WO2023193286A1 - 一种由阶梯型活塞缸构成的磁流变阻尼器 - Google Patents

一种由阶梯型活塞缸构成的磁流变阻尼器 Download PDF

Info

Publication number
WO2023193286A1
WO2023193286A1 PCT/CN2022/086363 CN2022086363W WO2023193286A1 WO 2023193286 A1 WO2023193286 A1 WO 2023193286A1 CN 2022086363 W CN2022086363 W CN 2022086363W WO 2023193286 A1 WO2023193286 A1 WO 2023193286A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston cylinder
damper
electromagnetic coil
magnetorheological
piston rod
Prior art date
Application number
PCT/CN2022/086363
Other languages
English (en)
French (fr)
Inventor
徐涵欧
李延成
Original Assignee
深圳市朝上科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市朝上科技有限责任公司 filed Critical 深圳市朝上科技有限责任公司
Publication of WO2023193286A1 publication Critical patent/WO2023193286A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • F16F9/3242Constructional features of cylinders of cylinder ends, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/42Cooling arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the technical field of new energy automobile accessories, and in particular to a magnetorheological damper composed of a stepped piston cylinder.
  • dampers serve as key accessories for reducing vibrations.
  • Traditional dampers or hydraulic dampers cannot reasonably adjust the damping size according to the actual road conditions, and do not meet the adaptive adjustment.
  • the magnetorheological damper can change the viscosity of the working fluid by using smart material magnetorheological fluid and introducing an external magnetic field, thereby achieving the required damping force under actual working conditions. Therefore, magnetorheological dampers can improve the comfort experience of customers when new energy vehicles are driving, and have good application prospects for the damping and shock absorption functions of the new energy auto parts industry.
  • magnetorheological automobile dampers are composed of core components such as a piston rod, a piston on the rod, and an electromagnetic coil at the piston.
  • the leads of the electromagnetic coil are usually led out through the hollow piston rod to connect to the external power supply.
  • the electromagnetic coil When the external power supply is working, the electromagnetic coil generates a magnetic field by changing the current size and energization time.
  • the magnetorheological fluid will be in working condition and generate corresponding damping force under different magnetic fields.
  • Both ends of the piston rod are designed with end caps or compression blocks.
  • the working area of the magnetorheological fluid is in a sealed space, where the heat generated by the energization of the coil is not easily dissipated.
  • Chinese patent CN113431863 A discloses a damping adaptive tuning magnetorheological damper, including a cylinder barrel, a piston valve, a piston rod, and an excitation coil.
  • the inner diameter of the cylinder wall decreases in multiple steps from the center to the left and right sides, causing the area of the liquid flow channel to gradually decrease.
  • the parameters of the restoring force model of the magnetorheological damper gradually increase. big. It is used to realize adaptive adjustment of magnetorheological damping parameters under constant current conditions, but it does not describe the positioning and fixation of the middle piston.
  • the curve at the step transition does not propose an optimization design method, and heat dissipation is not considered.
  • Chinese patent CN 108930753 A discloses a dual-coil magnetorheological damper with multi-section axial liquid flow damping channels, which mainly includes a piston rod, an end cover, a cylinder, an excitation coil, a magnetic conductive ring, a magnetic isolation ring and an inner Composed of sleeves, etc.
  • Four sections of axial liquid flow damping channels are formed between the inner sleeve and the left magnetic conductive ring, between the inner sleeve and the left end cover, between the inner sleeve and the right magnetic conductive ring, and between the inner sleeve and the right end cover. . It increases the working area of the magnetorheological fluid through the design of the internal sleeve and the dispersed arrangement of the coils, but its damper structure is relatively complex.
  • the object of the present invention is to provide a magnetorheological damper composed of a stepped piston cylinder.
  • the magnetorheological damper can achieve a wide range of damping force adjustment, and the output of the maximum damping force can be achieved at the same time. Shorter response time and adaptive adjustment for different road conditions.
  • the invention proposes a magnetorheological damper composed of a stepped piston cylinder, including a left lifting ring, a piston rod, a left end cover of the damper, a sealing ring, a piston cylinder body, a heat dissipation layer, a circlip, an insulating washer, an electromagnetic Coil core, electromagnetic coil, lead wire, sealing ring, right lifting ring, screws, the heat dissipation layer is fixed on the outside of the piston cylinder; the left end cover of the damper is connected to the left side of the piston cylinder through screws;
  • the electromagnetic coil iron core is provided on the piston rod and runs through the piston cylinder body; the electromagnetic coil iron core is designed with two grooves, and electromagnetic coils are evenly wound around the two grooves. There are several grooves to meet the arrangement of multiple coils, and a larger shear area can be achieved during the operation of the magnetorheological damper; left and right lifting rings are provided on the left and right sides of the piston rod, wherein,
  • the inner side of the piston cylinder adopts a ladder structure, and is provided with three first, second and third inner circular surfaces whose radii gradually decrease from the middle to both sides.
  • the cross-sectional shape of the transitional curved surface is determined using the principles of genetic algorithm and polynomial fitting: by assuming the form of 4th-order and 6th-order polynomials, using parameters as individuals in the population, and minimizing the energy generated by the impact as optimization
  • the goal is to use genetic algorithms to determine the values of each parameter, and then design a surface that meets the optimization goal.
  • the specific steps include:
  • step S1 the steps for establishing the objective function of step S1 are:
  • a 0 , a 1 ,... an are the coefficients of each term in the polynomial respectively;
  • F is the output damping force
  • F ⁇ is the viscous damping force
  • F ⁇ is the Coulomb damping force
  • f 0 is the friction damping force
  • eta is the dynamic viscosity
  • L 1 is the shear effective length
  • D is the piston diameter
  • h is the working gap
  • S is the piston effective area
  • d is the piston rod diameter
  • the working gap h is a function of the undetermined coefficient.
