulating film portion 412 and the insulating film portion 422 become an insulating bonding portion S3, and the semiconductor chip 420 is mechanically firmly attached to the semiconductor wafer 410 with high precision. Further, the terminal electrode 413 and the corresponding terminal electrode 423 are joined to form an electrode joint portion S4, and the terminal electrode 413 and the terminal electrode 423 are mechanically and electrically firmly joined.
 その後、図5の(c)及び(d)に示すように、複数の半導体チップ420を同様の方法で半導体ウェハーである半導体ウェハー410に接合することにより、半導体装置401を取得する。なお、複数の半導体チップ420は、一個ずつ半導体ウェハー410にハイブリッドボンディングにより接合されてもよいが、まとめて半導体ウェハー410にハイブリッドボンディングにより接合されてもよい。 Thereafter, as shown in FIGS. 5(c) and 5(d), a semiconductor device 401 is obtained by bonding a plurality of semiconductor chips 420 to a semiconductor wafer 410 in the same manner. Note that the plurality of semiconductor chips 420 may be bonded to the semiconductor wafer 410 one by one by hybrid bonding, or may be bonded to the semiconductor wafer 410 all together by hybrid bonding.
 このような半導体装置401の製造方法においても、上記の半導体装置1の製造方法と同様に、半導体ウェハー410の絶縁膜412及び半導体チップ420の絶縁膜部分422の少なくとも一方が、本開示の絶縁膜形成材料を硬化してなる硬化物である絶縁膜である。そのため、絶縁信頼性に優れる絶縁膜を備える半導体装置が得られる。 Also in this method of manufacturing the semiconductor device 401, as in the method of manufacturing the semiconductor device 1 described above, at least one of the insulating film 412 of the semiconductor wafer 410 and the insulating film portion 422 of the semiconductor chip 420 is made of the insulating film of the present disclosure. This is an insulating film that is a cured product obtained by curing the forming material. Therefore, a semiconductor device including an insulating film with excellent insulation reliability can be obtained.
(変形例)
 本開示の半導体装置及び半導体装置の製造方法では、第1電極及び第2電極を接合する構成について説明したが、本発明はこれらの構成に限定されない。
 例えば、本開示の半導体装置では、第1電極及び第2電極は、第1半導体基板及び第2半導体基板を貫通する貫通電極であってもよい。
 本開示の半導体装置の製造方法は、例えば、本開示の絶縁膜形成材料を第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の有機絶縁膜の作製に用い、以下の工程(1)’~工程(5)’を経て半導体装置を製造する方法であってもよい。
 工程(1)’ 第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶
縁膜を有する第1半導体基板を準備する。
 工程(2)’ 第2基板本体と、前記第2基板本体の一面に設けられた前記第2有機絶縁膜を有する第2半導体基板を準備する。
 工程(3)’ 前記第2半導体基板を個片化し、前記第2有機絶縁膜の一部に対応する有機絶縁膜部分を備えた複数の半導体チップを取得する。
 工程(4)’ 前記第1半導体基板の前記第1有機絶縁膜と前記半導体チップの前記有機絶縁膜部分とを互いに貼り合わせる。
 工程(5)’ 貼り合わせた第1半導体基板及び第2半導体基板の一部に貫通孔を設け、前記貫通孔に貫通電極を設ける。
 上記(5)’にて、貫通孔を設ける方法及び貫通電極を設ける方法としては、特に限定されない。例えば、エッチング等により貫通孔を設けてもよく、電界めっき、無電解めっき、スパッタリング等により貫通電極を設けてもよい。
(Modified example)
In the semiconductor device and semiconductor device manufacturing method of the present disclosure, a configuration in which the first electrode and the second electrode are bonded has been described, but the present invention is not limited to these configurations.
For example, in the semiconductor device of the present disclosure, the first electrode and the second electrode may be through electrodes that penetrate the first semiconductor substrate and the second semiconductor substrate.
The method for manufacturing a semiconductor device of the present disclosure includes, for example, using the insulating film forming material of the present disclosure for producing at least one of a first organic insulating film and a second organic insulating film, and performing the following step (1)' It may be a method of manufacturing a semiconductor device through steps (5)'.
Step (1)' A first semiconductor substrate having a first substrate body and the first organic insulating film provided on one surface of the first substrate body is prepared.
Step (2)' A second semiconductor substrate having a second substrate body and the second organic insulating film provided on one surface of the second substrate body is prepared.
Step (3)' The second semiconductor substrate is cut into pieces to obtain a plurality of semiconductor chips each having an organic insulating film portion corresponding to a part of the second organic insulating film.
Step (4)' The first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip are bonded together.
Step (5)' A through hole is provided in a part of the first semiconductor substrate and the second semiconductor substrate that are bonded together, and a through electrode is provided in the through hole.
In the above (5)', the method of providing the through hole and the method of providing the through electrode are not particularly limited. For example, a through hole may be provided by etching or the like, or a through electrode may be provided by electrolytic plating, electroless plating, sputtering, or the like.
