WO2023193203A1 - 一种时延控制方法及装置、通信设备 - Google Patents

一种时延控制方法及装置、通信设备 Download PDF

Info

Publication number
WO2023193203A1
WO2023193203A1 PCT/CN2022/085627 CN2022085627W WO2023193203A1 WO 2023193203 A1 WO2023193203 A1 WO 2023193203A1 CN 2022085627 W CN2022085627 W CN 2022085627W WO 2023193203 A1 WO2023193203 A1 WO 2023193203A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
information
network device
packet
layer
Prior art date
Application number
PCT/CN2022/085627
Other languages
English (en)
French (fr)
Inventor
王淑坤
付喆
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/085627 priority Critical patent/WO2023193203A1/zh
Publication of WO2023193203A1 publication Critical patent/WO2023193203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a delay control method and device, and communication equipment.
  • the terminal device For interactive services, there is business interaction between the terminal device and the server. This type of service pays more attention to the total round-trip delay of the interaction between the terminal device and the server, rather than the delay of a separate upstream data flow, or the time of the downstream data flow. extension.
  • the total round-trip delay can be controlled through the application layer, but the control of the application layer takes a long time to reach the network side for transmission control, and the total round-trip delay cannot be controlled in a timely and effective manner, which cannot satisfy users of interactive services. experience.
  • Embodiments of the present application provide a delay control method and device, communication equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the network device receives the first data packet sent by the first device and sends the first data packet to the second device;
  • the network device receives the second data packet sent by the second device, and sends the second data packet to the first device;
  • the first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets a round-trip time (Round-Trip Time, RTT) requirement.
  • RTT Round-Trip Time
  • the first device sends a first data packet to the network device
  • the first device receives the second data packet sent by the network device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the second device receives the first data packet sent by the network device
  • the second device sends a second data packet to the network device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the delay control device provided by the embodiment of this application is applied to network equipment.
  • the device includes:
  • a receiving unit configured to receive the first data packet sent by the first device
  • a sending unit configured to send the first data packet to the second device
  • the receiving unit is also configured to receive the second data packet sent by the second device
  • the sending unit is also configured to send the second data packet to the first device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the delay control device provided by the embodiment of the present application is applied to the first device.
  • the device includes:
  • a sending unit configured to send the first data packet to the network device
  • a receiving unit configured to receive the second data packet sent by the network device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the delay control device provided by the embodiment of the present application is applied to the second device.
  • the device includes:
  • a receiving unit configured to receive the first data packet sent by the network device
  • a sending unit configured to send a second data packet to the network device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the communication device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory to execute the above delay control method.
  • the chip provided by the embodiment of the present application is used to implement the above delay control method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned delay control method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the computer program causes the computer to execute the above-mentioned delay control method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above delay control method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to execute the above delay control method.
  • the network device receives the first data packet sent by the first device and sends the first data packet to the second device; the network device receives the second data packet sent by the second device and sends the first data packet to the second device.
  • the second data packet is sent to the first device.
  • the first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets the RTT requirement. In this way, the first data with the RTT requirement is realized.
  • packet is associated with the second data packet
  • Network equipment is used to effectively control the total round-trip delay of transmission between data packets with RTT requirements, thus ensuring the user experience of interactive services.
  • Figure 1 is a schematic diagram of an application scenario
  • Figure 2 is a 5G network system architecture diagram
  • Figure 3 is a schematic diagram of a Qos mechanism
  • Figure 4 is a schematic flowchart of a delay control method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of application example 1 provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of application example two provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a delay control device provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram 2 of the structural composition of a delay control device provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram 3 of the structure of a delay control device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (e.g., UEs) located within the coverage area.
  • terminal devices 110 e.g., UEs
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolution networks etc.
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 AMF through the NG interface 1
  • access Network equipment such as the next generation wireless
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and other numbers of terminals may be included within the coverage of each base station.
  • Equipment the embodiments of this application do not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • FIG. 2 is a 5G network system architecture diagram.
  • the network elements involved in the 5G network system include: User Equipment (User Equipment, UE), Radio Access Network (Radio Access Network, RAN), and user plane functions (User Plane Function, UPF), Data Network (DN), Access and Mobility Management Function (AMF), Session Management Function (Session Management Function, SMF), Policy Control Function (Policy Control Function (PCF), Application Function (AF), Authentication Server Function (AUSF), Unified Data Management (UDM).
  • UPF User Equipment
  • RAN Radio Access Network
  • UPF User Plane Function
  • DN Data Network
  • AMF Access and Mobility Management Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • Policy Control Function Policy Control Function
  • PCF Policy Control Function
  • AF Application Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • the UE connects to the access layer (AS) with the RAN through the Uu interface, and exchanges access layer messages and wireless data transmission.
  • the UE performs a non-access stratum (NAS) connection with the AMF through the N1 interface and exchanges NAS messages.
  • AMF is the mobility management function in the core network
  • SMF is the session management function in the core network.
  • PCF is the policy management function in the core network and is responsible for formulating policies related to UE mobility management, session management, and charging.
  • UPF is the user plane function in the core network. It transmits data to the DN through the N6 interface and to the RAN through the N3 interface.
  • Qos Flow In a mobile communication network, in order to transmit user plane data, one or more Qos flows (Qos Flow) need to be established. As an important measure of communication quality, Qos parameters are usually used to indicate the characteristics of Qos flows. Different Qos flows correspond to different Qos parameters.
  • Qos parameters may include but are not limited to: 5G Quality of Service Identifier (5QI), Allocation Retension Priority (ARP), Guaranteed Flow Bit Rate (GFBR), Maximum Flow Bit Rate ( Maximum Flow Bit Rate, MFBR), up/downlink maximum packet loss rate (UL/DL Maximum Packet Loss Rate, UL/DL MPLR), end-to-end packet delay budget (Packet Delay Budget, PDB), AN-PDB, Packet Error Rate (PER), priority level (Priority Level), average window (Averaging Window), resource type (Resource Type), maximum data burst volume (Maximum Data Burst Volume), UE aggregate maximum bit rate ( UE Aggregate Maximum Bit Rate, UE-AMBR), session aggregate maximum bit rate (Session Aggregate Maximum Bit Rate, Session-AMBR), etc.
  • 5QI 5G Quality of Service Identifier
  • ARP Allocation Retension Priority
  • GFBR Guaranteed Flow Bit Rate
  • MFBR Maximum Flow Bit Rate
  • Filter contains characteristic parameters that describe data packets (such as some related parameters of IP data packets, some related parameters of Ethernet data packets), and is used to filter out specific data packets to bind to specific Qos flows.
  • the most commonly used Filter is the IP five-tuple, which is the source IP address, destination IP address, source port number, destination port number and protocol type.
  • UPF and UE will form a filter based on the combination of characteristic parameters of the data packet (the leftmost trapezoid and the rightmost parallelogram in Figure 3 represent filters), and filter the matching data transmitted on the user plane through the filter.
  • the uplink Qos flow is bound by the UE, and the downlink Qos flow is bound by the UPF.
  • one or more Qos flows can be mapped to a data radio bearer (Data Resource Bearer, DRB) for transmission.
  • DRB Data Resource Bearer
  • the base station will establish a DRB based on the Qos parameters and bind the Qos flow to a specific DRB.
  • Qos flow is established triggered by SMF.
  • both the UE and the network side can trigger the PDU session modification process to change Qos.
  • the UE can modify the Qos parameters of the Qos flow or establish a new Qos flow by sending a PDU Session Modification Request (PDU Session Modification Request) message.
  • PDU Session Modification Request PDU Session Modification Request
  • URLLC/XR needs to support services with a minimum latency of 0.5ms and 99,999% reliability requirements.
  • the service can be pseudo-periodic, that is, there is jitter in the service arrival time, or in other words, the service will not arrive at a certain time point, but will arrive at any moment within a time range.
  • the service cycle can be a non-integer cycle, such as 16.67ms.
  • the arrival time of different service flows of the same service may vary greatly.
  • the terminal device For some new application layer services, such as AR, VR, cloud games, and artificial intelligence interactive services, there is business interaction between the terminal device (or client) and the server. For example, the terminal device generates a control command and expects control After the command is generated, a response from the server is received within a certain period of time, that is, this type of business will pay more attention to the total round-trip delay of a round of interaction between the terminal device and the server, rather than the delay of a separate upstream data stream, or the downlink data Streaming delay.
  • the total round-trip delay can be controlled through the application layer. For example, the application layer server controls the total round-trip delay.
  • the time tag of the application layer is used to learn that the received uplink data transmission delay is large, the downlink data will be sent more quickly. Low transmission delay is required for the network, so that downlink data can reach the terminal device faster, thereby achieving the requirement that the total delay of a round of uplink and downlink interactions does not exceed the total round-trip delay.
  • application layer control takes a long time to reach the network side for transmission control, and cannot control the total round-trip delay in a timely and effective manner, making it unable to meet the user experience of interactive services. To this end, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 4 is a schematic flowchart of a delay control method provided by an embodiment of the present application. As shown in Figure 4, the delay control method includes the following steps:
  • Step 401 The first device sends the first data packet to the network device; the network device receives the first data packet sent by the first device and sends the first data packet to the second device; the second device receives the first data packet sent by the network device.
  • One data packet One data packet.
  • Step 402 The second device sends a second data packet to the network device; the network device receives the second data packet sent by the second device and sends the second data packet to the first device. ;
  • the first device receives the second data packet sent by the network device; wherein the first data packet and the second data packet have an associated relationship, and the first data packet and the second data packet The transmission meets the round trip time RTT requirement.
  • the network device may be a base station.
  • the first device may be called a triggering device, and the second device may be called a response device.
  • the first device is a terminal device, and the second device is a server or a core network element.
  • the first device is a server or a core network element, and the second device is a terminal device.
  • service interaction is performed between the first device and the second device through a network device.
  • the network device receives the first data packet sent by the first device, and sends the first data packet to the second device.
  • the first data packet may be called a trigger data packet
  • the second data packet may be called a response data packet.
  • the first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • this application does not limit the number of first data packets, and it may be one or more.
  • This application does not limit the number of second data packets, and it can be one or more.
  • the first device is a terminal device
  • the second device is a server or a core network element.
  • the interaction between the first device and the second device is: the network device receives the first data packet sent by the terminal device, and sends the first data packet to the server or core network element; the network device receives the server or The second data packet sent by the core network element is sent to the terminal device.
  • the following describes the relevant scheme of the first data packet and the relevant scheme of the second data packet.
  • the network device receives the first data packet sent by the first device, and sends the first data packet to the second device.
  • the first data packet is associated with second information
  • the second information includes at least one of the following:
  • the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the first data packets is the number of the first data packets.
  • the network device sends the second information associated with the first data packet to the second device; the second device receives the first data packet sent by the network device. associated second information.
  • the second information is carried in the IP packet corresponding to the first data packet, or the first protocol layer corresponding In the packet header, or in the packet header corresponding to the second protocol layer, or in the Medium Access Control (Medium Access Control, MAC) control unit (Control Element, CE), or in the uplink control information (Uplink Control Information, UCI);
  • the first protocol layer includes at least one of the following: service data adaptation protocol (Service Data Adaptation Protocol, SDAP) layer, packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, wireless link layer control (Radio Link Control (RLC) layer and MAC layer;
  • the second protocol layer is a protocol layer different from the first protocol layer.
  • the second protocol layer may be a newly defined protocol layer; for the network device
  • the second information sent by the second device the second information is carried in the IP packet corresponding to the first data packet, or in the GPRS Tunnelling Protocol (GPRS Tunnelling Protocol, GTP) header, or in a specific GTP packet , or in GTP control signaling.
  • GTP GPRS Tunnelling Protocol
  • the first device sends first information to the network device; the network device receives the first information sent by the first device; wherein the first information includes at least one of the following: kind of information:
  • a first time difference the first time difference being the time difference from the generation time of the first data packet to the sending time
  • a first timing advance (Timing Advance, TA)
  • the first TA is the TA corresponding to the sending time of the first data packet
  • the reference time is determined based on clock information delivered by the network device or based on local clock information of the first device.
  • the network device obtains the RTT requirement information from the first device or the core network; the first device sends the RTT requirement information to the network device.
  • the RTT requirement information is set at the Packet Data Unit (Packet Data Unit set, PDU set) level or at the Packet Data Unit set (Packet Data Unit set, PDU set) level or at the Group of Pictures (GOP) level.
  • the network device after acquiring the second information and/or RTT requirement information, the network device saves the second information and/or RTT requirement information.
  • the network device after receiving the first data packet, identifies that the first data packet has an RTT requirement based on the second information. According to the first information and/or RTT The demand determines the first remaining time; if the first remaining time is greater than or equal to the first processing time, the network device sends the first data packet to the second device, where the first processing time is Refers to the processing and/or transmission time of the second data packet. Further, if the first remaining time is less than the first processing time, the network device discards the first data packet.
  • first remaining time RTT requirement minus t1, where t1 is the time difference from the time when the network device receives the first data packet to the generation time of the first data packet.
  • the generation time of the first data packet can be based on The first information is confirmed.
  • the network device receives the second data packet sent by the second device, and sends the second data packet to the first device.
  • the second data packet is associated with third information
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the second data packet is a data packet with an associated relationship and/or is used to indicate that the second data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the second data packets is the number of the second data packets.
  • the network device sends the third information associated with the second data packet to the first device.
