WO2024092570A1 - 一种非连续接收的实现方法及装置、终端设备 - Google Patents

一种非连续接收的实现方法及装置、终端设备 Download PDF

Info

Publication number
WO2024092570A1
WO2024092570A1 PCT/CN2022/129327 CN2022129327W WO2024092570A1 WO 2024092570 A1 WO2024092570 A1 WO 2024092570A1 CN 2022129327 W CN2022129327 W CN 2022129327W WO 2024092570 A1 WO2024092570 A1 WO 2024092570A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
terminal device
communication module
pdcch
information
Prior art date
Application number
PCT/CN2022/129327
Other languages
English (en)
French (fr)
Inventor
王淑坤
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/129327 priority Critical patent/WO2024092570A1/zh
Publication of WO2024092570A1 publication Critical patent/WO2024092570A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically to a method and apparatus for implementing discontinuous reception, and a terminal device.
  • a discontinuous reception (DRX) mechanism is introduced.
  • the network device configures the DRX configuration for the terminal device, and the terminal device uses the DRX configuration to monitor the physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the current DRX mechanism can achieve energy saving of terminal equipment, it also has some disadvantages, such as high operational complexity.
  • Embodiments of the present application provide a method and apparatus for implementing discontinuous reception, a terminal device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • the terminal device monitors PDCCH based on a first signal; wherein, the first signal is monitored through the first communication module of the terminal device, and the PDCCH is monitored through the second communication module of the terminal device, the working energy consumption of the first communication module is lower than that of the second communication module, and the first signal is used to wake up the second communication module.
  • the discontinuous reception implementation device provided in the embodiment of the present application is applied to a terminal device, and the device includes:
  • a receiving unit used to monitor PDCCH based on a first signal; wherein, the first signal is monitored through a first communication module of the terminal device, and the PDCCH is monitored through a second communication module of the terminal device, the working energy consumption of the first communication module is lower than that of the second communication module, and the first signal is used to wake up the second communication module.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned discontinuous reception implementation method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned discontinuous reception implementation method.
  • the chip includes: a processor, which is used to call and run a computer program from a memory, so that a device equipped with the chip executes the above-mentioned method for implementing discontinuous reception.
  • the computer-readable storage medium provided in the embodiment of the present application is used to store a computer program, which enables a computer to execute the above-mentioned method for implementing discontinuous reception.
  • the computer program product provided in the embodiment of the present application includes computer program instructions, which enable a computer to execute the above-mentioned method for implementing discontinuous reception.
  • the computer program provided in the embodiment of the present application when executed on a computer, enables the computer to execute the above-mentioned method for implementing discontinuous reception.
  • the terminal device does not need to continuously monitor the PDCCH, but monitors the PDCCH based on the first signal, thereby realizing discontinuous reception.
  • the first signal is monitored by the first communication module of the terminal device, and the PDCCH is monitored by the second communication module of the terminal device.
  • the working energy consumption of the first communication module is lower than that of the second communication module.
  • the first signal is used to wake up the second communication module.
  • the first signal is monitored by the first communication module, and the second communication module is awakened by the first signal when the first signal is monitored, and then the PDCCH is monitored by the second communication module; on the one hand, since the energy consumption of the first communication module is lower than that of the second communication module, the energy saving of the terminal device can be effectively realized; on the other hand, since the monitoring of the PDCCH is based on the first signal, it replaces the DRX mechanism used in the traditional mobile communication system, thereby reducing the operation complexity of the terminal device, and at the same time, it can effectively achieve the energy saving effect of the terminal device.
  • FIG1 is a schematic diagram of an application scenario
  • FIG2 is a schematic diagram of a DRX cycle
  • FIG3 is a flow chart of a method for implementing discontinuous reception provided in an embodiment of the present application.
  • FIG4-1 is a schematic diagram 1 of a downlink receiving process provided in an embodiment of the present application.
  • FIG4-2 is a second schematic diagram of a downlink receiving process provided in an embodiment of the present application.
  • FIG5-1 is a schematic diagram 1 of an uplink receiving process provided in an embodiment of the present application.
  • FIG5-2 is a second schematic diagram of an uplink receiving process provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a device for implementing discontinuous reception provided in an embodiment of the present application.