  • the working gap of the magnetorheological damper is set between 0.2mm and 1mm. Taking into account the two-level decrease, the requirements are:
  • the multiple selection roulette selection method is used, and the specific steps are: S41. Calculate the fitness value of each individual: fitval(i);
  • the three inner circular surfaces on the inside of the piston cylinder and the outer circular surface of the electromagnetic coil core together form a working channel for the magnetorheological fluid.
  • the working channel in the piston cylinder is filled with magnetorheological fluid.
  • the magnetorheological fluid is a Newtonian fluid when there is no magnetic field.
  • the suspended particles under the action of a strong magnetic field change from magnetic neutrality to magnetic neutrality due to magnetic induction. They become strongly magnetic, interact with each other, and form a "chain"-like structure between the magnetic poles, showing mechanical properties similar to solids, and the magnetorheological fluid undergoes shear flow.
  • the left and right ends of the piston cylinder are designed with through holes so that the piston rod penetrates the piston cylinder and drives the electromagnetic coil core to reciprocate.
  • the electromagnetic coil core is provided with There are two perforations, the piston rod is hollowed out, and is provided with a deep hole and a radial hole.
  • the lead wire connects the electromagnetic coil and the external power supply through the radial hole, the deep hole and the through hole in sequence.
  • the left end of the piston cylinder and the left end cover of the damper are sealed by a sealing ring
  • the left side of the piston rod and the left end cover of the damper are sealed by a sealing ring
  • the right side of the piston rod and the piston are sealed by a sealing ring.
  • the cylinder body is sealed by a sealing ring to prevent the magnetorheological fluid from overflowing in the piston cylinder cavity; the left and right ends of the piston rod are respectively threaded with a left lifting ring and a right lifting ring to facilitate
  • the magnetorheological damper is connected to the vehicle body; the right side of the electromagnetic coil core is fixed and positioned by the shoulder of the piston rod, and the left side is fixed and positioned by an insulating washer and a circlip.
  • the electromagnetic coil is made of copper wire winding
  • the piston cylinder body is made of magnetic conductive material
  • the heat dissipation layer is made of aluminum alloy material.
  • the shear force threshold of the magnetorheological damper is large, that is, the damping force adjustment range is large: through the three-stage inner diameter inner circular surface, the damping force output of the magnetorheological damper is affected by the external current and working gap, and has a greater Large adjustment range; and the minimum working gap of 0.2mm is designed to ensure the output of large damping force.
  • the genetic algorithm is used for surface optimization design.
  • the impact at the wall transition is small, so that the impact of the internal magnetorheological fluid on the inner circular wall transition can be minimized when the damper is working, reducing wear.
  • this magnetorheological damper is suitable for the field of automobile shock absorption.
  • Figure 1 is a simplified assembly diagram of the magnetorheological damper composed of a stepped piston cylinder according to the present invention
  • Figure 2 is a schematic diagram of a non-standard circlip
  • Figure 3 is the genetic algorithm flow chart
  • Figure 4 is a schematic diagram of damper performance parameters
  • Figure 5 is a schematic diagram of the curve of the transitional surface.
  • a magnetorheological damper composed of a stepped piston cylinder includes a piston cylinder block 5 and a heat dissipation layer 6 arranged outside the piston cylinder block 5;
  • a non-standard circlip 7 is provided for fixing and positioning the electromagnetic coil core 9. The structure of the non-standard circlip 7 is shown in Figure 2.
  • the left and right ends of the piston cylinder 5 are designed with through holes, so that the piston rod 2 can penetrate the piston cylinder 5 and drive the electromagnetic coil core 9 to reciprocate; the left end of the piston cylinder 5 and the left end of the damper
  • the cover 3 is assembled and connected through screws 14, the left end of the piston cylinder block 5 and the left end cover 3 of the damper are sealed by a sealing ring 4, the left side of the piston rod 2 and the left end cover 3 of the damper are sealed by a sealing ring 12, and the piston
  • the right side of the rod 2 and the piston cylinder 5 are sealed by a sealing ring 12 to prevent the magnetorheological fluid from overflowing in the piston cylinder 5 cavity; the left and right ends of the piston rod 2 are connected to the left and right ends by threaded holes I respectively.
  • the side lifting ring 1 and the right lifting ring 13 are used to facilitate the connection between the magnetorheological damper and the car body;
  • the middle section of the piston rod 2 is provided with an electromagnetic coil core 9, and the right side of the electromagnetic coil core 9 is connected through the shoulder of the piston rod 2 Fixing and positioning, the left side is fixed and positioned by insulating washers 8 and circlips 7;
  • the electromagnetic coil core 9 is designed with two grooves, and the electromagnetic coil 10 is evenly wound around the groove;
  • the electromagnetic coil core 9 is provided with two Perforation II, the piston rod 2 is hollowed, and is provided with a deep hole III and a radial hole IV.
  • the lead 11 connects the electromagnetic coil 10 to the external power supply through the penetration, the deep hole III, and the radial hole IV.
  • the inside of the piston cylinder block 5 is designed in a graded manner, and is provided with three first inner circular surfaces A, second inner circular surfaces B and third inner circular surfaces C whose radii gradually decrease from the middle to both sides;
  • the inner circumferential surface of the piston cylinder body 5 and the outer circumferential surface of the electromagnetic coil core 9 together form a working channel for the magnetorheological fluid.
  • a transitional curved surface S with an S-shaped cross section is designed at the transition between the first inner circular surface A and the second inner circular surface B, and the second inner circular surface B and the third inner circular surface C to slow down the impact of the magnetorheological fluid on the wall.