 以下、実施例及び比較例に基づき、本開示についてさらに具体的に説明する。尚、本開示は下記実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail based on Examples and Comparative Examples. Note that the present disclosure is not limited to the following examples.
(合成例1(A1の合成))
 3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物(ODPA)62gと4,4’-ジアミノジフェニルエーテル23gとm-フェニレンジアミン5gとを3-メトキシ-N,N-ジメチルプロピオンアミド915gに溶解させた。得られた溶液を30℃で4時間、その後室温下で一晩撹拌し、ポリアミド酸を得た。そこに室温にて無水トリフルオロ酢酸78g及びメタクリル酸2-ヒドロキシエチル(HEMA)109gを加え、45℃で10時間撹拌した。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリイミド前駆体A1を得た。
 ゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により、A1の重量平均分子量を求めた。A1の重量平均分子量は22000であった。具体的には、A1 0.5mgを溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mLに溶解させた溶液を用い、以下の条件で測定した。
(測定条件)
測定装置:株式会社島津製作所SPD-M20A
ポンプ:株式会社島津製作所LC-20AD
カラムオーブン:株式会社島津製作所:CTO-20A
測定条件:カラムGelpack GL-S300MDT-5×2本
溶離液:THF/DMF=1/1(容積比)
    LiBr(0.03mol/L)、HPO(0.06mol/L)
 流速:1.0mL/min、検出器:UV270nm、カラム温度:40℃
 標準ポリスチレン:東ソー製 TSKgel standard Polystyrene Type F-1,F-4,F-20,F-80,A-2500にて検量線を作成
(Synthesis Example 1 (Synthesis of A1))
62 g of 3,3',4,4'-biphenyl ether tetracarboxylic dianhydride (ODPA), 23 g of 4,4'-diaminodiphenyl ether, and 5 g of m-phenylenediamine were mixed into 3-methoxy-N,N-dimethylpropionamide. It was dissolved in 915 g. The resulting solution was stirred at 30° C. for 4 hours and then at room temperature overnight to obtain a polyamic acid. 78 g of trifluoroacetic anhydride and 109 g of 2-hydroxyethyl methacrylate (HEMA) were added thereto at room temperature, and the mixture was stirred at 45° C. for 10 hours. This reaction solution was added dropwise to distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyimide precursor A1.
Using gel permeation chromatography (GPC), the weight average molecular weight of A1 was determined in terms of standard polystyrene. The weight average molecular weight of A1 was 22,000. Specifically, measurements were made under the following conditions using a solution in which 0.5 mg of A1 was dissolved in 1 mL of a solvent [tetrahydrofuran (THF)/dimethylformamide (DMF) = 1/1 (volume ratio)].
(Measurement condition)
Measuring device: Shimadzu Corporation SPD-M20A
Pump: Shimadzu Corporation LC-20AD
Column oven: Shimadzu Corporation: CTO-20A
Measurement conditions: Column Gelpack GL-S300MDT-5 x 2 Eluent: THF/DMF = 1/1 (volume ratio)
LiBr (0.03mol/L), H3PO4 ( 0.06mol /L)
Flow rate: 1.0 mL/min, detector: UV270 nm, column temperature: 40°C
Standard polystyrene: Create a calibration curve using Tosoh TSKgel standard Polystyrene Type F-1, F-4, F-20, F-80, A-2500
<エステル化率>
 以下の条件でNMR測定を行うことで、A1のエステル化率(HEMAと反応してなるエステル基及びHEMAと未反応のカルボキシ基の合計に対するHEMAと反応してなるエステル基の割合)を算出した。エステル化率は78モル%であり、未反応のカルボキシ基の割合は22モル%であった。
(測定条件)
測定機器:ブルカー・バイオスピン社 AV400M
磁場強度:400MHz
基準物質:テトラメチルシラン(TMS)
溶剤:ジメチルスルホキシド(DMSO)
<Esterification rate>
By performing NMR measurements under the following conditions, the esterification rate of A1 (ratio of ester groups reacted with HEMA to the total of ester groups reacted with HEMA and carboxyl groups not reacted with HEMA) was calculated. . The esterification rate was 78 mol%, and the proportion of unreacted carboxyl groups was 22 mol%.
(Measurement condition)
Measuring equipment: Bruker Biospin AV400M
Magnetic field strength: 400MHz
Reference material: Tetramethylsilane (TMS)
Solvent: dimethyl sulfoxide (DMSO)
[実施例1~19、比較例1]
(絶縁膜形成材料の調製)
 表1及び表2に示した成分及び配合量にて、実施例1~19及び比較例1の絶縁膜形成材料を以下のようにして調製した。表1及び表2の各成分の配合量の単位は質量部である。また、表1及び表2中の空欄は該当成分が未配合であることを意味する。各実施例及び比較例にて、各成分の混合物を一般的な耐溶剤性容器内にて室温で一晩混練した後、0.2μm孔のフィルターを用いて加圧ろ過を行った。得られた絶縁膜形成材料を用いて以下の評価を行った。
[Examples 1 to 19, Comparative Example 1]
(Preparation of insulating film forming material)
Insulating film forming materials of Examples 1 to 19 and Comparative Example 1 were prepared as follows using the components and blending amounts shown in Tables 1 and 2. The unit of the amount of each component in Tables 1 and 2 is parts by mass. In addition, a blank column in Tables 1 and 2 means that the corresponding component was not blended. In each Example and Comparative Example, the mixture of each component was kneaded overnight at room temperature in a general solvent-resistant container, and then filtered under pressure using a 0.2 μm pore filter. The following evaluations were performed using the obtained insulating film forming material.
