WO2023193198A1 - 一种参数确定方法及装置、终端设备 - Google Patents

一种参数确定方法及装置、终端设备 Download PDF

Info

Publication number
WO2023193198A1
WO2023193198A1 PCT/CN2022/085598 CN2022085598W WO2023193198A1 WO 2023193198 A1 WO2023193198 A1 WO 2023193198A1 CN 2022085598 W CN2022085598 W CN 2022085598W WO 2023193198 A1 WO2023193198 A1 WO 2023193198A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
timer
terminal device
target
configuration
Prior art date
Application number
PCT/CN2022/085598
Other languages
English (en)
French (fr)
Inventor
王淑坤
付喆
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/085598 priority Critical patent/WO2023193198A1/zh
Publication of WO2023193198A1 publication Critical patent/WO2023193198A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a parameter determination method and device, and terminal equipment.
  • the network device configures the DRX configuration for the terminal device, and the terminal device uses the DRX configuration to monitor the Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the current DRX configuration is configured according to UE granularity (per UE).
  • the terminal device will use the same set of DRX configuration for any transmission situation.
  • the current DRX configuration method is less flexible.
  • Embodiments of the present application provide a parameter determination method and device, terminal equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the terminal device determines a first DRX parameter, the first DRX parameter is a DRX parameter related to the Hybrid Automatic Repeat Request (HARQ) process, and the first DRX parameter is also related to data;
  • HARQ Hybrid Automatic Repeat Request
  • the terminal device performs a corresponding DRX operation based on the first DRX parameter.
  • a determining unit configured to determine a first DRX parameter, where the first DRX parameter is a DRX parameter related to the HARQ process, and the first DRX parameter is also related to data;
  • a processing unit configured to perform corresponding DRX operations based on the first DRX parameter.
  • the terminal device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory and execute the above parameter determination method.
  • the chip provided by the embodiment of the present application is used to implement the above parameter determination method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned parameter determination method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the computer program causes the computer to execute the above-mentioned parameter determination method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above-mentioned parameter determination method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to execute the above parameter determination method.
  • the first DRX parameter is a DRX parameter related to the HARQ process, and the first DRX parameter is also related to data. That is to say, the first DRX parameter is based on data granularity (per data or per TB). configured, so that the DRX parameters at the HARQ process level can be adjusted according to the data granularity, thus improving the flexibility of the DRX mechanism.
  • Figure 1 is a schematic diagram of an application scenario
  • Figure 2 is a 5G network system architecture diagram
  • Figure 3 is a schematic diagram of a Qos mechanism
  • Figure 4 is a schematic diagram of a DRX cycle
  • Figure 5 is a schematic flowchart 1 of the parameter determination method provided by the embodiment of the present application.
  • Figure 6 is a schematic flowchart 2 of the parameter determination method provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the candidate start time of the DRX state timer provided by the embodiment of the present application.
  • Figure 8 is a schematic flowchart three of the parameter determination method provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram of the time slot length corresponding to the SCS provided by the embodiment of the present application.
  • Figure 10 is a schematic flowchart 4 of the parameter determination method provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a parameter determination device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 14 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • terminal devices 110 eg, UEs
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolution networks etc.
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 AMF through the NG interface 1
  • access Network equipment such as the next generation wireless
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and other numbers of terminals may be included within the coverage of each base station.
  • Equipment the embodiments of this application do not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • FIG. 2 is a 5G network system architecture diagram.
  • the network elements involved in the 5G network system include: User Equipment (User Equipment, UE), Radio Access Network (Radio Access Network, RAN), and user plane functions (User Plane Function, UPF), Data Network (DN), Access and Mobility Management Function (AMF), Session Management Function (Session Management Function, SMF), Policy Control Function (Policy Control Function (PCF), Application Function (AF), Authentication Server Function (AUSF), Unified Data Management (UDM).
  • UPF User Equipment
  • RAN Radio Access Network
  • UPF User Plane Function
  • DN Data Network
  • AMF Access and Mobility Management Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • Policy Control Function Policy Control Function
  • PCF Policy Control Function
  • AF Application Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • the UE connects to the access layer (AS) with the RAN through the Uu interface, and exchanges access layer messages and wireless data transmission.
  • the UE performs a non-access stratum (NAS) connection with the AMF through the N1 interface and exchanges NAS messages.
  • AMF is the mobility management function in the core network
  • SMF is the session management function in the core network.
  • PCF is the policy management function in the core network and is responsible for formulating policies related to UE mobility management, session management, and charging.
  • UPF is the user plane function in the core network. It transmits data to the DN through the N6 interface and to the RAN through the N3 interface.
  • Qos Flow In a mobile communication network, in order to transmit user plane data, one or more Qos flows (Qos Flow) need to be established. As an important measure of communication quality, Qos parameters are usually used to indicate the characteristics of Qos flows. Different Qos flows correspond to different Qos parameters.
  • Qos parameters may include but are not limited to: 5G Quality of Service Identifier (5QI), Allocation Retension Priority (ARP), Guaranteed Flow Bit Rate (GFBR), Maximum Flow Bit Rate ( Maximum Flow Bit Rate, MFBR), up/downlink maximum packet loss rate (UL/DL Maximum Packet Loss Rate, UL/DL MPLR), end-to-end packet delay budget (Packet Delay Budget, PDB), AN-PDB, Packet Error Rate (PER), priority level (Priority Level), average window (Averaging Window), resource type (Resource Type), maximum data burst volume (Maximum Data Burst Volume), UE aggregate maximum bit rate ( UE Aggregate Maximum Bit Rate, UE-AMBR), session aggregate maximum bit rate (Session Aggregate Maximum Bit Rate, Session-AMBR), etc.
  • 5QI 5G Quality of Service Identifier
  • ARP Allocation Retension Priority
  • GFBR Guaranteed Flow Bit Rate
  • MFBR Maximum Flow Bit Rate
  • Filter contains characteristic parameters that describe data packets (such as some related parameters of IP data packets, some related parameters of Ethernet data packets), and is used to filter out specific data packets to bind to specific Qos flows.
  • the most commonly used Filter is the IP five-tuple, which is the source IP address, destination IP address, source port number, destination port number and protocol type.
  • UPF and UE will form a filter based on the combination of characteristic parameters of the data packet (the leftmost trapezoid and the rightmost parallelogram in Figure 3 represent filters), and filter the matching data transmitted on the user plane through the filter.
  • the uplink Qos flow is bound by the UE, and the downlink Qos flow is bound by the UPF.
  • one or more Qos flows can be mapped to a data radio bearer (Data Resource Bearer, DRB) for transmission.
  • DRB Data Resource Bearer
  • the base station will establish a DRB based on the Qos parameters and bind the Qos flow to a specific DRB.
  • Qos flow is established triggered by SMF.
  • both the UE and the network side can trigger the PDU session modification process to change Qos.
  • the UE can modify the Qos parameters of the Qos flow or establish a new Qos flow by sending a PDU Session Modification Request (PDU Session Modification Request) message.
  • PDU Session Modification Request PDU Session Modification Request
  • URLLC/XR needs to support services with a minimum latency of 0.5ms and 99,999% reliability requirements.
  • the service can be pseudo-periodic, that is, there is jitter in the service arrival time, or in other words, the service will not arrive at a certain time point, but will arrive at any moment within a time range.
  • the service cycle can be a non-integer cycle, such as 16.67ms.
  • the arrival time of different service flows of the same service may vary greatly.
  • network equipment can configure DRX configuration for terminal equipment through RRC dedicated signaling, so that terminal equipment monitors PDCCH discontinuously to achieve the purpose of power saving for terminal equipment.
  • Each Media Access Control (MAC) entity has a DRX configuration.
  • the parameters configured in the DRX configuration are:
  • -DRX status timer (drx-onDurationTimer): used to determine a period of time after the start of the DRX cycle (DRX cycle);
  • -DRX slot offset (drx-SlotOffset): used to determine the delay before starting the DRX status timer;
  • -DRX inactivity timer used to determine a period of time after a PDCCH opportunity (PDCCH occasion) in which a PDCCH is detected and indicates a new uplink or downlink transmission;
  • drx-RetransmissionTimerDL used to determine the maximum time before receiving a downlink retransmission
  • drx-RetransmissionTimerUL used to determine the maximum time before receiving a grant for uplink retransmission
  • drx-LongCycleStartOffset used to determine the DRX long cycle and DRX start time offset (drx-StartOffset), where drx-StartOffset is used to determine the start of the DRX long cycle and DRX short cycle Time (such as the subframe corresponding to the start time);
  • -DRX short cycle (drx-ShortCycle): optional configuration, used to determine the DRX short cycle;
  • -DRX short cycle timer (drx-ShortCycleTimer): It is an optional configuration and is used to determine the duration of the DRX short cycle. Its value refers to the multiple of the DRX short cycle;
  • Downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL): The minimum duration expected by the MAC entity before downlink allocation for HARQ retransmission;
  • Uplink DRX HARQ RTT timer (drx-HARQ-RTT-TimerUL): The minimum duration expected by the MAC entity before uplink grant for HARQ retransmission.
  • the unit of the DRX parameter is milliseconds (ms), which is applicable to services whose DRX cycle is an integer multiple of the ms cycle.
  • the downlink DRX retransmission timer, uplink DRX retransmission timer, downlink DRX HARQ RTT timer, and uplink DRX HARQ RTT timer are related to HARQ.
  • DRX activation time includes the following situations:
  • the terminal device After the terminal device sends a scheduling request (SR) on the Physical Uplink Control Channel (PUCCH), the period during which the SR is in the pending state belongs to the DRX activation time.
  • SR scheduling request
  • PUCCH Physical Uplink Control Channel
  • the period during which the terminal device has not received an initial transmission indicated by the C-RNTI scrambled PDCCH after successfully receiving the random access response belongs to the DRX activation time.
  • the terminal device determines the startup time of drx-onDurationTimer based on whether the current DRX cycle is DRX short cycle (short DRX cycle) or DRX long cycle (long DRX cycle).
  • the specific regulations are as follows:
  • the conditions for the terminal device to start or restart drx-InactivityTimer are:
  • the terminal device If the terminal device receives a PDCCH indicating initial transmission of downlink or uplink, the terminal device starts or restarts drx-InactivityTimer.
  • the terminal device When the terminal device receives a PDCCH indicating downlink transmission, or when the terminal device receives a MAC PDU on the configured downlink authorization resource, the terminal device stops the drx-RetransmissionTimerDL corresponding to the HARQ process. After completing the transmission of the HARQ process feedback for this downlink transmission, the terminal device starts the drx-HARQ-RTT-TimerDL corresponding to the HARQ process.
  • the terminal device If the drx-HARQ-RTT-TimerDL corresponding to a HARQ process of the terminal device times out, and the downlink data transmitted using this HARQ process is not decoded successfully, the terminal device starts the drx-RetransmissionTimerDL corresponding to the HARQ process.
  • the terminal device When the terminal device receives a PDCCH indicating uplink transmission, or when the terminal device sends a MAC PDU on the configured uplink authorization resource, the terminal device stops the drx-RetransmissionTimerUL corresponding to the HARQ process. After completing the first repeated transmission (repetition) of this PUSCH, the terminal device starts the drx-HARQ-RTT-TimerUL corresponding to the HARQ process.
  • the terminal device If the drx-HARQ-RTT-TimerUL corresponding to a HARQ process of the terminal device times out, the terminal device starts the drx-RetransmissionTimerUL corresponding to the HARQ process.
  • the terminal device will first start a DRX HARQ RTT timer (drx-HARQ-RTT-TimerUL for uplink transmission, and drx-HARQ-RTT-TimerUL for downlink transmission) after completing uplink transmission or completing ACK/NACK feedback for downlink transmission. It is drx-HARQ-RTT-TimerDL).
  • the terminal device is in sleep state during the running of the DRX HARQ RTT timer and does not listen to the PDCCH. After the timer times out, the terminal device starts to monitor the uplink retransmission scheduling or determines whether according to the feedback. Start monitoring the downlink retransmission schedule.
  • the DRX cycle consists of "Duration (On Duration)" and "DRX Opportunity (Opportunity for DRX)".
  • On Duration time the terminal device is in the DRX activation time; if the terminal is in the On Duration time If the PDCCH is not received within the period, it will stop monitoring and change to the DRX inactive time within the "Opportunity for DRX" time. The terminal device will not receive the PDCCH to reduce power consumption (that is, the terminal device is in a dormant period).
  • the DRX configuration configured by network equipment for terminal equipment is configured according to UE granularity (per UE).
  • the terminal equipment will use the same set of DRX configuration for any transmission situation, that is, no matter what service it is, no matter what bearer is transmitted
  • the terminal equipment will use a set of DRX configuration for the data and the data in the bearer, and the same DRX parameters will be used for the DRX parameters related to HARQ.
  • the DRX parameters used are dynamically adjusted according to different data, and there is a gain for data with strict Qos requirements. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • Figure 5 is a schematic flowchart 1 of a parameter determination method provided by an embodiment of the present application. As shown in Figure 5, the parameter determination method includes the following steps:
  • Step 501 The terminal device determines a first DRX parameter.
  • the first DRX parameter is a DRX parameter related to the HARQ process.
  • the first DRX parameter is also related to data.
  • Step 502 The terminal device performs a corresponding DRX operation based on the first DRX parameter.
  • the first DRX parameter is a DRX parameter related to the HARQ process.
  • the first DRX parameter includes a downlink DRX parameter related to the HARQ process and/or an uplink DRX parameter related to the HARQ process, where the downlink DRX parameter related to the HARQ process is It can be set according to the data granularity, and the uplink DRX parameters related to the HARQ process can also be set according to the data granularity, which are explained below.
  • the first DRX parameter includes a first round-trip time (RTT) timer and/or a first retransmission timer, and the first RTT timer and/or the first retransmission timer belong to downlink HARQ The timer used by the process.
  • the first RTT timer may also be called a downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL)
  • the first retransmission timer may also be called a downlink DRX retransmission timer (drx- RetransmissionTimerDL)
  • drx- RetransmissionTimerDL downlink DRX retransmission timer
  • the method by which the terminal device determines the first RTT timer and/or the first retransmission timer includes but is not limited to the following methods:
  • the terminal device receives first downlink control information (DCI) sent by the network device, the first DCI is used to schedule downlink transmission of data, and the first DCI also used to indicate the first RTT timer and/or the first retransmission timer used for the data in the HARQ process of the data association; the terminal device determines the first RTT timer based on the first DCI and/or first retransmission timer.
  • DCI downlink control information
  • the first DCI carries the index of the first RTT timer and/or the first retransmission timer; the terminal device is based on the first RTT timer and/or The index of the first retransmission timer and the first configuration information determine the first RTT timer and/or the first retransmission timer, and the first configuration information includes at least one RTT timer configuration and/or At least one retransmission timer configuration, wherein each RTT timer configuration is associated with an index, and each retransmission timer configuration is associated with an index, or each RTT timer configuration and the retransmission timer configuration are associated with a common index.
  • the first configuration information is configured through Radio Resource Control (Radio Resource Control, RRC) signaling.
  • Radio Resource Control Radio Resource Control
  • the first DCI carries a logical channel identifier (Logical Channel ID, LCID) list, and the LCID list is used to indicate a logical channel list of data scheduled by the first DCI that is authorized to be transmitted. .
  • LCID logical channel identifier
  • the terminal device determines the first RTT timer and/or the first retransmission based on the Semi-Persistent Scheduling (SPS) where the received data is located and the second configuration information.
  • SPS Semi-Persistent Scheduling
  • the second configuration information includes RTT timer configuration and/or retransmission timer configuration corresponding to at least one SPS.
  • the second configuration information is configured through RRC signaling.
  • the terminal device determines the first RTT timer and/or the first retransmission timer based on the LCID corresponding to the received data and third configuration information, wherein the third configuration
  • the information includes at least one RTT timer configuration and/or retransmission timer configuration corresponding to the LCID.
  • the third configuration information is configured through RRC signaling.
  • the data received by the terminal corresponds to one LCID.
  • the terminal device determines the RTT timer configuration and/or retransmission timing corresponding to the one LCID based on the third configuration information. configured as the first RTT timer and/or the first retransmission timer.
  • the data received by the terminal corresponds to multiple LCIDs.
  • the following options are available:
  • the terminal selects the LCID with the highest priority from the multiple LCIDs, and determines the LCID with the highest priority based on the third configuration information.
  • the corresponding RTT timer configuration and/or retransmission timer configuration is used as the first RTT timer and/or the first retransmission timer.
  • the terminal device determines the RTT timer configuration and/or retransmission timer corresponding to the multiple LCIDs based on the third configuration information, from which Select the shortest RTT timer configuration and/or retransmission timer among the RTT timer configurations and/or retransmission timers corresponding to the multiple LCIDs, and use it as the first RTT timer and/or the first retransmission timer.
  • the terminal device determines the first RTT timer and/or the first retransmission timer, it performs the following DRX operation: after the terminal device has received the data and completed a positive acknowledgment (ACK) of the data )/Negative Acknowledgment (NACK)
  • the first RTT timer After feedback, the first RTT timer is started; if the first RTT timer times out, the terminal device starts the first retransmission timer.
  • the first DRX parameter includes a second RTT timer and/or a second retransmission timer, and the second RTT timer and/or the second retransmission timer are timers used by the uplink HARQ process.
  • the second RTT timer may also be called an uplink DRX HARQ RTT timer (drx-HARQ-RTT-TimerUL)
  • the second retransmission timer may also be called an uplink DRX retransmission timer (drx- RetransmissionTimerUL)
  • its function can refer to the description of the aforementioned related solutions. It should be noted that this application does not limit the names of the second RTT timer and the second retransmission timer.
  • the method by which the terminal device determines the second RTT timer and/or the second retransmission timer includes but is not limited to the following methods:
  • the terminal device receives a second DCI sent by the network device, the second DCI is used to schedule the uplink transmission of data, and the second DCI is also used to indicate the HARQ process associated with the data.
  • a second RTT timer and/or a second retransmission timer used for the data; the terminal device determines the second RTT timer and/or a second retransmission timer based on the DCI.
  • the second DCI carries the index of the second RTT timer and/or the second retransmission timer; the terminal device is based on the second RTT timer and/or The index of the second retransmission timer and fourth configuration information determine the second RTT timer and/or the second retransmission timer.
  • the fourth configuration information includes at least one RTT timer configuration and/or At least one retransmission timer configuration, wherein each RTT timer configuration is associated with an index, and each retransmission timer configuration is associated with an index, or each RTT timer configuration and the retransmission timer configuration are associated with a shared index.
  • the fourth configuration information is configured through RRC signaling.
  • the second DCI carries an LCID list
  • the logical channel identification list is used to indicate a logical channel list of data scheduled by the second DCI that is authorized to be transmitted.
  • the terminal device uses the RTT timer and/or retransmission timer selected by it as the second RTT timer and/or the second retransmission timer.
