WO2023000332A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023000332A1
WO2023000332A1 PCT/CN2021/108254 CN2021108254W WO2023000332A1 WO 2023000332 A1 WO2023000332 A1 WO 2023000332A1 CN 2021108254 W CN2021108254 W CN 2021108254W WO 2023000332 A1 WO2023000332 A1 WO 2023000332A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
mini
regular time
time slot
configuration information
Prior art date
Application number
PCT/CN2021/108254
Other languages
English (en)
French (fr)
Inventor
张世昌
林晖闵
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/108254 priority Critical patent/WO2023000332A1/zh
Priority to CN202180097745.2A priority patent/CN117426131A/zh
Publication of WO2023000332A1 publication Critical patent/WO2023000332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • Device-to-Device communication (Device-to-Device, D2D) is a sidelink (Sidelink, SL) transmission technology, which is different from the way communication data is received or sent by the base station in the traditional cellular system, and it has higher Spectrum efficiency and lower transmission delay.
  • SAlink Sidelink
  • the NR New Radio (NR) User to Network interface Universal (Uu) interface transmission system also introduces mini-slots (mini- slot) transmission or scheduling. That is, the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or physical uplink shared channel (Physical Downlink Shared Channel, PDSCH) scheduled by the network is not based on the regular time slot, but is based on the time domain symbols in the regular time slot. Granularity, so that the purpose of reducing the delay can be achieved.
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • Embodiments of the present application provide a communication method and device to solve the problem in the prior art that co-existence of mini-slots and regular time slots cannot be guaranteed when a sidelink transmission method based on mini-slots is used.
  • the first aspect of the present application provides a communication method, the method comprising:
  • the terminal device determines the resource pool according to the configuration information, and the configuration information includes configuration modes of mini-slots and regular time slots.
  • the configuration information is configured or preconfigured by a network device or defined by a standard.
  • the resource pool is used for sidelink transmission, and the sidelink transmission is at least minislot-based sidelink transmission.
  • the configuration manner includes resource pools in which the mini-slot and the regular time slot exist in different time divisions.
  • the configuration information further includes first indication information, where the first indication information is used to indicate the minimum time-domain granularity of the resource pool.
  • the remaining symbols in the regular time slot are also configured as A resource pool with the mini-slot as the minimum resource granularity.
  • the configuration information further includes second indication information and third indication information, and the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located.
  • the third indication information is used to indicate the position of the mini-slot belonging to the resource pool in the regular time slot.
  • the second indication information includes bitmap information
  • the third indication information includes an index value or multiple positioning parameters
  • the multiple positioning parameters include the The starting point parameter of the time slot in the regular time slot and the length parameter of the mini-slot belonging to the resource pool.
  • the configuration manner includes that the mini-slot and the regular time slot exist in different frequency-divided resource pools.
  • the configuration manner includes that the mini-slot and the regular time slot exist in the same resource pool.
  • the configuration information further includes configuration information of the mini-slot, and the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and the Mini-slots are located on the third-to-last and second-to-last symbols of a side row slot.
  • the configuration information of the mini-slot further includes that the frequency domain resource occupied by the mini-slot does not overlap with the frequency domain resource occupied by the physical sidelink feedback channel existing on the same symbol.
  • the configuration information of the mini-slot further includes when the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located in the next sidelink on the fourth last symbol of the slot.
  • the sending time of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot in the penultimate symbol is no later than a preset time
  • the preset time is the end time of the penultimate symbol.
  • the physical sidelink control channel sent in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the configuration information of the mini-slot further includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located at the penultimate sidelink time slot on three symbols and occupies the entire third-to-last symbol.
  • the physical sidelink control channel sent on the symbol other than the mini-slot in the regular time slot is used to indicate that the resource on the mini-slot is reserved for repeated transmission of the same transport block. transfer or a new transfer of another transport block.
  • the number of physical resource blocks contained in one subchannel in the mini-slot is greater than the number of physical resource blocks contained in one subchannel in the regular time slot.
  • the configuration information further includes configuration information of the regular time slot, and the configuration information of the regular time slot is used to determine to send the physical sidelink shared channel on the mini-slot And when the number of sub-channels occupied by the physical sidelink shared channel is a preset number, the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for transmission of the physical sidelink shared channel in a preset number of subchannels on the regular time slot and the regular time slot The number of resources used for sending a physical sidelink control channel and a demodulation reference signal of the physical sidelink control channel in the slot.
  • the configuration information of the regular time slot is also used to determine the size of the transport block.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of side symbols on the regular time slot, and the configuration of the number of symbols on the regular time slot.
  • the sidelink control information used to indicate reserved resources in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate reserved resources. Resources are located in the mini-slots or in the regular slots.
  • the downlink control information in the sidelink transmission includes fifth indication information, and the fifth indication information is used to indicate that the mini-slot or the mini-slot is currently scheduled. regular time slots.
  • a second aspect of the present application provides a communication method, the method comprising:
  • the network device sends configuration information, the configuration information includes configuration modes of the mini-slot and the regular time slot, and the configuration information is used to determine the resource pool.
  • the resource pool is used for sidelink transmission, and the sidelink transmission is at least minislot-based sidelink transmission.
  • the configuration manner includes resource pools in which the mini-slot and the regular time slot exist in different time divisions.
  • the configuration information further includes first indication information, where the first indication information is used to indicate the minimum time-domain granularity of the resource pool.
  • the remaining symbols in the regular time slot are also configured as A resource pool with the mini-slot as the minimum resource granularity.
  • the configuration information further includes second indication information and third indication information, and the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located.
  • the third indication information is used to indicate the position of the mini-slot belonging to the resource pool in the regular time slot.
  • the second indication information includes bitmap information
  • the third indication information includes an index value or multiple positioning parameters
  • the multiple positioning parameters include the The starting point parameter of the time slot in the regular time slot and the length parameter of the mini-slot belonging to the resource pool.
  • the configuration manner includes that the mini-slot and the regular time slot exist in different frequency-divided resource pools.
  • the configuration manner includes that the mini-slot and the regular time slot exist in the same resource pool.
  • the configuration information further includes configuration information of the mini-slot, and the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and the Mini-slots are located on the third-to-last and second-to-last symbols of a side row slot.
  • the configuration information of the mini-slot further includes that the frequency domain resource occupied by the mini-slot does not overlap with the frequency domain resource occupied by the physical sidelink feedback channel existing on the same symbol.
  • the configuration information of the mini-slot further includes when the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located in the next sidelink on the fourth last symbol of the slot.
  • the sending time of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot in the penultimate symbol is no later than a preset time
  • the preset time is the end time of the penultimate symbol.
  • the physical sidelink control channel sent in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the configuration information of the mini-slot further includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located at the penultimate sidelink time slot on three symbols and occupies the entire third-to-last symbol.
  • the physical sidelink control channel sent on the symbol other than the mini-slot in the regular time slot is used to indicate that the resource on the mini-slot is reserved for repeated transmission of the same transport block. transfer or a new transfer of another transport block.
  • the number of physical resource blocks contained in one subchannel in the mini-slot is greater than the number of physical resource blocks contained in one subchannel in the regular time slot.
  • the configuration information further includes configuration information of the regular time slot, and the configuration information of the regular time slot is used to determine to send the physical sidelink shared channel on the mini-slot And when the number of sub-channels occupied by the physical sidelink shared channel is a preset number, the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for transmission of the physical sidelink shared channel in a preset number of subchannels on the regular time slot and the regular time slot The number of resources used for sending a physical sidelink control channel and a demodulation reference signal of the physical sidelink control channel in the slot.
  • the configuration information of the regular time slot is also used to determine the size of the transport block.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of side symbols on the regular time slot, and the configuration of the number of symbols on the regular time slot.
  • the sidelink control information used to indicate reserved resources in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate reserved resources. Resources are located in the mini-slots or in the regular slots.
  • the downlink control information in the sidelink transmission includes fifth indication information, and the fifth indication information is used to indicate that the mini-slot or the mini-slot is currently scheduled. regular time slots.
  • the third aspect of the present application provides a communication device, including:
  • the acquiring module is configured to determine the resource pool according to the configuration information, the configuration information includes configuration modes of mini-slots and regular time slots.
  • the configuration information is configured or preconfigured by a network device or defined by a standard.
  • the resource pool is used for sidelink transmission, and the sidelink transmission is at least minislot-based sidelink transmission.
  • the configuration manner includes resource pools in which the mini-slot and the regular time slot exist in different time divisions.
  • the configuration information further includes first indication information, where the first indication information is used to indicate the minimum time-domain granularity of the resource pool.
  • the remaining symbols in the regular time slot are also configured as A resource pool with the mini-slot as the minimum resource granularity.
  • the configuration information further includes second indication information and third indication information, and the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located.
  • the third indication information is used to indicate the position of the mini-slot belonging to the resource pool in the regular time slot.
  • the second indication information includes bitmap information
  • the third indication information includes an index value or multiple positioning parameters
  • the multiple positioning parameters include the The starting point parameter of the time slot in the regular time slot and the length parameter of the mini-slot belonging to the resource pool.
  • the configuration manner includes that the mini-slot and the regular time slot exist in different frequency-divided resource pools.
  • the configuration manner includes that the mini-slot and the regular time slot exist in the same resource pool.
  • the configuration information further includes configuration information of the mini-slot, and the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and the Mini-slots are located on the third-to-last and second-to-last symbols of a side row slot.
  • the configuration information of the mini-slot further includes that the frequency domain resource occupied by the mini-slot does not overlap with the frequency domain resource occupied by the physical sidelink feedback channel existing on the same symbol.
  • the configuration information of the mini-slot further includes when the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located in the next sidelink on the fourth last symbol of the slot.
  • the sending time of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot in the penultimate symbol is no later than a preset time
  • the preset time is the end time of the penultimate symbol.
  • the physical sidelink control channel sent in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the configuration information of the mini-slot further includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located at the penultimate sidelink time slot on three symbols and occupies the entire third-to-last symbol.
  • the physical sidelink control channel sent on the symbol other than the mini-slot in the regular time slot is used to indicate that the resource on the mini-slot is reserved for repeated transmission of the same transport block. transfer or a new transfer of another transport block.
  • the number of physical resource blocks contained in one subchannel in the mini-slot is greater than the number of physical resource blocks contained in one subchannel in the regular time slot.
  • the configuration information further includes configuration information of the regular time slot, and the configuration information of the regular time slot is used to determine to send the physical sidelink shared channel on the mini-slot And when the number of sub-channels occupied by the physical sidelink shared channel is a preset number, the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for transmission of the physical sidelink shared channel in a preset number of subchannels on the regular time slot and the regular time slot The number of resources used for sending a physical sidelink control channel and a demodulation reference signal of the physical sidelink control channel in the slot.
  • the configuration information of the regular time slot is also used to determine the size of the transport block.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of side symbols on the regular time slot, and the configuration of the number of symbols on the regular time slot.
  • the sidelink control information used to indicate reserved resources in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate reserved resources. Resources are located in the mini-slots or in the regular slots.
  • the downlink control information in the sidelink transmission includes fifth indication information, and the fifth indication information is used to indicate that the mini-slot or the mini-slot is currently scheduled. regular time slots.
  • a fourth aspect of the present application provides a communication device, the device comprising:
  • a sending module configured to send configuration information, the configuration information includes configuration modes of mini-slots and regular timeslots, and the configuration information is used to determine a resource pool.
  • the resource pool is used for sidelink transmission, and the sidelink transmission is at least minislot-based sidelink transmission.
  • the configuration manner includes resource pools in which the mini-slot and the regular time slot exist in different time divisions.
  • the configuration information further includes first indication information, where the first indication information is used to indicate the minimum time-domain granularity of the resource pool.
  • the remaining symbols in the regular time slot are also configured as A resource pool with the mini-slot as the minimum resource granularity.
  • the configuration information further includes second indication information and third indication information, and the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located.
  • the third indication information is used to indicate the position of the mini-slot belonging to the resource pool in the regular time slot.
  • the second indication information includes bitmap information
  • the third indication information includes an index value or multiple positioning parameters
  • the multiple positioning parameters include the The starting point parameter of the time slot in the regular time slot and the length parameter of the mini-slot belonging to the resource pool.
  • the configuration manner includes that the mini-slot and the regular time slot exist in different frequency-divided resource pools.
  • the configuration manner includes that the mini-slot and the regular time slot exist in the same resource pool.