 表1及び表2中の各成分は以下の通りである。
・(A)成分
 上述のA1
・(B)成分
 B1:テトラエチレングリコールジメタアクリレート
 B2:トリシクロデカンジメタノールジアクリレート
 B3:EO変性ビスフェノールAジアクリレート
 B4:アクリル酸2-フェノキシエチル
・(C)成分(溶剤)
 C1:3-メトキシ-N,N-ジメチルプロピオンアミド
・接着助剤
 接着助剤1:3-ウレイドプロピルトリエトキシシランの50%メタノール溶液
・(D)成分(光重合開始剤)
 D1:1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム
 D2:4,4’-ビス(ジエチルアミノ)ベンゾフェノン
・(F)成分(重合禁止剤)
 F1:1,4,4-トリメチル-2,3-ジアザビシクロ[3.2.2]ノナ-2-エン-2,3-ジオキシド
・防錆剤
 防錆剤1:ベンゾトリアゾール
 防錆剤2:5-アミノ-1H-テトラゾール
Each component in Tables 1 and 2 is as follows.
・(A) Component A1 mentioned above
・(B) Component B1: Tetraethylene glycol dimethacrylate B2: Tricyclodecane dimethanol diacrylate B3: EO modified bisphenol A diacrylate B4: 2-phenoxyethyl acrylate ・(C) component (solvent)
C1: 3-methoxy-N,N-dimethylpropionamide/adhesion aid Adhesion aid 1: 50% methanol solution of 3-ureidopropyltriethoxysilane/Component (D) (photopolymerization initiator)
D1: 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime D2: 4,4'-bis(diethylamino)benzophenone/(F) component (polymerization inhibitor)
F1: 1,4,4-trimethyl-2,3-diazabicyclo[3.2.2]non-2-ene-2,3-dioxide, rust inhibitor Rust inhibitor 1: Benzotriazole Rust inhibitor 2: 5 -amino-1H-tetrazole
[HAST試験]
 HAST(Highly Accelerated Temperature and
 Humidity Stress Test)試験により、絶縁膜の絶縁信頼性を評価した。図6に示すようなシリコンウェハー(SiO膜を有するSi基板)及びポリイミド(Polyimide)から成る一面に、チタン及び銅のスパッタリングを行った後に、電界めっきによって複数の銅電極を図6に示す間隔で設け、不要なスパッタ層は除去した。電極間に各実施例及び比較例の絶縁膜形成材料を硬化してなる絶縁膜を以下の条件で作製した。まず、絶縁膜形成材料を、塗布装置スピンコーターを用いて、シリコンウェハー上にスピンコートし、乾燥工程を行い樹脂膜を形成した。得られた樹脂膜に対してプロキシミティ露光機「マスクアライナーMA8」(ズース・マイクロテック株式会社製)を用い、現像後の残膜率が約80%以上となるような露光量で露光を行った。その後、樹脂膜を、クリーンオーブンを用いて、窒素雰囲気下で、230℃で所定時間加熱して硬化させることで絶縁膜を作製した。さらに、電極間に設けられた絶縁膜に対して、130℃、85%RH、3.3V、5V又は10VのHAST条件下で300時間処理を行った。さらに、HAST条件下において、100h又は300hでの絶縁膜の絶縁抵抗値を観測し、各実施例及び比較例における絶縁信頼性の評価を以下の基準で行った。結果を表1及び
表2に示す。
-評価基準-
 A・・・絶縁抵抗値1e+6Ω未満の観測が1回以下であった。
 B・・・試験時間が300h未満にて、絶縁抵抗値1e+6Ω未満が2回以上観測された。
[HAST test]
HAST (Highly Accelerated Temperature and
The insulation reliability of the insulating film was evaluated by a Humidity Stress Test) test. After sputtering titanium and copper on one side of a silicon wafer (Si substrate with a SiO 2 film) and polyimide as shown in FIG. 6, a plurality of copper electrodes are formed by electroplating at the intervals shown in FIG. The unnecessary sputtered layer was removed. An insulating film formed by curing the insulating film forming material of each Example and Comparative Example between electrodes was produced under the following conditions. First, an insulating film forming material was spin-coated onto a silicon wafer using a spin coater coating device, and a drying process was performed to form a resin film. The obtained resin film was exposed using a proximity exposure machine "Mask Aligner MA8" (manufactured by SUSS Microtech Co., Ltd.) at an exposure amount such that the residual film rate after development was approximately 80% or more. Ta. Thereafter, the resin film was cured by heating at 230° C. for a predetermined time in a nitrogen atmosphere in a clean oven, thereby producing an insulating film. Furthermore, the insulating film provided between the electrodes was treated under HAST conditions of 130° C., 85% RH, 3.3 V, 5 V, or 10 V for 300 hours. Further, under HAST conditions, the insulation resistance value of the insulation film was observed for 100 hours or 300 hours, and the insulation reliability in each Example and Comparative Example was evaluated based on the following criteria. The results are shown in Tables 1 and 2.
-Evaluation criteria-
A: An insulation resistance value of less than 1 e+6 Ω was observed no more than once.
B: An insulation resistance value of less than 1 e+6 Ω was observed two or more times when the test time was less than 300 hours.
[熱圧着性の評価]
(チップ付き絶縁膜の作製)
 実施例1~19及び比較例1の絶縁膜形成材料を、塗布装置スピンコーターを用いて、6インチシリコンウェハー又はガラス基板上にスピンコートし、乾燥工程を行い樹脂膜を形成した。得られた樹脂膜に対してプロキシミティ露光機「マスクアライナーMA8」(ズース・マイクロテック株式会社製)を用いて現像後の残膜率が約80%以上となるような露光量で露光を行った。その後、樹脂膜を、クリーンオーブンを用いて、窒素雰囲気下で、230℃で所定時間加熱して硬化させることで、硬化後膜厚約10μmである絶縁膜を得た。
 シリコンウェハー上に形成した絶縁膜の一部をブレードダイサー(DISCO DAD
-3360)によって4mm角に個片化することで樹脂付きチップを得た。得られた樹脂付きチップをシリコンウェハー又はガラス基板上に形成した絶縁膜に対し、熱圧着装置(
日化設備エンジニアリング株式会社)によって所定圧力及び210℃で3分間圧着した。
その後、絶縁膜同士の熱圧着性について後述の評価を実施した。
[Evaluation of thermocompression bondability]
(Preparation of insulating film with chip)