  • the terminal device indicates to the network device the index of the second RTT timer and/or the second retransmission timer selected by the terminal device through the first indication information.
  • the network device may determine the second RTT timer and/or the second retransmission timer according to the index of the second RTT timer and/or the second retransmission timer, and the fourth configuration information.
  • the first indication information is carried in a MAC Control Element (Control Element, CE) or a header of a MAC Packet Data Unit (Packet Data Unit, PDU) or a Packet Data Convergence Protocol (Packet Data Convergence Protocol, PDCP) PDU header.
  • Control Element CE
  • PDU Packet Data Unit
  • PDCP Packet Data Convergence Protocol
  • the terminal device determines the second RTT timer and/or the second retransmission timer based on the configuration grant (Configured Grant, CG) where the data that needs to be sent is located and the fifth configuration information, wherein, the fifth configuration information includes RTT timer configuration and/or retransmission timer configuration corresponding to at least one CG.
  • the fifth configuration information is configured through RRC signaling.
  • the terminal device determines the second RTT timer and/or the second retransmission timer based on the LCID corresponding to the data that needs to be sent and sixth configuration information, wherein the sixth configuration
  • the information includes at least one RTT timer configuration and/or retransmission timer configuration corresponding to the LCID.
  • the sixth configuration information is configured through RRC signaling.
  • the data that the terminal needs to send corresponds to an LCID.
  • the terminal device determines the RTT timer configuration and/or retransmission timing corresponding to the one LCID based on the sixth configuration information. configured as the second RTT timer and/or the second retransmission timer.
  • the data that the terminal needs to send corresponds to multiple LCIDs.
  • the following options are available:
  • the terminal selects the LCID with the highest priority from the multiple LCIDs, and determines the LCID with the highest priority based on the sixth configuration information.
  • the RTT timer configuration and/or retransmission timer configuration corresponding to the LCID is used as the second RTT timer and/or the second retransmission timer.
  • the terminal device determines the RTT timer configuration and/or retransmission timer corresponding to the multiple LCIDs based on the sixth configuration information, from Select the shortest RTT timer configuration and/or retransmission timer among the RTT timer configurations and/or retransmission timers corresponding to the multiple LCIDs, and use it as the second RTT timer and/or the second retransmission timer. Pass timer.
  • the terminal device determines the second RTT timer and/or the second retransmission timer, it performs the following DRX operation: after the terminal device completes transmitting data, it starts the second RTT timer; If the second RTT timer times out, the terminal device starts the second retransmission timer.
  • the DCI indicates the DL DRX RTT timer and/or DL DRX retansmission timer used for the data in the HARQ process corresponding to the downlink data.
  • the terminal equipment After the terminal equipment receives the downlink data and completes the ACK/NACK feedback for the downlink data, it starts the DL DRX RTT timer indicated in the DCI; after the DL DRX RTT timer times out, the terminal equipment starts the DL DRX retansmission timer indicated in the DCI.
  • the DCI can indicate the index of DL DRX RTT timer and/or DL DRX retansmission timer.
  • At least one DL DRX RTT timer and/or at least one DL DRX retansmission timer is preconfigured through RRC signaling.
  • the terminal device will start the DL DRX RTT timer associated with the SPS after receiving the downlink data on the SPS and completing the ACK/NACK feedback for the downlink data; After the DL DRX RTT timer times out, the terminal device starts the DL DRX retansmission timer associated with the SPS.
  • the network side configures the DL DRX RTT timer and/or DL DRX retansmission timer per SPS through RRC signaling, that is, each SPS configuration corresponds to a DL DRX RTT timer configuration and/or DL DRX retansmission tiemr configuration.
  • the terminal device After the terminal device receives the downlink data on the SPS and completes the ACK/NACK feedback for the downlink data, it starts the DL DRX RTT timer associated with the LCID corresponding to the downlink data; after the DL DRX RTT timer times out, the terminal device starts The DL DRX retansmission timer associated with the LCID corresponding to the downlink data.
  • the network side configures the DL DRX RTT timer and/or DL DRX retansmission timer per LCID through RRC signaling, that is, each LCID corresponds to a DL DRX RTT timer configuration and/or DL DRX retansmission tiemr configuration.
  • the DCI For uplink data, if the uplink data is transmitted based on DCI dynamic scheduling, the DCI indicates the UL DRX RTT timer and/or UL DRX retansmission timer used for the data in the HARQ process corresponding to the uplink data.
  • the terminal device After the terminal device completes transmitting the uplink data, it starts the UL DRX RTT timer indicated in the DCI; after the UL DRX RTT timer times out, the terminal device starts the UL DRX retansmission timer indicated in the DCI.
  • the DCI can indicate the index of UL DRX RTT timer and/or UL DRX retansmission timer.
  • At least one UL DRX RTT timer and/or at least one UL DRX retansmission timer is preconfigured through RRC signaling.
  • the terminal device For uplink data, if the uplink data is transmitted based on CG, the terminal device starts the UL DRX RTT timer associated with the CG after transmitting the uplink data on the CG; after the UL DRX RTT timer times out, the terminal device starts the CG Associated UL DRX retansmission timer.
  • the network side configures the UL DRX RTT timer and/or UL DRX retansmission timer per CG through RRC signaling, that is, each CG configuration corresponds to a UL DRX RTT timer configuration and/or UL DRX retansmission tiemr configuration.
  • the terminal device After the terminal device completes transmitting the uplink data on the CG, it starts the UL DRX RTT timer associated with the LCID corresponding to the uplink data; after the UL DRX RTT timer times out, the terminal device starts the UL DRX retansmission timer associated with the LCID corresponding to the uplink data.
  • the network side configures the UL DRX RTT timer and/or UL DRX retansmission timer per LCID through RRC signaling, that is, each LCID corresponds to a UL DRX RTT timer configuration and/or UL DRX retansmission tiemr configuration.
  • the terminal device For uplink data, the terminal device independently selects the UL DRX RTT timer and/or UL DRX retansmission timer. After the terminal device completes transmitting the uplink data, it starts the selected UL DRX RTT timer; after the UL DRX RTT timer times out, the terminal device Start the selected UL DRX retansmission timer. Further, the terminal device can send an indication information to the network side while sending uplink data. The indication information is used to indicate the index of the UL DRX RTT timer and/or UL DRX retansmission tiemr selected by the terminal device.
  • At least one UL DRX RTT timer and/or at least one UL DRX retansmission timer is configured with a value through RRC signaling, each UL DRX RTT timer configuration is associated with an index, each UL DRX retansmission timer configuration is associated with an index, or, each A UL DRX RTT timer configuration and a UL DRX retansmission timer configuration association share the same index.
  • the indication information may be carried in the MAC CE.
  • the length of the RTT timer and/or the retransmission timer can be dynamically adjusted according to the service Qos attributes (such as delay) of the data, so that the running time of the retransmission timer and the on duration time overlap to the maximum extent, so as to meet the requirements While meeting business Qos requirements, it can also achieve the purpose of energy saving for terminal equipment.
  • longer RTT timers and/or retransmission timers can be configured for delay-insensitive services, thereby achieving energy saving for terminal equipment without affecting service delay requirements.
  • shorter RTT timers and/or retransmission timers can be configured for delay-sensitive services to meet service delay requirements.
  • the network device can configure a set of DRX parameters for the terminal device through RRC dedicated signaling.
  • the set of DRX parameters here is configured per UE, including the following At least one of: DRX status timer (drx-onDurationTimer); DRX slot offset (drx-SlotOffset); DRX inactivity timer (drx-InactivityTimer); downlink DRX retransmission timer (drx-RetransmissionTimerDL); uplink DRX Retransmission timer (drx-RetransmissionTimerUL); DRX long cycle start offset (drx-LongCycleStartOffset); DRX short cycle (drx-ShortCycle); DRX short cycle timer (drx-ShortCycleTimer); Downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL); uplink DRX HARQ R
  • the priority of the first RTT timer, the first retransmission timer, the second RTT timer, and the second retransmission timer determined by the terminal equipment through the above method is higher than that of the above-mentioned RRC dedicated signaling configuration.
  • the priorities of the first RTT timer, the first retransmission timer, the second RTT timer, and the second retransmission timer or in other words, the first RTT timer, the first retransmission timer determined by the terminal device through the above method
  • the timer, the second RTT timer, and the second retransmission timer override the first RTT timer, the first retransmission timer, the second RTT timer, and the second retransmission timer configured by RRC dedicated signaling. .
  • the method further includes: the terminal device receiving RRC dedicated signaling sent by the network device.
  • the RRC dedicated signaling is used to configure multiple sets of DRX parameters.
  • Each set of DRX parameters includes at least one of the following: 1: DRX status timer (drx-onDurationTimer); DRX slot offset (drx-SlotOffset); DRX inactivity timer (drx-InactivityTimer); downlink DRX retransmission timer (drx-RetransmissionTimerDL); uplink DRX retransmission Timer (drx-RetransmissionTimerUL); DRX long cycle start offset (drx-LongCycleStartOffset); DRX short cycle (drx-ShortCycle); DRX short cycle cycle timer (drx-ShortCycleTimer); Downlink DRX HARQ RTT timer (drx -HARQ-RTT-TimerDL); uplink DRX HARQ RTT timer (
  • Figure 6 is a schematic flowchart 2 of a parameter determination method provided by an embodiment of the present application. As shown in Figure 6, the parameter determination method includes the following steps:
  • Step 601 The terminal device receives third indication information sent by the network device, where the third indication information is used to indicate the DRX time slot offset to be used.
  • the DRX slot offset may also be called drx-SlotOffset, and its meaning may be referred to the description of the aforementioned related solutions. It should be noted that the value of the DRX time slot offset may be a positive value or a negative value.
  • the third indication information is carried in DCI or MAC CE.
  • the DRX slot offset can be configured in a set of DRX parameters through RRC dedicated signaling. Further, the DRX time slot offset can be dynamically changed through DCI or MAC CE, that is, the DCI or MAC CE carries third indication information, and the DRX time slot offset is dynamically changed through the third indication information.
  • Step 602 The terminal device determines the start time of the DRX state timer based on the third indication information.
  • the terminal device determines the start time of the DRX status timer based on the third indication information, which can be implemented in the following manner:
  • the terminal device determines the target SFN and target subframe based on the DRX cycle and the DRX start offset; the terminal device determines the start time of the DRX state timer based on the third indication information.
  • the starting time of the target subframe in the target SFN is shifted backward or forward by N slots, and N is determined based on the value of the DRX slot offset.
  • N is a positive value
  • the terminal equipment determines that the starting time of the DRX state timer is the starting time of the target subframe in the target SFN and is shifted backward by N time slots.
  • N is a negative value
  • the terminal equipment determines that the start time of the DRX state timer is the absolute value of the start time of the target subframe in the target SFN shifted forward by N timeslots.
  • the DRX cycle can also be called drxCycle, which is divided into DRX short cycle (drx-ShortCycle) and DRX long cycle (drx-LongCycle).
  • drx-ShortCycle DRX short cycle
  • drx-LongCycle DRX long cycle
  • the DRX start offset can be called drx-StartOffset, and its meaning can refer to the description of the aforementioned related solutions.
  • the terminal device can determine the target SFN and target subframe through the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx-StartOffset is the DRX start offset
  • modulo represents the remainder operation.
  • the value range of the DRX slot offset can be expanded, so that the start time of the DRX status timer can be determined according to subframe granularity or radio frame granularity.
  • the terminal device determines the first candidate start time of the DRX state timer based on the DRX cycle and the DRX start offset, and determines the second candidate start time based on the first candidate start time and the DRX cycle. time and/or the third candidate startup time; the terminal device receives the fourth indication information sent by the network device, the fourth indication information is used to start from the first candidate startup time, the second candidate startup time and/or the startup time indicated to be used in the third candidate startup time; the terminal device determines the startup time of the DRX state timer based on the fourth indication information.
  • the second candidate startup time is equal to the first candidate startup time minus the duration of the DRX state timer
  • the third candidate startup time is equal to the first candidate startup time plus the Describe the duration of the DRX status timer, as shown in Figure 7.
  • the terminal device determines the target SFN and the target subframe based on the DRX cycle and the DRX start offset, and determines the start time of the target subframe within the target SFN as the first candidate start time of the DRX status timer, Alternatively, the time when the start time of the target subframe in the target SFN is shifted backward or forward by N slots is determined as the first candidate start time of the DRX status timer, N is based on the DRX slot offset (such as drx-SlotOffset) value is determined.
  • the DRX cycle can also be called drxCycle, which is divided into DRX short cycle (drx-ShortCycle) and DRX long cycle (drx-LongCycle).
  • drx-ShortCycle DRX short cycle
  • drx-LongCycle DRX long cycle
  • the DRX start offset can be called drx-StartOffset, and its meaning can refer to the description of the aforementioned related solutions.
  • the terminal device can determine the target SFN and target subframe through the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx-StartOffset is the DRX start offset
  • modulo represents the remainder operation.
  • delay jitter may exist.
  • the value of can be a positive value or a negative value.
  • the value range of drx-SlotOffset can be expanded, and the start time of drx-onDurationTimer can be determined according to subframe granularity or wireless frame granularity.
  • delay jitter may exist.
  • multiple candidate starts of drx-onDurationTimer can be determined through the above method B. time, and determine the final startup time through dynamic indication on the network side.
  • the above solution of the embodiment of the present application can not only meet the energy saving requirements of terminal equipment, but also meet the service requirements of non-integer ms periods and the requirements of delay-sensitive services.
  • Figure 8 is a flowchart three of the parameter determination method provided by the embodiment of the present application. As shown in Figure 8, the parameter determination method includes the following steps:
  • Step 801 The terminal device determines the start time of the DRX state timer based on the DRX cycle and the DRX start offset, where the unit of the DRX cycle and the DRX start offset is a time slot, a half time slot, or a symbol.
  • the DRX cycle can also be called drxCycle, which is divided into DRX short cycle (drx-ShortCycle) and DRX long cycle (drx-LongCycle).
  • drx-ShortCycle DRX short cycle
  • drx-LongCycle DRX long cycle
  • the DRX start offset can be called drx-StartOffset, and its meaning can refer to the description of the aforementioned related solutions.
  • the unit of the DRX cycle and DRX start offset can be extended to a slot, a half slot, or a symbol. It is explained below based on different situations.
  • the unit of the DRX cycle and the DRX start offset is a time slot; the terminal device determines the target SFN, the target subframe and the target time slot based on the DRX cycle and the DRX start offset; so The terminal equipment determines, based on the DRX slot offset and/or DRX symbol offset, that the start time of the DRX status timer is the start time of the target timeslot in the target subframe in the target SFN and is offset backward or forward. Shift by N time slots and/or M symbols; or, based on the DRX symbol offset, the terminal equipment determines that the start time of the DRX state timer is the target in the target time slot in the target subframe within the target SFN.
  • the starting time of the half-slot is shifted backward or forward by N slots and/or M symbols.
  • the target half-slot is indicated by RRC signaling, and N is determined based on the value of the DRX slot offset. , M is determined based on the value of the DRX symbol offset.
  • the DRX slot offset may also be called drx-SlotOffset, and its meaning may be referred to the description of the aforementioned related solutions. It should be noted that the value of the DRX time slot offset may be a positive value or a negative value.
  • the DRX symbol offset can also be called drx-SymbolOffset, which means symbol offset. It should be noted that the value of the DRX symbol offset can be a positive value or a negative value.
  • the terminal device determines the target SFN, target subframe and target timeslot based on the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • slot number is the target timeslot number
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx-StartOffset is the DRX start offset
  • k is an integer.
  • the unit of the DRX cycle and DRX start offset is a half time slot; the terminal device determines the target SFN, target subframe, target timeslot and Target half time slot; based on the DRX symbol offset, the terminal device determines the start time of the DRX status timer to be the starting time of the target half time slot in the target subframe in the target SFN backward. Or offset M symbols forward, M is determined based on the value of the DRX symbol offset.
  • the DRX symbol offset can also be called drx-SymbolOffset, which means symbol offset. It should be noted that the value of the DRX symbol offset can be a positive value or a negative value.
  • the terminal device determines the target SFN, target subframe, target time slot and target half time slot based on the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • slot number is the target slot number
  • half slot number is the target half slot number
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx -StartOffset is the DRX starting offset
  • modulo represents the remainder operation
  • k is an integer.
  • the units of the DRX cycle and DRX start offset are symbols; the terminal equipment determines the target SFN, target subframe, target timeslot, and target half based on the DRX cycle and DRX start offset. time slot and target symbol; based on the DRX symbol offset, the terminal device determines the start time of the DRX state timer to be the starting time of the target symbol in the target time slot in the target subframe in the target SFN backward or Offset M symbols forward, where M is determined based on the value of the DRX symbol offset.
  • the DRX symbol offset can also be called drx-SymbolOffset, which means symbol offset. It should be noted that the value of the DRX symbol offset can be a positive value or a negative value.
  • the terminal device determines the target SFN, target subframe, target time slot, target half time slot, and target symbol based on the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • slot number is the target slot number
  • symbol number is the target symbol
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx-StartOffset is the DRX Starting offset
  • modulo represents remainder operation
  • k is an integer.
  • the length of the unit (such as time slot, half time slot or symbol) in the above solution is related to the reference subcarrier spacing (SubCarrier Spacing, SCS) or is determined based on the reference SCS.
  • the reference SCS can be determined in the following manner:
  • Method I Refer to the SCS to display the configuration through RRC signaling.
  • the reference SCS is the SCS configured for the currently activated DL BWP.
  • the reference SCS is the SCS configured for the currently activated UL BWP.
  • the reference SCS is the minimum SCS or the maximum SCS among the following SCS: the SCS of the currently activated DL BWP configuration and the SCS of the currently activated UL BWP configuration.
  • the reference SCS is the minimum SCS or the maximum SCS among the following SCS: SCS of all DL BWP configurations.
  • the reference SCS is the minimum SCS or the maximum SCS among the following SCS: SCS of all UL BWP configurations.
  • the reference SCS is the minimum SCS or the maximum SCS among the following SCS: SCS of all DL BWP configurations and SCS of all UL BWP configurations.
  • the unit of the DRX parameter can be a time slot, a half time slot or a symbol.
  • the DRX parameters here are, for example: DRX status timer (drx-onDurationTimer); DRX slot offset (drx-SlotOffset); DRX inactive timing (drx-InactivityTimer); downlink DRX retransmission timer (drx-RetransmissionTimerDL); uplink DRX retransmission timer (drx-RetransmissionTimerUL); DRX long cycle start offset (drx-LongCycleStartOffset); DRX short cycle (drx- ShortCycle); DRX short cycle timer (drx-ShortCycleTimer); downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL); uplink DRX HARQ RTT timer (drx-HARQ-RTT-TimerUL).
  • the unit length of the DRX parameter is determined according to the reference SCS, as shown in Figure 9.
  • the reference SCS can be 15KHz, or 30KHz, or 60KHz, or 120KHz, or 240KHz, etc.
  • the time slot length corresponding to 15KHz is 1ms, and the time slot length corresponding to 30KHz
  • the slot length is 0.5ms, the time slot length corresponding to 60KHz is 0.25ms, the time slot length corresponding to 120KHz is 0.125ms, and the time slot length corresponding to 240KHz is 0.0625ms.
  • a time slot includes 14 symbol.
  • the reference SCS can be determined in the following ways: 1) The reference SCS displays the configuration through RRC signaling; 2) The reference SCS is determined based on the SCS of the currently activated DL BWP configuration, or the SCS of the currently activated UL BWP configuration; 3) The current activation The minimum SCS (or maximum SCS) of the SCS configured by the DL BWP and the SCS configured by the currently activated UL BWP is the reference SCS.
