WO2023195067A1 - ガス分析計 - Google Patents

ガス分析計 Download PDF

Info

Publication number
WO2023195067A1
WO2023195067A1 PCT/JP2022/017085 JP2022017085W WO2023195067A1 WO 2023195067 A1 WO2023195067 A1 WO 2023195067A1 JP 2022017085 W JP2022017085 W JP 2022017085W WO 2023195067 A1 WO2023195067 A1 WO 2023195067A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
width
mirror
collimated light
concave portion
Prior art date
Application number
PCT/JP2022/017085
Other languages
English (en)
French (fr)
Inventor
正敬 大登
直希 武田
亮一 東
波 李
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2023566000A priority Critical patent/JP7533801B2/ja
Priority to CN202280030569.5A priority patent/CN117255938A/zh
Priority to EP22936467.4A priority patent/EP4317945A4/en
Priority to PCT/JP2022/017085 priority patent/WO2023195067A1/ja
Publication of WO2023195067A1 publication Critical patent/WO2023195067A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8557Special shaping of flow, e.g. using a by-pass line, jet flow, curtain flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light

Definitions

  • the present invention relates to a gas analyzer.
  • Patent Document 1 Japanese Patent Application Publication No. 2001-188043
  • Patent Document 1 Quantitative Spectroscopy Radiative Transfer Vol. 56, No. 2, pp. 187-208, 1996, Johan Mellqvist and Arne Rosen "DOAS FOR FLUE GAS MONITORING - I. TEMPERATURE EFFECTS IN THE UV/VISIBLE ABSORPTION SPECTRA OF NO, N02, SO2 AND NH3”
  • the gas analyzer can measure gas concentration with high accuracy.
  • a first aspect of the present invention provides a gas analyzer that measures the concentration of a component to be measured contained in a sample gas.
  • the gas analyzer may include a light source unit that emits light including an absorption wavelength of the component to be measured.
  • the gas analyzer may include a collimating section that converts the light into collimated light.
  • the gas analyzer may include a cell in which one or more reflecting mirrors that reflect the light are housed in a space sealed with the sample gas.
  • the gas analyzer may include a light receiving element that acquires the radiation spectrum of the light that has passed through the cell.
  • the gas analyzer may include a processing section that processes the light reception signal of the light receiving element and measures the concentration of the component to be measured.
  • the one or more reflective mirrors may include a first reflective mirror on which the collimated light is first reflected.
  • the first reflecting mirror may include a concave portion that reflects the collimated light.
  • the width of the concave portion may be smaller than the width of the collimated light.
  • the entire width of the first reflecting mirror may be smaller than the width of the collimated light.
  • the width of the concave surface portion may be 80% or less of the width of the collimated light.
  • the width of the concave surface portion may be 50% or more of the width of the collimated light.
  • the one or more reflecting mirrors may include a second reflecting mirror arranged after the first reflecting mirror.
  • the second reflecting mirror may include a concave portion that reflects the collimated light.
  • the width of the concave portion of the second reflecting mirror may be smaller than the width of the collimated light.
  • the width of the concave portion of the first reflecting mirror and the width of the concave portion of the second reflecting mirror may be the same.
  • the width of the concave portion of the second reflecting mirror may be larger than the width of the concave portion of the first reflecting mirror.
  • the one or more reflective mirrors may include a folding reflective mirror that reflects the collimated light irradiated from the second reflective mirror onto the second reflective mirror.
  • the folding reflection mirror may include a concave portion that reflects the collimated light.
  • the width of the concave portion of the folding reflection mirror may be smaller than the width of the collimated light.
  • the one or more reflective mirrors reflect the collimated light irradiated from the first reflective mirror onto the second reflective mirror, and reflect the collimated light irradiated from the second reflective mirror to the first reflective mirror.
  • the central reflection mirror may include a concave portion that reflects the collimated light.
  • the width of the concave surface portion may be larger than the width of the collimated light.
  • the gas analyzer includes a notch filter that is disposed on any one of the optical paths from the light source section to the light receiving element and has a limiting band that reduces the intensity at one of the peaks of the radiation spectrum of the light emitted from the light source section. may be provided.
  • FIG. 2 is a diagram showing an example of a gas analyzer 200.
  • FIG. FIG. 1 is a diagram showing an example of the configuration of a gas analyzer 100 according to a first embodiment.
  • 3 is a diagram showing an example of a radiation spectrum of light 106 emitted from a light source unit 120.
  • FIG. FIG. 3 is a diagram showing the relationship between the intensity of light 106 at a predetermined wavelength and measurement error.
  • 5 is a diagram showing an example of transmission characteristics of a notch filter 110.
  • FIG. 5 is a diagram showing an example of a radiation spectrum of light 106 incident on a light receiving element 126 when a notch filter 110 is used.
  • FIG. It is a figure which shows the other example of a structure of the gas analyzer 100.
  • FIG. 5 is a diagram illustrating an example of adjusting the wavelength of a limited band of a notch filter 110.
  • FIG. FIG. 3 is a diagram showing a reflection mirror at a stage subsequent to the notch filter 110. 3 is a diagram of a reflective surface 150 of a reflective mirror at a stage subsequent to the notch filter 110, viewed from the traveling direction of the light 106.
  • FIG. It is a figure which shows the other example of a structure of the gas analyzer 100. It is a figure explaining gas analyzer 100 concerning a 2nd example.
  • FIG. 3 is a diagram showing the concave surface portion 151 of the first reflecting mirror 114-1 and the spot 192 of the collimated light 106 at the position of the concave surface portion 151, viewed from the traveling direction of the collimated light 106.
  • FIG. 3 is a diagram of the concave surface portion 151 of the second reflecting mirror 114-2 as viewed from the traveling direction of the collimated light 106.
  • FIG. 3 is a diagram showing a concave portion 151 of the central reflecting mirror 112 and a spot 192 of the collimated light 106 at the position of the concave portion 151 as viewed from the direction in which the collimated light 106 travels.
  • FIG. 7 is a diagram illustrating another example of the shape of the concave portion 151 of the central reflecting mirror 112.
  • FIG. 3 is a diagram of a concave surface portion 151 of a folding reflection mirror 115 viewed from the direction in which collimated light 106 travels.
  • FIG. 3 is a diagram illustrating an operation test of the gas analyzer 100. It is a figure which shows the measured value of the amount of light received by the light receiving element 126 in a reference example.
  • FIG. 7 is a diagram showing measured values of the amount of light received by the light receiving element 126 in the second example. It is a figure showing gas analyzer 100 concerning a 3rd example.
  • FIG. 1 is a diagram showing an example of a gas analyzer 200.
  • the gas analyzer 200 measures the concentration of the target component contained in the target gas passing through the flue 10 .
  • the gas to be measured is, for example, exhaust gas from an engine, but is not limited thereto.
  • the components to be measured include, but are not limited to, sulfur oxides (SO x ), nitrogen oxides (NO x ), ammonia (NH 3 ), and the like.
  • the gas analyzer 200 includes a gas intake pipe 11, a gas exhaust pipe 12, and a gas analyzer 100.
  • the gas analyzer 200 may further include at least one of a gas filter 14 , a preheater 15 , a preheating temperature controller 16 , and a pump 17 .
  • the gas intake pipe 11 and the gas exhaust pipe 12 are connected to the flue 10.
  • the gas suction pipe 11 introduces sample gas 30, which is part of the gas to be measured flowing into the flue 10, into the gas analyzer 100.
  • the gas analyzer 100 measures the concentration of the gas to be measured contained in the sample gas 30.
  • the gas discharge pipe 12 discharges the sample gas 30 processed by the gas analyzer 100 to the flue 10 .
  • the gas suction pipe 11 may be connected to a gas filter 14 that removes dust from the sample gas 30.
  • the gas suction pipe 11 may be connected to a preheater 15 that preheats the sample gas 30.
  • the temperature of the preheater 15 may be adjusted by a preheating temperature regulator 16.
  • the gas exhaust pipe 12 may be connected to a pump 17 . Pump 17 sucks sample gas 30 from gas analyzer 100 and discharges sample gas 30 into flue 10 .
  • the gas analyzer 100 measures the concentration of the component to be measured contained in the introduced sample gas 30.
  • the gas analyzer 100 measures the concentration of the component to be measured by differential absorption spectrophotometry (DOAS) as disclosed in Non-Patent Document 1, for example.
  • DOAS differential absorption spectrophotometry
  • the gas component absorbs light with a specific absorption wavelength depending on the type of gas. The degree to which light is absorbed varies depending on the concentration of gas components.
  • differential absorption spectrometry light containing a wavelength component corresponding to the component to be measured is passed through the sample gas 30, and the intensity of the wavelength component before and after passing is compared, thereby determining the component to be measured contained in the sample gas 30. Measure concentration.
  • the gas analyzer 100 includes a cell 113, a light source section 120, a light receiving element 126, and a processing section 127.
  • the gas analyzer 100 may further include at least one of a heater 118, a temperature adjustment section 119, and a spectrometer 122.
  • the light source section 120 emits the light 106.
  • the light source unit 120 emits light 106 including the absorption wavelength of the component to be measured.
  • the light source unit 120 is, for example, a flash lamp whose light emission time can be controlled to be extremely short.
  • the light source unit 120 may be a Xe flash lamp. By using a Xe flash lamp as the light source section 120, the light 106 can be stably emitted. It is preferable that the light source section 120 of this example emits light at a constant light emission period.
  • the light 106 is light in the ultraviolet (wavelength range: 200 nm to 400 nm) region.
  • the cell 113 seals the sample gas 30.
  • the sample gas 30 may be introduced into the cell 113 via the gas suction pipe 11. Further, after the analysis is completed, the sample gas 30 may be discharged from the cell 113 via the gas discharge pipe 12.
  • the light 106 from the light source section 120 is incident on the cell 113.
  • the light 106 passes through the sample gas 30 inside the cell 113 and is emitted to the outside of the cell 113.
  • Cell 113 may be a multiple reflection cell. In this case, the light 106 incident on the cell 113 is repeatedly reflected inside the cell 113 and is emitted to the outside of the cell 113.
  • a heater 118 may be provided in the cell 113 to maintain the temperature of the sample gas 30 at a predetermined temperature.
  • Cell 113 may be in contact with heater 118.
  • the temperature of the heater 118 may be controlled by a temperature controller 119.
  • the light receiving element 126 acquires the radiation spectrum of the light 106 that has passed through the cell 113.
  • the light receiving element 126 measures the intensity of the light 106 separated by the spectrometer 122.
  • Spectrometer 122 may split light 106 into multiple wavelength bands within a predetermined wavelength range.
  • the predetermined wavelength range is, for example, a wavelength range of 200 nm or more and 500 nm or less. The wavelength range is not limited to this.