  • the cross-sectional shape of the curved surface S is determined using the genetic algorithm and the principle of polynomial fitting.
  • the S-shaped curve assumes the form of a high-order polynomial, takes the parameters as individuals in the population, and minimizes the energy generated by the impact as the optimized Goal, use genetic algorithm to determine the value of each parameter, and then design a surface that meets the optimization goal.
  • Step 1 Establish a mathematical model: determine the constraints, objective function and number of termination genetic iterations
  • a 0 , a 1 ,... an are the coefficients of each term in the polynomial respectively;
  • F is the output damping force
  • F ⁇ is the viscous damping force
  • F ⁇ is the Coulomb damping force
  • f 0 is the friction damping force.
  • eta is the dynamic viscosity
  • L 1 is the shear effective length
  • D is the piston diameter
  • h is the working gap
  • S is the piston effective area.
  • d is the piston rod diameter
  • the working gap h is a function of an undetermined coefficient.
  • the working gap of the magnetorheological damper is generally set between 0.2mm and 1mm. Taking into account the two-stage decrease, the requirements are:
  • g is the width of the electromagnetic coil.
  • Step 2 Use binary coding to encode the actual problem to generate individuals and initial populations
  • Step 3 Map the objective function to the fitness function and evaluate the fitness value of the individual based on this; when the objective function has strict monotonic increase, the two can be the same, and when the objective function decreases, the reciprocal is usually taken;
  • Step 4 Obtain a new population through the principles of biological evolution mechanisms such as several selections (roulette selection method), crossover (single point crossover), mutation (basic bit mutation);
  • Step 5 Screen out the best individuals
  • Step 6 Decoding, convert the mathematical optimal solution conclusion into the optimal solution to the actual problem.
  • the piston rod 2 penetrates the piston cylinder 5 and drives the electromagnetic coil core 9 to reciprocate in the cavity of the piston cylinder 5 filled with magnetorheological fluid.
  • the external power supply delivers current to the electromagnetic coil 10 at the groove of the electromagnetic coil core 9 in the cavity of the piston cylinder 5 through the lead 11, thereby generating a magnetic field around the electromagnetic coil 10.
  • the magnetorheological fluid in the cavity is a Newtonian fluid when there is no magnetic field.
  • the suspended particles change from magnetic neutrality to strong magnetism due to magnetic induction. They interact with each other and form "chains" between the magnetic poles.
