WO2024059985A1 - 一种无线通信方法及装置、设备及存储介质 - Google Patents

一种无线通信方法及装置、设备及存储介质 Download PDF

Info

Publication number
WO2024059985A1
WO2024059985A1 PCT/CN2022/119735 CN2022119735W WO2024059985A1 WO 2024059985 A1 WO2024059985 A1 WO 2024059985A1 CN 2022119735 W CN2022119735 W CN 2022119735W WO 2024059985 A1 WO2024059985 A1 WO 2024059985A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
transmission
time unit
target time
configuration information
Prior art date
Application number
PCT/CN2022/119735
Other languages
English (en)
French (fr)
Inventor
徐婧
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/119735 priority Critical patent/WO2024059985A1/zh
Publication of WO2024059985A1 publication Critical patent/WO2024059985A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically to a wireless communication method and apparatus, device and storage medium.
  • uplink and downlink configurations are used to configure/indicate the transmission direction of each time slot/symbol, and the transmission direction of each time slot/symbol, including uplink, downlink or flexible.
  • the time slots/symbols are used as indication objects.
  • One time slot or symbol is only used for uplink transmission or downlink transmission, resulting in low resource efficiency.
  • Embodiments of the present application provide a wireless communication method and device, equipment and storage medium.
  • the terminal device receives first configuration information sent by the network device, the first configuration information is used to indicate a first time domain resource, and the first time domain resource includes a first frequency domain part in the frequency domain, wherein for the In any time unit included in the first time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information.
  • the second configuration information is used to configure a cycle. The transmission direction of each time unit within.
  • the network device sends first configuration information to the terminal device, the first configuration information is used to indicate a first time domain resource, and the first time domain resource includes a first frequency domain part in the frequency domain, wherein for the first In any time unit included in a time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, and the second configuration information is used to configure the time unit within a period. The direction of transmission for each time unit.
  • the first communication unit is configured to receive first configuration information sent by the network device, the first configuration information is used to indicate a first time domain resource, and the first time domain resource includes a first frequency domain part in the frequency domain, Wherein, for any time unit included in the first time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, and the second configuration information Used to configure the transmission direction of each time unit within a cycle.
  • the second communication unit is configured to send first configuration information to the terminal device, the first configuration information is used to indicate a first time domain resource, and the first time domain resource includes a first frequency domain part in the frequency domain, wherein , for any time unit included in the first time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, the second configuration information is To configure the transmission direction of each time unit within a cycle.
  • the communication device provided by the embodiment of the present application may be the terminal device in the above solution, and the communication device includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, so that the communication device executes the wireless communication method executed by the terminal device.
  • the communication device provided in the embodiment of the present application may be the network device in the above scheme, and the communication device includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the communication device executes the wireless communication method executed by the above terminal device.
  • the chip provided by the embodiment of the present application is used to implement the above wireless communication method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned wireless communication method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the running of the computer program causes the computer to execute the above-mentioned wireless communication method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the execution of the computer program instructions causes the computer to execute the above-mentioned wireless communication method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to perform the above wireless communication method.
  • the network device indicates the first time domain resource including the first frequency domain part in the frequency domain through the first configuration information, wherein, for any time unit in the first time domain resource, the first configuration information configures The transmission direction of the first frequency domain part can be different from the transmission direction configured by the second configuration information of the time unit, so that different frequency domain resources of one time unit support different transmission directions, thereby performing different transmission directions on one time unit.
  • the frequency domain of a time unit can include frequency domain resources with different transmission directions, so that a time unit can receive and send data at the same time, thereby improving resource utilization.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 2A is a schematic diagram of the uplink part of the embodiment of the present application.
  • Figure 2B is a schematic diagram of the uplink part of the embodiment of the present application.
  • Figure 3 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 4 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 5 is an optional flow diagram of a wireless communication method according to an embodiment of the present application.
  • Figure 6 is an optional schematic diagram of the transmission direction of the time unit indicated by the second configuration information in this embodiment of the present application.
  • Figure 7A is an optional schematic diagram of the transmission direction of the target time unit in this embodiment of the present application.
  • Figure 7B is an optional schematic diagram of the transmission direction of the target time unit in this embodiment of the present application.
  • FIG7C is an optional schematic diagram of the transmission direction of the target time unit according to an embodiment of the present application.
  • FIG7D is an optional schematic diagram of the transmission direction of the target time unit according to an embodiment of the present application.
  • Figure 7E is an optional schematic diagram of the transmission direction of the target time unit in the embodiment of the present application.
  • Figure 7F is an optional schematic diagram of the transmission direction of the target time unit in the embodiment of the present application.
  • Figure 7G is an optional schematic diagram of the transmission direction of the target time unit in the embodiment of the present application.
  • FIG7H is an optional schematic diagram of the transmission direction of the target time unit according to an embodiment of the present application.
  • Figure 7I is an optional schematic diagram of the transmission direction of the target time unit in this embodiment of the present application.
  • Figure 8 is an optional schematic diagram of the uplink control channel overlapping method according to the embodiment of the present application.
  • Figure 9 is an optional schematic diagram of the time slot transmission direction according to the embodiment of the present application.
  • Figure 10 is an optional schematic diagram of the time slot transmission direction according to the embodiment of the present application.
  • Figure 11 is an optional schematic diagram of the time slot transmission direction according to the embodiment of the present application.
  • Figure 12 is an optional schematic diagram of the time slot transmission direction according to the embodiment of the present application.
  • Figure 13 is an optional schematic diagram of the time slot transmission direction according to the embodiment of the present application.
  • Figure 14 is an optional schematic diagram of the time slot transmission direction according to the embodiment of the present application.
  • Figure 15 is an optional structural schematic diagram of a wireless communication device according to an embodiment of the present application.
  • Figure 16 is an optional structural schematic diagram of a wireless communication device according to an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG18 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC Enhanced Machine-Type Communications
  • 5G communication system also known as new wireless (New Radio, NR) communication system
  • NR New Radio, NR
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • terminal devices 110 eg, UEs
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolution networks etc.
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+ PGW-C) equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the Uu interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) Connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6);
  • NG interface 1 referred to as N1
  • access Network equipment such as the next generation wireless access base station (gNB)
  • gNB next generation wireless access base station
  • N3 access network equipment
  • access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) Connection
  • UPF can establish
  • AMF can establish a control plane signaling connection with SMF through NG interface 11 (abbreviated as N11); SMF can establish a control plane signaling connection with PCF through NG interface 7 (abbreviated as N7).
  • Figure 1 schematically shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage of each base station may include other numbers. terminal equipment, the embodiment of this application does not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • uplink and downlink configurations are used to configure/indicate the transmission direction of each symbol.
  • Related technologies mention three types of TDD uplink and downlink common configuration (TDD-UL-DL-ConfigCommon), TDD uplink and downlink dedicated configuration (TDD-UL-DL-ConfigDedicated) and slot format indicator (Slot Format Indication, SFI).
  • TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated are high-level signaling. The former is configured for the cell and is sent to all users in the cell through broadcast information, while the latter is independently sent to the users in need through RRC signaling.
  • TDD-UL-DL-ConfigCommon The information elements of TDD-UL-DL-ConfigCommon are as follows:
  • TDD-UL-DL-ConfigDedicated The information elements of TDD-UL-DL-ConfigDedicated are as follows:
  • SFI is the downlink control information (DCI) of the user group (also called group common DCI): DCI format 2.0 (DCI format 2_0) indicates the transmission direction of each time slot/symbol of each carrier. Since SFI is a dynamic signaling, it can indicate the semi-statically configured flexible time slots/symbols as a determined transmission direction, uplink or downlink.
  • DCI downlink control information
  • X Division Duplexing technology is introduced, which can transmit and receive data simultaneously on different subbands of the same subframe.
  • the middle subband of a downlink (DL) time slot is configured as an uplink (UL) subband.
  • some subbands of a downlink (DL) time slot are configured as uplink (UL) subbands.
  • the uplink subband in Figure 2A and Figure 2B can also be called the uplink part.
  • XDD is mainly used on the base station side. The terminal side still maintains the current status, that is, it only supports sending or receiving data within a subframe.
  • time slots or symbols that can simultaneously receive or transmit data based on different subbands can be called supporting subband full duplex (SBFD) or non-overlapping subband full duplex (Subband Non-0verlapping Full).
  • SBFD subband full duplex
  • Subband Non-0verlapping Full subband Non-0verlapping Full
  • a semi-static configuration is mainly used.
  • the semi-static configuration is given priority, and it is even possible to only use the semi-static configuration.
  • the time domain position of SBFD adopts semi-static configuration, but the TDD frame structure already supports dynamic configuration.
  • the two configuration results may be different, resulting in conflicting configuration results.
  • the timeslot/symbol configured with SBFD is dynamically indicated as uplink at the same time gap/symbol.
  • the uplink part that is, the uplink subband, is configured. Whether it is used as an SBFD time slot/symbol or an uplink time slot/symbol is a question.
  • An optional processing flow of the wireless communication method provided by the embodiment of the present application is applied to the terminal device, as shown in Figure 3, and includes the following steps:
  • a terminal device receives first configuration information sent by a network device, where the first configuration information is used to indicate a first time domain resource, where the first time domain resource includes a first frequency domain part in the frequency domain, wherein, for any time unit included in the first time domain resource, a transmission direction of the first frequency domain part may be different from a transmission direction of the time unit configured by second configuration information, and the second configuration information is used to configure a transmission direction of each time unit within a period.
  • An optional processing flow of the wireless communication method provided by the embodiment of the present application is applied to network equipment, as shown in Figure 4, and includes the following steps:
  • the network device sends first configuration information to the terminal device.
  • the first configuration information is used to indicate a first time domain resource.
  • the first time domain resource includes a first frequency domain part in the frequency domain, wherein for the Any time unit included in the first time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, and the second configuration information is used to configure a The direction of transmission for each time unit within the cycle.
  • An optional processing flow of the wireless communication method provided by the embodiment of the present application is applied to a wireless communication system including network equipment and terminal equipment, as shown in Figure 5, including the following steps:
  • the network device sends the first configuration information to the terminal device.
  • the first configuration information is used to indicate a first time domain resource, and the first time domain resource includes a first frequency domain part in the frequency domain, wherein, for any time unit included in the first time domain resource, The transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, and the second configuration information is used to configure the transmission direction of each time unit within a cycle.
  • the first configuration information is used to indicate the first time domain resource. Any time unit of the first time domain resource includes a first frequency domain part in the frequency domain.
  • the first frequency domain part can be understood as a partial subband of a time unit. It can be understood that the first configuration information indicates a time unit in the frequency domain that includes the first frequency domain part, and the time unit indicated by the first configuration information constitutes the first frequency domain resource.
  • time slot A and time slot B include a first frequency domain part in the frequency domain
  • the first configuration information sent by the network device indicates time slot A and time slot B
  • the terminal device based on the received first configuration information It is determined that time slot A and time slot B include a first frequency domain part in the frequency domain.
  • the first configuration information is used to indicate the first frequency domain part and the first time domain resource, and the terminal device determines that the time unit included in the first time domain resource includes the first frequency domain part in the frequency domain.
  • the first frequency domain part is less than or equal to the reception bandwidth or transmission bandwidth supported by the terminal device in the frequency domain.
  • the first frequency domain part is less than or equal to a bandwidth part (Bandwidth Part, BWP) bandwidth supported by the terminal device in the frequency domain.
  • BWP bandwidth part
  • the first frequency domain portion is used for uplink transmission or downlink transmission.
  • the first configuration information is used to configure the transmission direction of the first frequency domain part, and the frequency domain part other than the first frequency domain part is the transmission of the second frequency domain part.
  • the direction is different from the transmission direction of the first frequency domain part.
  • the first frequency domain part used for uplink transmission may be called the uplink part, and the first frequency domain part used for downlink transmission may be called the downlink part. If the first frequency domain part is used for uplink transmission, the transmission direction of the first frequency domain part is uplink. If the first frequency domain part is used for downlink transmission, the transmission direction of the first frequency domain part is downlink.
  • the first frequency domain part on a time unit on the first frequency domain resource is used for uplink transmission or downlink transmission, and the transmission directions of the first frequency domain parts contained in different time units are the same or different. Among them, the first time domain resource containing the first frequency domain parts with different transmission directions can be indicated by different first configuration information.
  • the first configuration information indicates that time unit 1 to time unit 4 include the uplink part in the frequency domain, then the first time domain resource includes: time unit 1 to time unit 4.
  • the first configuration information indicates that time unit 5 to time unit 7 include downlink parts in the frequency domain, then the first time domain resource includes: time unit 5 to time unit 7.
  • the terminal device receives two first configuration information: first configuration information A and first configuration information B, and the first configuration information A indicates that time unit 1 to time unit 4 include an uplink part in the frequency domain,
  • the first configuration information B indicates that time unit 5 to time unit 7 include downlink parts in the frequency domain, then the first time domain resource includes: time unit 1 to time unit 7.
  • the second configuration information is used to configure the transmission direction of each time unit within a cycle.
  • the transmission direction configured by the second configuration information may include one of the following: uplink, downlink, and flexible. It can be understood that, for a time unit, the second configuration information configures the transmission direction of the time unit, and it can be understood that the transmission direction of the entire frequency domain of the time unit is the transmission direction configured by the second configuration information for the time unit.
  • the transmission direction of the first frequency domain part can be different from the transmission direction configured by the second configuration information.
  • the transmission direction of the first frequency domain part is the same as or different from the transmission direction configured in the second configuration information for the time unit.
  • the second configuration information configures the transmission direction of the time unit to be uplink, downlink or flexible.
  • the second configuration information may configure the direction of the time unit to be uplink, downlink or flexible.
  • the transmission direction of the first frequency domain part is uplink, and the transmission direction configured in the second configuration information for the time unit is downlink.
  • the transmission direction of the first frequency domain part is downlink, and the transmission direction configured in the second configuration information for the time unit is flexible.
  • the transmission direction of the first frequency domain part is downlink, and the transmission direction configured in the second configuration information for the time unit is uplink.
  • the second configuration information includes at least one of the following: TDD-UL-DL-ConfigCommon, TDD-UL-DL-ConfigDedicated, SFI.
  • TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated are used to semi-statically configure the transmission direction of the time unit in a cycle.
  • SFI is used to configure the transmission direction in a cycle by TDD-UL-DL-ConfigCommon
  • TDD-UL-DL-ConfigDedicated is configured as a flexible time unit for dynamic configuration.
  • the transmission direction of a time unit can only be configured semi-statically, or it can be dynamically configured based on the semi-static configuration.
  • the transmission direction of a time unit can be configured through the Information Element (IE) in high-level signaling (such as Radio Resource Control (RRC) signaling).
  • IE Information Element
  • RRC Radio Resource Control
  • TDD-UL-DL-ConfigCommon is configured as uplink
  • the transmission direction of a time unit is configured as downlink by TDD-UL-DL-ConfigDedicated.
  • a time unit in which the transmission direction is configured as an uplink by the second configuration information can be semi-statically configured as an uplink by TDD-UL-DL-ConfigCommon or TDD-UL-DL-ConfigDedicated, or can be dynamically configured as an uplink by SFI when TDD-UL-DL-ConfigCommon or TDD-UL-DL-ConfigDedicated is semi-statically configured as a flexible configuration.
  • the time unit includes: time units in the time domain such as seconds, frames, subframes, time slots, sub-time slots, symbols, etc.
  • the time at which the network device sends the first configuration information and the second configuration information may be different. It is understandable that the time at which the terminal device receives the first configuration information and the second configuration information may be different.
  • the network device first sends the first configuration information, and then sends the second configuration information to the terminal device after sending the first configuration information for a period of time. At this time, the terminal device first receives the first configuration information, and after a period of time Then, the second configuration information sent by the network device is received. In some embodiments, the network device first sends the second configuration information, and then sends the first configuration information to the terminal device after sending the second configuration information for a period of time. At this time, the terminal device first receives the second configuration information, and after a period of time Then, the first configuration information sent by the network device is received.
  • the first configuration information is used to indicate at least one of the following:
  • Indication content 1. Whether each time unit in the first period belongs to the first time domain resource
  • Indicate content three, the first position and the first number, and the first time domain resource includes the first number of time units in the first period with the first position as the starting position or the ending position.
  • the first time domain resource includes a time unit including a first frequency domain part in the frequency domain within a first period.
  • the first configuration information indicating the first time domain resource can be understood as indicating the time unit included in the first frequency domain resource.
  • the first configuration information indicates whether each time unit in a first period belongs to the first time domain resource.
  • a bitmap is used to indicate whether each time unit in the first cycle belongs to the first time domain resource.
  • whether the time unit belongs to the first time domain resource is determined based on the value of the bit corresponding to the time unit.
  • the value of the bit is 1, indicating that the time unit identified by the bit belongs to the first time domain resource, and the value of the bit is 0, indicating that the time unit identified by the bit does not belong to the first time domain resource.
  • the first cycle includes 10 time slots
  • the first configuration information includes: 0011111100, among the 10 time slots
  • the 2nd to 8th time slots belong to the first time domain resources.