  • the light receiving element 126 obtains the radiation spectrum of the light 106 by obtaining the intensity of the light 106 for each wavelength band.
  • the light receiving element 126 acquires the intensity of the light 106 for each wavelength band.
  • the light receiving element 126 is, for example, a CMOS (complementary metal oxide semiconductor) line sensor.
  • the radiation spectrum of the light 106 acquired by the light receiving element 126 is transmitted to the processing unit 127 as a light reception signal.
  • the processing unit 127 processes the light reception signal of the light receiving element 126.
  • the processing unit 127 may convert the received light signal into a digital signal and perform digital arithmetic processing on the signal.
  • the processing unit 127 measures the concentration of the measurement target component contained in the sample gas 30 based on the light reception signal of the light reception element 126.
  • the processing unit 127 acquires the change in the intensity of the light 106 at the absorption wavelength of the component to be measured (that is, the change in the intensity of the light 106 that has passed through the cell 113 with respect to the intensity of the light 106 emitted by the light source unit 120). , the concentration of the component to be measured may be measured.
  • the processing unit 127 is connected to the light receiving element 126 by wire via the communication line 149, but the connection may be made wirelessly.
  • FIG. 2 is a diagram showing an example of the configuration of the gas analyzer 100 according to the first embodiment.
  • the heater 118 and the temperature adjustment section 119 are omitted.
  • the gas analyzer 100 of this example further includes a collimating lens 142.
  • the collimating lens 142 converts the light 106 emitted by the light source section 120 into collimated light.
  • the collimated light is light that is closer to parallel light than the light 106 emitted from the light source section 120.
  • the collimated light does not need to be completely parallel light.
  • the collimating lens 142 condenses the light 106 and emits collimated light in which the spread of the light 106 is suppressed.
  • the cell 113 seals the sample gas 30.
  • the cell 113 is provided with an entrance window 140 and an exit window 141. Although the entrance window 140 and the exit window 141 are provided on the same surface of the cell 113 in FIG. 2, the entrance window 140 and the exit window 141 may be provided on different surfaces.
  • the light 106 passes through the entrance window 140 and enters the inside of the cell 113 .
  • the light 106 that has passed through the sample gas 30 inside the cell 113 passes through the exit window 141 and is emitted to the outside of the cell 113 .
  • one or more reflective mirrors that reflect the light 106 are housed in a space sealed with the sample gas 30.
  • the reflecting mirror is arranged so that the light 106 introduced into the cell 113 is reflected multiple times inside the cell 113.
  • reflective mirrors are arranged near both ends of the cell 113 in the longitudinal direction.
  • the light 106 reciprocates inside the cell 113 along the longitudinal direction of the cell 113.
  • a first reflective mirror 114-1, a second reflective mirror 114-2, and a central reflective mirror 112 are provided inside the cell 113.
  • the first reflection mirror 114-1 is a reflection mirror that the light 106 that has passed through the entrance window 140 reaches first.
  • the second reflection mirror 114-2 is the reflection mirror on which the light 106 passing through the exit window 141 is finally reflected.
  • the central reflecting mirror 112 further reflects the light 106 reflected by the first reflecting mirror 114-1. Further, the central reflection mirror 112 reflects any of the incident light beams 106 toward the second reflection mirror 114-2.
  • the central reflecting mirror 112 reflects the light 106 that has entered from the first reflecting mirror 114-1 toward the second reflecting mirror 114-2.
  • the light 106 reflected by the second reflecting mirror 114-2 exits from the exit window 141 to the outside of the cell 113.
  • the central reflecting mirror 112, the first reflecting mirror 114-1, and the second reflecting mirror 114-2 are arranged so that their reflecting surfaces 150 face each other. Light 106 is reflected at each reflective surface 150.
  • the central reflection mirror 112 is arranged at the end of the cell 113 in the longitudinal direction on the side where the entrance window 140 and the exit window 141 are provided.
  • the first reflecting mirror 114-1 and the second reflecting mirror 114-2 are arranged at the end of the cell 113 in the longitudinal direction on the opposite side from the central reflecting mirror 112.
  • two reflecting mirrors 114 are arranged at positions facing the central reflecting mirror 112, but in other examples, more reflecting mirrors 114 may be arranged at positions facing the central reflecting mirror 112. good.
  • the number of times that the light 106 travels back and forth inside the cell 113 can be increased, and the distance that the light 106 passes through the sample gas 30 can be further increased.
  • the plurality of reflection mirrors 114 facing the central reflection mirror 112 may be an integral reflection mirror. In this case, among the reflecting mirrors, the area where the light passing through the entrance window 140 reaches first is the first reflecting mirror 114-1, and the area where the light passing through the exit window 141 is last reflected is the second reflecting mirror 114-1. This is the reflecting mirror 114-2.
  • the gas analyzer 100 of this example includes a notch filter 110.
  • the notch filter 110 is disposed on any of the optical paths through which the light 106 passes from the light source section 120 to the light receiving element 126.
  • the notch filter 110 has a limiting band that reduces the intensity at any peak in the radiation spectrum of the light 106 emitted by the light source section 120.
  • the notch filter 110 has a structure in which, for example, a plurality of dielectric films having different refractive indexes are laminated along the traveling direction of the light 106.
  • FIG. 3 is a diagram showing an example of the radiation spectrum of the light 106 emitted by the light source section 120.
  • the horizontal axis shows the wavelength
  • the vertical axis shows the intensity of the light 106.
  • the emission spectrum of light 106 has multiple peaks.
  • a peak is a portion of the radiation spectrum shown in FIG. 3 where the intensity shows a local maximum value.
  • the radiation spectrum in FIG. 3 has a peak 300 near a wavelength of 230 nm.
  • the peak 300 may be the peak with the highest intensity among the plurality of peaks in the radiation spectrum.
  • the radiation spectrum of this example shows an intensity of 0.20 or more at peak 300.
  • the intensity of the light 106 is 0.05 or less.
  • peak 300 has an intensity four times or more greater than region 302.
  • the light receiving element 126 has a measurement range (dynamic range). When the dynamic range of the light receiving element 126 is set to match the peak 300, the intensity of the light 106 can be measured only in a part of the dynamic range in the wavelength band of the region 302. Therefore, in a wavelength region where the intensity of the radiation spectrum of the light 106 is low, the ratio of the signal component to the noise component such as thermal noise or stray light in the light receiving element 126 becomes small, and measurement accuracy decreases.
  • FIG. 4 is a diagram showing the relationship between the intensity of the light 106 at a predetermined wavelength and the measurement error.
  • the horizontal axis indicates the measured value of the intensity of the light 106 at the light receiving element 126.
  • the light receiving element 126 in this example is a CMOS line sensor.
  • the dynamic range of the light receiving element 126 in this example is about 100 dB. When the dynamic range in the light receiving element 126 is quantized into digital values, it is 0 to 65535 (96.4 dB).
  • the dynamic range is set so that the intensity of the light 106 at the peak 300 is near the upper limit of the range of measured values.
  • the measurement error As shown in FIG. 4, as the intensity of the light 106 increases, the measurement error decreases. In the example of FIG. 4, if the signal strength is about 20,000, the measurement error is sufficiently small. In a wavelength band where the intensity of the light 106 is low, such as the region 302 in FIG. 3, the measured value at the light receiving element 126 will be 16383.75 (65535 ⁇ 4) or less. Therefore, the measurement error in region 302 increases. In other words, if there is a difference in the intensity of the light 106 at a plurality of wavelengths, the dynamic range of the light receiving element 126 at any wavelength becomes small, and the measurement accuracy at that wavelength deteriorates. Therefore, when measuring the intensity of the light 106 at a plurality of wavelengths, it is preferable to minimize the difference in the intensity of the light 106 at each measurement wavelength.
  • the gas analyzer 100 of this example includes a notch filter 110 that reduces the intensity of the wavelength band that includes any peak 300 of the light 106. This reduces the intensity difference in the radiation spectrum of the light 106 and reduces measurement errors at multiple wavelengths.
  • FIG. 5 is a diagram showing an example of the transmission characteristics of the notch filter 110.
  • the horizontal axis in FIG. 5 indicates the wavelength of the light 106 incident on the notch filter 110.
  • the vertical axis indicates the ratio of the intensity of light 106 exiting from notch filter 110 to the intensity of light 106 incident on notch filter 110.
  • the notch filter 110 has a limited band RB in which the transmittance has a minimum value.
  • the restricted band RB is, for example, a band in which the transmittance is 70% or less.
  • the minimum value of the transmittance in the restricted band RB may be 20% or more, 30% or more, or 40% or more.
  • the wavelength of peak 300 is included in the restricted band RB. Thereby, the intensity of the peak 300 can be lowered, and the intensity difference in the radiation spectrum of the light 106 can be reduced.
  • the center wavelength of the restricted band RB may be in the range of 220 nm to 240 nm.
  • the width of the restricted band RB may be 10 nm or more, or may be 20 nm or more.
  • the width of the restricted band RB may be 40 nm or less, or may be 30 nm or less.
  • FIG. 6 is a diagram showing an example of the radiation spectrum of the light 106 incident on the light receiving element 126 when the notch filter 110 is used.
  • the horizontal axis shows the wavelength
  • the vertical axis shows the intensity of the light 106.
  • the intensity near the wavelength of 230 nm is weakened.
  • the notch filter 110 may be placed in the optical path inside the cell 113.
  • the notch filter 110 may be placed in the optical path between the entrance window 140 and the first reflective mirror 114-1.
  • FIG. 7 is a diagram showing another configuration example of the gas analyzer 100.
  • the gas analyzer 100 of this example differs from the examples shown in FIGS. 2 to 6 in the position where the notch filter 110 is provided.
  • Other structures are similar to any of the embodiments described in FIGS. 2 to 6.
  • the notch filter 110 of this example is arranged in the optical path between the light source section 120 and the entrance window 140 of the cell 113. Notch filter 110 may be placed between an optical member such as collimating lens 142 and entrance window 140. By providing the notch filter 110 outside the cell 113, the angle of incidence of the light 106 on the notch filter 110 can be easily adjusted.
  • FIG. 8 is a diagram showing another configuration example of the gas analyzer 100.
  • the gas analyzer 100 of this example differs from the examples shown in FIGS. 2 to 6 in the position where the notch filter 110 is provided.
  • Other structures are similar to any of the embodiments described in FIGS. 2 to 6.
  • the notch filter 110 of this example is arranged in the optical path between the second reflection mirror 114-2 and the light receiving element 126.