  • the output damping force will be greater, and vice versa; so when the electromagnetic coil core 9 moves from the middle to the During the movement of the inner circular surface A area to the left or backward to the second inner circular surface B and the third inner circular surface C area, the magnetorheological fluid will be squeezed and pass through the inner circular surface of the piston cylinder body 5
  • the working channel formed together with the outer circumferential surface of the electromagnetic coil core 9 has a channel space that increases from large to small, and the damping force shows a stepwise change trend from small to large. It realizes that the magnetorheological damper has a wide range of damping force adjustment and maximum damping force output.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

本发明公开了一种由阶梯型活塞缸构成的磁流变阻尼器,涉及新能源汽车配件技术领域,包括由端盖及缸筒组成的活塞缸,装有吊环的活塞杆,具有多个线圈的导磁环组成,活塞缸设计成有三种不同内径的内筒,缸体外侧装有散热层,以解决刚体内热量无法及时散失的缺陷;在缸体内侧的内径变化处,运用遗传算法及多项式拟合的原理优化出S型的过渡曲线,并将其应用于缸筒内壁的衔接处。本发明将磁流变液与阻尼器结合,使得阻尼器可进行实时阻尼改变,从而减轻汽车在行驶过程中因路况变化而产生的震动,提高用户的舒适性体验,结构简单,自适应能力较强。

Description

一种由阶梯型活塞缸构成的磁流变阻尼器 技术领域
本发明涉及新能源汽车配件技术领域,尤其涉及一种由阶梯型活塞缸构成的磁流变阻尼器。
背景技术
在科技高度发展的当今社会,新能源汽车已经成为较为普及的出行工具。而在新能源汽车的研发与使用中,新能源汽车本身的安全性和客户的舒适性是两个非常重要的指标。在客户的舒适性方面,阻尼器是作为减少振动的关键配件。传统的阻尼器或液压阻尼器无法根据实际的路面情况合理的调节阻尼大小,不满足自适应性的调节。而磁流变阻尼器可以通过使用智能材料磁流变液并引入外部的磁场达到改变工作液体的粘度,进而实现在实际工况时达到所需的阻尼力大小。因此,磁流变阻尼器能改善新能源汽车在行驶途中客户的舒适性体验,对于新能源汽车配件行业阻尼减震功能具有良好的应用前景。
现有技术中,磁流变汽车阻尼器由活塞杆、杆上活塞,活塞处电磁线圈等核心部件组成。电磁线圈的引线一般通过中空设计的活塞杆引出以联通外接电源。活塞上会留有磁流变液的流动通道。在外接电源工作时,通过改变电流大小和通电时间使得电磁线圈产生磁场,磁流变液将处于工作状态并在不同磁场下产生相应的阻尼力。活塞杆的两端设计有端盖或者压紧块。磁流变液工作区域为密封空间内,在此空间内因为线圈通电产生的热量不易散失。
中国专利CN113431863 A公开了一种阻尼自适应调谐磁流变阻尼 器,包括缸筒,活塞阀,活塞杆,励磁线圈。缸筒的筒壁内径从中央向左右两侧各呈多级减小变化,使得液流通道的面积逐渐减小,使得在励磁线圈磁场作用下,磁流变阻尼器恢复力模型参数逐级增大。用以实现在常电流情况下的磁流变阻尼参数自适应调节,但其没有讲述中部活塞的定位与固定,阶梯过渡处的曲线未提出优化设计的方法,未考虑散热。
中国专利CN 108930753 A公开了一种具有多段轴向液流阻尼通道的双线圈磁流变阻尼器,主要有活塞杆、端盖、缸体、励磁线圈、导磁环、隔磁环以及内套筒等组成。内套筒与左导磁环之间、内套筒与左端盖之间、内套筒与右导磁环之间、内套筒与右端盖之间分别形成了四段轴向液流阻尼通道。其通过内部内套筒的设计及线圈的分散布置增大了磁流变液的工作面积,但其阻尼器结构较为复杂。
发明内容
本发明的目的是提供一种由阶梯型活塞缸构成的磁流变阻尼器。通过阶梯型活塞缸缸体和电磁线圈铁芯的多线圈设置,以及阶梯过渡处曲线的优化处理,使得磁流变阻尼器能实现较大范围的阻尼力调整,和最大阻尼力的输出并在更短的响应时间内针对不同路况进行自适应调节。
本发明提出的一种由阶梯型活塞缸构成的磁流变阻尼器,包括左侧吊环、活塞杆、阻尼器左端盖、密封圈、活塞缸缸体、散热层、卡簧、绝缘垫圈、电磁线圈铁芯、电磁线圈、引线、密封圈、右侧吊环、螺钉,所述散热层固定在活塞缸缸体外侧;所述阻尼器左端盖通过螺 钉连接至所述活塞缸缸体的左侧;所述活塞杆上设置有所述电磁线圈铁芯并贯穿于所述活塞缸缸体;所述电磁线圈铁芯设计有两个凹槽,两个所述凹槽外围均匀缠绕有电磁线圈,两个凹槽以满足多线圈的布置,在磁流变阻尼器工作中能实现更大的剪切面积;所述活塞杆左右两侧设置有左侧吊环和右侧吊环,其中,
所述活塞缸缸体内侧采用阶梯结构,设置有三种从中间向两侧半径逐渐离散减小的第一内圆面、第二内圆面和第三内圆面,在外界电流输入后,当电磁线圈铁芯运动到活塞缸缸体内侧内圆面半径越小的地方,输出的阻尼力越大,反之越小;且在所述第一内圆面与第二内圆面以及所述第二内圆面和所述第三内圆面的过渡处设计有截面成S型的过渡型曲面,以减缓磁流变液对壁面过渡处的冲击。
优选地,所述过渡型曲面的截面形状采用遗传算法及多项式拟合的原理确定:通过假定出4阶以及6阶多项式的形式,将参数作为种群中的个体,将撞击产生的能量最小作为优化的目标,利用遗传算法确定出各个参数的值,进而设计出符合优化目标的曲面,具体步骤包括:
S1、建立数学模型:确定限制条件、目标函数及终止遗传迭代数;
S2、采用二进制编码方式对实际问题进行编码操作进而产生个体及初始种群;
S3、将目标函数映射到适应度函数上并基于此评估个体的适应度值;在目标函数具有严格的单调递增性时,目标函数与适应度函数相同;在目标函数递减时,目标函数与适应度函数互为倒数;
S4、通过数次选择、单点交叉、及基本位变异的生物进化机制原 理得到新的种群;
S5、筛选出最优个体;