  • the configuration information further includes configuration information of the mini-slot, and the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and the Mini-slots are located on the third-to-last and second-to-last symbols of a side row slot.
  • the configuration information of the mini-slot further includes that the frequency domain resource occupied by the mini-slot does not overlap with the frequency domain resource occupied by the physical sidelink feedback channel existing on the same symbol.
  • the configuration information of the mini-slot further includes when the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located in the next sidelink on the fourth last symbol of the slot.
  • the sending time of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot in the penultimate symbol is no later than a preset time
  • the preset time is the end time of the penultimate symbol.
  • the physical sidelink control channel sent in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the configuration information of the mini-slot further includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located at the penultimate sidelink time slot on three symbols and occupies the entire third-to-last symbol.
  • the physical sidelink control channel sent on the symbol other than the mini-slot in the regular time slot is used to indicate that the resource on the mini-slot is reserved for repeated transmission of the same transport block. transfer or a new transfer of another transport block.
  • the number of physical resource blocks contained in one subchannel in the mini-slot is greater than the number of physical resource blocks contained in one subchannel in the regular time slot.
  • the configuration information further includes configuration information of the regular time slot, and the configuration information of the regular time slot is used to determine to send the physical sidelink shared channel on the mini-slot And when the number of sub-channels occupied by the physical sidelink shared channel is a preset number, the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for transmission of the physical sidelink shared channel in a preset number of subchannels on the regular time slot and the regular time slot The number of resources used for sending a physical sidelink control channel and a demodulation reference signal of the physical sidelink control channel in the slot.
  • the configuration information of the regular time slot is also used to determine the size of the transport block.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of side symbols on the regular time slot, and the configuration of the number of symbols on the regular time slot.
  • the sidelink control information used to indicate reserved resources in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate reserved resources. Resources are located in the mini-slots or in the regular slots.
  • the downlink control information in the sidelink transmission includes fifth indication information, and the fifth indication information is used to indicate that the mini-slot or the mini-slot is currently scheduled. regular time slots.
  • the fifth aspect of the present application provides a terminal device, including:
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the communication method as described in the first aspect.
  • the sixth aspect of this application provides a network device, including:
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the communication method as described in the second aspect.
  • a seventh aspect of the present application provides a chip, including: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the chip executes the method described in the first aspect.
  • An eighth aspect of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the method as described in the second aspect.
  • a ninth aspect of the present application provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method as described in the first aspect.
  • a tenth aspect of the present application provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method as described in the second aspect.
  • the eleventh aspect of the present application provides a computer program product, including computer instructions.
  • the computer instructions are executed by a processor, the method as described in the first aspect is implemented.
  • a twelfth aspect of the present application provides a computer program product, including computer instructions, and when the computer instructions are executed by a processor, the method as described in the second aspect is implemented.
  • a thirteenth aspect of the present application provides a computer program, the computer program causes a computer to execute the method described in the first aspect.
  • the fourteenth aspect of the present application provides a device, the device may include: at least one processor and an interface circuit, and the program instructions involved are executed in the at least one processor, so that the communication device implements the communication device described in the first aspect. described method.
  • the fifteenth aspect of the present application provides a device, the device may include: at least one processor and an interface circuit, and the program instructions involved are executed in the at least one processor, so that the communication device implements the communication device described in the second aspect. described method.
  • a sixteenth aspect of the present application provides a communication system, including: the communication device according to the third aspect, and the communication device according to the fourth aspect.
  • a seventeenth aspect of the present application provides a communication device, the device is used to execute the method described in the first aspect.
  • the eighteenth aspect of the present application provides a communication device, the device is used to execute the method described in the second aspect.
  • the terminal device determines the resource pool according to the configuration information during the sidelink transmission, and the configuration information includes the configuration modes of mini-slots and regular time slots. In this manner, the terminal device determines the resource pool according to the configuration manner of the mini-slot and the regular time slot, thereby ensuring the coexistence of the regular time slot and the mini-slot.
  • FIG. 1 is a schematic diagram of line communication within network coverage provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of partial network coverage side communication provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of outbound communication under network coverage provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a unicast transmission provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a multicast transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a broadcast transmission provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another time slot structure provided by an embodiment of the present application.
  • FIG. 9 is a resource mapping diagram of a second-order SCI provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a format of a lateral feedback channel provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of mini-slot scheduling provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a position of a mini-slot provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a time-frequency position of a mini-slot provided by an embodiment of the present application.
  • FIG. 16 is a signaling interaction diagram of a communication method provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the side communication can be divided into network coverage inner communication, partial network coverage side communication, and network coverage outer communication.
  • Figure 1 is a schematic diagram of a network coverage internal line communication provided by the embodiment of the application
  • Figure 2 is a schematic diagram of a partial network coverage side line communication provided by the embodiment of the application
  • Figure 3 is a schematic diagram of a network coverage provided by the embodiment of the application Schematic diagram of line communication outside the network coverage.
  • some terminals performing lateral communication are located within the coverage of the network equipment, and terminals located within the coverage of the network equipment can receive configuration signaling from the network equipment. And carry out side communication according to the configuration of the base station.
  • terminals located outside the network coverage cannot receive configuration signaling from network devices.
  • terminals outside the network coverage will perform configuration based on pre-configuration information and physical side signals sent by terminals within the network coverage.
  • the information carried in the broadcast channel (Physical Sidelink Broadcast Channel, PSBCH) determines the sidelink configuration for sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • all terminals performing side communication are located outside the network coverage, and all terminals determine the side configuration according to the pre-configuration information, so as to perform side communication.
  • Device-to-device communication is a sidelink transmission technology, which is different from the way communication data is received or sent through the base station in traditional cellular systems, and has higher spectral efficiency and lower transmission delay.
  • the Internet of Vehicles system adopts a device-to-device communication method, and two transmission modes are defined in the 3rd Generation Partnership Project (3GPP): the first mode and the second mode.
  • 3GPP 3rd Generation Partnership Project
  • the transmission resource of the terminal device is allocated by the network device, and the terminal device sends data on the sidelink according to the resource allocated by the terminal device.
  • the network device may allocate resources for a single transmission to the terminal device, and may also allocate resources for semi-static transmission to the terminal device. As shown in FIG. 1 , the terminal device is located within the coverage of the network, and the network device allocates transmission resources for sidelink transmission to the terminal.
  • the terminal device selects a resource from the resource pool for data transmission.
  • the terminal device is located outside the coverage of the cell, and the terminal device autonomously selects transmission resources from a pre-configured resource pool for sidelink transmission.
  • the terminal device autonomously selects transmission resources from the resource pool configured by the network for sidelink transmission.
  • the following describes the NR vehicle wireless communication technology (vehicle to X, V2X).
  • FIG. 4 is a schematic diagram of a unicast transmission provided in an embodiment of the present application
  • FIG. 5 is a schematic diagram of a multicast transmission provided in an embodiment of the present application
  • FIG. 6 is a schematic diagram of a broadcast transmission provided in an embodiment of the present application.
  • unicast transmission there is only one terminal at the receiving end. As shown in FIG. 4 , unicast transmission is performed between user equipment (User Equipment, UE) 1 and UE2.
  • UE User Equipment
  • the receiving end is all terminals in a communication group, or all terminals within a certain transmission distance, as shown in Figure 5, UE1, UE2, UE3 and UE4 form a communication group, where UE1 sends data, the All other terminal devices in the group are receiver terminals.
  • the receiving end is any terminal around the sending end terminal, as shown in Figure 6, UE1 is the sending end terminal, and other terminals around it, UE2-UE6 are all receiving end terminals.
  • the following describes the time slot structure of the NR-V2X system frame.
  • FIG. 7 is a schematic diagram of a time slot structure provided by an embodiment of the present application
  • FIG. 8 is a schematic diagram of another time slot structure provided by an embodiment of the present application.
  • the time slot structure shown in FIG. 7 does not include a physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH), and the time slot structure shown in FIG. 8 includes PSFCH.
  • PSFCH Physical Sidelink Feedback Channel
  • the Physical Sidelink Control Channel starts from the second sidelink symbol of the time slot in the time domain and occupies 2 or 3 normal Orthogonal Frequency Division Multiplexing (OFDM) symbols can occupy ⁇ 10, 12, 15, 20, 25 ⁇ physical resource blocks (Orthogonal Frequency Division Multiplexing, PRB) in the frequency domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool, so as not to affect the Physical Sidelink Shared Channel (Physical Sidelink Shared Channel, PSSCH) resource selection or allocation creates additional constraints.
  • the PSSCH also starts from the second side row symbol of the time slot, the last time domain symbol in the time slot is a guard interval (Guard period, GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first side row symbol in this time slot is the repetition of the second side row symbol.
  • the receiving terminal uses the first side row symbol as an automatic gain control (Automatic Gain Control, AGC) symbol.
  • AGC Automatic Gain Control
  • Data is generally not used for data demodulation.
  • the PSSCH occupies K subchannels in the frequency domain, and each subchannel includes N consecutive PRBs.
  • a time slot includes a PSFCH channel
  • the second-to-last and third-to-last symbols in the time slot are used for PSFCH channel transmission, and a time domain symbol before the PSFCH channel is used as a GP symbol.
  • the second-order SCI is introduced, and the first-order SCI is carried in the PSCCH, which is used to indicate the transmission resources of the PSSCH, reserved resource information, modulation and coding strategy (Modulation and Coding Scheme, MCS) level, priority and other information , the second-order SCI is sent in the resources of the PSSCH, and demodulated by using the demodulation reference signal (Demodulation Reference Signal, DMRS) of the PSSCH, which is used to indicate the identity of the sending end, the identity of the receiving end, and the hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) identification, network device interface (Network Device Interface, NDI) and other information used for data demodulation.
  • DMRS Demodulation Reference Signal
  • HARQ Hybrid Automatic Repeat Request
  • FIG. 9 is a resource mapping diagram of a second-order SCI provided by an embodiment of the present application.
  • PSCCH occupies 3 symbols (symbols 1, 2, 3), and DMRS of PSSCH occupies symbols 4 and 11.
  • the second-order SCI is mapped from symbol 4, and frequency division multiplexed with DMRS on symbol 4.
  • the second-order SCI is mapped to symbols 4, 5, and 6, and the resource size occupied by the second-order SCI depends on the number of bits of the second-order SCI.
  • a sidelink feedback channel is introduced.
  • the transmitting terminal sends sidelink data (including PSCCH and PSSCH) to the receiving terminal
  • the receiving terminal sends HARQ feedback information (including acknowledgment character (Acknowledge character, ACK) or acknowledgment to the transmitting terminal character (Non Acknowledge character, NACK))
  • the sending terminal judges whether retransmission is required according to the feedback information of the receiving terminal.
  • the HARQ feedback information is carried in a sidelink feedback channel, such as PSFCH.
  • sidelink feedback can be activated or deactivated through pre-configuration information or network configuration information. If the sidelink feedback is activated, the receiving terminal receives the sidelink data sent by the transmitting terminal, and feeds back HARQ ACK or NACK to the transmitting terminal according to the detection result, and the transmitting terminal decides to send retransmission data or new data according to the feedback information of the receiving terminal . If the sidelink feedback is deactivated, the receiving terminal does not need to send feedback information, and the transmitting terminal usually uses blind retransmission to send data. For example, the transmitting terminal repeats sending K times for each sidelink data, instead of receiving The end-terminal feedback information determines whether to send retransmission data.
  • FIG. 10 is a schematic diagram of a format of a sidelink feedback channel provided by an embodiment of the present application. As shown in FIG. 10 , the positions of time-domain symbols occupied by PSFCH, PSCCH and PSSCH in a time slot are given.
  • the last symbol is used as GP
  • the penultimate symbol is used for PSFCH transmission
  • the penultimate symbol data is the same as the PSFCH symbol data, used as AGC
  • the penultimate symbol is also used as GP
  • the first symbol in the time slot is used as AGC, and the data on this symbol is the same as the data on the second time domain symbol in the time slot.
  • PSCCH occupies 3 time domain symbols, and the remaining symbols can be used for PSSCH transmission.
  • the time slot configuration of the sideline resource pool will be described below.
  • the time domain resources in the resource pool can be determined in the following manner.
  • the time domain resource of the resource pool can be determined within a system frame count (System Frame Number, SFN) cycle or a direct frame count (Direct Frame Number, DFN) cycle, specifically, determine a Which time domain resources in an SFN period or a DFN period belong to the resource pool.