  • the notch filter 110 may be disposed inside the cell 113 between the second reflection mirror 114-2 and the exit window 141, as shown in FIG.
  • the notch filter 110 may be placed in the optical path between the exit window 141 and the light receiving element 126.
  • the notch filter 110 may be placed in the optical path between the exit window 141 and the spectrometer 122.
  • the angle of the reflecting mirror downstream of the notch filter 110 may be adjusted accordingly. According to this example, since there is no reflecting mirror in the optical path behind the notch filter 110, there is no need to adjust the angle of the reflecting mirror.
  • FIG. 9 is a diagram showing an example of adjusting the wavelength of the limited band of the notch filter 110.
  • the gas analyzer 100 of this example includes an adjustment section 190 that adjusts the wavelength of the restricted band of the notch filter 110.
  • the notch filter 110 of this example is a filter in which a plurality of dielectric films having different refractive indexes are laminated.
  • the limited band of the notch filter 110 can be adjusted by adjusting the incident angle ⁇ 1 of the light 106 with respect to the notch filter 110.
  • the adjustment unit 190 may adjust the incident angle ⁇ 1 by rotating the notch filter 110.
  • the adjustment unit 190 may adjust the incident angle ⁇ 1 based on the radiation spectrum of the light 106 emitted by the light source unit 120.
  • the adjustment unit 190 may detect the maximum peak 300 in the radiation spectrum and adjust the incident angle ⁇ 1 so that the peak 300 is included in the restricted band of the notch filter 110.
  • the adjustment unit 190 may detect the maximum peak 300 in the radiation spectrum of the light 106 within the wavelength band to be measured by the gas analyzer 100.
  • the radiation spectrum of the light 106 may be measured by the light receiving element 126, or the spectrum data may be provided by a user or the like.
  • the light 106 is made incident on the cell 113 while the cell 113 is in a vacuum state or a gas that does not have an absorption spectrum within the measurement band of the gas analyzer 100 is introduced into the cell 113 .
  • the light receiving element 126 may measure the radiation spectrum of the light 106 emitted from the cell 113 in this state.
  • the output angle ⁇ 2 of the light 106 from the notch filter 110 can be changed.
  • the emission angle ⁇ 2 of the light 106 changes, the optical path downstream of the notch filter 110 changes.
  • the processing unit 127 may correct the intensity of the light reception signal when the adjustment unit 190 adjusts the incident angle ⁇ 1.
  • the processing unit 127 may be preset with correction data that associates the amount of adjustment of the incident angle ⁇ 1 with the amount of correction of the intensity of the received light signal.
  • the correction data may be generated from actual measurement data of how the received light intensity at the light receiving element 126 changes when the incident angle ⁇ 1 is sequentially changed.
  • FIG. 10 is a diagram illustrating a reflection mirror at a stage subsequent to the notch filter 110.
  • the first reflecting mirror 114-1 is shown.
  • the light 106 that has passed through the notch filter 110 first reaches the first reflection mirror 114-1.
  • the adjustment unit 190 of this example adjusts the angle of the reflective surface 150 of at least one reflective mirror subsequent to the notch filter 110 when adjusting the incident angle ⁇ 1 (see FIG. 9) of the light 106 with respect to the notch filter 110.
  • the reflective surface 150 in this example is a concave surface
  • the reflective surface 150 may be a flat surface and may include both a concave surface and a flat surface.
  • the adjustment unit 190 adjusts the angle ⁇ 3 of the reflective surface 150 of the reflective mirror located after the notch filter 110 so as to offset the change in the optical axis of the light 106 due to the change in the output angle ⁇ 2.
  • the angle ⁇ 3 is the angle of the reflective surface 150 with respect to the predetermined reference plane 189.
  • the reference plane 189 is, for example, a plane perpendicular to the longitudinal direction of the cell 113. This can prevent the optical axis of the light 106 from shifting and, for example, preventing the light 106 from hitting the reflective surface 150 of the reflective mirror at the rear stage.
  • the adjustment unit 190 may adjust the angle ⁇ 3 of the reflective surface 150 of the first reflective mirror 114-1 immediately after the notch filter 110. If the shift in the optical axis of the light 106 cannot be offset by adjusting the angle of the first reflecting mirror 114-1 alone, the adjusting section 190 may further adjust the angles of the reflecting surfaces 150 of the other reflecting mirrors. If the shift in the optical axis of the light 106 can be canceled out simply by adjusting the angle of the first reflecting mirror 114-1, the adjusting section 190 does not need to adjust the angles of the reflecting surfaces 150 of the other reflecting mirrors.
  • FIG. 11 is a view of the reflective surface 150 of the reflective mirror after the notch filter 110, viewed from the traveling direction of the light 106.
  • the reflective surface 150 of the first reflective mirror 114-1 is shown.
  • the incident angle ⁇ 1 in the notch filter 110 is adjusted, the optical axis of the light 106 emitted from the notch filter 110 changes. Therefore, on the reflective surface 150 of the reflective mirror 114, the position of the spot 192 irradiated with the light 106 moves in the first direction in accordance with the change in the incident angle ⁇ 1 and the output angle ⁇ 2 of the notch filter 110.
  • a change range is set in which the incident angle ⁇ 1 in the notch filter 110 can be changed.
  • the incident angle ⁇ 1 with respect to the notch filter 110 is set to the minimum value within the change range, the light 106 is irradiated, for example, at the position of the spot 192-1.
  • the incident angle ⁇ 1 with respect to the notch filter 110 is set to the maximum value within the change range, the light 106 is irradiated to the spot position 192-2, for example.
  • the reflective mirror 114-1 preferably has a reflective surface 150 of a size that includes the spots 192-1 and 192-2 when the incident angle ⁇ 1 with respect to the notch filter 110 is changed from the minimum value to the maximum value.
  • the reflecting mirror 114-1 has been described in FIG. 11, the same may apply to all reflecting mirrors downstream of the notch filter 110.
  • the reflective surface 150 of each reflective mirror may be circular or may have another shape.
  • the length of the reflective surface 150 in the first direction may be greater than the length in the second direction orthogonal to the first direction.
  • the gas analyzer 100 may include a combination of two or more of the configuration described in FIG. 9, the configuration illustrated in FIG. 10, and the configuration illustrated in FIG. 11.
  • FIG. 12 is a diagram showing another configuration example of the gas analyzer 100.
  • the gas analyzer 100 of this example differs from the examples shown in FIGS. 2 to 11 in that a plurality of notch filters 110 are provided.
  • Other structures are similar to any of the embodiments described in FIGS. 2 to 11.
  • the notch filter 110 of this example is provided at a plurality of different positions on the optical path.
  • a plurality of notch filters 110 may be provided inside the cell 113, a plurality of notch filters 110 may be provided outside the cell 113, and a notch filter 110 may be provided both inside and outside the cell 113. .
  • the notch filter 110 is provided between the entrance window 140 and the first reflection mirror 114-1 and between the exit window 141 and the second reflection mirror 114-2.
  • the pass characteristics of each notch filter 110 may be the same or different.
  • the adjustment unit 190 may adjust the characteristics of each notch filter 110, or may adjust only the characteristics of any one of the notch filters 110.
  • FIG. 13 is a diagram illustrating a gas analyzer 100 according to the second embodiment.
  • configurations other than the cell 113 are omitted.
  • the configuration other than the cell 113 may be the same as any of the embodiments described in FIGS. 2 to 12.
  • the cell 113 in FIG. 13 is a folded cell in which the entrance window 140 and the exit window 141 are common windows, but the cell 113 has the same configuration as the embodiments described in FIGS. 2 to 12. Good too.
  • the cell 113 in the embodiments described in FIGS. 2 to 12 may also be a folded cell shown in FIG. 13.
  • a first reflecting mirror 114-1, a second reflecting mirror 114-2, a central reflecting mirror 112, and a folding reflecting mirror 115 are provided inside the cell 113.
  • Each reflective mirror has a concave portion 151 on its reflective surface.
  • the folding reflection mirror 115 is arranged at the end on the same side as the central reflection mirror 112 in the longitudinal direction of the cell 113.
  • the folding reflection mirror 115 is arranged on the opposite side of the entrance window 140 with respect to the central reflection mirror 112.
  • the first reflecting mirror 114-1 is a reflecting mirror that the light 106 that has passed through the entrance window 140 reaches first.
  • the first reflective mirror 114-1 reflects the light 106 from the entrance window 140 toward the central reflective mirror 112.
  • the central reflecting mirror 112 reflects the light 106 from the first reflecting mirror 114-1 toward the second reflecting mirror 114-2.
  • the second reflection mirror 114-2 is arranged facing the return reflection mirror 115, reflects the light 106 from the central reflection mirror 112 toward the return reflection mirror 115, and centrally reflects the light 106 from the return reflection mirror 115. It is reflected toward mirror 112.
  • the central reflecting mirror 112 reflects the light 106 from the second reflecting mirror 114-2 toward the first reflecting mirror 114-1.
  • the first reflecting mirror 114-1 reflects the light 106 from the central reflecting mirror 112 toward the exit window 141. According to this example, the number of reflections of the light 106 can be easily increased without increasing the size of the cell 113.
  • two reflecting mirrors 114 are arranged at positions facing the central reflecting mirror 112, but in other examples, more reflecting mirrors 114 may be arranged at positions facing the central reflecting mirror 112. good.
  • the distance between the two opposing reflecting mirrors is approximately equal to the radius of curvature of the concave portion 151 of the reflecting mirror.
  • the distance is 90% or more and 110% or less of the radius of curvature.
  • the radius of curvature of the concave surface portion 151 of each reflecting mirror may also be approximately equal.
  • the ratio of the maximum value to the minimum value of the radius of curvature of each reflecting mirror may be 100% or more and 120% or less.
  • the intensity of the light 106 received by the light receiving element 126 may vary.
  • the curvature of the reflecting mirror changes due to temperature fluctuations
  • the inclination of the concave portion 151 of the reflecting mirror with respect to the optical axis changes.
  • the change in inclination near the center of the concave surface portion 151 is small, the change in inclination with respect to the optical axis becomes relatively large at the end of the reflective surface 150 that is far from the optical axis. Therefore, when a temperature change occurs, whether or not a component of the light 106 far from the optical axis reaches the light receiving element 126 may change, and the amount of light received at the light receiving element 126 may change.
  • the gas analyzer 100 of this example includes a collimating section 143.
  • the collimating section 143 is arranged between the light source section 120 and the cell 113.
  • the collimating section 143 converts the light 106 emitted by the light source section 120 into collimated light, and the collimated light enters the entrance window 140 .
  • the collimating section 143 in this example uses a parabolic mirror. This makes it possible to generate collimated light with less influence of aberrations.