The insulating film forming materials of Examples 1 to 19 and Comparative Example 1 were spin-coated onto a 6-inch silicon wafer or glass substrate using a spin coater coating device, and a drying process was performed to form a resin film. The obtained resin film was exposed using a proximity exposure machine "Mask Aligner MA8" (manufactured by SUSS Microtech Co., Ltd.) at an exposure amount such that the residual film rate after development was approximately 80% or more. Ta. Thereafter, the resin film was cured by heating at 230° C. for a predetermined time in a nitrogen atmosphere using a clean oven, thereby obtaining an insulating film having a thickness of about 10 μm after curing.
A part of the insulating film formed on the silicon wafer is cut using a blade dicer (DISCO DAD).
-3360) to obtain chips with resin. The resulting resin-coated chip is bonded to an insulating film formed on a silicon wafer or glass substrate using a thermocompression device (
Pressure bonding was carried out for 3 minutes at a predetermined pressure and 210° C. using Nikka Setsei Engineering Co., Ltd.).
Thereafter, the thermocompression adhesion between the insulating films was evaluated as described below.
(熱圧着後の評価)
 各実施例及び比較例について、熱圧着性の評価を複数回行い、(熱圧着性良好であった回数/熱圧着性の評価回数)で評価した。具体的には、熱圧着後にピンセットを用いて樹脂付きチップのみをつかみ、その樹脂付きチップを持ち上げた際に、シリコンウェハー又はガラス基板をその樹脂付きチップと共に持ち上げられた場合、熱圧着性の評価が良好と判断した。一方、ピンセットを用いて樹脂付きチップを持ち上げた際に、シリコンウェハー又はガラス基板が剥離し、樹脂付きチップのみを持ち上げられた場合、熱圧着性の評価は不良と判断した。結果を表1及び表2に示す。
(Evaluation after thermocompression bonding)
For each Example and Comparative Example, the thermocompression bondability was evaluated multiple times and evaluated as (number of times the thermocompression bondability was good/number of times the thermocompression bondability was evaluated). Specifically, after thermocompression bonding, only the resin-coated chip is grabbed using tweezers, and when the resin-coated chip is lifted, the silicon wafer or glass substrate is lifted together with the resin-coated chip, and the thermocompression bondability is evaluated. was judged to be good. On the other hand, when the silicon wafer or glass substrate peeled off when the resin-coated chip was lifted using tweezers, and only the resin-coated chip was lifted, the evaluation of thermocompression bondability was determined to be poor. The results are shown in Tables 1 and 2.
 表1及び表2に示すように、実施例1~19では、比較例1と比較して絶縁信頼性に優れる絶縁膜を形成可能であった。 As shown in Tables 1 and 2, in Examples 1 to 19, it was possible to form insulating films with superior insulation reliability compared to Comparative Example 1.
 2022年3月9日に出願された日本国特許出願2022-036649の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-036649 filed on March 9, 2022 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
 1,1a,401…半導体装置、10…第1半導体チップ、20…第2半導体チップ、30…ピラー部、40…再配線層、50…基板、60…回路基板、61…端子電極、100…第1半導体基板、101…第1基板本体、101a…一面、102…絶縁膜(第1絶縁膜)、103…端子電極(第1電極)、103a…表面、200…第2半導体基板、201…第2基板本体、201a…一面、202…絶縁膜(第2絶縁膜)、203…端子電極(第2電極)、203a…表面、205…半導体チップ、300…ピラー、301…樹脂、410…半導体ウェハー(第1半導体基板)、411…基板本体(第1基板本体)、412…絶縁膜(第1絶縁膜)、413…端子電極(第1電極)、420…半導体チップ(第2半導体基板)、421…基板本体(第2基板本体)、422…絶縁膜部分(第2絶縁膜)、423…端子電極(第2電極)、A…切断線、H…熱、M1~M3…半製品、S1…絶縁接合部分、S2…電極接合部分、S3…絶縁接合部分、S4…電極接合部分。 DESCRIPTION OF SYMBOLS 1, 1a, 401... Semiconductor device, 10... First semiconductor chip, 20... Second semiconductor chip, 30... Pillar part, 40... Rewiring layer, 50... Substrate, 60... Circuit board, 61... Terminal electrode, 100... First semiconductor substrate, 101... First substrate body, 101a... One side, 102... Insulating film (first insulating film), 103... Terminal electrode (first electrode), 103a... Surface, 200... Second semiconductor substrate, 201... Second substrate body, 201a... One side, 202... Insulating film (second insulating film), 203... Terminal electrode (second electrode), 203a... Surface, 205... Semiconductor chip, 300... Pillar, 301... Resin, 410... Semiconductor Wafer (first semiconductor substrate), 411...Substrate body (first substrate body), 412...Insulating film (first insulating film), 413...Terminal electrode (first electrode), 420...Semiconductor chip (second semiconductor substrate) , 421... Substrate body (second substrate body), 422... Insulating film portion (second insulating film), 423... Terminal electrode (second electrode), A... Cutting line, H... Heat, M1 to M3... Semi-finished product, S1...Insulating bonding portion, S2...Electrode bonding portion, S3...Insulating bonding portion, S4...Electrode bonding portion.