S6、解码,将数学上的最优解结论转变为实际问题中的最优解。
优选地,所述步骤S1目标函数的建立步骤为:
S11:将曲面的横截面S曲线可用多项式表示:
S:f(x)=a 0+a 1x+a 2x 2+…+a nx n
其中,a 0、a 1、……a n分别为多项式中每一项的系数;
S12:阻尼器的阻尼力计算公式为:
Figure PCTCN2022086363-appb-000001
F为输出阻尼力;F η为黏滞阻尼力;F τ为库仑阻尼力;f 0为摩擦阻尼力,其中:
Figure PCTCN2022086363-appb-000002
Figure PCTCN2022086363-appb-000003
η为动力黏度;L 1为剪切有效长度;D为活塞直径;h为工作间隙;τ y剪切屈服应力;S为活塞有效面积,S的计算公式如下:
Figure PCTCN2022086363-appb-000004
d为活塞杆直径;
S13:工作间隙h为待定系数的函数,磁流变阻尼器的工作间隙设置为0.2mm~1mm之间,考虑到两级递减,故要求:
h=f(a 0,a 1,a 2,…a n)≤1mm
S14:设磁流变阻尼器在工作过程中对于壁面的冲击力为P,
故以最小的冲击力以及最大的阻尼力为最终的优化目标:
Figure PCTCN2022086363-appb-000005
约束条件为:
Figure PCTCN2022086363-appb-000006
优选地,所述S4中,所述数次选择轮盘赌选择方法,具体步骤为:S41、计算每一个个体的适应度值:fitval(i);
S42、计算群体的适应值总值:
Figure PCTCN2022086363-appb-000007
S43、则每个个体被选择的概率为:
Figure PCTCN2022086363-appb-000008
S44、计算每个个体的累计概率:
Figure PCTCN2022086363-appb-000009
S45、在0到1的“轮盘中”生成随机数r;0≤r≤1
若Ap i-1≤r≤Ap i;则选择第i个个体进入下一代遗传。
优选地,所述活塞缸缸体内侧的三个内圆面与所述电磁线圈铁芯 外圆面共同构成磁流变液的工作通道。
优选地,所述在活塞缸缸体内的工作通道内填充有磁流变液,所述磁流变液在无磁场时为牛顿流体,在强磁场作用下悬浮的颗粒因磁感应由磁中性变为强磁性,彼此之间相互作用,而在磁极之间形成“链”状结构,表现出类似固体的力学性质,所述磁流变液发生剪切流动。
优选地,所述活塞缸缸体左右两端设计有通孔,使所述活塞杆贯穿所述活塞缸缸体并驱动所述电磁线圈铁芯作往复运动,所述电磁线圈铁芯上设置有两个穿孔,所述活塞杆作中空处理,设置有深孔以及径向孔,所述引线依次通过径向孔、深孔和通孔连接所述电磁线圈及外界电源。
优选地,所述活塞缸缸体左端与阻尼器左端盖通过密封圈进行密封处理,所述活塞杆的左侧与阻尼器左端盖通过密封圈进行密封处理,所述活塞杆的右侧与活塞缸缸体通过密封圈进行密封处理,防止所述活塞缸缸体腔体中磁流变液的溢出;所述活塞杆的左右两端分别用螺纹连接有左侧吊环和右侧吊环,以便于所述磁流变阻尼器与车体连接;所述电磁线圈铁芯的右侧通过活塞杆的轴肩进行固定与定位,左侧通过绝缘垫圈和卡簧进行固定与定位。
优选地,所述电磁线圈采用铜丝缠绕制成,所述活塞缸缸体采用导磁材料,所述散热层采用铝合金材料。
本发明的有益效果:
1、磁流变阻尼器的剪切力阈值大,即阻尼力调节范围大:通过 三级内径内圆面,使得磁流变阻尼器的阻尼力输出受到外界电流和工作间隙的影响,具有更大的调节范围;并通过设计0.2mm的最小工作间隙,保证较大阻尼力的输出。
2、采用遗传算法进行曲面优化设计,壁面过渡处冲击小,使得阻尼器工作时内部的磁流变液对内圆壁面过渡处的冲击能达到最小,减少磨损。
3、散热较快,在活塞缸缸体的外围设置有由铝合金制成的散热夹层,能保障阻尼器工作时,因通电导致线圈发热,进而腔体内部过热而无法散失的情况。
4、结构简单、装配方便、控制便捷、能源消耗低、且响应速度快,该磁流变阻尼器适用于汽车减震领域。
附图说明
图1为本发明的由阶梯型活塞缸构成的磁流变阻尼器装配简图;
图2为非标卡簧示意图;
图3为遗传算法流程图;
图4为阻尼器性能参数示意图;
图5为过渡型曲面的曲线示意图。
1-左侧吊环,2-活塞杆,3-阻尼器左端盖,4-密封圈,5-活塞缸缸体,6-散热层,7-卡簧,8-绝缘垫圈,9-电磁线圈铁芯,10-电磁线圈,11-引线,12-密封圈,13-右侧吊环,14-螺钉,A-第一内圆面,B-第二内圆面,C-第三内圆面,S-过渡型曲面、Ⅰ-螺纹孔,Ⅱ-穿孔,Ⅲ-深孔,Ⅳ-径向孔。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
如图1所示,一种由阶梯型活塞缸构成的磁流变阻尼器,包括活塞缸缸体5、设置于活塞缸缸体5外侧的散热层6;设置于活塞缸缸体5左侧的阻尼器左端盖3;设置于活塞缸缸体5的腔体内部的活塞杆2;设置于活塞杆2中段的电磁线圈铁芯9;设置于电磁线圈铁芯9凹槽处均匀缠绕有电磁线圈10;设置于活塞杆2左侧的左侧吊环1;以及设置于活塞杆2右侧的右侧吊环13。设置有一非标卡簧7用于电磁线圈铁芯9的固定与定位,非标卡簧7的结构如图2所示。
在本实例中,活塞缸缸体5左右两端设计有通孔,使得活塞杆2能贯穿活塞缸缸体5并驱动电磁线圈铁芯9作往复运动;活塞缸缸体5左端与阻尼器左端盖3通过螺钉14进行装配连接,活塞缸缸体5左端与阻尼器左端盖3通过密封圈4进行密封处理,活塞杆2的左侧与阻尼器左端盖3通过密封圈12进行密封处理,活塞杆2的右侧与活塞缸缸体5通过密封圈12进行密封处理,防止活塞缸缸体5腔体中磁流变液的溢出;活塞杆2的左右两端分别用螺纹孔Ⅰ连接有左侧吊环1和右侧吊环13,以便于磁流变阻尼器与车体连接;活塞杆2的中段设置有电磁线圈铁芯9,电磁线圈铁芯9的右侧通过活塞杆2的轴肩进行固定与定位,左侧通过绝缘垫圈8和卡簧7进行固定与定位;电磁线圈铁芯9设计有两凹槽,凹槽外围均匀缠绕有电磁线圈10;电磁线圈铁芯9上设置有两个穿孔Ⅱ,活塞杆2作中空处理,设置有深孔Ⅲ以及径向孔Ⅳ,引线11通过穿、深孔Ⅲ、径向孔Ⅳ连接电磁线圈10与外界电源。
在本实例中,活塞缸缸体5内侧做分级设计,设置有三种从中间向两侧半径逐渐离散减小的第一内圆面A、第二内圆面B和第三内圆面C;活塞缸缸体5内圆面与电磁线圈铁芯9外圆面共同构成磁流变液的工作通道。在第一内圆面A与第二内圆面B、第二内圆面B与第三内圆面C的过渡处设计有截面成S型的过渡型曲面S以减缓磁流变液对壁面过渡处的冲击;曲面S的截面形状采用遗传算法及多项式拟合的原理确定,S型曲线通过假定出高阶多项式的形式,将参数作为种群中的个体,将撞击产生的能量最小作为优化的目标,利用遗传算法确定出各个参数的值,进而设计出符合优化目标的曲面。