  • FIG7 is a schematic structural diagram of a communication device provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a communication system provided in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may communicate with the terminal device 110 via an air interface.
  • the terminal device 110 and the network device 120 support multi-service transmission.
  • LTE Long Term Evolution
  • TDD LTE Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • IoT Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • 5G communication system also known as New Radio (NR) communication system
  • NR New Radio
  • the network device 120 may be an access network device that communicates with the terminal device 110.
  • the access network device may provide communication coverage for a specific geographical area, and may communicate with the terminal device 110 (eg, UE) located in the coverage area.
  • the network device 120 can be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, or a Next Generation Radio Access Network (NG RAN) device, or a base station (gNB) in an NR system, or a wireless controller in a Cloud Radio Access Network (CRAN), or the network device 120 can be a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, or a network device in a future evolved Public Land Mobile Network (PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, including but not limited to a terminal device connected to the network device 120 or other terminal devices by wire or wireless connection.
  • the terminal device 110 may refer to an access terminal, a user equipment (UE), a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • UE user equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, an IoT device, a satellite handheld terminal, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a 5G network, or a terminal device in a future evolution network, etc.
  • SIP Session Initiation Protocol
  • IoT IoT device
  • satellite handheld terminal a Wireless Local Loop (WLL) station
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • the terminal device 110 can be used for device to device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 for communicating with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, such as an access and mobility management function (Access and Mobility Management Function, AMF), and another example, an authentication server function (Authentication Server Function, AUSF), and another example, a user plane function (User Plane Function, UPF), and another example, a session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of the LTE network, such as a session management function + core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW-C) device.
  • EPC evolved packet core
  • SMF+PGW-C can simultaneously implement the functions that SMF and PGW-C can implement.
  • the above-mentioned core network equipment may also be called other names, or new network entities may be formed by dividing the functions of the core network, which is not limited in the embodiments of the present application.
  • the various functional units in the communication system 100 can also establish connections and achieve communication through the next generation network (NG) interface.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); the access network device, such as the next-generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network device can establish a control plane signaling connection with the AMF through the NG interface 2 (N2 for short); the UPF can establish a control plane signaling connection with the SMF through the NG interface 4 (N4 for short); the UPF can exchange user plane data with the data network through the NG interface 6 (N6 for short); the AMF can establish a control plane signaling connection with the SMF through the NG interface 11 (N11 for short); the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • the access network device such as the next-generation wireless access
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • FIG. 1 is only an example of the system to which the present application is applicable.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably in this article.
  • the term “and/or” in this article is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or” relationship.
  • the "indication" mentioned in the embodiment of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, B can be obtained through C; it can also mean that A and B have an association relationship.
  • the "correspondence” mentioned in the embodiment of the present application can mean that there is a direct or indirect correspondence relationship between the two, or it can mean that there is an association relationship between the two, or it can mean that the relationship between indicating and being indicated, configuring and being configured, etc.
  • predefined or “predefined rules” mentioned in the embodiments of the present application can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices), and the present application does not limit its specific implementation method.
  • predefined may refer to the definition in the protocol.
  • protocol may refer to a standard protocol in the field of communications, such as LTE protocols, NR protocols, and related protocols used in future communication systems, and the present application does not limit this.
  • the DRX mechanism In LTE, in order to save energy for terminal devices, the DRX mechanism is introduced. All services of the terminal device use a set of DRX configurations, for example, real-time services and non-real-time services use a set of DRX configurations.
  • Figure 2 shows a basic schematic diagram of the DRX mechanism.
  • the DRX cycle consists of "On Duration” and "DRX opportunity (Opportunity for DRX)", where On Duration can also be called an activation period, and Opportunity for DRX can also be called a silent period.
  • the terminal device monitors PDCCH, and further receives or sends data on the shared channel resources scheduled by it based on the monitored PDCCH, or the terminal device directly receives or sends data on the pre-allocated shared channel resources.
  • the terminal device does not need to monitor PDCCH, nor does it receive any downlink data or send any uplink data, and is in a power-saving state.
  • DRX cycles are introduced, namely short DRX cycle and long DRX cycle, which can meet the requirements of voice services and Internet services at the same time.
  • the conversion between long DRX cycle and short DRX cycle can be achieved based on timers or commands, such as Media Access Control (MAC) control elements (CE).