Claims (13)

  1.  (A)ポリアミド酸、ポリアミド酸エステル、ポリアミド酸塩及びポリアミド酸アミドからなる群より選択される少なくとも1種の樹脂であるポリイミド前駆体と、
     (B)重合性モノマーと、を含み、
     前記(B)重合性モノマーに分類されるアルキレンオキシド鎖及び(メタ)アクリル基を含む化合物の含有量は、前記(A)ポリイミド前駆体100質量部に対して20質量部未満である、ハイブリッドボンディングにより絶縁膜を形成するための絶縁膜形成材料。
    (A) a polyimide precursor that is at least one resin selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, and polyamic acid amide;
    (B) a polymerizable monomer;
    Hybrid bonding, wherein the content of the compound containing an alkylene oxide chain and (meth)acrylic group classified as the polymerizable monomer (B) is less than 20 parts by mass based on 100 parts by mass of the polyimide precursor (A). An insulating film forming material for forming an insulating film.
  2.  前記(B)重合性モノマーは、アルキレンオキシド鎖及び(メタ)アクリル基を含む化合物、脂環式構造及び(メタ)アクリル基を含む化合物、並びに、芳香環構造及び(メタ)アクリル基を含む化合物からなる群より選択される少なくとも1種を含む請求項1に記載の絶縁膜形成材料。 The polymerizable monomer (B) is a compound containing an alkylene oxide chain and a (meth)acrylic group, a compound containing an alicyclic structure and a (meth)acrylic group, and a compound containing an aromatic ring structure and a (meth)acrylic group. The insulating film forming material according to claim 1, comprising at least one selected from the group consisting of:
  3.  前記(B)重合性モノマーは、アルキレンオキシド鎖及び(メタ)アクリル基を含む化合物並びに脂環式構造及び(メタ)アクリル基を含む化合物を含む請求項1に記載の絶縁膜形成材料。 The insulating film forming material according to claim 1, wherein the polymerizable monomer (B) includes a compound containing an alkylene oxide chain and a (meth)acrylic group, and a compound containing an alicyclic structure and a (meth)acrylic group.
  4.  前記(B)重合性モノマーの含有量は、前記(A)ポリイミド前駆体100質量部に対して30質量部以下である請求項1~請求項3のいずれか1項に記載の絶縁膜形成材料。 The insulating film forming material according to any one of claims 1 to 3, wherein the content of the polymerizable monomer (B) is 30 parts by mass or less based on 100 parts by mass of the polyimide precursor (A). .
  5.  (C)溶剤をさらに含み、前記(C)溶剤は下記式(3)~式(7)で表される化合物からなる群より選択される少なくとも一種を含む請求項1~請求項4のいずれか1項に記載の絶縁膜形成材料。