  • the minimum SCS (or maximum SCS) among all DL BWP configured SCS is the reference SCS
  • the minimum SCS (or maximum SCS) among all UL BWP configured SCS is the reference SCS
  • the minimum SCS (or the maximum SCS) among the SCS configured in BWP is the reference SCS.
  • the solution described in case 1, case 2, or case 3 can be used to determine the start time of the DRX status timer.
  • the above solution of the embodiment of the present application can not only meet the energy saving requirements of terminal equipment, but also meet the service requirements of non-integer ms periods and the requirements of delay-sensitive services.
  • Figure 10 is a schematic flow chart 4 of a parameter determination method provided by an embodiment of the present application. As shown in Figure 10, the parameter determination method includes the following steps:
  • Step 1001 The terminal device receives seventh configuration information, which includes at least one SPS configuration and/or at least one CG configuration; wherein at least part of the SPS configurations in the at least one SPS configuration includes fifth indication information; At least part of the CG configurations in the at least one CG configuration includes sixth indication information.
  • the seventh configuration information is carried in RRC dedicated signaling.
  • the fifth indication information is used to indicate whether data reception on the SPS is allowed to be performed during the DRX inactive time or to indicate that data reception on the SPS is not allowed to be performed during the DRX inactive time or to indicate whether Data reception on the SPS needs to be performed within the DRX activation time or used to indicate that data reception on the SPS needs to be performed within the DRX activation time.
  • the sixth indication information is used to indicate whether data transmission on the CG is allowed to be performed during the DRX inactive time or to indicate that data transmission on the CG is not allowed to be performed during the DRX inactive time or to indicate whether Data transmission on the CG needs to be performed within the DRX activation time or is used to indicate that data transmission on the CG needs to be performed within the DRX activation time.
  • the terminal device is allowed to execute the configured SPS within the DRX inactive time for the SPS configured in the partial SPS configuration. Data reception on the SPS and/or the terminal device does not need to perform data reception on the SPS within the DRX activation time; if part of the CG configuration in the at least one CG configuration does not include the sixth indication information, then For the configured CG in the partial CG configuration, the terminal device is allowed to perform data transmission on the CG during the DRX inactive time and/or the terminal device does not need to perform data transmission on the CG during the DRX activation time. .
  • the terminal device determines the configured SPS for the partial SPS configuration based on the fifth indication information. Whether to allow data reception on the SPS during the DRX inactive time or determine whether data reception on the SPS needs to be performed during the DRX activation time or determine whether it is not allowed to perform data reception on the SPS during the DRX inactive time or determine Data reception on the SPS needs to be performed within the DRX activation time; if a partial CG configuration in the at least one CG configuration includes the sixth indication information, then the terminal device configures the configured CG for the partial CG configuration.
  • the sixth indication information it is determined whether data transmission on the CG is allowed to be performed within the DRX inactive time, or whether data transmission on the CG needs to be performed within the DRX activation time, or whether it is not allowed to be performed during the DRX inactive time. Data transmission on the CG or it is determined that data transmission on the CG needs to be performed within the DRX activation time.
  • the purpose of energy saving for terminal equipment can be achieved for services that are not sensitive to delay.
  • the technical solution of the embodiment of this application stipulates a method for dynamically changing DRX, so that the DRX activation time can meet the requirements of the quasi-periodic and non-integer periodic service cycles of multimedia services, and also meet the service reception and transmission caused by service jitter.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the execution of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 11 is a schematic structural diagram of a parameter determination device provided by an embodiment of the present application, which is applied to terminal equipment. As shown in Figure 11, the parameter determination device includes:
  • Determining unit 1101 used to determine the first DRX parameter, the first DRX parameter is a DRX parameter related to the HARQ process, and the first DRX parameter is also related to data;
  • the processing unit 1102 is configured to perform a corresponding DRX operation based on the first DRX parameter.
  • the first DRX parameter includes a first RTT timer and/or a first retransmission timer, and the first RTT timer and/or the first retransmission timer belong to the downlink HARQ process. The timer to use.
  • the apparatus further includes: a receiving unit 1103, configured to receive a first DCI sent by a network device, where the first DCI is used to schedule downlink transmission of data, and where the first DCI is also used to schedule downlink transmission of data. Indicate the first RTT timer and/or the first retransmission timer used for the data in the HARQ process associated with the data;
  • the determining unit 1101 is configured to determine the first RTT timer and/or the first retransmission timer based on the first DCI.
  • the first DCI carries the index of the first RTT timer and/or the first retransmission timer
  • the determining unit 1101 is configured to determine the first RTT timer and/or the first retransmission based on the index of the first RTT timer and/or the first retransmission timer, and the first configuration information.
  • timer, the first configuration information includes at least one RTT timer configuration and/or at least one retransmission timer configuration, wherein each RTT timer configuration is associated with an index, and each retransmission timer configuration is associated with an index, Alternatively, each RTT timer configuration and retransmission timer configuration association share an index.
  • the first configuration information is configured through RRC signaling.
  • the first DCI carries an LCID list
  • the LCID list is used to indicate a logical channel list of data scheduled by the first DCI that is authorized to be transmitted.
  • the determining unit 1101 is configured to determine the first RTT timer and/or the first retransmission timer based on the SPS where the received data is located and the second configuration information, wherein:
  • the second configuration information includes RTT timer configuration and/or retransmission timer configuration corresponding to at least one SPS.
  • the second configuration information is configured through RRC signaling.
  • the determining unit 1101 is configured to determine the first RTT timer and/or the first retransmission timer based on the LCID corresponding to the received data and the third configuration information, wherein, The third configuration information includes at least one RTT timer configuration and/or retransmission timer configuration corresponding to the LCID.
  • the determining unit 1101 is configured to, if the received data corresponds to multiple LCIDs, select the LCID with the highest priority from the multiple LCIDs, and determine based on the third configuration information
  • the RTT timer configuration and/or retransmission timer configuration corresponding to the LCID with the highest priority is used as the first RTT timer and/or the first retransmission timer; or, if the received data corresponds to multiple LCIDs, then determine the RTT timer configuration and/or retransmission timer corresponding to the multiple LCIDs based on the third configuration information, and determine the RTT timer configuration and/or retransmission timing corresponding to the multiple LCIDs. Select the shortest RTT timer configuration and/or retransmission timer among the timers and use it as the first RTT timer and/or the first retransmission timer.
  • the third configuration information is configured through RRC signaling.
  • the processing unit 1102 is configured to start the first RTT timer after receiving data and completing ACK/NACK feedback for the data; if the first RTT timer times out, the first retransmission timer is started.
  • the first DRX parameter includes a second RTT timer and/or a second retransmission timer, and the second RTT timer and/or the second retransmission timer belong to the uplink HARQ process. The timer to use.
  • the apparatus further includes: a receiving unit 1103, configured to receive a second DCI sent by the network device, the second DCI is used to schedule the uplink transmission of data, and the second DCI is also used to Indicate the second RTT timer and/or the second retransmission timer used for the data in the HARQ process associated with the data;
  • the determining unit 1101 is configured to determine the second RTT timer and/or the second retransmission timer based on the DCI.
  • the second DCI carries the index of the second RTT timer and/or the second retransmission timer
  • the determining unit 1101 is configured to determine the second RTT timer and/or the second retransmission based on the index of the second RTT timer and/or the second retransmission timer, and fourth configuration information.
  • timer, the fourth configuration information includes at least one RTT timer configuration and/or at least one retransmission timer configuration, wherein each RTT timer configuration is associated with an index, and each retransmission timer configuration is associated with an index, Alternatively, each RTT timer configuration and retransmission timer configuration association share an index.
  • the fourth configuration information is configured through RRC signaling.
  • the second DCI carries an LCID list
  • the logical channel identification list is used to indicate a logical channel list of data scheduled by the second DCI that is authorized to be transmitted.
  • the determining unit 1101 is configured to use the RTT timer and/or the retransmission timer it selects as the second RTT timer and/or the second retransmission timer.
  • the apparatus further includes: a sending unit 1104, configured to indicate to the network device the second RTT timer and/or the second reset selected by the terminal device through first indication information. Pass the index of the timer.
  • the first indication information is carried in the MAC CE or in the header of the MAC PDU or in the header of the PDCP PDU.
  • the determining unit 1101 is configured to determine the second RTT timer and/or the second retransmission timer based on the configuration authorization CG where the data to be sent is located and the fifth configuration information, wherein , the fifth configuration information includes RTT timer configuration and/or retransmission timer configuration corresponding to at least one CG.
  • the fifth configuration information is configured through RRC signaling.
  • the determining unit 1101 is configured to determine the second RTT timer and/or the second retransmission timer based on the LCID corresponding to the data that needs to be sent and the sixth configuration information, wherein, The sixth configuration information includes at least one RTT timer configuration and/or retransmission timer configuration corresponding to the LCID.
  • the determining unit 1101 is configured to, if the data to be sent correspond to multiple LCIDs, select the LCID with the highest priority from the multiple LCIDs, and determine based on the sixth configuration information.
  • the RTT timer configuration and/or retransmission timer configuration corresponding to the LCID with the highest priority is used as the second RTT timer and/or the second retransmission timer; or, if the data to be sent corresponds to Multiple LCIDs, then determine the RTT timer configuration and/or retransmission timer corresponding to the multiple LCIDs based on the sixth configuration information, and determine the RTT timer configuration and/or retransmission timing corresponding to the multiple LCIDs. Select the shortest RTT timer configuration and/or retransmission timer among the timers and use it as the second RTT timer and/or the second retransmission timer.
  • the sixth configuration information is configured through RRC signaling.
  • the processing unit 1102 is configured to start the second RTT timer after transmitting data; if the second RTT timer times out, start the second retransmission timer. device.
  • the device further includes: a receiving unit 1103, configured to receive RRC dedicated signaling sent by the network device.
  • the RRC dedicated signaling is used to configure multiple sets of DRX parameters.
  • Each set of DRX parameters includes the following: At least one of: DRX status timer (drx-onDurationTimer); DRX slot offset (drx-SlotOffset); DRX inactivity timer (drx-InactivityTimer); downlink DRX retransmission timer (drx-RetransmissionTimerDL); uplink DRX Retransmission timer (drx-RetransmissionTimerUL); DRX long cycle start offset (drx-LongCycleStartOffset); DRX short cycle (drx-ShortCycle); DRX short cycle timer (drx-ShortCycleTimer); Downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL); uplink DRX HARQ RTT timer
  • the receiving unit 1103 is configured to receive second indication information sent by the network device, where the second indication information is used to instruct using the set of DRX parameters from the multiple sets of DRX parameters. DRX parameters.
  • the second indication information is carried in DCI or MAC CE.
  • the receiving unit 1103 is configured to receive third indication information sent by the network device, where the third indication information is used to indicate the DRX time slot offset used; the determining unit 1101 , and is also used to determine the start time of the DRX status timer based on the third indication information.
  • the determining unit 1101 is configured to determine the target SFN and target subframe based on the DRX cycle and the DRX start offset; determine the start time of the DRX status timer based on the third indication information.
  • the starting time of the target subframe in the target SFN is shifted backward or forward by N slots, and N is determined based on the value of the DRX slot offset.
  • the third indication information is carried in DCI or MAC CE.
  • the determining unit 1101 is configured to determine the first candidate start time of the DRX state timer based on the DRX cycle and the DRX start offset, and determine the first candidate start time based on the DRX cycle. the second candidate start time and/or the third candidate start time;
  • the receiving unit 1103 is configured to receive fourth indication information sent by the network device, the fourth indication information being used to start from the first candidate startup time, the second candidate startup time and/or the third candidate The startup time used is indicated in the startup time;
  • the determining unit 1101 is configured to determine the start time of the DRX state timer based on the fourth indication information.
  • the second candidate startup time is equal to the first candidate startup time minus the duration of the DRX state timer
  • the third candidate startup time is equal to the first candidate startup time plus The duration of the DRX status timer mentioned above.
  • the determining unit 1101 is configured to determine the start time of the DRX state timer based on the DRX cycle and the DRX start offset, and the unit of the DRX cycle and the DRX start offset is a time slot or half slot or symbol.
  • the unit of the DRX cycle and DRX start offset is a time slot; the determining unit 1101 is used to determine the target SFN, target subframe and target based on the DRX cycle and DRX start offset. time slot; based on the DRX time slot offset and/or DRX symbol offset, determine the start time of the DRX status timer to be the start time of the target time slot in the target subframe in the target SFN, which is backward or forward. Shift by N time slots and/or M symbols; or, based on the DRX symbol offset, the terminal equipment determines that the start time of the DRX state timer is the target in the target time slot in the target subframe within the target SFN.
  • the starting time of the half-slot is shifted backward or forward by N slots and/or M symbols.
  • the target half-slot is indicated by RRC signaling, and N is determined based on the value of the DRX slot offset. , M is determined based on the value of the DRX symbol offset.
  • the determining unit 1101 is configured to determine the target SFN, target subframe and target timeslot based on the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • slot number is the target timeslot number
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx-StartOffset is the DRX start offset
  • k is an integer.
  • the unit of the DRX cycle and DRX start offset is a half time slot; the determination unit 1101 is used to determine the target SFN, target subframe, and target subframe based on the DRX cycle and DRX start offset.
  • offset M symbols forward, M is determined based on the value of the DRX symbol offset.
  • the determining unit 1101 is configured to determine the target SFN, target subframe, target time slot and target half time slot based on the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • slot number is the target slot number
  • half slot number is the target half slot number
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx -StartOffset is the DRX starting offset
  • modulo represents the remainder operation
  • k is an integer.
  • the units of the DRX cycle and DRX start offset are symbols; the determining unit 1101 is configured to determine the target SFN, target subframe, and target time based on the DRX cycle and DRX start offset. slot, target half-slot and target symbol; based on the DRX symbol offset, determine the start time of the DRX state timer to be the start time of the target symbol in the target slot in the target subframe in the target SFN backward or Offset M symbols forward, where M is determined based on the value of the DRX symbol offset.
  • the determining unit 1101 is configured to determine the target SFN, target subframe, target time slot, target half time slot, and target symbol based on the following formula:
  • SFN is the target SFN
  • subframe number is the target subframe number
  • slot number is the target timeslot number
  • symbol number is the target symbol
  • drx-ShortCycle is the DRX short cycle
  • drx-LongCycle is the DRX long cycle
  • drx-StartOffset is the DRX Starting offset
  • modulo represents remainder operation
  • k is an integer.
  • the receiving unit 1103 is configured to receive seventh configuration information, where the seventh configuration information includes at least one SPS configuration and/or at least one CG configuration; wherein, in the at least one SPS configuration At least part of the SPS configuration includes fifth indication information, the fifth indication information is used to indicate whether data reception on the SPS is allowed to be performed during the DRX inactive time or is used to indicate that data reception on the SPS is not allowed to be performed during the DRX inactive time. data reception on the SPS or to indicate whether data reception needs to be performed on the SPS within the DRX activation time or to indicate that data reception on the SPS needs to be performed within the DRX activation time; at least part of the at least one CG configuration
  • the CG configuration includes sixth indication information.
  • the sixth indication information is used to indicate whether data transmission on the CG is allowed to be performed during the DRX inactive time or to indicate that data transmission on the CG is not allowed to be performed during the DRX inactive time. Send or be used to indicate whether data transmission on the CG needs to be performed within the DRX activation time or used to indicate whether data transmission on the CG needs to be performed within the DRX activation time.
  • a partial SPS configuration in the at least one SPS configuration does not include the fifth indication information
  • the terminal device allows the DRX to be deactivated. Perform data reception on the SPS within the time and/or the terminal device does not need to perform data reception on the SPS within the DRX activation time; if part of the CG configuration in the at least one CG configuration does not include the sixth indication information, then for the configured CG in the partial CG configuration, the terminal device is allowed to perform data transmission on the CG during the DRX inactive time and/or the terminal device does not need to perform data transmission on the CG during the DRX activation time. data sent.
  • the SPS configured for the part of the SPS configuration is configured based on the fifth indication by the terminal device.
  • Figure 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device can be a terminal device or a network device.
  • the communication device 1200 shown in Figure 12 includes a processor 1210.
  • the processor 1210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220.
  • the processor 1210 can call and run the computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated into the processor 1210.
  • the communication device 1200 can also include a transceiver 1230, and the processor 1210 can control the transceiver 1230 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1200 can be specifically a network device according to the embodiment of the present application, and the communication device 1200 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the communication device 1200 can be a mobile terminal/terminal device according to the embodiment of the present application, and the communication device 1200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 1200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 1200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 1200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the communication device 1200 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1300 shown in Figure 13 includes a processor 1310.
  • the processor 1310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1300 may also include a memory 1320.
  • the processor 1310 can call and run the computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or may be integrated into the processor 1310.
  • the chip 1300 may also include an input interface 1330.
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1300 may also include an output interface 1340.
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 14 is a schematic block diagram of a communication system 1400 provided by an embodiment of the present application. As shown in Figure 14, the communication system 1400 includes a terminal device 1410 and a network device 1420.
  • the terminal device 1410 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1420 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种参数确定方法及装置、终端设备,该方法包括:终端设备确定第一非连续接收DRX参数,所述第一DRX参数为混合自动重传请求HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关;所述终端设备基于所述第一DRX参数,执行相应的DRX操作。