  • the first quantity is the number of time units included in the first period in the first time domain resource.
  • the terminal device determines the first time domain resource based on the preset location and the first quantity.
  • the first number of time units ends at a preset position. It is understandable that the preset position is the last time unit included in the first frequency domain resource. In some embodiments, the preset position includes: a time unit before the first time unit configured as uplink by the second configuration information in the first period, or the last time unit in the first period.
  • the first cycle includes 10 time slots, and the 10 time slots
  • the transmission direction configured by the second configuration information is shown in Figure 6.
  • the transmission directions of the first and second time slots are downlink (marked as D), and the transmission directions of the 3rd to 8th time slots are flexible (marked as F), the transmission direction of the 9th to 10th time slots is uplink (identified as U), then the last time slot containing the uplink part is the 8th time slot, and the first number indicated by the first configuration information is 5, then Slots 4 to 8 contain the uplink portion.
  • the first cycle includes 10 time slots, and the transmission direction of the 10 time slots configured by the second configuration information is as shown in Figure 6.
  • the first and The transmission direction of the second time slot is downlink (marked as D)
  • the transmission direction of the 3rd to 8th time slots is flexible (marked as F)
  • the transmission direction of the 9th to 10th time slots is uplink (marked as U )
  • the last time slot including the uplink part is the 10th time slot
  • the first number indicated by the first configuration information is 5
  • the 6th to 10th time slots include the uplink part.
  • the first number of time units starts from a preset position. It can be understood that the time unit of the preset position is the first time unit included in the first frequency domain resource.
  • the preset position includes: the first time unit in the first period or the time unit subsequent to the last time unit configured as a downlink by the second configuration information.
  • the first cycle includes 10 time slots, and the transmission directions of the 10 time slots configured by the second configuration information are as shown in Figure 6, then the first The first time slot including the downlink part is the first time slot, and the first number indicated by the first configuration information is 5, then the 1st to 5th time slots include the downlink part.
  • the first cycle includes 10 time slots, and the 10 time slots are configured by the second configuration information.
  • the configured transmission direction is shown in Figure 6, then the first time slot containing the downlink part is the 3rd time slot, and the first number indicated by the first configuration information is 5, then the 3rd to 7th time slots include the downlink part .
  • the first indication information not only indicates the first quantity, but also indicates the first location.
  • the first location and the first quantity are used to determine the first time domain resource.
  • the first location may be the location of the first or last time unit in the first time domain resource.
  • the first position is the starting position or the ending position of the first time domain resource in the first period.
  • the first position being the starting position of the first time domain resource may be understood to mean that the first position indicates the first time unit of the first time domain resource in the first period.
  • the first position being the end position of the first time domain resource can be understood as the first position indicating the last time unit of the first time domain resource in the first cycle.
  • the first cycle includes 10 time slots, the first position indicated by the first configuration information is 2, and the first number indicated is 5, then the second Up to 6 time slots include the first frequency domain part.
  • the first cycle includes 10 time slots, the first position indicated by the first configuration information is 8, and the first number indicated is 5, then the 4th to The 8 time slots include the first frequency domain part.
  • the content indicated by the first configuration information may include but is not limited to the above indicated content.
  • the first period is configured by a network device.
  • the first period is indicated by first configuration information.
  • the first period is determined based on second configuration information.
  • the first period is determined based on a period configured by the second configuration information.
  • the first period is consistent with the period configured by the second configuration information.
  • the first period is determined by at least one of the following:
  • the first period is a period configured by the second configuration information.
  • the first period is determined based on the at least two periods configured by the second configuration information. In some embodiments, the first period is a sum of sizes of at least two periods configured based on the second configuration information.
  • the second configuration information configures a period: P, then the first period is P. In an example, the second configuration information configures two periods: P1 and P2, then the first period is the sum of P1 and P2.
  • the first period may be based on other information indications in the second configuration information, and the user may set it according to actual needs, which is not limited here.
  • the transmission method of the target time unit belonging to the first time domain resource includes one of the following:
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole;
  • the entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • the transmission mode of the first frequency domain part of the target time unit is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is the other frequency domain part in the target time unit except the first frequency domain part.
  • the target time unit is any time unit in the first time domain resource.
  • the transmission method of the target transmission unit can be understood as at least one of the following:
  • the transmission direction of the target transmission unit is the transmission direction of the target transmission unit
  • the resource configuration information of the transmission resources used for transmission in the target time unit is determined, that is, the transmission configuration, wherein the resource configuration information includes at least one of the following: used to determine frequency domain transmission resources Location information, modulation and coding scheme (MCS), etc.
  • the target time unit can be dynamically scheduled by higher layer signaling such as RRC signaling for uplink transmission or downlink transmission.
  • the first frequency domain part and the second frequency domain part have at least one of the following:
  • the entire frequency domain of the target time unit is scheduled as a whole;
  • the target time unit as a whole uses a resource configuration information to determine transmission resources.
  • the transmission direction of the target time unit is uplink and only includes uplink, and the entire frequency domain resource of the target time unit is scheduled as a whole and uses one uplink resource configuration information. Determine the uplink transmission resources used for uplink transmission. At this point, uplink transmission can be scheduled over the entire BWP bandwidth of the target time unit.
  • the transmission direction of the target time unit is and only includes downlink, and the entire frequency domain resources of the target time unit are scheduled as a whole and use one downlink resource configuration information.
  • downlink transmission can be scheduled over the entire BWP bandwidth of the target time unit.
  • the target time unit is used for uplink transmission or downlink transmission, and the uplink transmission and downlink transmission do not overlap in the frequency domain
  • the first frequency domain part and the second frequency domain part have at least one of the following:
  • the transmission direction of the first frequency domain part and the transmission direction of the second frequency domain part are independent;
  • the first frequency domain part is scheduled independently from the second frequency domain part
  • the first frequency domain configuration information is used to determine the transmission resources used for transmission on the first frequency domain part
  • the second frequency domain configuration information is used to determine the transmission resources used for transmission on the second frequency domain part
  • the first frequency domain The configuration information is independent of the second frequency domain configuration information.
  • the transmission direction of the first frequency domain part and the transmission direction of the second transmission mode may be the same or different.
  • the transmission direction of the second frequency domain part includes one of the following: uplink, downlink or flexible.
  • the first frequency domain part of the target time unit is used for uplink transmission
  • the transmission of the second frequency domain part is If the direction is uplink
  • both the first frequency domain part and the second frequency domain part are used for uplink transmission
  • the first frequency domain part and the second frequency domain part are independently scheduled.
  • the first frequency domain part of the target time unit is used for uplink transmission
  • the transmission of the second frequency domain part is If the direction is downlink or flexible, the first frequency domain part and the second frequency domain part are scheduled independently, and downlink transmission only occurs in the first frequency domain part.
  • the first frequency domain part of the target time unit is used for downlink transmission, and the transmission of the second frequency domain part is If the direction is uplink or flexible, the first frequency domain part and the second frequency domain part are scheduled independently, and uplink transmission only occurs in the first frequency domain part.
  • the solution for determining the transmission mode of the target time unit includes at least one of the following:
  • Solution 1 Determine based on the first configuration information
  • Option 2 Determine based on the first configuration information and the second configuration information
  • Solution 3 limit the transmission direction configured by the second configuration information.
  • the transmission direction of the target transmission unit is configured simultaneously by the first configuration information and the second configuration information. If there is a conflict between the transmission direction configured by the first configuration information and the transmission direction configured by the second configuration information, then through the above Any one of solution one, solution two and solution three can solve the problem of conflict between the transmission direction configured based on the first configuration information and the transmission direction configured based on the second configuration information in one time unit.
  • the transmission method of the target time unit is determined based on the first configuration information.
  • the transmission method of the first frequency domain part of the target time unit is independent of the transmission method of the second frequency domain part.
  • the transmission direction of the first frequency domain part of the target time unit is uplink
  • the uplink transmission on the target time unit occurs in the first frequency domain part
  • the transmission direction on the target time unit is Downstream transmission occurs only in the second frequency domain part of the target time unit.
  • the transmission direction of the first frequency domain part of the target time unit is downlink
  • the downlink transmission on the target time unit occurs in the first frequency domain part
  • the uplink transmission on the target time unit only occurs in the second frequency domain part of the target time unit.
  • the first frequency domain resource in the target time unit and the frequency domain resources other than the first frequency domain resource have independent transmission modes, the transmission directions of the first frequency domain part and the second frequency domain part are independent, and the first frequency domain part has independent transmission directions.
  • the scheduling of the frequency domain part and the second frequency domain part is independent.
  • the transmission mode of the time unit can be determined only by relying on the first configuration information.
  • the solution is simple to implement and can speed up the efficiency of the terminal in determining the transmission direction or transmission mode.
  • the transmission mode of the target time unit is determined based on the first configuration information and the second configuration information.
  • the method for determining the transmission method of the target time unit includes at least one of the following:
  • Determination method A1 If the first frequency domain part is used for uplink transmission, and the transmission direction of the target time unit is configured as uplink by the second configuration information, then the entire frequency domain resource of the target time unit as a whole For uplink transmission;
  • Determination method A2 If the first frequency domain part is used for uplink transmission, and the transmission direction of the target time unit is configured as downlink by the second configuration information, then the transmission mode of the first frequency domain part is consistent with the The transmission mode of the second frequency domain part is independent, and the second frequency domain part is used for downlink transmission;
  • Determination method A3 If the first frequency domain part is used for uplink transmission and the transmission direction of the target time unit is configured to be flexible by the second configuration information, then the entire frequency domain resource of the target time unit is used as a whole. in uplink transmission;
  • Determination method A4 If the first frequency domain part is used for uplink transmission and the transmission direction of the target time unit is configured to be flexible by the second configuration information, then the transmission mode of the first frequency domain part is the same as the The transmission method of the second frequency domain part is independent;
  • Determination method A5 If the first frequency domain part is used for uplink transmission, the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for uplink transmission, then the The entire frequency domain resources of the target time unit are used for uplink transmission as a whole;
  • Determination method A6 If the first frequency domain part is used for uplink transmission, the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the third A frequency domain resource is located in the first frequency domain part, then the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the first frequency domain resource is the target time The frequency domain resources used by the unit for uplink transmission in the frequency domain;
  • Determination method A7 If the first frequency domain part is used for uplink transmission, the transmission direction of the target time unit is configured as flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency domain resource occupies the second frequency domain part in the target time unit, then the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part;
  • Determination method A8 If the first frequency domain part is used for uplink transmission, the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the The first frequency domain resource occupies the first frequency domain part and the second frequency domain part in the target time unit, then the entire frequency domain of the target time unit is used for uplink transmission as a whole;
  • Determination method A9 If the first frequency domain part is used for uplink transmission, the transmission direction of the target time unit is configured as flexible by the second configuration information, and the target time unit is scheduled for downlink transmission, then the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for downlink transmission.
  • the determination methods A1 to A9 are scenarios for the first frequency domain part used for uplink transmission.
  • the first configuration information configures the target time unit to include the first frequency domain part (shown as the diagonally filled part) with the transmission direction being uplink, and the second configuration information If the transmission direction of the target time unit is configured as uplink, then the entire frequency domain of the target time unit will be used for uplink transmission as a whole.
  • the first configuration information configures the target time unit including the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit as Downlink
  • the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part.
  • the first frequency domain part is used for uplink transmission
  • the second frequency domain part is used for downlink transmission.
  • the target time unit can be used for uplink transmission and downlink transmission, and the uplink transmission and downlink transmission do not overlap in the time domain.
  • the first configuration information configures the target time unit including the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit as Flexible, the entire frequency domain of the target time unit is used for uplink transmission.
  • the first configuration information configures the target time unit to include a first frequency domain part whose transmission direction is uplink, and the second configuration information configures the transmission direction of the target time unit as flexible, then the transmission method of the first frequency domain part is independent of the transmission method of the second frequency domain part.
  • the transmission direction of the second frequency domain part is flexible.
  • downlink transmission is only scheduled in the second frequency domain part.
  • the first configuration information configures the target time unit including the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit as Flexible
  • the relationship between the uplink scheduled uplink resources in the frequency domain and the first frequency domain part is not considered, and the entire frequency domain of the target time unit is used for uplink transmission as a whole.
  • the first configuration information configures the target time unit to include the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit to be flexible.
  • the target time unit is scheduled for uplink transmission, and the first frequency domain resource is located in the first frequency domain part, then the transmission method of the first frequency domain part is independent of the transmission method of the second frequency domain part.
  • the transmission direction of the second frequency domain part is flexible.
  • the transmission modes of the first frequency domain part and the second frequency domain part are independent, downlink transmission is only scheduled in the second frequency domain part.
  • the first frequency domain resource occupying the second frequency domain part in the target time unit can be understood as the first frequency domain resource only occupying the second frequency domain part and not occupying the first frequency domain part.
  • the first configuration information configures the target time unit to include a first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit to be flexible
  • the target time unit is scheduled It is uplink transmission
  • the first frequency domain resource occupies the second frequency domain part in the target time unit, then the transmission method of the first frequency domain part is independent of the transmission method of the second frequency domain part.
  • the second frequency domain portion is used for uplink transmission.
  • the first configuration information configures the target time unit to include the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit to be flexible
  • the target time unit is The scheduling is uplink transmission
  • the first frequency domain resource occupies the second frequency domain part of the target time unit.
  • the entire frequency domain of the target time unit may also be used for uplink transmission as a whole.
  • the first configuration information configures the target time unit to include the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit to be flexible
  • the target time unit is used for uplink transmission
  • the first frequency domain resource occupies the first frequency domain part and the second frequency domain part in the target time unit, then the frequency domain of the target time unit is used as a whole for upstream transmission.
  • the first configuration information configures the target time unit to include the first frequency domain part with the transmission direction being uplink
  • the second configuration information configures the transmission direction of the target time unit to be flexible.
  • the target time unit is scheduled for downlink transmission, then the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for downlink transmission.
  • the target time unit can be used for Uplink transmission and downlink transmission, and uplink transmission and downlink transmission do not overlap in the time domain.
  • the determination methods A1 to A4 are the determination methods of the transmission mode of the target time unit when the target time unit is not scheduled
  • the determination methods A5 to A9 are the determination methods of the target time unit being configured as a flexible and target time unit. How to determine the transmission mode of the target time unit if it is scheduled.
  • the determination methods A5 and A9 do not consider the frequency domain relationship between the scheduled uplink resources and the first frequency domain part.
  • the determination methods A6 to A8 need to consider the scheduled uplink resources and the frequency domain relationship of the first frequency domain part. domain relationship.
  • the uplink transmission resources used for uplink transmission when the transmission method of the first frequency domain part and the transmission method of the second frequency domain part are independent are determined based on different uplink resource configuration information.
  • the transmission resources used for transmission in the first frequency domain part are based on the first uplink resource configuration information, and the entire frequency domain of the target time unit is used for uplink as a whole.
  • the transmission resources used for transmission in the target time unit are determined based on the second uplink resource configuration information.
  • the method for determining the transmission method of the target time unit includes at least one of the following:
  • Determination method B1 If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured as downlink by the second configuration information, then the entire frequency domain resource of the target time unit as a whole used for downlink transmission;
  • Determination mode B2 if the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured as uplink by the second configuration information, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for uplink transmission;
  • Determination method B3 If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, then the entire frequency domain resource of the target time unit is taken as a whole For downlink transmission;
  • Determination method B4 If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, then the transmission mode of the first frequency domain part is consistent with the The transmission method of the second frequency domain part is independent;
  • Determination method B5 If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for downlink transmission, then The entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • Determination method B6 If the first frequency domain part is used for downlink transmission, the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the third If the two frequency domain resources are located in the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain resource is the target time.
  • Determination method B7 If the first frequency domain part is used for downlink transmission, the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the If the second frequency domain resource occupies the second frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part;
  • Determination method B8 If the first frequency domain part is used for downlink transmission, the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the The second frequency domain resource occupies the first frequency domain part and the second frequency domain part, then the entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • Determination method B9 If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for uplink transmission, then The transmission mode of the first frequency domain part is independent from the transmission mode of the second frequency domain part, and the second frequency domain part is used for uplink transmission.
  • the first configuration information configures the target time unit to include the first frequency domain part with the transmission direction being downlink
  • the second configuration indication information is configured to be flexible
  • the target time unit is scheduled for downlink transmission.
  • the second frequency domain resource occupies the second frequency domain part of the target time unit, and the entire frequency domain of the target time unit may also be used for downlink transmission as a whole.
  • the transmission method of the first frequency domain part is independent of the transmission method of the second frequency domain part, wherein the transmission direction of the second frequency domain part in determination methods B2 and B9 is uplink, the transmission direction of the second frequency domain part in determination methods B4 and B6 is flexible, and the transmission direction of the second frequency domain part in determination method B7 is downlink.
  • the transmission method of the first frequency domain part and the transmission method of the second frequency domain part are independent of the downlink transmission resources used for downlink transmission and the target.
  • the downlink transmission resources are determined based on different downlink frequency domain resource configuration information.
  • the first frequency domain part determines the downlink resources based on the first downlink resource configuration information.