  • system frame count System Frame Number, SFN
  • direct frame count Direct Frame Number, DFN
  • the total number of time slots included in one SFN period is 10240 ⁇ 2 ⁇ time slots, where the parameter ⁇ is related to the subcarrier spacing.
  • the synchronous time slots, downlink time slots, special time slots, and reserved subframes are removed, and the remaining time slots are renumbered to form a set of time slots:
  • the number of remaining time slots can be divisible by L bitmap , and L bitmap indicates the length of the bitmap used to indicate the configuration of the resource pool; if a time slot includes time domain symbols Y, Y+1, Y+2, ..., at least one time domain symbol in Y+X-1 is not configured as an uplink symbol by network signaling (TDD-UL-DL-ConfigCommon), then the time slot is a special time slot; Y and X represent sl- Two RRC layer parameters, StartSymbol and sl-LengthSymbols, are used to indicate the bitmap of resource pool configuration Periodically mapped to the remaining time slots; a bit value of 1 indicates that the time slot corresponding to the bit belongs to the resource pool, and a bit value of 0 indicates that the time slot corresponding to the bit does not belong to the resource pool .
  • a SFN period or a DFN period includes 10240 ⁇ 2 ⁇ time slots (ie 10240ms), the period of the synchronization signal (referred to as the synchronization period) is 160ms, and includes 2 synchronization time slots in one synchronization period. Therefore, in a SFN There are 128 synchronous time slots in the cycle.
  • bitmap needs to be repeated 1011 times in the remaining time slots to indicate whether all the time slots belong to the resource pool, and there are 3 time slots belonging to the resource pool in each period of the bitmap, so there are a total of 3033 slots belong to the resource pool.
  • time slots involved in the foregoing FIGS. 7-10 are all regular time slots.
  • the mini-slot will be described below.
  • mini-slot transmission or scheduling is introduced, that is, the PUSCH or PDSCH scheduled by the network is not based on the time slot, but is based on the time domain symbols in the time slot. Granularity, so that the purpose of reducing the delay can be achieved.
  • FIG. 11 is a schematic diagram of mini-slot scheduling provided by an embodiment of the present application.
  • the PDCCH at the head of a slot can schedule both the PDSCH in the same slot (with mini-slot 1 as the resource unit), and the PUSCH at the end of the slot (with mini-slot 2 as the resource unit). resource unit), so that the uplink and downlink data can be quickly scheduled within one time slot.
  • the NR system it supports mini-slot scheduling with ⁇ 2, 4, 7 ⁇ time-domain symbols as the time-domain scheduling granularity.
  • the embodiments of the present application provide a communication method and device, in which a terminal device determines a resource pool according to configuration modes of mini-slots and regular time slots during sidelink transmission. In this manner, the terminal device determines the resource pool according to the configuration manner of the mini-slot and the regular time slot, thereby ensuring the coexistence of the regular time slot and the mini-slot.
  • FIG. 12 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • the network device 102 sends configuration information to the terminal device.
  • the terminal device 101 determines the configuration mode of the mini-slot and the regular time slot, so that when transmitting on the sidelink, according to the The resource pool is determined by how it is configured with regular time slots.
  • the terminal device 101 may include, but is not limited to, a satellite or cellular telephone, a personal communications system (Personal Communications System, PCS) terminal that may combine a cellular radiotelephone with data processing, facsimile, and data communication capabilities; may include a radiotelephone, a pager, an Internet PDAs with/intranet access, web browser, organizer, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or including radiotelephone transceivers other electronic devices.
  • PCS Personal Communications System
  • the terminal equipment may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device 102 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the network device 102 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, may also be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (Cloud Radio Access Network, CRAN), or the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network devices in the 5G network or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • CRAN
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the embodiment of the present application relates to the process of how the terminal device determines the resource pool. As shown in Figure 13, the method includes:
  • the terminal device acquires configuration information.
  • the configuration information includes the configuration modes of mini-slots and regular time slots.
  • the resource pool is used for sidelink transmissions, which are at least minislot-based sidelink transmissions.
  • the terminal device in at least mini-slot-based sidelink transmission, before the terminal device needs to determine the resource pool, it can determine the configuration of the mini-slot and the regular time slot from the configuration information sent by the network device Way.
  • the configuration information may be configured by a network device, or may be pre-configured, or may be defined by a standard.
  • this embodiment of the present application does not limit the configuration of mini-slots and regular time slots.
  • it may include resource pools in which mini-slots and regular time slots exist in different time divisions, mini-slots and regular time slots.
  • the slots exist in different frequency-division resource pools, and the mini-slots and regular time slots exist in the same resource pool.
  • mini-slots and regular slots exist in different time-division resource pools, that is, mini-slots and regular slots exist in different resource pools, and the time-domain resources occupied by different resource pools are different. overlapping. If on a carrier, the granularity of time-domain resources contained in a resource pool can be mini-slots, correspondingly, the configuration information can include first indication information, and the first indication information is used to indicate the minimum time-domain granularity of the resource pool .
  • the minimum time-domain granularity of the resource pool indicated by the first indication information may be 14 symbols or 7 symbols. If the first indication information indicates 14 symbols, it indicates that the minimum time domain granularity of the resource pool is a regular time slot, and if the first indication information indicates 7 symbols, it indicates that the minimum time domain granularity of the resource pool is microtime Gap.
  • a carrier is configured with a resource pool with mini-slot as the smallest granularity in the time domain, and if some symbols in a regular slot are configured as resource pools with the smallest granularity of resources in the mini-slot, the regular slot The remaining symbols in are also configured as resource pools with mini-slots as the minimum resource granularity.
  • the resource pool A and the resource pool B may be the same resource pool, or may be different resource pools.
  • the configuration information may also indicate the position of the mini-slot.
  • the configuration information also includes second indication information and third indication information, the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located, and the third indication information is used to indicate the location of the mini-slot belonging to the resource pool The position of the minislot in the regular slot.
  • the embodiment of the present application does not limit how to determine the position of the mini-slot.
  • the second indication information includes bitmap information
  • the third indication information includes an index value
  • the bitmap information is used to determine the position of the time slot where the mini-slot belonging to the resource pool is located
  • the index value is used to indicate the time slot Which mini-slot in the slot belongs to the resource pool
  • the position of the mini-slot can be determined through bitmap information and index value.
  • FIG. 14 is a schematic diagram of the location of a mini-slot provided by the embodiment of the present application. As shown in FIG.
  • a bitmap with a length of 10 indicates the 0th, 1st, and 4th slots in each 10th slot , time slots 5, 8 and 9 contain mini-slots belonging to the resource pool, and then the index value 1 indicates that the second mini-slot in the time slots indicated by the bitmap belongs to the resource pool.
  • the second indication information includes bitmap information
  • the third indication information includes a plurality of positioning parameters
  • the plurality of positioning parameters include the start parameters of the mini-slots belonging to the resource pool in the regular time slots and the mini-slots belonging to the resource pool.
  • the bitmap information is used to determine the position of the time slot where the mini-slot belonging to the resource pool is located, and multiple positioning parameters are used to indicate which mini-slot in the time slot belongs to the resource pool. Through the bitmap information and multiple positioning parameters The location of the mini-slot can be determined.
  • the configuration information also includes mini-slot configuration information.
  • FIG. 15 is a schematic diagram of a time-frequency position of a mini-slot provided by an embodiment of the present application.
  • the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and the mini-slot is located at the penultimate of a side row slot. Three and the penultimate symbol are on.
  • the PRBs occupied by the PSFCH and the PRBs occupied by the mini-slot do not overlap.
  • a sidelink time slot refers to a time slot that can be used for sidelink transmission.
  • the configuration information of the mini-slot also includes the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot On the fourth-to-last symbol of the next side row slot.
  • the sending time of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot in the penultimate symbol is not later than the preset time T.
  • the preset time T is the end time of the penultimate fourth symbol.
  • T is a preset value.
  • T is equal to the length of half a symbol.
  • the signal sent by the terminal device at T may be a repetition of the signal sent within T time starting on the third last symbol, and the signal sent within the last T time on the third last symbol.
  • the last half symbol of the 10th symbol may be used as the AGC symbol of the mini-slot.
  • the physical sidelink control channel transmitted in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the first PRB occupied by the PSSCH scheduled by the PSCCH is adjacent to the last PRB occupied by the PSCCH.
  • the DMRS of the PSSCH transmitted in the mini-slot is located in the first symbol of the mini-slot.
  • the embodiment of the present application does not limit the preset number, for example, it may be defined by a standard, configured by a network, or pre-configured.
  • the configuration information of the mini-slot also includes the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot It is located on the third-to-last symbol of the side row slot (the first symbol of the mini-slot), and occupies the entire third-to-last symbol.
  • the signal sent on the AGC symbol is the repetition of the signal sent on the second symbol of the mini-slot.
  • the PSCCH transmitted in the mini-slot occupies a specific number of PRBs on the second symbol of the mini-slot
  • the PRB of the scheduled PSSCH is actually adjacent to the last PRB of the PSCCH
  • the DMRS of the PSSCH is also located in the micro-slot The second symbol of the slot.
  • the third configuration method still has some different configuration strategies.
  • the The physical sidelink control channel is used to indicate that resources on the mini-slot are reserved for retransmission of the same transport block or new transmission of another transport block. It should be noted that the same holds true in the opposite case.
  • the number of PRBs contained in a sub-channel (sub-channel) in a mini-slot is greater than the number of PRBs contained in a sub-channel in a regular time slot.
  • the number of PRBs contained in a subchannel in the mini-slot can be the regular time slot 5 times the PRB contained in one subchannel. In this manner, it can be ensured that the code rate of a TB is close to that of the normal time slot and the mini time slot when it is sent.
  • the terminal and the receiving terminal are configured according to the regular time slot Determine the number of REs occupied by the second-order SCI.
  • the configuration information also includes the configuration information of the regular time slot, and the configuration information of the regular time slot is used to determine that the physical sidelink shared channel is sent on the mini-slot and the number of subchannels occupied by the physical sidelink shared channel is a preset number , the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for sending the physical sidelink shared channel in the preset number of subchannels on the regular time slot and the number of resources used for a physical sidelink control channel and the physical sidelink control channel in the regular time slot.
  • the number of resources sent by the demodulation reference signal includes the number of resources available for sending the physical sidelink shared channel in the preset number of subchannels on the regular time slot and the number of resources used for a physical sidelink control channel and the physical sidelink control channel in the regular time slot.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of side symbols on the regular time slot, and the configuration of the number of side symbols on the regular time slot.
  • regular slots may reserve resources within mini-slots, or resources within mini-slots may reserve resources within regular slots.
  • the sidelink control information used to indicate the reserved resource in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate that the reserved resource is located in a mini-slot or in a regular time slot .
  • the downlink control information in the sidelink transmission further includes fifth indication information, where the fifth indication information is used to indicate whether the current scheduled time slot is a mini-slot or a regular time slot.
  • the terminal device determines a resource pool according to the configuration information.
  • the terminal device may determine the resource pool according to the configuration information during sidelink transmission.
  • mini-slots and regular timeslots can belong to different time-divided resource pools.
  • the mini-slot and the regular time slot may belong to different frequency-divided resource pools, or the mini-slot and the regular time slot may be configured as the same resource pool. If the mini-slot and the regular time slot belong to different frequency-division resource pools or belong to a unified resource pool, the resource used by the station in the mini-slot is located at the position of the PSFCH symbol. In this manner, a carrier can support regular time slots while further supporting mini-slots, thereby reducing the time delay of sidelink transmission and increasing the chance of inbound transmission in a time slot.
  • the terminal device determines the resource pool according to the configuration information during the sidelink transmission, and the configuration information includes configuration modes of mini-slots and regular time slots. In this manner, the terminal device determines the resource pool according to the configuration manner of the mini-slot and the regular time slot, thereby ensuring the coexistence of the regular time slot and the mini-slot.
  • FIG. 16 is a signaling interaction diagram of a communication method provided by an embodiment of the present application. As shown in Figure 16, the method includes:
  • the network device determines configuration information, where the configuration information includes configuration modes of mini-slots and regular time slots.
  • the network device sends configuration information to the terminal device.
  • the terminal device determines the resource pool according to the configuration information.