Description

一种参数确定方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种参数确定方法及装置、终端设备。
背景技术
为了终端设备的节能,引入了非连续接收(Discontinuous Reception,DRX)机制。网络设备为终端设备配置DRX配置,终端设备使用该DRX配置进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)监听。
然而,目前的DRX配置是按照UE粒度(per UE)进行配置的,终端设备对于任何传输情况都将使用同一套DRX配置,目前的DRX配置方式灵活性较差。
发明内容
本申请实施例提供一种参数确定方法及装置、终端设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的参数确定方法,包括:
终端设备确定第一DRX参数,所述第一DRX参数为混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程相关的DRX参数,所述第一DRX参数还与数据相关;
所述终端设备基于所述第一DRX参数,执行相应的DRX操作。
本申请实施例提供的参数确定装置,包括:
确定单元,用于确定第一DRX参数,所述第一DRX参数为HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关;
处理单元,用于基于所述第一DRX参数,执行相应的DRX操作。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的参数确定方法。
本申请实施例提供的芯片,用于实现上述的参数确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的参数确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的参数确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的参数确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的参数确定方法。
通过上述技术方案,第一DRX参数为HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关,也就是说,所述第一DRX参数是按照数据粒度(per data或者per TB)进行配置的,从而可以实现按照数据粒度调整HARQ进程级别的DRX参数,进而提高了DRX机制的灵活性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是一种应用场景的示意图;
图2是一种5G网络系统架构图;
图3是一种Qos机制的示意图;
图4是一种DRX周期的示意图;
图5是本申请实施例提供的参数确定方法的流程示意图一;
图6是本申请实施例提供的参数确定方法的流程示意图二;
图7是本申请实施例提供的定DRX状态定时器的候选启动时间的示意图;
图8是本申请实施例提供的参数确定方法的流程示意图三;
图9是本申请实施例提供的SCS对应的时隙长度的示意图;
图10是本申请实施例提供的参数确定方法的流程示意图四;
图11是本申请实施例提供的参数确定装置的结构组成示意图;
图12是本申请实施例提供的一种通信设备示意性结构图;
图13是本申请实施例的芯片的示意性结构图;
图14是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此 本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
5G网络架构
图2为5G网络系统架构图,如图2所示,5G网络系统中涉及到的网元包括:用户设备(User Equipment,UE)、无线接入网(Radio Access Network,RAN)、用户面功能(User Plane Function,UPF)、数据网络(Data Network,DN)、接入和移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、策略控制功能(Policy Control Function,PCF)、应用功能(Application Function,AF)、鉴权服务器功能(Authentication Server Function,AUSF)、统一数据管理(Unified Data Management,UDM)。
如图2所示,UE通过Uu接口与RAN进行接入层(AS)连接,交互接入层消息及无线数据传输。UE通过N1接口与AMF进行非接入层(NAS)连接,交互NAS消息。AMF是核心网中的移动性管理功能,SMF是核心网中的会话管理功能,AMF在对UE进行移动性管理之外,还负责将从会话管理相关消息在UE和SMF之间进行转发。PCF是核心网中的策略管理功能,负责制定对UE的移动性管理、会话管理、计费等相关的策略。UPF是核心网中的用户面功能,通过N6接口与DN进行数据传输,通过N3接口与RAN进行数据传输。
Qos机制
在移动通信网络中,为了能够传输用户面数据,需要建立一个或多个Qos流(Qos Flow)。作为通信质量的重要衡量标准,通常使用Qos参数来指示Qos流的特征,不同的Qos流对应不同的Qos参数。Qos参数可以包括但不限于:5G服务质量标识(5G Qos Identifier,5QI)、分配保留优先级(Allocation Retension Priority,ARP)、保证流比特率(Guaranteed Flow Bit Rate,GFBR)、最大流比特率(Maximum Flow Bit Rate,MFBR)、上/下行最大丢包率(UL/DL Maximum Packet Loss Rate,UL/DL MPLR)、端到端数据包时延预算(Packet Delay Budget,PDB)、AN-PDB、包误差率(Packet Error Rate,PER)、优先等级(Priority Level)、平均窗口(Averaging Window)、资源类型(Resource Type)、最大数据突发量(Maximum Data Burst Volume)、UE聚合最大比特率(UE Aggregate Maximum  Bit Rate,UE-AMBR)、会话聚合最大比特率(Session Aggregate Maximum Bit Rate,Session-AMBR)等。
过滤器(Filter)包含描述数据包的特征参数(例如IP数据包的一些相关参数,以太网数据包的一些相关参数),用于过滤出特定的数据包以绑定到特定的Qos流上。这里,最常用的Filter就是IP五元组,即源IP地址、目标IP地址、源端口号、目标端口号以及协议类型。
参照图3,UPF和UE会根据数据包的特征参数组合来形成过滤器(如图3中最左边的梯形和最右边的平行四边形代表过滤器),通过过滤器过滤在用户面传递的符合数据包的特征参数的上行或下行数据包,并将其绑定到某一个Qos流上。上行Qos流是由UE进行绑定的,下行Qos流是由UPF进行绑定的。在Qos机制中,一个或多个Qos流可以映射到一个数据无线承载(Data Resource Bearer,DRB)上进行传输。对于一个Qos流来说,对应一套Qos参数,基站会根据Qos参数来建立DRB并将Qos流绑定到特定的DRB上。
Qos流由SMF触发建立。当Qos需要调整时,UE和网络侧均可触发PDU会话修改流程,从而改变Qos。以UE为例,UE可以通过发送PDU会话修改请求(PDU Session Modification Request)消息来修改Qos流的Qos参数或者建立新的Qos流。也就是说,当UE调整Qos时,需要执行一个会话修改流程,且必须得到网络的同意。由于PDU会话修改流程这一过程需要较长时间,同时也不能保证一定可以修改成功,因此会影响应用的行为,即应用无法准确判定是否以及多久可以使用其希望的Qos,这对于很多实时性业务,比如机器学习、神经网络分析等会产生较大影响。造成Qos改变情况也有很多,作为示例,以下几种情况均可造成Qos改变:1)发生了基站切换;2)发生了网络拥塞(如用户数突然增多)3)UE移入或移出了特定的范围(如边缘服务器的服务范围)。
URLLC/XR
在未来,第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)系统对垂直行业的支持会越来越广泛和深入。比如,低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)需求支持工业自动化(Factory automation)、传输自动化(Transport Industry)、智能电力(Electrical Power Distribution)等业务在5G系统的传输。扩展现实(EXtended Reality,XR)需求支持增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、混合现实(Mixed Reality,MR)、云游戏(Cloud gaming)等业务传输。这些业务普遍存在可靠性和时延的要求,因为为终端设备调度资源时其要满足数据传输的服务质量(Quality of Service,Qos)需求。从终端设备来说,还需要满足终端设备功耗的问题,避免不必要的功耗。同时,考虑到大量的支持这种类型的业务的终端设备的接入问题,在资源分配时还需要保证网络容量的需求。
典型的,对URLLC/XR来说,需要支持最小0.5ms时延,99,999%可靠性需求的业务。业务的可以是伪周期的,即业务到达时间存在抖动(jitter),或者说,业务不会在一个确定的时间点,而是会在一个时间范围内的任一个时刻到达。同时,业务周期可以是非整数周期,如16.67ms。此外,同一个业务的不同业务流到达的时间差别可能很大。
5G NR中的DRX机制
在5G NR中,网络设备可以通过RRC专用信令为终端设备配置DRX配置,使终端设备非连续地监听PDCCH,以达到终端设备省电的目的。每个媒体接入控制(Media Access Control,MAC)实体有一个DRX配置,作为示例,DRX配置中配置的参数有:
-DRX状态定时器(drx-onDurationTimer):用于确定DRX周期(DRX cycle)开始后的一段时间;
-DRX时隙偏移量(drx-SlotOffset):用于确定启动DRX状态定时器之前的时延;
-DRX非激活定时器(drx-InactivityTimer):用于确定PDCCH时机(PDCCH occasion)之后的一段时间,其中,该PDCCH时机中被检测到PDCCH且该PDCCH指示了一个新的上行或下行传输;
-下行DRX重传定时器(drx-RetransmissionTimerDL):用于确定接收到下行重传之前的最长时间;
-上行DRX重传定时器(drx-RetransmissionTimerUL):用于确定在接收到上行重传的授权之前的最长时间;
-DRX长周期开始偏移量(drx-LongCycleStartOffset):用于确定DRX长周期和DRX开始时间偏移量(drx-StartOffset),其中,drx-StartOffset用于确定DRX长周期和DRX短周期的开始时间(例如开始时间对应的子帧);
-DRX短周期(drx-ShortCycle):为可选配置,用于确定DRX短周期;
-DRX短周期循环定时器(drx-ShortCycleTimer):为可选配置,用于确定DRX短周期的持续时 间,其取值指代的是DRX短周期的倍数;
-下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL):MAC实体期望的用于HARQ重传的下行分配之前的最小持续时间;
-上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL):MAC实体期望的用于HARQ重传的上行授权之前的最小持续时间。
上述方案中,DRX参数的单位为毫秒(ms),适用于DRX周期为整数倍ms周期的业务。
上述方案中,下行DRX重传定时器、上行DRX重传定时器、下行DRX HARQ RTT定时器、上行DRX HARQ RTT定时器与HARQ进行相关。
如果终端设备配置了DRX配置,则终端设备需要在DRX激活时间(DRX active time)监听PDCCH。DRX激活时间包括如下几种情况:
1)drx-onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL以及ra-ContentionResolutionTimer这5个定时器中的任何一个定时器的运行期间属于DRX激活时间。
2)终端设备在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上发送了调度请求(SR)后,该SR处于悬挂(pending)状态期间属于DRX激活时间。
3)在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到C-RNTI加扰的PDCCH指示的一次初始传输的期间属于DRX激活时间。
终端设备根据当前使用DRX周期是DRX短周期(short DRX cycle)还是DRX长周期(long DRX cycle),来决定drx-onDurationTimer的启动时间,具体规定如下:
1.1>如果使用的是DRX短周期,那么,drx-onDurationTimer的启动时间的SFN和子帧号满足:[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);
1.2>如果使用的是DRX长周期,那么,drx-onDurationTimer的启动时间的SFN和子帧号满足:[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset;
2>在上述公式所确定的子帧的起始时间向后偏移drx-SlotOffset个时隙的时刻启动drx-onDurationTimer。
终端设备启动或重启drx-InactivityTimer的条件为:
如果终端设备接收到一个指示下行或者上行的初始传输的PDCCH,则终端设备启动或者重启drx-InactivityTimer。
终端设备启动和停止drx-RetransmissionTimerDL的条件为:
当终端设备接收到一个指示下行传输的PDCCH,或者当终端设备在配置的下行授权资源上接收到一个MAC PDU,则终端设备停止该HARQ进程对应的drx-RetransmissionTimerDL。终端设备在完成针对这次下行传输的HARQ进程反馈的传输之后启动该HARQ进程对应的drx-HARQ-RTT-TimerDL。
如果终端设备的某个HARQ进程对应的drx-HARQ-RTT-TimerDL超时,并且使用这个HARQ进程传输的下行数据解码不成功,则终端设备启动这个HARQ进程对应的drx-RetransmissionTimerDL。
终端设备启动和停止drx-RetransmissionTimerUL的条件为:
当终端设备接收到一个指示上行传输的PDCCH,或者当终端设备在配置的上行授权资源上发送一个MAC PDU,则终端设备停止该HARQ进程对应的drx-RetransmissionTimerUL。终端设备在完成这次PUSCH的第一次重复传输(repetition)之后启动该HARQ进程对应的drx-HARQ-RTT-TimerUL。
如果终端设备的某个HARQ进程对应的drx-HARQ-RTT-TimerUL超时,则终端设备启动这个HARQ进程对应的drx-RetransmissionTimerUL。
从以上DRX机制可以看出,终端设备在完成上行传输或者完成针对下行传输的ACK/NACK反馈之后都会先启动一个DRX HARQ RTT定时器(对于上行传输是drx-HARQ-RTT-TimerUL,对于下行传输是drx-HARQ-RTT-TimerDL),终端设备在该DRX HARQ RTT定时器运行期间处于休眠状态,不监听PDCCH,等到该定时器超时后终端设备才开始监听上行重传调度或者根据反馈情况确定是否开始监听下行重传调度。
如图4所示,DRX周期由“持续时间(On Duration)”和“DRX机会(Opportunity for DRX)”组成,其中,在On Duration时间内,终端设备处于DRX激活时间;如果终端在On Duration时间内没有接收到PDCCH,就会停止监听,在“Opportunity for DRX”时间内转为DRX非激活时间(DRX inactive time),终端设备不接收PDCCH以减少功耗(即终端设备处于休眠期)。
目前,网络设备为终端设备配置的DRX配置是按照UE粒度(per UE)进行配置的,终端设备对于任何传输情况都将使用同一套DRX配置,也就是无论是什么业务,无论传输的是什么承载的数据以及承载中的什么数据,终端设备都将使用一套DRX配置,对于与HARQ进行相关DRX参数,也都使用相同的DRX参数。因为不同的数据有不同的Qos需求,所以根据数据不同动态调整使用的DRX参数,对于Qos要求严格的数据是有增益的。为此,提出了本申请实施例的以下技术方案。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图5是本申请实施例提供的参数确定方法的流程示意图一,如图5所示,所述参数确定方法包括以下步骤:
步骤501:终端设备确定第一DRX参数,所述第一DRX参数为HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关。
步骤502:所述终端设备基于所述第一DRX参数,执行相应的DRX操作。
本申请实施例中,第一DRX参数为HARQ进程相关的DRX参数,第一DRX参数包括HARQ进程相关的下行DRX参数和/或HARQ进程相关的上行DRX参数,其中,HARQ进程相关的下行DRX参数可以按照数据粒度进行设置,HARQ进程相关的上行DRX参数也可以按照数据粒度进行设置,以下对其进行说明。
方案一:HARQ进程相关的下行DRX参数
所述第一DRX参数包括第一往返时间(Round-Trip Time,RTT)定时器和/或第一重传定时器,所述第一RTT定时器和/或第一重传定时器属于下行HARQ进程使用的定时器。这里,所述第一RTT定时器也可以称为下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL),所述第一重传定时器也可以称为下行DRX重传定时器(drx-RetransmissionTimerDL),其功能可以参照前述相关方案的描述。需要说明的是,本申请对所述第一RTT定时器和所述第一重传定时器的名称不做限定。
本申请实施例中,所述终端设备确定第一RTT定时器和/或第一重传定时器的方式包括但不局限于以下方式:
方式1-1
在一些可选实施方式中,所述终端设备接收网络设备发送的第一下行控制信息(Downlink Control Information,DCI),所述第一DCI用于调度数据的下行传输,所述第一DCI还用于指示所述数据关联的HARQ进程中针对所述数据使用的第一RTT定时器和/或第一重传定时器;所述终端设备基于所述第一DCI确定所述第一RTT定时器和/或第一重传定时器。
在一些可选实施方式中,所述第一DCI携带所述第一RTT定时器和/或所述第一重传定时器的索引;所述终端设备基于所述第一RTT定时器和/或所述第一重传定时器的索引,以及第一配置信息确定所述第一RTT定时器和/或第一重传定时器,所述第一配置信息包括至少一个RTT定时器配置和/或至少一个重传定时器配置,其中,每个RTT定时器配置关联一个索引,每个重传定时器配置关联一个索引,或者,每个RTT定时器配置和重传定时器配置关联共用一个索引。这里,所述第一配置信息通过无线资源控制(Radio Resource Control,RRC)信令配置。
在一些可选实施方式中,所述第一DCI中携带逻辑信道标识(Logical Channel ID,LCID)列表,所述LCID列表用于指示所述第一DCI调度的授权期待传输的数据的逻辑信道列表。
方式1-2
在一些可选实施方式中,所述终端设备基于接收到的数据所在的半持续调度(Semi-Persistent Scheduling,SPS)以及第二配置信息确定所述第一RTT定时器和/或第一重传定时器,其中,所述第二配置信息包括至少一个SPS对应的RTT定时器配置和/或重传定时器配置。这里,所述第二配置信息通过RRC信令配置。
方式1-3
在一些可选实施方式中,所述终端设备基于接收到的数据对应的LCID以及第三配置信息确定所述第一RTT定时器和/或第一重传定时器,其中,所述第三配置信息包括至少一个LCID对应的RTT定时器配置和/或重传定时器配置。这里,所述第三配置信息通过RRC信令配置。
在一种情况下,所述终端接收到的数据对应一个LCID,对于这种情况,所述终端设备基于所述第三配置信息确定所述一个LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第一RTT定时器和/或第一重传定时器。
在另一种情况下,所述终端接收到的数据对应多个LCID,对于这种情况,有如下选项:
选项1)若所述终端接收到的数据对应多个LCID,则所述终端从所述多个LCID中选择优先级最高的LCID,并基于所述第三配置信息确定所述优先级最高的LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第一RTT定时器和/或第一重传定时器。
选项2)若所述终端接收到的数据对应多个LCID,则所述终端设备基于所述第三配置信息确定所述多个LCID对应的RTT定时器配置和/或重传定时器,从所述多个LCID对应的RTT定时器配置和/或重传定时器中选择最短的RTT定时器配置和/或重传定时器,将其作为所述第一RTT定时器和/或第一重传定时器。
本申请实施例中,终端设备确定出第一RTT定时器和/或第一重传定时器后,执行以下DRX操作:所述终端设备在接收完数据且完成针对所述数据的肯定确认(ACK)/否定确认(NACK)
反馈后,启动所述第一RTT定时器;若所述第一RTT定时器超时,则所述终端设备启动所述第一重传定时器。
方案二:HARQ进程相关的上行DRX参数
所述第一DRX参数包括第二RTT定时器和/或第二重传定时器,所述第二RTT定时器和/或第二重传定时器属于上行HARQ进程使用的定时器。这里,所述第二RTT定时器也可以称为上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL),所述第二重传定时器也可以称为上行DRX重传定时器(drx-RetransmissionTimerUL),其功能可以参照前述相关方案的描述。需要说明的是,本申请对所述第二RTT定时器和所述第二重传定时器的名称不做限定。
本申请实施例中,所述终端设备确定第二RTT定时器和/或第二重传定时器的方式包括但不局限于以下方式:
方式2-1
在一些可选实施方式中,所述终端设备接收网络设备发送的第二DCI,所述第二DCI用于调度数据的上行传输,所述第二DCI还用于指示所述数据关联的HARQ进程中针对所述数据使用的第二RTT定时器和/或第二重传定时器;所述终端设备基于所述DCI确定所述第二RTT定时器和/或第二重传定时器。