  • the target time unit determines the downlink resources based on the second downlink resource configuration information.
  • the target time units in determination methods A5 to A8 and determination methods B9 are scheduled for uplink transmission, and the uplink transmission may include physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) transmission or physical uplink control channel (Physical Uplink Control Channel, PUCCH) transmission.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the target time unit in determination method A9 and determination method B5 to determination method B8 is scheduled for downlink transmission, and the downlink transmission may include physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission or physical downlink control channel (Physical DownlinkControl Channel, PDCCH) PDCCH transmission.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical DownlinkControl Channel
  • the second configuration information configures the transmission direction of the time unit in the first time domain resource to be downlink; or, if the first frequency domain part is used for uplink transmission, the transmission direction of the time unit in the first time domain resource is configured by the second configuration information to be downlink; The domain part is used for downlink transmission, and the second configuration information configures the transmission direction of the time unit in the first time domain resource to be uplink.
  • the second configuration information is restricted to configure the transmission direction of the time unit in the first time domain resource to downlink.
  • the first frequency domain part of the target time unit is used for uplink transmission.
  • the second frequency domain part is used for downlink transmission.
  • restricting the second configuration information to configure the transmission direction of the time unit in the first time domain resource as downlink can be understood as the second configuration information configuring the transmission direction of the time unit in the first time domain resource to be only downlink. .
  • the second configuration information is restricted to configure the transmission direction of the time unit in the first time domain resource as uplink
  • the first frequency domain part of the target time unit is used for downlink transmission
  • the second The frequency domain part is used for uplink transmission.
  • limiting the second configuration information to configure the transmission direction of the time unit in the first time domain resource as uplink can be understood as the second configuration information configuring the transmission direction of the time unit in the first time domain resource to be only uplink. . ..
  • the second configuration information is limited based on the transmission direction of the first frequency domain part to limit the transmission direction of the time unit including the first frequency domain part, thereby realizing simultaneous uplink transmission and downlink transmission in one time unit. At the same time, conflicts between the first configuration information and the second configuration information are avoided.
  • the wireless communication method provided by the embodiment of the present application, as shown in Figure 8, includes:
  • the terminal device receives the uplink partial time domain configuration and the uplink and downlink configuration.
  • the uplink part time domain configuration is the first configuration information indicating the frequency domain resource of the uplink part. It is used to indicate the time slots/symbols occupied by the SBFD time slots/symbols including the uplink part, that is, the uplink subband, in a transmission cycle. symbol, and the frequency domain position occupied by the uplink part in the SBFD time slot/symbol.
  • the uplink and downlink configuration is the second configuration information, which is used to indicate the transmission direction of each time slot/symbol in a transmission cycle.
  • the uplink and downlink configuration may include: one or more of TDD uplink and downlink common configuration (TDD-UL-DL-ConfigCommon) and TDD uplink and downlink dedicated configuration (TDD-UL-DL-ConfigDedicated).
  • the terminal device determines the type of time slot/symbol and/or transmission mode based on the uplink time domain configuration, or the uplink time domain configuration and the uplink and downlink configurations.
  • the time slot/symbol is a time slot/symbol including an uplink part, or an uplink time slot/symbol, or A time slot/symbol or an uplink time slot/symbol that is determined to contain the uplink part according to the scheduling, or a time slot/symbol or an uplink time slot/symbol that is determined to contain the uplink part according to the SFI indication.
  • Each time slot/symbol adopts a corresponding transmission method. Make the transfer.
  • Example 1 Determine the transmission method based on the uplink partial time domain configuration
  • the terminal receives the uplink partial time domain configuration and the uplink and downlink configuration.
  • the uplink part time domain configuration is used to indicate the uplink part and the time slots/symbols including the uplink part (indicating SBFD).
  • the uplink part time domain configuration indication includes the time slots/symbols of the uplink part.
  • the method for indicating the time domain configuration of the uplink part including the time slots/symbols of the uplink part includes at least one of the following methods:
  • Method 1 Use a bitmap to indicate whether each time slot/symbol in a cycle is a time slot/symbol including an uplink part.
  • 1 indicates that the time slot/symbol contains an uplink part
  • 0 indicates that the time slot/symbol does not contain an uplink part
  • the 10-bit [0 0 1 1 1 1 1 1 0 0] is used to indicate the time domain configuration of the uplink part of 10 time slots included in a period of 10 ms, and [0 0 1 1 1 1 1 1 0 0] means that the 3rd to 8th time slots, i.e., time slots 3-8, contain the uplink part.
  • Method 2 Use counting to indicate the number of time slots/symbols including the uplink part in a cycle.
  • time slot/symbol containing the uplink part is cut off to the uplink time slot/symbol.
  • the number of time slots including the uplink part is indicated as 6, then counting 6 time slots forward from the time slot before the first uplink time slot, that is, the 8th time slot, that is, the 3rd to 8th time slots
  • the time slot contains the uplink part.
  • Method 3 Use resource indication value (RIV) to indicate the starting point of time slots/symbols and the number of time slots/symbols in a cycle.
  • RIV resource indication value
  • the starting time slot is 3 and the number of time slots is 6, that is, the 3rd to 8th time slots are the time slots including the uplink part.
  • the period is configured by the network device.
  • the period is consistent with the uplink and downlink configuration periods. For example, if the uplink and downlink configurations only configure pattern 1 and pattern1 is dl-UL-TransmissionPeriodicity P, the period of the uplink part time domain configuration is dl-UL-TransmissionPeriodicity P. If the uplink and downlink configurations configure pattern 1 and pattern 2, and pattern 1 is dl-UL-TransmissionPeriodicity P, pattern 2 is dl-UL-TransmissionPeriodicity P2, then the period of the uplink part time domain configuration is dl-UL-TransmissionPeriodicity P+dl-UL-TransmissionPeriodicity P2.
  • the terminal determines the time slot/symbol type and/or transmission mode based on the uplink partial time domain configuration.
  • time slots 3-8 include the uplink part. Regardless of whether time slots 3-8 are downlink, flexible, or even uplink time slots (except for the counting method), as shown in Figure 9, in time slots 3-8, the reception information is sent according to the configuration including the uplink part.
  • the uplink transmission is limited to the uplink portion.
  • downlink transmission can only be transmitted on other frequency domains considered by the uplink part.
  • the network configures two PUCCH configurations (PUCCH-Config) for the terminal: PUCCH-Config 1 and PUCCH-Config 2.
  • PUCCH-Config 1 is used for the uplink part
  • PUCCH-Config 2 is used for the uplink timeslot/flexible timeslot.
  • time slots 3-8 determine the PUCCH resources according to PUCCH-Config 1.
  • PUCCH resources are determined based on PUCCH-Config 2.
  • Example 2 Determine the transmission mode based on the uplink time domain configuration and the uplink and downlink configuration
  • the terminal receives the uplink partial time domain configuration and the uplink and downlink configuration.
  • the uplink part time domain configuration is used to indicate the uplink part and the time slots/symbols including the uplink part (indicating SBFD).
  • the uplink part time domain configuration indication includes the time slots/symbols of the uplink part.
  • the method for indicating the time domain configuration of the line part including the time slots/symbols of the uplink part includes at least one of the following methods:
  • Method 1 Use a bitmap to indicate whether each time slot/symbol in a cycle is a time slot/symbol including an uplink part.
  • 1 indicates that the time slot/symbol contains an uplink part
  • 0 indicates that the time slot/symbol does not contain an uplink part
  • 10 bits [0 0 1 1 1 1 1 1] are used to indicate the uplink partial time domain configuration of 10 time slots with a period of 10ms, [0 0 1 1 1 1 1 1 1] indicates that time slots 3-10 include the uplink part.
  • Method 2 Use counting to indicate the number of time slots/symbols containing the uplink part in one cycle.
  • time slots/symbols containing the uplink part are cut off until the last time slot/symbol.
  • the number of time slots including the uplink part is indicated as 8, then 8 time slots are counted from the last time slot, that is, the 10th time slot, that is, time slots 3-10 include the uplink part.
  • Method 3 Use resource indication value (RIV) to indicate the starting point of time slots/symbols and the number of time slots/symbols in a cycle.
  • RIV resource indication value
  • time slots 3-10 include the uplink part.
  • the period is configured by the network device.
  • the period of the uplink part time domain configuration is consistent with the uplink and downlink configuration period. For example, if the uplink and downlink configuration only configures pattern 1 and pattern 1 is dl-UL-TransmissionPeriodicity P, the period of the uplink part time domain configuration is dl-UL-TransmissionPeriodicity P. If the uplink and downlink configuration configures pattern 1 and pattern 2, and Pattern 1 is dl-UL-TransmissionPeriodicity P, pattern 2 is dl-UL-TransmissionPeriodicity P2, then the period of the uplink part time domain configuration is dl-UL-TransmissionPeriodicity P+dl-UL-TransmissionPeriodicity P2.
  • Uplink and downlink configuration can be indicated by TDD-UL-DL-ConfigCommon, or TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated.
  • the terminal determines the time slot/symbol type and/or transmission mode based on the uplink partial time domain configuration.
  • Time slot/symbol is indicated as containing an uplink part based on the uplink part configuration and as a downlink time slot/symbol based on the uplink and downlink configuration, then the time slot/symbol is a time slot/symbol containing the uplink part (or Say, SBFD slot/symbol).
  • time slots 3 and 4 include the uplink part as shown in Figure 10. As shown in Figure 11, time slots 3 and 4 are indicated as downlink time slots, then as As shown in Figure 12, time slots 3 and 4 are time slots including the uplink part.
  • information transmission on this time slot/symbol is processed according to the configuration corresponding to the SBFD time slot/symbol.
  • uplink transmission is limited to the uplink portion.
  • downlink transmission can only be transmitted on other frequency domains considered by the uplink part.
  • the network configures two PUCCH-Config for the terminal: PUCCH-Config 1 and PUCCH-Config 2.
  • PUCCH-Config 1 is used for the uplink part
  • PUCCH-Config 2 is used for the uplink timeslot.
  • timeslots 3-4 Determine PUCCH resources according to PUCCH-Config 1.
  • a time slot/symbol is indicated to include an uplink part based on the uplink part configuration, and is indicated to be an uplink time slot/symbol based on the uplink and downlink configuration, then the time slot/symbol is an uplink time slot/symbol.
  • time slots 9 and 10 include uplink parts as shown in FIG. 10 , time slots 9 and 10 are indicated as uplink time slots as shown in FIG. 11 , and time slots 9 and 10 are uplink time slots as shown in FIG. 12 .
  • Information transmission on this time slot/symbol is processed according to the configuration corresponding to the uplink time slot/symbol.
  • uplink transmission can be scheduled on the entire BWP bandwidth.
  • the network configures 2 PUCCH-Config for the terminal: PUCCH-Config 1 and PUCCH-Config 2.
  • PUCCH-Config 1 is used for the uplink part
  • PUCCH-Config 2 is used for the uplink time slot.
  • time slots 9-10 according to PUCCH-Config 2 determines PUCCH resources.
  • a time slot/symbol refers to both the uplink part based on the uplink part configuration and the flexible time slot/symbol based on the uplink and downlink configuration.
  • the time slot/symbol is one of the following situations:
  • Information transmission on this time slot/symbol is processed according to the configuration corresponding to the uplink time slot/symbol.
  • uplink transmission can be scheduled on the entire BWP bandwidth.
  • the network configures 2 PUCCH-Configs for the terminal: PUCCH-Config 1 and PUCCH-Config 2.
  • PUCCH-Config 1 is used for the uplink part
  • PUCCH-Config 2 is used for the uplink time slot.
  • the PUCCH resources are determined according to PUCCH-Config 2.
  • Case A1 can maximize the use of uplink resources.
  • Case A2 includes the time slots/symbols of the uplink part (or, in other words, SBFD time slots/symbols).
  • Information transmission on this time slot/symbol is processed according to the configuration corresponding to the SBFD time slot/symbol.
  • the uplink transmission is limited to the uplink part.
  • downlink transmission can only be transmitted on other frequency domains considered by the uplink part.
  • the network configures 2 PUCCH-Config for the terminal: PUCCH-Config 1 and PUCCH-Config 2.
  • PUCCH-Config 1 is used for the uplink part
  • PUCCH-Config 2 is used for the uplink time slot.
  • PUCCH-Config Config 1 determines PUCCH resources.
  • time slots 5 to 8 are timeslots that include an uplink part.
  • Scenario A2 can maximize the use of downlink resources and avoid receiving information in the uplink part, causing unnecessary interference.
  • Case A3 It is determined to be an uplink time slot/symbol, or a time slot/symbol containing an uplink part according to the scheduling situation.
  • Method 3.1A Determine whether it is an uplink time slot/symbol, or a time slot/symbol that includes the uplink part, based on the scheduling situation and the frequency domain relationship between the uplink resource and the uplink part.
  • the time slot/symbol is scheduled for PDSCH, the time slot/symbol is a time slot/symbol containing the uplink part, and downlink data is only received in the area other than the uplink part of the time slot/symbol.
  • the time slot/symbol is scheduled for PUSCH or PUCCH, and the PUSCH resource or PUCCH resource is allocated in a frequency domain resource other than the uplink part, the time slot/symbol is an uplink time slot/symbol, and the uplink transmission can Scheduled across the entire BWP bandwidth.
  • the time slot/symbol is scheduled for PUSCH or PUCCH, and the PUSCH resource or PUCCH resource is allocated to frequency domain resources only on the uplink part, then the time slot/symbol is a time slot/symbol that includes the uplink part. , the uplink transmission is only in the uplink part.
  • the PUSCH resources or PUCCH resources in 3.1.2A and 3.1.3A do not distinguish between the configurations used for the uplink part and the uplink timeslots/symbols.
  • the symbol/time slot is scheduled as PUSCH or PUCCH, the symbol/time slot is determined to be the uplink time slot/symbol based on the frequency domain relationship between the PUSCH resource or PUCCH resource and the uplink part. Or does it contain the time slots/symbols of the uplink part.
  • Method 3.2A Determine it to be an uplink symbol according to the scheduling situation, or a symbol containing the uplink part.
  • the time slot/symbol is scheduled for PDSCH, the time slot/symbol is a time slot/symbol including the uplink part, and downlink data is only received in the area other than the uplink part of the time slot/symbol.
  • the time slot/symbol is scheduled for PUSCH or PUCCH, the time slot/symbol is an uplink time slot/symbol.
  • Upstream transmissions can be scheduled across the entire BWP bandwidth.
  • the network configures two PUCCH-Config for the terminal, PUCCH-Config 1 is used for the uplink part, and PUCCH-Config 2 is used for the uplink time slot.
  • PUCCH-Config 1 is used for the uplink part
  • PUCCH-Config 2 is used for the uplink time slot.
  • the PUCCH resources are determined based on PUCCH-Config 2.
  • Example 3 Determine the transmission method based on the uplink partial time domain configuration and dynamic uplink and downlink configuration.
  • the terminal receives the uplink partial time domain configuration and the uplink and downlink configuration.
  • the uplink partial time domain configuration is used to indicate frequency domain resources and time domain resources where the frequency domain resources are located, and the frequency domain resources enable the time domain resources to be used for uplink transmission and downlink transmission.
  • the frequency domain resources can prevent uplink transmission and downlink transmission of the time domain resources from overlapping in the time domain.
  • the uplink part time domain configuration is used to indicate the uplink part and the time slots or symbols including the uplink part (indicating SBFD).
  • the uplink part time domain configuration indication includes the time slot/symbol of the uplink part.
  • the method for indicating the time domain configuration of the line part including the time slots/symbols of the uplink part includes at least one of the following methods:
  • Method 1 Use a bitmap to indicate whether each time slot/symbol in a cycle is a time slot/symbol including an uplink part.
  • 1 indicates that the time slot/symbol includes an uplink part
  • 0 indicates that the time slot/symbol does not include an uplink part
  • 10 bits [0 0 1 1 1 1 1 1] are used to indicate the uplink partial time domain configuration of 10 time slots with a period of 10ms, [0 0 1 1 1 1 1 1 1] indicates that time slots 3-10 include the uplink part.
  • Method 2 Use counting to indicate the number of time slots/symbols including the uplink part in a cycle.
  • time slots/symbols containing the uplink part are cut off until the last time slot/symbol.
  • the number of time slots including the uplink part is indicated as 8, then 8 time slots are counted from the last time slot, that is, the 10th time slot, that is, time slots 3-10 are the time slots including the uplink part.
  • Method 3 Use resource indication value (RIV) to indicate the starting point of time slots/symbols and the number of time slots/symbols in a cycle.
  • RIV resource indication value
  • the starting time slot is 3
  • the number of time slots is 8, that is, time slots 3-10.
  • the period is configured by the network device.
  • the period of the uplink part time domain configuration is consistent with the uplink and downlink configuration period. For example, if the uplink and downlink configuration only configures pattern 1 and pattern 1 is dl-UL-TransmissionPeriodicity P, the period of the uplink part time domain configuration is dl-UL-TransmissionPeriodicity P. If the uplink and downlink configuration configures pattern 1 and pattern 2, and Pattern 1 is dl-UL-TransmissionPeriodicity P, pattern 2 is dl-UL-TransmissionPeriodicity P2, then the period of the uplink part time domain configuration is dl-UL-TransmissionPeriodicity P+dl-UL-TransmissionPeriodicity P2.