  • the collimating section 143 may be a lens shown in FIG. 2 or the like.
  • the width of the concave portion 151 of the first reflecting mirror 114-1, which the collimated light 106 entering from the entrance window 140 reaches first, is smaller than the width of the collimated light 106.
  • the concave surface portion 151 is a concave portion of the reflective surface of the first reflective mirror 114-1. In other words, the concave portion 151 does not include a flat portion.
  • the entire reflective surface of the first reflective mirror 114-1 may be the concave surface portion 151.
  • FIG. 14 is a diagram of the concave surface portion 151 of the first reflecting mirror 114-1 and the spot 192 of the collimated light 106, viewed from the direction in which the collimated light 106 travels.
  • a spot 192 in FIG. 14 indicates a spot at the position of the concave surface portion 151.
  • the position of the concave portion 151 in the traveling direction of the collimated light 106 is the position of the center portion 193 of the concave portion 151 .
  • the spot 192 is a range where the collimated light 106 is irradiated onto a plane at the position.
  • the spot 192 may be a spot of the collimated light 106 immediately after the collimating section 143 emits the collimated light 106, or may be a spot of the collimated light 106 at the position of the entrance window 140.
  • the spot 192 may be in a range where the light intensity in a plane perpendicular to the traveling direction of the collimated light 106 is equal to or more than half of the maximum value P1 (0.5 ⁇ P1). In other words, in the light intensity distribution on the plane, the region of full width at half maximum may be regarded as the spot 192 of the collimated light 106.
  • the width of the concave portion 151 is R1, and the width of the spot 192 of the collimated light 106 is R0.
  • the width may be a width in a plane parallel to the minute surface in the central portion 193 of the concave surface portion 151.
  • the width may be a width in a plane perpendicular to the traveling direction of the collimated light 106.
  • the concave portion 151 is circular, the width of the concave portion 151 is the diameter of the circle.
  • the width of the concave surface portion 151 refers to the maximum width of the concave surface portion 151 on the surface.
  • the width of the concave surface portion 151 is the length of the diagonal line of the square.
  • the method for measuring the width of the spot 192 is also the same as that for measuring the width of the concave portion 151.
  • the width R1 of the concave surface portion 151 is smaller than the width R0 of the spot 192 of the collimated light 106.
  • components of the collimated light 106 that are away from the center portion 193 of the concave surface portion 151 are not reflected by the concave surface portion 151 . Therefore, even if the inclination of the concave portion 151 changes due to temperature fluctuations, the collimated light 106 at a position away from the central portion 193 does not affect the measured value at the light receiving element 126. Therefore, errors due to temperature fluctuations can be suppressed.
  • the distribution of light intensity in a plane perpendicular to the traveling direction of the collimated light 106 can be flattened. Therefore, even if the position of the optical axis of the collimated light 106 deviates from the center part 193 of the concave part 151, fluctuations in the amount of light irradiated to the entire concave part 151 can be suppressed, and the gas concentration can be accurately controlled. Can be measured. Moreover, since each reflecting mirror has the concave surface portion 151, it becomes easier to maintain the parallelism of the reflected light on the reflecting mirror.
  • the width R1 may be 20 mm or less, or 10 mm or less.
  • the width R1 of the concave surface portion 151 may be 80% or less of the width R0 of the spot 192 of the collimated light 106. This makes it easier to reduce measurement errors due to temperature fluctuations.
  • the width R1 may be 75% or less of the width R0, or may be 70% or less. However, if the width R1 is made too small, the amount of light reaching the light receiving element 126 will be small, resulting in a decrease in the SN ratio.
  • Width R1 may be 50% or more of width R2.
  • the width R1 may be 55% or more, or 60% or more of the width R2.
  • the entire width of the reflective surface of the first reflective mirror 114-1 may be smaller than the width R0 of the collimated light 106.
  • the entire width of the reflective surface may be smaller than the width R0 of the collimated light 106.
  • the entire reflective surface may be the concave surface portion 151.
  • the width of the entire reflective surface is the width R1 of the concave surface portion 151.
  • FIG. 15 is a diagram of the concave surface portion 151 of the second reflecting mirror 114-2 viewed from the direction of travel of the collimated light 106.
  • the same spot 192 as in FIG. 14 is shown in an overlapping manner.
  • the width of the concave portion 151 of the second reflective mirror 114-2 is assumed to be R2.
  • the width R1 of the concave surface portion 151 may be smaller than the width R0 of the spot 192 of the collimated light 106.
  • Width R2 may be the same as width R1.
  • the width R2 By making the width R2 smaller than the width R0, even if the width of the collimated light 106 expands after being reflected by the first reflective mirror 114-1, the width of the collimated light 106 can be changed again at the second reflective mirror 114-2. can be molded. Thereby, error components due to temperature fluctuations can be further suppressed, and the gas concentration can be measured with higher accuracy.
  • the width R2 may be 20 mm or less, or 10 mm or less.
  • the width R2 may be smaller than the width R1.
  • the widths of all reflective mirrors other than the first reflective mirror 114-1 may be greater than the width R1 of the first reflective mirror 114-1.
  • the width R2 may be larger than the width R1. Width R2 may be larger than width R0.
  • the width of the collimated light 106 is shaped to R1. Therefore, when the width R2 of the second reflective mirror 114-2 is made the same as the width R1 of the first reflective mirror 114-1, the optical axis of the collimated light 106 is located at the center of the second reflective mirror 114-2. 193, a part of the collimated light 106 comes off the second reflection mirror 114-2 and is no longer reflected by the second reflection mirror 114-2. Therefore, the amount of light reaching the light receiving element 126 may become too small.
  • the second reflective mirror 114-2 may be a reflective mirror immediately in front of the exit window 141, as in the structure shown in FIG. By shaping the diameter of the collimated light 106 to be small in the first reflecting mirror 114-1, measurement errors can be efficiently reduced. Furthermore, by making the second reflecting mirror 114-2 relatively large, it becomes easier to ensure the amount of light that reaches the light receiving element 126.
  • FIG. 16 is a diagram of the concave surface portion 151 of the central reflection mirror 112 and the spot 192 of the collimated light 106 at the position of the concave surface portion 151 of the central reflection mirror 112, viewed from the traveling direction of the collimated light 106.
  • the width of the concave portion 151 of the central reflecting mirror 112 is assumed to be R3.
  • the collimated light 106 reaching the central reflection mirror 112 is shaped into a width R1 by the first reflection mirror 114-1. Width R3 may be greater than width R1.
  • the central reflecting mirror 112 receives the collimated light 106 (spot 192-3) from the first reflecting mirror 114-1 and the collimated light 106 (spot 192-3) from the second reflecting mirror 114. 192-4) is incident. Spot 192-3 and spot 192-4 may be placed at different locations on concave portion 151.
  • the central reflective mirror 112 has a width R3 larger than the width R1 so that it can reflect both the collimated light 106 from the first reflective mirror 114-1 and the collimated light 106 from the second reflective mirror 114. You may do so.
  • Width R3 may be larger than width R0.
  • the width R3 may be greater than 20 mm, and may be greater than or equal to 30 mm.
  • FIG. 17 is a diagram showing another example of the shape of the concave portion 151 of the central reflecting mirror 112.
  • the central reflection mirror 112 is circular.
  • the central reflecting mirror 112 in this example is non-circular.
  • the width in the direction in which the spots 192-3 and 192-4 are lined up is R3, and the width in the direction perpendicular to the direction is W3.
  • Width W3 may be smaller than width R3.
  • the width W3 may be larger or smaller than the width R1.
  • the central reflection mirror 112 can reflect both the collimated light 106 from the first reflection mirror 114-1 and the collimated light 106 from the second reflection mirror 114.
  • FIG. 18 is a diagram of the concave surface portion 151 of the folding reflection mirror 115 viewed from the traveling direction of the collimated light 106.
  • the width of the concave portion 151 of the folding reflection mirror 115 is assumed to be R4.
  • the width R4 of the concave surface portion 151 may be smaller than the width R0 of the spot 192 of the collimated light 106.
  • Width R4 may be the same as width R1.
  • Width R4 may be the same as width R2.
  • the width R4 By making the width R4 smaller than the width R0, even if the width of the collimated light 106 widens after being reflected by the second reflection mirror 114-2, the width of the collimated light 106 can be shaped again at the folding reflection mirror 115. Thereby, error components due to temperature fluctuations can be further suppressed, and the gas concentration can be measured with higher accuracy.
  • the width R4 may be smaller than the width R2. By gradually reducing the width of the reflecting mirror, even if the optical axis of the collimated light 106 is shifted from the center portion 193 of the reflecting mirror, it becomes easier to irradiate the entire reflecting mirror with the collimated light 106. Therefore, measurement errors due to optical axis deviation can be suppressed.
  • Width R4 may be larger than width R1.
  • Width R4 may be larger than width R2.
  • the width R4 may be 20 mm or less, or may be 10 mm or less.
  • FIG. 19 is a diagram illustrating an operation test of the gas analyzer 100.
  • the measured value of the amount of light received by the light receiving element 126 at a specific wavelength was detected when the temperature of the gas analyzer 100 was changed.
  • FIG. 19 is an example of a temperature change pattern of the gas analyzer 100.
  • FIG. 20 is a diagram showing measured values of the amount of light received by the light receiving element 126 in the reference example.
  • the widths of the concave portions 151 of all reflective mirrors are equal to or larger than the width of the collimated light 106.
  • the measured value of the light-receiving element 126 fluctuates greatly as the temperature fluctuates.
  • FIG. 21 is a diagram showing measured values of the amount of light received by the light receiving element 126 in the second example.
  • the width R1 of the concave portion 151 of the first reflecting mirror 114-1 is smaller than the width R0 of the collimated light. In this example, fluctuations in measured values due to temperature fluctuations can be suppressed.
  • FIG. 22 is a diagram showing a gas analyzer 100 according to the third example.
  • the gas analyzer 100 of this example has the notch filter 110 of any of the embodiments described in the first embodiment shown in FIGS. It has a configuration added to the gas analyzer 100 of the embodiment.
  • the gas analyzer 100 of this example may further include the adjustment section 190 described in FIG. 9 or 10.
  • the gas analyzer 100 of this example may have each of the functions described in FIGS. 2 to 12.
  • the gas analyzer 100 of this example may have a configuration that combines the configuration of the first embodiment and the configuration of the second embodiment as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