  • S301-S303 can be understood with reference to S201-S202 shown in FIG. 13 , and repeated content will not be repeated here.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be implemented by software, hardware or a combination of the two, so as to execute the communication method on the terminal device side in the foregoing embodiments.
  • the communication device 400 includes: an acquisition module 401 and a processing module 402 .
  • An acquisition module 401 configured to acquire configuration information sent by the network device, where the configuration information includes configuration modes of mini-slots and regular time slots;
  • the processing module 402 is configured to determine a resource pool according to configuration information.
  • the configuration information is configured or preconfigured by a network device or defined by a standard.
  • the resource pool is used for sidelink transmission, and the sidelink transmission is at least minislot-based sidelink transmission.
  • the configuration manner includes that the mini-slot and the regular time slot exist in different time-divided resource pools.
  • the configuration information further includes first indication information, where the first indication information is used to indicate the minimum time-domain granularity of the resource pool.
  • the remaining symbols in the regular time slot are also configured as a resource pool with a mini-slot as the smallest resource granularity.
  • a resource pool with resource granularity if some symbols in a regular time slot are configured as a resource pool with a mini-slot as the minimum resource granularity, the remaining symbols in the regular time slot are also configured as a resource pool with a mini-slot as the smallest resource granularity.
  • the configuration information further includes second indication information and third indication information, the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located, and the third indication information The information is used to indicate the position of the mini-slots belonging to the resource pool in the regular slots.
  • the second indication information includes bitmap information
  • the third indication information includes an index value or multiple positioning parameters
  • the multiple positioning parameters include The starting point parameter and the length parameter of the mini-slot belonging to the resource pool.
  • the configuration includes that the mini-slot and the regular time slot exist in different frequency-divided resource pools.
  • the configuration manner includes that the mini-slot and the regular time slot exist in the same resource pool.
  • the configuration information also includes configuration information of the mini-slot, and the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and that the mini-slot is located in a side row slot. On the third-to-last and second-to-last symbols.
  • the configuration information of the mini-slot further includes that the frequency domain resource occupied by the mini-slot does not overlap with the frequency domain resource occupied by the physical sidelink feedback channel existing on the same symbol.
  • the configuration information of the mini-slot also includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located at the penultimate of the next sidelink time slot on four symbols.
  • the transmission time of the physical sidelink control channel and the physical sidelink shared channel transmitted in the mini-slot in the penultimate symbol is not later than the preset time, and the preset time is the penultimate Ending moment of four symbols.
  • the physical sidelink control channel sent in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the configuration information of the mini-slot also includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located in the penultimate sidelink slot symbol and takes up the entire third-to-last symbol.
  • the physical sidelink control channel sent on symbols other than the mini-slot in the regular time slot is used to indicate that resources on the mini-slot are reserved for retransmission of the same transport block or A new transmission of another transport block.
  • the number of physical resource blocks included in one subchannel in a mini-slot is greater than the number of physical resource blocks included in a subchannel in a regular time slot.
  • the configuration information also includes configuration information of regular time slots, and the configuration information of regular time slots is used to determine when the physical sidelink shared channel is sent on the mini-slot and occupied by the physical sidelink shared channel.
  • the number of sub-channels is the preset number, the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for sending the physical sidelink shared channel in the preset number of subchannels on the regular time slot and the number of resources used for one physical sidelink shared channel in the regular time slot. The number of resources for sending demodulation reference signals of the control channel and the physical sidelink control channel.
  • the configuration information of the regular time slot is also used to determine the size of the transport block.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of sidelink symbols on the regular time slot, and the configuration of the physical sidelink shared channel on the regular time slot.
  • the demodulation reference signal configuration is the number of physical resource blocks that can be used for sending the physical sidelink shared channel in a preset number of subchannels on a regular time slot.
  • the sidelink control information used to indicate reserved resources in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate that the reserved resources are located at slot or in a regular slot.
  • the downlink control information in the sidelink transmission includes fifth indication information, where the fifth indication information is used to indicate whether the current scheduled time slot is a mini-slot or a regular time slot.
  • the communication device provided in the embodiment of the present application can execute the actions of the communication method on the terminal device side in the above embodiments, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 18 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication apparatus may be implemented by software, hardware or a combination of the two, so as to execute the communication method on the network device side in the foregoing embodiments.
  • the communication device 500 includes: a processing module 501 and a sending module 502 .
  • the processing module 501 is configured to determine configuration information.
  • the sending module 502 is configured to send configuration information, the configuration information includes the configuration modes of the mini-slot and the regular time slot, and the configuration information is used to determine the resource pool.
  • the resource pool is used for sidelink transmission, and the sidelink transmission is at least minislot-based sidelink transmission.
  • the configuration manner includes that the mini-slot and the regular time slot exist in different time-divided resource pools.
  • the configuration information further includes first indication information, where the first indication information is used to indicate the minimum time-domain granularity of the resource pool.
  • the remaining symbols in the regular time slot are also configured as a resource pool with a mini-slot as the smallest resource granularity.
  • a resource pool with resource granularity if some symbols in a regular time slot are configured as a resource pool with a mini-slot as the minimum resource granularity, the remaining symbols in the regular time slot are also configured as a resource pool with a mini-slot as the smallest resource granularity.
  • the configuration information further includes second indication information and third indication information, the second indication information is used to indicate the position of the regular time slot where the mini-slot belonging to the resource pool is located, and the third indication information The information is used to indicate the position of the mini-slots belonging to the resource pool in the regular slots.
  • the second indication information includes bitmap information
  • the third indication information includes an index value or multiple positioning parameters
  • the multiple positioning parameters include The starting point parameter and the length parameter of the mini-slot belonging to the resource pool.
  • the configuration includes that the mini-slot and the regular time slot exist in different frequency-divided resource pools.
  • the configuration manner includes that the mini-slot and the regular time slot exist in the same resource pool.
  • the configuration information also includes configuration information of the mini-slot, and the configuration information of the mini-slot includes that the length of the mini-slot is two characters, and that the mini-slot is located in a side row slot. On the third-to-last and second-to-last symbols.
  • the configuration information of the mini-slot further includes that the frequency domain resource occupied by the mini-slot does not overlap with the frequency domain resource occupied by the physical sidelink feedback channel existing on the same symbol.
  • the configuration information of the mini-slot also includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located at the penultimate of the next sidelink time slot on four symbols.
  • the transmission time of the physical sidelink control channel and the physical sidelink shared channel transmitted in the mini-slot in the penultimate symbol is not later than the preset time, and the preset time is the penultimate Ending moment of four symbols.
  • the physical sidelink control channel sent in the mini-slot occupies two symbols and occupies a preset number of physical resource blocks.
  • the configuration information of the mini-slot also includes that the automatic gain control symbols of the physical sidelink control channel and the physical sidelink shared channel sent in the mini-slot are located in the penultimate sidelink slot symbol and takes up the entire third-to-last symbol.
  • the physical sidelink control channel sent on symbols other than the mini-slot in the regular time slot is used to indicate that resources on the mini-slot are reserved for retransmission of the same transport block or A new transmission of another transport block.
  • the number of physical resource blocks included in one subchannel in a mini-slot is greater than the number of physical resource blocks included in a subchannel in a regular time slot.
  • the configuration information also includes configuration information of regular time slots, and the configuration information of regular time slots is used to determine when the physical sidelink shared channel is sent on the mini-slot and occupied by the physical sidelink shared channel.
  • the number of sub-channels is the preset number, the number of resources occupied by the second-order sidelink control information.
  • the configuration information of the regular time slot includes the number of resources available for sending the physical sidelink shared channel in the preset number of subchannels on the regular time slot and the number of resources used for one physical sidelink shared channel in the regular time slot. The number of resources for sending demodulation reference signals of the control channel and the physical sidelink control channel.
  • the configuration information of the regular time slot is also used to determine the size of the transport block.
  • the configuration information of the regular time slot includes the configuration of the demodulation reference signal on the regular time slot, the configuration of the number of sidelink symbols on the regular time slot, and the configuration of the physical sidelink shared channel on the regular time slot.
  • the demodulation reference signal configuration is the number of physical resource blocks that can be used for sending the physical sidelink shared channel in a preset number of subchannels on a regular time slot.
  • the sidelink control information used to indicate reserved resources in the sidelink transmission includes fourth indication information, and the fourth indication information is used to indicate that the reserved resources are located at slot or in a regular slot.
  • the downlink control information in the sidelink transmission includes fifth indication information, where the fifth indication information is used to indicate whether the current scheduled time slot is a mini-slot or a regular time slot.
  • the communication device provided in the embodiment of the present application can execute the actions of the communication method on the network device side in the above embodiment, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 19 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • this electronic equipment can comprise: processor 61 (such as CPU), memory 62, receiver 63 and transmitter 64; Receiver 63 and transmitter 64 are coupled to processor 61, and processor 61 controls receiver 63 of the receiving action, the processor 61 controls the sending action of the transmitter 64.
  • the memory 62 may include a high-speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, and various information may be stored in the memory 62 for completing various processing functions and realizing the method of the embodiment of the present application step.
  • the electronic device involved in this embodiment of the present application may further include: a power supply 65 , a communication bus 66 and a communication port 66 .
  • the receiver 63 and the transmitter 64 can be integrated in the transceiver of the electronic device, or can be an independent transceiver antenna on the electronic device.
  • the communication bus 66 is used to implement the communication connection between the components.
  • the above-mentioned communication port 66 is used to realize connection and communication between the electronic device and other peripheral devices.
  • the above-mentioned memory 62 is used to store computer-executable program codes, and the program codes include information; when the processor 61 executes the information, the information causes the processor 61 to execute the processing actions on the terminal device side in the above-mentioned method embodiments,
  • the transmitter 64 is made to perform the sending action on the terminal device side in the above method embodiment, and the receiver 63 is made to perform the receiving action on the terminal device side in the above method embodiment.
  • the information causes the processor 61 to execute the processing action on the network device side in the above method embodiment, make the transmitter 64 execute the sending action on the network device side in the above method embodiment, and make the receiver 63 execute
  • the implementation principles and technical effects of the receiving actions on the network device side in the foregoing method embodiments are similar, and will not be repeated here.
  • An embodiment of the present application further provides a communication system, including a terminal device and a network device, so as to implement the foregoing communication method.
  • the embodiment of the present application also provides a chip, including a processor and an interface.
  • the interface is used to input and output data or instructions processed by the processor.
  • the processor is configured to execute the methods provided in the above method embodiments.
  • the chip can be applied to terminal equipment or network equipment.
  • the present invention also provides a kind of computer-readable storage medium, and this computer-readable storage medium can comprise: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory) ), a magnetic disk or an optical disk, and other media that can store program codes.
  • the computer-readable storage medium stores program information, and the program information is used in the above-mentioned communication method.
  • the embodiment of the present application also provides a program, which is used to execute the communication method provided in the above method embodiment when executed by a processor.
  • the embodiment of the present application also provides a program product, such as a computer-readable storage medium, where instructions are stored in the program product, and when the program product is run on a computer, it causes the computer to execute the communication method provided by the above method embodiment.