     
     式(3)~(7)中、R、R、R及びR10は、それぞれ独立に、炭素数1~4のアルキル基であり、R~R及びRは、それぞれ独立に、水素原子又は炭素数1~4のアルキル基である。sは0~8の整数であり、tは0~4の整数であり、rは0~4の整数であり、uは0~3の整数である。
    Any one of claims 1 to 4, further comprising (C) a solvent, wherein the (C) solvent comprises at least one type selected from the group consisting of compounds represented by the following formulas (3) to (7). The insulating film forming material according to item 1.


    In formulas (3) to (7), R 1 , R 2 , R 8 and R 10 are each independently an alkyl group having 1 to 4 carbon atoms, and R 3 to R 7 and R 9 are each independently an alkyl group having 1 to 4 carbon atoms. In addition, it is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. s is an integer from 0 to 8, t is an integer from 0 to 4, r is an integer from 0 to 4, and u is an integer from 0 to 3.
  6.  前記(C)溶剤は前記式(5)で表される化合物を少なくとも含む請求項5に記載の絶縁膜形成材料。 The insulating film forming material according to claim 5, wherein the solvent (C) contains at least a compound represented by the formula (5).
  7.  (D)光重合開始剤をさらに含む請求項1~請求項6のいずれか1項に記載の絶縁膜形成材料。 The insulating film forming material according to any one of claims 1 to 6, further comprising (D) a photopolymerization initiator.
  8.  前記(A)ポリイミド前駆体は、下記一般式(1)で表される構造単位を有する化合物を含む請求項1~請求項7のいずれか1項に記載の絶縁膜形成材料。