  • Uplink and downlink configuration can be indicated by TDD-UL-DL-ConfigCommon, or TDD-UL-DL-ConfigCommon and TDD-UL-DL-ConfigDedicated.
  • the SFI received by the terminal device sets the flexible time slot/symbol and indicates it as an uplink time slot/symbol or a downlink time slot/symbol.
  • SFI indicates the 5th time slot in the cycle shown in Figure 11 as the downlink time slot (D), and indicates the 8th time slot as the uplink time slot (U).
  • D downlink time slot
  • U uplink time slot
  • the indication result is as shown in Figure 11
  • the 1st to 5th time slots are downlink time slots
  • the 6th to 7th time slots are flexible time slots
  • the 8th to 10th time slots are uplink time slots.
  • the terminal determines the time slot/symbol type and/or transmission mode based on the uplink partial time domain configuration.
  • the time slot/symbol is a time slot/symbol that includes the uplink part (or Say, SBFD slot/symbol).
  • time slot 5 contains the uplink part. Based on Figure 13, time slot 5 is indicated by the SFI as a downlink time slot. As shown in Figure 14, time slot 5 contains the uplink part. time slot.
  • Information transmission on this time slot/symbol is processed according to the configuration corresponding to the SBFD symbol.
  • the uplink transmission is limited to the uplink part.
  • downlink transmission can only be transmitted on other frequency domains considered by the uplink part.
  • the network configures two PUCCH-Config for the terminal, PUCCH-Config 1 is used for the uplink part, and PUCCH-Config 2 is used for the uplink time slot.
  • the PUCCH resources are determined based on PUCCH-Config 1.
  • time slot/symbol For a time slot/symbol based on the uplink part time domain configuration indicating that it contains the uplink part and the semi-static configuration is flexible, and the dynamic indication is an uplink time slot/symbol, then the time slot/symbol is an uplink time slot/symbol.
  • time slot 8 contains the uplink part. Based on Figure 13, time slot 8 is indicated by the SFI as an uplink time slot. As shown in Figure 14, time slot 8 is an uplink time slot.
  • Information transmission on this time slot/symbol is processed according to the configuration corresponding to the uplink time slot/symbol.
  • uplink transmission can be scheduled on the entire BWP bandwidth.
  • the network configures two PUCCH-Config for the terminal, PUCCH-Config 1 is used for the uplink part, and PUCCH-Config 2 is used for the uplink time slot.
  • the PUCCH resources are determined based on PUCCH-Config 2.
  • the first configuration information can also be used to indicate the time slot/symbol including downlink (subband).
  • the first configuration information can Becomes the downlink partial time domain configuration.
  • the downlink part time domain configuration is used to indicate the downlink part and the time slots/symbols including the downlink part (indicating SBFD).
  • the indication method for the downlink partial time domain configuration indication including the time slots/symbols of the downlink part may refer to the indication method for the uplink partial time domain configuration indication including the uplink part time slots/symbols.
  • the terminal equipment receives the downlink partial time domain configuration and the uplink and downlink configuration.
  • a timeslot/symbol is indicated by the downlink partial time domain configuration to include the downlink part and is indicated by the uplink and downlink configuration
  • the terminal equipment is based on the downlink partial time domain configuration, or,
  • the downlink part time domain configuration and the uplink and downlink configuration determine the type or transmission mode of the timeslot/symbol.
  • the time slot/symbol includes the downlink part.
  • downlink transmission is limited to the downlink part.
  • uplink transmission can only be transmitted on other frequency domains considered by the downlink part.
  • the network configures two PDCCH configurations (PDCCH-Config) for the terminal: PDCCH-Config 1 and PDCCH-Config 2.
  • PDCCH-Config 1 is used for the downlink part
  • PDCCH-Config 2 is used for the downlink timeslot/flexible timeslot.
  • PDCCH-Config 1 for the time slots/symbols containing the downlink part, use PDCCH-Config 1 to determine the PDCCH resources; for the downlink time slots/symbols, use PDCCH-Config 2 to determine the PDCCH resources.
  • the terminal equipment determines the type or transmission mode of a time slot/symbol based on the downlink partial time domain configuration and uplink and downlink configuration: then the time slot/symbol is one of the following situations:
  • Information transmission on this time slot/symbol is processed according to the configuration corresponding to the downlink time slot/symbol. For example, downlink transmission can be scheduled on the entire BWP bandwidth.
  • Case B2 contains the time slot/symbol of the downlink part.
  • the information transmission on this time slot/symbol is processed according to the configuration corresponding to the time slot/symbol including the downlink part.
  • the downlink transmission is limited to the downlink part.
  • uplink transmission can only be transmitted on other frequency domains considered by the downlink part.
  • Case B3 It is determined to be a downlink time slot/symbol according to the scheduling situation, or a time slot/symbol including the downlink part.
  • Method 3.1B According to the scheduling situation and the frequency domain relationship between the downlink resource and the downlink part, determine whether it is a downlink time slot/symbol, or a time slot/symbol that includes the downlink part.
  • the time slot/symbol is scheduled for PUSCH, the time slot/symbol is a time slot/symbol containing the downlink part, and uplink data is only received in the area other than the downlink part of the time slot/symbol.
  • time slot/symbol is scheduled for PDSCH or PDCCH, and the PDSCH resources or PDCCH resources are allocated in the frequency domain resources outside the downlink part, then the time slot/symbol is a downlink time slot/symbol, and the downlink transmission can be scheduled on the entire BWP bandwidth.
  • the time slot/symbol is scheduled for PDSCH or PDCCH, and the PDSCH resource or PDCCH resource allocation is only a frequency domain resource on the downlink part, then the time slot/symbol is a time slot/symbol that includes the downlink part. , the downlink transmission is only in the downlink part.
  • Method 3.2B Determine it to be a downlink symbol according to the scheduling situation, or a symbol containing the downlink part.
  • the time slot/symbol is scheduled for PUSCH, the time slot/symbol is a time slot/symbol including the downlink part, and uplink data is only received in areas other than the downlink part of the time slot/symbol.
  • the time slot/symbol is scheduled for PDSCH or PDCCH, the time slot/symbol is a downlink time slot/symbol.
  • Downstream transmissions can be scheduled across the entire BWP bandwidth.
  • the time slot/symbol is a time slot/symbol containing the downlink part.
  • the timeslot/symbol is a downlink timeslot/symbol.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the execution of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • FIG 15 is a schematic diagram of an optional structural composition of a wireless communication device provided by an embodiment of the present application, which is applied to terminal equipment.
  • the wireless communication device 1500 includes:
  • the first communication unit 1501 is configured to receive the first configuration information sent by the network device, the first configuration information is used to indicate the first time domain resource, and the first time domain resource includes the first frequency domain part in the frequency domain. , wherein, for any time unit included in the first time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, and the second configuration Information is used to configure the transmission direction for each time unit within a cycle.
  • the wireless communication device 1500 may further include a storage unit configured to store the second configuration information.
  • the first configuration information is used to indicate at least one of the following:
  • a first number, the first time domain resource includes the first number of time units in the first period
  • the first position and the first number, the first time domain resource includes a first number of time units in the first period with the first position as a starting position or an ending position.
  • the first period is determined based on the second configuration information.
  • the transmission method of the target time unit belonging to the first time domain resource includes one of the following:
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole;
  • the entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • the transmission mode of the first frequency domain part of the target time unit is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is the target time unit except the first frequency domain part. other frequency domain parts.
  • the transmission mode of the target time unit is determined based on the first configuration information.
  • the transmission method of the first frequency domain part of the target time unit is independent of the transmission method of the second frequency domain part.
  • the transmission mode of the target time unit is determined based on the first configuration information and the second configuration information.
  • the method for determining the transmission method of the target time unit includes at least one of the following:
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole.
  • the transmission mode of the first frequency domain part is the same as the second frequency domain part.
  • the transmission mode of the domain part is independent, and the second frequency domain part is used for downlink transmission;
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole;
  • the transmission mode of the first frequency domain part is the same as that of the second frequency domain
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for uplink transmission, then the target time unit The entire frequency domain resources are used for uplink transmission as a whole;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency domain resource Located within the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the first frequency domain resource is the target time unit in the frequency domain.
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency unit domain resources occupy the second frequency domain part of the target time unit, then the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency unit If domain resources occupy the first frequency domain part and the second frequency domain part of the target time unit, then the entire frequency domain of the target time unit is used for uplink transmission as a whole;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for downlink transmission, then the first frequency domain The transmission mode of the domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for downlink transmission.
  • the transmission mode of the target time unit is determined by at least one of the following methods:
  • the entire frequency domain resource of the target time unit is used for downlink transmission as a whole.
  • the transmission mode of the first frequency domain part is the same as the second frequency domain part.
  • the transmission mode of the domain part is independent, and the second frequency domain part is used for uplink transmission;
  • the entire frequency domain resource of the target time unit is used for downlink transmission as a whole.
  • the transmission mode of the first frequency domain part is the same as the second frequency domain part.
  • the transmission mode of the domain part is independent;
  • the target time unit If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for downlink transmission, then the target time unit The entire frequency domain resources of the unit are used for downlink transmission as a whole;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource is located where In the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain resource is used in the frequency domain for the target time unit.
  • Frequency domain resources for downlink transmission are configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource is located where In the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain resource is used in the frequency domain for the target time unit.
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource If the second frequency domain part is occupied, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource If the first frequency domain part and the second frequency domain part are occupied, then the entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for uplink transmission, then the first The transmission mode of the frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for uplink transmission.
  • the second configuration information configures the transmission direction of the time unit in the first time domain resource to be downlink;
  • the second configuration information configures the transmission direction of the time unit in the first time domain resource to be uplink.
  • the second configuration information includes at least one of the following:
  • FIG 16 is a schematic diagram of an optional structural composition of a wireless communication device provided by an embodiment of the present application, which is applied to network equipment.
  • the wireless communication device 1600 includes:
  • the second communication unit 1601 is configured to send first configuration information to the terminal device, where the first configuration information is used to indicate a first time domain resource, and the first time domain resource includes a first frequency domain part in the frequency domain, wherein, for any time unit included in the first time domain resource, the transmission direction of the first frequency domain part can be different from the transmission direction of the time unit configured in the second configuration information, and the second configuration information Used to configure the transmission direction of each time unit within a cycle.
  • the wireless communication device 1600 may further include: a configuration unit configured to determine the first configuration information.
  • the first configuration information is used to indicate at least one of the following:
  • each time unit in the first period belongs to the first time domain resource
  • a first number, the first time domain resource includes the first number of time units in the first period
  • the first position and the first number, the first time domain resource includes a first number of time units in the first period with the first position as a starting position or an ending position.
  • the first period is determined based on the second configuration information.
  • the transmission method of the target time unit belonging to the first time domain resource includes one of the following:
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole;
  • the entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • the transmission mode of the first frequency domain part of the target time unit is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is the target time unit except the first frequency domain part. other frequency domain parts.
  • the transmission mode of the target time unit is determined based on the first configuration information.
  • the transmission method of the first frequency domain part of the target time unit is independent of the transmission method of the second frequency domain part.
  • the transmission mode of the target time unit is determined based on the first configuration information and the second configuration information.
  • the method for determining the transmission method of the target time unit includes at least one of the following:
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole.
  • the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for downlink transmission;
  • the entire frequency domain resource of the target time unit is used for uplink transmission as a whole;
  • the transmission mode of the first frequency domain part is independent from the transmission mode of the second frequency domain part;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for uplink transmission, then the target time unit The entire frequency domain resources are used for uplink transmission as a whole;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency domain resource Located within the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the first frequency domain resource is the target time unit in the frequency domain.
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency unit domain resources occupy the second frequency domain part of the target time unit, then the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for uplink transmission, and the first frequency unit If domain resources occupy the first frequency domain part and the second frequency domain part of the target time unit, then the entire frequency domain of the target time unit is used for uplink transmission as a whole;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for downlink transmission, then the first frequency domain The transmission mode of the domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for downlink transmission.
  • the method for determining the transmission method of the target time unit includes at least one of the following:
  • the entire frequency domain resource of the target time unit is used as a whole for downlink transmission
  • the transmission mode of the first frequency domain part is the same as the second frequency domain part.
  • the transmission mode of the domain part is independent, and the second frequency domain part is used for uplink transmission;
  • the entire frequency domain resource of the target time unit is used for downlink transmission as a whole.
  • the transmission mode of the first frequency domain part is the same as the second frequency domain part.
  • the transmission mode of the domain part is independent;
  • the target time unit If the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for downlink transmission, then the target time unit The entire frequency domain resources of the unit are used for downlink transmission as a whole;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource is located where In the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain resource is used in the frequency domain for the target time unit.
  • Frequency domain resources for downlink transmission are configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource is located where In the first frequency domain part, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain resource is used in the frequency domain for the target time unit.
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource If the second frequency domain part is occupied, the transmission mode of the first frequency domain part is independent of the transmission mode of the second frequency domain part;
  • the transmission direction of the target time unit is configured to be flexible by the second configuration information, the target time unit is scheduled for downlink transmission, and the second frequency domain resource If the first frequency domain part and the second frequency domain part are occupied, then the entire frequency domain resource of the target time unit is used for downlink transmission as a whole;
  • the first frequency domain part is used for downlink transmission, and the transmission direction of the target time unit is configured to be flexible by the second configuration information, and the target time unit is scheduled for uplink transmission, then the first The transmission mode of the frequency domain part is independent of the transmission mode of the second frequency domain part, and the second frequency domain part is used for uplink transmission.
  • the second configuration information configures the transmission direction of the time unit in the first time domain resource to be downlink;
  • the second configuration information configures the transmission direction of the time unit in the first time domain resource to be uplink.
  • the second configuration information includes at least one of the following:
  • Figure 17 is a schematic structural diagram of a communication device 1700 provided by an embodiment of the present application.
  • the communication device can be a terminal device or a network device.
  • the communication device 1700 shown in Figure 17 includes a processor 1710.
  • the processor 1710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 1700 may also include memory 1720.
  • the processor 1710 can call and run the computer program from the memory 1720 to implement the method in the embodiment of the present application.
  • the memory 1720 may be a separate device independent of the processor 1710 , or may be integrated into the processor 1710 .
  • the communication device 1700 may also include a transceiver 1730, and the processor 1710 may control the transceiver 1730 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 1730 may include a transmitter and a receiver.
  • the transceiver 1730 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1700 can be specifically a network device according to the embodiment of the present application, and the communication device 1700 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
  • the communication device 1700 is a network device according to the embodiment of the present application, then the processor 1710 can be implemented as a configuration module in the wireless communication device 1600, and the transceiver 1730 can be implemented as a second communication module in the wireless communication device 1600. unit.
  • the communication device 1700 may be a mobile terminal/terminal device according to the embodiment of the present application, and the communication device 1700 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • the communication device 1700 is the terminal device of the embodiment of the present application
  • the memory 1720 can be implemented as a storage module in the wireless communication device 1500
  • the transceiver 1730 can be implemented as the first communication unit in the wireless communication device 1500.
  • Figure 18 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1800 shown in Figure 18 includes a processor 1810.
  • the processor 1810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • chip 1800 may also include memory 1820.
  • the processor 1810 can call and run the computer program from the memory 1820 to implement the method in the embodiment of the present application.
  • the memory 1820 may be a separate device independent of the processor 1810 , or may be integrated into the processor 1810 .
  • the chip 1800 may also include an input interface 1830.
  • the processor 1810 can control the input interface 1830 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1800 may also include an output interface 1840.
  • the processor 1810 can control the output interface 840 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, the details will not be described again.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • FIG19 is a schematic block diagram of a communication system 1900 provided in an embodiment of the present application. As shown in FIG19 , the communication system 1900 includes a terminal device 1910 and a network device 1920 .
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no details will be described here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the running of the computer program causes the computer to perform the various methods in the embodiments of the present application by the mobile terminal/terminal device.
  • the corresponding process of implementation will not be repeated here for the sake of brevity.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the running of the computer program causes the computer to perform the corresponding steps implemented by the network device in each method of the embodiments of the present application. The process, for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the execution of the computer program instructions causes the computer to perform various methods implemented by the mobile terminal/terminal device in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the computer program product can be applied to the network equipment in the embodiments of the present application, and the execution of the computer program instructions causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, the computer performs the various methods in the embodiments of the present application by the mobile terminal/terminal.
  • the corresponding process of equipment implementation will not be described here for the sake of simplicity.
  • the computer program can be applied to the network equipment in the embodiments of the present application.
  • the computer program executes the methods implemented by the mobile terminal/terminal device in the various embodiments of the present application. The corresponding process will not be repeated here for the sake of brevity.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法及装置、设备,该方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。

Description

一种无线通信方法及装置、设备及存储介质 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种无线通信方法及装置、设备及存储介质。
背景技术
对于时分双工(Time Division Duplex,TDD)系统,上下行配置用于配置/指示每一个时隙/符号的传输方向,每一个时隙/符号的传输方向,包括上行,下行或灵活。通过上下行配置对时隙/符号的传输方向进行配置时,以时隙/符号为指示对象,一个时隙或符号仅用于进行上行传输或下行传输,使得资源效率低。
发明内容
本申请实施例提供一种无线通信方法及装置、设备及存储介质。
本申请实施例提供的无线通信方法,包括:
终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例提供的无线通信方法,包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例提供的无线通信装置,包括:
第一通信单元,配置为接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例提供的无线通信装置,包括:
第二通信单元,配置为向终端设备发送第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例提供的通信设备,可以是上述方案中的终端设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得所述通信设备执行上述终端设备执行的无线通信方法。
本申请实施例提供的通信设备,可以是上述方案中的网络设备,该通信设备包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得所述通信设备执行上述终端设备执行的无线通信方法。
本申请实施例提供的芯片,用于实现上述的无线通信方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的无线通信方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序的运行使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令的运行使得计算机执行上述的无线通信方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的无线通信方法。
通过上述技术方案,网络设备通过第一配置信息指示在频域上包含第一频域部分的第一时域资源,其中,对于第一时域资源中的任一个时间单元,第一配置信息配置的第一频域部分的传输方向能够与该时间单元被第二配置信息配置传输方向不同,使得一个时间单元的不同频域资源支持不同的传输方向,从而在一个时间单元上进行不同传输方向的频域资源的配置,一个时间单元的频域上能够包括传输方向不同的频域资源,使得一个时间单元能够同时进行数据的接收和发送,从而提高资源利用率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一个应用场景的示意图;
图2A是本申请实施例的上行部分示意图;
图2B是本申请实施例的上行部分示意图;
图3是本申请实施例的无线通信方法的可选地流程示意图;
图4是本申请实施例的无线通信方法的可选地流程示意图;
图5是本申请实施例的无线通信方法的可选地流程示意图;
图6是本申请实施例的第二配置信息指示的时间单元的传输方向的可选地示意图;
图7A是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7B是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7C是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7D是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7E是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7F是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7G是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7H是本申请实施例的目标时间单元的传输方向的可选地示意图;
图7I是本申请实施例的目标时间单元的传输方向的可选地示意图;
图8是本申请实施例的上行控制信道重叠方式的可选地示意图;
图9是本申请实施例的时隙传输方向的可选地示意图;
图10是本申请实施例的时隙传输方向的可选地示意图;
图11是本申请实施例的时隙传输方向的可选地示意图;
图12是本申请实施例的时隙传输方向的可选地示意图;
图13是本申请实施例的时隙传输方向的可选地示意图;
图14是本申请实施例的时隙传输方向的可选地示意图;
图15是本申请实施例的无线通信装置的可选地结构示意图;
图16是本申请实施例的无线通信装置的可选地结构示意图;
图17是本申请实施例提供的一种通信设备示意性结构图;
图18是本申请实施例的芯片的示意性结构图;
图19是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就 是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE TDD、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。在一些实施例中,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过Uu接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;
AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,在一些实施例中,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C 获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
上下行配置
对于TDD系统,上下行配置用于配置/指示每一个符号的传输方向。相关技术中提到采用TDD上下行公共配置(TDD-UL-DL-ConfigCommon)、TDD上下行专用配置(TDD-UL-DL-ConfigDedicated)和时隙格式指示符(Slot Format Indication,SFI)三种方式中一种或多种指示每一个符号的传输方向,符号的传输方向包括上行、下行和灵活三种类型。其中,TDD-UL-DL-ConfigCommon和TDD-UL-DL-ConfigDedicated是高层信令,前者针对小区配置的,通过广播信息发送给小区所有用户,后者通过RRC信令独立发给需要的用户。
TDD-UL-DL-ConfigCommon的信息元素如下所示:
Figure PCTCN2022119735-appb-000001
TDD-UL-DL-ConfigDedicated的信息元素如下所示:
Figure PCTCN2022119735-appb-000002
SFI是通过用户组的下行控制信息(Downlink Control Information,DCI)(也可以称为组共同DCI):DCI格式2.0(DCI format 2_0)指示各个载波的各个时隙/符号的传输方向。由于SFI是一个动态信令,它可以将半静态配置的灵活时隙/符号指示为确定的传输方向,上行或者下行。
为了提高资源利用率,引入X分双工(X Division Duplexing,XDD)技术,可在同一个子帧的不同子带上可以同时发送和接收数据。如图2A所示,一个下行(DL)时隙的中间子带配置为上行(UL)子带。如图2B所示,一个下行(DL)时隙的部分子带配置为上行(UL)子带。其中,图2A和图2B中的上行子带也可称为上行部分。XDD主要用于基站侧。终端侧仍然保持当前的状态,即一个子帧内只支持发送或者接收数据。这里,基于不同的子带能够同时进行数据的接收或发送的时隙或符号可称为支持子带全双工(subband Full Duplex,SBFD)或非重叠子带全双工(Subband Non-0verlapping Full Duplex,SBFD)的时隙/符号。
关于SBFD,在3GPP RAN相关会议上,通过了如下共识(agreement):
对于SBFD的子带的位置的指示,主要采用半静态的配置。
对于SBFD的子带的位置的指示即SBFD配置,优先考虑半静态的配置,甚至有可能只采用半静态的配置。
另外,SBFD的时域位置采用半静态配置,但是TDD帧结构已经支持动态配置,两种配置结果可能不同,导致配置结果冲突,例如,配置了SBFD的时隙/符号同时被动态指示为上行时隙/符号。再者,对于灵活时隙/符号,配置了上行部分即上行子带,当做SBFD时隙/符号还是上行时隙/符号是一个问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例提供的无线通信方法的一种可选处理流程,应用于终端设备,如图3所示,包括以下步骤:
S301、终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例提供的无线通信方法的一种可选处理流程,应用于网络设备,如图4所示,包括以下步骤:
S401、网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例提供的无线通信方法的一种可选处理流程,应用于包括网络设备和终端设备的无线通信系统,如图5所示,包括以下步骤:
S501、网络设备向终端设备发送第一配置信息。
所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
下面,对图3、图4、或图5所示的无线通信方法进行说明。
第一配置信息用于指示第一时域资源,第一时域资源的任一时间单元在频域上包含第一频域部分,第一频域部分可理解为一个时间单元的部分子带。可理解的,第一配置信息指示频域上包含第一频域部分的时间单元,且第一配置信息指示的时间单元组成第一频域资源。
在一示例中,时隙A和时隙B在频域上包括第一频域部分,则网络设备发送的第一配置信息指示时隙A和时隙B,终端设备基于接收的第一配置信息确定时隙A和时隙B在频域上包括第一频域部分。
在一些实施例中,第一配置信息用于指示第一频域部分和第一时域资源,且终端设备确定第一时域资源所包括的时间单元在频域上包括第一频域部分。
在一些实施例中,第一频域部分在频域上小于或等于终端设备支持的接收带宽或发送带宽。
在一些实施例中,第一频域部分在频域上小于或等于终端设备支持的带宽部分(Bandwidth Part, BWP)带宽。
在一些实施例中,第一频域部分用于上行传输或下行传输。
可理解地,对于第一时域资源中的一时间单元,第一配置信息用于配置第一频域部分的传输方向,第一频域部分以外的频域部分即第二频域部分的传输方向与第一频域部分的传输方向不同。
用于上行传输的第一频域部分可称为上行部分,用于下行传输的第一频域部分可称为下行部分,。第一频域部分用于进行上行传输,则第一频域部分的传输方向为上行。第一频域部分用于下行传输,则第一频域部分的传输方向为下行。本申请实施例中,第一频域资源上的一个时间单元上的第一频域部分用于上行传输或下行传输,不同的时间单元包含的第一频域部分的传输方向相同或不同。其中,可通过不同的第一配置信息指示包含传输方向不同的第一频域部分的第一时域资源。
在一示例中,第一配置信息指示时间单元1至时间单元4在频域上包含上行部分,则第一时域资源包括:时间单元1至时间单元4。
在一示例中,第一配置信息指示时间单元5至时间单元7在频域上包含下行部分,则第一时域资源包括:时间单元5至时间单元7。
在一示例中,终端设备接收到两个第一配置信息:第一配置信息A和第一配置信息B,且第一配置信息A指示时间单元1至时间单元4在频域上包含上行部分,第一配置信息B指示时间单元5至时间单元7在频域上包含下行部分,则第一时域资源包括:时间单元1至时间单元7。
第二配置信息用于配置一个周期内各个时间单元的传输方向。对于一个时间单元,第二配置信息配置的传输方向可包括以下之一:上行、下行和灵活。可理解的,针对一个时间单元,第二配置信息配置该时间单元的传输方向,可理解为该时间单元的整个频域的传输方向为第二配置信息为该时间单元配置的传输方向。
针对第一时域资源上的任一个时间单元,第一频域部分的传输方向与第二配置信息配置的传输方向能够不同。
对于一个包含第一频域部分的时间单元,第一频域部分的传输方向与第二配置信息配置为该时间单元配置的传输方向相同或不同。
若第一频域部分的传输方向为上行,则对于一个包含第一频域部分的时间单元,第二配置信息配置该时间单元的传输方向可为上行、下行或灵活。
若第一频域部分的传输方向为下行,则对于一个包含第一频域部分的时间单元,第二配置信息配置该时间单元的方向可为上行、下行或灵活。
在一示例中,对于一包含第一频域部分的时间单元,第一频域部分的传输方向为上行,第二配置信息为该时间单元配置的传输方向为下行。在一示例中,对于一包含第一频域部分的时间单元,第一频域部分的传输方向为下行,第二配置信息为该时间单元配置的传输方向为灵活。在一示例中,对于一包含第一频域部分的时间单元,第一频域部分的传输方向为下行,第二配置信息为该时间单元配置的传输方向为上行。
在一些实施例中,第二配置信息包括以下至少之一:TDD-UL-DL-ConfigCommon、TDD-UL-DL-ConfigDedicated,SFI。
TDD-UL-DL-ConfigCommon、TDD-UL-DL-ConfigDedicated用于对一个周期内的时间单元的传输方向进行半静态配置,SFI用于对一个周期内传输方向被TDD-UL-DL-ConfigCommon、TDD-UL-DL-ConfigDedicated配置为灵活的时间单元进行动态配置。
一个时间单元的传输方向可仅被半静态配置,也可在被半静态配置的基础上,被动态配置。
以时间单元的传输方向仅被半静态配置为例,一个时间单元的传输方向被可以通过高层信令(比如无线资源控制(Radio Resource Control,RRC)信令)中的信息元素(Information Element,IE)比如TDD-UL-DL-ConfigCommon配置为上行,或者,一个时间单元的传输方向被TDD-UL-DL-ConfigDedicated配置为下行。
一个时间单元的传输方向在被半静态配置的基础上被动态配置为例,一个传输方向被第二配置信息配置为上行的时间单元,可由TDD-UL-DL-ConfigCommon或TDD-UL-DL-ConfigDedicated半静态配置为上行,也可为由TDD-UL-DL-ConfigCommon或TDD-UL-DL-ConfigDedicated半静态配置为灵活的情况下由SFI动态配置为上行。
本申请实施例中,时间单元包括:秒、帧、子帧、时隙、子时隙、符号等时域上的时间单位。
本申请实施例中,网络设备发送第一配置信息和第二配置信息的时间可不同,可理解的,终端设备接收第一配置信息和第二配置信息的时间可不同。
在一些实施例中,网络设备先发送第一配置信息,在发送第一配置信息一段时间之后再向终端 设备发送第二配置信息,此时,终端设备先接收到第一配置信息,在一段时间之后接收到网络设备发送的第二配置信息。在一些实施例中,网络设备先发送第二配置信息,在发送第二配置信息一段时间之后再向终端设备发送第一配置信息,此时,终端设备先接收到第二配置信息,在一段时间之后接收到网络设备发送的第一配置信息。
在一些实施例中,所述第一配置信息用于指示以下至少之一:
指示内容一、第一周期内的每个时间单元是否属于所述第一时域资源;
指示内容二、第一数量,所述第一时域资源包括所述第一周期中所述第一数量个时间单元;
指示内容三、第一位置和所述第一数量,所述第一时域资源包括所述第一周期中以所述第一位置为起始位置或终止位置的第一数量个时间单元。
第一时域资源包括一个第一周期内在频域上包括第一频域部分的时间单元。第一配置信息指示第一时域资源可理解为指示第一频域资源所包括的时间单元。
对于指示内容一,第一配置信息指示一个第一周期内中的各个时间单元是否属于第一时域资源。
在一些实施例中,采用比特图的方式指示第一周期中各个时间单元是否属于第一时域资源。
对于第一周期中的一个时间单元,基于该时间单元所对应的比特位的取值确定该时间单元是否属于第一时域资源。在一示例中,比特位的取值为1,指示该比特位所标识的时间单元属于第一时域资源,比特位取值为0,则指示该比特位所标识的时间单元不属于第一时域资源。
以1指示属于第一时域资源,0指示不属于第一时域资源为例,在一示例中,第一周期包括10个时隙,第一配置信息包括:0011111100,10个时隙中的第2至8个时隙属于第一时域资源。
对于指示内容二,第一数量为第一时域资源中第一周期内包括的时间单元的数量。
对于指示内容二,终端设备基于第一配置信息确定第一数量后,基于预设的位置和第一数量确定第一时域资源。
若第一频域部分用于上行传输,第一数量个时间单元到预设的位置截止,可理解地,预设的位置为第一频域资源所包括的最后一个时间单元。在一些实施例中,预设的位置包括:第一周期内第一个被第二配置信息配置为上行的时间单元的前一个时间单元,或第一周期内最后一个时间单元。
以预设为位置为第一周期内第一个被第二配置信息配置为上行的时间单元即上行时间单元的前一个时间单元为例,第一周期包括10个时隙,该10个时隙被第二配置信息配置的传输方向如图6所示,第1个和第2个时隙的传输方向为下行(标识为D),第3至8个时隙的传输方向为灵活(标识为F),第9至10个时隙的传输方向为上行(标识为U),则最后一个包含上行部分的时隙为第8个时隙,第一配置信息指示的第一数量为5,则第4至8个时隙包含上行部分。
以预设为位置为第一周期内最后一个时间单元为例,第一周期包括10个时隙,该10个时隙被第二配置信息配置的传输方向如图6所示,第1个和第2个时隙的传输方向为下行(标识为D),第3至8个时隙的传输方向为灵活(标识为F),第9至10个时隙的传输方向为上行(标识为U),则最后一个包含上行部分的时隙为第10个时隙,第一配置信息指示的第一数量为5,则第6至10个时隙包含上行部分。
若第一频域部分用于下行传输,第一数量个时间单元从预设的位置开始,可理解地,预设的位置的时间单元为第一频域资源所包括的第一个时间单元。
在一示例中,预设的位置包括:第一周期内第一个时间单元或最后一个被第二配置信息配置为下行的时间单元的后一个时间单元。
以预设的位置为第一周期内第一个时间单元为例,第一周期包括10个时隙,该10个时隙被第二配置信息配置的传输方向如图6所示,则第一个包含下行部分的时隙为第1个时隙,第一配置信息指示的第一数量为5,则第1至5个时隙包含下行部分。
以预设的位置为第一周期内最后一个被第二配置信息配置为下行的时间单元的后一个时间单元为例,第一周期包括10个时隙,该10个时隙被第二配置信息配置的传输方向如图6所示,则第一个包含下行部分的时隙为第3个时隙,第一配置信息指示的第一数量为5,则第3至7个时隙包括下行部分。
对于指示内容三,第一指示信息指示第一数量外,还指示第一位置,第一位置和第一数量用于确定第一时域资源。在一些实施例中,第一位置可为第一时域资源中第一个或最后一个时间单元的位置。
所述第一位置为所述第一时域资源在所述第一周期中的起始位置或终止位置。第一位置为第一时域资源的起始位置可理解为第一位置指示第一时域资源在第一周期中的第一个时间单元。第一位置为第一时域资源的终止位置可理解为第一位置指示第一时域资源在第一周期中的最后一个时间单 元。
以第一位置为第一时域资源的起始位置为例,第一周期包括10个时隙,第一配置信息指示的第一位置为2,且指示的第一数量为5,则第2至6个时隙包括第一频域部分。
以第一位置为第一时域资源的终止位置为例,第一周期包括10个时隙,第一配置信息指示的第一位置为8,且指示的第一数量为5,则第4至8个时隙包括第一频域部分。
本申请实施例中,第一配置信息指示的内容可包括但不限于上述指示内容。
在一些实施例中,所述第一周期由网络设备配置。
在一些实施例中,第一周期由第一配置信息指示。
在一些实施例中,所述第一周期基于第二配置信息确定。
在一些实施例中,所述第一周期基于第二配置信息配置的周期确定。其中,第一周期与第二配置信息配置的周期一致。
第一周期的确定方式包括以下至少之一:
若所述第二配置信息配置一个周期,则所述第一周期为所述第二配置信息配置的一个周期。
若所述第二配置信息配置至少两个周期,则所述第一周期基于所述第二配置信息配置的至少两个周期确定。在一些实施例中,所述第一周期为基于所述第二配置信息配置的至少两个周期的大小之和。
在一示例中,第二配置信息配置一个周期:P,则第一周期为P。在一示例中,第二配置信息配置两个周期:P1和P2,则第一周期为P1与P2之和。
本申请实施例中,第一周期可基于第二配置信息中的其他信息指示,用户可根据实际需求设置,这里不进行限定。
在一些实施例中,属于所述第一时域资源的目标时间单元的传输方式包括以下之一:
所述目标时间单元的整个频域资源作为整体用于上行传输;
所述目标时间单元的整个频域资源作为整体用于下行传输;
所述目标时间单元的所述第一频域部分的传输方式与第二频域部分的传输方式独立,所述第二频域部分为所述目标时间单元中除所述第一频域部分以外的其他频域部分。
这里,目标时间单元为第一时域资源中任一时间单元。目标传输单元的传输方式可理解为以下至少之一:
目标传输单元的传输方向;
目标时间单元的频域资源是否被调度用于传输;
目标时间单元被调度用于传输时,确定目标时间单元中用于传输的传输资源的资源配置信息即传输配置,其中,所述资源配置信息包括以下至少之一:用于确定频域传输资源的位置的位置信息、调制编码(Modulation and Coding Scheme,MCS)等。
在一些实施例中,目标时间单元可被RRC信令等高层信令动态调度用于上行传输或下行传输。
以目标时间单元的整个频域作为整体为例,目标时间单元的整个频域用于上行传输或下行传输,则第一频域部分和第二频域部分具备以下至少之一:
目标时间单元整个频域仅存在一个传输方向即第一频域部分和第二频域部分的传输方向相同;
目标时间单元的整个频域被整体调度;
目标时间单元作为整体采用一个资源配置信息确定传输资源。
若目标时间单元的整个频域资源作为整体用于上行传输,则目标时间单元的传输方向为上行且仅包括上行,目标时间单元的整个频域资源作为一个整体被调度且使用一个上行资源配置信息确定用于上行传输的上行传输资源。此时,上行传输可以在目标时间单元的整个BWP带宽上调度。
若目标时间单元的整个频域资源作为整体用于下行传输,则目标时间单元的传输方向为且仅包括下行,目标时间单元的整个频域资源为一个整体被调度且使用一个下行资源配置信息。此时,下行传输可以在目标时间单元的整个BWP带宽上调度。
以目标时间单元的第一频域部分的传输方式和第二频域部分的传输方式独立为例,目标时间单元用于上行传输或下行传输,且上行传输和下行传输在频域上不重叠,第一频域部分和第二频域部分具备以下至少之一:
第一频域部分的传输方向和第二频域部分的传输方向独立;
第一频域部分的被调度和第二频域部分的被调度独立;
第一频域配置信息用于确定第一频域部分上的用于传输的传输资源,第二频域配置信息用于确定第二频域部分上用于传输的传输资源,且第一频域配置信息和第二频域配置信息独立。
若所述第一频域部分的传输方式与第二频域部分的传输方式独立,第一频域部分的传输方向与第二传输方式的传输方向可相同也可不同。
若所述第一频域部分的传输方式与第二频域部分的传输方式独立,第二频域部分的传输方向包括以下之一:上行、下行或灵活。
以所述第一频域部分的传输方式与第二频域部分的传输方式独立为例,在一示例中,目标时间单元的第一频域部分用于上行传输,第二频域部分的传输方向为上行,则第一频域部分和第二频域部分均用于上行传输,且第一频域部分和第二频域部分独立被调度。
以所述第一频域部分的传输方式与第二频域部分的传输方式独立为例,在一示例中,目标时间单元的第一频域部分用于上行传输,第二频域部分的传输方向为下行或灵活,则第一频域部分和第二频域部分独立被调度,且下行传输仅发生在第一频域部分。
以所述第一频域部分的传输方式与第二频域部分的传输方式独立为例,在一示例中,目标时间单元的第一频域部分用于下行传输,第二频域部分的传输方向为上行或灵活,则第一频域部分和第二频域部分独立被调度,且上行传输仅发生在第一频域部分。
本申请实施例中,目标时间单元的传输方式的确定方案包括以下至少之一:
方案一、基于第一配置信息确定;
方案二、基于第一配置信息和第二配置信息确定;
方案三、限制第二配置信息配置的传输方向。
本申请实施例中,目标传输单元的传输方向被第一配置信息和第二配置信息同时配置,存在第一配置信息配置的传输方向和第二配置信息配置的传输方向冲突的情况,则通过上述方案一、方案二和方案三中的任一方案能够解决一个时间单元基于第一配置信息配置的传输方向和第二配置信息配置的传输方向存在冲突的问题。
在方案一中,所述目标时间单元的传输方式基于所述第一配置信息确定。
在一些实施例中,所述目标时间单元的所述第一频域部分的传输方式与所述第二频域部分的传输方式是独立的。
以第一频域部分用于上行传输为例,目标时间单元的第一频域部分的传输方向为上行,目标时间单元上的上行传输发生在第一频域部分,且目标时间单元上进行的下行传输仅发生在目标时间单元的第二频域部分。
以第一频域部分用于下行传输为例,目标时间单元的第一频域部分的传输方向为下行,目标时间单元上的下行传输发生在第一频域部分,且目标时间单元上进行的上行传输仅发生在目标时间单元的第二频域部分。
在方案一中,目标时间单元中的第一频域资源和第一频域资源以外的频域资源的传输方式独立,第一频域部分和第二频域部分的传输方向独立,第一频域部分和第二频域部分的调度独立。
本申请实施例提供的方案一中,仅仅依赖第一配置信息即可确定时间单元的传输方式,方案实施简单,能够加快终端确定传输方向或传输方式的效率。
在方案二中,所述目标时间单元的传输方式基于所述第一配置信息和所述第二配置信息确定。
在一些实施例中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
确定方式A1、若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述目标时间单元的整个频域资源作为整体用于上行传输;
确定方式A2、若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输;
确定方式A3、若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于上行传输;
确定方式A4、若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
确定方式A5、若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述目标时间单元的整个频域资源作为整体用于上行传输;
确定方式A6、若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且第一频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第一频域资源为 所述目标时间单元在频域上用于上行传输的频域资源;
确定方式A7、若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元中所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
确定方式A8、若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元中所述第一频域部分和所述第二频域部分,则所述目标时间单元整个频域作为整体用于上行传输;
确定方式A9、若所述第一频域部分用于上行传输、所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输。
确定方式A1至确定方式A9为针对第一频域部分用于上行传输的场景。
在确定方式A1中,针对目标时间单元,如图7A所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分(斜线填充部分所示),且第二配置信息配置目标时间单元的传输方向为上行,则目标时间单元的整个频域作为整体用于上行传输。
在确定方式A2中,针对目标时间单元,如图7B所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,且第二配置信息配置目标时间单元的传输方向为下行,则第一频域部分的传输方式与第二频域部分的传输方式独立,第一频域部分用于上行传输,第二频域部分用于下行传输,此时,目标时间单元能够用于上行传输和下行传输,且上行传输和下行传输在时域上不重叠。
在确定方式A3中,针对目标时间单元,如图7C所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,且第二配置信息配置目标时间单元的传输方向为灵活,则目标时间单元的整个频域用于上行传输。
在确定方式A4中,针对目标时间单元,如图7D所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,且第二配置信息配置目标时间单元的传输方向为灵活,则第一频域部分的传输方式与第二频域部分的传输方式独立。
在一些实施例中,第二频域部分的传输方向为灵活。
在确定方式A4确定的传输方式中,下行传输仅调度在第二频域部分。
在确定方式A5中,针对目标时间单元,如图7E所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,且第二配置信息配置目标时间单元的传输方向为灵活,目标时间单元被调度用于上行传输,则目标时间单元的整个频域作为整体用于上行传输。
在确定方式A5确定的传输方式中,不考虑上行调度的上行资源在频域上与第一频域部分的关系,将目标时间单元的整个频域作为整体用于上行传输。
在确定方式A6中,针对目标时间单元,如图7F所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,第二配置信息配置目标时间单元的传输方向为灵活,目标时间单元被调度为上行传输,且第一频域资源位于所述第一频域部分内,则第一频域部分的传输方式与第二频域部分的传输方式独立。
在一些实施例中,所述第二频域部分的传输方向为灵活。在第一频域部分用于上行传输且第一频域部分与第二频域部分的传输方式独立的情况下,下行传输仅调度在第二频域部分。
在确定方式A7中,第一频域资源占用所述目标时间单元中所述第二频域部分可以理解为第一频域资源仅占用第二频域部分,而不占用第一频域部分。
针对目标时间单元,如图7G所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,第二配置信息配置目标时间单元的传输方向为灵活,目标时间单元被调度为上行传输,且第一频域资源占用所述目标时间单元中所述第二频域部分,则第一频域部分的传输方式与第二频域部分的传输方式独立。
在一些实施例中,所述第二频域部分用于上行传输。
在实际应用中,对于确定方式A7的场景:第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,第二配置信息配置目标时间单元的传输方向为灵活,目标时间单元被调度为上行传输,且第一频域资源占用所述目标时间单元中所述第二频域部分,也可将目标时间单元的整个频域作为整体来用于上行传输。
在确定方式A8中,针对目标时间单元,如图7H所示,第一配置信息配置目标时间单元包括传 输方向为上行的第一频域部分,第二配置信息配置目标时间单元的传输方向为灵活,目标时间单元被用于为上行传输,且第一频域资源占用所述目标时间单元中所述第一频域部分和所述第二频域部分,则目标时间单元的频域作为整体用于上行传输。
在确定方式A9中,针对目标时间单元,如图7I所示,第一配置信息配置目标时间单元包括传输方向为上行的第一频域部分,第二配置信息配置目标时间单元的传输方向为灵活,目标时间单元被调度用于下行传输,则第一频域部分的传输方式与第二频域部分的传输方式独立,第二频域部分用于下行传输,此时,目标时间单元能够用于上行传输和下行传输,且上行传输和下行传输在时域上不重叠。
可以理解的,确定方式A1至确定方式A4为目标时间单元未被调度的情况下目标时间单元的传输方式的确定方式,确定方式A5至确定方式A9为目标时间单元被配置为灵活且目标时间单元被调度的情况下目标时间单元的传输方式的确定方式。对于确定方式A5至确定方式A9,确定方式A5和A9不考虑调度的上行资源和第一频域部分的频域关系,确定方式A6至A8需考虑调度的上行资源和第一频域部分的频域关系。
在一些实施例中,对于确定方式A1至确定方式A5以及确定方式A9,第一频域部分的传输方式和第二频域部分的传输方式独立的情况下用于上行传输的上行传输资源,和目标时间单元的整个频域作为整体用于上行传输的情况下用于上行传输的上行传输资源,基于不同的上行资源配置信息确定。第一频域部分与第二频域部分的传输方式独立的情况下,第一频域部分中用于传输的传输资源基于第一上行资源配置信息,目标时间单元整个频域作为整体用于上行传输的情况下,目标时间单元中用于传输的传输资源基于第二上行资源配置信息确定。
在一些实施例中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
确定方式B1、若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述目标时间单元的整个频域资源作为整体用于下行传输;
确定方式B2、若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输;
确定方式B3、若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于下行传输;
确定方式B4、若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
确定方式B5、若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述目标时间单元的整个频域资源作为整体用于下行传输;
确定方式B6、若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且第二频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第二频域资源为所述目标时间单元在频域上用于下行传输的频域资源;
确定方式B7、若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
确定方式B8、若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域资源作为整体用于下行传输;
确定方式B9、若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输。
在实际应用中,对于确定方式B7的场景:第一配置信息配置目标时间单元包括传输方向为下行的第一频域部分,第二配置指示信息配置为灵活,目标时间单元被调度用于下行传输,且第二频域资源占用所述目标时间单元中所述第二频域部分,也可将目标时间单元的整个频域作为整体来用于下行传输。
在确定方式B2、B4、B6、B7、B9中,第一频域部分的传输方式与第二频域部分的传输方式独立,其中,在确定方式B2、B9中第二频域部分的传输方向为上行,在确定方式B4、B6中第二频域 部分的传输方向为灵活,在确定方式B7中第二频域部分的传输方向为下行。
在一些实施例中,对于确定方式B1至确定方式B5以及确定方式B9,第一频域部分的传输方式和第二频域部分的传输方式独立情况下用于下行传输的下行传输资源、与目标时间单元的整个频域作为整体用于下行传输时的下行传输资源基于不同的下行频域资源配置信息确定。第一频域部分与第二频域部分的传输方式独立的情况下,第一频域部分基于第一下行资源配置信息确定下行资源。目标时间单元的整个频域作为整体用于下行传输的情况下,目标时间单元基于第二下行资源配置信息确定下行资源。
在一些实施例中,确定方式A5至确定方式A8以及确定方式B9中目标时间单元被调度用于上行传输,上行传输可包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输或物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输。若目标时间单元被调度用于PUSCH传输,第一频域资源为PUSCH频域资源。若目标时间单元被调度用于PUCCH传输,第一频域资源为PUCCH频域资源。
在一些实施例中,确定方式A9以及确定方式B5至确定方式B8中目标时间单元被调度用于下行传输,下行传输可包括物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输或物理下行控制信道(Physical DownlinkControl Channel,PDCCH)PDCCH传输。若目标时间单元被调度用于PDSCH传输,第二频域资源为PDSCH频域资源。若目标时间单元被调度用于PDCCH传输,第二频域资源为PDCCH频域资源。
在方案三中,若所述第一频域部分用于上行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为下行;或,若所述第一频域部分用于下行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为上行。
若第一频域部分用于上行传输,则限制第二配置信息将第一时域资源中的时间单元的传输方向配置为下行,此时,目标时间单元的第一频域部分用于上行传输,第二频域部分用于下行传输。其中,限制第二配置信息将第一时域资源中的时间单元的传输方向配置为下行可理解为所述第二配置信息配置所述第一时域资源中的时间单元的传输方向仅为下行。
若第一频域部分用于下行传输,则限制第二配置信息将第一时域资源中的时间单元的传输方向配置为上行,目标时间单元的第一频域部分用于下行传输,第二频域部分用于上行传输。其中,限制第二配置信息将第一时域资源中的时间单元的传输方向配置为上行可理解为所述第二配置信息配置所述第一时域资源中的时间单元的传输方向仅为上行。..