遗传算法的具体步骤如图3所示:
步骤一:建立数学模型:确定限制条件、目标函数及终止遗传迭代数;
目标函数的建立:
1)如图5所示:将曲面的横截面S曲线可用多项式表示:
S:f(x)=a 0+a 1x+a 2x 2+…+a nx n
其中,a 0、a 1、……a n分别为多项式中每一项的系数;
2)如图4所示:阻尼器性能由图示参数决定,其阻尼力计算公式为:
Figure PCTCN2022086363-appb-000010
F为输出阻尼力;F η为黏滞阻尼力;F τ为库仑阻尼力;f 0为摩擦阻尼力。其中:
Figure PCTCN2022086363-appb-000011
Figure PCTCN2022086363-appb-000012
η为动力黏度;L 1为剪切有效长度;D为活塞直径;h为工作间隙;τ y剪切屈服应力;S为活塞有效面积。其中:S的计算公式如下:
Figure PCTCN2022086363-appb-000013
d为活塞杆直径。
工作间隙h为待定系数的函数,磁流变阻尼器的工作间隙一般设置为0.2mm~1mm之间,考虑到两级递减,故要求:
h=f(a 0,a 1,a 2,…a n)≤1mm
而设磁流变阻尼器在工作过程中对于壁面的冲击力为P。
故以最小的冲击力以及最大的阻尼力为最终的优化目标:
Figure PCTCN2022086363-appb-000014
约束条件为:
Figure PCTCN2022086363-appb-000015
g为电磁线圈的宽度。
步骤二:采用二进制编码方式对实际问题进行编码操作进而产生个体及初始种群;
步骤三:将目标函数映射到适应度函数上并基于此评估个体的适应度值;在目标函数具有严格的单调递增性时两者可以相同,在目标函数递减时通常取倒数;
步骤四:通过数次选择(轮盘赌选择方法)、交叉(单点交叉)、变异(基本位变异)等生物进化机制的原理得到新的种群;
步骤五:筛选出最优个体;
步骤六:解码,将数学上的最优解结论转变为实际问题中的最优解。
磁流变阻尼器具体的工作原理如下:
在本实例中,活塞杆2贯穿活塞缸缸体5并驱动电磁线圈铁芯9在填充满磁流变液的活塞缸缸体5腔体中作往复运动。外部电源通过引线11给活塞缸缸体5腔体内电磁线圈铁芯9凹槽处的电磁线圈10输送电流,在电磁线圈10的周围产生磁场。腔体中磁流变液在无磁场时为牛顿流体,而在强磁场作用下悬浮的颗粒因磁感应由磁中性变为强磁性,彼此之间相互作用,而在磁极之间形成“链”状的桥,进而转化成宏观的柱状结构,使其在瞬间由液体变为粘塑体,其流变性质发生急剧变化,表现出类似固体的力学性质,磁流变液会发生剪切流动。在外界电流输入后,当电磁线圈铁芯9运动到活塞缸缸体5内侧内圆面半径越小的地方,输出的阻尼力越大,反之越小;所以在电磁线圈铁芯9从中部第一内圆面A区域向左或向后的第二内圆面B、第三内圆面C区域的运动过程中,磁流变液将受到挤压而通过由活塞缸缸体5内圆面与电磁线圈铁芯9外圆面共同构成的工作通道,通道空间由大至小, 阻尼力呈现由小及大的阶梯变化趋势。实现了磁流变阻尼器拥有较大范围的阻尼力调整和最大阻尼力的输出。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,包括左侧吊环(1)、活塞杆(2)、阻尼器左端盖(3)、密封圈(4)、活塞缸缸体(5)、散热层(6)、卡簧(7)、绝缘垫圈(8)、电磁线圈铁芯(9)、电磁线圈(10)、引线(11)、密封圈(12)、右侧吊环(13)、螺钉(14),所述散热层(6)固定在活塞缸缸体(5)外侧;所述阻尼器左端盖(3)通过螺钉(14)连接至所述活塞缸缸体(5)的左侧;所述活塞杆(2)上设置有所述电磁线圈铁芯(9)并贯穿于所述活塞缸缸体(5);所述电磁线圈铁芯(9)设计有两个凹槽,两个所述凹槽外围均匀缠绕有电磁线圈(10);所述活塞杆(2)左右两侧设置有左侧吊环(1)和右侧吊环(13),其中,
    所述活塞缸缸体(5)内侧采用阶梯结构,设置有三种从中间向两侧半径逐渐离散减小的第一内圆面(A)、第二内圆面(B)和第三内圆面(C),且在所述第一内圆面(A)与第二内圆面(B)以及所述第二内圆面(B)和所述第三内圆面(C)的过渡处设计有截面成S型的过渡型曲面(S)。
  2. 根据权利要求1所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述过渡型曲面(S)的截面形状采用遗传算法及多项式拟合的原理确定:通过假定出4阶以及6阶多项式的形式,将参数作为种群中的个体,将撞击产生的能量最小作为优化的目标,利用遗传算法确定出各个参数的值,进而设计出符合优化目标的曲面,具体步骤包括:
    S1、建立数学模型:确定限制条件、目标函数及终止遗传迭代数;
    S2、采用二进制编码方式对实际问题进行编码操作进而产生个体及初始种群;
    S3、将目标函数映射到适应度函数上并基于此评估个体的适应度值;在目标函数具有严格的单调递增性时,目标函数与适应度函数相同;在目标函数递减时,目标函数与适应度函数互为倒数;
    S4、通过数次选择、单点交叉、及基本位变异的生物进化机制原理得到新的种群;
    S5、筛选出最优个体;
    S6、解码,将数学上的最优解结论转变为实际问题中的最优解。
  3. 根据权利要求2所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述步骤S1目标函数的建立步骤为:
    S11:将曲面的横截面S曲线可用多项式表示:
    S:f(x)=a 0+a 1x+a 2x 2+…+a nx n
    其中,a 0、a 1、……a n分别为多项式中每一项的系数;
    S12:阻尼器的阻尼力计算公式为:
    Figure PCTCN2022086363-appb-100001
    F为输出阻尼力;F η为黏滞阻尼力;F τ为库仑阻尼力;f 0为摩擦阻尼力,其中:
    Figure PCTCN2022086363-appb-100002
    Figure PCTCN2022086363-appb-100003
    η为动力黏度;L 1为剪切有效长度;D为活塞直径;h为工作间隙;τ y剪切屈服应力;S为活塞有效面积,S的计算公式如下:
    Figure PCTCN2022086363-appb-100004
    d为活塞杆直径;
    S13:工作间隙h为待定系数的函数,磁流变阻尼器的工作间隙一般设置为0.2mm~1mm之间,考虑到两级递减,故要求:
    h=f(a 0,a 1,a 2,…a n)≤1mm