  • a program product such as a computer-readable storage medium
  • a computer program product includes one or more computer instructions.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be sent from a website, computer, server, or data center via a wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,方法包括:终端设备在侧行链路传输时根据配置信息确定资源池,该配置信息中包含有微时隙和常规时隙的配置方式。通过该方式,终端设备根据微时隙和常规时隙的配置方式来确定资源池,从而保证常规时隙和微时隙的共存。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
设备到设备通信(Device-to-Device,D2D)是一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,其具有更高的频谱效率以及更低的传输时延。
针对侧行资源池,除了常规时隙(slot)以外,NR新空口(New Radio,NR)用户通用网络(User to Network interface Universal,Uu)口传输系统中,还引入了微时隙(mini-slot)传输或调度。即,网络调度的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理上行共享信道(Physical Downlink Shared Channel,PDSCH)不是以常规时隙为粒度,而是以常规时隙内的时域符号为粒度,从而可以达到降低时延的目的。
在现有的NR SL系统中,侧行传输或调度都是以常规时隙(slot)为粒度的。然而,当NR SL应用到工业互联网等场景时,对系统的时延具有更高的要求,可以使用基于微时隙的侧行传输方式来满足时延要求。然而,在现有的NR SL系统中,当使用基于微时隙的侧行传输方式时,无法保证微时隙和常规时隙的共存。
申请内容
本申请实施例提供一种通信方法及装置,以解决现有技术中使用基于微时隙的侧行传输方式时无法保证微时隙和常规时隙的共存的问题。
本申请第一个方面提供一种通信方法,所述方法包括:
终端设备根据配置信息确定资源池,所述配置信息中包含有微时隙和常规时隙的配置方式。
在一种可选的实施方式中,所述配置信息由网络设备配置或预配置或由标准定义。
在一种可选的实施方式中,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
在一种可选的实施方式中,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
在一种可选的实施方式中,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
在一种可选的实施方式中,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
在一种可选的实施方式中,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
在一种可选的实施方式中,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
在一种可选的实施方式中,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
在一种可选的实施方式中,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和 物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
在一种可选的实施方式中,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
在一种可选的实施方式中,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
在一种可选的实施方式中,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
在一种可选的实施方式中,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
在一种可选的实施方式中,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
在一种可选的实施方式中,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息还用于确定传输块的大小。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
在一种可选的实施方式中,所述侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
在一种可选的实施方式中,所述侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
本申请第二个方面提供一种通信方法,所述方法包括:
网络设备发送配置信息,所述配置信息中包含有微时隙和常规时隙的配置方式,所述配置信息用于确定资源池。
在一种可选的实施方式中,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
在一种可选的实施方式中,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
在一种可选的实施方式中,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
在一种可选的实施方式中,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
在一种可选的实施方式中,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
在一种可选的实施方式中,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
在一种可选的实施方式中,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
在一种可选的实施方式中,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
在一种可选的实施方式中,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
在一种可选的实施方式中,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
在一种可选的实施方式中,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
在一种可选的实施方式中,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
在一种可选的实施方式中,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
在一种可选的实施方式中,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息还用于确定传输块的大小。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
在一种可选的实施方式中,所述侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
在一种可选的实施方式中,所述侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
本申请第三个方面提供一种通信装置,包括:
获取模块,用于根据配置信息确定资源池,所述配置信息中包含有微时隙和常规时隙的配置方式。
在一种可选的实施方式中,所述配置信息由网络设备配置或预配置或由标准定义。
在一种可选的实施方式中,其特征在于,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
在一种可选的实施方式中,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
在一种可选的实施方式中,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
在一种可选的实施方式中,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
在一种可选的实施方式中,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
在一种可选的实施方式中,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
在一种可选的实施方式中,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
在一种可选的实施方式中,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
在一种可选的实施方式中,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述 倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
在一种可选的实施方式中,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
在一种可选的实施方式中,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
在一种可选的实施方式中,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
在一种可选的实施方式中,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
在一种可选的实施方式中,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息还用于确定传输块的大小。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
在一种可选的实施方式中,所述侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
在一种可选的实施方式中,所述侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
本申请第四个方面提供一种通信装置,所述装置包括:
发送模块,用于发送配置信息,所述配置信息中包含有微时隙和常规时隙的配置方式,所述配置信息用于确定资源池。
在一种可选的实施方式中,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
在一种可选的实施方式中,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
在一种可选的实施方式中,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
在一种可选的实施方式中,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
在一种可选的实施方式中,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
在一种可选的实施方式中,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
在一种可选的实施方式中,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
在一种可选的实施方式中,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
在一种可选的实施方式中,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
在一种可选的实施方式中,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
在一种可选的实施方式中,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
在一种可选的实施方式中,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
在一种可选的实施方式中,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
在一种可选的实施方式中,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
在一种可选的实施方式中,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
在一种可选的实施方式中,所述常规时隙的配置信息还用于确定传输块的大小。
在一种可选的实施方式中,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
在一种可选的实施方式中,所述侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
在一种可选的实施方式中,所述侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
本申请第五个方面提供一种终端设备,包括:
处理器、存储器、发送器以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的通信方法。
本申请第六个方面提供一种网络设备,包括:
处理器、存储器、发送器以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面所述的通信方法。
本申请第七个方面提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第一方面所述的方法。
本申请第八个方面提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第二方面所述的方法。
本申请第九个方面提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如第一方面所述的方法。
本申请第十个方面提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如第二方面所述的方法。
本申请第十一个方面提供一种计算机程序产品,包括计算机指令,该计算机指令被处理器执行时实现如第一方面所述的方法。
本申请第十二个方面提供一种计算机程序产品,包括计算机指令,该计算机指令被处理器执行时实现如第二方面所述的方法。
本申请第十三个方面提供一种计算机程序,所述计算机程序使得计算机执行如第一方面所述的方法。
本申请第十四个方面提供一种装置,所述装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现如第一方面所述的方法。
本申请第十五个方面提供一种装置,所述装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现如第二方面所述的方法。
本申请第十六个方面提供一种通信系统,包括:如第三方面所述的通信装置,以及,如第四方面所述的通信装置。
本申请第十七个方面提供一种通信装置,所述装置用于执行第一方面所述的方法。
本申请第十八个方面提供一种通信装置,所述装置用于执行第二方面所述的方法。
本申请实施例提供的通信方法及装置,终端设备在侧行链路传输时根据配置信息确定资源池,该配置信息中包含有微时隙和常规时隙的配置方式。通过该方式,终端设备根据微时隙和常规时隙的配置方式来确定资源池,从而保证常规时隙和微时隙的共存。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种网络覆盖内侧行通信的示意图;
图2为本申请实施例提供的一种部分网络覆盖侧行通信的示意图;
图3为本申请实施例提供的一种网络覆盖外侧行通信的示意图;
图4为本申请实施例提供的一种单播传输的示意图;
图5为本申请实施例提供的一种组播传输的示意图;
图6为本申请实施例提供的一种广播传输的示意图;
图7为本申请实施例提供的一种时隙结构的示意图;
图8为本申请实施例提供的另一种时隙结构的示意图;
图9为本申请实施例提供的一种2阶SCI的资源映射图;
图10为本申请实施例提供的一种侧行反馈信道的格式的示意图;
图11为本申请实施例提供的一种微时隙调度示意图;
图12为本申请实施例提供的一种通信方法的场景示意图
图13为本申请实施例提供的一种通信方法的流程示意图;
图14为本申请实施例提供的一种微时隙的位置示意图;
图15为本申请实施例提供的一种微时隙时频位置示意图;
图16为本申请实施例提供的一种通信方法的信令交互图;
图17为本申请实施例提供的一种通信装置的结构示意图;
图18为本申请实施例提供的另一种通信装置的结构示意图;
图19为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面首先对侧行链路通信进行说明。
在侧行通信中,可以根据进行通信的终端所处的网络覆盖情况,将侧行通信分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信。图1为本申请实施例提供的一种网络覆盖内侧行 通信的示意图,图2为本申请实施例提供的一种部分网络覆盖侧行通信的示意图,图3为本申请实施例提供的一种网络覆盖外侧行通信的示意图。
如图1所示,在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于同一网络设备的覆盖范围内,上述终端均可以通过接收网络设备的配置信令,基于相同的侧行配置进行侧行通信。
如图2所示,在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于网络设备的覆盖范围内,位于网络设备的覆盖范围内的终端能够接收到网络设备的配置信令,并根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收网络设备的配置信令,此时,网络覆盖范围外的终端将根据预配置(pre-configuration)信息以及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,从而进行侧行通信。
如图3所示,在网络覆盖外侧行通信的情况下,所有进行侧行通信的终端均位于网络覆盖范围外,进而所有终端均根据预配置信息确定侧行配置,从而进行侧行通信。
设备到设备通信是一种侧行链路传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,其具有更高的频谱效率以及更低的传输时延。其中,车联网系统采用设备到设备通信的方式,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了两种传输模式:第一模式和第二模式。
其中,在第一模式中,终端设备的传输资源是由网络设备分配的,终端设备根据终端设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。如图1所示,终端设备位于网络覆盖范围内,网络设备为终端分配侧行传输使用的传输资源。