  • MAC Media Access Control
  • CE Media Access Control elements
  • the DRX inactivity timer is introduced. Through the DRX inactivity timer, the activation period can be appropriately extended to increase the scheduling opportunities of the terminal device.
  • the terminal device will start the DRX inactivity timer when it receives a control signaling for scheduling new data transmission. After that, the terminal device will restart the DRX inactivity timer every time it receives a control signaling for scheduling new data transmission.
  • the operation period of the DRX inactivity timer belongs to the activation period, thereby extending the activation period, increasing the scheduling opportunities of the terminal device, and shortening the data transmission delay.
  • the introduction of the DRX inactivity timer can, on the one hand, ensure service performance, and on the other hand, the power consumption of the terminal device will also increase.
  • HARQ asynchronous hybrid automatic repeat request
  • the DRX inactivity timer can limit the time for waiting for retransmission scheduling, thereby achieving the purpose of power saving.
  • HARQ RTT Timer HARQ round-trip time timer
  • HARQ Retransmission Timer HARQ Retransmission Timer
  • the DRX design of LTE is mainly described from the perspective of the downlink direction, that is, the terminal device monitors the PDCCH or receives the Physical Downlink Shared Channel (PDSCH) on the pre-allocated downlink shared channel resources.
  • PDSCH Physical Downlink Shared Channel
  • measurement reporting is not subject to the constraints of the DRX state, that is, measurement reporting can occur during the silent period of DRX.
  • the terminal device uses the Random Access Channel (RACH) to report measurements during the silent period.
  • RACH Random Access Channel
  • the terminal device is allowed to continuously monitor the PDCCH, and then receive the handover command, avoiding the failure of the wireless link.
  • the terminal device will perform inter-frequency measurement, during which the terminal device does not monitor the PDCCH.
  • PUCCH physical uplink control channel
  • SRS sounding reference signal
  • the terminal device In order to ensure the transmission performance of uplink data, it is decided to allow initiation at any time during DRX.
  • the terminal device When in the DRX sleep period (i.e. silent period), the terminal device is allowed to use the nearest RACH to send a scheduling request (SR) and then initiate uplink data transmission.
  • the terminal device After receiving the random access response (RAR), the terminal device leaves the sleep period (i.e. silent period) and continuously monitors the PDCCH. If the scheduling of new data transmission is detected, the DRX inactivity timer is restarted, and the subsequent behavior is determined by the DRX inactivity timer.
  • SPS semi-persistent scheduling
  • the terminal device can only send and receive during the DRX activation period.
  • DRX In NR, the design mechanism of DRX is similar to that of LTE. That is, all services share a set of DRX configurations (i.e., a set of DRX parameters). Since asynchronous HARQ is used in both uplink and downlink in NR, independent HARQ RTT Timer and HARQ Retransmission Timer are configured in the downlink and uplink directions. These two timers are at the HARQ process level (i.e., per HARQ process). At the same time, there are URLLC services in NR. In order to meet the transmission delay requirements of such services, semi-persistent scheduling (SPS) and configuration grant (CG) are allowed to send and receive data in the DRX inactive state.
  • SPS semi-persistent scheduling
  • CG configuration grant
  • NR supports FR1 and FR2, and dual DRX can be configured for FR1 and FR2 respectively. Some parameters in dual DRX are shared. Usually, the first DRX is configured with all DRX parameters, and the second DRX is only configured with independent drx-onDurationTimer and drx-InactivityTimer. Other parameters share the configuration of the first DRX.
  • the terminal device can report the preferred DRX parameters of the terminal device through the UE Assistance Information message to assist the network device in configuring appropriate DRX parameters, thereby achieving the purpose of energy saving for the terminal device.
  • the preferred DRX parameters of the terminal device include, for example, preferred DRX-InactivityTimer, preferred DRX-LongCycle, preferred DRX-ShortCycle, and preferred DRX-ShortCycleTimer.
  • each MBS service may be configured with its own DRX configuration (each DRX configuration corresponds to a G-RNTI), and they are independent of each other.