サンプルガスに含まれる測定対象成分の濃度を測定するガス分析計であって、前記測定対象成分の吸収波長を含む光を出射する光源部と、前記光をコリメート光に変換するコリメート部と、前記光を反射させる1つ以上の反射ミラーを前記サンプルガスを封止した空間に収容したセルと、前記セルを通過した前記光の放射スペクトルを取得する受光素子と、前記受光素子の受光信号を処理し、前記測定対象成分の濃度を測定する処理部とを備え、前記1つ以上の前記反射ミラーは、前記コリメート光が最初に反射する第1の反射ミラーを含み、前記第1の反射ミラーは、前記コリメート光を反射する凹面部を含み、前記凹面部の幅が、前記コリメート光の幅よりも小さいガス分析計を提供する。

Description

ガス分析計
 本発明は、ガス分析計に関する。
 従来、スペクトル分析を利用したガス分析計が知られている(例えば、特許文献1および非特許文献1参照)。
 特許文献1 特開2001-188043号公報
 非特許文献1 Quantitative Spectroscopy Radiative Transfer Vol. 56, No. 2, pp. 187-208, 1996、Johan Mellqvist and Arne Rosen「DOAS FOR FLUE GAS MONITORING - I. TEMPERATURE EFFECTS IN THE U.V./VISIBLE ABSORPTION SPECTRA OF NO, N02, SO2 AND NH3」
解決しようとする課題
 ガス分析計は、ガス濃度を精度良く測定できることが好ましい。
一般的開示
 上記課題を解決するために、本発明の第1の態様においては、サンプルガスに含まれる測定対象成分の濃度を測定するガス分析計を提供する。ガス分析計は、前記測定対象成分の吸収波長を含む光を出射する光源部を備えてよい。ガス分析計は、前記光をコリメート光に変換するコリメート部を備えてよい。ガス分析計は、前記光を反射させる1つ以上の反射ミラーを前記サンプルガスを封止した空間に収容したセルを備えてよい。ガス分析計は、前記セルを通過した前記光の放射スペクトルを取得する受光素子を備えてよい。ガス分析計は、前記受光素子の受光信号を処理し、前記測定対象成分の濃度を測定する処理部を備えてよい。前記1つ以上の前記反射ミラーは、前記コリメート光が最初に反射する第1の反射ミラーを含んでよい。前記第1の反射ミラーは、前記コリメート光を反射する凹面部を含んでよい。前記凹面部の幅が、前記コリメート光の幅よりも小さくてよい。
 前記第1の反射ミラーの全体の幅が、前記コリメート光の幅よりも小さくてもよい。
 前記凹面部の幅が、前記コリメート光の幅の80%以下であってよい。
 前記凹面部の幅が、前記コリメート光の幅の50%以上であってよい。
 前記1つ以上の前記反射ミラーは、前記第1の反射ミラーよりも後段に配置された第2の反射ミラーを含んでよい。前記第2の反射ミラーは、前記コリメート光を反射する凹面部を含んでよい。前記第2の反射ミラーの前記凹面部の幅が、前記コリメート光の幅よりも小さくてよい。
 前記第1の反射ミラーの前記凹面部の幅と、前記第2の反射ミラーの前記凹面部の幅とが同一であってよい。
 前記第2の反射ミラーの前記凹面部の幅は、前記第1の反射ミラーの前記凹面部の幅よりも大きくてよい。
 前記1つ以上の反射ミラーは、第2の反射ミラーから照射された前記コリメート光を、前記第2の反射ミラーに反射する折り返し反射ミラーを含んでよい。前記折り返し反射ミラーは、前記コリメート光を反射する凹面部を含んでよい。前記折り返し反射ミラーの前記凹面部の幅が、前記コリメート光の幅よりも小さくてよい。
 前記1つ以上の反射ミラーは、前記第1の反射ミラーから照射された前記コリメート光を前記第2の反射ミラーに反射し、前記第2の反射ミラーから照射された前記コリメート光を前記第1の反射ミラーに反射する中央反射ミラーを含んでよい。前記中央反射ミラーは、前記コリメート光を反射する凹面部を含んでよい。前記凹面部の幅が、前記コリメート光の幅よりも大きくてよい。
 ガス分析計は、前記光源部から前記受光素子までの光経路のいずれかに配置され、前記光源部が出射する前記光の放射スペクトルのいずれかのピークにおける強度を減少させる制限帯域を有するノッチフィルタを備えてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
ガス分析装置200の一例を示す図である。 第1の実施例に係るガス分析計100の構成例を示す図である。 光源部120が出射する光106の放射スペクトルの一例を示す図である。 所定の波長における光106の強度と、測定誤差との関係を示す図である。 ノッチフィルタ110の透過特性の一例を示す図である。 ノッチフィルタ110を用いた場合に、受光素子126に入射する光106の放射スペクトルの一例を示す図である。 ガス分析計100の他の構成例を示す図である。 ガス分析計100の他の構成例を示す図である。 ノッチフィルタ110の制限帯域の波長を調整する例を示す図である。 ノッチフィルタ110の後段の反射ミラーを示す図である。 ノッチフィルタ110の後段の反射ミラーの反射面150を、光106の進行方向から見た図である。 ガス分析計100の他の構成例を示す図である。 第2の実施例に係るガス分析計100を説明する図である。 第1の反射ミラー114-1の凹面部151と、凹面部151の位置におけるコリメート光106のスポット192を、コリメート光106の進行方向から見た図である。 第2の反射ミラー114-2の凹面部151を、コリメート光106の進行方向から見た図である。 中央反射ミラー112の凹面部151と、凹面部151の位置におけるコリメート光106のスポット192を、コリメート光106の進行方向から見た図である。 中央反射ミラー112の凹面部151の他の形状例を示す図である。 折り返し反射ミラー115の凹面部151を、コリメート光106の進行方向から見た図である。 ガス分析計100の動作試験を説明する図である。 参考例における、受光素子126の受光量の測定値を示す図である。 第2の実施例における、受光素子126の受光量の測定値を示す図である。 第3の実施例に係るガス分析計100を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、ガス分析装置200の一例を示す図である。ガス分析装置200は、煙道10を通過する測定対象ガスに含まれる測定対象成分の濃度を測定する。測定対象ガスは、例えばエンジン等の排ガスであるがこれに限定されない。測定対象成分は、硫黄酸化物(SO)、窒素酸化物(NO)またはアンモニア(NH)等であるが、これに限定されない。
 ガス分析装置200は、ガス吸入管11、ガス排出管12、および、ガス分析計100を備える。ガス分析装置200は、ガスフィルタ14、予熱器15、予熱温度調節器16およびポンプ17の少なくともいずれかを更に備えてよい。
 ガス吸入管11およびガス排出管12は、煙道10と接続する。ガス吸入管11は、煙道10に流れる測定対象ガスの一部であるサンプルガス30を、ガス分析計100に導入する。ガス分析計100は、サンプルガス30に含まれる測定対象ガスの濃度を測定する。ガス排出管12は、ガス分析計100で処理されたサンプルガス30を煙道10に排出する。
 ガス吸入管11は、サンプルガス30中のダストを除去するガスフィルタ14と接続してよい。ガス吸入管11は、サンプルガス30を予熱する予熱器15と接続してよい。予熱器15は、予熱温度調節器16によって温度が調整されてよい。ガス排出管12は、ポンプ17と接続してよい。ポンプ17は、ガス分析計100からサンプルガス30を吸引し、煙道10にサンプルガス30を排出する。
 ガス分析計100は、導入されたサンプルガス30に含まれる測定対象成分の濃度を測定する。一例としてガス分析計100は、例えば非特許文献1に開示されているような、差分吸光光度法(DOAS)により、測定対象成分の濃度を測定する。ガス成分は、ガスの種類に応じた特定の吸収波長の光を吸収する。光が吸収される度合いは、ガス成分の濃度により変化する。差分吸光光度法では、測定対象成分に応じた波長成分を含む光をサンプルガス30に通過させて、通過前後における当該波長成分の強度を比較することで、サンプルガス30に含まれる測定対象成分の濃度を測定する。このとき、サンプルガス30を通過した光を測定した波長スペクトルからブロードな変動を除去することで、光源の光量変動、または、サンプルガス30中のダストおよびミストによる影響を除去できる。これにより、測定対象成分による波長スペクトルの変動を安定して測定でき、測定対象成分の濃度を安定して測定できる。
 ガス分析計100は、セル113、光源部120、受光素子126および処理部127を備える。ガス分析計100は、ヒータ118、温度調整部119および分光器122の少なくともいずれかを更に備えてよい。
 光源部120は、光106を出射する。本例において光源部120は、測定対象成分の吸収波長を含む光106を出射する。光源部120は、一例として、発光時間を極短時間に制御できるフラッシュランプである。光源部120は、Xeフラッシュランプであってよい。光源部120としてXeフラッシュランプを用いることで、安定して光106を出射することができる。本例の光源部120は、一定の発光周期で発光することが好ましい。本例において、光106は、紫外線(波長範囲:200nm~400nm)領域の光である。
 セル113は、サンプルガス30を封止する。サンプルガス30に含まれる測定対象成分の濃度を分析する場合、ガス吸入管11を介して、サンプルガス30をセル113に導入してよい。また分析終了後、ガス排出管12を介して、サンプルガス30をセル113から排出してよい。
 セル113には光源部120からの光106が入射される。光106はセル113の内部においてサンプルガス30を通過し、セル113の外部に出射される。セル113は多重反射セルであってよい。この場合、セル113に入射された光106は、セル113の内部で反射を繰り返し、セル113の外部に出射される。
 セル113には、サンプルガス30の温度を所定の温度に保つためヒータ118が設けられてもよい。セル113は、ヒータ118と接していてもよい。ヒータ118の温度は、温度調節部119によって制御されてよい。
 受光素子126は、セル113を通過した光106の放射スペクトルを取得する。受光素子126は、分光器122により分光された光106の強度を測定する。分光器122は、光106を、所定の波長範囲内における複数の波長帯域に分光してよい。所定の波長範囲とは、例えば、200nm以上500nm以下の波長範囲である。波長範囲は、これに限定されない。受光素子126は、光106の強度を波長帯域毎に取得することで、光106の放射スペクトルを取得する。
 受光素子126は、波長帯域ごとに光106の強度を取得する。受光素子126は、一例として、CMOS(Complementary Metal Oxide Semiconcuctor)ラインセンサである。受光素子126が取得した光106の放射スペクトルは、受光信号として処理部127に送信される。
 処理部127は、受光素子126の受光信号を処理する。処理部127は、受光信号をデジタル信号に変換してデジタル演算処理してよい。処理部127は、受光素子126の受光信号に基づいて、サンプルガス30に含まれる測定対象成分の濃度を測定する。処理部127は、測定対象成分の吸収波長における光106の強度の変化(すなわち、光源部120が出射した光106の強度に対する、セル113を通過した光106の強度の変化)を取得することにより、測定対象成分の濃度を測定してよい。本例において処理部127は受光素子126と通信線149を介して有線接続しているが、無線接続であってもよい。
 図2は、第1の実施例に係るガス分析計100の構成例を示す図である。図2においては、ヒータ118および温度調整部119を省略している。また本例のガス分析計100は、コリメートレンズ142を更に備えている。コリメートレンズ142は、光源部120が出射した光106をコリメート光に変換する。コリメート光は、光源部120が出射した光106よりも平行光に近い光である。コリメート光は、完全な平行光でなくてもよい。コリメートレンズ142は、光106を集光させて光106の拡がりを抑制したコリメート光を出射する。
 セル113は、サンプルガス30を封止する。セル113には、入射窓140および出射窓141が設けられている。図2においては入射窓140および出射窓141がセル113の同一の面に設けられているが、入射窓140および出射窓141は異なる面に設けられていてもよい。光106は、入射窓140を通過してセル113の内部に入射される。セル113の内部においてサンプルガス30を通過した光106は、出射窓141を通過してセル113の外部に出射される。
 セル113において、サンプルガス30を封止した空間には、光106を反射させる1つ以上の反射ミラーが収容されている。反射ミラーは、セル113に導入された光106が、セル113内部において複数回反射するように配置される。例えばセル113の長手方向の両端部近傍に反射ミラーが配置されている。この場合、セル113の長手方向に沿って、光106がセル113の内部を往復する。光106がセル113の内部を往復することで、光106がサンプルガス30を通過する光路長を長くすることができ、測定対象成分が微量であっても精度良く濃度を測定することができる。
 本例では、第1の反射ミラー114-1、第2の反射ミラー114-2および中央反射ミラー112がセル113の内部に設けられている。第1の反射ミラー114-1は、入射窓140を通過した光106が最初に到達する反射ミラーである。第2の反射ミラー114-2は、出射窓141を通過する光106が最後に反射した反射ミラーである。中央反射ミラー112は、第1の反射ミラー114-1で反射した光106を更に反射させる。また中央反射ミラー112は、入射されるいずれかの光106を第2の反射ミラー114-2に向けて反射する。図2の例では、中央反射ミラー112は、第1の反射ミラー114-1から入射した光106を、第2の反射ミラー114-2に向けて反射する。第2の反射ミラー114-2において反射した光106は、出射窓141からセル113の外部に出射する。