     一般式(1)中、Xは4価の有機基を表し、Yは2価の有機基を表し、R及びRは、それぞれ独立に、水素原子、又は1価の有機基を表す。
    The insulating film forming material according to any one of claims 1 to 7, wherein the polyimide precursor (A) contains a compound having a structural unit represented by the following general formula (1).

    In general formula (1), X represents a tetravalent organic group, Y represents a divalent organic group, and R 6 and R 7 each independently represent a hydrogen atom or a monovalent organic group.
  9.  前記一般式(1)中、前記Xで表される4価の有機基は、下記式(E)で表される基である請求項8に記載の絶縁膜形成材料。

     
     式(E)において、Cは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。
    The insulating film forming material according to claim 8, wherein the tetravalent organic group represented by X in the general formula (1) is a group represented by the following formula (E).


    In formula (E), C represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a phenylene group, an ester bond (-O -C(=O)-), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O- (Si(R B ) 2 -O-) n ; Two R B 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or at least these Represents a combination of two divalent groups.
  10.  前記一般式(1)中、前記Yで表される2価の有機基は、下記式(H)で表される基である請求項8又は請求項9に記載の絶縁膜形成材料。

     
     式(H)において、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基、フェニル基又はハロゲン原子を表し、nは、それぞれ独立に、0~4の整数を
    表す。Dは、単結合、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、フェニレン基、エステル結合(-O-C(=O)-)、シリレン結合(-Si(R-;2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);2つのRは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)又はこれらを少なくとも2つ組み合わせた2価の基を表す。
    The insulating film forming material according to claim 8 or 9, wherein the divalent organic group represented by Y in the general formula (1) is a group represented by the following formula (H).


    In formula (H), R each independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, a phenyl group, or a halogen atom, and n each independently represents an integer of 0 to 4. D is a single bond, alkylene group, halogenated alkylene group, carbonyl group, sulfonyl group, ether bond (-O-), sulfide bond (-S-), phenylene group, ester bond (-O-C(=O) -), silylene bond (-Si(R A ) 2 -; two R A 's each independently represent a hydrogen atom, an alkyl group, or a phenyl group), siloxane bond (-O-(Si(R B ) 2 -O-) n ; Two R B each independently represent a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.) or a divalent combination of at least two of these. represents the group of
  11.  前記一般式(1)中、前記R及び前記Rにおける前記1価の有機基は、下記一般式(2)で表される基、エチル基、イソブチル基又はt-ブチル基のいずれかである請求項8~請求項10のいずれか1項に記載の絶縁膜形成材料。

     
     一般式(2)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、Rは2価の連結基を表す。
    In the general formula (1), the monovalent organic group in R 6 and R 7 is a group represented by the following general formula (2), an ethyl group, an isobutyl group, or a t-butyl group. The insulating film forming material according to any one of claims 8 to 10.


    In general formula (2), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and R x represents a divalent linking group.
  12.  請求項1~請求項11のいずれか1項に記載の絶縁膜形成材料を第1有機絶縁膜及び第2有機絶縁膜の少なくとも一方の有機絶縁膜の作製に用い、以下の工程(1)~工程(5)を経て半導体装置を製造する半導体装置の製造方法。
     工程(1) 第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板を準備する。
     工程(2) 第2基板本体と、前記第2基板本体の一面に設けられた前記第2有機絶縁膜及び複数の第2電極とを有する第2半導体基板を準備する。
     工程(3) 前記第2半導体基板を個片化し、前記第2有機絶縁膜の一部に対応する有機絶縁膜部分と少なくとも1つの前記第2電極とをそれぞれが備えた複数の半導体チップを取得する。
     工程(4) 前記第1半導体基板の前記第1有機絶縁膜と前記半導体チップの前記有機絶縁膜部分とを互いに貼り合わせる。
     工程(5) 前記第1半導体基板の前記第1電極と前記半導体チップの前記第2電極とを接合する。
    The insulating film forming material according to any one of claims 1 to 11 is used for producing at least one of the first organic insulating film and the second organic insulating film, and the following steps (1) to A method for manufacturing a semiconductor device, comprising manufacturing a semiconductor device through step (5).
    Step (1) A first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body is prepared.
    Step (2) A second semiconductor substrate having a second substrate body, the second organic insulating film and a plurality of second electrodes provided on one surface of the second substrate body is prepared.
    Step (3) Divide the second semiconductor substrate into pieces to obtain a plurality of semiconductor chips each including an organic insulating film portion corresponding to a part of the second organic insulating film and at least one second electrode. do.
    Step (4) Bonding the first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip to each other.
    Step (5) Joining the first electrode of the first semiconductor substrate and the second electrode of the semiconductor chip.
  13.  第1基板本体と、前記第1基板本体の一面に設けられた前記第1有機絶縁膜及び第1電極とを有する第1半導体基板と、
     半導体チップ基板本体と、前記半導体チップ基板本体の一面に設けられた有機絶縁膜部分及び第2電極とを有する半導体チップと、
     を備え、前記第1半導体基板の前記第1有機絶縁膜と、前記半導体チップの前記有機絶縁膜部分と、が接合し、前記第1半導体基板の前記第1電極と、前記半導体チップの前記第2電極と、が接合し、
     前記第1有機絶縁膜及び前記有機絶縁膜部分の少なくとも一方が請求項1~請求項11のいずれか1つに記載の絶縁膜形成材料を硬化してなる有機絶縁膜である半導体装置。
    a first semiconductor substrate having a first substrate body, the first organic insulating film and a first electrode provided on one surface of the first substrate body;
    a semiconductor chip having a semiconductor chip substrate body, an organic insulating film portion and a second electrode provided on one surface of the semiconductor chip substrate body;
    The first organic insulating film of the first semiconductor substrate and the organic insulating film portion of the semiconductor chip are bonded to each other, and the first electrode of the first semiconductor substrate and the first organic insulating film portion of the semiconductor chip are bonded to each other. 2 electrodes are joined,
    A semiconductor device, wherein at least one of the first organic insulating film and the organic insulating film portion is an organic insulating film formed by curing the insulating film forming material according to any one of claims 1 to 11.
PCT/JP2022/037511 2022-03-09 2022-10-06 Insulation film forming material, semiconductor device manufacturing method, and semiconductor device WO2023171014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036649 2022-03-09
JP2022036649 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171014A1 true WO2023171014A1 (en) 2023-09-14