  • a DRX configuration includes the following DRX parameters:
  • -DRX state timer (drx-onDurationTimer): used to determine the period of time after the start of the DRX cycle;
  • -DRX slot offset (drx-SlotOffset): used to determine the delay before starting the DRX state timer;
  • -DRX Inactivity Timer used to determine the period of time after a PDCCH occasion in which a PDCCH is detected and indicates a new uplink or downlink transmission
  • drx-RetransmissionTimerDL Downlink DRX retransmission timer
  • drx-RetransmissionTimerUL Uplink DRX retransmission timer
  • drx-LongCycleStartOffset used to determine the DRX long cycle and the DRX start time offset (drx-StartOffset), where drx-StartOffset is used to determine the start time of the DRX long cycle and the DRX short cycle (e.g., the subframe corresponding to the start time);
  • -DRX short cycle (drx-ShortCycle): It is an optional configuration and is used to determine the DRX short cycle;
  • -DRX short cycle timer (drx-ShortCycleTimer): It is an optional configuration and is used to determine the duration of the DRX short cycle. Its value refers to the multiple of the DRX short cycle.
  • Downlink DRX HARQ RTT timer (drx-HARQ-RTT-TimerDL): the minimum duration expected by the MAC entity before a downlink allocation for HARQ retransmission;
  • Uplink DRX HARQ RTT timer (drx-HARQ-RTT-TimerUL): The minimum duration before an uplink grant for HARQ retransmission expected by the MAC entity.
  • the unit of the DRX parameter is millisecond (ms), which is applicable to services whose DRX cycle is an integer multiple of the ms cycle.
  • the downlink DRX retransmission timer, the uplink DRX retransmission timer, the downlink DRX HARQ RTT timer and the uplink DRX HARQ RTT timer are related to HARQ.
  • the terminal device If the terminal device is configured with DRX, the terminal device needs to monitor PDCCH during the DRX active time.
  • the DRX active time includes the following situations:
  • the terminal device After the terminal device sends a scheduling request (SR) on the Physical Uplink Control Channel (PUCCH), the period when the SR is in the pending state belongs to the DRX activation time.
  • SR scheduling request
  • PUCCH Physical Uplink Control Channel
  • the period during which the terminal device has not received an initial transmission indicated by the C-RNTI-scrambled PDCCH after successfully receiving the random access response belongs to the DRX activation time.
  • the terminal device determines the start time of drx-onDurationTimer according to whether the current DRX cycle is a short DRX cycle or a long DRX cycle.
  • the specific regulations are as follows:
  • the conditions for the terminal device to start or restart drx-InactivityTimer are:
  • the terminal device If the terminal device receives a PDCCH indicating an initial transmission of a downlink or uplink, the terminal device starts or restarts the drx-InactivityTimer.
  • the conditions for the terminal device to start and stop drx-RetransmissionTimerDL are:
  • the terminal device When the terminal device receives a PDCCH indicating a downlink transmission, or when the terminal device receives a MAC PDU on the configured downlink grant resource, the terminal device stops the drx-RetransmissionTimerDL corresponding to the HARQ process. The terminal device starts the drx-HARQ-RTT-TimerDL corresponding to the HARQ process after completing the transmission of the HARQ process feedback for this downlink transmission.
  • the terminal device If the drx-HARQ-RTT-TimerDL corresponding to a HARQ process of the terminal device times out, and the decoding of the downlink data transmitted using this HARQ process is unsuccessful, the terminal device starts the drx-RetransmissionTimerDL corresponding to this HARQ process.
  • the conditions for the terminal device to start and stop drx-RetransmissionTimerUL are:
  • the terminal device When the terminal device receives a PDCCH indicating an uplink transmission, or when the terminal device sends a MAC PDU on the configured uplink grant resource, the terminal device stops the drx-RetransmissionTimerUL corresponding to the HARQ process. The terminal device starts the drx-HARQ-RTT-TimerUL corresponding to the HARQ process after completing the first transmission of the Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the terminal device If the drx-HARQ-RTT-TimerUL corresponding to a HARQ process of the terminal device times out, the terminal device starts the drx-RetransmissionTimerUL corresponding to this HARQ process.
  • the DRX configuration configured by the network equipment for the terminal equipment is configured according to the UE granularity (per UE).
  • the terminal equipment will use the same set of DRX configuration for any transmission situation, that is, no matter what service it is, no matter what bearer data is transmitted and what data is in the bearer, the terminal equipment will use a set of DRX configuration.
  • the same DRX parameters are also used.