在第一模式中,终端设备在资源池中选取一个资源进行数据的传输。如图3所示,终端设备位于小区覆盖范围外,终端设备在预配置的资源池中自主选取传输资源进行侧行传输。或者,如图1所示,终端设备在网络配置的资源池中自主选取传输资源进行侧行传输。
下面对于NR车用无线通信技术(vehicle to X,V2X)进行说明。
首先,在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
其次,在LTE-V2X中,支持广播传输方式,同时也引入了单播和组播的传输方式。图4为本申请实施例提供的一种单播传输的示意图,图5为本申请实施例提供的一种组播传输的示意图,图6为本申请实施例提供的一种广播传输的示意图。对于单播传输,其接收端终端只有一个终端,如图4中,用户设备(User Equipment,UE)1、UE2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图5,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图6,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
下面对于NR-V2X的系统帧的时隙结构进行说明。
图7为本申请实施例提供的一种时隙结构的示意图,图8为本申请实施例提供的另一种时隙结构的示意图。其中,图7所示的时隙结构中不包括物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH),图8所示的时隙结构中包括PSFCH。
参考图7和图8,在NR-V2X中,物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)在时域上从该时隙的第二个侧行符号开始,占用2个或3个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,在频域上可以占用{10,12,15,20,25}个物理资源块(Orthogonal Frequency Division Multiplexing,PRB)。为了避免终端设备对PSCCH的盲检测,在一个资源池内只允许配置一个PSCCH符号个数和PRB个数。另外,由于子信道为NR-V2X中PSSCH资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作自动增益控制(Automatic Gain Control,AGC)符号,该符号上的数据通常不用于数据解调。如图7所示,PSSCH在频域上占据K个子信道,每个子信道包括N个连续的PRB。
当时隙中包含PSFCH信道时,如图8所示,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作GP符号。
下面对于NR-V2X中的2阶系统控制信息(System Control Information,SCI)机制进行说明。
在NR-V2X中引入2阶SCI,第一阶SCI承载在PSCCH中,用于指示PSSCH的传输资源、预留资源信息、调制与编码策略(Modulation and Coding Scheme,MCS)等级、优先级等信息,第二阶SCI在PSSCH的资源中发送,利用PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)进行解调,用于指示发送端标识、接收端标识、混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)标识、网络设备接口(Network Device Interface,NDI)等用于数据解调的信息。第二阶SCI从PSSCH的第一个DMRS符号开始映射,先频域再时域映射。图9为本申请实施例提供的一种2阶SCI的资源映射图。如图9所示,PSCCH占据3个符号(符号1、2、3),PSSCH的DMRS占据符号4、11,第二阶SCI从符号4开始映射,在符号4上和DMRS频分复用,第二阶SCI映射到符号4、5、6,第二阶SCI占据的资源大小取决于第二阶SCI的比特数。
下面对于侧行反馈信道进行说明。
在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。示例性的,对于单播传输,发送端终端向接收端终端发送侧行数据(包括PSCCH和PSSCH),接收端终端向发送端终端发送HARQ反馈信息(包括确认字符(Acknowledge character,ACK)或否认字符(Non Acknowledge character,NACK)),发送端终端根据接收端终端的反馈信息判断是否需要进行重传。其中,HARQ反馈信息承载在侧行反馈信道中,例如PSFCH。
在一些实施例中,可以通过预配置信息或者网络配置信息激活或者去激活侧行反馈。若侧行反馈被激活,则接收端终端接收发送端终端发送的侧行数据,并且根据检测结果向发送端反馈HARQ ACK或者NACK,发送端终端根据接收端的反馈信息决定发送重传数据或者新数据。若侧行反馈被去激活,接收端终端不需要发送反馈信息,发送端终端通常采用盲重传的方式发送数据,例如,发送端终端对每个侧行数据重复发送K次,而不是根据接收端终端反馈信息决定是否需要发送重传数据。
下面对于侧行反馈信道的格式进行说明。
在NR-V2X中,引入了PSFCH,该PSFCH只承载1比特的HARQ-ACK信息,在时域上占据2个时域符号(第二个符号承载侧行反馈信息,第一个符号上的数据是第二个符号上数据的复制,但是该符号用作AGC),频域上占据1个PRB。图10为本申请实施例提供的一种侧行反馈信道的格式的示意图。如图10所示,给出了在一个时隙中PSFCH、PSCCH和PSSCH所占的时域符号的位置。在一个时隙中,最后一个符号用作GP,倒数第二个符号用于PSFCH传输,倒数第三个符号数据和PSFCH符号的数据相同,用做AGC,倒数第四个符号也用作GP,时隙中的第一个符号用作AGC,该符号上的数据和该时隙中第二个时域符号上的数据相同,PSCCH占据3个时域符号,剩余的符号可用于PSSCH传输。
下面对于侧行资源池时隙配置进行说明。
在NR-V2X中,可以通过下面的方式确定资源池中的时域资源。
在一些实施例中,可以在一个系统帧计数(System Frame Number,SFN)周期或一个直接帧计数(Direct Frame Number,DFN)周期内确定资源池的时域资源,具体地,通过以下方式确定一个SFN周期或一个DFN周期内的哪些时域资源属于资源池。
示例性的,一个SFN周期内包括的时隙总数是10240×2 μ个时隙,其中,参数μ与子载波间隔大小有关。在10240×2 μ个时隙中,去掉同步时隙、下行时隙、特殊时隙、以及预留时隙(reserved subframe),剩余的时隙重新编号后形成的时隙集合为
Figure PCTCN2021108254-appb-000001
其中,剩余的时隙的个数能够被L bitmap整除,L bitmap表示用于指示资源池配置的比特位图的长度;若一个时隙包括的时域符号Y,Y+1,Y+2,…,Y+X-1中至少有一个时域符号不是被网络的信令(TDD-UL-DL-ConfigCommon)配置为上行符号,则该时隙为特殊时隙;Y和X分别表示sl-StartSymbol和sl-LengthSymbols两个RRC层参数,用于指示资源池配置的比特位图
Figure PCTCN2021108254-appb-000002
周期性的映射至剩余的各个时隙上;比特位的取值为1表示该比特位对应的时隙属于资源池,比特位的取值为0表示该比特位对应的时隙不属于资源池。
一个SFN周期或一个DFN周期包括10240×2 μ个时隙(即10240ms),同步信号的周期(简称为同步周期)是160ms,在一个同步周期内包括2个同步时隙,因此,在一个SFN周期内共有128个同步时隙。用于指示资源池配置的比特位图的长度是10比特(即L bitmap=10),因此需要2个预留时隙(reserved subframe),剩余时隙的个数是(10240-128-2=10110),可以被比特位图的长度10整除,将剩余的时隙重新编号为0,1,2,……,10109,比特位图前3位为1,其余7位为0,即
Figure PCTCN2021108254-appb-000003
由此可知,在剩余时隙中,每10个时隙中的前3个时隙属于资源池,其余的时隙不属于资源池。由于在剩余时隙中需要比特位图重复1011次, 以指示所有的时隙是否属于资源池,而在每个比特位图的周期内有3个时隙属于资源池,因此在一个SFN周期共有3033个时隙属于资源池。
需要说明的是,上述图7-图10中涉及的时隙均为常规时隙。
下面对于微时隙进行说明。
在Rel-15 NR Uu口传输系统中,引入了微时隙(mini-slot)传输或调度,即网络调度的PUSCH或PDSCH不是以时隙为粒度,而是以时隙内的时域符号为粒度,从而可以达到降低时延的目的。
图11为本申请实施例提供的一种微时隙调度示意图。如图11所示,位于时隙头部的PDCCH既可以调度位于同一时隙内的PDSCH(以mini-slot 1作为资源单位),也可以调度位于时隙尾部的PUSCH(以mini-slot 2作为资源单位),从而可以在一个时隙内对上下行数据进行快速调度。在NR系统中,支持以{2,4,7}个时域符号为时域调度粒度的微时隙调度。
在现有的NR SL系统中,侧行传输或调度都是以常规时隙(slot)为粒度的。然而,当NR SL应用到工业互联网等场景时,对系统的时延具有更高的要求,可以使用基于微时隙的侧行传输方式来满足时延要求。然而,在现有的NR SL系统中,当使用基于微时隙的侧行传输方式时,无法保证微时隙和常规时隙的共存。
为解决上述问题,本申请实施例提供一种通信方法及装置,终端设备在侧行链路传输时根据微时隙和常规时隙的配置方式确定资源池。通过该方式,终端设备根据微时隙和常规时隙的配置方式来确定资源池,从而保证常规时隙和微时隙的共存。
下面对于本申请的应用场景进行举例说明。
图12为本申请实施例提供的一种通信方法的场景示意图。如图12所示,网络设备102向终端设备发送配置信息,终端设备101在获取到配置信息后,确定微时隙和常规时隙的配置方式,从而在侧行链路传输时根据微时隙和常规时隙的配置方式确定资源池。
其中,终端设备101可以包括但不限于卫星或蜂窝电话、可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备102可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备102可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
下面以终端设备和网络设备为例,以具体地实施例对本申请实施例的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图13为本申请实施例提供的一种通信方法的流程示意图。本申请实施例涉及的是终端设备如何确定资源池的过程。如图13所示,该方法包括:
S201、终端设备获取配置信息。
其中,该配置信息中包含有微时隙和常规时隙的配置方式。资源池用于侧行链路传输,该侧行链路传输为至少基于微时隙的侧行链路传输。
在本申请实施例中,在至少基于微时隙的侧行链路传输中,当终端设备需要确定资源池前,可以从网络设备发送的配置信息中,确定微时隙和常规时隙的配置方式。
应理解,本申请实施例对于如何获取配置信息不做限制,在一些实施例中,配置信息可以由网络设备配置,或者可以预配置,或者可以由标准定义。
应理解,本申请实施例对于微时隙和常规时隙的配置方式不做限制,示例性的,可以包括微时隙和常规时隙存在于不同的时分的资源池、微时隙和常规时隙存在于不同的频分的资源池以及微时隙和常规 时隙存在于同一个资源池三种方式。
下面针对上述提供的三种微时隙和常规时隙的配置方式进行分别说明。
在第一种配置方式中,微时隙和常规时隙存在于不同的时分的资源池,即,微时隙和常规时隙存在于不同的资源池内,且不同资源池占用的时域资源不重叠。若在一个载波上,一个资源池内包含的时域资源的粒度可以为微时隙,相应的,配置信息中可以包括第一指示信息,该第一指示信息用于指示资源池的最小时域粒度。
示例性的,第一指示信息指示的资源池的最小时域粒度可以为14个符号或7个符号。若第一指示信息指示为14个符号,则表明该资源池的最小时域粒度为常规时隙,若第一指示信息指示为7个符号,则表示该资源池的最小时域粒度为微时隙。
在一些实施例中,一个载波上配置有以微时隙为最小时域粒度的资源池,若常规时隙中部分符号被配置为以微时隙为最小资源粒度的资源池,则常规时隙中的剩余符号同样被配置为以微时隙为最小资源粒度的资源池。
示例性的,若一个时隙的前7个符号被配置为以微时隙为最小时间粒度的资源A,则剩余的7个符号应被配置为以微时隙为最小时间粒度的资源池B。其中,资源池A和资源池B可以为同一个资源池,也可以为不同的资源池。
应理解,在本申请实施例中,配置信息中还可以指示微时隙的位置。相应的,配置信息中还包括第二指示信息和第三指示信息,第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,第三指示信息用于指示属于资源池的微时隙在常规时隙中的位置。
本申请实施例对于如何确定微时隙的位置不做限制。在一些实施例中,第二指示信息包括位图信息,第三指示信息包括索引值,位图信息用于确定属于资源池的微时隙所在的时隙的位置,索引值用于指示该时隙内的哪一个微时隙属于资源池,通过位图信息和索引值可以确定微时隙的位置。示例性的,图14为本申请实施例提供的一种微时隙的位置示意图,如图14所示,一个长度为10的比特位图指示每10个时隙内的第0,1,4,5,8和9号时隙内包含了属于资源池的微时隙,随后,通过索引值1指示比特位图指示的时隙中的第二个微时隙属于资源池。
在另一些实施例中,第二指示信息包括位图信息,第三指示信息包括多个定位参数,多个定位参数包括属于资源池的微时隙在常规时隙中的起点参数和属于资源池的微时隙的长度参数。位图信息用于确定属于资源池的微时隙所在的时隙的位置,多个定位参数用于指示该时隙内的哪一个微时隙属于资源池,通过位图信息和多个定位参数可以确定微时隙的位置。
在第二种配置方式中,微时隙和常规时隙存在于不同的频分的资源池。在第三种配置方式中,微时隙和常规时隙存在于同一个资源池。针对第二种配置方式和第三种配置方式,配置信息中还包括微时隙的配置信息。
图15为本申请实施例提供的一种微时隙时频位置示意图。如图15所示,在第二种配置方式和第三种配置方式中,微时隙的配置信息包括微时隙的长度为两个字符,以及微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。优选的,若一个侧行时隙的倒数第3和倒数第2个符号上存在PSFCH,则PSFCH所占的PRB和微时隙所占的PRB不重叠。
应理解,侧行时隙是指可以用于侧行发送的时隙。
在一些实施例中,在第二种配置方式和第三种配置方式中,微时隙的配置信息还包括在微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。在微时隙发送的物理侧行控制信道和物理侧行共享信道在倒数第四个符号内的发送时间不晚于预设时刻T。其中,预设时刻T为倒数第四个符号的结束时刻。
需要说明的是,T为预设值。示例性的,T等于半个符号的长度。终端设备在T发送的信号可以是倒数第3个符号上开始T时间内发送信号的,倒数第三个符号上最后T时间内发送的信号的重复。示例性的,如图14所示,可以将第10个符号的最后半个符号作为微时隙的AGC符号。
优选的,在第二种配置方式和第三种配置方式中,在微时隙发送的物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
其中,被PSCCH所调度的PSSCH所占用的起始PRB和PSCCH占用的最后一个PRB相邻。示例性的,在微时隙发送的PSSCH的DMRS位于微时隙的第一个符号。
其中,本申请实施例对于预设个数不做限制,示例性的,可以由标准定义、网络配置或预配置。
在一些实施例中,在第二种配置方式和第三种配置方式中,微时隙的配置信息还包括在微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上(微时隙的第一个符号),且占用整个倒数第三个符号。此时,AGC符号上发送的信号是微时隙第二个符号 上发送信号的重复。在这种情况下,微时隙发送的PSCCH占用微时隙的第二个符号上特定数目的PRB,被调度的PSSCH的其实PRB和PSCCH的最后一个PRB相邻,PSSCH的DMRS也位于微时隙的第二个符号。
相较于第二种配置方式,第三种配置方式还存在一些区别的配置策略。
在一些实施例中,在第三种配置方式中,一个常规时隙内的微时隙和该常规时隙属于同一个资源池,则该常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。需要说明的是,在相反的情况下,同样成立。
优选的,微时隙内的子信道(sub-channel)包含的PRB个数大于常规时隙内一个子信道包含的PRB个数。示例性的,如图14所示,若常规时隙内的第0到第9个符号均可以用于PSCCH或PSSCH发送,则微时隙内一个子信道包含的PRB个数可以为常规时隙内一个子信道包含的PRB的5倍。通过该方式,可以保证一个TB在常规时隙和微时隙上发送时码率接近。
在一些实施例中,在第三种配置方式中,对于在微时隙上发送的PSSCH,且PSSCH占用的子信道个数为预设数量,则终端和接收终端均根据常规时隙上的配置确定第二阶SCI占用的RE数。相应的,配置信息中还包括常规时隙的配置信息,常规时隙的配置信息用于确定在微时隙上发送物理侧行共享信道且物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。则常规时隙的配置信息包括常规时隙上预设数量的子信道内可用于物理侧行共享信道发送的资源数以及常规时隙内用于一个物理侧行控制信道以及物理侧行控制信道的解调参考信号发送的资源数。
相应的,若常规时隙的配置信息还用于确定传输块的大小,则常规时隙的配置信息包括常规时隙上的解调参考信号配置,常规时隙上的侧行符号数配置,常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于物理侧行共享信道发送的物理资源块的个数。
在一些实施例中,常规时隙可以预留微时隙内的资源,或者微时隙内的资源可以预留常规时隙内的资源。相应的,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,该第四指示信息用于指示预留的资源位于微时隙或位于常规时隙。
在一些实施例中,侧行链路传输中下行链路控制信息中还包括第五指示信息,第五指示信息用于指示当前调度的是微时隙或常规时隙。
S202、终端设备根据配置信息确定资源池。
在本步骤中,终端设备在获取网络设备发送的配置信息后,可以在侧行链路传输时根据配置信息确定资源池。
需要说明的是,本申请实施例对于如何确定资源池不在赘述,可以基于步骤S201中的配置方式进行确定。
在本申请中,提供了一种微时隙和常规时隙在同一个载波上共存的通信方法,通过本申请提出的方法,微时隙可以和常规时隙分属不同的时分的资源池,或者,微时隙可以和常规时隙分属不同的频分的资源池,或者微时隙可以和常规时隙配置为相同的资源池。如果微时隙和常规时隙分属不同的频分资源池或属于统一资源池,则微时隙所站用的资源位于PSFCH符号位置所在位置。通过该方式,可以在一个载波上支持常规时隙的同时进一步支持微时隙,从而降低侧行传输的时延,增加一个时隙内侧行传输的机会。
本申请实施例提供的通信方法,终端设备在侧行链路传输时根据配置信息确定资源池,该配置信息中包含有微时隙和常规时隙的配置方式。通过该方式,终端设备根据微时隙和常规时隙的配置方式来确定资源池,从而保证常规时隙和微时隙的共存。