 中央反射ミラー112と、第1の反射ミラー114-1および第2の反射ミラー114-2とは、互いの反射面150が向かい合うように配置されている。それぞれの反射面150において光106が反射する。図2の例では、中央反射ミラー112は、セル113の長手方向における端部のうち、入射窓140および出射窓141が設けられる側の端部に配置されている。第1の反射ミラー114-1および第2の反射ミラー114-2は、セル113の長手方向における端部のうち、中央反射ミラー112とは逆側の端部に配置されている。図2の例では、中央反射ミラー112と向かい合う位置に2つの反射ミラー114が配置されているが、他の例では、中央反射ミラー112と向かい合う位置により多くの反射ミラー114が配置されていてもよい。この場合、光106がセル113の内部を往復する回数を増大させて、光106がサンプルガス30を通過する距離を更に長くできる。なお中央反射ミラー112と向かい合う複数の反射ミラー114は、一体の反射ミラーであってもよい。この場合、当該反射ミラーのうち、入射窓140を通過した光が最初に到達する領域が第1の反射ミラー114-1であり、出射窓141を通過する光が最後に反射した領域が第2の反射ミラー114-2である。
 本例のガス分析計100は、ノッチフィルタ110を備える。ノッチフィルタ110は、光源部120から受光素子126までの光106が通過する光経路のいずれかに配置される。ノッチフィルタ110は、光源部120が出射する光106の放射スペクトルのいずれかのピークにおける強度を減少させる制限帯域を有する。ノッチフィルタ110は、例えば互いに屈折率が異なる複数の誘電体膜が、光106の進行方向に沿って積層された構造を有する。
 図3は、光源部120が出射する光106の放射スペクトルの一例を示す図である。図3において、横軸は波長を示し、縦軸は光106の強度を示す。光106の放射スペクトルは、複数のピークを有する。ピークは、図3に示す放射スペクトルにおいて、強度が極大値を示す部分である。例えば図3の放射スペクトルは、波長230nmの近傍においてピーク300を有する。ピーク300は、放射スペクトルの複数のピークのうち、強度が最大のピークであってよい。
 本例の放射スペクトルは、ピーク300における強度が0.20以上を示す。一方で、波長が330nm近傍の領域302では、光106の強度が0.05以下を示している。つまりピーク300は、領域302に比べて4倍以上の強度である。受光素子126は測定範囲(ダイナミックレンジ)を有している。ピーク300に合わせて受光素子126のダイナミックレンジを設定すると、領域302の波長帯域では、ダイナミックレンジの一部の範囲でしか光106の強度を測定できない。このため光106の放射スペクトルの強度が小さい波長領域では、受光素子126における熱雑音または迷光等の雑音成分に対する信号成分の比が小さくなり、測定精度が低下する。
 図4は、所定の波長における光106の強度と、測定誤差との関係を示す図である。横軸は、受光素子126における光106の強度の測定値を示している。本例の受光素子126は、CMOSラインセンサである。本例の受光素子126のダイナミックレンジは100dB程度である。受光素子126におけるダイナミックレンジをデジタル値に量子化すると、0~65535(96.4dB)である。ピーク300における光106の強度が、測定値の範囲の上限近傍となるようにダイナミックレンジが設定される。
 図4の縦軸の値が小さいほど、測定誤差が小さいことを示す。図4に示すように、光106の強度が大きくなると、測定誤差が小さくなる。図4の例では、信号強度が20000程度あれば、測定誤差が十分小さくなっている。図3の領域302のように、光106の強度が小さい波長帯域では、受光素子126における測定値が16383.75(65535÷4)以下となってしまう。このため、領域302における測定誤差が大きくなる。つまり、複数の波長における光106の強度に差異があると、いずれかの波長における受光素子126のダイナミックレンジが小さくなり、当該波長における測定精度が悪化してしまう。このため、複数の波長において光106の強度を測定する場合、それぞれの測定波長における光106の強度の差異をできるだけ小さくすることが好ましい。
 図2に示したように、本例のガス分析計100は、光106のいずれかのピーク300を含む波長帯域の強度を低減するノッチフィルタ110を備える。これにより、光106の放射スペクトルにおける強度差を小さくし、複数の波長における測定誤差を低減する。
 図5は、ノッチフィルタ110の透過特性の一例を示す図である。図5の横軸はノッチフィルタ110に入射する光106の波長を示す。縦軸は、ノッチフィルタ110に入射した光106の強度に対する、ノッチフィルタ110から出射する光106の強度の比を示す。ノッチフィルタ110は、透過率が極小値を示す制限帯域RBを有する。制限帯域RBは、例えば透過率が70%以下となる帯域である。制限帯域RBにおける透過率の極小値は20%以上であってよく、30%以上であってよく、40%以上であってもよい。
 制限帯域RBにピーク300の波長が含まれる。これにより、ピーク300の強度を低下させて、光106の放射スペクトルにおける強度差を低減できる。光源部120がキセノンフラッシュランプの場合、制限帯域RBの中心波長は220nmから240nmの範囲に存在してよい。制限帯域RBの幅は、10nm以上であってよく、20nm以上であってもよい。制限帯域RBの幅は、40nm以下であってよく、30nm以下であってもよい。
 図6は、ノッチフィルタ110を用いた場合に、受光素子126に入射する光106の放射スペクトルの一例を示す図である。図6において、横軸は波長を示し、縦軸は光106の強度を示す。図3に比べた光106の放射スペクトルに比べて、波長が230nm付近の強度が弱まっている。ノッチフィルタ110を用いることで光106の放射スペクトルの強度の差を抑えることができ、測定精度を向上することができる。
 図2に示すように、ノッチフィルタ110は、セル113の内部における光経路に配置されてよい。ノッチフィルタ110は、入射窓140と、第1の反射ミラー114-1との間の光経路に配置されていてよい。
 図7は、ガス分析計100の他の構成例を示す図である。本例のガス分析計100は、ノッチフィルタ110を設ける位置が、図2から図6の例と相違する。他の構造は、図2から図6において説明したいずれかの態様と同様である。
 本例のノッチフィルタ110は、光源部120とセル113の入射窓140との間の光経路に配置されている。ノッチフィルタ110は、コリメートレンズ142等の光学部材と、入射窓140との間に配置されてよい。ノッチフィルタ110をセル113の外部に設けることで、ノッチフィルタ110に対する光106の入射角度の調整が容易になる。
 図8は、ガス分析計100の他の構成例を示す図である。本例のガス分析計100は、ノッチフィルタ110を設ける位置が、図2から図6の例と相違する。他の構造は、図2から図6において説明したいずれかの態様と同様である。
 本例のノッチフィルタ110は、第2の反射ミラー114-2と、受光素子126との間の光経路に配置されている。ノッチフィルタ110は、図8に示すように、セル113の内部において第2の反射ミラー114-2と出射窓141との間に配置されてよい。ノッチフィルタ110は、出射窓141と、受光素子126との間の光経路に配置されてもよい。ノッチフィルタ110は、出射窓141と、分光器122との間の光経路に配置されてもよい。
 ノッチフィルタ110の制限帯域を調整した場合、ノッチフィルタ110より後段の反射ミラーの角度等を調整すべき場合がある。例えばノッチフィルタ110に対する光106の入射角度を調整することで制限帯域の波長帯を調整した場合、ノッチフィルタ110より後段の反射ミラーの角度を合わせて調整してよい。本例によれば、ノッチフィルタ110より後ろの光経路に反射ミラーが存在しないので、反射ミラーの角度調整をしなくてよい。
 図9は、ノッチフィルタ110の制限帯域の波長を調整する例を示す図である。本例のガス分析計100は、ノッチフィルタ110の制限帯域の波長を調整する調整部190を備える。
 本例のノッチフィルタ110は、屈折率が異なる複数の誘電体膜が積層されたフィルタである。この場合、ノッチフィルタ110に対する光106の入射角度θ1を調整することで、ノッチフィルタ110の制限帯域を調整できる。調整部190は、ノッチフィルタ110を回転させることで、入射角度θ1を調整してよい。
 調整部190は、光源部120が出射する光106の放射スペクトルに基づいて、入射角度θ1を調整してよい。調整部190は、放射スペクトルにおいて最大のピーク300を検出し、ピーク300がノッチフィルタ110の制限帯域に含まれるように、入射角度θ1を調整してよい。調整部190は、光106の放射スペクトルのうち、ガス分析計100の測定対象の波長帯域内における最大のピーク300を検出してもよい。
 光106の放射スペクトルは、受光素子126が測定してよく、使用者等からスペクトルデータが与えられてもよい。例えばセル113を真空状態にし、またはガス分析計100の測定帯域内に吸収スペクトルを有さないガスをセル113に導入した状態で、光106をセル113に入射する。受光素子126は、この状態でセル113から出射する光106の放射スペクトルを測定してよい。
 ノッチフィルタ110の入射角θ1を変更すると、ノッチフィルタ110からの光106の出射角度θ2の変動し得る。光106の出射角度θ2が変動すると、ノッチフィルタ110よりも後段の光経路が変化する。
 光経路が変化すると、受光素子126に入射する光106の光軸が変化するので、受光素子126が検出する光106の強度が変動する場合がある。処理部127は、調整部190が入射角度θ1を調整した場合に、受光信号の強度を補正してよい。処理部127には、入射角度θ1の調整量と、受光信号の強度の補正量とを対応付けた補正用データが予め設定されてよい。補正用データは、入射角度θ1を順次変更させた場合に、受光素子126における受光強度がどのように変化するかの実測データから生成してよい。
 図10は、ノッチフィルタ110の後段の反射ミラーを示す図である。本例では、第1の反射ミラー114-1を示している。ノッチフィルタ110を通過した光106は、第1の反射ミラー114-1に最初に到達する。本例の調整部190は、ノッチフィルタ110に対する光106の入射角度θ1(図9参照)を調整した場合に、ノッチフィルタ110より後段の少なくとも一つの反射ミラーの反射面150の角度を調整する。本例の反射面150は凹面であるが、反射面150は平坦な面であってよく、凹面および平坦面の両方を含んでいてもよい。
 図9において説明したように、ノッチフィルタ110における入射角度θ1を変更すると、ノッチフィルタ110からの出射角度θ2が変化してしまう。調整部190は、出射角度θ2の変化による光106の光軸の変化を相殺するように、ノッチフィルタ110よりも後段の反射ミラーの反射面150の角度θ3を調整する。角度θ3は、所定の基準面189に対する反射面150の角度である。基準面189は、例えばセル113の長手方向と直交する面である。これにより、光106の光軸がずれて、例えば後段の反射ミラーの反射面150に光106が当たらなくなることを防げる。
 調整部190は、ノッチフィルタ110の直後の第1の反射ミラー114-1の反射面150の角度θ3を調整してよい。第1の反射ミラー114-1の角度の調整だけでは光106の光軸のずれを相殺できない場合、調整部190は、他の反射ミラーの反射面150の角度を更に調整してよい。第1の反射ミラー114-1の角度の調整だけで光106の光軸のずれを相殺できる場合、調整部190は、他の反射ミラーの反射面150の角度を調整しなくてよい。
 図11は、ノッチフィルタ110の後段の反射ミラーの反射面150を、光106の進行方向から見た図である。本例では、第1の反射ミラー114-1の反射面150を示している。ノッチフィルタ110における入射角度θ1を調整した場合、ノッチフィルタ110から出射する光106の光軸が変化する。このため、反射ミラー114の反射面150において、光106が照射されるスポット192の位置は、ノッチフィルタ110の入射角度θ1および出射角度θ2の変更に応じて、第1の方向に移動する。
 本例の調整部190には、ノッチフィルタ110における入射角度θ1を変更できる変更範囲が設定されている。ノッチフィルタ110に対する入射角度θ1を当該変更範囲内の最小値に設定した場合、例えばスポット192-1の位置に光106が照射される。またノッチフィルタ110に対する入射角度θ1を当該変更範囲内の最大値に設定した場合、例えばスポット位置192-2の位置に光106が照射される。反射ミラー114-1は、ノッチフィルタ110に対する入射角度θ1を最小値から最大値まで変更した場合の、スポット192-1およびスポット192-2が含まれる大きさの反射面150を有することが好ましい。これにより、ノッチフィルタ110における入射角度θ1を変更した場合でも、光106が反射面150で反射できる。図11では反射ミラー114-1について説明したが、ノッチフィルタ110の後段の全ての反射ミラーも同様であってよい。
 それぞれの反射ミラーの反射面150は、円形であってよく、他の形状であってもよい。例えば反射面150は、第1の方向における長さが、第1の方向と直交する第2の方向における長さより大きくてもよい。ガス分析計100は、図9において説明した構成、図10において説明した構成、および、図11において説明した構成のうちの2つ以上を組み合わせて備えてもよい。
 図12は、ガス分析計100の他の構成例を示す図である。本例のガス分析計100は、ノッチフィルタ110を複数設ける点で、図2から図11の例と相違する。他の構造は、図2から図11において説明したいずれかの態様と同様である。本例のノッチフィルタ110は、光経路上の異なる複数の位置に設けられている。
 セル113の内部に複数のノッチフィルタ110が設けられてよく、セル113の外部に複数のノッチフィルタ110が設けられてよく、セル113の内部および外部の両方にノッチフィルタ110が設けられてもよい。図12の例では、入射窓140と第1の反射ミラー114-1との間、および、出射窓141と第2の反射ミラー114-2との間にノッチフィルタ110が設けられている。それぞれのノッチフィルタ110の通過特性は同一であってよく異なっていてもよい。調整部190は、それぞれのノッチフィルタ110の特性を調整してよく、いずれかのノッチフィルタ110の特性だけを調整してもよい。
 図13は、第2の実施例に係るガス分析計100を説明する図である。図13においては、図2から図12において示した構成のうち、セル113以外の構成を省略している。セル113以外の構成は、図2から図12において説明したいずれかの態様と同様であってよい。図13のセル113は、入射窓140と出射窓141とが共通の窓である折り返し型のセルであるが、セル113は、図2から図12において説明した実施例と同様の構成であってもよい。また、図2から図12において説明した実施例におけるセル113も、図13に示す折り返し型のセルであってよい。