  • the third information is carried in the IP packet corresponding to the first data packet, or in the GTP packet header, or In a specific GTP packet or in GTP control signaling; for the third information sent by the network device to the first device, the third information is carried in the IP packet corresponding to the first data packet, or In the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer , MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • the second protocol layer may be a newly defined protocol layer.
  • the network device determines the second information associated with it based on the third information, and determines the second information based on the third information and the second information.
  • the association relationship determines that there is an association relationship between the second data packet and the first data packet; the network device receives the first data packet and the third data packet based on at least the first information and the RTT requirement.
  • At least one kind of information in the time difference between the two data packets determines the second remaining time; if the second remaining time is greater than or equal to the second processing time, the network device sends the second data packet to the first device, Wherein, the second processing time refers to the processing and/or transmission time of the second data packet. Further, if the second remaining time is less than the second processing time, the network device discards the second data packet.
  • the second remaining time RTT requirement minus t1 minus t2, where t1 is the time difference from the time when the network device receives the first data packet to the time when the first data packet is generated, and t2 is the time when the network device receives the first data packet.
  • the generation time of the first data packet can be determined based on the first information.
  • the network device determines a downlink scheduling policy for the second data packet based on the second remaining time; the network device sends the second data packet to the first device.
  • the network device will increase the scheduling priority of the downlink transmission of the second data packet (that is, prioritize the downlink transmission of the second data packet, or in other words, Schedule the downlink transmission of the second data packet earlier), so that the second data packet is sent to the first device as soon as possible, so that the total round-trip time of the first data packet and the second data packet is to meet RTT requirements.
  • the network device lowers or leaves the scheduling priority of the downlink transmission of the second data packet unchanged to ensure that the first data packet and the second data packet are The total round-trip delay meets RTT requirements.
  • the network device may, but is not limited to, determine the time difference between receiving the first data packet and the second data packet in the following manner:
  • Method 1 The network device receives the first data packet, starts or restarts the first timer; the network device receives the second data packet, stops the first timer; based on the first The timing information of the timer determines the time difference between receiving the first data packet and the second data packet.
  • Method 2 The network device receives the first data packet and records the local second absolute time; the network device receives the second data packet and records the local third absolute time; based on the second The absolute time and the third absolute time determine the time difference between receiving the first data packet and the second data packet.
  • the first device is a terminal device and the second device is a server or core network element
  • the first data packet sent by the first device is an uplink data packet
  • the second data packet sent by the second device is an uplink data packet.
  • this method is an interactive method of uplink first and then downlink.
  • the network equipment adjusts the scheduling strategy through the first information and/or RTT requirement information reported by the terminal device, thereby controlling the total round-trip delay and meeting the RTT requirement.
  • the network device can be enabled to identify the first data and the second data packet having an associated relationship, thereby Adjust the scheduling policy for associated data packets to control the total round-trip delay and meet RTT requirements.
  • the first device is a server or a core network element
  • the second device is a terminal device.
  • the interaction between the first device and the second device is: the network device receives the first data packet sent by the server or the core network element, and sends the first data packet to the terminal device; the network device receives the terminal device Send the second data packet to the server or core network element.
  • the following describes the relevant scheme of the first data packet and the relevant scheme of the second data packet.
  • the network device receives the first data packet sent by the first device, and sends the first data packet to the second device.
  • the first data packet is associated with second information
  • the second information includes at least one of the following:
  • the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the first data packets is the number of the first data packets.
  • the network device sends the second information associated with the first data packet to the second device; the second device receives the first data packet sent by the network device. associated second information.
  • the second information is carried in an IP packet corresponding to the first data packet or in a GTP packet header. in, or in a specific GTP packet, or in GTP control signaling; for the second information sent by the network device to the second device, the second information is carried in the IP packet corresponding to the first data packet In, or in the packet header corresponding to the first protocol layer, or in the packet header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer , RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • the second protocol layer may be a newly defined protocol layer.
  • the network device receives the first information sent by the first device; wherein the first information includes at least one of the following information:
  • a first time difference the first time difference being the time difference from the generation time of the first data packet to the sending time
  • the reference time is determined based on clock information delivered by the network device or based on local clock information of the first device.
  • the network device obtains the RTT requirement information from the first device or the core network, and the first device sends the RTT requirement information to the network device.
  • the RTT requirement information is set at the PDU level or at the PDU set level or at the GOP level or at the Qos flow level or at the data bearer level or at the service type level.
  • the network device after acquiring the second information and/or RTT requirement information, the network device saves the second information and/or RTT requirement information.
  • the network device after receiving the first data packet, identifies that the first data packet has an RTT requirement based on the second information. According to the first information and/or RTT The demand determines the first remaining time; if the first remaining time is greater than or equal to the first processing time, the network device sends the first data packet to the second device, where the first processing time is Refers to the processing and/or transmission time of the second data packet. Further, if the first remaining time is less than the first processing time, the network device discards the first data packet.
  • first remaining time RTT requirement minus t1, where t1 is the time difference from the time when the network device receives the first data packet to the generation time of the first data packet.
  • the generation time of the first data packet can be based on The first information is confirmed.
  • the network device determines a downlink scheduling policy for the first data packet based on the first remaining time; the network device sends the first data packet to the second device.
  • the network device will increase the scheduling priority of the downlink transmission of the first data packet (that is, prioritize the downlink transmission of the first data packet, or in other words, Schedule the downlink transmission of the first data packet earlier), so that the first data packet is sent to the first device as soon as possible, so that the total round-trip time of the first data packet and the second data packet is to meet RTT requirements.
  • the network device lowers or leaves the scheduling priority of the downlink transmission of the first data packet unchanged to ensure that the first data packet and the second data packet are The total round-trip delay meets RTT requirements.
  • the network device sends the first remaining time-related information to the second device, and the second device receives the first remaining time-related information sent by the network device.
  • the information related to the first remaining time is used to assist the second device in determining the grouping strategy adopted for the second data packet; and/or, the network device determines the grouping strategy based on the first remaining time.
  • the uplink scheduling policy of the second data packet associated with the first data packet is sent to the second device, and the second device receives the first data packet associated with it sent by the network device.
  • the uplink scheduling policy of the second data packet, the uplink scheduling policy is used by the second device to determine the sending policy adopted by the second data packet.
  • the second device increases the priority of the logical channel where the second data packet is located, and groups and sends the second data packet first, so that The total round-trip delay of the first data packet and the second data packet meets the RTT requirement. If the first remaining time is longer, the second device lowers or leaves the priority of the logical channel where the second data packet is located to ensure that the first data packet and the second data packet are The total round-trip delay meets RTT requirements.
  • the network device increases the scheduling priority of the uplink transmission of the second data packet (that is, prioritizes scheduling of the uplink transmission of the second data packet, or in other words, Schedule the uplink transmission of the second data packet earlier), so that the second data packet is sent to the first device as soon as possible, so that the total round-trip time of the first data packet and the second data packet is to meet RTT requirements.
  • the network device lowers or leaves the scheduling priority of the uplink transmission of the second data packet unchanged to ensure that the first data packet and the second data packet are The total round-trip delay meets RTT requirements.
  • the network device receives the second data packet sent by the second device, and sends the second data packet to the first device.
  • the second data packet is associated with third information
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the second data packet is a data packet with an associated relationship and/or is used to indicate that the second data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the second data packets is the number of the second data packets.
  • the network device sends the third information associated with the second data packet to the first device.
  • the third information is carried in the IP packet corresponding to the first data packet, or the first protocol layer corresponding in the packet header, or in the packet header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; so The second protocol layer is a protocol layer different from the first protocol layer.
  • the second protocol layer may be a newly defined protocol layer; for the third information sent by the network device to the first device , the third information is carried in the IP packet corresponding to the first data packet, or in the GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • the network device determines the second information associated with it based on the third information, and determines the second information based on the third information and the second information.
  • the association relationship determines that there is an association relationship between the second data packet and the first data packet; the network device receives the first data packet and the third data packet based on at least the first information and the RTT requirement.
  • At least one kind of information in the time difference between the two data packets determines the second remaining time; if the second remaining time is greater than or equal to the second processing time, the network device sends the second data packet to the first device, Wherein, the second processing time refers to the processing and/or transmission time of the second data packet. Further, if the second remaining time is less than the second processing time, the network device discards the second data packet.
  • the second remaining time RTT requirement minus t1 minus t2, where t1 is the time difference from the time when the network device receives the first data packet to the time when the first data packet is generated, and t2 is the time when the network device receives the first data packet.
  • the generation time of the first data packet can be determined based on the first information.
  • the network device may, but is not limited to, determine the time difference between receiving the first data packet and the second data packet in the following manner:
  • Method 1 The network device receives the first data packet, starts or restarts the first timer; the network device receives the second data packet, stops the first timer; based on the first The timing information of the timer determines the time difference between receiving the first data packet and the second data packet.
  • Method 2 The network device receives the first data packet and records the local second absolute time; the network device receives the second data packet and records the local third absolute time; based on the second The absolute time and the third absolute time determine the time difference between receiving the first data packet and the second data packet.
  • the first device is a server or a core network element
  • the second device is a terminal device
  • the first data packet sent by the first device is a downlink data packet
  • the second data packet sent by the second device is a downlink data packet.
  • this method is an interactive method of first downlink and then uplink.
  • the network equipment adjusts the scheduling strategy through the first information and/or RTT requirement information reported by the server or core network element, thereby controlling the total round-trip delay to meet the requirements. RTT requirements.
  • the network device can be enabled to identify the first data and the second data packet having an associated relationship, thereby Adjust the scheduling policy for associated data packets to control the total round-trip delay and meet RTT requirements.
  • the network device sends fourth information to the target network device, where the fourth information includes at least one of the following:
  • the first information includes at least one of the following: a first time difference, a first TA, and a first absolute time;
  • the second information includes at least one of the following: first indication information, the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet It is a data packet with RTT requirements; first label information, the first label information is used to identify that the first data packet and the second data packet have an association relationship and/or is used to identify the first data packet The RTT requirement needs to be met between the second data packet and the second data packet; the number of the first data packet;
  • the remaining time is determined by the network device based on at least one of the first information, RTT requirement information, and a time difference between receiving the first data packet and the second data packet;
  • the target data packet refers to a data packet that is not transmitted by the network device to the terminal device.
  • the network device can be understood as the original base station of the terminal device
  • the target network device can be understood as the target base station to which the terminal device is switched.
  • the original base station forwards the RTT-related information (ie, the above-mentioned fourth information) to the target base station, so that the target base station determines the scheduling strategy of the second data packet based on the fourth information.
  • the method of determining the scheduling policy may refer to the relevant description of the aforementioned network device) to ensure that the total round-trip delay of the first data packet and the second data packet meets the RTT requirement.
  • the network device when the network device receives the first data packet sent by the first device and does not receive the second data packet sent by the second device, if a switching process occurs, then The network device sends the fourth information to the target network device.
  • the network device receives the first data packet sent by the first device and receives the second data packet sent by the second device and does not send the second data packet to In the case of the first device, if a handover process occurs, the network device sends the fourth information to the target network device.
  • the first device is a terminal device
  • the second device is a server or core network element.
  • the network equipment is the base station.
  • the terminal device sends one or more trigger data packets (i.e., the first data packet) to the server or core network element through the base station.
  • the transmission here belongs to uplink transmission; the server or core network element sends to the terminal through the base station.
  • the device sends one or more response data packets (ie, the second data packet), and the transmission here belongs to downlink transmission.
  • the specific process is as follows:
  • the terminal device generates one or more trigger data packets, and the one or more trigger data packets are generated based on the application (APP) on the terminal device side.
  • the one or more trigger data may represent a gesture or a control command, etc.
  • the one or more trigger data packets are sent to the server or core network element, and the server is expected to generate corresponding one or more response data packets.
  • the terminal device internally records the time difference t between when the APP generates the trigger data packet and sends it to the air interface and the TA when the data packet is sent, and reports the two pieces of information to the base station.
  • the terminal device records the absolute time when the APP generates the trigger data and reports the information to the base station.
  • the absolute time is determined based on the reference time.
  • the reference time may be the clock information on the base station side or the local clock of the terminal device. information.
  • the terminal device can also notify the base station of the RTT requirement information.
  • the RTT requirement information is 20 ms, which means the total round-trip delay requirement is 20 ms.
  • the terminal device will also associate the one or more trigger data packets with second information, and the second information includes at least one of the following:
  • the first indication information is used to indicate that the triggering data packet is a data packet with an associated relationship and/or is used to indicate that the triggering data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more trigger packets is the number of one or more trigger packets.
  • the second information is carried in the IP packet, or in the SDAP header, or in the PDCP header, or in the RLC header, or in the MAC header corresponding to the MAC SDU, or in the MAC CE associated with the MAC SDU, or in the physical layer transmission In the associated UCI, or in the header corresponding to the newly defined protocol layer.
  • the base station can obtain RTT requirement information from the terminal equipment or the core network.
  • the RTT requirement information can be set at the PDU level or at the PDU set level or at the GOP level or at the Qos flow level or at the data bearer level or service type. level setting.
  • the base station receives one or more trigger data packets from the terminal device, and saves the second information associated with the trigger data packet and the RTT requirement information. Further, the base station identifies that the triggering data packet has an RTT requirement through the second information, and the base station determines the remaining processing of the response data packet based on the auxiliary information reported by the terminal device (i.e., t, TA, etc. in step 2) and the RTT requirement information. time (i.e. the first remaining time).
  • the base station can discard the received one or more trigger data packets; if the first remaining time can meet the RTT requirement to send the associated response data packet, then The base station sends one or more trigger data packets to the server or core network element.
  • the base station notifies the server or the core network element to trigger the second information associated with the data packet.
  • the second information includes at least one of the following:
  • the first indication information is used to indicate that the triggering data packet is a data packet with an associated relationship and/or is used to indicate that the triggering data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more trigger packets is the number of one or more trigger packets.
  • the second information is carried in an IP packet, a GTP packet header, a specific GTP packet, or GTP control signaling.
  • the server or core network element generates one or more associated response data packets based on one or more trigger data packets forwarded by the base station, and associates the one or more response data packets with the third information.
  • Three pieces of information include at least one of the following:
  • the second indication information is used to indicate that the response data packet is a data packet with an associated relationship and/or is used to indicate that the response data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more response packets is the number of one or more response packets.
  • the third information is carried in an IP packet, a GTP packet header, a specific GTP packet, or GTP control signaling.
  • the base station receives one or more response data packets from the server or core network element, identifies the second information associated with the response data packet by associating the third information with it, and identifies the second information based on the association between the third information and the second information.
  • the trigger data packet associated with the response data packet; the base station at least based on at least the auxiliary information reported by the terminal device (i.e., t, TA, etc. in step 2), the RTT requirement information, and the time difference between the base station receiving the trigger data packet and the response data packet.
  • One determines the remaining processing time of the response packet i.e. the second remaining time).
  • the base station may discard one or more received response data packets; if the second remaining time can meet the RTT requirement to send the associated response data packet, then The base station sends one or more response packets to the terminal device.
  • the base station determines the scheduling strategy of the response data packet according to the second remaining time, such as priority scheduling. At the same time, the base station also sends the third information associated with the one or more response data packets to the terminal device.
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the response data packet is a data packet with an associated relationship and/or is used to indicate that the response data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more response packets is the number of one or more response packets.
  • the third information is carried in the IP packet, or in the SDAP header, or in the PDCP header, or in the RLC header, or in the MAC header corresponding to the MAC SDU, or in the MAC CE associated with the MAC SDU, or in the physical layer transmission In the associated UCI, or in the header corresponding to the newly defined protocol layer.
  • the first device is a server or a core network element
  • the second device is a terminal device.
  • the network equipment is the base station.
  • the server or core network element sends one or more trigger data packets (i.e., the first data packet) to the terminal device through the base station.
  • the transmission here belongs to downlink transmission; the terminal device sends data to the server or core network through the base station.
  • the element sends one or more response data packets (i.e., the second data packet), and the transmission here belongs to uplink transmission.
  • the specific process is as follows:
  • the server generates one or more trigger data packets.
  • the one or more trigger data can represent control commands, etc.
  • the one or more trigger data packets are sent to the terminal device, and the terminal device is expected to generate corresponding one or more response data packets.
  • the server records the time difference t between when the APP generates the trigger data packet and when it is sent from the server, and sends this information to the base station.
  • the server records the absolute time when the APP generates the trigger data and sends the information to the base station.
  • the absolute time is determined based on the reference time.
  • the reference time may be clock information on the base station side or local clock information on the server.
  • the server can also notify the base station of the RTT requirement information.
  • the RTT requirement information is 20 ms, which means the total round-trip delay requirement is 20 ms.
  • the server or core network element will also associate the one or more trigger data packets with second information, and the second information includes at least one of the following:
  • the first indication information is used to indicate that the triggering data packet is a data packet with an associated relationship and/or is used to indicate that the triggering data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more trigger packets is the number of one or more trigger packets.
  • the second information is carried in an IP packet, a GTP packet header, a specific GTP packet, or GTP control signaling.
  • the base station can obtain RTT requirement information from the server or core network.
  • the RTT requirement information can be set at the PDU level or at the PDU set level or at the GOP level or at the Qos flow level or at the data bearer level or at the service type level. set.
  • the base station receives one or more trigger data packets from the server or core network element, and saves the second information associated with the trigger data packet and the RTT requirement information. Further, the base station identifies that the triggering data packet has an RTT requirement through the second information. The base station determines the remaining processing time of the response data packet (i.e., based on the auxiliary information reported by the server (i.e., t, etc. in step 2) and the RTT requirement information). first remaining time). If the first remaining time cannot meet the RTT requirement to send the associated response data packet, the base station can discard the received one or more trigger data packets; if the first remaining time can meet the RTT requirement to send the associated response data packet, then The base station sends one or more trigger data packets to the terminal device.
  • the base station notifies the terminal device to trigger the second information associated with the data packet, and the second information includes at least one of the following:
  • the first indication information is used to indicate that the triggering data packet is a data packet with an associated relationship and/or is used to indicate that the triggering data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more trigger packets is the number of one or more trigger packets.
  • the second information is carried in the IP packet, or in the SDAP header, or in the PDCP header, or in the RLC header, or in the MAC header corresponding to the MAC SDU, or in the MAC CE associated with the MAC SDU, or in the physical layer transmission In the associated UCI, or in the header corresponding to the newly defined protocol layer.
  • the terminal device generates one or more associated response data packets based on one or more trigger data packets forwarded by the base station, and associates the one or more response data packets with third information.
  • the third information includes the following At least one of:
  • the second indication information is used to indicate that the response data packet is a data packet with an associated relationship and/or is used to indicate that the response data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more response packets is the number of one or more response packets.
  • the third information is carried in the IP packet, or in the SDAP header, or in the PDCP header, or in the RLC header, or in the MAC header corresponding to the MAC SDU, or in the MAC CE associated with the MAC SDU, or in the physical layer transmission In the associated UCI, or in the header corresponding to the newly defined protocol layer.
  • the terminal device may consider that the logical channel where the response data packets are located at this time has the highest priority, and group and send the response data packets first.
  • the base station receives one or more response data packets from the terminal device, identifies the second information associated with the response data packet by associating the third information with it, and identifies the response data packet association based on the association between the third information and the second information.
  • the trigger data packet the base station determines whether the response data packet is still available based on at least one of the auxiliary information reported by the server (i.e., t, etc. in step 2), RTT requirement information, and the time difference between the base station receiving the trigger data packet and the response data packet.
  • the remaining processing time i.e. the second remaining time).
  • the base station may discard one or more received response data packets; if the second remaining time can meet the RTT requirement to send the associated response data packet, then The base station sends one or more response data packets to the server or core network element.
  • the base station also sends the third information associated with the one or more response data packets to the server or core network element.
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the response data packet is a data packet with an associated relationship and/or is used to indicate that the response data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the trigger data packet and the response data packet have an associated relationship and/or is used to identify that the trigger data packet and the response data packet need to meet RTT requirements;
  • the number of one or more response packets is the number of one or more response packets.
  • the third information is carried in an IP packet, a GTP packet header, a specific GTP packet, or GTP control signaling.
  • the trigger data packet sent by the terminal device has arrived at the base station, but the base station has not received the response data packet from the server or core network element.
  • the original base station will use the previously stored RTT-related scheduling information (such as first information, second information, RTT demand information, remaining time, response data packet, LCID carrying the response data packet, DRB ID carrying the response data packet and other information) are sent to the target base station, which assists the target base station in scheduling the response data packet. For example, the target base station will prioritize the scheduling of the response data packet.
  • the trigger packet sent by the server or core network element reaches the base station, but the base station has not yet sent the trigger packet to the terminal device or If this trigger data packet has been sent to the terminal device but no response data packet has been received from the terminal device, if a handover occurs, the original base station will use the previously stored RTT-related scheduling information (such as first information, second information, RTT requirement information, remaining time, response packet, LCID carrying the response packet, DRB ID carrying the response packet, etc.) are sent to the target base station, which assists the target base station in scheduling the response packet. For example, the target base station will prioritize the response packet. Response packets are dispatched.
  • RTT-related scheduling information such as first information, second information, RTT requirement information, remaining time, response packet, LCID carrying the response packet, DRB ID carrying the response packet, etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • FIG. 7 is a schematic structural diagram of a delay control device provided by an embodiment of the present application. It is applied to network equipment. As shown in Figure 7, the delay control device includes:
  • the receiving unit 701 is used to receive the first data packet sent by the first device
  • Sending unit 702 configured to send the first data packet to the second device
  • the receiving unit 701 is also used to receive the second data packet sent by the second device;
  • the sending unit 702 is also configured to send the second data packet to the first device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the receiving unit 701 is configured to receive the first information sent by the first device; wherein the first information includes at least one of the following information:
  • a first time difference the first time difference being the time difference from the generation time of the first data packet to the sending time
  • the first TA is the TA corresponding to the first data packet at the time of sending;
  • the reference time is determined based on clock information delivered by the network device or based on local clock information of the first device.
  • the receiving unit 701 is configured to obtain RTT requirement information from the first device or core network.
  • the RTT requirement information is set at the PDU level or at the PDU set level or at the GOP level or at the Qos flow level or at the data bearer level or at the service type level.
  • the first data packet is associated with second information
  • the second information includes at least one of the following:
  • the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the first data packets is the number of the first data packets.
  • the device further includes: a saving unit, configured to save the second information and/or RTT requirement information after acquiring the second information and/or RTT requirement information.
  • the sending unit 702 is configured to send the second information associated with the first data packet to the second device.
  • the device further includes: a processing unit 703, configured to identify that the first data packet has an RTT requirement based on the second information, and determine the first data packet according to the first information and/or the RTT requirement. a remaining time; if the first remaining time is greater than or equal to the first processing time, the sending unit 702 sends the first data packet to the second device, where the first processing time refers to the processing and/or transmission time of the second data packet.
  • a processing unit 703 configured to identify that the first data packet has an RTT requirement based on the second information, and determine the first data packet according to the first information and/or the RTT requirement. a remaining time; if the first remaining time is greater than or equal to the first processing time, the sending unit 702 sends the first data packet to the second device, where the first processing time refers to the processing and/or transmission time of the second data packet.
  • the processing unit 703 discards the first data packet.
  • the processing unit 703 determines the first remaining time based on the first remaining time. Downlink scheduling policy of the data packet; the sending unit 702 sends the first data packet to the second device according to the downlink scheduling policy.
  • the first device is a server or a core network element
  • the sending unit 702 when the second device is a terminal device, the sending unit 702 is configured to send the data to the second device.
  • the information related to the first remaining time is used to assist the second device in determining the grouping strategy adopted for the second data packet; and/or the processing unit 703,
  • the sending unit 702 is used to determine the uplink scheduling policy of the second data packet associated with the first data packet based on the first remaining time, and the sending unit 702 is used to send the uplink scheduling policy to the second device,
  • the uplink scheduling policy is used by the second device to determine the sending policy adopted by the second data packet.
  • the second device when the first device is a terminal device and the second device is a server or a core network element, for the second information sent by the first device to the network device, The second information is carried in the IP packet corresponding to the first data packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or UCI; wherein , the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer; for the network device The second information sent by the second device is carried in the IP packet corresponding to the first data packet, or in the GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • the first device is a server or a core network element
  • the second device when the second device is a terminal device, for the first device sent by the first device to the network device, data packet, the second information is carried in the IP packet corresponding to the first data packet, or in the GTP header, or in a specific GTP packet, or in GTP control signaling; for the network device to The second information sent by the second device, the second information is carried in the IP packet corresponding to the first data packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or MAC CE in, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, MAC layer; the second protocol layer is a protocol layer different from the first protocol layer .
  • the second data packet is associated with third information
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the second data packet is a data packet with an associated relationship and/or is used to indicate that the second data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the second data packets is the number of the second data packets.
  • the sending unit 702 is configured to send the third information associated with the second data packet to the first device.
  • the device further includes: a processing unit 703, configured to determine second information associated with the third information based on the third information, and determine the associated relationship between the third information and the second information. Determine that there is an association relationship between the second data packet and the first data packet; at least according to at least the first information, the RTT requirement, and the time difference between receiving the first data packet and the second data packet.
  • a kind of information determines the second remaining time; if the second remaining time is greater than or equal to the second processing time, the sending unit 702 sends the second data packet to the first device, where the second The processing time refers to the processing and/or transmission time of the second data packet.
  • the processing unit 703 discards the second data packet.
  • the processing unit 703 is configured to determine the second remaining time based on the second remaining time.
  • the downlink scheduling policy of the second data packet; the sending unit 702 is configured to send the second data packet to the first device according to the downlink scheduling policy.
  • the third information sent by the second device to the network device is carried in an IP packet corresponding to the first data packet, or in a GTP packet header, or in a specific GTP packet, or in GTP control signaling; for the network device to send it to the first device
  • the third information is carried in the IP packet corresponding to the first data packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or In UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • the third information sent by the second device to the network device is carried in the IP packet corresponding to the first data packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, The first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer; for the network device to The third information sent by the first device is carried in the IP packet corresponding to the first data packet, or in the GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • the sending unit 702 is configured to send fourth information to the target network device, where the fourth information includes at least one of the following:
  • the first information includes at least one of the following: a first time difference, a first TA, and a first absolute time;
  • the second information includes at least one of the following: first indication information, the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet It is a data packet with RTT requirements; first label information, the first label information is used to identify that the first data packet and the second data packet have an association relationship and/or is used to identify the first data packet The RTT requirement needs to be met between the second data packet and the second data packet; the number of the first data packet;
  • the remaining time is determined by the network device based on at least one of the first information, RTT requirement information, and a time difference between receiving the first data packet and the second data packet;
  • the target data packet refers to a data packet that is not transmitted by the network device to the terminal device.
  • the sending unit 702 when the network device receives the first data packet sent by the first device and does not receive the second data packet sent by the second device, if a handover process occurs, Then the sending unit 702 sends the fourth information to the target network device; or, the network device receives the first data packet sent by the first device and receives the second data packet sent by the second device. In the case where the second data packet is not sent to the first device, if a switching process occurs, the sending unit 702 sends the fourth information to the target network device.
  • the processing unit 703 is configured to start or restart the first timer upon receiving the first data packet; when the network device receives the second data packet, stop the first timer. a timer; determining the time difference between receiving the first data packet and the second data packet based on the timing information of the first timer; or, receiving the first data packet, recording the local second data packet. Absolute time; the network device receives the second data packet and records the local third absolute time; determines the time of receiving the first data packet based on the second absolute time and the third absolute time. The second data packet time difference.
  • FIG 8 is a schematic diagram 2 of the structure of a delay control device provided by an embodiment of the present application. It is applied to the first device. As shown in Figure 8, the delay control device includes:
  • Receiving unit 802 configured to receive the second data packet sent by the network device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the sending unit 801 is configured to send first information to the network device; wherein the first information includes at least one of the following information:
  • a first time difference the first time difference being the time difference from the generation time of the first data packet to the sending time
  • the first TA is the TA corresponding to the first data packet at the time of sending;
  • the reference time is determined based on clock information delivered by the network device or based on local clock information of the first device.
  • the sending unit 801 is configured to send RTT requirement information to the network device.
  • the RTT requirement information is set at the PDU level or at the PDU set level or at the GOP level or at the Qos flow level or at the data bearer level or at the service type level.
  • the first data packet is associated with second information
  • the second information includes at least one of the following:
  • the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the first data packets is the number of the first data packets.
  • the second information is carried in the first data packet In the corresponding IP packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • the second information when the first device is a server or a core network element, for the first data packet sent by the first device to the network device, the second information carries In the IP packet corresponding to the first data packet, or in the GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • the second data packet is associated with third information
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the second data packet is a data packet with an associated relationship and/or is used to indicate that the second data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the second data packets is the number of the second data packets.
  • the third information is carried in the first data packet In the corresponding IP packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • the third information is carried on the In the IP packet corresponding to the first data packet, or in the GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • FIG 9 is a schematic diagram 3 of the structure of a delay control device provided by an embodiment of the present application. It is applied to the second device. As shown in Figure 9, the delay control device includes:
  • Receiving unit 901 configured to receive the first data packet sent by the network device
  • Sending unit 902 configured to send the second data packet to the network device
  • first data packet and the second data packet have an associated relationship, and the transmission of the first data packet and the second data packet meets RTT requirements.
  • the first data packet is associated with second information
  • the second information includes at least one of the following:
  • the first indication information is used to indicate that the first data packet is a data packet with an associated relationship and/or is used to indicate that the first data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the first data packets is the number of the first data packets.
  • the receiving unit 901 is configured to receive second information associated with the first data packet sent by the network device.
  • the receiving unit 901 is configured to receive information related to the first remaining time sent by the network device.
  • the first remaining time The relevant information is used to assist the second device in determining the grouping policy adopted by the second data packet; and/or, receiving the second data packet associated with the first data packet issued by the network device.
  • the uplink scheduling policy is used by the second device to determine the sending strategy adopted by the second data packet.
  • the second device when the second device is a server or a core network element, for the second information sent by the network device to the second device, the second information is carried on the In the IP packet corresponding to the first data packet, or in the GPRS tunnel protocol GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • the second device when the second device is a terminal device, for the second information sent by the network device to the second device, the second information is carried in the first data packet In the corresponding IP packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • the second data packet is associated with third information
  • the third information includes at least one of the following:
  • the second indication information is used to indicate that the second data packet is a data packet with an associated relationship and/or is used to indicate that the second data packet is a data packet with RTT requirements;
  • the first label information is used to identify that the first data packet and the second data packet have an associated relationship and/or is used to identify the relationship between the first data packet and the second data packet. Time needs to meet RTT requirements;
  • the number of the second data packets is the number of the second data packets.
  • the third information is carried on the In the IP packet corresponding to the first data packet, or in the GTP packet header, or in a specific GTP packet, or in GTP control signaling.
  • the third information is carried in the first data packet In the corresponding IP packet, or in the header corresponding to the first protocol layer, or in the header corresponding to the second protocol layer, or in MAC CE, or in UCI; wherein, the first protocol layer includes at least one of the following: SDAP layer, PDCP layer, RLC layer, and MAC layer; the second protocol layer is a protocol layer different from the first protocol layer.
  • Figure 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device can be a terminal device or a network device.
  • the communication device 1000 shown in Figure 10 includes a processor 1010.
  • the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 can call and run the computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated into the processor 1010.
  • the communication device 1000 can also include a transceiver 1030.
  • the processor 1010 can control the transceiver 1030 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 may specifically be a network device according to the embodiment of the present application, and the communication device 1000 may implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, details will not be repeated here. .
  • the communication device 1000 can be a mobile terminal/terminal device according to the embodiment of the present application, and the communication device 1000 can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. For the sake of simplicity, , which will not be described in detail here.
  • Figure 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in Figure 11 includes a processor 1110.
  • the processor 1110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1100 may also include a memory 1120 .
  • the processor 1110 can call and run the computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated into the processor 1110.
  • the chip 1100 may also include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1100 may also include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 12 is a schematic block diagram of a communication system 1200 provided by an embodiment of the present application. As shown in Figure 12, the communication system 1200 includes a terminal device 1210 and a network device 1220.
  • the terminal device 1210 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1220 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no details will be described here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, here No longer.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiment of the present application. , for the sake of brevity, will not be repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, they are not included here. Again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the computer program For the sake of simplicity , which will not be described in detail here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the various methods implemented by the mobile terminal/terminal device in the embodiments of the present application. The corresponding process, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种时延控制方法及装置、通信设备,该方法包括:网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备;所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备;其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足往返时间RTT需求。

Description

一种时延控制方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种时延控制方法及装置、通信设备。
背景技术
对于交互类业务,终端设备与服务器之间存在业务互动,这类业务更看重终端设备和服务器之间交互的往返总时延,而不是单独的上行数据流的时延,或者下行数据流的时延。目前可以通过应用层进行往返总时延的控制,但是应用层的控制需要较长时间才能到达网络侧进行传输控制,并不能及时有效地对往返总时延进行控制,无法满足交互类业务的用户体验。
发明内容
本申请实施例提供一种时延控制方法及装置、通信设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的时延控制方法,包括:
网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备;
所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足往返时间(Round-Trip Time,RTT)需求。
本申请实施例提供的时延控制方法,包括:
第一设备向网络设备发送第一数据包;
所述第一设备接收所述网络设备发送的第二数据包;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
本申请实施例提供的时延控制方法,包括:
第二设备接收网络设备发送的第一数据包;
所述第二设备向所述网络设备发送第二数据包;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
本申请实施例提供的时延控制装置,应用于网络设备,所述装置包括:
接收单元,用于接收第一设备发送的第一数据包;
发送单元,用于将所述第一数据包发送给第二设备;
所述接收单元,还用于接收所述第二设备发送的第二数据包;
所述发送单元,还用于将所述第二数据包发送给所述第一设备;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
本申请实施例提供的时延控制装置,应用于第一设备,所述装置包括:
发送单元,用于向网络设备发送第一数据包;
接收单元,用于接收所述网络设备发送的第二数据包;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
本申请实施例提供的时延控制装置,应用于第二设备,所述装置包括:
接收单元,用于接收网络设备发送的第一数据包;
发送单元,用于向所述网络设备发送第二数据包;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的时延控制方法。
本申请实施例提供的芯片,用于实现上述的时延控制方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的时延控制方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的时延控制方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的时延控制方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的时延控制方法。
通过上述技术方案,网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备;所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备。这里,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求,如此,实现了将具有RTT需求的第一数据包和第二数据包关联起来,
通过网络设备来有效控制具有RTT需求的数据包之间传输的往返总时延,从而保障了互动类业务的用户体验。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是一种应用场景的示意图;
图2是一种5G网络系统架构图;
图3是一种Qos机制的示意图;
图4是本申请实施例提供的时延控制方法的流程示意图;
图5是本申请实施例提供的应用示例一的示意图;
图6是本申请实施例提供的应用示例二的示意图;
图7是本申请实施例提供的时延控制装置的结构组成示意图一;
图8是本申请实施例提供的时延控制装置的结构组成示意图二;
图9是本申请实施例提供的时延控制装置的结构组成示意图三;
图10是本申请实施例提供的一种通信设备示意性结构图;
图11是本申请实施例的芯片的示意性结构图;
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如 UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
5G网络架构
图2为5G网络系统架构图,如图2所示,5G网络系统中涉及到的网元包括:用户设备(User Equipment,UE)、无线接入网(Radio Access Network,RAN)、用户面功能(User Plane Function,UPF)、数据网络(Data Network,DN)、接入和移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、策略控制功能(Policy Control Function,PCF)、应用功能(Application Function,AF)、鉴权服务器功能(Authentication Server Function,AUSF)、统一数据管理(Unified Data Management,UDM)。
如图2所示,UE通过Uu接口与RAN进行接入层(AS)连接,交互接入层消息及无线数据传输。UE通过N1接口与AMF进行非接入层(NAS)连接,交互NAS消息。AMF是核心网中的移动性管理功能,SMF是核心网中的会话管理功能,AMF在对UE进行移动性管理之外,还负责将从会话管理相关消息在UE和SMF之间进行转发。PCF是核心网中的策略管理功能,负责制定对UE的移动性管理、会话管理、计费等相关的策略。UPF是核心网中的用户面功能,通过N6接口与DN进行数据传输,通过N3接口与RAN进行数据传输。
Qos机制
在移动通信网络中,为了能够传输用户面数据,需要建立一个或多个Qos流(Qos Flow)。作为通信质量的重要衡量标准,通常使用Qos参数来指示Qos流的特征,不同的Qos流对应不同的Qos参数。Qos参数可以包括但不限于:5G服务质量标识(5G Qos Identifier,5QI)、分配保留优先级(Allocation Retension Priority,ARP)、保证流比特率(Guaranteed Flow Bit Rate,GFBR)、最大流比特率(Maximum Flow Bit Rate,MFBR)、上/下行最大丢包率(UL/DL Maximum Packet Loss Rate,UL/DL MPLR)、端到端数据包时延预算(Packet Delay Budget,PDB)、AN-PDB、包误差率(Packet Error Rate,PER)、优先等级(Priority Level)、平均窗口(Averaging Window)、资源类型(Resource Type)、最大数据突发量(Maximum Data Burst Volume)、UE聚合最大比特率(UE Aggregate Maximum Bit Rate,UE-AMBR)、会话聚合最大比特率(Session Aggregate Maximum Bit Rate,Session-AMBR)等。
过滤器(Filter)包含描述数据包的特征参数(例如IP数据包的一些相关参数,以太网数据包的一些相关参数),用于过滤出特定的数据包以绑定到特定的Qos流上。这里,最常用的Filter就是IP五元组,即源IP地址、目标IP地址、源端口号、目标端口号以及协议类型。
参照图3,UPF和UE会根据数据包的特征参数组合来形成过滤器(如图3中最左边的梯形和最右边的平行四边形代表过滤器),通过过滤器过滤在用户面传递的符合数据包的特征参数的上行或下行数据包,并将其绑定到某一个Qos流上。上行Qos流是由UE进行绑定的,下行Qos流是由UPF进行绑定的。在Qos机制中,一个或多个Qos流可以映射到一个数据无线承载(Data Resource Bearer,DRB)上进行传输。对于一个Qos流来说,对应一套Qos参数,基站会根据Qos参数来建立DRB并将Qos流绑定到特定的DRB上。
Qos流由SMF触发建立。当Qos需要调整时,UE和网络侧均可触发PDU会话修改流程,从而改变Qos。以UE为例,UE可以通过发送PDU会话修改请求(PDU Session Modification Request)消息来修改Qos流的Qos参数或者建立新的Qos流。也就是说,当UE调整Qos时,需要执行一个会话修改流程,且必须得到网络的同意。由于PDU会话修改流程这一过程需要较长时间,同时也不能保证一定可以修改成功,因此会影响应用的行为,即应用无法准确判定是否以及多久可以使用其希望的Qos,这对于很多实时性业务,比如机器学习、神经网络分析等会产生较大影响。造成Qos改变情况也有很多,作为示例,以下几种情况均可造成Qos改变:1)发生了基站切换;2)发生了网络拥塞(如用户数突然增多)3)UE移入或移出了特定的范围(如边缘服务器的服务范围)。
URLLC/XR
在未来,第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)系统对垂直行业的支持会越来越广泛和深入。比如,低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)需求支持工业自动化(Factory automation)、传输自动化(Transport Industry)、智能电力(Electrical Power Distribution)等业务在5G系统的传输。扩展现实(EXtended Reality,XR)需求支持增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、混合现实(Mixed Reality,MR)、云游戏(Cloud gaming)等业务传输。这些业务普遍存在可靠性和时延的要求,因为为终端设备调度资源时其要满足数据传输的服务质量(Quality of Service,Qos)需求。从终端设备来说, 还需要满足终端设备功耗的问题,避免不必要的功耗。同时,考虑到大量的支持这种类型的业务的终端设备的接入问题,在资源分配时还需要保证网络容量的需求。
典型的,对URLLC/XR来说,需要支持最小0.5ms时延,99,999%可靠性需求的业务。业务的可以是伪周期的,即业务到达时间存在抖动(jitter),或者说,业务不会在一个确定的时间点,而是会在一个时间范围内的任一个时刻到达。同时,业务周期可以是非整数周期,如16.67ms。此外,同一个业务的不同业务流到达的时间差别可能很大。
对于一些新的应用层业务,例如AR、VR、云游戏、人工智能类的交互业务,终端设备(或者说客户端)与服务器之间存在业务互动,例如终端设备产生一个控制命令,并期待控制命令产生后,在一定时间内收到服务器的响应,即这类业务会更看重终端设备和服务器之间一轮交互的往返总时延,而不是单独的上行数据流的时延,或者下行数据流的时延。目前可以通过应用层进行往返总时延的控制,例如应用层服务器进行往返总时延的控制,通过应用层的时间标签获知收到的上行数据传输时延较大时,则对于下行数据发送更低的传输时延要求给网络,从而使得下行数据可以更快到达终端设备,从而达到上下行的一轮交互总时延不超过往返总时延的要求。然而,应用层的控制需要较长时间才能到达网络侧进行传输控制,并不能及时有效的对往返总时延进行控制,无法满足交互类业务的用户体验。为此,提出了本申请实施例的以下技术方案。
需要说明的是,本申请实施例的技术方案可以应用于交互类业务,例如互动类业务。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图4是本申请实施例提供的时延控制方法的流程示意图,如图4所示,所述时延控制方法包括以下步骤:
步骤401:第一设备向网络设备发送第一数据包;网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备;第二设备接收网络设备发送的第一数据包。
步骤402:所述第二设备向所述网络设备发送第二数据包;所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备;所述第一设备接收所述网络设备发送的第二数据包;其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足往返时间RTT需求。
本申请实施例中,所述网络设备可以是基站。
本申请实施例中,所述第一设备可以称为触发设备,所述第二设备可以称为响应设备。作为一种可选方式,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元。作为另一种实现方式,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备。
本申请实施例中,所述第一设备和所述第二设备之间通过网络设备进行业务交互。具体地,网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备。所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备。这里,所述第一数据包可以称为触发数据包,所述第二数据包可以称为响应数据包。所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
需要说明的是,本申请对第一数据包的个数不做限定,可以是一个或多个。本申请对第二数据包的个数不做限定,可以是一个或多个。
以下结合所述第一设备和所述第二设备的具体实现方式对本申请实施例的技术方案进行说明。
方案一
所述第一设备为终端设备,所述第二设备为服务器或者核心网网元。所述第一设备和所述第二设备之间的交互为:网络设备接收终端设备发送的第一数据包,将所述第一数据包发送给服务器或者核心网网元;网络设备接收服务器或者核心网网元发送的第二数据包,将所述第二数据包发送给终端设备。以下对第一数据包的相关方案和第二数据包的相关方案进行说明。
方案1-1)
本申请实施例中,网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备。
这里,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系 和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第一数据包的个数。
在一些可选实施方式中,所述网络设备将所述第一数据包关联的第二信息发送给所述第二设备;所述第二设备接收所述网络设备发送的所述第一数据包关联的第二信息。
在一些可选实施方式中,对于所述第一设备向所述网络设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者媒介接入控制(Medium Access Control,MAC)控制单元(Control Element,CE)中、或者上行控制信息(Uplink Control Information,UCI)中;其中,所述第一协议层包括以下至少之一:业务数据适配协议(Service Data Adaptation Protocol,SDAP)层、分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制(Radio Link Control,RLC)层、MAC层;所述第二协议层是与所述第一协议层不同的协议层,这里,所述第二协议层可以是新定义的协议层;对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者GPRS隧道协议(GPRS Tunnelling Protocol,GTP)包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,所述第一设备向所述网络设备发送第一信息;所述网络设备接收所述第一设备发送的第一信息;其中,所述第一信息包括以下至少一种信息:
第一时间差,所述第一时间差为所述第一数据包的产生时间到发送时间的时间差;
第一定时提前量(Timing Advance,TA),所述第一TA为所述第一数据包在发送时间对应的TA;
基于参考时间的第一绝对时间,所述第一绝对时间为所述第一数据包的产生时间。
这里,可选地,所述参考时间基于所述网络设备下发的时钟信息确定或者基于所述第一设备的本地时钟信息确定。
在一些可选实施方式中,所述网络设备从所述第一设备或者核心网获取RTT需求信息;所述第一设备向所述网络设备发送RTT需求信息。这里,所述RTT需求信息为分组数据单元(Packet Data Unit set,PDU)级别设置的或者分组数据单元集(Packet Data Unit set,PDU set)级别设置的或者图像组(A Group of Pictures,GOP)级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
在一些可选实施方式中,所述网络设备获取所述第二信息和/或RTT需求信息后,保存所述第二信息和/或RTT需求信息。
在一些可选实施方式中,所述网络设备在接收到所述第一数据包后,基于所述第二信息识别所述第一数据包具有RTT需求,根据所述第一信息和/或RTT需求确定第一剩余时间;若所述第一剩余时间大于等于第一处理时间,则所述网络设备将所述第一数据包发送给所述第二设备,其中,所述第一处理时间是指所述第二数据包的处理和/或传输的时间。进一步,若所述第一剩余时间小于所述第一处理时间,则所述网络设备丢弃所述第一数据包。
作为示例:第一剩余时间=RTT需求减去t1,其中,t1为网络设备接收到第一数据包的时间至第一数据包的产生时间的时间差,这里,第一数据包的产生时间可以根据第一信息确定。
方案1-2)
本申请实施例中,网络设备接收第二设备发送的第二数据包,将所述第二数据包发送给第一设备。
这里,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第二数据包的个数。
在一些可选实施方式中,所述网络设备将所述第二数据包关联的第三信息发送给所述第一设备。
在一些可选实施方式中,对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中;对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、 MAC层;所述第二协议层是与所述第一协议层不同的协议层,这里,所述第二协议层可以是新定义的协议层。
在一些可选实施方式中,所述网络设备在接收到所述第二数据包后,基于所述第三信息确定与其关联的第二信息,并根据所述第三信息和所述第二信息的关联关系确定所述第二数据包和所述第一数据包之间具有关联关系;所述网络设备至少根据所述第一信息、RTT需求、接收到所述第一数据包和所述第二数据包时间差中的至少一种信息确定第二剩余时间;若所述第二剩余时间大于等于第二处理时间,则所述网络设备将所述第二数据包发送给所述第一设备,其中,所述第二处理时间是指所述第二数据包的处理和/或传输的时间。进一步,若所述第二剩余时间小于所述第二处理时间,则所述网络设备丢弃所述第二数据包。
作为示例:第二剩余时间=RTT需求减去t1减去t2,其中,t1为网络设备接收到第一数据包的时间至第一数据包的产生时间的时间差,t2为网络设备接收到第一数据包和第二数据包的时间差,这里,第一数据包的产生时间可以根据第一信息确定。
在一些可选实施方式中,所述网络设备基于所述第二剩余时间确定所述第二数据包的下行调度策略;所述网络设备按照所述下行调度策略将所述第二数据包发送给所述第一设备。这里,若所述第二剩余时间较短,则所述网络设备将所述第二数据包的下行传输的调度优先级调高(即优先调度所述第二数据包的下行传输,或者说,早一些调度所述第二数据包的下行传输),使得尽快将所述第二数据包发送到所述第一设备,从而使得所述第一数据包和所述第二数据包的往返总时延满足RTT需求。若所述第二剩余时间较长,则所述网络设备将所述第二数据包的下行传输的调度优先级调低或者不变,保证所述第一数据包和所述第二数据包的往返总时延满足RTT需求。
上述方案中,所述网络设备可以但不局限于通过以下方式确定接收到所述第一数据包和所述第二数据包时间差:
方式一:所述网络设备接收到所述第一数据包,启动或重启第一定时器;所述网络设备接收到所述第二数据包,停止所述第一定时器;基于所述第一定时器的计时信息确定所述接收到所述第一数据包和所述第二数据包时间差。
方式二:所述网络设备接收到所述第一数据包,记录本地的第二绝对时间;所述网络设备接收到所述第二数据包,记录本地的第三绝对时间;基于所述第二绝对时间和所述第三绝对时间确定所述接收到所述第一数据包和所述第二数据包时间差。
上述方案中,由于第一设备为终端设备,第二设备为服务器或者核心网网元,因此可以理解,第一设备发送的第一数据包为上行数据包,第二设备发送的第二数据包为下行数据包,这种方式属于先上行后下行的互动方式,网络设备通过终端设备上报的第一信息和/或RTT需求信息等调整调度策略,从而控制往返总时延,满足RTT需求。此外,通过第一设备为第一数据包打上标签信息以及第二设备为关联的第二数据包打上相同的标签信息,可以使得网络设备识别具有关联关系的第一数据和第二数据包,从而为具有关联关系的数据包调整调度策略,从而控制往返总时延,满足RTT需求。
方案二
所述第一设备为服务器或者核心网网元,所述第二设备为终端设备。所述第一设备和所述第二设备之间的交互为:网络设备接收服务器或者核心网网元发送的第一数据包,将所述第一数据包发送给终端设备;网络设备接收终端设备发送的第二数据包,将所述第二数据包发送给服务器或者核心网网元。以下对第一数据包的相关方案和第二数据包的相关方案进行说明。
方案2-1)
本申请实施例中,网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备。
这里,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第一数据包的个数。
在一些可选实施方式中,所述网络设备将所述第一数据包关联的第二信息发送给所述第二设备;所述第二设备接收所述网络设备发送的所述第一数据包关联的第二信息。
在一些可选实施方式中,对于所述第一设备向所述网络设备发送的所述第一数据包,所述第 二信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中;对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层,这里,所述第二协议层可以是新定义的协议层。
在一些可选实施方式中,所述网络设备接收所述第一设备发送的第一信息;其中,所述第一信息包括以下至少一种信息:
第一时间差,所述第一时间差为所述第一数据包的产生时间到发送时间的时间差;
基于参考时间的第一绝对时间,所述第一绝对时间为所述第一数据包的产生时间。
这里,可选地,所述参考时间基于所述网络设备下发的时钟信息确定或者基于所述第一设备的本地时钟信息确定。
在一些可选实施方式中,所述网络设备从所述第一设备或者核心网获取RTT需求信息,所述第一设备向所述网络设备发送RTT需求信息。这里,所述RTT需求信息为PDU级别设置的或者PDU set级别设置的或者GOP级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
在一些可选实施方式中,所述网络设备获取所述第二信息和/或RTT需求信息后,保存所述第二信息和/或RTT需求信息。
在一些可选实施方式中,所述网络设备在接收到所述第一数据包后,基于所述第二信息识别所述第一数据包具有RTT需求,根据所述第一信息和/或RTT需求确定第一剩余时间;若所述第一剩余时间大于等于第一处理时间,则所述网络设备将所述第一数据包发送给所述第二设备,其中,所述第一处理时间是指所述第二数据包的处理和/或传输的时间。进一步,若所述第一剩余时间小于所述第一处理时间,则所述网络设备丢弃所述第一数据包。
作为示例:第一剩余时间=RTT需求减去t1,其中,t1为网络设备接收到第一数据包的时间至第一数据包的产生时间的时间差,这里,第一数据包的产生时间可以根据第一信息确定。
在一些可选实施方式中,所述网络设备基于所述第一剩余时间确定所述第一数据包的下行调度策略;所述网络设备按照所述下行调度策略将所述第一数据包发送给所述第二设备。这里,若所述第一剩余时间较短,则所述网络设备将所述第一数据包的下行传输的调度优先级调高(即优先调度所述第一数据包的下行传输,或者说,早一些调度所述第一数据包的下行传输),使得尽快将所述第一数据包发送到所述第一设备,从而使得所述第一数据包和所述第二数据包的往返总时延满足RTT需求。若所述第一剩余时间较长,则所述网络设备将所述第一数据包的下行传输的调度优先级调低或者不变,保证所述第一数据包和所述第二数据包的往返总时延满足RTT需求。
在一些可选实施方式中,所述网络设备向所述第二设备下发所述第一剩余时间相关的信息,所述第二设备接收所述网络设备下发的第一剩余时间相关的信息,所述第一剩余时间相关的信息用于辅助所述第二设备确定所述第二数据包所采用的组包策略;和/或,所述网络设备基于所述第一剩余时间确定所述第一数据包关联的第二数据包的上行调度策略,将所述上行调度策略下发给所述第二设备,所述第二设备接收所述网络设备下发的所述第一数据包关联的第二数据包的上行调度策略,所述上行调度策略用于所述第二设备确定所述第二数据包所采用的发送策略。这里,若所述第一剩余时间较短,则所述第二设备将第二数据包所在的的逻辑信道的优先级调高,优先对所述第二数据包进行组包和发送,从而使得所述第一数据包和所述第二数据包的往返总时延满足RTT需求。若所述第一剩余时间较长,则所述第二设备将第二数据包所在的的逻辑信道的优先级调低或者不变,保证所述第一数据包和所述第二数据包的往返总时延满足RTT需求。或者,若所述第一剩余时间较短,则所述网络设备将所述第二数据包的上行传输的调度优先级调高(即优先调度所述第二数据包的上行传输,或者说,早一些调度所述第二数据包的上行传输),使得尽快将所述第二数据包发送到所述第一设备,从而使得所述第一数据包和所述第二数据包的往返总时延满足RTT需求。若所述第二剩余时间较长,则所述网络设备将所述第二数据包的上行传输的调度优先级调低或者不变,保证所述第一数据包和所述第二数据包的往返总时延满足RTT需求。
方案2-2)
本申请实施例中,网络设备接收第二设备发送的第二数据包,将所述第二数据包发送给第一设备。
这里,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第二数据包的个数。
在一些可选实施方式中,所述网络设备将所述第二数据包关联的第三信息发送给所述第一设备。
在一些可选实施方式中,对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层,这里,所述第二协议层可以是新定义的协议层;对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,所述网络设备在接收到所述第二数据包后,基于所述第三信息确定与其关联的第二信息,并根据所述第三信息和所述第二信息的关联关系确定所述第二数据包和所述第一数据包之间具有关联关系;所述网络设备至少根据所述第一信息、RTT需求、接收到所述第一数据包和所述第二数据包时间差中的至少一种信息确定第二剩余时间;若所述第二剩余时间大于等于第二处理时间,则所述网络设备将所述第二数据包发送给所述第一设备,其中,所述第二处理时间是指所述第二数据包的处理和/或传输的时间。进一步,若所述第二剩余时间小于所述第二处理时间,则所述网络设备丢弃所述第二数据包。
作为示例:第二剩余时间=RTT需求减去t1减去t2,其中,t1为网络设备接收到第一数据包的时间至第一数据包的产生时间的时间差,t2为网络设备接收到第一数据包和第二数据包的时间差,这里,第一数据包的产生时间可以根据第一信息确定。
上述方案中,所述网络设备可以但不局限于通过以下方式确定接收到所述第一数据包和所述第二数据包时间差:
方式一:所述网络设备接收到所述第一数据包,启动或重启第一定时器;所述网络设备接收到所述第二数据包,停止所述第一定时器;基于所述第一定时器的计时信息确定所述接收到所述第一数据包和所述第二数据包时间差。
方式二:所述网络设备接收到所述第一数据包,记录本地的第二绝对时间;所述网络设备接收到所述第二数据包,记录本地的第三绝对时间;基于所述第二绝对时间和所述第三绝对时间确定所述接收到所述第一数据包和所述第二数据包时间差。
上述方案中,由于第一设备为服务器或者核心网网元,第二设备为终端设备,因此可以理解,第一设备发送的第一数据包为下行数据包,第二设备发送的第二数据包为上行数据包,这种方式属于先下行后上行的互动方式,网络设备通过服务器或者核心网网元上报的第一信息和/或RTT需求信息等调整调度策略,从而控制往返总时延,满足RTT需求。此外,通过第一设备为第一数据包打上标签信息以及第二设备为关联的第二数据包打上相同的标签信息,可以使得网络设备识别具有关联关系的第一数据和第二数据包,从而为具有关联关系的数据包调整调度策略,从而控制往返总时延,满足RTT需求。
在一些可选实施方式中,若发生了切换过程,则所述网络设备向目标网络设备发送第四信息,所述第四信息包括以下至少之一:
第一信息、第二信息、RTT需求信息、剩余时间、目标数据包、承载目标数据包的逻辑信道标识、承载目标数据包的数据承载标识、承载目标数据包的Qos流标识;
其中,所述第一信息包括以下至少之一:第一时间差、第一TA、第一绝对时间;
所述第二信息包括以下至少之一:第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;所述第一数据包的个数;
所述剩余时间由所述网络设备至少根据所述第一信息、RTT需求信息、接收到所述第一数据包和所述第二数据包时间差中的至少之一确定;
所述目标数据包是指所述网络设备未传输给终端设备的数据包。
这里,所述网络设备可以理解为终端设备的原基站,所述目标网络设备可以理解为终端设备切换到的目标基站。当终端设备从原基站切换到目标基站后,原基站将RTT相关的信息(即上述第四信息)转发给目标基站,从而目标基站根据所述第四信息确定所述第二数据包的调度策略(其确定调度策略的方式可以参照前述网络设备的相关描述),保证所述第一数据包和所述第二数据包的往返总时延满足RTT需求。
作为一种可选情况,所述网络设备接收到所述第一设备发送的第一数据包且未接收到所述第二设备发送的第二数据包的情况下,若发生了切换过程,则所述网络设备向目标网络设备发送所述第四信息。
作为另一种可选情况,所述网络设备接收到所述第一设备发送的第一数据包且接收到所述第二设备发送的第二数据包且未将所述第二数据包发送给所述第一设备的情况下,若发生了切换过程,则所述网络设备向目标网络设备发送所述第四信息。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
本应用实例中,第一设备为终端设备,第二设备为服务器或核心网网元。网络设备为基站。如图5所示,终端设备通过基站向服务器或核心网网元发送一个或多个触发数据包(即第一数据包),这里的传输属于上行传输;服务器或核心网网元通过基站向终端设备发送一个或多个响应数据包(即第二数据包),这里的传输属于下行传输。其具体流程如下:
1、终端设备产生一个或者多个触发数据包,所述一个或者多个触发数据包是基于终端设备侧的应用(APP)产生的。作为示例:所述一个或者多个触发数据可以代表一个手势或者控制命令等。所述一个或者多个触发数据包被发送给服务器或核心网网元,并期待服务器产生对应的一个或多个响应数据包。
2、终端设备内部记录APP产生所述触发数据包到空口发送的时间差t以及发送数据包时的TA,并将两个信息上报给基站。或者,终端设备记录APP产生所述触发数据的绝对时间,将该信息上报给基站,这里,绝对时间基于参考时间确定,所述参考时间可以是基站侧的时钟信息或者所述终端设备本地的时钟信息。可选地,终端设备也可以将RTT需求信息通知给基站,例如RTT需求信息为20ms,代表往返总时延需求为20ms。
3、终端设备还会将所述一个或者多个触发数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示触发数据包为存在关联关系的数据包和/或用于指示触发数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个触发数据包的个数。
这里,所述第二信息承载在IP包中、或者SDAP包头中、或者PDCP包头中、或者RLC包头中、或者MAC SDU对应的MAC包头中、或者MAC SDU关联的MAC CE中、或者物理层传输关联的UCI中、或者新定义的协议层对应的包头中。
4、基站可以从终端设备或者核心网获取RTT需求信息,该RTT需求信息可以是PDU级别设置的或者PDU set级别设置的或者GOP级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
5、基站从终端设备接收一个或多个触发数据包,保存触发数据包关联的第二信息和RTT需求信息。进一步,基站通过第二信息识别所述触发数据包具有RTT需求,基站根据终端设备上报的辅助信息(也即步骤2中的t,TA等)以及RTT需求信息,确定响应数据包还剩余的处理时间(即第一剩余时间)。若第一剩余时间无法满足RTT需求来发送关联的响应数据包,则基站可以丢弃所接收的一个或多个触发数据包;若第一剩余时间可以满足RTT需求来发送关联的响应数据包,则基站将一个或多个触发数据包发送给服务器或核心网网元。
6、基站通知服务器或核心网网元触发数据包关联的第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示触发数据包为存在关联关系的数据包和/或用于指示触发数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个触发数据包的个数。
这里,所述第二信息承载在IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
7、服务器或核心网网元根据基站转发的一个或多个触发数据包,产生一个或多个关联的响应数据包,并将所述一个或多个响应数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示响应数据包为存在关联关系的数据包和/或用于指示响应数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个响应数据包的个数。
这里,所述第三信息承载在IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
8、基站接收来自服务器或核心网网元的一个或多个响应数据包,通过响应数据包关联第三信息识别与之关联的第二信息,并根据第三信息和第二信息的关联关系识别响应数据包关联的触发数据包;基站至少根据终端设备上报的辅助信息(也即步骤2中的t,TA等)、RTT需求信息、基站接收到触发数据包和响应数据包的时间差中的至少之一确定响应数据包还剩余的处理时间(即第二剩余时间)。若第二剩余时间无法满足RTT需求来发送关联的响应数据包,则基站可以丢弃所接收的一个或多个响应数据包;若第二剩余时间可以满足RTT需求来发送关联的响应数据包,则基站将一个或多个响应数据包发送给终端设备。
9、基站根据第二剩余时间判决响应数据包的调度策略,例如优先调度等。同时基站将所述一个或多个响应数据包关联的第三信息也发送给终端设备。所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示响应数据包为存在关联关系的数据包和/或用于指示响应数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个响应数据包的个数。
这里,所述第三信息承载在IP包中、或者SDAP包头中、或者PDCP包头中、或者RLC包头中、或者MAC SDU对应的MAC包头中、或者MAC SDU关联的MAC CE中、或者物理层传输关联的UCI中、或者新定义的协议层对应的包头中。
应用实例二
本应用实例中,第一设备为服务器或核心网网元,第二设备为终端设备。网络设备为基站。如图6所示,服务器或核心网网元通过基站向终端设备发送一个或多个触发数据包(即第一数据包),这里的传输属于下行传输;终端设备通过基站向服务器或核心网网元发送一个或多个响应数据包(即第二数据包),这里的传输属于上行传输。其具体流程如下:
1、服务器产生一个或者多个触发数据包,作为示例:所述一个或者多个触发数据可以代表控制命令等。所述一个或者多个触发数据包被发送给终端设备,并期待终端设备产生对应的一个或多个响应数据包。
2、服务器记录APP产生所述触发数据包到从服务器发出的时间差t,并该信息发送给基站。或者,服务器记录APP产生所述触发数据的绝对时间,将该信息发送给基站,这里,绝对时间基于参考时间确定,所述参考时间可以是基站侧的时钟信息或者所述服务器本地的时钟信息。可选地,服务器也可以将RTT需求信息通知给基站,例如RTT需求信息为20ms,代表往返总时延需求为20ms。
3、服务器或核心网网元还会将所述一个或者多个触发数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示触发数据包为存在关联关系的数据包和/或用于指示触发数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个触发数据包的个数。
这里,所述第二信息承载在IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
4、基站可以从服务器或者核心网获取RTT需求信息,该RTT需求信息可以是PDU级别设置 的或者PDU set级别设置的或者GOP级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
5、基站从服务器或核心网网元接收一个或多个触发数据包,保存触发数据包关联的第二信息和RTT需求信息。进一步,基站通过第二信息识别所述触发数据包具有RTT需求,基站根据服务器上报的辅助信息(也即步骤2中的t等)以及RTT需求信息,确定响应数据包还剩余的处理时间(即第一剩余时间)。若第一剩余时间无法满足RTT需求来发送关联的响应数据包,则基站可以丢弃所接收的一个或多个触发数据包;若第一剩余时间可以满足RTT需求来发送关联的响应数据包,则基站将一个或多个触发数据包发送给终端设备。
6、基站通知终端设备触发数据包关联的第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示触发数据包为存在关联关系的数据包和/或用于指示触发数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个触发数据包的个数。
这里,所述第二信息承载在IP包中、或者SDAP包头中、或者PDCP包头中、或者RLC包头中、或者MAC SDU对应的MAC包头中、或者MAC SDU关联的MAC CE中、或者物理层传输关联的UCI中、或者新定义的协议层对应的包头中。
7、终端设备根据基站转发的一个或多个触发数据包,产生一个或多个关联的响应数据包,并将所述一个或多个响应数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示响应数据包为存在关联关系的数据包和/或用于指示响应数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个响应数据包的个数。
这里,所述第三信息承载在IP包中、或者SDAP包头中、或者PDCP包头中、或者RLC包头中、或者MAC SDU对应的MAC包头中、或者MAC SDU关联的MAC CE中、或者物理层传输关联的UCI中、或者新定义的协议层对应的包头中。
这里,终端设备为了快速发送所述一个或多个响应数据包,可以认为此时响应数据包所在的逻辑信道的优先级最高,优先对所述响应数据包进行组包和发送。
8、基站接收来自终端设备的一个或多个响应数据包,通过响应数据包关联第三信息识别与之关联的第二信息,并根据第三信息和第二信息的关联关系识别响应数据包关联的触发数据包;基站至少根据服务器上报的辅助信息(也即步骤2中的t等)、RTT需求信息、基站接收到触发数据包和响应数据包的时间差中的至少之一确定响应数据包还剩余的处理时间(即第二剩余时间)。若第二剩余时间无法满足RTT需求来发送关联的响应数据包,则基站可以丢弃所接收的一个或多个响应数据包;若第二剩余时间可以满足RTT需求来发送关联的响应数据包,则基站将一个或多个响应数据包发送给服务器或核心网网元。
9、基站将所述一个或多个响应数据包关联的第三信息也发送给服务器或核心网网元,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示响应数据包为存在关联关系的数据包和/或用于指示响应数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识触发数据包和响应数据包具有关联关系和/或用于标识触发数据包和响应数据包之间需要满足RTT需求;
一个或多个响应数据包的个数。
这里,所述第三信息承载在IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
应用实例三
对于终端设备发送触发数据包,服务器或核心网网元发送响应数据包的场景,在终端设备发送的触发数据包已经到达基站侧,而基站还没有从服务器或核心网网元接收到响应数据包或者还没有将响应数据包发送给终端设备的情况下,如果发生了切换,则原基站将之前存储的RTT相关调度信息(如第一信息、第二信息、RTT需求信息、剩余时间、响应数据包、承载响应数据包的LCID、承载响应数据包的DRB ID等信息)发送给目标基站,辅助目标基站针对响应数据包进行调度,例如 目标基站会优先针对该响应数据包进行调度。
对于服务器或核心网网元发送触发数据包,终端设备发送响应数据包的场景,在服务器或核心网网元发送的触发数据包到达基站侧,而基站还没有发送此触发数据包给终端设备或者已经发送此触发数据包给终端设备但没有接收到来自终端设备的响应数据包的情况下,如果发生了切换,则原基站将之前存储的RTT相关调度信息(如第一信息、第二信息、RTT需求信息、剩余时间、响应数据包、承载响应数据包的LCID、承载响应数据包的DRB ID等信息)发送给目标基站,辅助目标基站针对响应数据包进行调度,例如目标基站会优先针对该响应数据包进行调度。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图7是本申请实施例提供的时延控制装置的结构组成示意图一,应用于网络设备,如图7所示,所述时延控制装置包括:
接收单元701,用于接收第一设备发送的第一数据包;
发送单元702,用于将所述第一数据包发送给第二设备;
所述接收单元701,还用于接收所述第二设备发送的第二数据包;
所述发送单元702,还用于将所述第二数据包发送给所述第一设备;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
在一些可选实施方式中,所述接收单元701,用于接收所述第一设备发送的第一信息;其中,所述第一信息包括以下至少一种信息:
第一时间差,所述第一时间差为所述第一数据包的产生时间到发送时间的时间差;
第一TA,所述第一TA为所述第一数据包在发送时间对应的TA;
基于参考时间的第一绝对时间,所述第一绝对时间为所述第一数据包的产生时间。
在一些可选实施方式中,所述参考时间基于所述网络设备下发的时钟信息确定或者基于所述第一设备的本地时钟信息确定。
在一些可选实施方式中,所述接收单元701,用于从所述第一设备或者核心网获取RTT需求信息。
在一些可选实施方式中,所述RTT需求信息为PDU级别设置的或者PDU set级别设置的或者GOP级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
在一些可选实施方式中,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第一数据包的个数。
在一些可选实施方式中,所述装置还包括:保存单元,用于获取所述第二信息和/或RTT需求信息后,保存所述第二信息和/或RTT需求信息。
在一些可选实施方式中,所述发送单元702,用于将所述第一数据包关联的第二信息发送给所述第二设备。
在一些可选实施方式中,所述装置还包括:处理单元703,用于基于所述第二信息识别所述第一数据包具有RTT需求,根据所述第一信息和/或RTT需求确定第一剩余时间;若所述第一剩余时间大于等于第一处理时间,则所述发送单元702将所述第一数据包发送给所述第二设备,其中,所述第一处理时间是指所述第二数据包的处理和/或传输的时间。
在一些可选实施方式中,若所述第一剩余时间小于所述第一处理时间,则所述处理单元703丢弃所述第一数据包。
在一些可选实施方式中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,所述处理单元703基于所述第一剩余时间确定所述第一数据包的下行调度策略;所述发送单元702按照所述下行调度策略将所述第一数据包发送给所述第二设备。
在一些可选实施方式中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,所述发送单元702,用于向所述第二设备下发所述第一剩余时间相关的信息,所述第一剩余时间相关的信息用于辅助所述第二设备确定所述第二数据包所采用的组包策略;和/或,所述处理单元703,用于基于所述第一剩余时间确定所述第一数据包关联的第二数据包的上行调度策略,所述发送单元702,用于将所述上行调度策略下发给所述第二设备,所述上行调度策略用于所述第二设备确定所述第二数据包所采用的发送策略。
在一些可选实施方式中,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元的情况下,对于所述第一设备向所述网络设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者制MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层;对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,对于所述第一设备向所述网络设备发送的所述第一数据包,所述第二信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中;对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
在一些可选实施方式中,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第二数据包的个数。
在一些可选实施方式中,所述发送单元702,用于将所述第二数据包关联的第三信息发送给所述第一设备。
在一些可选实施方式中,所述装置还包括:处理单元703,用于基于所述第三信息确定与其关联的第二信息,并根据所述第三信息和所述第二信息的关联关系确定所述第二数据包和所述第一数据包之间具有关联关系;至少根据所述第一信息、RTT需求、接收到所述第一数据包和所述第二数据包时间差中的至少一种信息确定第二剩余时间;若所述第二剩余时间大于等于第二处理时间,则所述发送单元702将所述第二数据包发送给所述第一设备,其中,所述第二处理时间是指所述第二数据包的处理和/或传输的时间。
在一些可选实施方式中,若所述第二剩余时间小于所述第二处理时间,则所述处理单元703丢弃所述第二数据包。
在一些可选实施方式中,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元的情况下,所述处理单元703,用于基于所述第二剩余时间确定所述第二数据包的下行调度策略;所述发送单元702,用于按照所述下行调度策略将所述第二数据包发送给所述第一设备。
在一些可选实施方式中,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元的 情况下,对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中;对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
在一些可选实施方式中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层;对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,若发生了切换过程,则所述发送单元702,用于向目标网络设备发送第四信息,所述第四信息包括以下至少之一:
第一信息、第二信息、RTT需求信息、剩余时间、目标数据包、承载目标数据包的逻辑信道标识、承载目标数据包的数据承载标识、承载目标数据包的Qos流标识;
其中,所述第一信息包括以下至少之一:第一时间差、第一TA、第一绝对时间;
所述第二信息包括以下至少之一:第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;所述第一数据包的个数;
所述剩余时间由所述网络设备至少根据所述第一信息、RTT需求信息、接收到所述第一数据包和所述第二数据包时间差中的至少之一确定;
所述目标数据包是指所述网络设备未传输给终端设备的数据包。
在一些可选实施方式中,所述网络设备接收到所述第一设备发送的第一数据包且未接收到所述第二设备发送的第二数据包的情况下,若发生了切换过程,则所述发送单元702向目标网络设备发送所述第四信息;或者,所述网络设备接收到所述第一设备发送的第一数据包且接收到所述第二设备发送的第二数据包且未将所述第二数据包发送给所述第一设备的情况下,若发生了切换过程,则所述发送单元702向目标网络设备发送所述第四信息。
在一些可选实施方式中,所述处理单元703,用于接收到所述第一数据包,启动或重启第一定时器;所述网络设备接收到所述第二数据包,停止所述第一定时器;基于所述第一定时器的计时信息确定所述接收到所述第一数据包和所述第二数据包时间差;或者,接收到所述第一数据包,记录本地的第二绝对时间;所述网络设备接收到所述第二数据包,记录本地的第三绝对时间;基于所述第二绝对时间和所述第三绝对时间确定所述接收到所述第一数据包和所述第二数据包时间差。
本领域技术人员应当理解,本申请实施例的上述时延控制装置的相关描述可以参照本申请实施例的时延控制方法的相关描述进行理解。
图8是本申请实施例提供的时延控制装置的结构组成示意图二,应用于第一设备,如图8所示,所述时延控制装置包括:
发送单元801,用于向网络设备发送第一数据包;
接收单元802,用于接收所述网络设备发送的第二数据包;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
在一些可选实施方式中,所述发送单元801,用于向所述网络设备发送第一信息;其中,所述第一信息包括以下至少一种信息:
第一时间差,所述第一时间差为所述第一数据包的产生时间到发送时间的时间差;
第一TA,所述第一TA为所述第一数据包在发送时间对应的TA;
基于参考时间的第一绝对时间,所述第一绝对时间为所述第一数据包的产生时间。
在一些可选实施方式中,所述参考时间基于所述网络设备下发的时钟信息确定或者基于所述第一设备的本地时钟信息确定
在一些可选实施方式中,述发送单元801,用于向所述网络设备发送RTT需求信息。
在一些可选实施方式中,所述RTT需求信息为PDU级别设置的或者PDU set级别设置的或者GOP级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
在一些可选实施方式中,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第一数据包的个数。
在一些可选实施方式中,所述第一设备为终端设备的情况下,对于所述第一设备向所述网络设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
在一些可选实施方式中,所述第一设备为服务器或者核心网网元的情况下,对于所述第一设备向所述网络设备发送的所述第一数据包,所述第二信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第二数据包的个数。
在一些可选实施方式中,所述第一设备为终端设备的情况下,对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
在一些可选实施方式中,所述第一设备为服务器或者核心网网元的情况下,对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
本领域技术人员应当理解,本申请实施例的上述时延控制装置的相关描述可以参照本申请实施例的时延控制方法的相关描述进行理解。
图9是本申请实施例提供的时延控制装置的结构组成示意图三,应用于第二设备,如图9所示,所述时延控制装置包括:
接收单元901,用于接收网络设备发送的第一数据包;
发送单元902,用于向所述网络设备发送第二数据包;
其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
在一些可选实施方式中,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第一数据包的个数。
在一些可选实施方式中,所述接收单元901,用于接收所述网络设备发送的所述第一数据包关联的第二信息。
在一些可选实施方式中,所述第二设备为终端设备的情况下,所述接收单元901,用于接收所述网络设备下发的第一剩余时间相关的信息,所述第一剩余时间相关的信息用于辅助所述第二设备确定所述第二数据包所采用的组包策略;和/或,接收所述网络设备下发的所述第一数据包关联的第二数据包的上行调度策略,所述上行调度策略用于所述第二设备确定所述第二数据包所采用的发送策略。
在一些可选实施方式中,所述第二设备为服务器或者核心网网元的情况下,对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者GPRS隧道协议GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,所述第二设备为终端设备的情况下,对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
在一些可选实施方式中,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
所述第二数据包的个数。
在一些可选实施方式中,所述第二设备为服务器或者核心网网元的情况下,对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
在一些可选实施方式中,所述第二设备为终端设备的情况下,对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
本领域技术人员应当理解,本申请实施例的上述时延控制装置的相关描述可以参照本申请实施例的时延控制方法的相关描述进行理解。
图10是本申请实施例提供的一种通信设备1000示意性结构图。该通信设备可以终端设备,也可以是网络设备。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的移动终端/终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再 赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (52)

  1. 一种时延控制方法,所述方法包括:
    网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备;
    所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备;
    其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足往返时间RTT需求。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述网络设备接收所述第一设备发送的第一信息;其中,所述第一信息包括以下至少一种信息:
    第一时间差,所述第一时间差为所述第一数据包的产生时间到发送时间的时间差;
    第一定时提前量TA,所述第一TA为所述第一数据包在发送时间对应的TA;
    基于参考时间的第一绝对时间,所述第一绝对时间为所述第一数据包的产生时间。
  3. 根据权利要求2所述的方法,其中,所述参考时间基于所述网络设备下发的时钟信息确定或者基于所述第一设备的本地时钟信息确定。
  4. 根据权利要求2或3所述的方法,其中,所述方法还包括:
    所述网络设备从所述第一设备或者核心网获取RTT需求信息。
  5. 根据权利要求4所述的方法,其中,所述RTT需求信息为分组数据单元PDU级别设置的或者分组数据单元集PDU set级别设置的或者图像组GOP级别设置的或者服务质量Qos流级别设置或者数据承载级别设置的或者业务类型级别设置的。
  6. 根据权利要求2至5中任一项所述的方法,其中,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
    第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
    第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
    所述第一数据包的个数。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    所述网络设备获取所述第二信息和/或RTT需求信息后,保存所述第二信息和/或RTT需求信息。
  8. 根据权利要求6或7所述的方法,其中,所述方法还包括:
    所述网络设备将所述第一数据包关联的第二信息发送给所述第二设备。
  9. 根据权利要求6至8中任一项所述的方法,其中,所述网络设备接收第一设备发送的第一数据包,将所述第一数据包发送给第二设备,包括:
    所述网络设备在接收到所述第一数据包后,基于所述第二信息识别所述第一数据包具有RTT需求,根据所述第一信息和/或RTT需求确定第一剩余时间;
    若所述第一剩余时间大于等于第一处理时间,则所述网络设备将所述第一数据包发送给所述第二设备,其中,所述第一处理时间是指所述第二数据包的处理和/或传输的时间。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    若所述第一剩余时间小于所述第一处理时间,则所述网络设备丢弃所述第一数据包。
  11. 根据权利要求9或10所述的方法,其中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,所述网络设备将所述第一数据包发送给所述第二设备,包括:
    所述网络设备基于所述第一剩余时间确定所述第一数据包的下行调度策略;
    所述网络设备按照所述下行调度策略将所述第一数据包发送给所述第二设备。
  12. 根据权利要求9至11中任一项所述的方法,其中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,所述方法还包括:
    所述网络设备向所述第二设备下发所述第一剩余时间相关的信息,所述第一剩余时间相关的信息用于辅助所述第二设备确定所述第二数据包所采用的组包策略;和/或,
    所述网络设备基于所述第一剩余时间确定所述第一数据包关联的第二数据包的上行调度策 略,将所述上行调度策略下发给所述第二设备,所述上行调度策略用于所述第二设备确定所述第二数据包所采用的发送策略。
  13. 根据权利要求6至10中任一项所述的方法,其中,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元的情况下,
    对于所述第一设备向所述网络设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者媒体接入控制MAC控制单元CE中、或者上行控制信息UCI中;其中,所述第一协议层包括以下至少之一:业务数据适配协议SDAP层、分组数据汇聚协议PDCP层、无线链路层控制RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层;
    对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者GPRS隧道协议GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