在上述实施例的基础上,微时隙和常规时隙的配置方式可以从预配置信息中获取,也可从网络设备发送的配置信息中获取。下面提供一种网络设备为终端设备提供配置信息从而使终端设备确定资源池的方式。图16为本申请实施例提供的一种通信方法的信令交互图。如图16所示,该方法包括:
S301、网络设备确定配置信息,配置信息中包含有微时隙和常规时隙的配置方式。
S302、网络设备向终端设备发送配置信息。
S303、终端设备根据配置信息确定资源池。
S301-S303的技术名词、技术效果、技术特征,以及可选实施方式,可参照图13所示的S201-S202理解,对于重复的内容,在此不再累述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序信息相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图17为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两 者的结合实现,以执行上述实施例中终端设备侧的通信方法。如图17所示,该通信装置400包括:获取模块401和处理模块402。
获取模块401,用于获取网络设备发送的配置信息,配置信息中包含有微时隙和常规时隙的配置方式;
处理模块402,用于根据配置信息确定资源池。
在一种可选的实施方式中,配置信息由网络设备配置或预配置或由标准定义。
在一种可选的实施方式中,资源池用于侧行链路传输,侧行链路传输为至少基于微时隙的侧行链路传输。
在一种可选的实施方式中,配置方式包括微时隙和常规时隙存在于不同的时分的资源池。
在一种可选的实施方式中,配置信息中还包括第一指示信息,第一指示信息用于指示资源池的最小时域粒度。
在一种可选的实施方式中,若常规时隙中部分符号被配置为以微时隙为最小资源粒度的资源池,则常规时隙中的剩余符号同样被配置为以微时隙为最小资源粒度的资源池。
在一种可选的实施方式中,配置信息中还包括第二指示信息和第三指示信息,第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,第三指示信息用于指示属于资源池的微时隙在常规时隙中的位置。
在一种可选的实施方式中,第二指示信息包括位图信息,第三指示信息包括索引值或多个定位参数,多个定位参数包括属于资源池的微时隙在常规时隙中的起点参数和属于资源池的微时隙的长度参数。
在一种可选的实施方式中,配置方式包括微时隙和常规时隙存在于不同的频分的资源池。
在一种可选的实施方式中,配置方式包括微时隙和常规时隙存在于同一个资源池。
在一种可选的实施方式中,配置信息中还包括微时隙的配置信息,微时隙的配置信息包括微时隙的长度为两个字符,以及微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
在一种可选的实施方式中,微时隙的配置信息还包括微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
在一种可选的实施方式中,微时隙的配置信息还包括在微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
在一种可选的实施方式中,在微时隙发送的物理侧行控制信道和物理侧行共享信道在倒数第四个符号内的发送时间不晚于预设时刻,预设时刻为倒数第四个符号的结束时刻。
在一种可选的实施方式中,在微时隙发送的物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
在一种可选的实施方式中,微时隙的配置信息还包括在微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个倒数第三个符号。
在一种可选的实施方式中,常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
在一种可选的实施方式中,微时隙内的一个子信道包含的物理资源块个数大于常规时隙内的一个子信道包含的物理资源块个数。
在一种可选的实施方式中,配置信息中还包括常规时隙的配置信息,常规时隙的配置信息用于确定在微时隙上发送物理侧行共享信道且物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
在一种可选的实施方式中,常规时隙的配置信息包括常规时隙上预设数量的子信道内可用于物理侧行共享信道发送的资源数以及常规时隙内用于一个物理侧行控制信道以及物理侧行控制信道的解调参考信号发送的资源数。
在一种可选的实施方式中,常规时隙的配置信息还用于确定传输块的大小。
在一种可选的实施方式中,常规时隙的配置信息包括常规时隙上的解调参考信号配置,常规时隙上的侧行符号数配置,常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于物理侧行共享信道发送的物理资源块的个数。
在一种可选的实施方式中,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,第四指示信息用于指示预留的资源位于微时隙或位于常规时隙。
在一种可选的实施方式中,侧行链路传输中下行链路控制信息中包括第五指示信息,第五指示信息用于指示当前调度的是微时隙或常规时隙。
本申请实施例提供的通信装置,可以执行上述实施例中终端设备侧的通信方法的动作,其实现原理 和技术效果类似,在此不再赘述。
图18为本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现,以执行上述实施例中网络设备侧的通信方法。如图18所示,该通信装置500包括:处理模块501和发送模块502。
处理模块501,用于确定配置信息。
发送模块502,用于发送配置信息,配置信息中包含有微时隙和常规时隙的配置方式,配置信息用于确定资源池。
在一种可选的实施方式中,资源池用于侧行链路传输,侧行链路传输为至少基于微时隙的侧行链路传输。
在一种可选的实施方式中,配置方式包括微时隙和常规时隙存在于不同的时分的资源池。
在一种可选的实施方式中,配置信息中还包括第一指示信息,第一指示信息用于指示资源池的最小时域粒度。
在一种可选的实施方式中,若常规时隙中部分符号被配置为以微时隙为最小资源粒度的资源池,则常规时隙中的剩余符号同样被配置为以微时隙为最小资源粒度的资源池。
在一种可选的实施方式中,配置信息中还包括第二指示信息和第三指示信息,第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,第三指示信息用于指示属于资源池的微时隙在常规时隙中的位置。
在一种可选的实施方式中,第二指示信息包括位图信息,第三指示信息包括索引值或多个定位参数,多个定位参数包括属于资源池的微时隙在常规时隙中的起点参数和属于资源池的微时隙的长度参数。
在一种可选的实施方式中,配置方式包括微时隙和常规时隙存在于不同的频分的资源池。
在一种可选的实施方式中,配置方式包括微时隙和常规时隙存在于同一个资源池。
在一种可选的实施方式中,配置信息中还包括微时隙的配置信息,微时隙的配置信息包括微时隙的长度为两个字符,以及微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
在一种可选的实施方式中,微时隙的配置信息还包括微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
在一种可选的实施方式中,微时隙的配置信息还包括在微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
在一种可选的实施方式中,在微时隙发送的物理侧行控制信道和物理侧行共享信道在倒数第四个符号内的发送时间不晚于预设时刻,预设时刻为倒数第四个符号的结束时刻。
在一种可选的实施方式中,在微时隙发送的物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
在一种可选的实施方式中,微时隙的配置信息还包括在微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个倒数第三个符号。
在一种可选的实施方式中,常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
在一种可选的实施方式中,微时隙内的一个子信道包含的物理资源块个数大于常规时隙内的一个子信道包含的物理资源块个数。
在一种可选的实施方式中,配置信息中还包括常规时隙的配置信息,常规时隙的配置信息用于确定在微时隙上发送物理侧行共享信道且物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
在一种可选的实施方式中,常规时隙的配置信息包括常规时隙上预设数量的子信道内可用于物理侧行共享信道发送的资源数以及常规时隙内用于一个物理侧行控制信道以及物理侧行控制信道的解调参考信号发送的资源数。
在一种可选的实施方式中,常规时隙的配置信息还用于确定传输块的大小。
在一种可选的实施方式中,常规时隙的配置信息包括常规时隙上的解调参考信号配置,常规时隙上的侧行符号数配置,常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于物理侧行共享信道发送的物理资源块的个数。
在一种可选的实施方式中,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,第四指示信息用于指示预留的资源位于微时隙或位于常规时隙。
在一种可选的实施方式中,侧行链路传输中下行链路控制信息中包括第五指示信息,第五指示信息用于指示当前调度的是微时隙或常规时隙。
本申请实施例提供的通信装置,可以执行上述实施例中网络设备侧的通信方法的动作,其实现原理和技术效果类似,在此不再赘述。
图19为本申请实施例提供的一种电子设备的结构示意图。如图19所示,该电子设备可以包括:处理器61(例如CPU)、存储器62、接收器63和发送器64;接收器63和发送器64耦合至处理器61,处理器61控制接收器63的接收动作、处理器61控制发送器64的发送动作。存储器62可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器62中可以存储各种信息,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的电子设备还可以包括:电源65、通信总线66以及通信端口66。接收器63和发送器64可以集成在电子设备的收发信机中,也可以为电子设备上独立的收发天线。通信总线66用于实现元件之间的通信连接。上述通信端口66用于实现电子设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器62用于存储计算机可执行程序代码,程序代码包括信息;当处理器61执行信息时,信息使处理器61执行上述方法实施例中终端设备侧的处理动作,使发送器64执行上述方法实施例中终端设备侧的发送动作,使接收器63执行上述方法实施例中终端设备侧的接收动作,其实现原理和技术效果类似,在此不再赘述。
或者,当处理器61执行信息时,信息使处理器61执行上述方法实施例中网络设备侧的处理动作,使发送器64执行上述方法实施例中网络设备侧的发送动作,使接收器63执行上述方法实施例中网络设备侧的接收动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供一种通信系统,包括终端设备和网络设备,以执行上述通信方法。
本申请实施例还提供了一种芯片,包括处理器和接口。其中接口用于输入输出处理器所处理的数据或指令。处理器用于执行以上方法实施例中提供的方法。该芯片可以应用于终端设备或网络设备中。
本发明还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序信息,程序信息用于上述通信方法。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行以上方法实施例提供的通信方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,该程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例提供的通信方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生根据本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务端或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务端或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务端、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (101)

  1. 一种通信方法,其特征在于,包括:
    终端设备根据配置信息确定资源池,所述配置信息中包含有微时隙和常规时隙的配置方式。
  2. 根据权利要求1所述的方法,其特征在于,所述配置信息由网络设备配置或预配置或由标准定义。
  3. 根据权利要求1或2所述的方法,其特征在于,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
  5. 根据权利要求4所述的方法,其特征在于,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
  6. 根据权利要求5所述的方法,其特征在于,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
  7. 根据权利要求4所述的方法,其特征在于,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
  8. 根据权利要求7所述的方法,其特征在于,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
  9. 根据权利要求1-3任一项所述的方法,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
  10. 根据权利要求1-3任一项所述的方法,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
  11. 根据权利要求9或10所述的方法,其特征在于,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
  12. 根据权利要求11所述的方法,其特征在于,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
  13. 根据权利要求11所述的方法,其特征在于,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
  14. 根据权利要求13所述的方法,其特征在于,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
  15. 根据权利要求13或14所述的方法,其特征在于,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
  16. 根据权利要求9或10所述的方法,其特征在于,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
  17. 根据权利要求10所述的方法,其特征在于,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
  18. 根据权利要求17所述的方法,其特征在于,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
  19. 根据权利要求10所述的方法,其特征在于,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
  20. 根据权利要求19所述的方法,其特征在于,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
  21. 根据权利要求19所述的方法,其特征在于,所述常规时隙的配置信息还用于确定传输块的大小。
  22. 根据权利要求19所述的方法,其特征在于,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
  23. 根据权利要求10所述的方法,其特征在于,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
  24. 根据权利要求10所述的方法,其特征在于,侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
  25. 一种通信方法,其特征在于,包括:
    网络设备发送配置信息,所述配置信息中包含有微时隙和常规时隙的配置方式,所述配置信息用于确定资源池。
  26. 根据权利要求25所述的方法,其特征在于,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
  27. 根据权利要求25或26所述的方法,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
  28. 根据权利要求27所述的方法,其特征在于,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
  29. 根据权利要求28所述的方法,其特征在于,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
  30. 根据权利要求27所述的方法,其特征在于,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
  31. 根据权利要求30所述的方法,其特征在于,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
  32. 根据权利要求25或26所述的方法,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
  33. 根据权利要求25或26所述的方法,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
  34. 根据权利要求32或33所述的方法,其特征在于,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
  35. 根据权利要求34所述的方法,其特征在于,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
  36. 根据权利要求34所述的方法,其特征在于,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
  37. 根据权利要求36所述的方法,其特征在于,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
  38. 根据权利要求36或37所述的方法,其特征在于,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
  39. 根据权利要求32或33所述的方法,其特征在于,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
  40. 根据权利要求33所述的方法,其特征在于,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
  41. 根据权利要求40所述的方法,其特征在于,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