 本例では、第1の反射ミラー114-1、第2の反射ミラー114-2、中央反射ミラー112および折り返し反射ミラー115がセル113の内部に設けられている。それぞれの反射ミラーは反射面に凹面部151を有する。折り返し反射ミラー115は、セル113の長手方向において、中央反射ミラー112と同じ側の端部に配置されている。折り返し反射ミラー115は、中央反射ミラー112に対して、入射窓140とは逆側に配置されている。
 第1の反射ミラー114-1は、入射窓140を通過した光106が最初に到達する反射ミラーである。第1の反射ミラー114-1は、入射窓140からの光106を中央反射ミラー112に向けて反射する。中央反射ミラー112は、第1の反射ミラー114-1からの光106を第2の反射ミラー114-2に向けて反射する。
 第2の反射ミラー114-2は、折り返し反射ミラー115と向かい合って配置され、中央反射ミラー112からの光106を折り返し反射ミラー115に向けて反射し、折り返し反射ミラー115からの光106を中央反射ミラー112に向けて反射する。中央反射ミラー112は、第2の反射ミラー114-2からの光106を、第1の反射ミラー114-1に向けて反射する。第1の反射ミラー114-1は、中央反射ミラー112からの光106を、出射窓141に向けて反射する。本例によれば、セル113のサイズを大きくせずに、光106の反射回数を容易に増大させることができる。図13の例では、中央反射ミラー112と向かい合う位置に2つの反射ミラー114が配置されているが、他の例では、中央反射ミラー112と向かい合う位置により多くの反射ミラー114が配置されていてもよい。
 向かいあう2つの反射ミラーの距離は、当該反射ミラーの凹面部151の曲率半径とほぼ等しい。例えば当該距離は、当該曲率半径の90%以上、110%以下である。それぞれの反射ミラーの凹面部151の曲率半径もほぼ等しくてよい。それぞれの反射ミラーの曲率半径の最小値に対する最大値の比率は、100%以上、120%以下であってよい。
 ガス分析計100の温度変動等により、受光素子126における光106の受光強度が変動する場合がある。例えば温度変動により反射ミラーの曲率が変化すると、反射ミラーの凹面部151の光軸に対する傾きが変化する。凹面部151の中央近傍における傾きの変化は小さいが、光軸から離れた反射面150の端部においては、光軸に対する傾きの変化は比較的に大きくなる。このため温度変動が生じると、光106の光軸から離れた成分が、受光素子126まで到達するか否かが変化して、受光素子126における受光量が変化する場合がある。
 本例のガス分析計100は、コリメート部143を備えている。コリメート部143は、光源部120とセル113との間に配置される。コリメート部143は、光源部120が出射した光106をコリメート光に変換して入射窓140に入射する。本例のコリメート部143は、放物面鏡を用いている。これにより、収差影響の少ないコリメート光を生成できる。ただしコリメート部143は、図2等に示したレンズであってもよい。
 本例においては、入射窓140から入射したコリメート光106が最初に到達する第1の反射ミラー114-1の凹面部151の幅が、コリメート光106の幅よりも小さい。凹面部151は、第1の反射ミラー114-1の反射面のうち、凹面となっている部分である。つまり凹面部151は平坦な部分を含まない。第1の反射ミラー114-1の反射面の全体が凹面部151になっていてもよい。
 図14は、第1の反射ミラー114-1の凹面部151と、コリメート光106のスポット192を、コリメート光106の進行方向から見た図である。図14のスポット192は、凹面部151の位置におけるスポットを示している。コリメート光106の進行方向における凹面部151の位置は、凹面部151の中央部193の位置である。つまりスポット192は、当該位置における平面にコリメート光106が照射される範囲である。他の例では、スポット192は、コリメート部143が出射した直後のコリメート光106のスポットであってよく、入射窓140の位置におけるコリメート光106のスポットであってもよい。スポット192は、コリメート光106の進行方向と垂直な平面における光強度が、最大値P1の半分(0.5×P1)以上となる範囲であってよい。つまり当該平面の光の強度分布において、半値全幅の領域をコリメート光106のスポット192とみなしてよい。
 凹面部151の幅をR1、コリメート光106のスポット192の幅をR0とする。当該幅は、凹面部151の中央部193における微小面と平行な面における幅であってよい。当該幅は、コリメート光106の進行方向と垂直な面における幅であってもよい。凹面部151が円形の場合、凹面部151の幅は円形の直径である。凹面部151が非円形の場合、凹面部151の幅は、当該面における凹面部151の幅のうち最大のものを指す。例えば凹面部151が正方形の場合、凹面部151の幅は正方形の対角線の長さである。スポット192の幅の測定方法も、凹面部151の幅と同様である。
 凹面部151の幅R1は、コリメート光106のスポット192の幅R0より小さい。これによりコリメート光106のうち、凹面部151の中央部193から離れた成分については凹面部151で反射されない。このため、温度変動により凹面部151の傾きが変化した場合であっても、中央部193から離れた位置のコリメート光106は受光素子126における測定値に影響を与えない。このため、温度変動による誤差を抑制できる。また、コリメート部143により光106をコリメート光106に変化しているので、コリメート光106の進行方向と垂直な面における光強度の分布を平坦化できる。このため、コリメート光106の光軸の位置が、凹面部151の中央部193からずれた場合であっても、凹面部151の全体に照射される光量の変動を抑制でき、ガス濃度を精度よく測定できる。また、それぞれの反射ミラーが凹面部151を有することで、反射ミラーにおける反射光の平行性を維持しやすくなる。幅R1は、20mm以下であってよく、10mm以下であってもよい。
 凹面部151の幅R1は、コリメート光106のスポット192の幅R0の80%以下であってよい。これにより、温度変動による測定誤差を低減しやすくなる。幅R1は、幅R0の75%以下であってよく、70%以下であってもよい。ただし、幅R1を小さくしすぎると、受光素子126に到達する光量が小さくなり、SN比が低下してしまう。幅R1は、幅R2の50%以上であってよい。幅R1は、幅R2の55%以上であってよく、60%以上であってもよい。
 第1の反射ミラー114-1の反射面の全体の幅が、コリメート光106の幅R0より小さくてもよい。例えば反射面が凹面部151の周囲に平坦面を有する場合において、反射面の全体の幅が、コリメート光106の幅R0より小さくてもよい。また、反射面の全体が凹面部151になっていてもよい。この場合、反射面全体の幅は、凹面部151の幅R1である。図14においては、第1の反射ミラー114-1について説明したが、セル113の他の反射ミラーにおいても、凹面部151の幅がコリメート光の幅より小さくてよい。
 図15は、第2の反射ミラー114-2の凹面部151を、コリメート光106の進行方向から見た図である。図15においては、図14と同一のスポット192を重ねて示している。第2の反射ミラー114-2の凹面部151の幅をR2とする。凹面部151の幅R1は、コリメート光106のスポット192の幅R0より小さくてよい。幅R2は、幅R1と同一であってもよい。幅R2を幅R0より小さくすることで、第1の反射ミラー114-1で反射した後に、コリメート光106の幅が広がった場合でも、第2の反射ミラー114-2において再度コリメート光106の幅を成形できる。これにより温度変動による誤差成分を更に抑制して、ガス濃度を更に精度よく測定できる。幅R2は、20mm以下であってよく、10mm以下であってもよい。
 幅R2は、幅R1よりも小さくてよい。反射ミラーの幅を徐々に小さくすることで、コリメート光106の光軸が、反射ミラーの中央部193からずれた場合であっても、当該反射ミラーの全体にコリメート光106を照射しやすくなる。このため、光軸ずれによる測定誤差を抑制できる。他の例では、第1の反射ミラー114-1以外の全ての反射ミラーの幅は、第1の反射ミラー114-1の幅R1よりも大きくてよい。これにより、第1の反射ミラー114-1よりも後段で光軸ずれが生じた場合でも、各反射ミラーにおいてコリメート光106の全体を反射しやすくなる。
 幅R2は、幅R1より大きくてもよい。幅R2は、幅R0より大きくてもよい。第1の反射ミラー114-1において、コリメート光106の幅がR1に成形される。このため、第2の反射ミラー114-2の幅R2を第1の反射ミラー114-1の幅R1と同一にした場合、コリメート光106の光軸が第2の反射ミラー114-2の中央部193からずれると、コリメート光106の一部が第2の反射ミラー114-2から外れてしまい、第2の反射ミラー114-2で反射されなくなる。このため、受光素子126に到達する光量が小さくなりすぎる場合がある。幅R2を幅R1より大きくすることで、受光素子126に到達する光量を確保しやすくなる。第2の反射ミラー114-2は、図2に示す構造のように、出射窓141の直前の反射ミラーであってよい。第1の反射ミラー114-1においてコリメート光106の直径を小さく成形することにより、測定誤差を効率よく低減できる。また、第2の反射ミラー114-2を比較的に大きくすることで、受光素子126に到達する光量を確保しやすくなる。
 図16は、中央反射ミラー112の凹面部151と、中央反射ミラー112の凹面部151の位置におけるコリメート光106のスポット192を、コリメート光106の進行方向から見た図である。中央反射ミラー112の凹面部151の幅をR3とする。中央反射ミラー112に到達するコリメート光106は、第1の反射ミラー114-1により幅R1に成形されている。幅R3は、幅R1より大きくてよい。図13に示した構造においては、中央反射ミラー112には、第1の反射ミラー114-1からのコリメート光106(スポット192-3)と、第2の反射ミラー114からのコリメート光106(スポット192-4)が入射する。スポット192-3およびスポット192-4は、凹面部151の異なる場所に配置される場合がある。中央反射ミラー112は、第1の反射ミラー114-1からのコリメート光106と、第2の反射ミラー114からのコリメート光106との両方を反射できるように、幅R1よりも大きい幅R3を有してよい。幅R3は、幅R0より大きくてもよい。幅R3は、20mmより大きくてよく、30mm以上であってもよい。
 図17は、中央反射ミラー112の凹面部151の他の形状例を示す図である。図16の例においては、中央反射ミラー112は円形である。本例の中央反射ミラー112は、非円形である。中央反射ミラー112において、スポット192-3およびスポット192-4が並ぶ方向における幅をR3とし、当該方向と直交する方向の幅をW3とする。幅W3は、幅R3より小さくてよい。幅W3は、幅R1より大きくてよく、小さくてもよい。このような構造においても、中央反射ミラー112は、第1の反射ミラー114-1からのコリメート光106と、第2の反射ミラー114からのコリメート光106との両方を反射できる。
 図18は、折り返し反射ミラー115の凹面部151を、コリメート光106の進行方向から見た図である。図15においては、図14と同一のスポット192を重ねて示している。折り返し反射ミラー115の凹面部151の幅をR4とする。凹面部151の幅R4は、コリメート光106のスポット192の幅R0より小さくてよい。幅R4は、幅R1と同一であってもよい。幅R4は、幅R2と同一であってもよい。幅R4を幅R0より小さくすることで、第2の反射ミラー114-2で反射した後に、コリメート光106の幅が広がった場合でも、折り返し反射ミラー115において再度コリメート光106の幅を成形できる。これにより温度変動による誤差成分を更に抑制して、ガス濃度を更に精度よく測定できる。
 幅R4は、幅R2よりも小さくてよい。反射ミラーの幅を徐々に小さくすることで、コリメート光106の光軸が、反射ミラーの中央部193からずれた場合であっても、当該反射ミラーの全体にコリメート光106を照射しやすくなる。このため、光軸ずれによる測定誤差を抑制できる。幅R4は、幅R1より大きくてもよい。幅R4は幅R2より大きくてもよい。幅R4は、20mm以下であってよく、10mm以下であってもよい。
 図19は、ガス分析計100の動作試験を説明する図である。本例では、ガス分析計100の温度を変化させたときの、受光素子126における特定波長の受光量の測定値を検出した。図19は、ガス分析計100の温度変化パターンの一例である。
 図20は、参考例における、受光素子126の受光量の測定値を示す図である。本例では、全ての反射ミラーの凹面部151の幅が、コリメート光106の幅以上である。参考例では、温度変動に伴って、受光素子126の測定値が大きく変動する。
 図21は、第2の実施例における、受光素子126の受光量の測定値を示す図である。本例では、第1の反射ミラー114-1の凹面部151の幅R1が、コリメート光の幅R0より小さい。本例では、温度変動に伴う測定値の変動を抑制できている。
 図22は、第3の実施例に係るガス分析計100を示す図である。本例のガス分析計100は、図2から図12の第1の実施例で説明したいずれかの態様のノッチフィルタ110を、図13から図21の第2の実施例で説明したいずれかの態様のガス分析計100に追加した構成を有する。本例のガス分析計100は、図9または図10において説明した調整部190を更に備えてよい。本例のガス分析計100は、図2から図12において説明した各機能を有してよい。本例のガス分析計100は、第1の実施例の構成と、第2の実施例の構成とを適宜組み合わせた構成を有してよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
10・・煙道、11・・ガス吸入管、12・・ガス排出管、14・・ガスフィルタ、15・・予熱器、16・・予熱温度調節器、17・・ポンプ、30・・サンプルガス、100・・・ガス分析計、106・・・光、110・・・ノッチフィルタ、112・・・中央反射ミラー、113・・・セル、114・・・反射ミラー、115・・・折り返し反射ミラー、118・・ヒータ、119・・温度調整部、120・・光源部、122・・分光器、126・・受光素子、127・・処理部、140・・・入射窓、141・・・出射窓、142・・・コリメートレンズ、143・・・コリメート部、149・・・通信線、150・・・反射面、151・・・凹面部、189・・・基準面、190・・・調整部、192・・・スポット、193・・・中央部、200・・・ガス分析装置、300・・・ピーク、302・・・領域