本申请实施例中,基于第一频域部分的传输方向来限制第二配置信息针对包括第一频域部分的时间单元的传输方向进行限制,从而实现一个时间单元同时进行上行传输和下行传输的同时,避免第一配置信息和第二配置信息的冲突。
下面,对本申请实施例提供的无线通信方法进行进一步说明。
本申请实施例提供的无线通信方法,如图8所示,包括:
S801、终端设备接收上行部分时域配置和上下行配置。
上行部分时域配置即指示的频域资源为上行部分的频域位置的第一配置信息,用于指示一个传输周期中包括上行部分即上行子带的SBFD时隙/符号所占用的时隙/符号,以及SBFD时隙/符号中上行部分所占用的频域位置。
上下行配置即第二配置信息,用于指示一个传输周期中各个时隙/符号的传输方向。上下行配置可包括:TDD上下行公共配置(TDD-UL-DL-ConfigCommon)、TDD上下行专用配置(TDD-UL-DL-ConfigDedicated)中的一个或多个。
S802、终端设备基于上行部分时域配置,或者,上行部分时域配置和上下行配置确定时隙/符号的类型和/或传输方式。
其中,对于半静态配置的灵活的时隙/符号,并且指示为包含上行部分的时隙/符号,则该时隙/符号为包含上行部分的时隙/符号、或者上行时隙/符号、或者根据调度判定为包含上行部分的时隙/符号或上行时隙/符号、或者根据SFI指示判定为包含上行部分的时隙/符号或上行时隙/符号,各个时隙/符号采取相应的传输方式进行传输。
下面,通过不同的实例对本申请实施例提供的无线通信方法进行说明。
实例一、基于上行部分时域配置确定传输方式
S11、终端接收上行部分时域配置和上下行配置。
这里,上行部分时域配置用于指示上行部分以及包括上行部分(指示SBFD)的时隙/符号。
上行部分时域配置指示包括上行部分的时隙/符号。
上行部分时域配置指示包括上行部分的时隙/符号的方式包括以下方式至少之一:
方式一、采用比特图(bitmap)的方式指示一个周期内的每一个时隙/符号是否为包含上行部分的时隙/符号。
例如,1表示该时隙/符号包含上行部分,0表示该时隙/符号不包含上行部分。
如图9所示,采用10比特的[0 0 1 1 1 1 1 1 0 0]指示一个周期为10ms所包括的10个时隙的上行部分时域配置,[0 0 1 1 1 1 1 1 0 0]表示第3-8个时隙即时隙3-8包含上行部分。
方式二、采用计数的方式指示一个周期内的包含上行部分的时隙/符号数。
进一步,包含上行部分的时隙/符号到上行时隙/符号截止。如图9所示,包含上行部分的时隙数指示为6,则从第一个上行时隙的前一个时隙即第8个时隙往前数6个时隙,即第3-8个时隙包含上行部分。
方式三、采用资源指示值(resource indication value,RIV)的方式指示一个周期内的时隙/符号起点和时隙/符号数。
在一示例中,当RIV为52,则起始时隙为3,时隙数为6,即第3-8个时隙为包含上行部分的时隙。
所述周期由网络设备配置。
在一些实施例中,周期与上下行配置周期一致。例如,如果上下行配置只配置了pattern 1且pattern1为dl-UL-TransmissionPeriodicity P,上行部分时域配置的周期为dl-UL-TransmissionPeriodicity P,如果上下行配置配置了pattern 1和pattern 2,且pattern 1为dl-UL-TransmissionPeriodicity P,pattern 2为dl-UL-TransmissionPeriodicity P2,则上行部分时域配置的周期为dl-UL-TransmissionPeriodicity P+dl-UL-TransmissionPeriodicity P2。
S12、终端基于上行部分时域配置确定时隙/符号类型和/或传输方式。
终端根据S11中接收的配置,可知时隙3-8包含上行部分。无论时隙3-8是下行、灵活、甚至上行时隙(计数方法除外),如图9所示,在时隙3-8,都按照包含上行部分的配置发送接收信息。
例如,对于包含上行部分的时隙/符号,上行传输限于上行部分。又例如,下行传输只能在上行部分以为的其他频域上传输。又例如,网络为终端配置了2个PUCCH配置(PUCCH-Config):PUCCH-Config 1和PUCCH-Config 2,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙/灵活时隙,对于时隙3-8,根据PUCCH-Config 1确定PUCCH资源。时隙9-10,根据PUCCH-Config 2确定PUCCH资源。
实例2、基于上行部分时域配置和上下行配置确定传输方式
S21、终端接收上行部分时域配置和上下行配置。
这里,上行部分时域配置用于指示上行部分以及包括上行部分(指示SBFD)的时隙/符号。
上行部分时域配置指示包括上行部分的时隙/符号。
行部分时域配置指示包括上行部分的时隙/符号的方式包括以下方式至少之一:
方式一、采用比特图(bitmap)的方式指示一个周期内的每一个时隙/符号是否为包含上行部分的时隙/符号。
例如,1表示该时隙/符号包含上行部分,0表示该时隙/符号不包含上行部分。
如图10所示,采用10比特的[0 0 1 1 1 1 1 1 1 1]指示一个周期为10ms所包括的10个时隙的上行部分时域配置,[0 0 1 1 1 1 1 1 1 1]表示第3-10时隙包含上行部分。
方式二、采用计数的方式指示一个周期内的包含上行部分的时隙数/符号数。
进一步,包含上行部分的时隙/符号到最后一个时隙/符号截止。如图4所示,包含上行部分的时隙数指示为8,则从最后一个时隙即第10个时隙往前数8个时隙,即时隙3-10包含上行部分。
方式三、采用资源指示值(resource indication value,RIV)的方式指示一个周期内的时隙/符号起点和时隙/符号数。
在一示例中,当RIV为72,则起始时隙为3,时隙数为8,即时隙3-10包含上行部分。
所述周期由网络设备配置。
在一些实施例中,上行部分时域配置的周期与上下行配置周期一致。例如,如果上下行配置只配置了pattern 1且pattern 1为dl-UL-TransmissionPeriodicity P,上行部分时域配置的周期为dl-UL-TransmissionPeriodicity P,如果上下行配置配置了pattern 1和pattern 2,且pattern 1为dl-UL-TransmissionPeriodicity P,pattern 2为dl-UL-TransmissionPeriodicity P2,则上行部分时域配置的周期为dl-UL-TransmissionPeriodicity P+dl-UL-TransmissionPeriodicity P2。
上下行配置可以通过TDD-UL-DL-ConfigCommon,或者TDD-UL-DL-ConfigCommon和 TDD-UL-DL-ConfigDedicated指示。
如图11所示,上下行配置为nrofDownlinkSlots=4:从第一个时隙往后数4个时隙(时隙1至4)为下行时隙,nrofDownlinkSymbols=0:第5个时隙中不包括下行符号,nrofUplinkSlots=2:从最后一个时隙往前数2个时隙(时隙9、10)为上行时隙,nrofUplinkSymbols=0:第8个时隙中不包括上行符号,如图11所示,时隙5至8为灵活时隙(F)。
S22、终端基于上行部分时域配置确定时隙/符号类型和/或传输方式。
场景1、若一个时隙/符号既基于上行部分配置指示为包含上行部分,又基于上下行配置指示为下行时隙/符号,则该时隙/符号为包含上行部分的时隙/符号(或者说,SBFD时隙/符号)。
如图10至图12所示的时隙3和4,如图10所示,时隙3和4包括上行部分,如图11所示,时隙3和4被指示为下行时隙,则如图12所示,时隙3和4为包含上行部分的时隙。
在一些实施例中,在该时隙/符号上的信息传输按照SBFD时隙/符号对应的配置处理。
例如,对于包含上行部分的时隙,上行传输限于上行部分。又例如,下行传输只能在上行部分以为的其他频域上传输。又例如,网络为终端配置了2个PUCCH-Config:PUCCH-Config 1和PUCCH-Config 2,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙,对于时隙3-4,根据PUCCH-Config 1确定PUCCH资源。
场景2、若一个时隙/符号既基于上行部分配置指示为包含上行部分,又基于上下行配置指示为上行时隙/符号,则该时隙/符号为上行时隙/符号。
如图10至图12所示的时隙9和10,如图10所示,时隙9和10包括上行部分,如图11所示,时隙9和10被指示为上行时隙,则如图12所示,时隙9和10为上行时隙。
在该时隙/符号上的信息传输按照上行时隙/符号对应的配置处理,例如,上行传输可以在整个BWP带宽上调度。又例如,网络为终端配置了2个PUCCH-Config:PUCCH-Config 1和PUCCH-Config2,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙,对于时隙9-10,根据PUCCH-Config 2确定PUCCH资源。
场景3、一个时隙/符号既基于上行部分配置指为包含上行部分,又基于上下行配置指为灵活时隙/符号,则该时隙/符号为以下情况中的一种:
情况A1、上行时隙/符号。
在该时隙/符号上信息传输按照上行时隙/符号对应的配置处理,例如,上行传输可以在整个BWP带宽上调度。又例如,网络为终端配置了2个PUCCH-Config:PUCCH-Config 1和PUCCH-Config2,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙,对于该时隙,根据PUCCH-Config2确定PUCCH资源。
情况A1能够最大化上行资源的使用。
情况A2、包含上行部分的时隙/符号(或者说,SBFD时隙/符号)。
在该时隙/符号上信息传输按照SBFD时隙/符号对应的配置处理,例如,对于包含上行部分的时隙/符号,上行传输限于上行部分。又例如,下行传输只能在上行部分以为的其他频域上传输。又例如,网络为终端配置了2个PUCCH-Config:PUCCH-Config 1和PUCCH-Config2,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙,对于该时隙,根据PUCCH-Config 1确定PUCCH资源。
如图10至12所示,对于时隙5至8,被指示为包含上行部分,且被指示为灵活时隙(F),则时隙5至8为包含上行部分的时隙。
情况A2能够最大化下行资源的使用,且避免在上行部分接收信息,形成不必要的干扰。
情况A3、根据调度情况判定为上行时隙/符号,或包含上行部分的时隙/符号。
方法3.1A、根据调度情况,和上行资源与上行部分的频域关系确定判定为上行时隙/符号,或包含上行部分的时隙/符号。
3.1.1A、如果该时隙/符号被调度用于PDSCH,则该时隙/符号为包含上行部分的时隙/符号,仅在该时隙/符号上的上行部分以外的区域接收下行数据。
3.1.2A、如果该时隙/符号被调度用于PUSCH或PUCCH,且PUSCH资源或PUCCH资源分配在上行部分以外的频域资源,则该时隙/符号为上行时隙/符号,上行传输可以在整个BWP带宽上调度。
3.1.3A、如果该时隙/符号被调度用于PUSCH或PUCCH,且PUSCH资源或PUCCH资源分配仅在上行部分上的频域资源,则该时隙/符号为包含上行部分的时隙/符号,上行传输仅在上行部分。
需要说明的是,3.1.2A和3.1.3A中的PUSCH资源或PUCCH资源不进行用于上行部分和用于 上行时隙/符号的配置的区分,只有一个PUSCH配置或PUCCH配置,基于PUSCH配置或PUCCH配置确定PUSCH资源或PUCCH资源,在符号/时隙被调度为PUSCH或PUCCH的情况下,基于PUSCH资源或PUCCH资源与上行部分的频域关系来确定该符号/时隙为上行时隙/符号还是包含上行部分的时隙/符号。
方法3.2A、根据调度情况判定为上行符号,或包含上行部分的符号。
3.2.1A、如果该时隙/符号被调度用于PDSCH,则该时隙/符号为包含上行部分的时隙/符号,仅在该时隙/符号的上行部分以外的区域接收下行数据。
3.2.2A、如果该时隙/符号被调度用于PUSCH或PUCCH,则该时隙/符号为上行时隙/符号。
上行传输可以在整个BWP带宽上调度。
又例如,网络为终端配置了2个PUCCH-Config,PUCCH-Config 1用于上行部分,PUCCH-Config2用于上行时隙,对于该时隙/符号,根据PUCCH-Config 2确定PUCCH资源。
实例3、基于上行部分时域配置和动态上下行配置确定传输方式
S31、终端接收上行部分时域配置和上下行配置。
上行部分时域配置用于指示频域资源和所述频域资源所在的时域资源,且所述频域资源使得所述时域资源能够用于上行传输和下行传输。所述频域资源能够使得所述时域资源的上行传输和下行传输在时域上不重叠。
这里,上行部分时域配置用于指示上行部分以及包括上行部分(指示SBFD)的时隙或符号。
上行部分时域配置指示包括上行部分的时隙/符号。
行部分时域配置指示包括上行部分的时隙/符号的方式包括以下方式至少之一:
方式一、采用比特图(bitmap)的方式指示一个周期内的每一个时隙/符号是否为包含上行部分的时隙/符号。
例如,1表示该时隙/符号包含上行部分,0表示该时隙/符号不包含上行部分。
如图10所示,采用10比特的[0 0 1 1 1 1 1 1 1 1]指示一个周期为10ms所包括的10个时隙的上行部分时域配置,[0 0 1 1 1 1 1 1 1 1]表示第3-10时隙包含上行部分。
方式二、采用计数的方式指示一个周期内的包含上行部分的时隙数/符号数。
进一步,包含上行部分的时隙/符号到最后一个时隙/符号截止。如图4所示,包含上行部分的时隙数指示为8,则从最后一个时隙即第10个时隙往前数8个时隙,即时隙3-10为包含上行部分的时隙。
方式三、采用资源指示值(resource indication value,RIV)的方式指示一个周期内的时隙/符号起点和时隙/符号数。
在一示例中,当RIV为72,则起始时隙为3,时隙数为8,即时隙3-10。
所述周期由网络设备配置。
在一些实施例中,上行部分时域配置的周期与上下行配置周期一致。例如,如果上下行配置只配置了pattern 1且pattern 1为dl-UL-TransmissionPeriodicity P,上行部分时域配置的周期为dl-UL-TransmissionPeriodicity P,如果上下行配置配置了pattern 1和pattern 2,且pattern 1为dl-UL-TransmissionPeriodicity P,pattern 2为dl-UL-TransmissionPeriodicity P2,则上行部分时域配置的周期为dl-UL-TransmissionPeriodicity P+dl-UL-TransmissionPeriodicity P2。
上下行配置可以通过TDD-UL-DL-ConfigCommon,或者TDD-UL-DL-ConfigCommon和TDD-UL-DL-ConfigDedicated指示。如图11所示,上下行配置为nrofDownlinkSlots=4:从第一个时隙往后数4个时隙(时隙1至4)为下行时隙,nrofDownlinkSymbols=0:第5个时隙中不包括下行符号,nrofUplinkSlots=2:从最后一个时隙往前数2个时隙(时隙9、10)为上行时隙,nrofUplinkSymbols=0:的8个时隙中不包括上行符号,如图11所示,时隙5至8为灵活时隙(F)。
进一步地,终端设备接收到的SFI对灵活时隙/符号进行设置,指示为上行时隙/符号或下行时隙/符号。
在一示例中,SFI将图11所示的周期中的第5个时隙指示为下行时隙(D),且将第8个时隙指示为上行时隙(U),则指示结果如图13所示,第1至5个时隙为下行时隙,第6至7个时隙为灵活时隙,第8至10个时隙为上行时隙。
S32、终端基于上行部分时域配置确定时隙/符号类型和/或传输方式。
对于图13中第1至4、6至7、9至10个时隙的传输方式可参考实例2中确定时隙/符号的传输方式的方法。
对于基于上行部分时域配置指示为包含上行部分且半静态配置为灵活的时隙/符号,动态指示为 下行时隙/符号,则该时隙/符号为包含上行部分的时隙/符号(或者说,SBFD时隙/符号)。
如图10、13、14所示,基于图10,时隙5包含上行部分,基于图13,时隙5被SFI指示为下行时隙,如图14所示,时隙5为包含上行部分的时隙。
在该时隙/符号上信息传输按照SBFD符号对应的配置处理,例如,对于包含上行部分的时隙,上行传输限于上行部分。又例如,下行传输只能在上行部分以为的其他频域上传输。又例如,网络为终端配置了2个PUCCH-Config,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙,对于该时隙,根据PUCCH-Config 1确定PUCCH资源。
这里能够最大化下行资源的使用且避免在上行部分接收信息,形成不必要的干扰。
对于基于上行部分时域配置指示为包含上行部分且半静态配置为灵活的时隙/符号,动态指示为上行时隙/符号,则该时隙/符号为上行时隙/符号。
如图10、13、14所示,基于图10,时隙8包含上行部分,基于图13,时隙8被SFI指示为上行时隙,如图14所示,时隙8为上行时隙。
在该时隙/符号上信息传输按照上行时隙/符号对应的配置处理,例如,上行传输可以在整个BWP带宽上调度。又例如,网络为终端配置了2个PUCCH-Config,PUCCH-Config 1用于上行部分,PUCCH-Config 2用于上行时隙,对于该时隙,根据PUCCH-Config 2确定PUCCH资源。技术好处:最大化上行资源的使用。
上述实例以上行部分为例对本申请的无线通信方法进行说明,本申请实施例中,第一配置信息还可用于指示包含下行(子带)的时隙/符号,此时,第一配置信息可以成为下行部分时域配置。
下行部分时域配置用于指示下行部分以及包括下行部分(指示SBFD)的时隙/符号。
下行部分时域配置指示包括下行部分的时隙/符号的指示方式可参考上行部分时域配置指示包括上行部分的时隙/符号的指示方式。
终端设备接收下行部分时域配置和上下行配置,一个时隙/符号被下行部分时域配置指示为包含下行部分且被上下行配置指示的情况下,终端设备基于下行部分时域配置,或者,下行部分时域配置和上下行配置确定该时隙/符号的类型或传输方式。
终端设备基于下行部分时域配置确定类型或传输方式的情况下,该时隙/符号包含下行部分。对于包含上行部分的时隙/符号,下行传输限于下行部分。又例如,上行传输只能在下行部分以为的其他频域上传输。又例如,网络为终端配置了2个PDCCH配置(PDCCH-Config):PDCCH-Config 1和PDCCH-Config 2,PDCCH-Config 1用于下行部分,PDCCH-Config 2用于下行时隙/灵活时隙,对于包含下行部分的时隙/符号,使用PDCCH-Config 1确定PDCCH资源;对于下行时隙/符号,使用PDCCH-Config 2确定PDCCH资源。
终端设备基于下行部分时域配置和上下行配置确定一个时隙/符号的类型或传输方式的情况下:则该时隙/符号为以下情况中的一种:
情况B1、下行时隙/符号。
在该时隙/符号上信息传输按照下行时隙/符号对应的配置处理,例如,下行传输可以在整个BWP带宽上调度。
情况B2、包含下行部分的时隙/符号。
该时隙/符号上信息传输按照包含下行部分的时隙/符号对应的配置处理,例如,对于包含下行部分的时隙/符号,下行传输限于下行部分。又例如,上行传输只能在下行部分以为的其他频域上传输。
情况B3、根据调度情况判定为下行时隙/符号,或包含下行部分的时隙/符号。
方法3.1B、根据调度情况,和下行资源与下行部分的频域关系确定判定为下行时隙/符号,或包含下行部分的时隙/符号。
3.1.1B、如果该时隙/符号被调度用于PUSCH,则该时隙/符号为包含下行部分的时隙/符号,仅在该时隙/符号上的下行部分以外的区域接收上行数据。
3.1.2B、如果该时隙/符号被调度用于PDSCH或PDCCH,且PDSCH资源或PDCCH资源分配在下行部分以外的频域资源,则该时隙/符号为下行时隙/符号,下行传输可以在整个BWP带宽上调度。
3.1.3B、如果该时隙/符号被调度用于PDSCH或PDCCH,且PDSCH资源或PDCCH资源分配仅在下行部分上的频域资源,则该时隙/符号为包含下行部分的时隙/符号,下行传输仅在下行部分。
方法3.2B、根据调度情况判定为下行符号,或包含下行部分的符号。
3.2.1B、如果该时隙/符号被调度用于PUSCH,则该时隙/符号为包含下行部分的时隙/符号,仅在该时隙/符号的下行部分以外的区域接收上行数据。
3.2.2B、如果该时隙/符号被调度用于PDSCH或PDCCH,则该时隙/符号为下行时隙/符号。
下行传输可以在整个BWP带宽上调度。
对于指示为包含下行部分,且指示为灵活时隙/符号的时隙/符号,SFI动态指示为上行时隙/符号的情况下,该时隙/符号为包含下行部分的时隙/符号。
对于指示为包含下行部分,且指示为灵活时隙/符号的时隙/符号,SFI动态指示为下行时隙/符号的情况下,该时隙/符号为下行时隙/符号。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图15是本申请实施例提供的无线通信装置的可选地结构组成示意图,应用于终端设备,如图15所示,无线通信装置1500包括:
第一通信单元1501,配置为接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例中,无线通信装置1500还可包括存储单元,配置为存储第二配置信息。
在一些实施例中,所述第一配置信息用于指示以下至少之一:
第一周期内的每个时间单元是否属于所述第一时域资源;
第一数量,所述第一时域资源包括所述第一周期中所述第一数量个时间单元;
第一位置和所述第一数量,所述第一时域资源包括所述第一周期中以所述第一位置为起始位置或终止位置的第一数量个时间单元。
在一些实施例中,所述第一周期基于所述第二配置信息确定。
在一些实施例中,属于所述第一时域资源的目标时间单元的传输方式包括以下之一:
所述目标时间单元的整个频域资源作为整体用于上行传输;
所述目标时间单元的整个频域资源作为整体用于下行传输;
所述目标时间单元的所述第一频域部分的传输方式与第二频域部分的传输方式独立,所述第二频域部分为所述目标时间单元中除所述第一频域部分以外的其他频域部分。
在一些实施例中,所述目标时间单元的传输方式基于所述第一配置信息确定。
在一些实施例中,所述目标时间单元的所述第一频域部分的传输方式与所述第二频域部分的传输方式独立。
在一些实施例中,所述目标时间单元的传输方式基于所述第一配置信息和所述第二配置信息确定。
在一些实施例中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述目标时间单元的整个频域资源作为整体用于上行传输;
若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部 分用于下行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于上行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述目标时间单元的整个频域资源作为整体用于上行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且第一频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第一频域资源为所述目标时间单元在频域上用于上行传输的频域资源;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域作为整体用于上行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输。
在一些实施例中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且第二频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第二频域资源为所述目标时间单元在频域上用于下行传输的频域资源;
若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输。
在一些实施例中,若所述第一频域部分用于上行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为下行;或,