  42. 根据权利要求33所述的方法,其特征在于,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
  43. 根据权利要求42所述的方法,其特征在于,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
  44. 根据权利要求42所述的方法,其特征在于,所述常规时隙的配置信息还用于确定传输块的大小。
  45. 根据权利要求42所述的方法,其特征在于,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
  46. 根据权利要求33所述的方法,其特征在于,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
  47. 根据权利要求33所述的方法,其特征在于,侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
  48. 一种通信装置,其特征在于,包括:
    处理模块,用于根据配置信息确定资源池,所述配置信息中包含有微时隙和常规时隙的配置方式。
  49. 根据权利要求48所述的装置,其特征在于,所述配置信息由网络设备配置或预配置或由标准定义。
  50. 根据权利要求48或49所述的装置,其特征在于,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
  51. 根据权利要求48-50任一项所述的装置,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
  52. 根据权利要求51所述的装置,其特征在于,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
  53. 根据权利要求52所述的装置,其特征在于,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
  54. 根据权利要求51所述的装置,其特征在于,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
  55. 根据权利要求54所述的装置,其特征在于,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
  56. 根据权利要求48-50任一项所述的装置,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
  57. 根据权利要求48-50任一项所述的装置,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
  58. 根据权利要求56或57所述的装置,其特征在于,所述配置信息中还包括所述微时隙的配置信息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
  59. 根据权利要求58所述的装置,其特征在于,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
  60. 根据权利要求58所述的装置,其特征在于,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
  61. 根据权利要求60所述的装置,其特征在于,所述在所述微时隙发送的物理侧行控制信道和物 理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
  62. 根据权利要求60或61所述的装置,其特征在于,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
  63. 根据权利要求56或57所述的装置,其特征在于,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
  64. 根据权利要求57所述的装置,其特征在于,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
  65. 根据权利要求64所述的装置,其特征在于,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
  66. 根据权利要求57所述的装置,其特征在于,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
  67. 根据权利要求66所述的装置,其特征在于,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
  68. 根据权利要求66所述的装置,其特征在于,所述常规时隙的配置信息还用于确定传输块的大小。
  69. 根据权利要求68所述的装置,其特征在于,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
  70. 根据权利要求57所述的装置,其特征在于,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
  71. 根据权利要求57所述的装置,其特征在于,侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
  72. 一种通信装置,其特征在于,包括:
    发送模块,用于发送配置信息,所述配置信息中包含有微时隙和常规时隙的配置方式,所述配置信息用于确定资源池。
  73. 根据权利要求72所述的装置,其特征在于,所述资源池用于侧行链路传输,所述侧行链路传输为至少基于微时隙的侧行链路传输。
  74. 根据权利要求72或73所述的装置,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的时分的资源池。
  75. 根据权利要求74所述的装置,其特征在于,所述配置信息中还包括第一指示信息,所述第一指示信息用于指示所述资源池的最小时域粒度。
  76. 根据权利要求75所述的装置,其特征在于,若所述常规时隙中部分符号被配置为以所述微时隙为最小资源粒度的资源池,则所述常规时隙中的剩余符号同样被配置为以所述微时隙为最小资源粒度的资源池。
  77. 根据权利要求74所述的装置,其特征在于,所述配置信息中还包括第二指示信息和第三指示信息,所述第二指示信息用于指示属于资源池的微时隙所在的常规时隙的位置,所述第三指示信息用于指示所述属于资源池的微时隙在常规时隙中的位置。
  78. 根据权利要求77所述的装置,其特征在于,所述第二指示信息包括位图信息,所述第三指示信息包括索引值或多个定位参数,所述多个定位参数包括所述属于资源池的微时隙在常规时隙中的起点参数和所述属于资源池的微时隙的长度参数。
  79. 根据权利要求72或73所述的装置,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于不同的频分的资源池。
  80. 根据权利要求72或73所述的装置,其特征在于,所述配置方式包括所述微时隙和所述常规时隙存在于同一个资源池。
  81. 根据权利要求79或80所述的装置,其特征在于,所述配置信息中还包括所述微时隙的配置信 息,所述微时隙的配置信息包括所述微时隙的长度为两个字符,以及所述微时隙位于一个侧行时隙的倒数第三和倒数第二个符号上。
  82. 根据权利要求81所述的装置,其特征在于,所述微时隙的配置信息还包括所述微时隙占用的频域资源与相同符号上存在的物理侧行反馈信道占用的频域资源不重叠。
  83. 根据权利要求81所述的装置,其特征在于,所述微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于下一个侧行时隙的倒数第四个符号上。
  84. 根据权利要求83所述的装置,其特征在于,所述在所述微时隙发送的物理侧行控制信道和物理侧行共享信道在所述倒数第四个符号内的发送时间不晚于预设时刻,所述预设时刻为所述倒数第四个符号的结束时刻。
  85. 根据权利要求83或84所述的装置,其特征在于,在所述微时隙发送的所述物理侧行控制信道占用两个符号,且占用预设个数的物理资源块。
  86. 根据权利要求79或80所述的装置,其特征在于,微时隙的配置信息还包括在所述微时隙发送的物理侧行控制信道和物理侧行共享信道的自动增益控制符号位于侧行时隙的倒数第三个符号上,且占用整个所述倒数第三个符号。
  87. 根据权利要求80所述的装置,其特征在于,所述常规时隙中的微时隙以外的符号上发送的物理侧行控制信道用于指示预留微时隙上的资源用于同一个传输块的重传或另外一个传输块的新传。
  88. 根据权利要求87所述的装置,其特征在于,所述微时隙内的一个子信道包含的物理资源块个数大于所述常规时隙内的一个子信道包含的物理资源块个数。
  89. 根据权利要求80所述的装置,其特征在于,所述配置信息中还包括所述常规时隙的配置信息,所述常规时隙的配置信息用于确定在所述微时隙上发送物理侧行共享信道且所述物理侧行共享信道占用的子信道数量为预设数量时,第二阶侧行链路控制信息占用的资源数。
  90. 根据权利要求89所述的装置,其特征在于,所述常规时隙的配置信息包括所述常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的资源数以及所述常规时隙内用于一个物理侧行控制信道以及所述物理侧行控制信道的解调参考信号发送的资源数。
  91. 根据权利要求89所述的装置,其特征在于,所述常规时隙的配置信息还用于确定传输块的大小。
  92. 根据权利要求89所述的装置,其特征在于,所述常规时隙的配置信息包括所述常规时隙上的解调参考信号配置,所述常规时隙上的侧行符号数配置,所述常规时隙上的物理侧行共享信道的解调参考信号配置,一个常规时隙上预设数量的子信道内可用于所述物理侧行共享信道发送的物理资源块的个数。
  93. 根据权利要求80所述的装置,其特征在于,侧行链路传输中用于指示预留资源的侧行链路控制信息中包括第四指示信息,所述第四指示信息用于指示预留的资源位于所述微时隙或位于所述常规时隙。
  94. 根据权利要求80所述的装置,其特征在于,侧行链路传输中下行链路控制信息中包括第五指示信息,所述第五指示信息用于指示当前调度的是所述微时隙或所述常规时隙。
  95. 一种终端设备,其特征在于,包括:存储器与处理器;
    所述存储器,用于存储所述处理器的可执行指令;
    所述处理器配置为经由执行所述可执行指令来执行权利要求1-24任一所述的方法。
  96. 一种网络设备,其特征在于,包括:存储器与处理器;
    所述存储器,用于存储所述处理器的可执行指令;
    所述处理器配置为经由执行所述可执行指令来执行权利要求25-47任一所述的方法。
  97. 一种芯片,其特征在于,包括:处理器与存储器;
    所述处理器,用于从所述存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1-47任一所述的方法。
  98. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-47中任一项所述的方法。
  99. 一种计算机程序产品,其特征在于,所述计算机程序产品包含涉及的程序指令,所述涉及的程序指令被执行时,以实现权利要求1-47中任一所述的方法。
  100. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1-47任一所述的方法。
  101. 一种通信系统,其特征在于,包括:如权利要求48-71任一项所述的通信装置,以及,如权利要求72-94任一项所述的通信装置。
PCT/CN2021/108254 2021-07-23 2021-07-23 通信方法及装置 WO2023000332A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/108254 WO2023000332A1 (zh) 2021-07-23 2021-07-23 通信方法及装置
CN202180097745.2A CN117426131A (zh) 2021-07-23 2021-07-23 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/108254 WO2023000332A1 (zh) 2021-07-23 2021-07-23 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023000332A1 true WO2023000332A1 (zh) 2023-01-26

Family

ID=84980559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108254 WO2023000332A1 (zh) 2021-07-23 2021-07-23 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117426131A (zh)
WO (1) WO2023000332A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713300A (zh) * 2012-10-08 2014-04-09 厦门雅迅网络股份有限公司 一种准静态双星定位的方法及其应用
WO2014095374A1 (en) * 2012-12-17 2014-06-26 Alcatel Lucent Improvement to active signaling in a cognitive wireless telecommunication network
CN108419296A (zh) * 2017-02-10 2018-08-17 华硕电脑股份有限公司 用于无线通信系统中的控制信道传送的方法和设备
CN110915280A (zh) * 2017-08-10 2020-03-24 瑞典爱立信有限公司 改进的控制信道监测

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713300A (zh) * 2012-10-08 2014-04-09 厦门雅迅网络股份有限公司 一种准静态双星定位的方法及其应用
WO2014095374A1 (en) * 2012-12-17 2014-06-26 Alcatel Lucent Improvement to active signaling in a cognitive wireless telecommunication network
CN108419296A (zh) * 2017-02-10 2018-08-17 华硕电脑股份有限公司 用于无线通信系统中的控制信道传送的方法和设备
CN110915280A (zh) * 2017-08-10 2020-03-24 瑞典爱立信有限公司 改进的控制信道监测

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Unified design for slot and mini-slot", 3GPP DRAFT; R1-1708121, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 6 May 2017 (2017-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051262256 *

Also Published As

Publication number Publication date
CN117426131A (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
JP6953573B2 (ja) 低レイテンシを用いたダウンリンクおよびアップリンクチャネル
US11678401B2 (en) Transmission timing information sending method, transmission timing information receiving method, and apparatus
EP2898617B1 (en) Inter-device communication in wireless communication systems
US10652923B2 (en) Method for indicating the allocated resources for a HARQ message in a random access procedure for a low-complexity, narrowband terminal
JP2022177320A (ja) 無線端末、基地局、無線端末における方法及び基地局における方法
CN114124339B (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020143057A1 (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2021062602A1 (en) Method and apparatus for sharing channel occupancy time on unlicensed spectrum
WO2020069111A1 (en) Resource selection and reservation associated with vehicle to everything sidelink
JP2015523825A (ja) 方法及び装置
WO2018228395A1 (zh) 一种控制信息发送、接收方法及装置
CN111107656B (zh) 调度方法、数据传输方法及装置
CN113490286B (zh) 随机接入的方法、终端设备和网络设备
JP2015503869A (ja) アップリンクでの制御信号に関する通信リソース割当
CN114826535B (zh) 通信方法、设备及存储介质
WO2022029721A1 (en) TIMING ENHANCEMENTS RELATED TO PUCCH REPETITION TOWARDS MULTIPLE TRPs
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
WO2022029711A1 (en) COLLISION AVOIDANCE AND/OR HANDLING OF INVALID SYMBOLS WHEN UTILIZING UPLINK CHANNEL REPETITION TOWARDS MULTIPLE TRPs
WO2022222106A1 (zh) 传输物理侧行反馈信道psfch的方法和终端设备
WO2023000332A1 (zh) 通信方法及装置
CN112673587B (zh) 一种信道处理方法、终端设备及存储介质
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
RU2807529C1 (ru) Способ и система конфигурирования ресурсов передачи обходной линии связи и устройство и носитель данных
CN113039851B (zh) 无线通信方法、网络设备和终端设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950581

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097745.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE