WO2023184537A1 - 一种数据传输方法及装置、通信设备 - Google Patents

一种数据传输方法及装置、通信设备 Download PDF

Info

Publication number
WO2023184537A1
WO2023184537A1 PCT/CN2022/085061 CN2022085061W WO2023184537A1 WO 2023184537 A1 WO2023184537 A1 WO 2023184537A1 CN 2022085061 W CN2022085061 W CN 2022085061W WO 2023184537 A1 WO2023184537 A1 WO 2023184537A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu
pdcp
sdap
rlc
information
Prior art date
Application number
PCT/CN2022/085061
Other languages
English (en)
French (fr)
Inventor
王淑坤
付喆
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202280090306.3A priority Critical patent/CN118592012A/zh
Priority to PCT/CN2022/085061 priority patent/WO2023184537A1/zh
Publication of WO2023184537A1 publication Critical patent/WO2023184537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a data transmission method and device, and communication equipment.
  • Packet Data Unit set (Packet Data Unit set, PDU set) consists of one or more Packet Data Units (Packet Data Unit set, PDU).
  • PDU Packet Data Unit
  • For a PDU set it represents a frame or a video clip, so each PDU in a PDU set is related to each other, so it is expected that the transport layer will uniformly process the data in a PDU set.
  • data is processed according to a PDU granularity. Therefore, if the wireless communication system can process data according to the PDU set granularity, then the PDU set needs to be identified in the wireless communication system. , how to identify PDU set is a problem that needs to be solved.
  • Embodiments of the present application provide a data transmission method and device, communication equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the first protocol layer receives the PDU set sent by the second protocol layer.
  • the header corresponding to each PDU in the PDU set carries the first information and/or the first flag is transmitted after the PDU set, wherein the first A piece of information is used to identify the PDU set and/or the attribute information of the PDU set, and the first mark is used to identify the end of a PDU set and/or the beginning of the next PDU set and/or the PDU set. attribute information.
  • the data transmission device provided by the embodiment of the present application has a first protocol layer and a second protocol layer;
  • the first protocol layer is used to receive the PDU set sent by the second protocol layer;
  • the second protocol layer is used to send PDU set to the first protocol layer
  • the header corresponding to each PDU in the PDU set carries the first information and/or a first flag is transmitted after the PDU set, wherein the first information is used to identify the PDU set and/or The attribute information of the PDU set, the first flag is used to identify the end of a PDU set and/or the beginning of the next PDU set and/or the attribute information of the PDU set.
  • the communication device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory and perform the above-mentioned data transmission method.
  • the chip provided by the embodiment of the present application is used to implement the above data transmission method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned data transmission method.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program.
  • the computer program causes the computer to execute the above-mentioned data transmission method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, which cause the computer to execute the above-mentioned data transmission method.
  • the computer program provided by the embodiment of the present application when run on a computer, causes the computer to perform the above data transmission method.
  • the second protocol layer carries the first information in the header corresponding to each PDU and/or inserts the transmission first flag after the PDU set, so that the first protocol layer can be based on the first information and/or the first
  • the flag identifies the PDU set and/or the attribute information of the PDU set, so that the identified PDU set can be processed to meet the business quality of service (Quality of Service, Qos) requirements and user experience.
  • Qos Quality of Service
  • Figure 1 is a schematic diagram of an application scenario
  • Figure 2 is a 5G network system architecture diagram
  • Figure 3 is a schematic diagram of a Qos mechanism
  • FIG. 4 is a schematic diagram of PDU set transmission provided by the embodiment of this application.
  • FIG. 5 is a schematic flowchart of the data transmission method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of an end marker provided by an embodiment of the present application.
  • FIG. 7-1 is a schematic diagram of the SDAP PDU format provided by the embodiment of this application.
  • Figure 7-2 is a schematic diagram 2 of the format of SDAP PDU provided by the embodiment of this application.
  • Figure 7-3 is a schematic diagram of the format of PDCP PDU provided by the embodiment of this application.
  • Figure 7-4 is a schematic diagram 2 of the format of PDCP PDU provided by the embodiment of this application.
  • FIG. 7-5 is a schematic diagram of the format of RLC PDU provided by the embodiment of this application.
  • FIG. 7-6 is a schematic diagram 2 of the format of RLC PDU provided by the embodiment of this application.
  • Figure 8 is a schematic diagram of the cascading function of the PDCP layer provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • terminal devices 110 eg, UEs
  • the network device 120 may be an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) equipment, It may be a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 may be a relay station, access point, vehicle-mounted device, or wearable device. Equipment, hubs, switches, bridges, routers, or network equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that are wired or wirelessly connected to the network device 120 or other terminal devices.
  • the terminal device 110 may refer to an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication Device, user agent, or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant) , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolution networks etc.
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function). , AMF), for example, Authentication Server Function (AUSF), for example, User Plane Function (UPF), for example, Session Management Function (Session Management Function, SMF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW- C) Equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 AMF through the NG interface 1
  • access Network equipment such as the next generation wireless
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and other numbers of terminals may be included within the coverage of each base station.
  • Equipment the embodiments of this application do not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence" mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • predefined can refer to what is defined in the protocol.
  • protocol may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • FIG. 2 is a 5G network system architecture diagram.
  • the network elements involved in the 5G network system include: User Equipment (User Equipment, UE), Radio Access Network (Radio Access Network, RAN), and user plane functions (User Plane Function, UPF), Data Network (DN), Access and Mobility Management Function (AMF), Session Management Function (Session Management Function, SMF), Policy Control Function (Policy Control Function (PCF), Application Function (AF), Authentication Server Function (AUSF), Unified Data Management (UDM).
  • UPF User Equipment
  • RAN Radio Access Network
  • UPF User Plane Function
  • DN Data Network
  • AMF Access and Mobility Management Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • Policy Control Function Policy Control Function
  • PCF Policy Control Function
  • AF Application Function
  • AUSF Authentication Server Function
  • UDM Unified Data Management
  • the UE connects to the access layer (AS) with the RAN through the Uu interface, and exchanges access layer messages and wireless data transmission.
  • the UE performs a non-access stratum (NAS) connection with the AMF through the N1 interface and exchanges NAS messages.
  • AMF is the mobility management function in the core network
  • SMF is the session management function in the core network.
  • PCF is the policy management function in the core network and is responsible for formulating policies related to UE mobility management, session management, and charging.
  • UPF is the user plane function in the core network. It transmits data to the DN through the N6 interface and to the RAN through the N3 interface.
  • Qos Flow In a mobile communication network, in order to transmit user plane data, one or more Qos flows (Qos Flow) need to be established. As an important measure of communication quality, Qos parameters are usually used to indicate the characteristics of Qos flows. Different Qos flows correspond to different Qos parameters.
  • Qos parameters may include but are not limited to: 5G Quality of Service Identifier (5QI), Allocation Retension Priority (ARP), Guaranteed Flow Bit Rate (GFBR), Maximum Flow Bit Rate ( Maximum Flow Bit Rate, MFBR), up/downlink maximum packet loss rate (UL/DL Maximum Packet Loss Rate, UL/DL MPLR), end-to-end packet delay budget (Packet Delay Budget, PDB), AN-PDB, Packet Error Rate (PER), priority level (Priority Level), average window (Averaging Window), resource type (Resource Type), maximum data burst volume (Maximum Data Burst Volume), UE aggregate maximum bit rate ( UE Aggregate Maximum Bit Rate, UE-AMBR), session aggregate maximum bit rate (Session Aggregate Maximum Bit Rate, Session-AMBR), etc.
  • 5QI 5G Quality of Service Identifier
  • ARP Allocation Retension Priority
  • GFBR Guaranteed Flow Bit Rate
  • MFBR Maximum Flow Bit Rate
  • Filter contains characteristic parameters that describe data packets (such as some related parameters of IP data packets, some related parameters of Ethernet data packets), and is used to filter out specific data packets to bind to specific Qos flows.
  • the most commonly used Filter is the IP five-tuple, which is the source IP address, destination IP address, source port number, destination port number and protocol type.
  • UPF and UE will form a filter based on the combination of characteristic parameters of the data packet (the leftmost trapezoid and the rightmost parallelogram in Figure 3 represent filters), and filter the matching data transmitted on the user plane through the filter.
  • the uplink Qos flow is bound by the UE, and the downlink Qos flow is bound by the UPF.
  • one or more Qos flows can be mapped to a data radio bearer (Data Resource Bearer, DRB) for transmission.
  • DRB Data Resource Bearer
  • the base station will establish a DRB based on the Qos parameters and bind the Qos flow to a specific DRB.
  • Qos flow is established triggered by SMF.
  • both the UE and the network side can trigger the PDU session modification process to change Qos.
  • the UE can modify the Qos parameters of the Qos flow or establish a new Qos flow by sending a PDU Session Modification Request (PDU Session Modification Request) message.
  • PDU Session Modification Request PDU Session Modification Request
  • CG Cloud Gaming
  • Extended Reality (EXtended Reality, XR): It is a large-scale umbrella for multiple heterogeneous use cases and services.
  • Mixed Reality, MR Mixed Reality
  • Extended Reality and media services The combination of XR and media services technology.
  • Video Slice A spatially distinct area in a video frame that is encoded separately from other areas in the same frame.
  • PDU Set consists of one or more PDUs. These PDUs carry an information unit generated at the application layer (for example, frames or video clips of XRM services). This information has the same importance requirements at the application layer. .
  • the application layer requires all PDUs in the PDU set to use the corresponding information unit. In some cases, when some PDUs are lost, the application layer can still recover some information units.
  • I-frame As an intra-frame encoded picture, it is a complete picture that can be independently encoded and decoded like a JPG image file.
  • P-frame As a predicted picture, it is not a complete frame and only contains image changes compared with the previous frame. If the reference frame is lost, the P frame cannot be decoded and displayed.
  • B-frame As a bidirectional prediction picture, it contains the changes between the previous reference frame and the next reference frame. The more reference frames, the higher the compression ratio. However, B-frames can only be decoded if the previous and next reference frames are available.
  • a Group of Pictures A collection of consecutive video frames.
  • the first frame of a GOP is an I frame, and subsequent frames can be P frames or B frames.
  • the PDU set is a group of PDUs. This group of PDUs represents a frame or a video clip.
  • Each PDU in a PDU set is related to each other and needs to be received at the same time to complete the video compression and decoding process and restore the video. Therefore, it is expected that the transport layer will uniformly process the data in a PDU set.
  • data is processed according to a PDU granularity. Therefore, if the wireless communication system can process data according to the PDU set granularity, then the PDU needs to be identified in the wireless communication system.
  • the identification of the PDU set can be realized and the PDU set can be processed.
  • the technical solutions of the embodiments of this application can be, but are not limited to, applied to 5G NR system architecture, for example, they can also be applied to future enhanced NR system architecture, etc.
  • a GOP For a GOP, it contains a group of frames, which may come from different Qos flows or from the same Qos flow.
  • Each frame in the GOP has its own type, such as I frame, B frame, P frame, etc.
  • the GOP can contain an I frame and at least one P frame and/or at least one B frame associated with it. .
  • a GOP identifier such as GOP id or GOP SN or GOP index, etc.
  • GOP identification is not limited to GOP id or GOP SN or GOP index, etc. It can also be in other forms, such as a certain time interval or a certain period, and each frame within a certain time interval or a certain period belongs to one GOP.
  • a PDU set For a frame, it is a PDU set, which is composed of multiple PDUs.
  • a PDU set identifier (such as PDU set id or PDU set SN or PDU set index, etc.) is defined for each PDU set, and a PDU set is identified by the PDU set identifier.
  • the PDU set identifier is unique within a GOP.
  • a PDU identifier (such as PDU id or PDU SN or PDU index, etc.) is defined for each PDU, and a PDU identifier is identified by the PDU identifier.
  • the PDU identifier is unique within the PDU set.
  • each PDU can be associated with at least one of the following information: GOP identification, PDU set identification, PDU identification, and frame type.
  • FIG 4 is a schematic diagram of PDU set transmission provided by the embodiment of this application.
  • the PDUs in a PDU set belong to a Qos flow, and the order between them is in sequence in the GPRS Tunnelling Protocol (GTP). ) is transmitted in the tunnel, that is, there will be no cross-transmission between PDU sets.
  • GTP GPRS Tunnelling Protocol
  • FIG. 5 is a schematic flowchart of a data transmission method provided by an embodiment of the present application. As shown in Figure 5, the data transmission method includes the following steps:
  • Step 501 The first protocol layer receives the PDU set sent by the second protocol layer.
  • the header corresponding to each PDU in the PDU set carries the first information and/or the first flag is transmitted after the PDU set, where,
  • the first information is used to identify the PDU set and/or the attribute information of the PDU set, and the first flag is used to identify the end of a PDU set and/or the start of the next PDU set and/or the Attribute information of PDU set.
  • the first protocol layer and the second protocol layer are protocol layers of a communication device
  • the communication device may be a network device or a terminal device.
  • the communication device is a network device, such as a base station.
  • the communication device is a terminal device.
  • the first protocol layer and the second protocol layer belong to the protocol layer of the sending end, that is, the communication device belongs to the sending end. Relative to the sending end, the receiving end can receive the PDU set sent by the sending end.
  • the first information includes at least one of the following information:
  • the identifier of the PDU set where the PDU is located
  • the frame type of the PDU set or frame in which the PDU is located is not limited
  • the priority indication or importance indication of the PDU set or frame in which the PDU is located
  • the first flag includes at least one of the following information:
  • End indication the end indication is used to identify the end of a PDU set
  • Start indication the start indication is used to identify the start of the next PDU set
  • the frame type of the PDU set or frame before and/or after the first flag is the frame type of the PDU set or frame before and/or after the first flag
  • the number of PDUs contained in the PDU set or frame before and/or after the first mark is the number of PDUs contained in the PDU set or frame before and/or after the first mark.
  • the frame type may be, for example, an I frame, a P frame, a B frame, or other frame types.
  • the PDU set corresponds to a frame (or video clip). Therefore, the description of "PDU set” can also be replaced with "frame”.
  • Qos requirement attributes include whether packet loss is allowed, packet loss rate, delay, etc.
  • the solution of carrying the first information in the packet header and the solution of transmitting the first flag after the PDU set these two solutions can be implemented separately or combined together.
  • the information carried in the packet header can also be used by the receiving end to identify the PDU set.
  • the solution of transmitting the first flag after the PDU set it can be used for the first protocol layer of the sender to identify the PDU set without decoding the PDU set-related information in the packet header.
  • the second protocol layer is a GTP layer
  • the first protocol layer is a Service Data Adaptation Protocol (SDAP) layer
  • SDAP Service Data Adaptation Protocol
  • the packet header is a GTP packet header
  • the first flag is carried in the first GTP packet.
  • the SDAP layer receives the PDU set sent by the GTP layer.
  • the GTP packet header corresponding to each PDU in the PDU set carries the first information and/or the first GTP packet carrying the first flag is transmitted after the PDU set.
  • the first flag carried in the first GTP packet may also be called the GTP end marker (GTP end marker).
  • the SDAP layer identifies the PDU set based on the first information carried in the GTP packet header and/or the first flag carried in the first GTP packet, and passes the PDU set to the packet data aggregation protocol ( Packet Data Convergence Protocol (PDCP) layer.
  • PDCP Packet Data Convergence Protocol
  • the method further includes: The SDAP header corresponding to each PDU carries the first information and/or a transmission SDAP control PDU is inserted after the PDU set, and the SDAP control PDU carries the first flag.
  • the SDAP layer can pass the PDU set to the PDCP layer according to the PDU granularity, that is, the SDAP layer encapsulates the SDAP service data unit (Service Data Unit, SDU) corresponding to each PDU in the PDU set into the corresponding The SDAP PDU is then passed to the PDCP layer, and each SDAP PDU carries one SDAP SDU.
  • SDU Service Data Unit
  • the SDAP layer can pass the PDU set to the PDCP layer according to the PDU set granularity, that is, the SDAP layer concatenates the SDAP SDUs corresponding to all the PDUs in the PDU set into one SDAP PDU, and then SDAP PDU is passed to the PDCP layer, and each SDAP PDU carries multiple SDAP SDUs.
  • the format of SDAP PDU can be implemented as follows:
  • the SDAP PDU includes a first SDAP header and multiple cascaded SDAP SDUs, and the multiple SDAP SDUs include SDAP SDUs corresponding to all PDUs in the PDU set. Among them, each SDAP SDU corresponds to a PDU in the PDU set.
  • the first SDAP header includes at least one of the following information:
  • serial number SN of the SDAP PDU The serial number SN of the SDAP PDU
  • the first indication information is used to indicate whether the content following the first indication information is second indication information or SDAP SDU, and the second indication information is used to indicate the length of the SDAP SDU;
  • a plurality of second indication information is used to indicate the length of each SDAP SDU in the SDAP PDU.
  • the SDAP PDU includes a second SDAP header and a plurality of cascaded units. Each unit of the plurality of units includes an SDAP sub-header and an SDAP SDU. Multiple SDAPs in the plurality of units SDU includes the SDAP SDU corresponding to all PDUs in the PDU set.
  • the second SDAP header includes at least one of the following information:
  • the SDAP subheader includes at least one of the following information:
  • the second indication information is used to indicate the length of the SDAP SDU corresponding to the SDAP subheader
  • the third indication information is used to indicate whether there is a concatenated SDAP SDU behind the SDAP SDU corresponding to the SDAP subheader or to indicate that the SDAP SDU corresponding to the SDAP subheader is in the SDAP PDU.
  • the index of the PDU corresponding to the SDAP SDU corresponding to the SDAP subheader is the index of the PDU corresponding to the SDAP SDU corresponding to the SDAP subheader.
  • the SDAP layer recognizes the first flag from the first GTP packet and then discards the first GTP packet.
  • the second protocol layer is an SDAP layer
  • the first protocol layer is a PDCP layer
  • the packet header is an SDAP packet header
  • the first flag is carried in the SDAP control PDU.
  • the PDCP layer receives the PDU set sent by the SDAP layer, and the SDAP header corresponding to each PDU in the PDU set carries the first information and/or the SDAP control PDU carrying the first flag is transmitted after the PDU set.
  • the first flag carried in the SDAP control PDU may also be called the SDAP end marker (SDAP end marker).
  • the PDCP layer identifies the PDU set based on the first information carried in the SDAP packet header and/or the first flag carried in the SDAP control PDU, and passes the PDU set to the wireless link layer control ( Radio Link Control (RLC) layer.
  • RLC Radio Link Control
  • the method further includes: the PDCP layer in the PDU set
  • the PDCP header corresponding to each PDU carries the first information and/or a transmission PDCP control PDU is inserted after the PDU set, and the PDCP control PDU carries the first flag.
  • the PDCP layer can pass the PDU set to the RLC layer according to the PDU granularity, that is, the PDCP layer encapsulates the PDCP SDU corresponding to each PDU in the PDU set into the corresponding PDCP PDU and passes it to the RLC layer.
  • the PDCP layer encapsulates the PDCP SDU corresponding to each PDU in the PDU set into the corresponding PDCP PDU and passes it to the RLC layer.
  • One PDCP SDU is carried in each PDCP PDU.
  • the PDCP layer can pass the PDU set to the RLC layer according to the PDU set granularity, that is, the PDCP layer concatenates the PDCP SDUs corresponding to all the PDUs in the PDU set into one PDCP PDU, and then PDCP PDU is passed to the RLC layer, and each PDCP PDU carries multiple PDCP SDUs.
  • the format of PDCP PDU can be implemented as follows:
  • the PDCP PDU includes a first PDCP header and multiple cascaded PDCP SDUs, and the multiple PDCP SDUs include PDCP SDUs corresponding to all PDUs in the PDU set. Among them, each PDCP SDU corresponds to a PDU in the PDU set.
  • the first PDCP header includes at least one of the following information:
  • the SN of the PDCP PDU The SN of the PDCP PDU
  • the fourth indication information is used to indicate whether the content following the fourth indication information is fifth indication information or PDCP SDU, and the fifth indication information is used to indicate the length of PDCP SDU;
  • a plurality of fifth indication information is used to indicate the length of each PDCP SDU in the PDCP PDU.
  • the PDCP PDU includes a second PDCP header and a plurality of cascaded units. Each unit of the plurality of units includes a PDCP sub-header and a PDCP SDU. Multiple PDCPs in the plurality of units SDU includes PDCP SDU corresponding to all PDUs in the PDU set.
  • the second PDCP header includes at least one of the following information:
  • the SN of the PDCP PDU The SN of the PDCP PDU
  • the PDCP subheader includes at least one of the following information:
  • the fifth indication information is used to indicate the length of the PDCP SDU corresponding to the PDCP subheader
  • the sixth indication information is used to indicate whether there is a concatenated PDCP SDU behind the PDCP SDU corresponding to the PDCP subheader or to indicate that the PDCP SDU corresponding to the PDCP subheader is the third PDCP PDU in the PDCP PDU.
  • the index of the PDU corresponding to the PDCP SDU corresponding to the PDCP subheader is the index of the PDU corresponding to the PDCP SDU corresponding to the PDCP subheader.
  • the SDAP header of the PDCP SDU (i.e. SDAP PDU) carries the first information added by the SDAP layer.
  • the PDCP layer retains the PDU set The first information carried in the PDCP SDU corresponding to each PDU in the PDU set; or, the PDCP layer deletes the first information carried in the PDCP SDU corresponding to each PDU in the PDU set, thereby saving overhead.
  • the PDCP layer recognizes the first flag from the SDAP control PDU and then discards the SDAP control PDU.
  • the second protocol layer is a PDCP layer
  • the first protocol layer is an RLC layer
  • the packet header is a PDCP packet header
  • the first flag is carried in the PDCP control PDU.
  • the RLC layer receives the PDU set sent by the PDCP layer, and the PDCP header corresponding to each PDU in the PDU set carries the first information and/or a PDCP control PDU carrying the first flag is transmitted after the PDU set,
  • the first flag carried in the PDCP control PDU may also be called a PDCP end marker (PDCP end marker).
  • the RLC layer identifies the PDU set based on the first information carried in the PDCP packet header and/or the first flag carried in the PDCP control PDU, and passes the PDU set to Medium Access Control (Medium Access Control, MAC) layer.
  • Medium Access Control Medium Access Control
  • the RLC layer notifies the MAC layer to group packets according to the granularity of PDU set.
  • the method further includes: the RLC layer sets the PDU set in the PDU set.
  • the RLC header corresponding to each PDU carries the first information.
  • the RLC layer can pass the PDU set to the MAC layer according to the PDU granularity, that is, the RLC layer encapsulates the RLC SDU corresponding to each PDU in the PDU set into the corresponding RLC PDU and passes it to the MAC layer.
  • Each RLC PDU carries one RLC SDU.
  • the RLC layer can pass the PDU set to the MAC layer according to the PDU set granularity, that is, the RLC layer concatenates the RLC SDUs corresponding to all PDUs in the PDU set into one RLC PDU, and then RLC PDU is passed to the MAC layer, and each RLC PDU carries multiple RLC SDUs.
  • the format of RLC PDU can be implemented as follows:
  • the RLC PDU includes a first RLC header and multiple cascaded RLC SDUs, and the multiple RLC SDUs include RLC SDUs corresponding to all PDUs in the PDU set. Among them, each RLC SDU corresponds to a PDU in the PDU set.
  • the first RLC header includes at least one of the following information:
  • the seventh indication information is used to indicate whether the content following the seventh indication information is the eighth indication information or RLC SDU, and the eighth indication information is used to indicate the length of the RLC SDU;
  • a plurality of eighth indication information is used to indicate the length of each RLC SDU in the RLC PDU.
  • the RLC PDU includes a second RLC header and a plurality of cascaded units. Each unit of the plurality of units includes an RLC sub-header and an RLC SDU. Multiple RLCs in the plurality of units SDU includes the RLC SDU corresponding to all PDUs in the PDU set.
  • the second RLC header includes at least one of the following information:
  • the RLC sub-header includes at least one of the following information:
  • the eighth indication information is used to indicate the length of the RLC SDU corresponding to the RLC subheader
  • the ninth indication information is used to indicate whether the RLC SDU corresponding to the RLC subheader is followed by a concatenated RLC SDU or to indicate that the RLC SDU corresponding to the RLC subheader is the third RLC PDU in the RLC PDU.
  • the index of the PDU corresponding to the RLC SDU corresponding to the RLC subheader is the index of the PDU corresponding to the RLC SDU corresponding to the RLC subheader.
  • the PDCP header of the RLC SDU (i.e., PDCP PDU) carries the first information added by the PDCP layer.
  • the RLC layer retains the PDU set The first information carried in the RLC SDU corresponding to each PDU in the set; or, the RLC layer deletes the first information carried in the RLC SDU corresponding to each PDU in the PDU set.
  • the RLC PDU is transmitted in segments.
  • the RLC layer notifies the MAC layer of the Qos requirements of the PDU set, and the Qos requirements are used to assist the MAC layer in making scheduling decisions.
  • the RLC layer recognizes the first flag from the PDCP control PDU and then discards the PDCP control PDU.
  • UPF determines the PDUs belonging to a PDU set in a Qos flow.
  • the GTP layer of UPF can perform at least one of the following operations:
  • Operation 1-1 Add first information to the GTP header corresponding to each PDU in the PDU set, where the first information includes at least one of the following information:
  • the identifier of the PDU set where the PDU is located
  • the frame type of the PDU set or frame in which the PDU is located such as I frame, P frame, B frame, or other frame types;
  • Qos requirement attributes of the PDU set or frame where the PDU is located such as whether packet loss is allowed, packet loss rate, delay, etc.
  • the priority indication or importance indication of the PDU set or frame in which the PDU is located
  • Operation 1-2 Insert and transmit a GTP packet carrying GTP end marker after the last PDU of each PDU set.
  • the GTP end marker is used to identify the end of one PDU set and the beginning of the next PDU set.
  • the GTP end marker includes at least one of the following information:
  • End indication the end indication is used to identify the end of a PDU set
  • Start indication the start indication is used to identify the start of the next PDU set
  • the PDU set or frame type of the frame before and/or after the GTP end marker is the PDU set or frame type of the frame before and/or after the GTP end marker
  • the number of PDU sets or PDUs contained in the frame before and/or after the GTP end marker is the number of PDU sets or PDUs contained in the frame before and/or after the GTP end marker.
  • the SDAP layer of the base station After receiving the Qos flow, the SDAP layer of the base station identifies each PDU set based on the first information and/or GTP end marker carried in the GTP header. Furthermore, in order to allow the PDCP layer of the base station to identify each PDU set, the SDAP layer of the base station can perform at least one of the following operations:
  • Operation 2-1 Add first information to the SDAP header corresponding to each PDU in the PDU set, where the first information includes at least one of the following information:
  • the identifier of the PDU set where the PDU is located
  • the frame type of the PDU set or frame in which the PDU is located such as I frame, P frame, B frame, or other frame types;
  • Qos requirement attributes of the PDU set or frame where the PDU is located such as whether packet loss is allowed, packet loss rate, delay, etc.
  • the priority indication or importance indication of the PDU set or frame in which the PDU is located
  • Operation 2-2 Insert and transmit an SDAP control PDU carrying SDAP end marker after the last PDU of each PDU set.
  • the SDAP end marker is used to identify the end of one PDU set and the beginning of the next PDU set.
  • SDAP end marker includes at least one of the following information:
  • End indication the end indication is used to identify the end of a PDU set
  • Start indication the start indication is used to identify the start of the next PDU set
  • the ID of the PDU set or frame before and/or after the SDAP end marker is the ID of the PDU set or frame before and/or after the SDAP end marker
  • the number of PDU sets or PDUs contained in the frame before and/or after the SDAP end marker is the number of PDU sets or PDUs contained in the frame before and/or after the SDAP end marker.
  • the PDCP layer of the base station After receiving the SDAP PDU from the SDAP layer, the PDCP layer of the base station identifies each PDU set according to the first information carried in the SDAP header and/or the SDAP end marker. Furthermore, in order to enable the RLC layer of the base station to identify each PDU set, the PDCP layer of the base station can perform at least one of the following operations:
  • Operation 3-1 Add first information to the PDCP header corresponding to each PDU in the PDU set, where the first information includes at least one of the following information:
  • the identifier of the PDU set where the PDU is located
  • the frame type of the PDU set or frame in which the PDU is located such as I frame, P frame, B frame, or other frame types;
  • Qos requirement attributes of the PDU set or frame where the PDU is located such as whether packet loss is allowed, packet loss rate, delay, etc.
  • the priority indication or importance indication of the PDU set or frame in which the PDU is located
  • Operation 3-2 Insert and transmit a PDCP control PDU carrying PDCP end marker after the last PDU of each PDU set.
  • the PDCP end marker is used to identify the end of one PDU set and the beginning of the next PDU set.
  • PDCP end marker includes at least one of the following information:
  • End indication the end indication is used to identify the end of a PDU set
  • Start indication the start indication is used to identify the start of the next PDU set
  • the identifier of the PDU set or frame before and/or after the PDCP end marker is the identifier of the PDU set or frame before and/or after the PDCP end marker
  • the number of PDU sets or PDUs contained in the frame before and/or after the PDCP end marker is the number of PDU sets or PDUs contained in the frame before and/or after the PDCP end marker.
  • the PDCP SDU can contain the information about the PDU set added by the SDAP layer, or the PDCP layer can remove the information about the PDU set added by the SDAP layer in the PDCP SDU (i.e. SDAP PDU), and then package the PDCP PDU.
  • GTP end marker, SDAP end marker, and PDCP end marker can be collectively referred to as the end marker (end marker). Its location can be shown in Figure 6. An end marker (end marker) is inserted after the end of each PDU set. ).
  • the RLC layer of the base station After receiving the PDCP PDU from the PDCP layer, the RLC layer of the base station identifies each PDU set according to the first information and/or PDCP end marker carried in the PDCP header. Furthermore, the RLC layer of the base station notifies the MAC layer of the base station that the logical channel where the RLC entity is located is in the MAC packet. In addition to meeting the logical channel priority and token bucket size, the data requested from this logical channel must also be based on the PDU set Packaging at the granularity.
  • the RLC SDU can contain the information about the PDU set added by the PDCP layer, or the RLC layer can remove the information about the PDU set added by the PDCP layer in the RLC SDU (that is, PDCP PDU), and then package the RLC PDU.
  • the RLC layer can notify the MAC layer about the QoS requirements of each PDU set to assist the MAC layer in making scheduling decisions.
  • the RLC layer of the base station can add first information to the RLC header corresponding to each PDU in the PDU set, where the first information includes at least one of the following information:
  • the identifier of the PDU set where the PDU is located
  • the frame type of the PDU set or frame in which the PDU is located such as I frame, P frame, B frame, or other frame types;
  • Qos requirement attributes of the PDU set or frame where the PDU is located such as whether packet loss is allowed, packet loss rate, delay, etc.
  • the priority indication or importance indication of the PDU set or frame in which the PDU is located
  • SDAP layer After the SDAP layer identifies each PDU set based on the first information carried in the GTP header and/or the GTP end marker, it concatenates the SDAP SDUs belonging to a PDU set into one SDAP PDU.
  • the format of SDAP PDU is implemented as follows:
  • SDAP PDU format 1 SDAP PDU includes an SDAP header and multiple cascaded SDAP SDUs.
  • the multiple SDAP SDUs include the SDAP SDUs corresponding to all PDUs in the PDU set. Among them, each SDAP SDU corresponds to a PDU in the PDU set.
  • the SDAP header includes at least one of the following information:
  • SDAP SN indicates the SN of the SDAP PDU
  • Frame type Indicates the frame type of the PDU set corresponding to all SDAP SDUs carried in the SDAP PDU, such as I frame, P frame, B frame, video clip, etc.;
  • SDAP SDU numbers indicates the total number of all SDAP SDUs carried in the SDAP PDU;
  • E information Indicates whether the content following the E information is length information or SDAP SDU;
  • Length i (Length i) information indicates the length of the i-th SDAP SDU in multiple concatenated SDAP SDUs, i is a positive integer.
  • the SDAP header may also include part or all of the information elements in the first information in the above solution.
  • FIG. 7-1 shows the format of SDAP PDU.
  • SDAP PDU contains all PDUs of the PDU set, where each SDAP SDU corresponds to one PDU.
  • SDAP PDU consists of an SDAP header and concatenated multiple SDAP SDUs.
  • the SDAP header shows two optional structures.
  • the SDAP header includes SDAP SN, SDAP SDU number, n length information, and optionally, the frame type; for the other
  • the SDAP header includes SDAP SN, n E information, n length information, and optionally, the frame type.
  • SDAP PDU format 2 SDAP PDU includes an SDAP header and multiple cascaded units. Each unit of the multiple units includes an SDAP sub-header and a corresponding SDAP SDU. The SDAP sub-header is followed by the SDAP SDU. The plurality of SDAP SDUs in the plurality of units include SDAP SDUs corresponding to all PDUs in the PDU set.
  • the SDAP header includes at least one of the following information:
  • SDAP SN indicates the SN of the SDAP PDU
  • Frame type Indicates the frame type of the PDU set corresponding to all SDAP SDUs carried in the SDAP PDU, such as I frame, P frame, B frame, video clip, etc.;
  • SDAP SDU numbers Indicates the total number of all SDAP SDUs carried in the SDAP PDU.
  • the SDAP header may also include part or all of the information elements in the first information in the above solution.
  • the SDAP subheader includes at least one of the following information:
  • F information Indicates whether there is a cascaded SDAP SDU behind the SDAP SDU corresponding to the SDAP subheader where the F information is located; or it is used to indicate that the SDAP SDU corresponding to the SDAP subheader where the F information is located is the first SDAP SDU in the SDAP PDU. Is it the middle SDAP SDU or the last SDAP SDU;
  • Length i (Length i) information indicates the length of the SDAP SDU corresponding to the SDAP subheader where the Length i information is located, i is a positive integer.
  • FIG. 7-2 shows the format of SDAP PDU.
  • SDAP PDU contains all PDUs of the PDU set, where each SDAP SDU corresponds to one PDU.
  • SDAP PDU includes an SDAP header and multiple cascaded units. Each unit includes an SDAP sub-header and an SDAP SDU.
  • the SDAP header shows the following four optional structures: 1) SDAP header includes SDAP SN; 2) SDAP header includes SDAP SN and frame type; 3) SDAP header includes SDAP SN and SDAP SDU number; 4) SDAP header Including SDAP SN, SDAP SDU number and frame type.
  • the SDAP subheader shows the following two optional structures: 1) The SDAP subheader includes F information and length information; 2) The SDAP subheader includes length information.
  • the PDCP layer After the PDCP layer identifies each PDU set based on the first information carried in the SDAP header and/or the SDAP end marker, it concatenates the PDCP SDUs belonging to a PDU set into one PDCP PDU. It should be noted that the PDCP SDU can contain the information about the PDU set added by the SDAP layer, or the PDCP layer can remove the information about the PDU set added by the SDAP layer in the PDCP SDU (i.e. SDAP PDU), and then package the PDCP PDU. .
  • the format of PDCP PDU is implemented as follows:
  • PDCP PDU Format 1 PDCP PDU includes a PDCP header and multiple cascaded PDCP SDUs.
  • the multiple PDCP SDUs include the PDCP SDUs corresponding to all PDUs in the PDU set. Among them, each PDCP SDU corresponds to a PDU in the PDU set.
  • the PDCP header includes at least one of the following information:
  • PDCP SN indicates the SN of PDCP PDU
  • Frame type Indicates the frame type of the PDU set corresponding to all PDCP SDUs carried in the PDCP PDU, such as I frame, P frame, B frame, video clip, etc.;
  • PDCP SDU numbers indicates the total number of all PDCP SDUs carried in PDCP PDU;
  • E information Indicates whether the content following the E information is length information or PDCP SDU;
  • Length i (Length i) information indicates the length of the i-th PDCP SDU in multiple concatenated PDCP SDUs, i is a positive integer.
  • the PDCP header may also include part or all of the information elements in the first information in the above solution.
  • FIG. 7-3 illustrates the format of PDCP PDU.
  • PDCP PDU contains all PDUs of the PDU set, where each PDCP SDU corresponds to one PDU.
  • PDCP PDU includes a PDCP header and multiple concatenated PDCP SDUs.
  • the PDCP header shows two optional structures.
  • the PDCP header includes PDCP SN, PDCP SDU number, n length information, and optionally, the frame type; for the other
  • the PDCP header includes PDCP SN, n E information, n length information, and optionally, the frame type.
  • PDCP PDU format 2 PDCP PDU includes a PDCP header and multiple cascaded units. Each unit of the multiple units includes a PDCP subheader and a corresponding PDCP SDU. The PDCP subheader is followed by the PDCP SDU. The multiple PDCP SDUs in the multiple units include PDCP SDUs corresponding to all PDUs in the PDU set.
  • the PDCP header includes at least one of the following information:
  • PDCP SN indicates the SN of PDCP PDU
  • Frame type Indicates the frame type of the PDU set corresponding to all PDCP SDUs carried in the PDCP PDU, such as I frame, P frame, B frame, video clip, etc.;
  • PDCP SDU numbers Indicates the total number of all PDCP SDUs carried in the PDCP PDU.
  • the PDCP header may also include part or all of the information elements in the first information in the above solution.
  • the PDCP subheader includes at least one of the following information:
  • F information Indicates whether there is a concatenated PDCP SDU behind the PDCP SDU corresponding to the PDCP subheader where the F information is located; or it is used to indicate that the PDCP SDU corresponding to the PDCP subheader where the F information is located is the first PDCP SDU in the PDCP PDU. Is it the middle PDCP SDU or the last PDCP SDU;
  • Length i (Length i) information indicates the length of the PDCP SDU corresponding to the PDCP subheader where the Length i information is located, i is a positive integer.
  • FIG. 7-4 illustrates the format of PDCP PDU.
  • PDCP PDU contains all PDUs of the PDU set, where each PDCP SDU corresponds to one PDU.
  • PDCP PDU includes a PDCP header and multiple cascaded units. Each unit includes a PDCP sub-header and a PDCP SDU.
  • the PDCP header shows the following four optional structures: 1) PDCP header includes PDCP SN; 2) PDCP header includes PDCP SN and frame type; 3) PDCP header includes PDCP SN and PDCP SDU number; 4) PDCP header Including PDCP SN, PDCP SDU number and frame type.
  • the PDCP subheader shows the following two optional structures: 1) The PDCP subheader includes F information and length information; 2) The PDCP subheader includes length information.
  • the sender performs the cascade function after encryption and integrity protection.
  • the receiving end performs disassembly after removing the packet header, and processes the disassembled data safely, as shown in Figure 8.
  • the RLC layer After the RLC layer identifies each PDU set based on the first information carried in the PDCP header and/or the PDCP end marker, it concatenates the RLC SDUs belonging to a PDU set into one RLC PDU. It should be noted that the RLC SDU can contain the information about the PDU set added by the PDCP layer, or the RLC layer can remove the information about the PDU set added by the PDCP layer in the RLC SDU (i.e. PDCP PDU), and then package the RLC PDU.
  • the format of RLC PDU is implemented as follows:
  • RLC PDU format 1 RLC PDU includes an RLC header and multiple cascaded RLC SDUs.
  • the multiple RLC SDUs include the RLC SDUs corresponding to all PDUs in the PDU set. Among them, each RLC SDU corresponds to a PDU in the PDU set.
  • the RLC header includes at least one of the following information:
  • RLC SN indicates the SN of the RLC PDU
  • Frame type Indicates the frame type of the PDU set corresponding to all RLC SDUs carried in the RLC PDU, such as I frame, P frame, B frame, video clip, etc.;
  • RLC SDU numbers indicates the total number of all RLC SDUs carried in the RLC PDU
  • E information Indicates whether the content following the E information is length information or RLC SDU;
  • Length i (Length i) information indicates the length of the i-th RLC SDU in multiple concatenated RLC SDUs, i is a positive integer.
  • the RLC packet header may also include part or all of the information elements in the first information in the above solution.
  • FIG. 7-5 shows the format of RLC PDU.
  • RLC PDU contains all PDUs of the PDU set, where each RLC SDU corresponds to one PDU.
  • RLC PDU includes an RLC header and multiple concatenated RLC SDUs.
  • the RLC header shows two optional structures.
  • the RLC header includes RLC SN, RLC SDU number, n length information, and optionally, the frame type; for the other
  • the RLC header includes RLC SN, n E information, n length information, and optionally, the frame type.
  • RLC PDU format 2 RLC PDU includes an RLC header and multiple cascaded units. Each unit of the multiple units includes an RLC sub-header and a corresponding RLC SDU. The RLC sub-header is followed by an RLC SDU. The plurality of RLC SDUs in the plurality of units include RLC SDUs corresponding to all PDUs in the PDU set.
  • the RLC header includes at least one of the following information:
  • RLC SN indicates the SN of the RLC PDU
  • Frame type Indicates the frame type of the PDU set corresponding to all RLC SDUs carried in the RLC PDU, such as I frame, P frame, B frame, video clip, etc.;
  • RLC SDU numbers Indicates the total number of all RLC SDUs carried in the RLC PDU.
  • the RLC packet header may also include part or all of the information elements in the first information in the above solution.
  • the RLC sub-header includes at least one of the following information:
  • F information Indicates whether there are cascaded RLC SDUs behind the RLC SDU corresponding to the RLC subheader where the F information is located; or it is used to indicate that the RLC SDU corresponding to the RLC subheader where the F information is located is the first RLC SDU in the RLC PDU. Is it the middle RLC SDU or the last RLC SDU;
  • Length i (Length i) information indicates the length of the RLC SDU corresponding to the RLC subheader where the Length i information is located, i is a positive integer.
  • FIG. 7-6 shows the format of RLC PDU.
  • RLC PDU contains all PDUs of the PDU set, where each RLC SDU corresponds to one PDU.
  • RLC PDU includes an RLC header and multiple cascaded units. Each unit includes an RLC sub-header and an RLC SDU.
  • the RLC header shows the following four optional structures: 1) RLC header includes RLC SN; 2) RLC header includes RLC SN and frame type; 3) RLC header includes RLC SN and RLC SDU number; 4) RLC header Including RLC SN, RLC SDU number and frame type.
  • the RLC sub-header shows the following two optional structures: 1) The RLC sub-header includes F information and length information; 2) The RLC sub-header includes length information.
  • the RLC PDU can be transmitted in segments, regardless of whether the RLC PDU is first transmitted or retransmitted.
  • the technical solution of the embodiment of this application clarifies how the AS layer (such as the SDAP layer, PDCP layer, RLC layer) recognizes the PDU set and how to effectively transmit data for the PDU set, meeting the business Qos requirements and user experience.
  • the AS layer such as the SDAP layer, PDCP layer, RLC layer
  • the downstream protocol layer to identify the PDU set, or by assisting the downstream protocol layer to identify the PDU set through the definition of the end marker.
  • the RLC layer identifies the PDU set and requests the MAC layer to schedule data according to the PDU set granularity and obtain data from the logical channel for transmission.
  • the RLC layer/PDCP layer/SDAP layer introduces the cascading function to cascade the PDUs belonging to a PDU set and send them together.
  • the PDUs belonging to a PDU set are cascaded to form an RLC PDU.
  • RLC PDU can be segmented in the first transmission to meet scheduling needs.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the implementation of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 9 is a schematic structural diagram of a data transmission device provided by an embodiment of the present application, which is applied to communication equipment. As shown in Figure 9, the data transmission device includes: a first protocol layer 901 and a second protocol layer 902;
  • the first protocol layer 901 is used to receive the PDU set sent by the second protocol layer;
  • the second protocol layer 902 is used to send PDU set to the first protocol layer
  • the header corresponding to each PDU in the PDU set carries the first information and/or a first flag is transmitted after the PDU set, wherein the first information is used to identify the PDU set and/or The attribute information of the PDU set, the first flag is used to identify the end of a PDU set and/or the beginning of the next PDU set and/or the attribute information of the PDU set.
  • the first information includes at least one of the following information:
  • the identifier of the PDU set where the PDU is located
  • the frame type of the PDU set or frame in which the PDU is located is not limited
  • the priority indication or importance indication of the PDU set or frame in which the PDU is located
  • the first flag includes at least one of the following information:
  • End indication the end indication is used to identify the end of a PDU set
  • Start indication the start indication is used to identify the start of the next PDU set
  • the frame type of the PDU set or frame before and/or after the first flag is the frame type of the PDU set or frame before and/or after the first flag
  • the number of PDUs contained in the PDU set or frame before and/or after the first mark is the number of PDUs contained in the PDU set or frame before and/or after the first mark.
  • the frame type may be, for example, an I frame, a P frame, a B frame, or other frame types.
  • the PDU set corresponds to a frame (or video clip). Therefore, the description of "PDU set” can also be replaced with "frame”.
  • Qos requirement attributes include whether packet loss is allowed, packet loss rate, delay, etc.
  • the solution of carrying the first information in the packet header and the solution of transmitting the first flag after the PDU set these two solutions can be implemented separately or combined together.
  • the information carried in the packet header can also be used by the receiving end to identify the PDU set.
  • the solution of transmitting the first flag after the PDU set it can be used for the first protocol layer of the sender to identify the PDU set without decoding the PDU set-related information in the packet header.
  • the second protocol layer is a GTP layer
  • the first protocol layer is an SDAP layer
  • the packet header is a GTP packet header
  • the first flag is carried in the first GTP packet.
  • the SDAP layer receives the PDU set sent by the GTP layer.
  • the GTP packet header corresponding to each PDU in the PDU set carries the first information and/or the first GTP packet carrying the first flag is transmitted after the PDU set.
  • the first flag carried in the first GTP packet may also be called the GTP end marker (GTP end marker).
  • the SDAP layer identifies the PDU set based on the first information carried in the GTP packet header and/or the first flag carried in the first GTP packet, and passes the PDU set to the PDCP layer.
  • the SDAP layer determines the SDAP corresponding to each PDU in the PDU set.
  • the first information is carried in the header and/or a transmission SDAP control PDU is inserted after the PDU set, and the SDAP control PDU carries the first flag.
  • the SDAP layer can pass the PDU set to the PDCP layer according to the PDU granularity, that is, the SDAP layer encapsulates the SDAP SDU corresponding to each PDU in the PDU set into the corresponding SDAP PDU and passes it to the PDCP layer.
  • One SDAP SDU is carried in each SDAP PDU.
  • the SDAP layer can pass the PDU set to the PDCP layer according to the PDU set granularity, that is, the SDAP layer concatenates the SDAP SDUs corresponding to all the PDUs in the PDU set into one SDAP PDU, and then SDAP PDU is passed to the PDCP layer, and each SDAP PDU carries multiple SDAP SDUs.
  • the format of SDAP PDU can be implemented as follows:
  • the SDAP PDU includes a first SDAP header and multiple cascaded SDAP SDUs, and the multiple SDAP SDUs include SDAP SDUs corresponding to all PDUs in the PDU set. Among them, each SDAP SDU corresponds to a PDU in the PDU set.
  • the first SDAP header includes at least one of the following information:
  • serial number SN of the SDAP PDU The serial number SN of the SDAP PDU
  • the first indication information is used to indicate whether the content following the first indication information is second indication information or SDAP SDU, and the second indication information is used to indicate the length of the SDAP SDU;
  • a plurality of second indication information is used to indicate the length of each SDAP SDU in the SDAP PDU.
  • the SDAP PDU includes a second SDAP header and a plurality of cascaded units. Each unit of the plurality of units includes an SDAP sub-header and an SDAP SDU. Multiple SDAPs in the plurality of units SDU includes the SDAP SDU corresponding to all PDUs in the PDU set.
  • the second SDAP header includes at least one of the following information:
  • the SDAP subheader includes at least one of the following information:
  • the second indication information is used to indicate the length of the SDAP SDU corresponding to the SDAP subheader
  • the third indication information is used to indicate whether there is a concatenated SDAP SDU behind the SDAP SDU corresponding to the SDAP subheader or to indicate that the SDAP SDU corresponding to the SDAP subheader is in the SDAP PDU.
  • the index of the PDU corresponding to the SDAP SDU corresponding to the SDAP subheader is the index of the PDU corresponding to the SDAP SDU corresponding to the SDAP subheader.
  • the SDAP layer recognizes the first flag from the first GTP packet and then discards the first GTP packet.
  • the second protocol layer is an SDAP layer
  • the first protocol layer is a PDCP layer
  • the packet header is an SDAP packet header
  • the first flag is carried in the SDAP control PDU.
  • the PDCP layer receives the PDU set sent by the SDAP layer, and the SDAP header corresponding to each PDU in the PDU set carries the first information and/or the SDAP control PDU carrying the first flag is transmitted after the PDU set.
  • the first flag carried in the SDAP control PDU may also be called the SDAP end marker (SDAP end marker).
  • the PDCP layer identifies the PDU set based on the first information carried in the SDAP packet header and/or the first flag carried in the SDAP control PDU, and passes the PDU set to the RLC layer.
  • the PDCP layer determines the PDCP corresponding to each PDU in the PDU set.
  • the first information is carried in the packet header and/or a transmission PDCP control PDU is inserted after the PDU set, and the PDCP control PDU carries the first flag.
  • the PDCP layer can pass the PDU set to the RLC layer according to the PDU granularity, that is, the PDCP layer encapsulates the PDCP SDU corresponding to each PDU in the PDU set into the corresponding PDCP PDU and passes it to the RLC layer.
  • the PDCP layer encapsulates the PDCP SDU corresponding to each PDU in the PDU set into the corresponding PDCP PDU and passes it to the RLC layer.
  • One PDCP SDU is carried in each PDCP PDU.
  • the PDCP layer can pass the PDU set to the RLC layer according to the PDU set granularity, that is, the PDCP layer concatenates the PDCP SDUs corresponding to all the PDUs in the PDU set into one PDCP PDU, and then PDCP PDU is passed to the RLC layer, and each PDCP PDU carries multiple PDCP SDUs.
  • the format of PDCP PDU can be implemented as follows:
  • the PDCP PDU includes a first PDCP header and multiple cascaded PDCP SDUs, and the multiple PDCP SDUs include PDCP SDUs corresponding to all PDUs in the PDU set. Among them, each PDCP SDU corresponds to a PDU in the PDU set.
  • the first PDCP header includes at least one of the following information:
  • the SN of the PDCP PDU The SN of the PDCP PDU
  • the fourth indication information is used to indicate whether the content following the fourth indication information is fifth indication information or PDCP SDU, and the fifth indication information is used to indicate the length of PDCP SDU;
  • a plurality of fifth indication information is used to indicate the length of each PDCP SDU in the PDCP PDU.
  • the PDCP PDU includes a second PDCP header and a plurality of cascaded units. Each unit of the plurality of units includes a PDCP sub-header and a PDCP SDU. Multiple PDCPs in the plurality of units SDU includes PDCP SDU corresponding to all PDUs in the PDU set.
  • the second PDCP header includes at least one of the following information:
  • the SN of the PDCP PDU The SN of the PDCP PDU
  • the PDCP subheader includes at least one of the following information:
  • the fifth indication information is used to indicate the length of the PDCP SDU corresponding to the PDCP subheader
  • the sixth indication information is used to indicate whether there is a concatenated PDCP SDU behind the PDCP SDU corresponding to the PDCP subheader or to indicate that the PDCP SDU corresponding to the PDCP subheader is the third PDCP PDU in the PDCP PDU.
  • the index of the PDU corresponding to the PDCP SDU corresponding to the PDCP subheader is the index of the PDU corresponding to the PDCP SDU corresponding to the PDCP subheader.
  • the SDAP header of the PDCP SDU (i.e. SDAP PDU) carries the first information added by the SDAP layer.
  • the PDCP layer retains the PDU set The first information carried in the PDCP SDU corresponding to each PDU in the PDU set; or, the PDCP layer deletes the first information carried in the PDCP SDU corresponding to each PDU in the PDU set, thereby saving overhead.
  • the PDCP layer recognizes the first flag from the SDAP control PDU and then discards the SDAP control PDU.
  • the second protocol layer is a PDCP layer
  • the first protocol layer is an RLC layer
  • the packet header is a PDCP packet header
  • the first flag is carried in the PDCP control PDU.
  • the RLC layer receives the PDU set sent by the PDCP layer, and the PDCP header corresponding to each PDU in the PDU set carries the first information and/or a PDCP control PDU carrying the first flag is transmitted after the PDU set,
  • the first flag carried in the PDCP control PDU may also be called a PDCP end marker (PDCP end marker).
  • the RLC layer identifies the PDU set based on the first information carried in the PDCP packet header and/or the first flag carried in the PDCP control PDU, and passes the PDU set to Medium Access Control (Medium Access Control, MAC) layer.
  • Medium Access Control Medium Access Control
  • the RLC layer notifies the MAC layer to group packets according to the granularity of PDU set.
  • the RLC layer determines the RLC corresponding to each PDU in the PDU set.
  • the first information is carried in the packet header.
  • the RLC layer can pass the PDU set to the MAC layer according to the PDU granularity, that is, the RLC layer encapsulates the RLC SDU corresponding to each PDU in the PDU set into the corresponding RLC PDU and passes it to the MAC layer.
  • Each RLC PDU carries one RLC SDU.
  • the RLC layer can pass the PDU set to the MAC layer according to the PDU set granularity, that is, the RLC layer concatenates the RLC SDUs corresponding to all PDUs in the PDU set into one RLC PDU, and then RLC PDU is passed to the MAC layer, and each RLC PDU carries multiple RLC SDUs.
  • the format of RLC PDU can be implemented as follows:
  • the RLC PDU includes a first RLC header and multiple cascaded RLC SDUs, and the multiple RLC SDUs include RLC SDUs corresponding to all PDUs in the PDU set. Among them, each RLC SDU corresponds to a PDU in the PDU set.
  • the first RLC header includes at least one of the following information:
  • the seventh indication information is used to indicate whether the content following the seventh indication information is the eighth indication information or RLC SDU, and the eighth indication information is used to indicate the length of the RLC SDU;
  • a plurality of eighth indication information is used to indicate the length of each RLC SDU in the RLC PDU.
  • the RLC PDU includes a second RLC header and a plurality of cascaded units. Each unit of the plurality of units includes an RLC sub-header and an RLC SDU. Multiple RLCs in the plurality of units SDU includes the RLC SDU corresponding to all PDUs in the PDU set.
  • the second RLC header includes at least one of the following information:
  • the RLC sub-header includes at least one of the following information:
  • the eighth indication information is used to indicate the length of the RLC SDU corresponding to the RLC subheader
  • the ninth indication information is used to indicate whether the RLC SDU corresponding to the RLC subheader is followed by a concatenated RLC SDU or to indicate that the RLC SDU corresponding to the RLC subheader is the third RLC PDU in the RLC PDU.
  • the index of the PDU corresponding to the RLC SDU corresponding to the RLC subheader is the index of the PDU corresponding to the RLC SDU corresponding to the RLC subheader.
  • the PDCP header of the RLC SDU (i.e., PDCP PDU) carries the first information added by the PDCP layer.
  • the RLC layer retains the PDU set The first information carried in the RLC SDU corresponding to each PDU in the set; or, the RLC layer deletes the first information carried in the RLC SDU corresponding to each PDU in the PDU set.
  • the RLC PDU is transmitted in segments.
  • the RLC layer notifies the MAC layer of the Qos requirements of the PDU set, and the Qos requirements are used to assist the MAC layer in making scheduling decisions.
  • the RLC layer recognizes the first flag from the PDCP control PDU and then discards the PDCP control PDU.
  • protocol layer can also be replaced by “protocol functional module” or “protocol functional entity”.
  • Figure 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device can be a terminal device or a network device.
  • the communication device 1000 shown in Figure 10 includes a processor 1010.
  • the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 can call and run the computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated into the processor 1010.
  • the communication device 1000 can also include a transceiver 1030.
  • the processor 1010 can control the transceiver 1030 to communicate with other devices. Specifically, it can send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 can implement the corresponding processes of each method in the embodiment of the present application, which will not be described again for the sake of brevity.
  • Figure 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in Figure 11 includes a processor 1110.
  • the processor 1110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1100 may also include a memory 1120 .
  • the processor 1110 can call and run the computer program from the memory 1120 to implement the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated into the processor 1110.
  • the chip 1100 may also include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1100 may also include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • This chip can be applied to the communication device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the communication device in each method of the embodiment of the present application. For the sake of brevity, details will not be repeated here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Figure 12 is a schematic block diagram of a communication system 1200 provided by an embodiment of the present application. As shown in Figure 12, the communication system 1200 includes a terminal device 1210 and a network device 1220.
  • the terminal device 1210 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1220 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no details will be described here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the communication device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the communication device in the various methods of the embodiment of the present application. For the sake of brevity, the details are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the communication device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the communication device in the various methods of the embodiment of the present application. For the sake of brevity, the details will not be described again.
  • An embodiment of the present application also provides a computer program.
  • This computer program can be applied to the communication device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the communication device in each method of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法及装置、通信设备,该方法包括:第一协议层接收第二协议层发送的PDU set,所述PDU set中的每个PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。

Description

一种数据传输方法及装置、通信设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种数据传输方法及装置、通信设备。
背景技术
分组数据单元集(Packet Data Unit set,PDU set)由一个或多个分组数据单元(Packet Data Unit set,PDU)组成。对于一个PDU set来说,其代表一个帧或者一个视频片段,因此一个PDU set中的各个PDU之间是关联的,所以期待传输层对于一个PDU set中的数据进行统一处理。然而,目前的无线通信系统中,对于数据的处理是按照一个PDU粒度进行的,所以如果能让无线通信系统对于数据的处理按照PDU set粒度来做,那么需要在无线通信系统中识别出PDU set,如何识别PDU set是个需要解决的问题。
发明内容
本申请实施例提供一种数据传输方法及装置、通信设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的数据传输方法,包括:
第一协议层接收第二协议层发送的PDU set,所述PDU set中的每个PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。
本申请实施例提供的数据传输装置,具有第一协议层和第二协议层;
所述第一协议层,用于接收第二协议层发送的PDU set;
所述第二协议层,用于向第一协议层发送PDU set;
其中,所述PDU set中的每个PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。
本申请实施例提供的通信设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的数据传输方法。
本申请实施例提供的芯片,用于实现上述的数据传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的数据传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的数据传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的数据传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的数据传输方法。
通过上述技术方案,第二协议层在每个PDU对应的包头中携带第一信息和/或在PDU set后插入传输第一标志,从而可以使得第一协议层基于第一信息和/或第一标志识别出PDU set和/或PDU set的属性信息,从而可以针对识别出的PDU set进行处理,满足了业务服务质量(Quality of Service,Qos)需求和用户体验。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实 施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是一种应用场景的示意图;
图2是一种5G网络系统架构图;
图3是一种Qos机制的示意图;
图4是本申请实施例提供的PDU set传输示意图;
图5是本申请实施例提供的数据传输方法的流程示意图;
图6是本申请实施例提供的结束标志(end marker)的示意图;
图7-1是本申请实施例提供的SDAP PDU的格式示意图一;
图7-2是本申请实施例提供的SDAP PDU的格式示意图二;
图7-3是本申请实施例提供的PDCP PDU的格式示意图一;
图7-4是本申请实施例提供的PDCP PDU的格式示意图二;
图7-5是本申请实施例提供的RLC PDU的格式示意图一;
图7-6是本申请实施例提供的RLC PDU的格式示意图二;
图8是本申请实施例提供的PDCP层的级联功能的示意图;
图9是本申请实施例提供的数据传输装置的结构组成示意图;
图10是本申请实施例提供的一种通信设备示意性结构图;
图11是本申请实施例的芯片的示意性结构图;
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
5G网络架构
图2为5G网络系统架构图,如图2所示,5G网络系统中涉及到的网元包括:用户设备(User Equipment,UE)、无线接入网(Radio Access Network,RAN)、用户面功能(User Plane Function,UPF)、数据网络(Data Network,DN)、接入和移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、策略控制功能(Policy Control Function,PCF)、应用功能(Application Function,AF)、鉴权服务器功能(Authentication Server Function,AUSF)、统一数据管理(Unified Data Management,UDM)。
如图2所示,UE通过Uu接口与RAN进行接入层(AS)连接,交互接入层消息及无线数据传输。UE通过N1接口与AMF进行非接入层(NAS)连接,交互NAS消息。AMF是核心网中的移动性管理功能,SMF是核心网中的会话管理功能,AMF在对UE进行移动性管理之外,还负责将从会话管理相关消息在UE和SMF之间进行转发。PCF是核心网中的策略管理功能,负责制定对UE的移动性管理、会话管理、计费等相关的策略。UPF是核心网中的用户面功能,通过N6接口与DN进行数据传输,通过N3接口与RAN进行数据传输。
Qos机制
在移动通信网络中,为了能够传输用户面数据,需要建立一个或多个Qos流(Qos Flow)。作为通信质量的重要衡量标准,通常使用Qos参数来指示Qos流的特征,不同的Qos流对应不同的Qos参数。Qos参数可以包括但不限于:5G服务质量标识(5G Qos Identifier,5QI)、分配保留优先级(Allocation Retension Priority,ARP)、保证流比特率(Guaranteed Flow Bit Rate,GFBR)、最大流比特率(Maximum Flow Bit Rate,MFBR)、上/下行最大丢包率(UL/DL Maximum Packet Loss Rate,UL/DL MPLR)、端到端数据包时延预算(Packet Delay Budget,PDB)、AN-PDB、包误差率(Packet Error Rate,PER)、优先等级(Priority Level)、平均窗口(Averaging Window)、资源类型(Resource Type)、最大数据突发量(Maximum Data Burst Volume)、UE聚合最大比特率(UE Aggregate Maximum Bit Rate,UE-AMBR)、会话聚合最大比特率(Session Aggregate Maximum Bit Rate,Session-AMBR)等。
过滤器(Filter)包含描述数据包的特征参数(例如IP数据包的一些相关参数,以太网数据包的一些相关参数),用于过滤出特定的数据包以绑定到特定的Qos流上。这里,最常用的Filter就是IP五元组,即源IP地址、目标IP地址、源端口号、目标端口号以及协议类型。
参照图3,UPF和UE会根据数据包的特征参数组合来形成过滤器(如图3中最左边的梯形和最右边的平行四边形代表过滤器),通过过滤器过滤在用户面传递的符合数据包的特征参数的上行或下行数据包,并将其绑定到某一个Qos流上。上行Qos流是由UE进行绑定的,下行Qos流是由UPF进行绑定的。在Qos机制中,一个或多个Qos流可以映射到一个数据无线承载(Data Resource Bearer,DRB)上进行传输。对于一个Qos流来说,对应一套Qos参数,基站会根据Qos参数来建立DRB并将Qos流绑定到特定的DRB上。
Qos流由SMF触发建立。当Qos需要调整时,UE和网络侧均可触发PDU会话修改流程,从而改变Qos。以UE为例,UE可以通过发送PDU会话修改请求(PDU Session Modification Request)消息来修改Qos流的Qos参数或者建立新的Qos流。也就是说,当UE调整Qos时,需要执行一个会话修改流程,且必须得到网络的同意。由于PDU会话修改流程这一过程需要较长时间,同时也不能保证一定可以修改成功,因此会影响应用的行为,即应用无法准确判定是否以及多久可以使用其希望的Qos,这对于很多实时性业务,比如机器学习、神经网络分析等会产生较大影响。造成Qos改变情况也有很多,作为示例,以下几种情况均可造成Qos改变:1)发生了基站切换;2)发生了网络拥塞(如用户数突然增多)3)UE移入或移出了特定的范围(如边缘服务器的服务范围)。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关术语进行说明,以下相关术语的含义作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
云游戏(Cloud Gaming,CG):指的是一组用例,其中绝大多数与游戏相关的计算(单人或多人)从UE卸载到边缘或远程服务器。
扩展现实(EXtended Reality,XR):是多个异构用例和服务的大范围保护伞,XR用例可以大致分为:增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)、混合现实(Mixed Reality,MR)。
扩展现实和媒体服务(Extended Reality and media services,XRM):XR和媒体服务的结合技术。
视频片段(Video Slice):视频帧中空间上不同的区域,与同一帧中的其他区域分开编码。
PDU集(PDU Set):由一个或多个PDU组成,这些PDU承载着在应用层生成的一个信息单元(例如,XRM服务的帧或视频片段),这些信息在应用层具有相同的重要性要求。应用层需要PDU set中的所有PDU来使用相应的信息单元。在某些情况下,当一些PDU丢失时,应用层仍然可以恢复部分信息单元。
I帧(I-frame):作为帧内编码图片,它是一个完整的图片,可以像JPG图像文件一样独立编码和解码。
P帧(P-frame):作为预测图片,它不是一个完整的帧,只包含与前一帧相比的图像变化。如果参考帧丢失,P帧将无法解码和显示。
B帧(B-frame):作为双向预测图片,包含前一参考帧和后一参考帧之间的变化。参考帧越多,压缩比就越高。然而,仅当前一参考帧和后一参考帧可用时,才能对B帧进行解码。
图像组(A Group of Pictures,GOP):包括连续视频帧的集合。一般,GOP的第一帧是I帧,后面的帧可以是P帧或B帧。
对于媒体业务,视频压缩编解码过程中会产生I帧,P帧,B帧等。而PDU set是一组PDU,这组PDU代表一个帧或者一个视频片段。一个PDU set中的各个PDU之间是关联的,需要同时接收 才能完成视频压缩解码过程,恢复视频。所以期待传输层对于一个PDU set中的数据统一处理。然而,目前的无线通信系统中,对于数据的处理是按照一个PDU粒度进行处理的,所以如果能让无线通信系统对于数据的处理按照PDU set粒度来做,那么需要在无线通信系统中识别出PDU set,然后才能按照PDU set的粒度进行数据处理。为此,提出了本申请实施例的以下技术方案。本申请实施例的技术方案中,可以实现PDU set的识别,并针对PDU set进行处理。需要说明的是,本申请实施例的技术方案可以但不局限于应用于5G NR系统架构,例如还可以应用于未来的增强的NR系统架构等。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
对于一个GOP来说,包含一组帧,这些帧可能来自不同的Qos流或者来自同一个Qos流。GOP中的每个帧都有自己的类型,如I帧、B帧、P帧等,作为一种实现方式,GOP可以包含一个I帧以及与其关联的至少一个P帧和/或至少一个B帧。为了能够识别出属于一个GOP的各个帧,定义一个GOP标识(如GOP id或者GOP SN或者GOP index等),通过该GOP标识来标识一个GOP,而GOP中的每个帧都会关联该GOP标识,从而通过该GOP标识来识别出属于一个GOP的各个帧。需要说明的是,GOP标识的形式不限定是GOP id或者GOP SN或者GOP index等,还可以是其他形式,例如一定时间间隔或者一定周期,将一定时间间隔或者一定周期内的各个帧归属于一个GOP。
对于一个帧来说,也即是一个PDU set,由多个PDU组成。为了方便空口上进行数据传输/重传和调度,为每个PDU set定义PDU set标识(如PDU set id或者PDU set SN或者PDU set index等),通过该PDU set标识来标识一个PDU set。PDU set标识在一个GOP内唯一。
对于一个PDU来说,为了标识一个PDU set内的每个PDU,为每个PDU定义PDU标识(如PDU id或者PDU SN或者PDU index等),通过该PDU标识来标识一个PDU标识。PDU标识在PDU set内唯一。
综上所述,每个PDU可以与以下至少一种信息关联:GOP标识、PDU set标识、PDU标识、帧类型。
图4是本申请实施例提供的PDU set传输示意图,如图4所示,一个PDU set中的PDU属于一个Qos流,且他们之间的顺序是按序在GPRS隧道协议(GPRS Tunnelling Protocol,GTP)隧道中传输的,即PDU set之间不会交叉传输。
图5是本申请实施例提供的数据传输方法的流程示意图,如图5所示,所述数据传输方法包括以下步骤:
步骤501:第一协议层接收第二协议层发送的PDU set,所述PDU set中的每个PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。
本申请实施例中,所述第一协议层和第二协议层是通信设备的协议层,该通信设备可以是网络设备或者终端设备。以下行传输为例,该通信设备为网络设备,例如基站。以上行传输为例,该通信设备为终端设备。
本申请实施例中,所述第一协议层和第二协议层属于发送端的协议层,即通信设备属于发送端。相对于发送端来说,接收端可以接收发送端发送的PDU set。
在一些可选实施方式中,所述第一信息包括以下至少一种信息:
PDU所在PDU set的标识;
PDU所在PDU set的标签(stamp);
PDU在其所在PDU set中的索引;
PDU所在PDU set或者帧中包含的PDU数目;
PDU所在PDU set或者帧的帧类型;
PDU所在PDU set或者帧在一个GOP中的索引;
PDU所在PDU set或者帧的Qos需求属性;
PDU所在PDU set或者帧的优先级指示或者重要程度指示;
PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
在一些可选实施方式中,所述第一标志包括以下至少一种信息:
结束指示,所述结束指示用于标识一个PDU set的结束;
开始指示,所述开始指示用于标识下一个PDU set的开始;
所述第一标志之前和/或之后的PDU set或者帧属于的Qos流的标识;
所述第一标志之前和/或之后的PDU set或者帧的标识;
所述第一标志之前和/或之后的PDU set或者帧的帧类型;
所述第一标志之前和/或之后的PDU set或者帧在一个GOP中的索引;
所述第一标志之前和/或之后的PDU set或者帧的Qos需求属性;
所述第一标志之前和/或之后的PDU set或者帧中包含的PDU数目。
所述第一标志之前和/或之后的PDU set或者帧的优先级指示或者重要程度指示;
所述第一标志之前和/或之后的PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
所述第一标志之前和/或之后的PDU set或者帧所在的GOP关联的GOP索引列表。
上述方案中,帧类型例如可以是I帧、或P帧、或B帧、或其他帧类型。
上述方案中,PDU set对应一个帧(或者说视频片段),因此,关于“PDU set”的描述也可以替换为“帧”。
上述方案中,Qos需求属性例如是否允许丢包,丢包率,时延等。
需要说明的是,对于包头中携带第一信息的方案和PDU set后传输第一标志的方案,这两个方案可以分别单独实施,也可以结合在一起实施。对于包头中携带第一信息的方案,包头中携带的信息还可以用于接收端识别PDU set。对于PDU set后传输第一标志的方案,可以用于发送端的第一协议层识别PDU set,而不用解码包头中的PDU set相关的信息。
以下结合所述第一协议层和所述第二协议层的具体实现,对本申请实施例的技术方案进行说明。
情况1
在一些可选实施方式中,所述第二协议层为GTP层,所述第一协议层为业务数据适配协议(Service Data Adaptation Protocol,SDAP)层。相应地,所述包头为GTP包头,所述第一标志携带在第一GTP包中。
基于此,SDAP层接收GTP层发送的PDU set,所述PDU set中的每个PDU对应的GTP包头中携带第一信息和/或所述PDU set后传输有携带第一标志的第一GTP包,这里,可选地,第一GTP包中携带的第一标志也可以称为GTP结束标志(GTP end marker)。
所述SDAP层基于所述GTP包头中携带的第一信息和/或所述第一GTP包中携带的第一标志识别出所述PDU set,并将所述PDU set传递给分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层。
在一些可选实施方式中,SDAP层为了能让PDCP层识别出PDU set,所述将所述PDU set传递给PDCP层之前,所述方法还包括:所述SDAP层在所述PDU set中的每个PDU对应的SDAP包头中携带所述第一信息和/或在所述PDU set后插入传输SDAP控制PDU,所述SDAP控制PDU携带所述第一标志。
在一些可选实施方式中,SDAP层可以按照PDU粒度将PDU set传递给PDCP层,即SDAP层将PDU set中的每个PDU对应的SDAP业务数据单元(Service Data Unit,SDU)封装成对应的SDAP PDU后传递给PDCP层,每个SDAP PDU中承载一个SDAP SDU。
在一些可选实施方式中,SDAP层可以按照PDU set粒度将PDU set传递给PDCP层,即所述SDAP层将所述PDU set中的全部PDU对应的SDAP SDU串接成一个SDAP PDU,将该SDAP PDU传递给PDCP层,每个SDAP PDU中承载多个SDAP SDU。对于这种方式,SDAP PDU的格式可以有如下实现方式:
SDAP PDU格式一:所述SDAP PDU包括第一SDAP包头以及级联的多个SDAP SDU,所述多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。其中,每个SDAP SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述第一SDAP包头包括以下至少一种信息:
所述SDAP PDU的序列号SN;
所述SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型;
所述SDAP PDU中承载的所有SDAP SDU的总数;
所述第一信息中的部分或者全部信元;
第一指示信息,所述第一指示信息用于指示所述第一指示信息后面的内容是第二指示信息还是SDAP SDU,所述第二指示信息用于指示SDAP SDU的长度;
多个第二指示信息,所述多个第二指示信息用于指示所述SDAP PDU中的每个SDAP SDU的长度。
SDAP PDU格式二:所述SDAP PDU包括第二SDAP包头以及级联的多个单元,所述多个单元中的每个单元包括SDAP子头和SDAP SDU,所述多个单元中的多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。
在一些可选实施方式中,所述第二SDAP包头包括以下至少一种信息:
所述SDAP PDU的SN;
所述SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型;
所述SDAP PDU中承载的所有SDAP SDU的总数;
所述第一信息中的部分或者全部信元。
在一些可选实施方式中,所述SDAP子头包括以下至少一种信息:
第二指示信息,所述第二指示信息用于指示所述SDAP子头对应的SDAP SDU的长度;
第三指示信息,所述第三指示信息用于指示所述SDAP子头对应的SDAP SDU后面是否还有级联的SDAP SDU或者用于指示所述SDAP子头对应的SDAP SDU为SDAP PDU中的第一个SDAP SDU还是中间的SDAP SDU还是最后一个SDAP SDU;
所述SDAP子头对应的SDAP SDU对应的PDU的索引。
需要说明的是,SDAP层收到第一GTP包后,从所述第一GTP包中识别出第一标志后,将所述第一GTP包丢掉。
情况2
在一些可选实施方式中,所述第二协议层为SDAP层,所述第一协议层为PDCP层。相应地,所述包头为SDAP包头,所述第一标志携带在SDAP控制PDU中。
基于此,PDCP层接收SDAP层发送的PDU set,所述PDU set中的每个PDU对应的SDAP包头中携带第一信息和/或所述PDU set后传输有携带第一标志的SDAP控制PDU,这里,可选地,SDAP控制PDU中携带的第一标志也可以称为SDAP结束标志(SDAP end marker)。
所述PDCP层基于所述SDAP包头中携带的第一信息和/或所述SDAP控制PDU中携带的第一标志识别出所述PDU set,并将所述PDU set传递给无线链路层控制(Radio Link Control,RLC)层。
在一些可选实施方式中,PDCP层为了能让RLC层识别出PDU set,所述将所述PDU set传递给RLC层之前,所述方法还包括:所述PDCP层在所述PDU set中的每个PDU对应的PDCP包头中携带所述第一信息和/或在所述PDU set后插入传输PDCP控制PDU,所述PDCP控制PDU携带所述第一标志。
在一些可选实施方式中,PDCP层可以按照PDU粒度将PDU set传递给RLC层,即PDCP层将PDU set中的每个PDU对应的PDCP SDU封装成对应的PDCP PDU后传递给RLC层,每个PDCP PDU中承载一个PDCP SDU。
在一些可选实施方式中,PDCP层可以按照PDU set粒度将PDU set传递给RLC层,即所述PDCP层将所述PDU set中的全部PDU对应的PDCP SDU串接成一个PDCP PDU,将该PDCP PDU传递给RLC层,每个PDCP PDU中承载多个PDCP SDU。对于这种方式,PDCP PDU的格式可以有如下实现方式:
PDCP PDU格式一:所述PDCP PDU包括第一PDCP包头以及级联的多个PDCP SDU,所述多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。其中,每个PDCP SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述第一PDCP包头包括以下至少一种信息:
所述PDCP PDU的SN;
所述PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型;
所述PDCP PDU中承载的所有PDCP SDU的总数;
所述第一信息中的部分或者全部信元;
第四指示信息,所述第四指示信息用于指示所述第四指示信息后面的内容是第五指示信息还是PDCP SDU,所述第五指示信息用于指示PDCP SDU的长度;
多个第五指示信息,所述多个第五指示信息用于指示所述PDCP PDU中的每个PDCP SDU的长度。
PDCP PDU格式二:所述PDCP PDU包括第二PDCP包头以及级联的多个单元,所述多个单元中的每个单元包括PDCP子头和PDCP SDU,所述多个单元中的多个PDCP SDU包括所述PDU set 中的全部PDU对应的PDCP SDU。
在一些可选实施方式中,所述第二PDCP包头包括以下至少一种信息:
所述PDCP PDU的SN;
所述PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型;
所述PDCP PDU中承载的所有PDCP SDU的总数;
所述第一信息中的部分或者全部信元。
在一些可选实施方式中,所述PDCP子头包括以下至少一种信息:
第五指示信息,所述第五指示信息用于指示所述PDCP子头对应的PDCP SDU的长度;
第六指示信息,所述第六指示信息用于指示所述PDCP子头对应的PDCP SDU后面是否还有级联的PDCP SDU或者用于指示所述PDCP子头对应的PDCP SDU为PDCP PDU中第一个PDCP SDU还是中间的PDCP SDU还是最后一个PDCP SDU;
所述PDCP子头对应的PDCP SDU对应的PDU的索引。
无论是对于上述PDCP PDU格式一还是PDCP PDU格式二来说,PDCP SDU(也即SDAP PDU)的SDAP包头中携带了由SDAP层添加的第一信息,这里,所述PDCP层保留所述PDU set中的每个PDU对应的PDCP SDU中携带的所述第一信息;或者,所述PDCP层删除所述PDU set中的每个PDU对应的PDCP SDU中携带的所述第一信息,从而可以节省开销。
需要说明的是,PDCP层收到SDAP控制PDU后,从所述SDAP控制PDU中识别出第一标志后,将所述SDAP控制PDU丢掉。
情况3
在一些可选实施方式中,所述第二协议层为PDCP层,所述第一协议层为RLC层。相应地,所述包头为PDCP包头,所述第一标志携带在PDCP控制PDU中。
基于此,RLC层接收PDCP层发送的PDU set,所述PDU set中的每个PDU对应的PDCP包头中携带第一信息和/或所述PDU set后传输有携带第一标志的PDCP控制PDU,这里,可选地,PDCP控制PDU中携带的第一标志也可以称为PDCP结束标志(PDCP end marker)。
所述RLC层基于所述PDCP包头中携带的第一信息和/或所述PDCP控制PDU中携带的第一标志识别出所述PDU set,并将所述PDU set传递给媒介接入控制(Medium Access Control,MAC)层。
进一步,在一些可选实施方式中,所述RLC层通知MAC层按照PDU set的粒度进行组包。
在一些可选实施方式中,RLC层为了能让MAC层识别出PDU set,所述将所述PDU set传递给MAC层之前,所述方法还包括:所述RLC层在所述PDU set中的每个PDU对应的RLC包头中携带所述第一信息。
在一些可选实施方式中,RLC层可以按照PDU粒度将PDU set传递给MAC层,即RLC层将PDU set中的每个PDU对应的RLC SDU封装成对应的RLC PDU后传递给MAC层,每个RLC PDU中承载一个RLC SDU。
在一些可选实施方式中,RLC层可以按照PDU set粒度将PDU set传递给MAC层,即所述RLC层将所述PDU set中的全部PDU对应的RLC SDU串接成一个RLC PDU,将该RLC PDU传递给MAC层,每个RLC PDU中承载多个RLC SDU。对于这种方式,RLC PDU的格式可以有如下实现方式:
RLC PDU格式一:所述RLC PDU包括第一RLC包头以及级联的多个RLC SDU,所述多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。其中,每个RLC SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述第一RLC包头包括以下至少一种信息:
所述RLC PDU的SN;
所述RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型;
所述RLC PDU中承载的所有RLC SDU的总数;
所述第一信息中的部分或者全部信元;
第七指示信息,所述第七指示信息用于指示所述第七指示信息后面的内容是第八指示信息还是RLC SDU,所述第八指示信息用于指示RLC SDU的长度;
多个第八指示信息,所述多个第八指示信息用于指示所述RLC PDU中的每个RLC SDU的长度。
RLC PDU格式二:所述RLC PDU包括第二RLC包头以及级联的多个单元,所述多个单元中的每个单元包括RLC子头和RLC SDU,所述多个单元中的多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。
在一些可选实施方式中,所述第二RLC包头包括以下至少一种信息:
所述RLC PDU的SN;
所述RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型;
所述RLC PDU中承载的所有RLC SDU的总数;
所述第一信息中的部分或者全部信元。
在一些可选实施方式中,所述RLC子头包括以下至少一种信息:
第八指示信息,所述第八指示信息用于指示所述RLC子头对应的RLC SDU的长度;
第九指示信息,所述第九指示信息用于指示所述RLC子头对应的RLC SDU后面是否还有级联的RLC SDU或者用于指示所述RLC子头对应的RLC SDU为RLC PDU中第一个RLC SDU还是中间的RLC SDU还是最后一个RLC SDU;
所述RLC子头对应的RLC SDU对应的PDU的索引。
无论是对于上述RLC PDU格式一还是RLC PDU格式二来说,RLC SDU(也即PDCP PDU)的PDCP包头中携带了由PDCP层添加的第一信息,这里,所述RLC层保留所述PDU set中的每个PDU对应的RLC SDU中携带的所述第一信息;或者,所述RLC层删除所述PDU set中的每个PDU对应的RLC SDU中携带的所述第一信息。
无论是对于上述RLC PDU格式一还是RLC PDU格式二来说,若MAC层调度数据的大小小于所述RLC PDU的大小,则针对所述RLC PDU进行分段传输。
此外,可选地,所述RLC层通知MAC层所述PDU set的Qos需求,所述Qos需求用于辅助所述MAC层进行调度决策。
需要说明的是,RLC层收到PDCP控制PDU后,从所述PDCP控制PDU中识别出第一标志后,将所述PDCP控制PDU丢掉。
需要说明的是,上述情况1、情况2、情况3中涉及到的方案可以进行任何结合。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明。
应用实例一
1、UPF在一个Qos流中判断出属于一个PDU set中的PDU,为了基站能区分出一个Qos流中的每个PDU set,UPF的GTP层可以执行以下至少一种操作:
操作1-1:在PDU set中的每个PDU对应的GTP包头中添加第一信息,所述第一信息包括以下至少一种信息:
PDU所在PDU set的标识;
PDU所在PDU set的标签(stamp);
PDU在其所在PDU set中的索引;
PDU所在PDU set或者帧中包含的PDU数目;
PDU所在PDU set或者帧的帧类型,例如I帧,或P帧,或B帧,或其他帧类型;
PDU所在PDU set或者帧在一个GOP中的索引;
PDU所在PDU set或者帧的Qos需求属性,例如是否允许丢包,丢包率,时延等;
PDU所在PDU set或者帧的优先级指示或者重要程度指示;
PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
操作1-2:在每个PDU set的最后一个PDU后插入传输一个携带GTP end marker的GTP包,所述GTP end marker用于标识一个PDU set的结束,下一个PDU set的开始,所述GTP end marker包括如下至少一种信息:
结束指示,所述结束指示用于标识一个PDU set的结束;
开始指示,所述开始指示用于标识下一个PDU set的开始;
GTP end marker之前和/或之后的PDU set或者帧属于的Qos流的标识;
GTP end marker之前和/或之后的PDU set或者帧的标识;
GTP end marker之前和/或之后的PDU set或者帧的帧类型;
GTP end marker之前和/或之后的PDU set或者帧在一个GOP中的索引;
GTP end marker之前和/或之后的PDU set或者帧的Qos需求属性;
GTP end marker之前和/或之后的PDU set或者帧中包含的PDU数目。
GTP end marker之前和/或之后的PDU set或者帧的优先级指示或者重要程度指示;
GTP end marker之前和/或之后的PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
GTP end marker之前和/或之后的PDU set或者帧所在的GOP关联的GOP索引列表。
2、基站的SDAP层接收到Qos流之后,根据GTP包头中携带的第一信息和/或GTP end marker识别出每个PDU set。进一步,基站的SDAP层为了能让基站的PDCP层识别出每个PDU set,可以执行以下至少一种操作:
操作2-1:在PDU set中的每个PDU对应的SDAP包头中添加第一信息,所述第一信息包括以下至少一种信息:
PDU所在PDU set的标识;
PDU所在PDU set的标签(stamp);
PDU在其所在PDU set中的索引;
PDU所在PDU set或者帧中包含的PDU数目;
PDU所在PDU set或者帧的帧类型,例如I帧,或P帧,或B帧,或其他帧类型;
PDU所在PDU set或者帧在一个GOP中的索引;
PDU所在PDU set或者帧的Qos需求属性,例如是否允许丢包,丢包率,时延等;
PDU所在PDU set或者帧的优先级指示或者重要程度指示;
PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
操作2-2:在每个PDU set的最后一个PDU后插入传输一个携带SDAP end marker的SDAP控制PDU,所述SDAP end marker用于标识一个PDU set的结束,下一个PDU set的开始,所述SDAP end marker包括如下至少一种信息:
结束指示,所述结束指示用于标识一个PDU set的结束;
开始指示,所述开始指示用于标识下一个PDU set的开始;
SDAP end marker之前和/或之后的PDU set或者帧属于的Qos流的标识;
SDAP end marker之前和/或之后的PDU set或者帧的标识;
SDAP end marker之前和/或之后的PDU set或者帧的帧类型;
SDAP end marker之前和/或之后的PDU set或者帧在一个GOP中的索引;
SDAP end marker之前和/或之后的PDU set或者帧的Qos需求属性;
SDAP end marker之前和/或之后的PDU set或者帧中包含的PDU数目。
SDAP end marker之前和/或之后的PDU set或者帧的优先级指示或者重要程度指示;
SDAP end marker之前和/或之后的PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
SDAP end marker之前和/或之后的PDU set或者帧所在的GOP关联的GOP索引列表。
3、基站的PDCP层接收到来自SDAP层的SDAP PDU后,根据SDAP包头中携带的第一信息和/或SDAP end marker识别出每个PDU set。进一步,基站的PDCP层为了能让基站的RLC层识别出每个PDU set,可以执行以下至少一种操作:
操作3-1:在PDU set中的每个PDU对应的PDCP包头中添加第一信息,所述第一信息包括以下至少一种信息:
PDU所在PDU set的标识;
PDU所在PDU set的标签(stamp);
PDU在其所在PDU set中的索引;
PDU所在PDU set或者帧中包含的PDU数目;
PDU所在PDU set或者帧的帧类型,例如I帧,或P帧,或B帧,或其他帧类型;
PDU所在PDU set或者帧在一个GOP中的索引;
PDU所在PDU set或者帧的Qos需求属性,例如是否允许丢包,丢包率,时延等;
PDU所在PDU set或者帧的优先级指示或者重要程度指示;
PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
操作3-2:在每个PDU set的最后一个PDU后插入传输一个携带PDCP end marker的PDCP控制PDU,所述PDCP end marker用于标识一个PDU set的结束,下一个PDU set的开始,所述PDCP end marker包括如下至少一种信息:
结束指示,所述结束指示用于标识一个PDU set的结束;
开始指示,所述开始指示用于标识下一个PDU set的开始;
PDCP end marker之前和/或之后的PDU set或者帧属于的Qos流的标识;
PDCP end marker之前和/或之后的PDU set或者帧的标识;
PDCP end marker之前和/或之后的PDU set或者帧的帧类型;
PDCP end marker之前和/或之后的PDU set或者帧在一个GOP中的索引;
PDCP end marker之前和/或之后的PDU set或者帧的Qos需求属性;
PDCP end marker之前和/或之后的PDU set或者帧中包含的PDU数目。
PDCP end marker之前和/或之后的PDU set或者帧的优先级指示或者重要程度指示;
PDCP end marker之前和/或之后的PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDCP end marker之前和/或之后的PDU set或者帧所在的GOP关联的GOP索引列表。
上述方案中,PDCP SDU中可以包含SDAP层添加的关于PDU set的信息,也可以PDCP层去掉PDCP SDU(即SDAP PDU)中SDAP层添加的关于PDU set的信息,然后进行PDCP PDU的组包。
对于上述方案中的,GTP end marker、SDAP end marker、PDCP end marker可以统称为结束标志(end marker),其位置可以参照图6所示,在每个PDU set结束后插入一个结束标志(end marker)。
4、基站的RLC层接收到来自PDCP层的PDCP PDU后,根据PDCP包头中携带的第一信息和/或PDCP end marker识别出每个PDU set。进一步,基站的RLC层通知基站的MAC层该RLC实体所在逻辑信道在MAC组包的时候,从这个逻辑信道索取的数据除了要满足逻辑信道优先级和令牌桶大小外,还要按照PDU set的粒度进行组包。
这里,RLC SDU中可以包含PDCP层添加的关于PDU set的信息,也可以RLC层去掉RLC SDU(即PDCP PDU)中PDCP层添加的关于PDU set信息,然后进行RLC PDU的组包。
可选地,RLC层可以通知MAC层关于每个PDU set的QoS需求,用于辅助MAC层做调度决策。
可选地,基站的RLC层可以在PDU set中的每个PDU对应的RLC包头中添加第一信息,所述第一信息包括以下至少一种信息:
PDU所在PDU set的标识;
PDU所在PDU set的标签(stamp);
PDU在其所在PDU set中的索引;
PDU所在PDU set或者帧中包含的PDU数目;
PDU所在PDU set或者帧的帧类型,例如I帧,或P帧,或B帧,或其他帧类型;
PDU所在PDU set或者帧在一个GOP中的索引;
PDU所在PDU set或者帧的Qos需求属性,例如是否允许丢包,丢包率,时延等;
PDU所在PDU set或者帧的优先级指示或者重要程度指示;
PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
应用实例二
SDAP层根据GTP包头中携带的第一信息和/或GTP end marker识别出每个PDU set后,将属于一个PDU set中的SDAP SDU串接成一个SDAP PDU。SDAP PDU的格式有如下实现方式:
SDAP PDU格式一:SDAP PDU包括一个SDAP包头以及级联的多个SDAP SDU,所述多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。其中,每个SDAP SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述SDAP包头包括以下至少一种信息:
SDAP SN:指示SDAP PDU的SN;
帧类型(Frame type):指示SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型,例如I帧,还是P帧,还是B帧,还是视频片段等等;
SDAP SDU数量(SDAP SDU numbers):指示SDAP PDU中承载的所有SDAP SDU的总数;
E信息:指示E信息后面的内容是长度(length)信息还是SDAP SDU;
长度i(Length i)信息:指示级联的多个SDAP SDU中的第i个SDAP SDU的长度,i为正整数。
此外,所述SDAP包头还可以包括上述方案中的第一信息中的部分或者全部信元。
图7-1示意出了SDAP PDU的格式,参照图7-1,SDAP PDU中包含了PDU set的所有PDU,其中,每个SDAP SDU对应一个PDU。SDAP PDU包括一个SDAP包头以及级联的多个SDAP SDU。其中,SDAP包头示意出了两种可选的结构,对于一种可选结构来说,SDAP包头包括SDAP SN、 SDAP SDU数量、n个长度信息,可选地,还可以包括帧类型;对于另一种可选结构来说,SDAP包头包括SDAP SN、n个E信息、n个长度信息,可选地,还可以包括帧类型。
SDAP PDU格式二:SDAP PDU包括一个SDAP包头以及级联的多个单元,所述多个单元中的每个单元包括SDAP子头和对应的SDAP SDU,SDAP子头后面跟着SDAP SDU。所述多个单元中的多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。
在一些可选实施方式中,所述SDAP包头包括以下至少一种信息:
SDAP SN:指示SDAP PDU的SN;
帧类型(Frame type):指示SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型,例如I帧,还是P帧,还是B帧,还是视频片段等等;
SDAP SDU数量(SDAP SDU numbers):指示SDAP PDU中承载的所有SDAP SDU的总数。
此外,所述SDAP包头还可以包括上述方案中的第一信息中的部分或者全部信元。
在一些可选实施方式中,所述SDAP子头包括以下至少一种信息:
F信息:指示F信息所在的SDAP子头对应的SDAP SDU后面是否还有级联的SDAP SDU;或者用于指示F信息所在的SDAP子头对应的SDAP SDU为SDAP PDU中的第一个SDAP SDU还是中间的SDAP SDU还是最后一个SDAP SDU;
长度i(Length i)信息:指示Length i信息所在的SDAP子头对应的SDAP SDU的的长度,i为正整数。
图7-2示意出了SDAP PDU的格式,参照图7-2,SDAP PDU中包含了PDU set的所有PDU,其中,每个SDAP SDU对应一个PDU。SDAP PDU包括一个SDAP包头以及级联的多个单元,每个单元包括一个SDAP子头和一个SDAP SDU。其中,SDAP包头示意出了如下四种可选的结构:1)SDAP包头包括SDAP SN;2)SDAP包头包括SDAP SN和帧类型;3)SDAP包头包括SDAP SN和SDAP SDU数量;4)SDAP包头包括SDAP SN、SDAP SDU数量和帧类型。SDAP子头示意出了如下两种可选的结构:1)SDAP子头包括F信息和长度信息;2)SDAP子头包括长度信息。
应用实例三
PDCP层根据SDAP包头中携带的第一信息和/或SDAP end marker识别出每个PDU set后,将属于一个PDU set中的PDCP SDU串接成一个PDCP PDU。需要说明的是,PDCP SDU中可以包含SDAP层添加的关于PDU set的信息,也可以PDCP层去掉PDCP SDU(即SDAP PDU)中SDAP层添加的关于PDU set的信息,然后进行PDCP PDU的组包。PDCP PDU的格式有如下实现方式:
PDCP PDU格式一:PDCP PDU包括一个PDCP包头以及级联的多个PDCP SDU,所述多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。其中,每个PDCP SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述PDCP包头包括以下至少一种信息:
PDCP SN:指示PDCP PDU的SN;
帧类型(Frame type):指示PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型,例如I帧,还是P帧,还是B帧,还是视频片段等等;
PDCP SDU数量(PDCP SDU numbers):指示PDCP PDU中承载的所有PDCP SDU的总数;
E信息:指示E信息后面的内容是长度(length)信息还是PDCP SDU;
长度i(Length i)信息:指示级联的多个PDCP SDU中的第i个PDCP SDU的长度,i为正整数。
此外,所述PDCP包头还可以包括上述方案中的第一信息中的部分或者全部信元。
图7-3示意出了PDCP PDU的格式,参照图7-3,PDCP PDU中包含了PDU set的所有PDU,其中,每个PDCP SDU对应一个PDU。PDCP PDU包括一个PDCP包头以及级联的多个PDCP SDU。其中,PDCP包头示意出了两种可选的结构,对于一种可选结构来说,PDCP包头包括PDCP SN、PDCP SDU数量、n个长度信息,可选地,还可以包括帧类型;对于另一种可选结构来说,PDCP包头包括PDCP SN、n个E信息、n个长度信息,可选地,还可以包括帧类型。
PDCP PDU格式二:PDCP PDU包括一个PDCP包头以及级联的多个单元,所述多个单元中的每个单元包括PDCP子头和对应的PDCP SDU,PDCP子头后面跟着PDCP SDU。所述多个单元中的多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。
在一些可选实施方式中,所述PDCP包头包括以下至少一种信息:
PDCP SN:指示PDCP PDU的SN;
帧类型(Frame type):指示PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型,例如I帧,还是P帧,还是B帧,还是视频片段等等;
PDCP SDU数量(PDCP SDU numbers):指示PDCP PDU中承载的所有PDCP SDU的总数。
此外,所述PDCP包头还可以包括上述方案中的第一信息中的部分或者全部信元。
在一些可选实施方式中,所述PDCP子头包括以下至少一种信息:
F信息:指示F信息所在的PDCP子头对应的PDCP SDU后面是否还有级联的PDCP SDU;或者用于指示F信息所在的PDCP子头对应的PDCP SDU为PDCP PDU中的第一个PDCP SDU还是中间的PDCP SDU还是最后一个PDCP SDU;
长度i(Length i)信息:指示Length i信息所在的PDCP子头对应的PDCP SDU的的长度,i为正整数。
图7-4示意出了PDCP PDU的格式,参照图7-4,PDCP PDU中包含了PDU set的所有PDU,其中,每个PDCP SDU对应一个PDU。PDCP PDU包括一个PDCP包头以及级联的多个单元,每个单元包括一个PDCP子头和一个PDCP SDU。其中,PDCP包头示意出了如下四种可选的结构:1)PDCP包头包括PDCP SN;2)PDCP包头包括PDCP SN和帧类型;3)PDCP包头包括PDCP SN和PDCP SDU数量;4)PDCP包头包括PDCP SN、PDCP SDU数量和帧类型。PDCP子头示意出了如下两种可选的结构:1)PDCP子头包括F信息和长度信息;2)PDCP子头包括长度信息。
需要说明的是,如果在PDCP层添加级联功能,则发送端在加密和完整性保护之后进行级联功能。接收端在去掉包头之后进行解组装,并分别将解组装之后的数据进行安全处理,如图8所示。
应用实例四
RLC层根据PDCP包头中携带的第一信息和/或PDCP end marker识别出每个PDU set后,将属于一个PDU set中的RLC SDU串接成一个RLC PDU。需要说明的是,RLC SDU中可以包含PDCP层添加的关于PDU set的信息,也可以RLC层去掉RLC SDU(即PDCP PDU)中PDCP层添加的关于PDU set信息,然后进行RLC PDU的组包。RLC PDU的格式有如下实现方式:
RLC PDU格式一:RLC PDU包括一个RLC包头以及级联的多个RLC SDU,所述多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。其中,每个RLC SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述RLC包头包括以下至少一种信息:
RLC SN:指示RLC PDU的SN;
帧类型(Frame type):指示RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型,例如I帧,还是P帧,还是B帧,还是视频片段等等;
RLC SDU数量(RLC SDU numbers):指示RLC PDU中承载的所有RLC SDU的总数;
E信息:指示E信息后面的内容是长度(length)信息还是RLC SDU;
长度i(Length i)信息:指示级联的多个RLC SDU中的第i个RLC SDU的长度,i为正整数。
此外,所述RLC包头还可以包括上述方案中的第一信息中的部分或者全部信元。
图7-5示意出了RLC PDU的格式,参照图7-5,RLC PDU中包含了PDU set的所有PDU,其中,每个RLC SDU对应一个PDU。RLC PDU包括一个RLC包头以及级联的多个RLC SDU。其中,RLC包头示意出了两种可选的结构,对于一种可选结构来说,RLC包头包括RLC SN、RLC SDU数量、n个长度信息,可选地,还可以包括帧类型;对于另一种可选结构来说,RLC包头包括RLC SN、n个E信息、n个长度信息,可选地,还可以包括帧类型。
RLC PDU格式二:RLC PDU包括一个RLC包头以及级联的多个单元,所述多个单元中的每个单元包括RLC子头和对应的RLC SDU,RLC子头后面跟着RLC SDU。所述多个单元中的多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。
在一些可选实施方式中,所述RLC包头包括以下至少一种信息:
RLC SN:指示RLC PDU的SN;
帧类型(Frame type):指示RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型,例如I帧,还是P帧,还是B帧,还是视频片段等等;
RLC SDU数量(RLC SDU numbers):指示RLC PDU中承载的所有RLC SDU的总数。
此外,所述RLC包头还可以包括上述方案中的第一信息中的部分或者全部信元。
在一些可选实施方式中,所述RLC子头包括以下至少一种信息:
F信息:指示F信息所在的RLC子头对应的RLC SDU后面是否还有级联的RLC SDU;或者用于指示F信息所在的RLC子头对应的RLC SDU为RLC PDU中的第一个RLC SDU还是中间的RLC SDU还是最后一个RLC SDU;
长度i(Length i)信息:指示Length i信息所在的RLC子头对应的RLC SDU的的长度,i为正整数。
图7-6示意出了RLC PDU的格式,参照图7-6,RLC PDU中包含了PDU set的所有PDU,其中,每个RLC SDU对应一个PDU。RLC PDU包括一个RLC包头以及级联的多个单元,每个单元包括一个RLC子头和一个RLC SDU。其中,RLC包头示意出了如下四种可选的结构:1)RLC包头包括RLC SN;2)RLC包头包括RLC SN和帧类型;3)RLC包头包括RLC SN和RLC SDU数量;4)RLC包头包括RLC SN、RLC SDU数量和帧类型。RLC子头示意出了如下两种可选的结构:1)RLC子头包括F信息和长度信息;2)RLC子头包括长度信息。
进一步,如果MAC层调度数据的大小小于RLC PDU的大小,则可以针对该RLC PDU进行分段传输,无论所述RLC PDU是首传还是重传。
本申请实施例的技术方案,明确了AS层(如SDAP层、PDCP层、RLC层)如何识别PDUset以及如何针对PDU set进行有效数据传输,满足了业务Qos需求和用户体验。一方面,通过在GTP包头/SDAP包头/PDCP包头/RLC包头中携带PDU set的相关信息,用于下游协议层识别PDU set,或者,通过end marker的定义来辅助下游协议层识别PDU set。另一方面,RLC层识别PDU set并请求MAC层按照PDU set粒度进行数据调度和从逻辑信道取数据进行传输。再一方面,RLC层/PDCP层/SDAP层引入级联功能,将属于一个PDU set的PDU级联在一起发送,对于RLC层将属于一个PDU set中的PDU级联组成一个RLC PDU的情况下,可以在首传中对RLC PDU进行分段处理以满足调度需求。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图9是本申请实施例提供的数据传输装置的结构组成示意图,应用于通信设备,如图9所示,所述数据传输装置包括:第一协议层901和第二协议层902;
所述第一协议层901,用于接收第二协议层发送的PDU set;
所述第二协议层902,用于向第一协议层发送PDU set;
其中,所述PDU set中的每个PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。
在一些可选实施方式中,所述第一信息包括以下至少一种信息:
PDU所在PDU set的标识;
PDU所在PDU set的标签(stamp);
PDU在其所在PDU set中的索引;
PDU所在PDU set或者帧中包含的PDU数目;
PDU所在PDU set或者帧的帧类型;
PDU所在PDU set或者帧在一个GOP中的索引;
PDU所在PDU set或者帧的Qos需求属性;
PDU所在PDU set或者帧的优先级指示或者重要程度指示;
PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
在一些可选实施方式中,所述第一标志包括以下至少一种信息:
结束指示,所述结束指示用于标识一个PDU set的结束;
开始指示,所述开始指示用于标识下一个PDU set的开始;
所述第一标志之前和/或之后的PDU set或者帧属于的Qos流的标识;
所述第一标志之前和/或之后的PDU set或者帧的标识;
所述第一标志之前和/或之后的PDU set或者帧的帧类型;
所述第一标志之前和/或之后的PDU set或者帧在一个GOP中的索引;
所述第一标志之前和/或之后的PDU set或者帧的Qos需求属性;
所述第一标志之前和/或之后的PDU set或者帧中包含的PDU数目。
所述第一标志之前和/或之后的PDU set或者帧的优先级指示或者重要程度指示;
所述第一标志之前和/或之后的PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
所述第一标志之前和/或之后的PDU set或者帧所在的GOP关联的GOP索引列表。
上述方案中,帧类型例如可以是I帧、或P帧、或B帧、或其他帧类型。
上述方案中,PDU set对应一个帧(或者说视频片段),因此,关于“PDU set”的描述也可以替换为“帧”。
上述方案中,Qos需求属性例如是否允许丢包,丢包率,时延等。
需要说明的是,对于包头中携带第一信息的方案和PDU set后传输第一标志的方案,这两个方案可以分别单独实施,也可以结合在一起实施。对于包头中携带第一信息的方案,包头中携带的信息还可以用于接收端识别PDU set。对于PDU set后传输第一标志的方案,可以用于发送端的第一协议层识别PDU set,而不用解码包头中的PDU set相关的信息。
以下结合所述第一协议层和所述第二协议层的具体实现,对本申请实施例的技术方案进行说明。
情况1
在一些可选实施方式中,所述第二协议层为GTP层,所述第一协议层为SDAP层。相应地,所述包头为GTP包头,所述第一标志携带在第一GTP包中。
基于此,SDAP层接收GTP层发送的PDU set,所述PDU set中的每个PDU对应的GTP包头中携带第一信息和/或所述PDU set后传输有携带第一标志的第一GTP包,这里,可选地,第一GTP包中携带的第一标志也可以称为GTP结束标志(GTP end marker)。
所述SDAP层基于所述GTP包头中携带的第一信息和/或所述第一GTP包中携带的第一标志识别出所述PDU set,并将所述PDU set传递给PDCP层。
在一些可选实施方式中,SDAP层为了能让PDCP层识别出PDU set,所述将所述PDU set传递给PDCP层之前,所述SDAP层在所述PDU set中的每个PDU对应的SDAP包头中携带所述第一信息和/或在所述PDU set后插入传输SDAP控制PDU,所述SDAP控制PDU携带所述第一标志。
在一些可选实施方式中,SDAP层可以按照PDU粒度将PDU set传递给PDCP层,即SDAP层将PDU set中的每个PDU对应的SDAP SDU封装成对应的SDAP PDU后传递给PDCP层,每个SDAP PDU中承载一个SDAP SDU。
在一些可选实施方式中,SDAP层可以按照PDU set粒度将PDU set传递给PDCP层,即所述SDAP层将所述PDU set中的全部PDU对应的SDAP SDU串接成一个SDAP PDU,将该SDAP PDU传递给PDCP层,每个SDAP PDU中承载多个SDAP SDU。对于这种方式,SDAP PDU的格式可以有如下实现方式:
SDAP PDU格式一:所述SDAP PDU包括第一SDAP包头以及级联的多个SDAP SDU,所述多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。其中,每个SDAP SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述第一SDAP包头包括以下至少一种信息:
所述SDAP PDU的序列号SN;
所述SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型;
所述SDAP PDU中承载的所有SDAP SDU的总数;
所述第一信息中的部分或者全部信元;
第一指示信息,所述第一指示信息用于指示所述第一指示信息后面的内容是第二指示信息还是SDAP SDU,所述第二指示信息用于指示SDAP SDU的长度;
多个第二指示信息,所述多个第二指示信息用于指示所述SDAP PDU中的每个SDAP SDU的长度。
SDAP PDU格式二:所述SDAP PDU包括第二SDAP包头以及级联的多个单元,所述多个单元中的每个单元包括SDAP子头和SDAP SDU,所述多个单元中的多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。
在一些可选实施方式中,所述第二SDAP包头包括以下至少一种信息:
所述SDAP PDU的SN;
所述SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型;
所述SDAP PDU中承载的所有SDAP SDU的总数;
所述第一信息中的部分或者全部信元。
在一些可选实施方式中,所述SDAP子头包括以下至少一种信息:
第二指示信息,所述第二指示信息用于指示所述SDAP子头对应的SDAP SDU的长度;
第三指示信息,所述第三指示信息用于指示所述SDAP子头对应的SDAP SDU后面是否还有级联的SDAP SDU或者用于指示所述SDAP子头对应的SDAP SDU为SDAP PDU中的第一个SDAP SDU还是中间的SDAP SDU还是最后一个SDAP SDU;
所述SDAP子头对应的SDAP SDU对应的PDU的索引。
需要说明的是,SDAP层收到第一GTP包后,从所述第一GTP包中识别出第一标志后,将所述第一GTP包丢掉。
情况2
在一些可选实施方式中,所述第二协议层为SDAP层,所述第一协议层为PDCP层。相应地,所述包头为SDAP包头,所述第一标志携带在SDAP控制PDU中。
基于此,PDCP层接收SDAP层发送的PDU set,所述PDU set中的每个PDU对应的SDAP包头中携带第一信息和/或所述PDU set后传输有携带第一标志的SDAP控制PDU,这里,可选地,SDAP控制PDU中携带的第一标志也可以称为SDAP结束标志(SDAP end marker)。
所述PDCP层基于所述SDAP包头中携带的第一信息和/或所述SDAP控制PDU中携带的第一标志识别出所述PDU set,并将所述PDU set传递给RLC层。
在一些可选实施方式中,PDCP层为了能让RLC层识别出PDU set,所述将所述PDU set传递给RLC层之前,所述PDCP层在所述PDU set中的每个PDU对应的PDCP包头中携带所述第一信息和/或在所述PDU set后插入传输PDCP控制PDU,所述PDCP控制PDU携带所述第一标志。
在一些可选实施方式中,PDCP层可以按照PDU粒度将PDU set传递给RLC层,即PDCP层将PDU set中的每个PDU对应的PDCP SDU封装成对应的PDCP PDU后传递给RLC层,每个PDCP PDU中承载一个PDCP SDU。
在一些可选实施方式中,PDCP层可以按照PDU set粒度将PDU set传递给RLC层,即所述PDCP层将所述PDU set中的全部PDU对应的PDCP SDU串接成一个PDCP PDU,将该PDCP PDU传递给RLC层,每个PDCP PDU中承载多个PDCP SDU。对于这种方式,PDCP PDU的格式可以有如下实现方式:
PDCP PDU格式一:所述PDCP PDU包括第一PDCP包头以及级联的多个PDCP SDU,所述多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。其中,每个PDCP SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述第一PDCP包头包括以下至少一种信息:
所述PDCP PDU的SN;
所述PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型;
所述PDCP PDU中承载的所有PDCP SDU的总数;
所述第一信息中的部分或者全部信元;
第四指示信息,所述第四指示信息用于指示所述第四指示信息后面的内容是第五指示信息还是PDCP SDU,所述第五指示信息用于指示PDCP SDU的长度;
多个第五指示信息,所述多个第五指示信息用于指示所述PDCP PDU中的每个PDCP SDU的长度。
PDCP PDU格式二:所述PDCP PDU包括第二PDCP包头以及级联的多个单元,所述多个单元中的每个单元包括PDCP子头和PDCP SDU,所述多个单元中的多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。
在一些可选实施方式中,所述第二PDCP包头包括以下至少一种信息:
所述PDCP PDU的SN;
所述PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型;
所述PDCP PDU中承载的所有PDCP SDU的总数;
所述第一信息中的部分或者全部信元。
在一些可选实施方式中,所述PDCP子头包括以下至少一种信息:
第五指示信息,所述第五指示信息用于指示所述PDCP子头对应的PDCP SDU的长度;
第六指示信息,所述第六指示信息用于指示所述PDCP子头对应的PDCP SDU后面是否还有级联的PDCP SDU或者用于指示所述PDCP子头对应的PDCP SDU为PDCP PDU中第一个PDCP SDU还是中间的PDCP SDU还是最后一个PDCP SDU;
所述PDCP子头对应的PDCP SDU对应的PDU的索引。
无论是对于上述PDCP PDU格式一还是PDCP PDU格式二来说,PDCP SDU(也即SDAP PDU)的SDAP包头中携带了由SDAP层添加的第一信息,这里,所述PDCP层保留所述PDU set中的每个PDU对应的PDCP SDU中携带的所述第一信息;或者,所述PDCP层删除所述PDU set中的每个PDU对应的PDCP SDU中携带的所述第一信息,从而可以节省开销。
需要说明的是,PDCP层收到SDAP控制PDU后,从所述SDAP控制PDU中识别出第一标志后,将所述SDAP控制PDU丢掉。
情况3
在一些可选实施方式中,所述第二协议层为PDCP层,所述第一协议层为RLC层。相应地,所述包头为PDCP包头,所述第一标志携带在PDCP控制PDU中。
基于此,RLC层接收PDCP层发送的PDU set,所述PDU set中的每个PDU对应的PDCP包头中携带第一信息和/或所述PDU set后传输有携带第一标志的PDCP控制PDU,这里,可选地,PDCP控制PDU中携带的第一标志也可以称为PDCP结束标志(PDCP end marker)。
所述RLC层基于所述PDCP包头中携带的第一信息和/或所述PDCP控制PDU中携带的第一标志识别出所述PDU set,并将所述PDU set传递给媒介接入控制(Medium Access Control,MAC)层。
进一步,在一些可选实施方式中,所述RLC层通知MAC层按照PDU set的粒度进行组包。
在一些可选实施方式中,RLC层为了能让MAC层识别出PDU set,所述将所述PDU set传递给MAC层之前,所述RLC层在所述PDU set中的每个PDU对应的RLC包头中携带所述第一信息。
在一些可选实施方式中,RLC层可以按照PDU粒度将PDU set传递给MAC层,即RLC层将PDU set中的每个PDU对应的RLC SDU封装成对应的RLC PDU后传递给MAC层,每个RLC PDU中承载一个RLC SDU。
在一些可选实施方式中,RLC层可以按照PDU set粒度将PDU set传递给MAC层,即所述RLC层将所述PDU set中的全部PDU对应的RLC SDU串接成一个RLC PDU,将该RLC PDU传递给MAC层,每个RLC PDU中承载多个RLC SDU。对于这种方式,RLC PDU的格式可以有如下实现方式:
RLC PDU格式一:所述RLC PDU包括第一RLC包头以及级联的多个RLC SDU,所述多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。其中,每个RLC SDU对应PDU set中的一个PDU。
在一些可选实施方式中,所述第一RLC包头包括以下至少一种信息:
所述RLC PDU的SN;
所述RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型;
所述RLC PDU中承载的所有RLC SDU的总数;
所述第一信息中的部分或者全部信元;
第七指示信息,所述第七指示信息用于指示所述第七指示信息后面的内容是第八指示信息还是RLC SDU,所述第八指示信息用于指示RLC SDU的长度;
多个第八指示信息,所述多个第八指示信息用于指示所述RLC PDU中的每个RLC SDU的长度。
RLC PDU格式二:所述RLC PDU包括第二RLC包头以及级联的多个单元,所述多个单元中的每个单元包括RLC子头和RLC SDU,所述多个单元中的多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。
在一些可选实施方式中,所述第二RLC包头包括以下至少一种信息:
所述RLC PDU的SN;
所述RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型;
所述RLC PDU中承载的所有RLC SDU的总数;
所述第一信息中的部分或者全部信元。
在一些可选实施方式中,所述RLC子头包括以下至少一种信息:
第八指示信息,所述第八指示信息用于指示所述RLC子头对应的RLC SDU的长度;
第九指示信息,所述第九指示信息用于指示所述RLC子头对应的RLC SDU后面是否还有级联的RLC SDU或者用于指示所述RLC子头对应的RLC SDU为RLC PDU中第一个RLC SDU还是中间的RLC SDU还是最后一个RLC SDU;
所述RLC子头对应的RLC SDU对应的PDU的索引。
无论是对于上述RLC PDU格式一还是RLC PDU格式二来说,RLC SDU(也即PDCP PDU)的PDCP包头中携带了由PDCP层添加的第一信息,这里,所述RLC层保留所述PDU set中的每个PDU对应的RLC SDU中携带的所述第一信息;或者,所述RLC层删除所述PDU set中的每个PDU对应的RLC SDU中携带的所述第一信息。
无论是对于上述RLC PDU格式一还是RLC PDU格式二来说,若MAC层调度数据的大小小于所述RLC PDU的大小,则针对所述RLC PDU进行分段传输。
此外,可选地,所述RLC层通知MAC层所述PDU set的Qos需求,所述Qos需求用于辅助所述MAC层进行调度决策。
需要说明的是,RLC层收到PDCP控制PDU后,从所述PDCP控制PDU中识别出第一标志后,将所述PDCP控制PDU丢掉。
需要说明的是,上述情况1、情况2、情况3中涉及到的方案可以进行任何结合。
需要说明的是,上述关于“协议层”的描述也可以替换为“协议功能模块”或者“协议功能实体”。
本领域技术人员应当理解,本申请实施例的上述数据传输装置的相关描述可以参照本申请实施例的数据传输方法的相关描述进行理解。
图10是本申请实施例提供的一种通信设备1000示意性结构图。该通信设备可以终端设备,也可以是网络设备。图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
该通信设备1000可以实现本申请实施例的各个方法的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
该芯片可应用于本申请实施例中的通信设备,并且该芯片可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质可应用于本申请实施例中的通信设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。该计算机程序产品可应用于本申请实施例中的通信设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。该计算机程序可应用于本申请实施例中的通信设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据 实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (44)

  1. 一种数据传输方法,所述方法包括:
    第一协议层接收第二协议层发送的分组数据单元集PDU set,所述PDU set中的每个分组数据单元PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。
  2. 根据权利要求1所述的方法,其中,所述第二协议层为GPRS隧道协议GTP层,所述第一协议层为业务数据适配协议SDAP层。
  3. 根据权利要求2所述的方法,其中,所述包头为GTP包头,所述第一标志携带在第一GTP包中。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述SDAP层基于所述GTP包头中携带的第一信息和/或所述第一GTP包中携带的第一标志识别出所述PDU set,并将所述PDU set传递给分组数据汇聚协议PDCP层。
  5. 根据权利要求4所述的方法,其中,所述将所述PDU set传递给PDCP层之前,所述方法还包括:
    所述SDAP层在所述PDU set中的每个PDU对应的SDAP包头中携带所述第一信息和/或在所述PDU set后插入传输SDAP控制PDU,所述SDAP控制PDU携带所述第一标志。
  6. 根据权利要求4所述的方法,其中,所述将所述PDU set传递给PDCP层之前,所述方法还包括:
    所述SDAP层将所述PDU set中的全部PDU对应的SDAP业务数据单元SDU串接成一个SDAP PDU。
  7. 根据权利要求6所述的方法,其中,所述SDAP PDU包括第一SDAP包头以及级联的多个SDAP SDU,所述多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。
  8. 根据权利要求7所述的方法,其中,所述第一SDAP包头包括以下至少一种信息:
    所述SDAP PDU的序列号SN;
    所述SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型;
    所述SDAP PDU中承载的所有SDAP SDU的总数;
    所述第一信息中的部分或者全部信元;
    第一指示信息,所述第一指示信息用于指示所述第一指示信息后面的内容是第二指示信息还是SDAP SDU,所述第二指示信息用于指示SDAP SDU的长度;
    多个第二指示信息,所述多个第二指示信息用于指示所述SDAP PDU中的每个SDAP SDU的长度。
  9. 根据权利要求6所述的方法,其中,所述SDAP PDU包括第二SDAP包头以及级联的多个单元,所述多个单元中的每个单元包括SDAP子头和SDAP SDU,所述多个单元中的多个SDAP SDU包括所述PDU set中的全部PDU对应的SDAP SDU。
  10. 根据权利要求9所述的方法,其中,所述第二SDAP包头包括以下至少一种信息:
    所述SDAP PDU的SN;
    所述SDAP PDU中承载的所有SDAP SDU对应的PDU set的帧类型;
    所述SDAP PDU中承载的所有SDAP SDU的总数;
    所述第一信息中的部分或者全部信元。
  11. 根据权利要求9或10所述的方法,其中,所述SDAP子头包括以下至少一种信息:
    第二指示信息,所述第二指示信息用于指示所述SDAP子头对应的SDAP SDU的长度;
    第三指示信息,所述第三指示信息用于指示所述SDAP子头对应的SDAP SDU后面是否还有级联的SDAP SDU或者用于指示所述SDAP子头对应的SDAP SDU为SDAP PDU中的第一个SDAP SDU还是中间的SDAP SDU还是最后一个SDAP SDU;
    所述SDAP子头对应的SDAP SDU对应的PDU的索引。
  12. 根据权利要求1所述的方法,其中,所述第二协议层为SDAP层,所述第一协议层为PDCP层。
  13. 根据权利要求12所述的方法,其中,所述包头为SDAP包头,所述第一标志携带在SDAP控制PDU中。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述PDCP层基于所述SDAP包头中携带的第一信息和/或所述SDAP控制PDU中携带的第一标志识别出所述PDU set,并将所述PDU set传递给RLC层。
  15. 根据权利要求14所述的方法,其中,所述将所述PDU set传递给RLC层之前,所述方法还包括:
    所述PDCP层在所述PDU set中的每个PDU对应的PDCP包头中携带所述第一信息和/或在所述PDU set后插入传输PDCP控制PDU,所述PDCP控制PDU携带所述第一标志。
  16. 根据权利要求14所述的方法,其中,所述将所述PDU set传递给RLC层之前,所述方法还包括:
    所述PDCP层将所述PDU set中的全部PDU对应的PDCP SDU串接成一个PDCP PDU。
  17. 根据权利要求16所述的方法,其中,所述PDCP PDU包括第一PDCP包头以及级联的多个PDCP SDU,所述多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。
  18. 根据权利要求17所述的方法,其中,所述第一PDCP包头包括以下至少一种信息:
    所述PDCP PDU的SN;
    所述PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型;
    所述PDCP PDU中承载的所有PDCP SDU的总数;
    所述第一信息中的部分或者全部信元;
    第四指示信息,所述第四指示信息用于指示所述第四指示信息后面的内容是第五指示信息还是PDCP SDU,所述第五指示信息用于指示PDCP SDU的长度;
    多个第五指示信息,所述多个第五指示信息用于指示所述PDCP PDU中的每个PDCP SDU的长度。
  19. 根据权利要求16所述的方法,其中,所述PDCP PDU包括第二PDCP包头以及级联的多个单元,所述多个单元中的每个单元包括PDCP子头和PDCP SDU,所述多个单元中的多个PDCP SDU包括所述PDU set中的全部PDU对应的PDCP SDU。
  20. 根据权利要求19所述的方法,其中,所述第二PDCP包头包括以下至少一种信息:
    所述PDCP PDU的SN;
    所述PDCP PDU中承载的所有PDCP SDU对应的PDU set的帧类型;
    所述PDCP PDU中承载的所有PDCP SDU的总数;
    所述第一信息中的部分或者全部信元。
  21. 根据权利要求19或20所述的方法,其中,所述PDCP子头包括以下至少一种信息:
    第五指示信息,所述第五指示信息用于指示所述PDCP子头对应的PDCP SDU的长度;
    第六指示信息,所述第六指示信息用于指示所述PDCP子头对应的PDCP SDU后面是否还有级联的PDCP SDU或者用于指示所述PDCP子头对应的PDCP SDU为PDCP PDU中第一个PDCP SDU还是中间的PDCP SDU还是最后一个PDCP SDU;
    所述PDCP子头对应的PDCP SDU对应的PDU的索引。
  22. 根据权利要求14至21中任一项所述的方法,其中,所述方法还包括:
    所述PDCP层保留所述PDU set中的每个PDU对应的PDCP SDU中携带的所述第一信息;或者,
    所述PDCP层删除所述PDU set中的每个PDU对应的PDCP SDU中携带的所述第一信息。
  23. 根据权利要求1所述的方法,其中,所述第二协议层为PDCP层,所述第一协议层为RLC层。
  24. 根据权利要求23所述的方法,其中,所述包头为PDCP包头,所述第一标志携带在PDCP控制PDU中。
  25. 根据权利要求24所述的方法,其中,所述方法还包括:
    所述RLC层基于所述PDCP包头中携带的第一信息和/或所述PDCP控制PDU中携带的第一标志识别出所述PDU set,并将所述PDU set传递给MAC层。
  26. 根据权利要求25所述的方法,其中,所述方法还包括:
    所述RLC层通知MAC层按照PDU set的粒度进行组包。
  27. 根据权利要求25或26所述的方法,其中,所述将所述PDU set传递给MAC层之前, 所述方法还包括:
    所述RLC层在所述PDU set中的每个PDU对应的RLC包头中携带所述第一信息。
  28. 根据权利要求25或26所述的方法,其中,所述将所述PDU set传递给MAC层之前,所述方法还包括:
    所述RLC层将所述PDU set中的全部PDU对应的RLC SDU串接成一个RLC PDU。
  29. 根据权利要求28所述的方法,其中,所述RLC PDU包括第一RLC包头以及级联的多个RLC SDU,所述多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。
  30. 根据权利要求29所述的方法,其中,所述第一RLC包头包括以下至少一种信息:
    所述RLC PDU的SN;
    所述RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型;
    所述RLC PDU中承载的所有RLC SDU的总数;
    所述第一信息中的部分或者全部信元;
    第七指示信息,所述第七指示信息用于指示所述第七指示信息后面的内容是第八指示信息还是RLC SDU,所述第八指示信息用于指示RLC SDU的长度;
    多个第八指示信息,所述多个第八指示信息用于指示所述RLC PDU中的每个RLC SDU的长度。
  31. 根据权利要求28所述的方法,其中,所述RLC PDU包括第二RLC包头以及级联的多个单元,所述多个单元中的每个单元包括RLC子头和RLC SDU,所述多个单元中的多个RLC SDU包括所述PDU set中的全部PDU对应的RLC SDU。
  32. 根据权利要求31所述的方法,其中,所述第二RLC包头包括以下至少一种信息:
    所述RLC PDU的SN;
    所述RLC PDU中承载的所有RLC SDU对应的PDU set的帧类型;
    所述RLC PDU中承载的所有RLC SDU的总数;
    所述第一信息中的部分或者全部信元。
  33. 根据权利要求31或32所述的方法,其中,所述RLC子头包括以下至少一种信息:
    第八指示信息,所述第八指示信息用于指示所述RLC子头对应的RLC SDU的长度;
    第九指示信息,所述第九指示信息用于指示所述RLC子头对应的RLC SDU后面是否还有级联的RLC SDU或者用于指示所述RLC子头对应的RLC SDU为RLC PDU中第一个RLC SDU还是中间的RLC SDU还是最后一个RLC SDU;
    所述RLC子头对应的RLC SDU对应的PDU的索引。
  34. 根据权利要求28至33中任一项所述的方法,其中,所述方法还包括:
    若MAC层调度数据的大小小于所述RLC PDU的大小,则针对所述RLC PDU进行分段传输。
  35. 根据权利要求25至34中任一项所述的方法,其中,所述方法还包括:
    所述RLC层保留所述PDU set中的每个PDU对应的RLC SDU中携带的所述第一信息;或者,
    所述RLC层删除所述PDU set中的每个PDU对应的RLC SDU中携带的所述第一信息。
  36. 根据权利要求25至35中任一项所述的方法,其中,所述方法还包括:
    所述RLC层通知MAC层所述PDU set的Qos需求,所述Qos需求用于辅助所述MAC层进行调度决策。
  37. 根据权利要求1至36中任一项所述的方法,其中,所述第一信息包括以下至少一种信息:
    PDU所在PDU set的标识;
    PDU所在PDU set的标签;
    PDU在其所在PDU set中的索引;
    PDU所在PDU set或者帧中包含的PDU数目;
    PDU所在PDU set或者帧的帧类型;
    PDU所在PDU set或者帧在一个GOP中的索引;
    PDU所在PDU set或者帧的Qos需求属性;
    PDU所在PDU set或者帧的优先级指示或者重要程度指示;
    PDU所在PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
    PDU所在PDU set或者帧所在的GOP关联的GOP索引列表。
  38. 根据权利要求1至37中任一项所述的方法,其中,所述第一标志包括以下至少一种信息:
    结束指示,所述结束指示用于标识一个PDU set的结束;
    开始指示,所述开始指示用于标识下一个PDU set的开始;
    所述第一标志之前和/或之后的PDU set或者帧属于的Qos流的标识;
    所述第一标志之前和/或之后的PDU set或者帧的标识;
    所述第一标志之前和/或之后的PDU set或者帧的帧类型;
    所述第一标志之前和/或之后的PDU set或者帧在一个GOP中的索引;
    所述第一标志之前和/或之后的PDU set或者帧的Qos需求属性;
    所述第一标志之前和/或之后的PDU set或者帧中包含的PDU数目。
    所述第一标志之前和/或之后的PDU set或者帧的优先级指示或者重要程度指示;
    所述第一标志之前和/或之后的PDU set或者帧所在的GOP包含的PDU set数目或者帧数目;
    所述第一标志之前和/或之后的PDU set或者帧所在的GOP关联的GOP索引列表。
  39. 一种数据传输装置,所述装置具有第一协议层和第二协议层;
    所述第一协议层,用于接收第二协议层发送的PDU set;
    所述第二协议层,用于向第一协议层发送PDU set;
    其中,所述PDU set中的每个PDU对应的包头中携带第一信息和/或所述PDU set后传输有第一标志,其中,所述第一信息用于识别所述PDU set和/或所述PDU set的属性信息,所述第一标志用于标识一个PDU set的结束和/或下一个PDU set的开始和/或所述PDU set的属性信息。
  40. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至38中任一项所述的方法。
  41. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至38中任一项所述的方法。
  42. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法。
  43. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至38中任一项所述的方法。
  44. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至38中任一项所述的方法。
PCT/CN2022/085061 2022-04-02 2022-04-02 一种数据传输方法及装置、通信设备 WO2023184537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280090306.3A CN118592012A (zh) 2022-04-02 2022-04-02 一种数据传输方法及装置、通信设备
PCT/CN2022/085061 WO2023184537A1 (zh) 2022-04-02 2022-04-02 一种数据传输方法及装置、通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/085061 WO2023184537A1 (zh) 2022-04-02 2022-04-02 一种数据传输方法及装置、通信设备

Publications (1)

Publication Number Publication Date
WO2023184537A1 true WO2023184537A1 (zh) 2023-10-05

Family

ID=88198857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085061 WO2023184537A1 (zh) 2022-04-02 2022-04-02 一种数据传输方法及装置、通信设备

Country Status (2)

Country Link
CN (1) CN118592012A (zh)
WO (1) WO2023184537A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268797A1 (en) * 2016-11-11 2019-08-29 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN111385071A (zh) * 2018-12-28 2020-07-07 电信科学技术研究院有限公司 一种数据传输方法、设备及计算机存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268797A1 (en) * 2016-11-11 2019-08-29 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN111385071A (zh) * 2018-12-28 2020-07-07 电信科学技术研究院有限公司 一种数据传输方法、设备及计算机存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "New Solution for KI#4/5: PDU Set Identification and Marking", 3GPP TSG-WG SA2 MEETING #150E E-MEETING S2-2202716, 29 March 2022 (2022-03-29), XP052133550 *
OPPO: "New solution: Leverage RTP layer info for PDU Set handling", 3GPP SA WG2 MEETING #150E S2-2202270, 29 March 2022 (2022-03-29), XP052133115 *
VIVO: "Solution for KI#4&5 handling PDU Set within QoS flow", SA WG2 MEETING #150E (E-MEETING) S2-2202111, 29 March 2022 (2022-03-29), XP052132957 *

Also Published As

Publication number Publication date
CN118592012A (zh) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2017201677A1 (zh) 数据传输的方法及装置
JP7477661B2 (ja) データ伝送方法および装置
WO2018103675A1 (zh) 数据流重映射方法及装置和用户设备、ran设备
WO2019101054A1 (zh) 聚合速率控制方法、设备以及系统
WO2015165051A1 (zh) 数据传输方法及设备
WO2019141273A1 (zh) 用于确定性传输的通信方法和相关装置
CN115804146A (zh) 多链路装置之间的低时延数据的无线通信的方法和设备
US11647419B2 (en) Adjusting window size based on quality of experience
WO2022000171A1 (zh) 无线通信方法、终端设备和网络设备
WO2024065516A1 (zh) 数据传输、数据指示装置以及方法
US20240349162A1 (en) Technique for quality of service indication and compliance of application data units
WO2023184537A1 (zh) 一种数据传输方法及装置、通信设备
WO2023184552A1 (zh) 一种数据传输方法及装置、通信设备
WO2023184545A1 (zh) 一种数据传输方法及装置、通信设备
WO2023201607A1 (zh) 一种数据传输方法及装置、通信设备
WO2023115283A1 (zh) 一种通信方法、装置、网元、通信设备及计算机存储介质
WO2023193203A1 (zh) 一种时延控制方法及装置、通信设备
CN114928554B (zh) 视频传输方法、装置和存储介质
WO2024168672A1 (zh) 数据处理方法和装置
WO2022178778A1 (zh) 一种数据传输方法及通信装置
WO2024016279A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
WO2024092725A1 (zh) 数据映射装置以及方法
WO2018068211A1 (zh) 一种通信方法和装置
WO2023019450A1 (zh) 一种QoS的控制方法及装置、通信设备
WO2024168688A1 (zh) 数据处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934366

Country of ref document: EP

Kind code of ref document: A1