    S14:设磁流变阻尼器在工作过程中对于壁面的冲击力为P,
    故以最小的冲击力以及最大的阻尼力为最终的优化目标:
    Figure PCTCN2022086363-appb-100005
    约束条件为:
    Figure PCTCN2022086363-appb-100006
  4. 根据权利要求2所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述S4中,所述数次选择轮盘赌选择方法,具体步骤为:
    S41、计算每一个个体的适应度值:fitval(i);
    S42、计算群体的适应值总值:
    Figure PCTCN2022086363-appb-100007
    S43、则每个个体被选择的概率为:
    Figure PCTCN2022086363-appb-100008
    S44、计算每个个体的累计概率:
    Figure PCTCN2022086363-appb-100009
    S45、在0到1的“轮盘中”生成随机数r;0≤r≤1
    若Ap i-1<r≤Ap i;则选择第i个个体进入下一代遗传。
  5. 根据权利要求1所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述活塞缸缸体(5)内侧的三个内圆面与所述电磁线圈铁芯(9)外圆面共同构成磁流变液的工作通道。
  6. 根据权利要求5所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述在活塞缸缸体(5)内的工作通道内填充有磁流变液,所述磁流变液在无磁场时为牛顿流体,在强磁场作用下悬浮的颗粒因磁感应由磁中性变为强磁性,彼此之间相互作用,而在磁极之间形成“链”状结构,表现出类似固体的力学性质,所述磁流变液发生剪切流动。
  7. 根据权利要求1所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述活塞缸缸体(5)左右两端设计有通孔,使所述活塞杆(2)贯穿所述活塞缸缸体(5)并驱动所述电磁线圈铁芯(9)作往复运动,所述电磁线圈铁芯(9)上设置有两个穿孔(Ⅱ),所述 活塞杆(2)作中空处理,设置有深孔(Ⅲ)以及径向孔(Ⅳ),所述引线(11)依次通过径向孔(Ⅳ)、深孔(Ⅲ)和通孔(Ⅱ)连接所述电磁线圈(10)及外界电源。
  8. 根据权利要求1所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述活塞缸缸体(5)左端与阻尼器左端盖(3)通过密封圈(4)进行密封处理,所述活塞杆(2)的左侧与阻尼器左端盖(3)通过密封圈(12)进行密封处理,所述活塞杆(2)的右侧与活塞缸缸体(5)通过密封圈(12)进行密封处理;所述活塞杆(2)的左右两端分别用螺纹孔连接有左侧吊环(1)和右侧吊环(13);所述电磁线圈铁芯(9)的右侧通过活塞杆(2)的轴肩进行固定与定位,左侧通过绝缘垫圈(8)和卡簧(7)进行固定与定位。
  9. 根据权利要求1所述的一种由阶梯型活塞缸构成的磁流变阻尼器,其特征在于,所述电磁线圈(10)采用铜丝缠绕制成,所述活塞缸缸体采用导磁材料,所述散热层采用铝合金材料。
PCT/CN2022/086363 2022-04-07 2022-04-12 一种由阶梯型活塞缸构成的磁流变阻尼器 WO2023193286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210364686.7A CN114877006B (zh) 2022-04-07 2022-04-07 一种由阶梯型活塞缸构成的磁流变阻尼器
CN202210364686.7 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193286A1 true WO2023193286A1 (zh) 2023-10-12

Family

ID=82670460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086363 WO2023193286A1 (zh) 2022-04-07 2022-04-12 一种由阶梯型活塞缸构成的磁流变阻尼器

Country Status (2)

Country Link
CN (1) CN114877006B (zh)
WO (1) WO2023193286A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB758798A (en) * 1953-09-30 1956-10-10 Groot Hansen Dahl Improvements in or relating to hydraulic shock absorbers
RU118704U1 (ru) * 2012-05-11 2012-07-27 Оксана Анатольевна Комлева Электромагнитореологический управляющий элемент
CN102853021A (zh) * 2012-07-23 2013-01-02 广东电网公司电力科学研究院 一种应用于输电杆塔基于高分子材料的双向弹性阻尼器
CN103174789A (zh) * 2013-04-03 2013-06-26 山东理工大学 基于特性要求的磁流变减振器阻尼通道宽度的设计方法
CN206802181U (zh) * 2017-05-08 2017-12-26 华东交通大学 集成蓄能器和压力传感器的双出杆式磁流变阻尼器
CN110985589A (zh) * 2019-12-02 2020-04-10 江苏科技大学 磁流变液涡轮阻尼器
CN210397552U (zh) * 2019-07-23 2020-04-24 廖永胜 一种摩托车活塞式方向阻尼器
CN111523168A (zh) * 2020-04-22 2020-08-11 中电建路桥集团有限公司 多工况多目标下液体粘滞阻尼器参数优化方法
CN113431863A (zh) * 2021-04-22 2021-09-24 同济大学 一种阻尼自适应调谐磁流变阻尼器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000181950A (ja) * 1998-11-19 2000-06-30 General Electric Co <Ge> 湾曲構造物から成るアセンブリの設計方法