  14. 根据权利要求6至12中任一项所述的方法,其中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,
    对于所述第一设备向所述网络设备发送的所述第一数据包,所述第二信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中;
    对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
    第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
    第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
    所述第二数据包的个数。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述网络设备将所述第二数据包关联的第三信息发送给所述第一设备。
  17. 根据权利要求15或16所述的方法,其中,所述网络设备接收所述第二设备发送的第二数据包,将所述第二数据包发送给所述第一设备,包括:
    所述网络设备在接收到所述第二数据包后,基于所述第三信息确定与其关联的第二信息,并根据所述第三信息和所述第二信息的关联关系确定所述第二数据包和所述第一数据包之间具有关联关系;
    所述网络设备至少根据所述第一信息、RTT需求、接收到所述第一数据包和所述第二数据包时间差中的至少一种信息确定第二剩余时间;
    若所述第二剩余时间大于等于第二处理时间,则所述网络设备将所述第二数据包发送给所述第一设备,其中,所述第二处理时间是指所述第二数据包的处理和/或传输的时间。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    若所述第二剩余时间小于所述第二处理时间,则所述网络设备丢弃所述第二数据包。
  19. 根据权利要求17或18所述的方法,其中,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元的情况下,所述网络设备将所述第二数据包发送给所述第一设备,包括:
    所述网络设备基于所述第二剩余时间确定所述第二数据包的下行调度策略;
    所述网络设备按照所述下行调度策略将所述第二数据包发送给所述第一设备。
  20. 根据权利要求15至19中任一项所述的方法,其中,所述第一设备为终端设备,所述第二设备为服务器或者核心网网元的情况下,
    对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中;
    对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
  21. 根据权利要求15至19中任一项所述的方法,其中,所述第一设备为服务器或者核心网网元,所述第二设备为终端设备的情况下,
    对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层;
    对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
  22. 根据权利要求1至21中任一项所述的方法,其中,所述方法还包括:
    若发生了切换过程,则所述网络设备向目标网络设备发送第四信息,所述第四信息包括以下至少之一:
    第一信息、第二信息、RTT需求信息、剩余时间、目标数据包、承载目标数据包的逻辑信道标识、承载目标数据包的数据承载标识、承载目标数据包的Qos流标识;
    其中,所述第一信息包括以下至少之一:第一时间差、第一TA、第一绝对时间;
    所述第二信息包括以下至少之一:第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;所述第一数据包的个数;
    所述剩余时间由所述网络设备至少根据所述第一信息、RTT需求信息、接收到所述第一数据包和所述第二数据包时间差中的至少之一确定;
    所述目标数据包是指所述网络设备未传输给终端设备的数据包。
  23. 根据权利要求22所述的方法,其中,所述若发生了切换过程,则所述网络设备向目标网络设备发送第四信息,包括:
    所述网络设备接收到所述第一设备发送的第一数据包且未接收到所述第二设备发送的第二数据包的情况下,若发生了切换过程,则所述网络设备向目标网络设备发送所述第四信息;或者,
    所述网络设备接收到所述第一设备发送的第一数据包且接收到所述第二设备发送的第二数据包且未将所述第二数据包发送给所述第一设备的情况下,若发生了切换过程,则所述网络设备向目标网络设备发送所述第四信息。
  24. 根据权利要求17或22所述的方法,其中,所述方法还包括:
    所述网络设备接收到所述第一数据包,启动或重启第一定时器;所述网络设备接收到所述第二数据包,停止所述第一定时器;基于所述第一定时器的计时信息确定所述接收到所述第一数据包和所述第二数据包时间差;或者,
    所述网络设备接收到所述第一数据包,记录本地的第二绝对时间;所述网络设备接收到所述第二数据包,记录本地的第三绝对时间;基于所述第二绝对时间和所述第三绝对时间确定所述接收到所述第一数据包和所述第二数据包时间差。
  25. 一种时延控制方法,所述方法包括:
    第一设备向网络设备发送第一数据包;
    所述第一设备接收所述网络设备发送的第二数据包;
    其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
  26. 根据权利要求25所述的方法,其中,所述方法还包括:
    所述第一设备向所述网络设备发送第一信息;其中,所述第一信息包括以下至少一种信息:
    第一时间差,所述第一时间差为所述第一数据包的产生时间到发送时间的时间差;
    第一TA,所述第一TA为所述第一数据包在发送时间对应的TA;
    基于参考时间的第一绝对时间,所述第一绝对时间为所述第一数据包的产生时间。
  27. 根据权利要求26所述的方法,其中,所述参考时间基于所述网络设备下发的时钟信息确定或者基于所述第一设备的本地时钟信息确定。
  28. 根据权利要求26或27所述的方法,其中,所述方法还包括:
    所述第一设备向所述网络设备发送RTT需求信息。
  29. 根据权利要求28所述的方法,其中,所述RTT需求信息为PDU级别设置的或者PDU set级别设置的或者GOP级别设置的或者Qos流级别设置或者数据承载级别设置的或者业务类型级 别设置的。
  30. 根据权利要求26至29中任一项所述的方法,其中,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
    第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
    第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
    所述第一数据包的个数。
  31. 根据权利要求30所述的方法,其中,所述第一设备为终端设备的情况下,
    对于所述第一设备向所述网络设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
  32. 根据权利要求30所述的方法,其中,所述第一设备为服务器或者核心网网元的情况下,
    对于所述第一设备向所述网络设备发送的所述第一数据包,所述第二信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
  33. 根据权利要求25至32中任一项所述的方法,其中,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
    第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
    第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
    所述第二数据包的个数。
  34. 根据权利要求33所述的方法,其中,所述第一设备为终端设备的情况下,
    对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
  35. 根据权利要求33所述的方法,其中,所述第一设备为服务器或者核心网网元的情况下,
    对于所述网络设备向所述第一设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
  36. 一种时延控制方法,所述方法包括:
    第二设备接收网络设备发送的第一数据包;
    所述第二设备向所述网络设备发送第二数据包;
    其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
  37. 根据权利要求36所述的方法,其中,所述第一数据包关联第二信息,所述第二信息包括以下至少之一:
    第一指示信息,所述第一指示信息用于指示所述第一数据包为存在关联关系的数据包和/或用于指示所述第一数据包为具有RTT需求的数据包;
    第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
    所述第一数据包的个数。
  38. 根据权利要求37所述的方法,其中,所述方法还包括:
    所述第二设备接收所述网络设备发送的所述第一数据包关联的第二信息。
  39. 根据权利要求37或38所述的方法,其中,所述第二设备为终端设备的情况下,所述方法还包括:
    所述第二设备接收所述网络设备下发的第一剩余时间相关的信息,所述第一剩余时间相关的信息用于辅助所述第二设备确定所述第二数据包所采用的组包策略;和/或,
    所述第二设备接收所述网络设备下发的所述第一数据包关联的第二数据包的上行调度策略,所述上行调度策略用于所述第二设备确定所述第二数据包所采用的发送策略。
  40. 根据权利要求37至39中任一项所述的方法,其中,所述第二设备为服务器或者核心网网元的情况下,
    对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者GPRS隧道协议GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
  41. 根据权利要求37至39中任一项所述的方法,其中,所述第二设备为终端设备的情况下,
    对于所述网络设备向所述第二设备发送的第二信息,所述第二信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
  42. 根据权利要求36至41中任一项所述的方法,其中,所述第二数据包关联第三信息,所述第三信息包括以下至少之一:
    第二指示信息,所述第二指示信息用于指示所述第二数据包为存在关联关系的数据包和/或用于指示所述第二数据包为具有RTT需求的数据包;
    第一标签信息,所述第一标签信息用于标识所述第一数据包和所述第二数据包具有关联关系和/或用于标识所述第一数据包和所述第二数据包之间需要满足RTT需求;
    所述第二数据包的个数。
  43. 根据权利要求42所述的方法,其中,所述第二设备为服务器或者核心网网元的情况下,
    对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者GTP包头中、或者特定的GTP包中、或者GTP控制信令中。
  44. 根据权利要求42所述的方法,其中,所述第二设备为终端设备的情况下,
    对于所述第二设备向所述网络设备发送的第三信息,所述第三信息承载在所述第一数据包对应的IP包中、或者第一协议层对应的包头中、或者第二协议层对应的包头中、或者MAC CE中、或者UCI中;其中,所述第一协议层包括以下至少之一:SDAP层、PDCP层、RLC层、MAC层;所述第二协议层是与所述第一协议层不同的协议层。
  45. 一种时延控制装置,应用于网络设备,所述装置包括:
    接收单元,用于接收第一设备发送的第一数据包;
    发送单元,用于将所述第一数据包发送给第二设备;
    所述接收单元,还用于接收所述第二设备发送的第二数据包;
    所述发送单元,还用于将所述第二数据包发送给所述第一设备;
    其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
  46. 一种时延控制装置,应用于第一设备,所述装置包括:
    发送单元,用于向网络设备发送第一数据包;
    接收单元,用于接收所述网络设备发送的第二数据包;
    其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
  47. 一种时延控制装置,应用于第二设备,所述装置包括:
    接收单元,用于接收网络设备发送的第一数据包;
    发送单元,用于向所述网络设备发送第二数据包;
    其中,所述第一数据包和所述第二数据包具有关联关系,所述第一数据包和所述第二数据包的传输满足RTT需求。
  48. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至24中任一项所述的方法,或者权利要求25至35中任一项所述的方法,或者权利要求36至44中任一项所述的方法。
  49. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法,或者权利要求25至35中任一项所述的方法,或者权利要求36至44中任一项所述的方法。
  50. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法,或者权利要求25至35中任一项所述的方法,或者权利要求36至44中任一项所述的方法。
  51. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利 要求1至24中任一项所述的方法,或者权利要求25至35中任一项所述的方法,或者权利要求36至44中任一项所述的方法。
  52. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法,或者权利要求25至35中任一项所述的方法,或者权利要求36至44中任一项所述的方法。
PCT/CN2022/085627 2022-04-07 2022-04-07 一种时延控制方法及装置、通信设备 WO2023193203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085627 WO2023193203A1 (zh) 2022-04-07 2022-04-07 一种时延控制方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085627 WO2023193203A1 (zh) 2022-04-07 2022-04-07 一种时延控制方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2023193203A1 true WO2023193203A1 (zh) 2023-10-12

Family

ID=88243784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085627 WO2023193203A1 (zh) 2022-04-07 2022-04-07 一种时延控制方法及装置、通信设备

Country Status (1)

Country Link
WO (1) WO2023193203A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713639A (zh) * 2004-06-25 2005-12-28 株式会社东芝 信息处理设备和信息处理方法
US20150188830A1 (en) * 2013-12-30 2015-07-02 Comcast Cable Communications, Llc Systems And Methods For Managing Congestion
CN108809766A (zh) * 2018-06-22 2018-11-13 北京奇艺世纪科技有限公司 一种获取rtt的方法、装置及系统
CN110831033A (zh) * 2018-08-13 2020-02-21 华为技术有限公司 服务质量监测方法、设备及系统
CN111064629A (zh) * 2018-10-16 2020-04-24 华为技术有限公司 用于测量时延的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713639A (zh) * 2004-06-25 2005-12-28 株式会社东芝 信息处理设备和信息处理方法
US20150188830A1 (en) * 2013-12-30 2015-07-02 Comcast Cable Communications, Llc Systems And Methods For Managing Congestion
CN108809766A (zh) * 2018-06-22 2018-11-13 北京奇艺世纪科技有限公司 一种获取rtt的方法、装置及系统
CN110831033A (zh) * 2018-08-13 2020-02-21 华为技术有限公司 服务质量监测方法、设备及系统
CN111064629A (zh) * 2018-10-16 2020-04-24 华为技术有限公司 用于测量时延的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Evaluation of achievable Positioning Accuracy & Latency", 3GPP DRAFT; R1-2006809, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918259 *

Similar Documents

Publication Publication Date Title
US11601323B2 (en) Techniques for wireless access and wireline network integration
US20210337404A1 (en) Service continuity implementation method, apparatus, and system
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2020143788A1 (zh) 支持时间敏感通信服务质量的方法及通信设备
WO2017156481A1 (en) Techniques for wireless access and wireline network integration
WO2012107004A1 (zh) 一种基于服务质量的调度方法、设备及系统
WO2021022508A1 (zh) 边链路调度请求的触发方法、装置和系统
WO2020252710A1 (zh) 无线通信方法和设备
WO2019101054A1 (zh) 聚合速率控制方法、设备以及系统
WO2020051745A1 (zh) 一种数据传输方法及装置、通信设备
US20240163714A1 (en) Communication method and communication apparatus
TW202021320A (zh) 通訊方法和設備
WO2023193198A1 (zh) 一种参数确定方法及装置、终端设备
WO2023193203A1 (zh) 一种时延控制方法及装置、通信设备
WO2023087145A1 (en) Methods and apparatuses for pdcp reordering management
WO2018058391A1 (zh) 建立承载的方法、无线接入网设备和客户终端设备
WO2020087289A1 (zh) 一种资源配置方法、网络设备及终端设备
WO2023184545A1 (zh) 一种数据传输方法及装置、通信设备
WO2021056213A1 (zh) 无线通信的方法和设备
WO2023201607A1 (zh) 一种数据传输方法及装置、通信设备
WO2020164054A1 (zh) 业务处理方法、装置、芯片及计算机程序
WO2023019450A1 (zh) 一种QoS的控制方法及装置、通信设备
WO2023184537A1 (zh) 一种数据传输方法及装置、通信设备
WO2023184552A1 (zh) 一种数据传输方法及装置、通信设备
WO2023050415A1 (zh) 一种多路径传输方法及装置、通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936146

Country of ref document: EP

Kind code of ref document: A1