Claims (10)

  1.  サンプルガスに含まれる測定対象成分の濃度を測定するガス分析計であって、
     前記測定対象成分の吸収波長を含む光を出射する光源部と、
     前記光をコリメート光に変換するコリメート部と、
     前記光を反射させる1つ以上の反射ミラーを前記サンプルガスを封止した空間に収容したセルと、
     前記セルを通過した前記光の放射スペクトルを取得する受光素子と、
     前記受光素子の受光信号を処理し、前記測定対象成分の濃度を測定する処理部と
     を備え、
     前記1つ以上の前記反射ミラーは、前記コリメート光が最初に反射する第1の反射ミラーを含み、
     前記第1の反射ミラーは、前記コリメート光を反射する凹面部を含み、
     前記凹面部の幅が、前記コリメート光の幅よりも小さい
     ガス分析計。
  2.  前記第1の反射ミラーの全体の幅が、前記コリメート光の幅よりも小さい
     請求項1に記載のガス分析計。
  3.  前記凹面部の幅が、前記コリメート光の幅の80%以下である
     請求項1に記載のガス分析計。
  4.  前記凹面部の幅が、前記コリメート光の幅の50%以上である
     請求項3に記載のガス分析計。
  5.  前記1つ以上の前記反射ミラーは、前記第1の反射ミラーよりも後段に配置された第2の反射ミラーを含み、
     前記第2の反射ミラーは、前記コリメート光を反射する凹面部を含み、
     前記第2の反射ミラーの前記凹面部の幅が、前記コリメート光の幅よりも小さい
     請求項1から4のいずれか一項に記載のガス分析計。
  6.  前記第1の反射ミラーの前記凹面部の幅と、前記第2の反射ミラーの前記凹面部の幅とが同一である
     請求項5に記載のガス分析計。
  7.  前記第2の反射ミラーの前記凹面部の幅は、前記第1の反射ミラーの前記凹面部の幅よりも大きい
     請求項5に記載のガス分析計。
  8.  前記1つ以上の反射ミラーは、第2の反射ミラーから照射された前記コリメート光を、前記第2の反射ミラーに反射する折り返し反射ミラーを含み、
     前記折り返し反射ミラーは、前記コリメート光を反射する凹面部を含み、
     前記折り返し反射ミラーの前記凹面部の幅が、前記コリメート光の幅よりも小さい
     請求項1から4のいずれか一項に記載のガス分析計。
  9.  前記1つ以上の反射ミラーは、前記第1の反射ミラーから照射された前記コリメート光を前記第2の反射ミラーに反射し、前記第2の反射ミラーから照射された前記コリメート光を前記第1の反射ミラーに反射する中央反射ミラーを含み、
     前記中央反射ミラーは、前記コリメート光を反射する凹面部を含み、
     前記凹面部の幅が、前記コリメート光の幅よりも大きい
     請求項8に記載のガス分析計。
  10.  前記光源部から前記受光素子までの光経路のいずれかに配置され、前記光源部が出射する前記光の放射スペクトルのいずれかのピークにおける強度を減少させる制限帯域を有するノッチフィルタを更に備える
     請求項1から4のいずれか一項に記載のガス分析計。
PCT/JP2022/017085 2022-04-05 2022-04-05 ガス分析計 WO2023195067A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023566000A JP7533801B2 (ja) 2022-04-05 2022-04-05 ガス分析計
CN202280030569.5A CN117255938A (zh) 2022-04-05 2022-04-05 气体分析仪
EP22936467.4A EP4317945A4 (en) 2022-04-05 2022-04-05 GAS ANALYSER
PCT/JP2022/017085 WO2023195067A1 (ja) 2022-04-05 2022-04-05 ガス分析計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017085 WO2023195067A1 (ja) 2022-04-05 2022-04-05 ガス分析計

Publications (1)

Publication Number Publication Date
WO2023195067A1 true WO2023195067A1 (ja) 2023-10-12

Family

ID=88242660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017085 WO2023195067A1 (ja) 2022-04-05 2022-04-05 ガス分析計

Country Status (4)

Country Link
EP (1) EP4317945A4 (ja)
JP (1) JP7533801B2 (ja)
CN (1) CN117255938A (ja)
WO (1) WO2023195067A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188043A (ja) 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd 煙道中のso3ガスの濃度算出方法
JP2009534659A (ja) * 2006-04-19 2009-09-24 スペクトラセンサーズ, インコーポレイテッド 炭化水素中の水蒸気の測定
JP2010020262A (ja) * 2008-07-11 2010-01-28 Li-Cor Inc 誘電体ミラーにおいて光ビームの経路を形成するプロセス
WO2010098115A1 (ja) * 2009-02-26 2010-09-02 パナソニック株式会社 波長変換レーザ光源及び画像表示装置
JP2015137910A (ja) * 2014-01-22 2015-07-30 株式会社島津製作所 挿入型ガス濃度測定装置
JP2019007885A (ja) * 2017-06-27 2019-01-17 株式会社島津製作所 反射鏡、多重反射セル、ガス濃度モニタ及び反射鏡の製造方法
JP2022043847A (ja) * 2020-09-04 2022-03-16 富士電機株式会社 ガス分析計

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2521934C3 (de) * 1975-05-16 1978-11-02 Erwin Sick Gmbh Optik-Elektronik, 7808 Waldkirch Vorrichtung zur Bestimmung der Konzentrationen von Komponenten eines Abgasgemisches
US6710347B1 (en) * 2002-03-12 2004-03-23 Sensors, Inc. Device for measuring gas concentration
US7715009B1 (en) * 2007-04-16 2010-05-11 Teledyne Technologies Incorporated Optical instrument
CN109900638A (zh) * 2019-02-27 2019-06-18 中国科学院半导体研究所 支架、传感器接收装置和传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188043A (ja) 1999-12-28 2001-07-10 Ishikawajima Harima Heavy Ind Co Ltd 煙道中のso3ガスの濃度算出方法
JP2009534659A (ja) * 2006-04-19 2009-09-24 スペクトラセンサーズ, インコーポレイテッド 炭化水素中の水蒸気の測定
JP2010020262A (ja) * 2008-07-11 2010-01-28 Li-Cor Inc 誘電体ミラーにおいて光ビームの経路を形成するプロセス
WO2010098115A1 (ja) * 2009-02-26 2010-09-02 パナソニック株式会社 波長変換レーザ光源及び画像表示装置
JP2015137910A (ja) * 2014-01-22 2015-07-30 株式会社島津製作所 挿入型ガス濃度測定装置
JP2019007885A (ja) * 2017-06-27 2019-01-17 株式会社島津製作所 反射鏡、多重反射セル、ガス濃度モニタ及び反射鏡の製造方法
JP2022043847A (ja) * 2020-09-04 2022-03-16 富士電機株式会社 ガス分析計

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHAN MELLQVISTARNE ROSEN: "DOAS FOR FLUE GAS MONITORING - I. TEMPERATURE EFFECTS IN THE U.V./VISIBLE ABSORPTION SPECTRA OF NO, N02, SO2, AND NH3", QUANTITATIVE SPECTROSCOPY RADIATIVE TRANSFER, vol. 56, no. 2, 1996, pages 187 - 208
See also references of EP4317945A4

Also Published As

Publication number Publication date
CN117255938A (zh) 2023-12-19
JP7533801B2 (ja) 2024-08-14
JPWO2023195067A1 (ja) 2023-10-12
EP4317945A1 (en) 2024-02-07
EP4317945A4 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
JP6657059B2 (ja) 多重反射型セル、分析装置、排ガス分析装置、及び、光の入射方法
US7787120B2 (en) Spectrophotometer and liquid chromatography system
JPH04504908A (ja) 投受光装置
EP3809117B1 (en) Optical multiple reflection container
CN115096840B (zh) 一种自动校零的多气体传感器及自动校零方法
CN114136899B (zh) 气体分析仪
US6862090B2 (en) Coaxial illumination system
WO2023195067A1 (ja) ガス分析計
WO2023195066A1 (ja) ガス分析計
JP2005315711A (ja) ガス分析装置
JP2022124718A (ja) 多重反射器具および多重反射セル
CN110736713B (zh) 气体分析仪和气体分析方法
US9772226B2 (en) Referenced and stabilized optical measurement system
JP2018084523A (ja) ガス濃度測定装置
WO2023095326A1 (ja) ガス分析計および多重反射セル
US20040218261A1 (en) Conduction and correction of a light beam
JP2000338039A (ja) 溶融金属分析方法およびその装置
KR100791961B1 (ko) 비분산형 적외선 가스 측정장치의 도파로 구조
US20050128478A1 (en) Optical unit and measuring apparatus having the same
US20240118196A1 (en) Ndir gas measuring device for detecting presence of gas other than measurement target gas
WO2024101078A1 (ja) 分光装置及び波長補正方法
US11668648B2 (en) Concentration measurement device and concentration measurement and calibration method using the device
US20240068866A1 (en) Light measuring device and method of manufacturing light measuring device
JP3119622U (ja) 分光光度計
CN118443605A (zh) 光学测量装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280030569.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023566000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 22936467.4

Country of ref document: EP

Ref document number: 2022936467

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022936467

Country of ref document: EP

Effective date: 20231031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936467

Country of ref document: EP

Kind code of ref document: A1