Family

ID=87936514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037511 WO2023171014A1 (en) 2022-03-09 2022-10-06 Insulation film forming material, semiconductor device manufacturing method, and semiconductor device

Country Status (2)

Country Link
TW (1) TW202402853A (en)
WO (1) WO2023171014A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066395A1 (en) * 2016-10-05 2018-04-12 東レ株式会社 Resin composition, cured film, semiconductor device and method for producing same
WO2020071437A1 (en) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition, method for manufacturing pattern-cured product, cured product, interlayer insulation film, cover coat layer, surface protection film, and electronic component
WO2020071201A1 (en) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition, method for producing patterned cured product, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component
JP2021197430A (en) * 2020-06-12 2021-12-27 昭和電工マテリアルズ株式会社 Method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066395A1 (en) * 2016-10-05 2018-04-12 東レ株式会社 Resin composition, cured film, semiconductor device and method for producing same
WO2020071437A1 (en) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition, method for manufacturing pattern-cured product, cured product, interlayer insulation film, cover coat layer, surface protection film, and electronic component
WO2020071201A1 (en) * 2018-10-03 2020-04-09 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition, method for producing patterned cured product, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component
JP2021197430A (en) * 2020-06-12 2021-12-27 昭和電工マテリアルズ株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW202402853A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5935323B2 (en) Photosensitive adhesive composition, photosensitive adhesive film, and semiconductor device using the same
WO2022071329A1 (en) Resin composition, method for producing semiconductor device, cured object, semiconductor device, and method for synthesizing polyimide precursor
KR20010101365A (en) Polyamic acid ester
JP7443970B2 (en) Photosensitive resin composition, cured product, method for producing patterned cured product, and electronic components
JP2022110943A (en) Resin composition, method for manufacturing laminate and cured film
WO2023171014A1 (en) Insulation film forming material, semiconductor device manufacturing method, and semiconductor device
JP2018146964A (en) Photosensitive resin composition, method for producing pattern cured product, cured product, interlayer insulation film, cover coat layer, surface protective film and electronic component
JP2023132964A (en) Insulation film-forming material, method for producing semiconductor device and semiconductor device
WO2023181637A1 (en) Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device
JP2023120167A (en) Photosensitive resin composition, polyimide cured film, and method of producing them
JP2023136961A (en) Insulation film formation material, method for manufacturing semiconductor device, and semiconductor device
JP2023136962A (en) Insulation film formation material, method for manufacturing semiconductor device, and semiconductor device
JP2023151490A (en) Polyimide precursor, hybrid bonding insulation film-forming material, method for producing semiconductor device, and semiconductor device
WO2023195202A1 (en) Hybrid bonding insulation film-forming material, method for manufacturing semiconductor device, and semiconductor device
JP2023151489A (en) Hybrid bonding insulating film forming material, semiconductor device manufacturing method, and semiconductor device
CN114502617B (en) Polyimide precursor, photosensitive resin composition, interlayer insulating film, covercoat, surface protective film, and electronic component
JP2023039804A (en) Resin composition, method for manufacturing semiconductor device, cured product, and semiconductor device
WO2023195322A1 (en) Method for manufacturing semiconductor device, hybrid bonding insulating film forming material, and semiconductor device
JP7009803B2 (en) Photosensitive resin composition, manufacturing method of pattern cured product, cured product, interlayer insulating film, cover coat layer, surface protective film and electronic components
WO2018179330A1 (en) Photosensitive resin composition, method for manufacturing pattern cured film, cured product, interlayer insulation film, cover coating layer, surface protective film, and electronic component
JP2020160328A (en) Photosensitive resin composition, wiring layer and semiconductor device
JP2020064205A (en) Photosensitive resin composition, and method for producing cured relief pattern
WO2024084636A1 (en) Photosensitive resin composition, cured product, method for producing patterned cured product, and electronic component
JP2023181868A (en) Photosensitive resin composition, cured product, method for producing cured pattern, and electronic component
WO2023021688A1 (en) Photosensitive resin composition, electronic device manufacturing method, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930991

Country of ref document: EP

Kind code of ref document: A1