若所述第一频域部分用于下行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为上行。
在一些实施例中,所述第二配置信息包括以下至少之一:
上下行公共配置;
上下行专用配置;
SFI。
图16是本申请实施例提供的无线通信装置的可选地结构组成示意图,应用于网络设备,如图16所示,无线通信装置1600包括:
第二通信单元1601,配置为向终端设备发送第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
本申请实施例中,无线通信装置1600还可包括:配置单元,用于确定第一配置信息。
在一些实施例中,所述第一配置信息用于指示以下至少之一:
第一周期内的每个时间单元是否属于所述第一时域资源;
第一数量,所述第一时域资源包括所述第一周期中所述第一数量个时间单元;
第一位置和所述第一数量,所述第一时域资源包括所述第一周期中以所述第一位置为起始位置或终止位置的第一数量个时间单元。
在一些实施例中,所述第一周期基于所述第二配置信息确定。
在一些实施例中,属于所述第一时域资源的目标时间单元的传输方式包括以下之一:
所述目标时间单元的整个频域资源作为整体用于上行传输;
所述目标时间单元的整个频域资源作为整体用于下行传输;
所述目标时间单元的所述第一频域部分的传输方式与第二频域部分的传输方式独立,所述第二频域部分为所述目标时间单元中除所述第一频域部分以外的其他频域部分。
在一些实施例中,所述目标时间单元的传输方式基于所述第一配置信息确定。
在一些实施例中,所述目标时间单元的所述第一频域部分的传输方式与所述第二频域部分的传输方式独立。
在一些实施例中,所述目标时间单元的传输方式基于所述第一配置信息和所述第二配置信息确定。
在一些实施例中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述目标时间单元的整个频域资源作为整体用于上行传输;
若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于上行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述目标时间单元的整个频域资源作为整体用于上行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且第一频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第一频域资源为所述目标时间单元在频域上用于上行传输的频域资源;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域作为整体用于上行传输;
若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为 灵活,所述目标时间单元被调度用于下行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输。
在一些实施例中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且第二频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第二频域资源为所述目标时间单元在频域上用于下行传输的频域资源;
若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域资源作为整体用于下行传输;
若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输。
在一些实施例中,若所述第一频域部分用于上行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为下行;或,
若所述第一频域部分用于下行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为上行。
在一些实施例中,所述第二配置信息包括以下至少之一:
上下行公共配置;
上下行专用配置;
SFI。
本领域技术人员应当理解,本申请实施例的上述无线通信装置的相关描述可以参照本申请实施例的无线通信方法的相关描述进行理解。
图17是本申请实施例提供的一种通信设备1700示意性结构图。该通信设备可以终端设备,也可以是网络设备。图17所示的通信设备1700包括处理器1710,处理器1710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图17所示,通信设备1700还可以包括存储器1720。其中,处理器1710可以从存储器1720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1720可以是独立于处理器1710的一个单独的器件,也可以集成在处理器1710中。
在一些实施例中,如图17所示,通信设备1700还可以包括收发器1730,处理器1710可以控制该收发器1730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1730可以包括发射机和接收机。收发器1730还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备1700具体可为本申请实施例的网络设备,并且该通信设备1700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备1700为本申请实施例的网络设备,则处理器1710可实施为无线通信装置1600中的配置模块,收发器1730可实施为无线通信装置1600中的第二通信单元。
在一些实施例中,该通信设备1700具体可为本申请实施例的移动终端/终端设备,并且该通信设备1700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备1700为本申请实施例的终端设备,则存储器1720可实施为无线通信装置1500中的存储模块,收发器1730可实施为无线通信装置1500中的第一通信单元。
图18是本申请实施例的芯片的示意性结构图。图18所示的芯片1800包括处理器1810,处理器1810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图18所示,芯片1800还可以包括存储器1820。其中,处理器1810可以从存储器1820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1820可以是独立于处理器1810的一个单独的器件,也可以集成在处理器1810中。
在一些实施例中,该芯片1800还可以包括输入接口1830。其中,处理器1810可以控制该输入接口1830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片1800还可以包括输出接口1840。其中,处理器1810可以控制该输出接口840与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统1900的示意性框图。如图19所示,该通信系统1900包括终端设备1910和网络设备1920。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序的运行使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序的运行使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令的运行使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令的运行使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种无线通信方法,所述方法包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
  2. 根据权利要求2所述的方法,其中,所述第一配置信息用于指示以下至少之一:
    第一周期内的每个时间单元是否属于所述第一时域资源;
    第一数量,所述第一时域资源包括所述第一周期中所述第一数量个时间单元;
    第一位置和所述第一数量,所述第一时域资源包括所述第一周期中以所述第一位置为起始位置或终止位置的第一数量个时间单元。
  3. 根据权利要求2所述的方法,其中,所述第一周期基于所述第二配置信息确定。
  4. 根据权利要求1至3中任一项所述的方法,其中,属于所述第一时域资源的目标时间单元的传输方式包括以下之一:
    所述目标时间单元的整个频域资源作为整体用于上行传输;
    所述目标时间单元的整个频域资源作为整体用于下行传输;
    所述目标时间单元的第一频域部分的传输方式与第二频域部分的传输方式独立,所述第二频域部分为所述目标时间单元中除所述第一频域部分以外的其他频域部分。
  5. 根据权利要求4所述的方法,其中,所述目标时间单元的传输方式基于所述第一配置信息确定。
  6. 根据权利要求5所述的方法,其中,所述目标时间单元的所述第一频域部分的传输方式与所述第二频域部分的传输方式独立。
  7. 根据权利要求4所述的方法,其中,所述目标时间单元的传输方式基于所述第一配置信息和所述第二配置信息确定。
  8. 根据权利要求7所述的方法,其中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
    若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述目标时间单元的整个频域资源作为整体用于上行传输;
    若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于上行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述目标时间单元的整个频域资源作为整体用于上行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且第一频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第一频域资源为所述目标时间单元在频域上用于上行传输的频域资源;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域作为整体用于上行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输。
  9. 根据权利要求7所述的方法,其中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且第二频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第二频域资源为所述目标时间单元在频域上用于下行传输的频域资源;
    若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输。
  10. 根据权利要求1至9中任一项所述的方法,其中,
    若所述第一频域部分用于上行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为下行;或,
    若所述第一频域部分用于下行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为上行。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述第二配置信息包括以下至少之一:
    上下行公共配置;
    上下行专用配置;
    时隙格式指示SFI。
  12. 一种无线通信方法,所述方法包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
  13. 根据权利要求12所述的方法,其中,所述第一配置信息用于指示以下至少之一:
    第一周期内的每个时间单元是否属于所述第一时域资源;
    第一数量,所述第一时域资源包括所述第一周期中所述第一数量个时间单元;
    第一位置和所述第一数量,所述第一时域资源包括所述第一周期中以所述第一位置为起始位置或终止位置的第一数量个时间单元。
  14. 根据权利要求13所述的方法,其中,所述第一周期基于所述第二配置信息确定。
  15. 根据权利要求12至14中任一项所述的方法,其中,属于所述第一时域资源的目标时间单元的传输方式包括以下之一:
    所述目标时间单元的整个频域资源作为整体用于上行传输;
    所述目标时间单元的整个频域资源作为整体用于下行传输;
    所述第一频域部分的传输方式与第二频域部分的传输方式独立,所述第二频域部分为所述目标时间单元中除所述第一频域部分以外的其他频域部分。
  16. 根据权利要求15所述的方法,其中,所述目标时间单元的传输方式基于所述第一配置信息确定。
  17. 根据权利要求16所述的方法,其中,所述目标时间单元的所述第一频域部分的传输方式与所述第二频域部分的传输方式独立。
  18. 根据权利要求15所述的方法,其中,所述目标时间单元的传输方式基于所述第一配置信息和所述第二配置信息确定。
  19. 根据权利要求18所述的方法,其中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
    若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述目标时间单元的整个频域资源作为整体用于上行传输;
    若所述第一频域部分用于上行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于上行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述目标时间单元的整个频域资源作为整体用于上行传输;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且第一频域资源位于所述第一频域部分内,则所述第一频域部分与所述第二频域部分独立,所述第一频域资源为所述目标时间单元在频域上用于上行传输的频域资源;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于上行传输,所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,且所述第一频域资源占用所述目标时间单元的所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域作为整体用于上行传输;
    若所述第一频域部分用于上行传输、所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于下行传输。
  20. 根据权利要求18所述的方法,其中,所述目标时间单元的传输方式的确定方式包括以下至少之一:
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为下行,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为上行,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配 置为灵活,所述目标时间单元被调度用于下行传输,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且第二频域资源位于所述第一频域部分内,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,所述第二频域资源为所述目标时间单元在频域上用于下行传输的频域资源;
    若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第二频域部分,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立;
    若所述第一频域部分用于下行传输,所述目标时间单元的传输方向被第二配置信息配置为灵活,所述目标时间单元被调度用于下行传输,且所述第二频域资源占用所述第一频域部分和所述第二频域部分,则所述目标时间单元的整个频域资源作为整体用于下行传输;
    若所述第一频域部分用于下行传输,且所述目标时间单元的传输方向被所述第二配置信息配置为灵活,所述目标时间单元被调度用于上行传输,则所述第一频域部分的传输方式与所述第二频域部分的传输方式独立,且所述第二频域部分用于上行传输。
  21. 根据权利要求12至20中任一项所述的方法,其中,
    若所述第一频域部分用于上行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为下行;或,
    若所述第一频域部分用于下行传输,所述第二配置信息配置所述第一时域资源中的时间单元的传输方向为上行。
  22. 根据权利要求12至21中任一项所述的方法,其中,所述第二配置信息包括以下至少之一:
    上下行公共配置;
    上下行专用配置;
    时隙格式指示SFI。
  23. 一种无线通信装置,包括:
    第一通信单元,配置为接收网络设备发送的第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
  24. 一种无线通信装置,包括:
    第二通信单元,配置为向终端设备发送第一配置信息,所述第一配置信息用于指示第一时域资源,所述第一时域资源在频域上包含第一频域部分,其中,对于所述第一时域资源包括的任一时间单元,所述第一频域部分的传输方向能与第二配置信息配置的所述时间单元的传输方向不同,所述第二配置信息用于配置一个周期内每个时间单元的传输方向。
  25. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述通信设备执行如权利要求1至11中任一项所述的方法,或执行如权利要求12至22中任一项所述的方法。
  26. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备,执行如权利要求1至11中任一项所述的方法,或执行如权利要求12至22中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序的运行使得计算机,执行如权利要求1至11中任一项所述的方法,或执行如权利要求12至22中任一项所述的方法。
  28. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令的运行使得计算机,执行如权利要求1至11中任一项所述的方法,或执行如权利要求12至22中任一项所述的方法。
  29. 一种计算机程序,所述计算机程序的运行使得计算机,执行如权利要求1至11中任一项所述的方法,或执行如权利要求12至22中任一项所述的方法。
PCT/CN2022/119735 2022-09-19 2022-09-19 一种无线通信方法及装置、设备及存储介质 WO2024059985A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119735 WO2024059985A1 (zh) 2022-09-19 2022-09-19 一种无线通信方法及装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119735 WO2024059985A1 (zh) 2022-09-19 2022-09-19 一种无线通信方法及装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024059985A1 true WO2024059985A1 (zh) 2024-03-28

Family

ID=90453592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119735 WO2024059985A1 (zh) 2022-09-19 2022-09-19 一种无线通信方法及装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024059985A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391152A (zh) * 2012-05-09 2013-11-13 电信科学技术研究院 不同上/下行配置载波聚合的重叠子帧传输方法及装置
CN107734660A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 资源配置方法、装置及设备
CN110870372A (zh) * 2017-05-18 2020-03-06 弗劳恩霍夫应用研究促进协会 全双工下行链路和上行链路方向
CN111263446A (zh) * 2018-11-30 2020-06-09 北京三星通信技术研究有限公司 传输方法、传输资源配置方法、ue、基站及计算机可读介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391152A (zh) * 2012-05-09 2013-11-13 电信科学技术研究院 不同上/下行配置载波聚合的重叠子帧传输方法及装置
CN107734660A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 资源配置方法、装置及设备
CN110870372A (zh) * 2017-05-18 2020-03-06 弗劳恩霍夫应用研究促进协会 全双工下行链路和上行链路方向
CN111263446A (zh) * 2018-11-30 2020-06-09 北京三星通信技术研究有限公司 传输方法、传输资源配置方法、ue、基站及计算机可读介质

Similar Documents

Publication Publication Date Title
WO2020147115A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2019213971A1 (zh) 上行信号的发送方法和终端设备
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
CN113068259B (zh) 无线通信方法和设备
CN111107656B (zh) 调度方法、数据传输方法及装置
WO2020140289A1 (zh) 资源分配的方法、终端设备和网络设备
EP4178302A1 (en) Data transmission method and terminal device
US20220330342A1 (en) Wireless communication method, terminal device, and network device
CN112997433B (zh) 用于harq传输的方法以及通信设备
TW202041072A (zh) 通訊方法和終端設備
TW202019221A (zh) 一種回饋資源配置方法、終端設備及網路設備
WO2023050081A1 (zh) 无线通信方法、终端设备和网络设备
WO2024059985A1 (zh) 一种无线通信方法及装置、设备及存储介质
WO2021203230A1 (zh) 上行控制信息传输方法及装置、终端设备
CN113939019A (zh) 通信方法及通信设备
WO2023065365A1 (zh) 无线通信方法、终端设备和网络设备
WO2022217519A1 (zh) 无线通信方法、终端设备和网络设备
WO2023131067A1 (zh) 一种频域资源配置方法及装置、通信设备
WO2023133902A1 (zh) 一种无线通信方法及装置、终端设备、网络设备
WO2024055242A1 (zh) 一种通信方法及装置、通信设备、融合组网架构
WO2023097622A1 (zh) 上行信号传输方法、设备、芯片、介质、产品及程序
WO2023000332A1 (zh) 通信方法及装置
WO2023133706A1 (zh) 一种数据传输方法及装置、终端设备、网络设备
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958997

Country of ref document: EP

Kind code of ref document: A1