在一些可选实施方式中,所述第二DCI携带所述第二RTT定时器和/或所述第二重传定时器的索引;所述终端设备基于所述第二RTT定时器和/或所述第二重传定时器的索引,以及第四配置信息确定所述第二RTT定时器和/或第二重传定时器,所述第四配置信息包括至少一个RTT定时器配置和/或至少一个重传定时器配置,其中,每个RTT定时器配置关联一个索引,每个重传定时器配置关联一个索引,或者,每个RTT定时器配置和重传定时器配置关联共用一个索引。这里,所述第四配置信息通过RRC信令配置。
在一些可选实施方式中,所述第二DCI中携带LCID列表,所述逻辑信道标识列表用于指示所述第二DCI调度的授权期待传输的数据的逻辑信道列表。
方式2-2
在一些可选实施方式中,所述终端设备将其选择的RTT定时器和/或重传定时器作为所述第二RTT定时器和/或第二重传定时器。
进一步,可选地,所述终端设备通过第一指示信息向网络设备指示所述终端设备选择的所述第二RTT定时器和/或所述第二重传定时器的索引。如此,网络设备可以根据所述第二RTT定时器和/或所述第二重传定时器的索引,以及第四配置信息确定所述第二RTT定时器和/或第二重传定时器。
这里,可选地,所述第一指示信息携带在MAC控制单元(Control Element,CE)中或者MAC分组数据单元(Packet Data Unit,PDU)的包头中或者分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)PDU的包头中。
方式2-3
在一些可选实施方式中,所述终端设备基于需要发送的数据所在的配置授权(Configured Grant,CG)以及第五配置信息确定所述第二RTT定时器和/或第二重传定时器,其中,所述第五配置信息包括至少一个CG对应的RTT定时器配置和/或重传定时器配置。这里,所述第五配置信息通过RRC信令配置。
方式2-4
在一些可选实施方式中,所述终端设备基于需要发送的数据对应的LCID以及第六配置信息确定所述第二RTT定时器和/或第二重传定时器,其中,所述第六配置信息包括至少一个LCID对应的RTT定时器配置和/或重传定时器配置。这里,所述第六配置信息通过RRC信令配置。
在一种情况下,所述终端需要发送的数据对应一个LCID,对于这种情况,所述终端设备基于所 述第六配置信息确定所述一个LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第二RTT定时器和/或第二重传定时器。
在另一种情况下,所述终端需要发送的数据对应多个LCID,对于这种情况,有如下选项:
选项1)若所述终端设备需要发送的数据对应多个LCID,则所述终端从所述多个LCID中选择优先级最高的LCID,并基于所述第六配置信息确定所述优先级最高的LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第二RTT定时器和/或第二重传定时器。
选项2)若所述终端设备需要发送的数据对应多个LCID,则所述终端设备基于所述第六配置信息确定所述多个LCID对应的RTT定时器配置和/或重传定时器,从所述多个LCID对应的RTT定时器配置和/或重传定时器中选择最短的RTT定时器配置和/或重传定时器,将其作为所述第二RTT定时器和/或第二重传定时器。
本申请实施例中,终端设备确定出第二RTT定时器和/或第二重传定时器后,执行以下DRX操作:所述终端设备在传输完数据后,启动所述第二RTT定时器;若所述第二RTT定时器超时,则所述终端设备启动所述第二重传定时器。
作为示例:对于下行数据,如果该下行数据基于DCI动态调度传输,则该DCI中指示该下行数据对应的HARQ进行中针对该数据使用的DL DRX RTT timer和/或DL DRX retansmission timer。终端设备在接收完该下行数据,且完成针对该下行数据的ACK/NACK反馈后,启动DCI中指示的DL DRX RTT timer;DL DRX RTT timer超时后,终端设备启动DCI中指示的DL DRX retansmission timer。其中,DCI中可以指示DL DRX RTT timer和/或DL DRX retansmission timer的索引,至少一个DL DRX RTT timer和/或至少一个DL DRX retansmission timer通过RRC信令预配值,每个DL DRX RTT timer配置关联一个索引,每个DL DRX retansmission timer配置关联一个索引,或者,每个DL DRX RTT timer配置和DL DRX retansmission timer配置关联共用一个索引。
作为示例:对于下行数据,如果该下行数据基于SPS传输,则终端设备在SPS上接收完该下行数据,且完成针对该下行数据的ACK/NACK反馈后,启动该SPS关联的DL DRX RTT timer;DL DRX RTT timer超时后,终端设备启动该SPS关联的DL DRX retansmission timer。其中,网络侧通过RRC信令配置per SPS的DL DRX RTT timer和/或DL DRX retansmission timer,即每个SPS配置对应一个DL DRX RTT timer配置和/或DL DRX retansmission tiemr配置。或者,终端设备在SPS上接收完该下行数据,且完成针对该下行数据的ACK/NACK反馈后,启动该下行数据对应的LCID关联的DL DRX RTT timer;DL DRX RTT timer超时后,终端设备启动该下行数据对应的LCID关联的DL DRX retansmission timer。其中,网络侧通过RRC信令配置per LCID的DL DRX RTT timer和/或DL DRX retansmission timer,即每个LCID对应一个DL DRX RTT timer配置和/或DL DRX retansmission tiemr配置。
作为示例:对于上行数据,如果该上行数据基于DCI动态调度传输,则该DCI中指示该上行数据对应的HARQ进行中针对该数据使用的UL DRX RTT timer和/或UL DRX retansmission timer。终端设备在传输完该上行数据后,启动DCI中指示的UL DRX RTT timer;UL DRX RTT timer超时后,终端设备启动DCI中指示的UL DRX retansmission timer。其中,DCI中可以指示UL DRX RTT timer和/或UL DRX retansmission timer的索引,至少一个UL DRX RTT timer和/或至少一个UL DRX retansmission timer通过RRC信令预配值,每个UL DRX RTT timer配置关联一个索引,每个UL DRX retansmission timer配置关联一个索引,或者,每个UL DRX RTT timer配置和UL DRX retansmission timer配置关联共用一个索引。
作为示例:对于上行数据,如果该上行数据基于CG传输,则终端设备在CG上传输完该上行数据后,启动该CG关联的UL DRX RTT timer;UL DRX RTT timer超时后,终端设备启动该CG关联的UL DRX retansmission timer。其中,网络侧通过RRC信令配置per CG的UL DRX RTT timer和/或UL DRX retansmission timer,即每个CG配置对应一个UL DRX RTT timer配置和/或UL DRX retansmission tiemr配置。或者,终端设备在CG上传输完该上行数据后,启动该上行数据对应的LCID关联的UL DRX RTT timer;UL DRX RTT timer超时后,终端设备启动该上行数据对应的LCID关联的UL DRX retansmission timer。其中,网络侧通过RRC信令配置per LCID的UL DRX RTT timer和/或UL DRX retansmission timer,即每个LCID对应一个UL DRX RTT timer配置和/或UL DRX retansmission tiemr配置。
作为示例:对于上行数据,终端设备自主选择UL DRX RTT timer和/或UL DRX retansmission timer,终端设备在传输完该上行数据后,启动选择的UL DRX RTT timer;UL DRX RTT timer超时后,终端设备启动选择的UL DRX retansmission timer。进一步,终端设备可以在发送上行数据的同 时发送一个指示信息给网络侧,该指示信息用于指示终端设备选择的UL DRX RTT timer和/或UL DRX retansmission tiemr的索引。这里,至少一个UL DRX RTT timer和/或至少一个UL DRX retansmission timer通过RRC信令预配值,每个UL DRX RTT timer配置关联一个索引,每个UL DRX retansmission timer配置关联一个索引,或者,每个UL DRX RTT timer配置和UL DRX retansmission timer配置关联共用一个索引。这里,所述指示信息可以携带在MAC CE中。
上述方案中,可以根据数据的业务Qos属性(例如时延)动态调整RTT定时器和/或重传定时器的长度,使得重传定时器的运行时间和on duration时间最大限度重合,从而在满足业务Qos需求的同时达到终端设备节能的目的。例如:可以为时延不敏感业务配置较长的RTT定时器和/或重传定时器,从而在不影响业务时延需求的同时达到终端设备节能的目的。例如:可以为时延敏感业务配置较短的RTT定时器和/或重传定时器,从而满足业务时延需求。
上述方案中,终端设备在确定上述第一DRX参数之前,可选地,网络设备可以通过RRC专用信令为终端设备配置一套DRX参数,这里的一套DRX参数是per UE配置的,包括以下至少之一:DRX状态定时器(drx-onDurationTimer);DRX时隙偏置(drx-SlotOffset);DRX非激活定时器(drx-InactivityTimer);下行DRX重传定时器(drx-RetransmissionTimerDL);上行DRX重传定时器(drx-RetransmissionTimerUL);DRX长周期起始偏置(drx-LongCycleStartOffset);DRX短周期(drx-ShortCycle);DRX短周期循环定时器(drx-ShortCycleTimer);下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL);上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL)。
需要说明的是,终端设备通过上述方式确定出的第一RTT定时器、第一重传定时器、第二RTT定时器、第二重传定时器的优先级高于上述RRC专用信令配置的第一RTT定时器、第一重传定时器、第二RTT定时器、第二重传定时器的优先级,或者说,终端设备通过上述方式确定出的第一RTT定时器、第一重传定时器、第二RTT定时器、第二重传定时器覆盖(override)RRC专用信令配置的第一RTT定时器、第一重传定时器、第二RTT定时器、第二重传定时器。
在一些可选实施方式中,所述方法还包括:所述终端设备接收网络设备发送的RRC专用信令,所述RRC专用信令用于配置多套DRX参数,每套DRX参数包括以下至少之一:DRX状态定时器(drx-onDurationTimer);DRX时隙偏置(drx-SlotOffset);DRX非激活定时器(drx-InactivityTimer);下行DRX重传定时器(drx-RetransmissionTimerDL);上行DRX重传定时器(drx-RetransmissionTimerUL);DRX长周期起始偏置(drx-LongCycleStartOffset);DRX短周期(drx-ShortCycle);DRX短周期循环定时器(drx-ShortCycleTimer);下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL);上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL)。进一步,所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于从所述多套DRX参数中指示使用所述一套DRX参数。这里,可选地,所述第二指示信息携带在DCI中或者MAC CE中。
图6是本申请实施例提供的参数确定方法的流程示意图二,如图6所示,所述参数确定方法包括以下步骤:
步骤601:终端设备接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示使用的DRX时隙偏置。
这里,DRX时隙偏置也可以称为drx-SlotOffset,其含义可以参照前述相关方案的描述。需要说明的是,DRX时隙偏置的取值可以是正值,或者也可以是负值。
这里,所述第三指示信息携带在DCI中或者MAC CE中。
DRX时隙偏置可以通过RRC专用信令在一套DRX参数中配置出。进一步,DRX时隙偏置可以通过DCI或者MAC CE动态改变,也即所述DCI或者MAC CE携带第三指示信息,通过第三指示信息动态改变DRX时隙偏置。
步骤602:所述终端设备基于所述第三指示信息确定DRX状态定时器的启动时间。
本申请实施例中,所述终端设备基于所述第三指示信息确定DRX状态定时器的启动时间,可以通过以下方式来实现:
方式A
在一些可选实施方式中,所述终端设备基于DRX周期和DRX起始偏置确定目标SFN和目标子帧;所述终端设备基于所述第三指示信息确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧的起始时间向后或向前偏移N个时隙,N基于所述DRX时隙偏置的取值确定。作为一种情况,N为正值,所述终端设备确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧的起始时间向后偏移N个时隙。作为另一种情况,N为负值,所述终端设备确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧的起始时间向前偏移N的绝对值个时隙。
这里,DRX周期也可以称为drxCycle,分为DRX短周期(drx-ShortCycle)和DRX长周期(drx-LongCycle),其含义可以参照前述相关方案的描述。
这里,DRX起始偏置可以称为drx-StartOffset,其含义可以参照前述相关方案的描述。
这里,所述终端设备可以通过以下公式确定目标SFN和目标子帧:
对于DRX短周期的情况:[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者,
对于DRX长周期的情况:[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算。
上述方案中,可以扩展DRX时隙偏置的取值范围,从而可以按照子帧粒度或者无线帧粒度来确定DRX状态定时器的启动时间。
方式B
在一些可选实施方式中,所述终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的第一候选启动时间,并基于所述第一候选启动时间和DRX周期确定第二候选启动时间和/或第三候选启动时间;所述终端设备接收所述网络设备发送的第四指示信息,所述第四指示信息用于从所述第一候选启动时间、所述第二候选启动时间和/或第三候选启动时间中指示使用的启动时间;所述终端设备基于所述第四指示信息确定DRX状态定时器的启动时间。这里,可选地,所述第二候选启动时间等于所述第一候选启动时间减去所述DRX状态定时器的时长,所述第三候选启动时间等于所述第一候选启动时间加上所述DRX状态定时器的时长,如图7所示。
这里,所述终端设备基于DRX周期和DRX起始偏置确定目标SFN和目标子帧,将所述目标SFN内的目标子帧的起始时间确定为DRX状态定时器的第一候选启动时间,或者,将所述目标SFN内的目标子帧的起始时间向后或向前偏移N个时隙的时刻确定为DRX状态定时器的第一候选启动时间,N基于DRX时隙偏置(如drx-SlotOffset)的取值确定。
这里,DRX周期也可以称为drxCycle,分为DRX短周期(drx-ShortCycle)和DRX长周期(drx-LongCycle),其含义可以参照前述相关方案的描述。
这里,DRX起始偏置可以称为drx-StartOffset,其含义可以参照前述相关方案的描述。
这里,所述终端设备可以通过以下公式确定目标SFN和目标子帧:
对于DRX短周期的情况:[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者,
对于DRX长周期的情况:[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算。
作为示例:针对准周期的业务,可能存在时延抖动,为了使得drx-onDurationTimer的启动时间与业务的周期的起始时间尽可能对齐,可以通过上述方式A动态改变drx-SlotOffset,并且drx-SlotOffset的取值可以是正值,或者也可以是负值。此外,可以扩展drx-SlotOffset的取值范围,可以按照子帧粒度或者无线帧粒度来确定drx-onDurationTimer的启动时间。
作为示例:针对准周期的业务,可能存在时延抖动,为了使得drx-onDurationTimer的启动时间与业务的周期的起始时间尽可能对齐,可以通过上述方式B确定出drx-onDurationTimer的多个候选启动时间,通过网络侧的动态指示来确定最终使用的启动时间。
本申请实施例的上述方案,在满足终端设备节能需求的同时,可以满足非整数ms周期的业务需求以及时延敏感业务的需求。
图8是本申请实施例提供的参数确定方法的流程示意图三,如图8所示,所述参数确定方法包括以下步骤:
步骤801:终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的启动时间,所述DRX周期和DRX起始偏置的单位为时隙或者半时隙或者符号。
这里,DRX周期也可以称为drxCycle,分为DRX短周期(drx-ShortCycle)和DRX长周期(drx-LongCycle),其含义可以参照前述相关方案的描述。
这里,DRX起始偏置可以称为drx-StartOffset,其含义可以参照前述相关方案的描述。
本申请实施例中,所述DRX周期和DRX起始偏置的单位可以扩展为时隙(slot)或者半时 隙(half slot)或者符号(symbol)。以下结合不同情况对其进行说明。
情况一
在一些可选实施方式中,所述DRX周期和DRX起始偏置的单位为时隙;所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧以及目标时隙;所述终端设备基于DRX时隙偏置和/或DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙的起始时间向后或向前偏移N个时隙和/或M个符号;或者,所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标半时隙的起始时间向后或向前偏移N个时隙和/或M个符号,所述目标半时隙通过RRC信令指示,N基于所述DRX时隙偏置的取值确定,M基于所述DRX符号偏置的取值确定。
这里,DRX时隙偏置也可以称为drx-SlotOffset,其含义可以参照前述相关方案的描述。需要说明的是,DRX时隙偏置的取值可以是正值,或者也可以是负值。
这里,DRX符号偏置也可以称为drx-SymbolOffset,其含义为符号偏移量。需要说明的是,DRX符号偏置的取值可以是正值,或者也可以是负值。
上述方案中,具体地,所述终端设备基于以下公式确定目标SFN、目标子帧以及目标时隙:
对于DRX短周期的情况:[(SFN×10)×k+subframe number×k+slot number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者,
对于DRX长周期的情况:[(SFN×10)×k+subframe number×k+slot number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
情况二
在一些可选实施方式中,所述DRX周期和DRX起始偏置的单位为半时隙;所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙以及目标半时隙;所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标半时隙的起始时间向后或向前偏移M个符号,M基于所述DRX符号偏置的取值确定。
这里,DRX符号偏置也可以称为drx-SymbolOffset,其含义为符号偏移量。需要说明的是,DRX符号偏置的取值可以是正值,或者也可以是负值。
上述方案中,具体地,所述终端设备基于以下公式确定目标SFN、目标子帧、目标时隙以及目标半时隙:
对于DRX短周期的情况:[(SFN×10)×k×2+subframe number×k×2+slot number×2+half slot number]modulo(drxCycle)=(drx-StartOffset)modulo(drxCycle);或者,
对于DRX长周期的情况:[(SFN×10)×k×2+subframe number×k×2+slot number×2+half slot number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,half slot number为目标半时隙号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
情况三
在一些可选实施方式中,所述DRX周期和DRX起始偏置的单位为符号;所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号;所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标符号的起始时间向后或向前偏移M个符号,M基于所述DRX符号偏置的取值确定。
这里,DRX符号偏置也可以称为drx-SymbolOffset,其含义为符号偏移量。需要说明的是,DRX符号偏置的取值可以是正值,或者也可以是负值。
上述方案中,具体地,所述终端设备基于以下公式确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号:
对于DRX短周期的情况:[(SFN×10)×k×14+subframe number×k×14+slot number×14+symbol number]modulo(drxCycle)=(drx-StartOffset)modulo(drxCycle);或者,
对于DRX长周期的情况:[(SFN×10)×k×14+subframe number×k×14+slot number×14+symbol number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,symbol number 为目标符号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
本申请实施例中,上述方案中的单位(如时隙或者半时隙或者符号)长度与参考子载波间隔(SubCarrier Spacing,SCS)有关或者说基于参考SCS确定。在一些可选实施方式中,所述参考SCS可以通过以下方式确定:
方式I)参考SCS通过RRC信令显示配置。
方式II)参考SCS为当前激活的DL BWP配置的SCS。
方式III)参考SCS为当前激活的UL BWP配置的SCS。
方式IV)参考SCS为以下SCS中的最小SCS或者最大SCS:当前激活的DL BWP配置的SCS和当前激活的UL BWP配置的SCS。
方式V)参考SCS为以下SCS中的最小SCS或者最大SCS:所有DL BWP配置的SCS。
方式VI)参考SCS为以下SCS中的最小SCS或者最大SCS:所有UL BWP配置的SCS。
方式VII)参考SCS为以下SCS中的最小SCS或者最大SCS:所有DL BWP配置的SCS和所有UL BWP配置的SCS。
作为示例:DRX参数的单位可以为时隙或者半时隙或者符号,这里的DRX参数例如为:DRX状态定时器(drx-onDurationTimer);DRX时隙偏置(drx-SlotOffset);DRX非激活定时器(drx-InactivityTimer);下行DRX重传定时器(drx-RetransmissionTimerDL);上行DRX重传定时器(drx-RetransmissionTimerUL);DRX长周期起始偏置(drx-LongCycleStartOffset);DRX短周期(drx-ShortCycle);DRX短周期循环定时器(drx-ShortCycleTimer);下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL);上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL)。DRX参数的单位长度是按照参考SCS确定的,如图9所示,参考SCS可以是15KHz,或者30KHz,或者60KHz,或者120KHz,或者240KHz等,15KHz对应的时隙长度为1ms,30KHz对应的时隙长度为0.5ms,60KHz对应的时隙长度为0.25ms,120KHz对应的时隙长度为0.125ms,240KHz对应的时隙长度为0.0625ms,无论是哪种参考SCS,一个时隙都是包括14个符号。参考SCS可以有如下几种确定方式:1)参考SCS通过RRC信令显示配置;2)参考SCS基于当前激活的DL BWP配置的SCS,或者当前激活的UL BWP配置的SCS确定;3)当前激活的DL BWP配置的SCS和当前激活的UL BWP配置的SCS的最小SCS(或者最大SCS)为参考SCS。4)所有DL BWP配置的SCS中的最小SCS(或者最大SCS)为参考SCS,或者所有UL BWP配置的SCS中最小SCS(或者最大SCS)为参考SCS,或者所有DL BWP配置的SCS和所有UL BWP配置的SCS中最小SCS(或者最大SCS)为参考SCS。针对不同的单位,可以采用情况一或情况二或情况三所描述的方案来确定DRX状态定时器的启动时间。
本申请实施例的上述方案,在满足终端设备节能需求的同时,可以满足非整数ms周期的业务需求以及时延敏感业务的需求。
图10是本申请实施例提供的参数确定方法的流程示意图四,如图10所示,所述参数确定方法包括以下步骤:
步骤1001:终端设备接收第七配置信息,所述第七配置信息包括至少一个SPS配置和/或至少一个CG配置;其中,所述至少一个SPS配置中的至少部分SPS配置包括第五指示信息;所述至少一个CG配置中的至少部分CG配置包括第六指示信息。
这里,所述第七配置信息携带在RRC专用信令中。
这里,所述第五指示信息用于指示是否允许在DRX非激活时间内执行在SPS上的数据接收或者用于指示不允许在DRX非激活时间内执行在SPS上的数据接收或者用于指示是否需要在DRX激活时间内执行在SPS上的数据接收或者用于指示需要在DRX激活时间内执行在SPS上的数据接收。
这里,所述第六指示信息用于指示是否允许在DRX非激活时间内执行在CG上的数据发送或者用于指示不允许在DRX非激活时间内执行在CG上的数据发送或者用于指示是否需要在DRX激活时间内执行在CG上的数据发送或者用于指示需要在DRX激活时间内执行在CG上的数据发送。
作为一种情况,若所述至少一个SPS配置中的部分SPS配置不包括所述第五指示信息,则针对所述部分SPS配置所配置的SPS,所述终端设备允许在DRX非激活时间内执行在SPS上的数据接收和/或所述终端设备不需要在DRX激活时间内执行在SPS上的数据接收;若所述至少一个CG配置中的部分CG配置不包括所述第六指示信息,则针对所述部分CG配置所配置的CG,所述终端设备允许在DRX非激活时间内执行在CG上的数据发送和/或所述终端设备不需要在DRX激活时间内执行在CG上的数据发送。
作为另一种情况,若所述至少一个SPS配置中的部分SPS配置包括所述第五指示信息,则针对所述部分SPS配置所配置的SPS,所述终端设备基于所述第五指示信息确定是否允许在DRX非激活时间内执行在SPS上的数据接收或者确定是否需要在DRX激活时间内执行在SPS上的数据接收或者确定不允许在DRX非激活时间内执行在SPS上的数据接收或者确定需要在DRX激活时间内执行在SPS上的数据接收;若所述至少一个CG配置中的部分CG配置包括所述第六指示信息,则针对所述部分CG配置所配置的CG,所述终端设备基于所述第六指示信息确定是否允许在DRX非激活时间内执行在CG上的数据发送或者确定是否需要在DRX激活时间内执行在CG上的数据发送或者确定不允许在DRX非激活时间内执行在CG上的数据发送或者确定需要在DRX激活时间内执行在CG上的数据发送。
本申请实施例的上述方案,如果网络侧配置某个SPS或者CG在DRX非激活时间不允许执行数据发送或者接收,则对于时延不敏感的业务,可以达到终端设备节能的目的。
需要说明的是,本申请实施例的上述图6至图10相关的方案可以单独实施,也可以进行任意的结合进行实施。
本申请实施例的技术方案,规定了DRX动态改变的方法,使得DRX激活时间可以满足多媒体业务的准周期,以及非整数周期业务周期的需求,同时也满足业务抖动带来的业务接收和发送。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图11是本申请实施例提供的参数确定装置的结构组成示意图,应用于终端设备,如图11所示,所述参数确定装置包括:
确定单元1101,用于确定第一DRX参数,所述第一DRX参数为HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关;
处理单元1102,用于基于所述第一DRX参数,执行相应的DRX操作。
在一些可选实施方式中,所述第一DRX参数包括第一RTT定时器和/或第一重传定时器,所述第一RTT定时器和/或第一重传定时器属于下行HARQ进程使用的定时器。
在一些可选实施方式中,所述装置还包括:接收单元1103,用于接收网络设备发送的第一DCI,所述第一DCI用于调度数据的下行传输,所述第一DCI还用于指示所述数据关联的HARQ进程中针对所述数据使用的第一RTT定时器和/或第一重传定时器;
所述确定单元1101,用于基于所述第一DCI确定所述第一RTT定时器和/或第一重传定时器。
在一些可选实施方式中,所述第一DCI携带所述第一RTT定时器和/或所述第一重传定时器的索引;
所述确定单元1101,用于基于所述第一RTT定时器和/或所述第一重传定时器的索引,以及第一配置信息确定所述第一RTT定时器和/或第一重传定时器,所述第一配置信息包括至少一个RTT定时器配置和/或至少一个重传定时器配置,其中,每个RTT定时器配置关联一个索引,每个重传定时器配置关联一个索引,或者,每个RTT定时器配置和重传定时器配置关联共用一个索引。
在一些可选实施方式中,所述第一配置信息通过RRC信令配置。
在一些可选实施方式中,所述第一DCI中携带LCID列表,所述LCID列表用于指示所述第一 DCI调度的授权期待传输的数据的逻辑信道列表。
在一些可选实施方式中,所述确定单元1101,用于基于接收到的数据所在的SPS以及第二配置信息确定所述第一RTT定时器和/或第一重传定时器,其中,所述第二配置信息包括至少一个SPS对应的RTT定时器配置和/或重传定时器配置。
在一些可选实施方式中,所述第二配置信息通过RRC信令配置。
在一些可选实施方式中,所述确定单元1101,用于基于接收到的数据对应的LCID以及第三配置信息确定所述第一RTT定时器和/或第一重传定时器,其中,所述第三配置信息包括至少一个LCID对应的RTT定时器配置和/或重传定时器配置。
在一些可选实施方式中,所述确定单元1101,用于若接收到的数据对应多个LCID,则从所述多个LCID中选择优先级最高的LCID,并基于所述第三配置信息确定所述优先级最高的LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第一RTT定时器和/或第一重传定时器;或者,若接收到的数据对应多个LCID,则基于所述第三配置信息确定所述多个LCID对应的RTT定时器配置和/或重传定时器,从所述多个LCID对应的RTT定时器配置和/或重传定时器中选择最短的RTT定时器配置和/或重传定时器,将其作为所述第一RTT定时器和/或第一重传定时器。
在一些可选实施方式中,所述第三配置信息通过RRC信令配置。
在一些可选实施方式中,所述处理单元1102,用于在接收完数据且完成针对所述数据的ACK/NACK反馈后,启动所述第一RTT定时器;若所述第一RTT定时器超时,则启动所述第一重传定时器。
在一些可选实施方式中,所述第一DRX参数包括第二RTT定时器和/或第二重传定时器,所述第二RTT定时器和/或第二重传定时器属于上行HARQ进程使用的定时器。
在一些可选实施方式中,所述装置还包括:接收单元1103,用于接收网络设备发送的第二DCI,所述第二DCI用于调度数据的上行传输,所述第二DCI还用于指示所述数据关联的HARQ进程中针对所述数据使用的第二RTT定时器和/或第二重传定时器;
所述确定单元1101,用于基于所述DCI确定所述第二RTT定时器和/或第二重传定时器。
在一些可选实施方式中,所述第二DCI携带所述第二RTT定时器和/或所述第二重传定时器的索引;
所述确定单元1101,用于基于所述第二RTT定时器和/或所述第二重传定时器的索引,以及第四配置信息确定所述第二RTT定时器和/或第二重传定时器,所述第四配置信息包括至少一个RTT定时器配置和/或至少一个重传定时器配置,其中,每个RTT定时器配置关联一个索引,每个重传定时器配置关联一个索引,或者,每个RTT定时器配置和重传定时器配置关联共用一个索引。
在一些可选实施方式中,所述第四配置信息通过RRC信令配置。
在一些可选实施方式中,所述第二DCI中携带LCID列表,所述逻辑信道标识列表用于指示所述第二DCI调度的授权期待传输的数据的逻辑信道列表。
在一些可选实施方式中,所述确定单元1101,用于将其选择的RTT定时器和/或重传定时器作为所述第二RTT定时器和/或第二重传定时器。
在一些可选实施方式中,所述装置还包括:发送单元1104,用于通过第一指示信息向网络设备指示所述终端设备选择的所述第二RTT定时器和/或所述第二重传定时器的索引。
在一些可选实施方式中,所述第一指示信息携带在MAC CE中或者MAC PDU的包头中或者PDCP PDU的包头中。
在一些可选实施方式中,所述确定单元1101,用于基于需要发送的数据所在的配置授权CG以及第五配置信息确定所述第二RTT定时器和/或第二重传定时器,其中,所述第五配置信息包括至少一个CG对应的RTT定时器配置和/或重传定时器配置。
在一些可选实施方式中,所述第五配置信息通过RRC信令配置。
在一些可选实施方式中,所述确定单元1101,用于基于需要发送的数据对应的LCID以及第六配置信息确定所述第二RTT定时器和/或第二重传定时器,其中,所述第六配置信息包括至少一个LCID对应的RTT定时器配置和/或重传定时器配置。
在一些可选实施方式中,所述确定单元1101,用于若需要发送的数据对应多个LCID,则从所述多个LCID中选择优先级最高的LCID,并基于所述第六配置信息确定所述优先级最高的LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第二RTT定时器和/或第二重传定时器;或者,若需要发送的数据对应多个LCID,则基于所述第六配置信息确定所述多个LCID对应的RTT定时器配置和/或重传定时器,从所述多个LCID对应的RTT定时器配置和/或重传定时器中选择最 短的RTT定时器配置和/或重传定时器,将其作为所述第二RTT定时器和/或第二重传定时器。
在一些可选实施方式中,所述第六配置信息通过RRC信令配置。
在一些可选实施方式中,所述处理单元1102,用于在传输完数据后,启动所述第二RTT定时器;若所述第二RTT定时器超时,则启动所述第二重传定时器。
在一些可选实施方式中,所述装置还包括:接收单元1103,用于接收网络设备发送的RRC专用信令,所述RRC专用信令用于配置多套DRX参数,每套DRX参数包括以下至少之一:DRX状态定时器(drx-onDurationTimer);DRX时隙偏置(drx-SlotOffset);DRX非激活定时器(drx-InactivityTimer);下行DRX重传定时器(drx-RetransmissionTimerDL);上行DRX重传定时器(drx-RetransmissionTimerUL);DRX长周期起始偏置(drx-LongCycleStartOffset);DRX短周期(drx-ShortCycle);DRX短周期循环定时器(drx-ShortCycleTimer);下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL);上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL)。
在一些可选实施方式中,所述接收单元1103,用于接收所述网络设备发送的第二指示信息,所述第二指示信息用于从所述多套DRX参数中指示使用所述一套DRX参数。
在一些可选实施方式中,所述第二指示信息携带在DCI中或者MAC CE中。
在一些可选实施方式中,所述接收单元1103,用于接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示使用的DRX时隙偏置;所述确定单元1101,还用于基于所述第三指示信息确定DRX状态定时器的启动时间。
在一些可选实施方式中,所述确定单元1101,用于基于DRX周期和DRX起始偏置确定目标SFN和目标子帧;基于所述第三指示信息确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧的起始时间向后或向前偏移N个时隙,N基于所述DRX时隙偏置的取值确定。
在一些可选实施方式中,所述第三指示信息携带在DCI中或者MAC CE中。
在一些可选实施方式中,所述确定单元1101,用于基于DRX周期和DRX起始偏置确定DRX状态定时器的第一候选启动时间,并基于所述第一候选启动时间和DRX周期确定第二候选启动时间和/或第三候选启动时间;
所述接收单元1103,用于接收所述网络设备发送的第四指示信息,所述第四指示信息用于从所述第一候选启动时间、所述第二候选启动时间和/或第三候选启动时间中指示使用的启动时间;
所述确定单元1101,用于基于所述第四指示信息确定DRX状态定时器的启动时间。
在一些可选实施方式中,所述第二候选启动时间等于所述第一候选启动时间减去所述DRX状态定时器的时长,所述第三候选启动时间等于所述第一候选启动时间加上所述DRX状态定时器的时长。
在一些可选实施方式中,所述确定单元1101,用于基于DRX周期和DRX起始偏置确定DRX状态定时器的启动时间,所述DRX周期和DRX起始偏置的单位为时隙或者半时隙或者符号。
在一些可选实施方式中,所述DRX周期和DRX起始偏置的单位为时隙;所述确定单元1101,用于基于DRX周期和DRX起始偏置确定目标SFN、目标子帧以及目标时隙;基于DRX时隙偏置和/或DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙的起始时间向后或向前偏移N个时隙和/或M个符号;或者,所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标半时隙的起始时间向后或向前偏移N个时隙和/或M个符号,所述目标半时隙通过RRC信令指示,N基于所述DRX时隙偏置的取值确定,M基于所述DRX符号偏置的取值确定。
在一些可选实施方式中,所述确定单元1101,用于基于以下公式确定目标SFN、目标子帧以及目标时隙:
对于DRX短周期的情况:[(SFN×10)×k+subframe number×k+slot number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者,
对于DRX长周期的情况:[(SFN×10)×k+subframe number×k+slot number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
在一些可选实施方式中,所述DRX周期和DRX起始偏置的单位为半时隙;所述确定单元1101,用于基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙以及目标半时隙;基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标半时隙的起始时间向后或向前偏移M个符号,M基于所述DRX符号偏置的取值确定。
在一些可选实施方式中,所述确定单元1101,用于基于以下公式确定目标SFN、目标子帧、目标时隙以及目标半时隙:
对于DRX短周期的情况:[(SFN×10)×k×2+subframe number×k×2+slot number×2+half slot number]modulo(drxCycle)=(drx-StartOffset)modulo(drxCycle);或者,
对于DRX长周期的情况:[(SFN×10)×k×2+subframe number×k×2+slot number×2+half slot number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,half slot number为目标半时隙号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
在一些可选实施方式中,所述DRX周期和DRX起始偏置的单位为符号;所述确定单元1101,用于基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号;基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标符号的起始时间向后或向前偏移M个符号,M基于所述DRX符号偏置的取值确定。
在一些可选实施方式中,所述确定单元1101,用于基于以下公式确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号:
对于DRX短周期的情况:[(SFN×10)×k×14+subframe number×k×14+slot number×14+symbol number]modulo(drxCycle)=(drx-StartOffset)modulo(drxCycle);或者,
对于DRX长周期的情况:[(SFN×10)×k×14+subframe number×k×14+slot number×14+symbol number]modulo(drx-LongCycle)=drx-StartOffset;
其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,symbol number为目标符号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
在一些可选实施方式中,所述接收单元1103,用于接收第七配置信息,所述第七配置信息包括至少一个SPS配置和/或至少一个CG配置;其中,所述至少一个SPS配置中的至少部分SPS配置包括第五指示信息,所述第五指示信息用于指示是否允许在DRX非激活时间内执行在SPS上的数据接收或者用于指示不允许在DRX非激活时间内执行在SPS上的数据接收或者用于指示是否需要在DRX激活时间内执行在SPS上的数据接收或者用于指示需要在DRX激活时间内执行在SPS上的数据接收;所述至少一个CG配置中的至少部分CG配置包括第六指示信息,所述第六指示信息用于指示是否允许在DRX非激活时间内执行在CG上的数据发送或者用于指示不允许在DRX非激活时间内执行在CG上的数据发送或者用于指示是否需要在DRX激活时间内执行在CG上的数据发送或者用于指示需要在DRX激活时间内执行在CG上的数据发送。
在一些可选实施方式中,若所述至少一个SPS配置中的部分SPS配置不包括所述第五指示信息,则针对所述部分SPS配置所配置的SPS,所述终端设备允许在DRX非激活时间内执行在SPS上的数据接收和/或所述终端设备不需要在DRX激活时间内执行在SPS上的数据接收;若所述至少一个CG配置中的部分CG配置不包括所述第六指示信息,则针对所述部分CG配置所配置的CG,所述终端设备允许在DRX非激活时间内执行在CG上的数据发送和/或所述终端设备不需要在DRX激活时间内执行在CG上的数据发送。
在一些可选实施方式中,若所述至少一个SPS配置中的部分SPS配置包括所述第五指示信息,则针对所述部分SPS配置所配置的SPS,所述终端设备基于所述第五指示信息确定是否允许在DRX非激活时间内执行在SPS上的数据接收或者确定是否需要在DRX激活时间内执行在SPS上的数据接收或者确定不允许在DRX非激活时间内执行在SPS上的数据接收或者确定需要在DRX激活时间内执行在SPS上的数据接收;若所述至少一个CG配置中的部分CG配置包括所述第六指示信息,则针对所述部分CG配置所配置的CG,所述终端设备基于所述第六指示信息确定是否允许在DRX非激活时间内执行在CG上的数据发送或者确定是否需要在DRX激活时间内执行在CG上的数据发送或者确定不允许在DRX非激活时间内执行在CG上的数据发送或者确定需要在DRX激活时间内执行在CG上的数据发送。
本领域技术人员应当理解,本申请实施例的上述参数确定装置的相关描述可以参照本申请实施例的参数确定方法的相关描述进行理解。
图12是本申请实施例提供的一种通信设备1200示意性结构图。该通信设备可以终端设备,也可以是网络设备。图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1200具体可为本申请实施例的网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1200具体可为本申请实施例的移动终端/终端设备,并且该通信设备1200可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该芯片1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统1400的示意性框图。如图14所示,该通信系统1400包括终端设备1410和网络设备1420。
其中,该终端设备1410可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1420可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或 者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (50)

  1. 一种参数确定方法,所述方法包括:
    终端设备确定第一非连续接收DRX参数,所述第一DRX参数为混合自动重传请求HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关;
    所述终端设备基于所述第一DRX参数,执行相应的DRX操作。
  2. 根据权利要求1所述的方法,其中,所述第一DRX参数包括第一往返时间RTT定时器和/或第一重传定时器,所述第一RTT定时器和/或第一重传定时器属于下行HARQ进程使用的定时器。
  3. 根据权利要求2所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备接收网络设备发送的第一下行控制信息DCI,所述第一DCI用于调度数据的下行传输,所述第一DCI还用于指示所述数据关联的HARQ进程中针对所述数据使用的第一RTT定时器和/或第一重传定时器;
    所述终端设备基于所述第一DCI确定所述第一RTT定时器和/或第一重传定时器。
  4. 根据权利要求3所述的方法,其中,所述第一DCI携带所述第一RTT定时器和/或所述第一重传定时器的索引;
    所述终端设备基于所述第一DCI确定所述第一RTT定时器和/或第一重传定时器,包括:
    所述终端设备基于所述第一RTT定时器和/或所述第一重传定时器的索引,以及第一配置信息确定所述第一RTT定时器和/或第一重传定时器,所述第一配置信息包括至少一个RTT定时器配置和/或至少一个重传定时器配置,其中,每个RTT定时器配置关联一个索引,每个重传定时器配置关联一个索引,或者,每个RTT定时器配置和重传定时器配置关联共用一个索引。
  5. 根据权利要求4所述的方法,其中,所述第一配置信息通过无线资源控制RRC信令配置。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述第一DCI中携带逻辑信道标识LCID列表,所述LCID列表用于指示所述第一DCI调度的授权期待传输的数据的逻辑信道列表。
  7. 根据权利要求2所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备基于接收到的数据所在的半持续调度SPS以及第二配置信息确定所述第一RTT定时器和/或第一重传定时器,其中,所述第二配置信息包括至少一个SPS对应的RTT定时器配置和/或重传定时器配置。
  8. 根据权利要求7所述的方法,其中,所述第二配置信息通过RRC信令配置。
  9. 根据权利要求2所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备基于接收到的数据对应的LCID以及第三配置信息确定所述第一RTT定时器和/或第一重传定时器,其中,所述第三配置信息包括至少一个LCID对应的RTT定时器配置和/或重传定时器配置。
  10. 根据权利要求9所述的方法,其中,所述终端设备基于接收到的数据对应的LCID以及第三配置信息确定所述第一RTT定时器和/或第一重传定时器,包括:
    若所述终端接收到的数据对应多个LCID,则所述终端从所述多个LCID中选择优先级最高的LCID,并基于所述第三配置信息确定所述优先级最高的LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第一RTT定时器和/或第一重传定时器;或者,
    若所述终端接收到的数据对应多个LCID,则所述终端设备基于所述第三配置信息确定所述多个LCID对应的RTT定时器配置和/或重传定时器,从所述多个LCID对应的RTT定时器配置和/或重传定时器中选择最短的RTT定时器配置和/或重传定时器,将其作为所述第一RTT定时器和/或第一重传定时器。
  11. 根据权利要求9或10所述的方法,其中,所述第三配置信息通过RRC信令配置。
  12. 根据权利要求2至11中任一项所述的方法,其中,所述终端设备基于所述第一DRX参数,执行相应的DRX操作,包括:
    所述终端设备在接收完数据且完成针对所述数据的肯定确认ACK/否定确认NACK反馈后,启动所述第一RTT定时器;
    若所述第一RTT定时器超时,则所述终端设备启动所述第一重传定时器。
  13. 根据权利要求1所述的方法,其中,所述第一DRX参数包括第二RTT定时器和/或第二 重传定时器,所述第二RTT定时器和/或第二重传定时器属于上行HARQ进程使用的定时器。
  14. 根据权利要求13所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备接收网络设备发送的第二DCI,所述第二DCI用于调度数据的上行传输,所述第二DCI还用于指示所述数据关联的HARQ进程中针对所述数据使用的第二RTT定时器和/或第二重传定时器;
    所述终端设备基于所述DCI确定所述第二RTT定时器和/或第二重传定时器。
  15. 根据权利要求14所述的方法,其中,所述第二DCI携带所述第二RTT定时器和/或所述第二重传定时器的索引;
    所述终端设备基于所述第二DCI确定所述第二RTT定时器和/或第二重传定时器,包括:
    所述终端设备基于所述第二RTT定时器和/或所述第二重传定时器的索引,以及第四配置信息确定所述第二RTT定时器和/或第二重传定时器,所述第四配置信息包括至少一个RTT定时器配置和/或至少一个重传定时器配置,其中,每个RTT定时器配置关联一个索引,每个重传定时器配置关联一个索引,或者,每个RTT定时器配置和重传定时器配置关联共用一个索引。
  16. 根据权利要求15所述的方法,其中,所述第四配置信息通过RRC信令配置。
  17. 根据权利要求14至16中任一项所述的方法,其中,所述第二DCI中携带LCID列表,所述逻辑信道标识列表用于指示所述第二DCI调度的授权期待传输的数据的逻辑信道列表。
  18. 根据权利要求13所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备将其选择的RTT定时器和/或重传定时器作为所述第二RTT定时器和/或第二重传定时器。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述终端设备通过第一指示信息向网络设备指示所述终端设备选择的所述第二RTT定时器和/或所述第二重传定时器的索引。
  20. 根据权利要求19所述的方法,其中,所述第一指示信息携带在媒体接入控制MAC控制单元CE中或者MAC分组数据单元PDU的包头中或者分组数据汇聚协议PDCP PDU的包头中。
  21. 根据权利要求13所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备基于需要发送的数据所在的配置授权CG以及第五配置信息确定所述第二RTT定时器和/或第二重传定时器,其中,所述第五配置信息包括至少一个CG对应的RTT定时器配置和/或重传定时器配置。
  22. 根据权利要求21所述的方法,其中,所述第五配置信息通过RRC信令配置。
  23. 根据权利要求13所述的方法,其中,所述终端设备确定第一DRX参数,包括:
    所述终端设备基于需要发送的数据对应的LCID以及第六配置信息确定所述第二RTT定时器和/或第二重传定时器,其中,所述第六配置信息包括至少一个LCID对应的RTT定时器配置和/或重传定时器配置。
  24. 根据权利要求23所述的方法,其中,所述终端设备基于需要发送的数据对应的LCID以及第六配置信息确定所述第二RTT定时器和/或第二重传定时器,包括:
    若所述终端设备需要发送的数据对应多个LCID,则所述终端从所述多个LCID中选择优先级最高的LCID,并基于所述第六配置信息确定所述优先级最高的LCID对应的RTT定时器配置和/或重传定时器配置,将其作为所述第二RTT定时器和/或第二重传定时器;或者,
    若所述终端设备需要发送的数据对应多个LCID,则所述终端设备基于所述第六配置信息确定所述多个LCID对应的RTT定时器配置和/或重传定时器,从所述多个LCID对应的RTT定时器配置和/或重传定时器中选择最短的RTT定时器配置和/或重传定时器,将其作为所述第二RTT定时器和/或第二重传定时器。
  25. 根据权利要求23或24所述的方法,其中,所述第六配置信息通过RRC信令配置。
  26. 根据权利要求13至25中任一项所述的方法,其中,所述终端设备基于所述第一DRX参数,执行相应的DRX操作,包括:
    所述终端设备在传输完数据后,启动所述第二RTT定时器;
    若所述第二RTT定时器超时,则所述终端设备启动所述第二重传定时器。
  27. 根据权利要求1至26中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收网络设备发送的RRC专用信令,所述RRC专用信令用于配置多套DRX参数,每套DRX参数包括以下至少之一:
    DRX状态定时器drx-onDurationTimer;
    DRX时隙偏置drx-SlotOffset;
    DRX非激活定时器drx-InactivityTimer;
    下行DRX重传定时器drx-RetransmissionTimerDL;
    上行DRX重传定时器drx-RetransmissionTimerUL;
    DRX长周期起始偏置drx-LongCycleStartOffset;
    DRX短周期drx-ShortCycle;
    DRX短周期循环定时器drx-ShortCycleTimer;
    下行DRX HARQ RTT定时器drx-HARQ-RTT-TimerDL;
    上行DRX HARQ RTT定时器drx-HARQ-RTT-TimerUL。
  28. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二指示信息,所述第二指示信息用于从所述多套DRX参数中指示使用所述一套DRX参数。
  29. 根据权利要求28所述的方法,其中,所述第二指示信息携带在DCI中或者MAC CE中。
  30. 根据权利要求1至29中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示使用的DRX时隙偏置;
    所述终端设备基于所述第三指示信息确定DRX状态定时器的启动时间。
  31. 根据权利要求30所述的方法,其中,所述终端设备基于所述第三指示信息确定DRX状态定时器的启动时间,包括:
    所述终端设备基于DRX周期和DRX起始偏置确定目标SFN和目标子帧;
    所述终端设备基于所述第三指示信息确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧的起始时间向后或向前偏移N个时隙,N基于所述DRX时隙偏置的取值确定。
  32. 根据权利要求30或31所述的方法,其中,所述第三指示信息携带在DCI中或者MAC CE中。
  33. 根据权利要求1至29中任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的第一候选启动时间,
    并基于所述第一候选启动时间和DRX周期确定第二候选启动时间和/或第三候选启动时间;
    所述终端设备接收所述网络设备发送的第四指示信息,所述第四指示信息用于从所述第一候选启动时间、所述第二候选启动时间和/或第三候选启动时间中指示使用的启动时间;
    所述终端设备基于所述第四指示信息确定DRX状态定时器的启动时间。
  34. 根据权利要求33所述的方法,其中,所述第二候选启动时间等于所述第一候选启动时间减去所述DRX状态定时器的时长,所述第三候选启动时间等于所述第一候选启动时间加上所述DRX状态定时器的时长。
  35. 根据权利要求1至34中任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的启动时间,所述DRX周期和DRX起始偏置的单位为时隙或者半时隙或者符号。
  36. 根据权利要求35所述的方法,其中,所述DRX周期和DRX起始偏置的单位为时隙;
    所述终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的启动时间,包括:
    所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧以及目标时隙;
    所述终端设备基于DRX时隙偏置和/或DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙的起始时间向后或向前偏移N个时隙和/或M个符号;或者,所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标半时隙的起始时间向后或向前偏移N个时隙和/或M个符号,所述目标半时隙通过RRC信令指示,N基于所述DRX时隙偏置的取值确定,M基于所述DRX符号偏置的取值确定。
  37. 根据权利要求36所述的方法,其中,所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧以及目标时隙,包括:
    所述终端设备基于以下公式确定目标SFN、目标子帧以及目标时隙:
    对于DRX短周期的情况:[(SFN×10)×k+subframe number×k+slot number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);或者,
    对于DRX长周期的情况:[(SFN×10)×k+subframe number×k+slot number]modulo(drx-LongCycle)=drx-StartOffset;
    其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
  38. 根据权利要求35所述的方法,其中,所述DRX周期和DRX起始偏置的单位为半时隙;
    所述终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的启动时间,包括:
    所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙以及目标半时隙;
    所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标半时隙的起始时间向后或向前偏移M个符号,M基于所述DRX符号偏置的取值确定。
  39. 根据权利要求38所述的方法,其中,所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙以及目标半时隙,包括:
    所述终端设备基于以下公式确定目标SFN、目标子帧、目标时隙以及目标半时隙:
    对于DRX短周期的情况:[(SFN×10)×k×2+subframe number×k×2+slot number×2+half slot number]modulo(drxCycle)=(drx-StartOffset)modulo(drxCycle);或者,
    对于DRX长周期的情况:[(SFN×10)×k×2+subframe number×k×2+slot number×2+half slot number]modulo(drx-LongCycle)=drx-StartOffset;
    其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,half slotnumber为目标半时隙号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
  40. 根据权利要求35所述的方法,其中,所述DRX周期和DRX起始偏置的单位为符号;
    所述终端设备基于DRX周期和DRX起始偏置确定DRX状态定时器的启动时间,包括:
    所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号;
    所述终端设备基于DRX符号偏置,确定DRX状态定时器的启动时间为所述目标SFN内的目标子帧内的目标时隙中的目标符号的起始时间向后或向前偏移M个符号,M基于所述DRX符号偏置的取值确定。
  41. 根据权利要求40所述的方法,其中,所述终端设备基于DRX周期和DRX起始偏置确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号,包括:
    所述终端设备基于以下公式确定目标SFN、目标子帧、目标时隙、目标半时隙以及目标符号:
    对于DRX短周期的情况:[(SFN×10)×k×14+subframe number×k×14+slot number×14+symbol number]modulo(drxCycle)=(drx-StartOffset)modulo(drxCycle);或者,
    对于DRX长周期的情况:[(SFN×10)×k×14+subframe number×k×14+slot number×14+symbol number]modulo(drx-LongCycle)=drx-StartOffset;
    其中,SFN为目标SFN,subframe number为目标子帧号,slot number为目标时隙号,symbol number为目标符号,drx-ShortCycle为DRX短周期,drx-LongCycle为DRX长周期,drx-StartOffset为DRX起始偏置,modulo代表取余运算,k为整数。
  42. 根据权利要求1至41中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第七配置信息,所述第七配置信息包括至少一个SPS配置和/或至少一个CG配置;其中,
    所述至少一个SPS配置中的至少部分SPS配置包括第五指示信息,所述第五指示信息用于指示是否允许在DRX非激活时间内执行在SPS上的数据接收或者用于指示不允许在DRX非激活时间内执行在SPS上的数据接收或者用于指示是否需要在DRX激活时间内执行在SPS上的数据接收或者用于指示需要在DRX激活时间内执行在SPS上的数据接收;
    所述至少一个CG配置中的至少部分CG配置包括第六指示信息,所述第六指示信息用于指示是否允许在DRX非激活时间内执行在CG上的数据发送或者用于指示不允许在DRX非激活时间内执行在CG上的数据发送或者用于指示是否需要在DRX激活时间内执行在CG上的数据发送或者用于指示需要在DRX激活时间内执行在CG上的数据发送。
  43. 根据权利要求42所述的方法,其中,
    若所述至少一个SPS配置中的部分SPS配置不包括所述第五指示信息,则针对所述部分SPS配置所配置的SPS,所述终端设备允许在DRX非激活时间内执行在SPS上的数据接收和/或所述终端设备不需要在DRX激活时间内执行在SPS上的数据接收;
    若所述至少一个CG配置中的部分CG配置不包括所述第六指示信息,则针对所述部分CG配置所配置的CG,所述终端设备允许在DRX非激活时间内执行在CG上的数据发送和/或所述终端设备不需要在DRX激活时间内执行在CG上的数据发送。
  44. 根据权利要求42所述的方法,其中,
    若所述至少一个SPS配置中的部分SPS配置包括所述第五指示信息,则针对所述部分SPS配置所配置的SPS,所述终端设备基于所述第五指示信息确定是否允许在DRX非激活时间内执行在SPS上的数据接收或者确定是否需要在DRX激活时间内执行在SPS上的数据接收或者确定不允许在DRX非激活时间内执行在SPS上的数据接收或者确定需要在DRX激活时间内执行在SPS上的数据接收;
    若所述至少一个CG配置中的部分CG配置包括所述第六指示信息,则针对所述部分CG配置所配置的CG,所述终端设备基于所述第六指示信息确定是否允许在DRX非激活时间内执行在CG上的数据发送或者确定是否需要在DRX激活时间内执行在CG上的数据发送或者确定不允许在DRX非激活时间内执行在CG上的数据发送或者确定需要在DRX激活时间内执行在CG上的数据发送。
  45. 一种参数确定装置,应用于终端设备,所述装置包括:
    确定单元,用于确定第一DRX参数,所述第一DRX参数为HARQ进程相关的DRX参数,所述第一DRX参数还与数据相关;
    处理单元,用于基于所述第一DRX参数,执行相应的DRX操作。
  46. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至44中任一项所述的方法。
  47. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至44中任一项所述的方法。
  48. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至44中任一项所述的方法。
  49. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至44中任一项所述的方法。
  50. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至44中任一项所述的方法。
PCT/CN2022/085598 2022-04-07 2022-04-07 一种参数确定方法及装置、终端设备 WO2023193198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085598 WO2023193198A1 (zh) 2022-04-07 2022-04-07 一种参数确定方法及装置、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085598 WO2023193198A1 (zh) 2022-04-07 2022-04-07 一种参数确定方法及装置、终端设备

Publications (1)

Publication Number Publication Date
WO2023193198A1 true WO2023193198A1 (zh) 2023-10-12

Family

ID=88243745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085598 WO2023193198A1 (zh) 2022-04-07 2022-04-07 一种参数确定方法及装置、终端设备

Country Status (1)

Country Link
WO (1) WO2023193198A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545063A (zh) * 2024-01-10 2024-02-09 中国电力科学研究院有限公司 复帧号同步方法、系统和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126408A1 (zh) * 2017-01-05 2018-07-12 广东欧珀移动通信有限公司 一种参数配置方法及设备
CN109429306A (zh) * 2017-06-26 2019-03-05 华为技术有限公司 一种通信方法及终端设备
CN111107615A (zh) * 2019-03-26 2020-05-05 维沃移动通信有限公司 控制非连续接收drx的方法和设备
CN112543442A (zh) * 2019-09-20 2021-03-23 维沃移动通信有限公司 非连续接收参数配置方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126408A1 (zh) * 2017-01-05 2018-07-12 广东欧珀移动通信有限公司 一种参数配置方法及设备
CN109429306A (zh) * 2017-06-26 2019-03-05 华为技术有限公司 一种通信方法及终端设备
CN111107615A (zh) * 2019-03-26 2020-05-05 维沃移动通信有限公司 控制非连续接收drx的方法和设备
CN112543442A (zh) * 2019-09-20 2021-03-23 维沃移动通信有限公司 非连续接收参数配置方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On DRX, LCP, HARQ, SR/BSR, and configured scheduling", 3GPP DRAFT; R2-2108452, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210816, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052034809 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117545063A (zh) * 2024-01-10 2024-02-09 中国电力科学研究院有限公司 复帧号同步方法、系统和电子设备

Similar Documents

Publication Publication Date Title
US11457494B2 (en) Communication method, communications device, and network device
JP7462053B2 (ja) 不連続受信drxパラメーター構成方法及び装置
US10594447B2 (en) Data transmission method, terminal, and ran device
WO2021022508A1 (zh) 边链路调度请求的触发方法、装置和系统
WO2020107479A1 (zh) 一种传输数据的方法、终端设备和网络设备
EP2929751A1 (en) A wireless device, a radio network node and methods for discontinuous reception in device to device communications
WO2020143730A1 (zh) 一种通信方法和通信装置
US20120239998A1 (en) Apparatus and method for determining number of retransmissions in a wireless system
CN113647182B (zh) 无线通信的方法和设备
WO2022222892A1 (zh) 一种非连续接收的配置方法及装置
US20240215107A1 (en) Drx configuration method and apparatus, terminal device, and network device
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2023193198A1 (zh) 一种参数确定方法及装置、终端设备
WO2020243931A1 (zh) 调整pdcch监听周期的方法和设备
CN113647171B (zh) 无线通信的方法和设备
WO2023065303A1 (zh) 一种控制方法、设备及存储介质
US20240064857A1 (en) Terminal device, network node, and methods therein for drx configuration
JP2023534724A (ja) スモールデータの送信に関与するユーザ機器および基地局
JP2024511608A (ja) サイドリンク不連続受信命令のトリガー方法、装置及びシステム
WO2024124425A1 (zh) 一种drx实现方法及装置、终端设备、网络设备
WO2023193203A1 (zh) 一种时延控制方法及装置、通信设备
WO2024092570A1 (zh) 一种非连续接收的实现方法及装置、终端设备
WO2024059985A1 (zh) 一种无线通信方法及装置、设备及存储介质
WO2022021411A1 (zh) Harq进程确定方法、装置、设备及介质
WO2023133706A1 (zh) 一种数据传输方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936141

Country of ref document: EP

Kind code of ref document: A1