JP2001307977A (ja) * 2000-02-18 2001-11-02 Nikon Corp 荷電粒子線露光装置の設計方法、荷電粒子線露光装置、及び半導体デバイスの製造方法
CN100493197C (zh) * 2007-05-24 2009-05-27 北京航空航天大学 一种面向图像压缩的小波基分类构造方法
CN202209456U (zh) * 2011-09-01 2012-05-02 山东弘宇机械有限公司 一种差动式安全阀
CN103413067B (zh) * 2013-07-30 2016-06-15 浙江工业大学 一种基于抽象凸下界估计的蛋白质结构预测方法
CN105508494B (zh) * 2015-12-30 2018-01-05 中国海洋大学 抗冲击磁流变阻尼器
CN105952834B (zh) * 2016-07-15 2018-01-30 北京机械设备研究所 一种剪切阀式磁流变阻尼器及其参数优化方法
KR101770594B1 (ko) * 2016-08-19 2017-08-24 한국철도기술연구원 열차의 실시간 속도 최적화 시스템 및 이를 이용한 열차의 실시간 속도 최적화 방법
CN108930753A (zh) * 2018-09-22 2018-12-04 华东交通大学 一种具有多段轴向液流阻尼通道的双线圈磁流变阻尼器
KR102228003B1 (ko) * 2019-09-11 2021-03-17 영남대학교 산학협력단 개폐식 지붕 구조물용 스마트 진동 저감 장치
CN112560299A (zh) * 2020-10-26 2021-03-26 重庆交通大学 基于整车动力学模型的磁流变阻尼器结构参数优化方法
CN113007262A (zh) * 2021-02-06 2021-06-22 广西科技大学 一种变间隙阶变式磁流变阻尼器
CN113513558B (zh) * 2021-07-07 2022-11-11 深圳市朝上科技有限责任公司 一种基于混合阻尼模式的高输出力隔振悬置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB758798A (en) * 1953-09-30 1956-10-10 Groot Hansen Dahl Improvements in or relating to hydraulic shock absorbers
RU118704U1 (ru) * 2012-05-11 2012-07-27 Оксана Анатольевна Комлева Электромагнитореологический управляющий элемент
CN102853021A (zh) * 2012-07-23 2013-01-02 广东电网公司电力科学研究院 一种应用于输电杆塔基于高分子材料的双向弹性阻尼器
CN103174789A (zh) * 2013-04-03 2013-06-26 山东理工大学 基于特性要求的磁流变减振器阻尼通道宽度的设计方法
CN206802181U (zh) * 2017-05-08 2017-12-26 华东交通大学 集成蓄能器和压力传感器的双出杆式磁流变阻尼器
CN210397552U (zh) * 2019-07-23 2020-04-24 廖永胜 一种摩托车活塞式方向阻尼器
CN110985589A (zh) * 2019-12-02 2020-04-10 江苏科技大学 磁流变液涡轮阻尼器
CN111523168A (zh) * 2020-04-22 2020-08-11 中电建路桥集团有限公司 多工况多目标下液体粘滞阻尼器参数优化方法
CN113431863A (zh) * 2021-04-22 2021-09-24 同济大学 一种阻尼自适应调谐磁流变阻尼器

Also Published As

Publication number Publication date
CN114877006B (zh) 2023-03-24
CN114877006A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN203926577U (zh) 磁流变液减震器
CN1587738A (zh) 逆变型磁流变阻尼器
US6464049B2 (en) Magnetorheological fluid damper tunable for smooth transitions
CN109404476B (zh) 一种内嵌多路旁通流道磁流变阻尼器
CN111734773A (zh) 利用永磁机构的宽范围刚度阻尼可变的磁流变液吸振器
WO2023193286A1 (zh) 一种由阶梯型活塞缸构成的磁流变阻尼器
CN104632979A (zh) 可调阻尼减震器
CN108302152B (zh) 一种具有复杂液流通道结构的磁流变阻尼器
US20240052905A1 (en) Shock absorber for automobile with adaptive damping
CN104763768A (zh) 一种惯容和阻尼一体式充气减振器
WO2023279748A1 (zh) 一种基于混合阻尼模式的高输出力隔振悬置
CN105909713A (zh) 一种高线性度电磁式半主动吸振器
CN2725625Y (zh) 逆变型磁流变阻尼器
CN112963482A (zh) 一种倒置单筒式圆筒直线电机主动悬架作动器
CN209799054U (zh) 一种铅挤压磁流变组合耗能装置
CN209925497U (zh) 一种自感应供电的自适应电流变液阻尼器
CN111674218A (zh) 一种汽车圆周式电磁馈能液力作动器装置
CN105570371A (zh) 一种液体调压并与速度相关的干摩擦式减振器
CN109779060B (zh) 一种铅挤压磁流变组合耗能装置
CN109236932B (zh) 一种流体激发固态颗粒运动的对称阻尼器
CN103062278A (zh) 阻尼系数可调的永磁式斜拉索磁流变液阻尼器
CN112963483A (zh) 一种活塞筒油腔阻尼器
KR20220109503A (ko) 차량용 mr댐퍼
CN107606037B (zh) 一种可提高阻尼力和失效安全性的磁流变阻尼器
CN208587443U (zh) 一种复合式减震机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936223

Country of ref document: EP

Kind code of ref document: A1