  • the DRX mechanism can achieve energy saving of terminal devices, it also has some disadvantages, such as high operational complexity, especially for the Media Access Control (MAC) layer.
  • the MAC layer has the problem of high operational complexity in implementing the DRX mechanism.
  • the disadvantages of the DRX mechanism are becoming more and more obvious, such as non-periodic service characteristics and jitter service characteristics, making it difficult for the current DRX mechanism to achieve energy saving of terminal devices while meeting service performance, or it is impossible to meet service performance while meeting the premise of energy saving of terminal devices.
  • the jitter range is typically [-4,4]ms and the maximum is [-5,5]ms.
  • the period of the video service in the XR service is a non-integer period.
  • the service periods corresponding to the frame rates of 30fps, 60fps, 90fps, and 120fps are 1/30s, 1/60s, 1/90s, and 1/120s.
  • the DRX cycle In order to meet the transmission requirements of non-integer period services, such as latency, the DRX cycle must be constantly reconfigured. This is because the DRX cycle is configured in integer ms.
  • the following technical solutions of the embodiments of the present application are proposed.
  • the technical solution of the embodiments of the present application cancels the DRX mechanism and realizes energy saving of the terminal device through a new discontinuous reception solution.
  • the DRX mechanism is also related to some other functions. After canceling the DRX mechanism, how to handle the functions related to the DRX mechanism will also be clarified in the technical solution of the embodiments of the present application.
  • FIG3 is a flow chart of a method for implementing discontinuous reception provided in an embodiment of the present application. As shown in FIG3 , the method for implementing discontinuous reception includes the following steps:
  • Step 301 The terminal device monitors PDCCH based on a first signal; wherein, the first signal is monitored through the first communication module of the terminal device, and the PDCCH is monitored through the second communication module of the terminal device, the working energy consumption of the first communication module is lower than that of the second communication module, and the first signal is used to wake up the second communication module.
  • the terminal device has a first communication module and a second communication module, the working energy consumption of the first communication module is lower than that of the second communication module, the first communication module is used to monitor a first signal (low power consumption signal), and the first signal is used to wake up the second communication module.
  • the second communication module is used for downlink reception and/or uplink transmission, wherein the downlink reception objects include: PDCCH, PDSCH, SPS, synchronization signal block (SSB) and channel state information-reference signal (CSI-RS), etc.
  • SPS can be understood as a semi-static PDSCH.
  • the uplink transmission objects include: PUSCH, CG, SRS, PUCCH, etc.
  • CG can be understood as a semi-static PUSCH.
  • PUCCH can carry information such as SR, CSI, HARQ feedback, etc.
  • the reception of PDSCH is related to the reception of PDCCH (PDCCH schedules the transmission of PDSCH)
  • the transmission of PUSCH is related to the reception of PDCCH (PDCCH schedules the transmission of PUSCH).
  • the first communication module may also be referred to as a wake-up receiver (WUR), and the second communication module may also be referred to as a main receiver.
  • WUR wake-up receiver
  • a first signal is monitored by a first communication module, and when the first signal is monitored, the second communication module is awakened by the first signal, and then the PDCCH is monitored by the second communication module; on the one hand, since the energy consumption of the first communication module is lower than that of the second communication module, energy saving of the terminal device can be effectively achieved; on the other hand, since the monitoring of PDCCH is based on the first signal, it replaces the DRX mechanism used in traditional mobile communication systems, thereby reducing the operating complexity of the terminal device, and at the same time, the energy saving effect of the terminal device can be effectively achieved.
  • the terminal device monitors the PDCCH at the PDCCH opportunity in the search space.
  • the search space is periodically distributed in the time domain, and thus the PDCCH opportunity is also periodically distributed in the time domain.
  • the period of the PDCCH opportunity can be understood as the period of the search space. Since the terminal device monitors the PDCCH at periodic PDCCH opportunities, the terminal device will naturally not continuously monitor the PDCCH in the time domain. From this aspect, the purpose of power saving of the terminal device can be achieved.
  • the terminal device periodically monitors the first signal; or, the terminal device continuously monitors the first signal.
  • the terminal device when the terminal device periodically monitors the first signal, the first signal carries fourth information, and the fourth information is used to indicate the monitoring period of the first communication module. After receiving the first signal, the terminal device determines the monitoring period of the first communication module according to the indication of the fourth information in the first signal, and controls the first communication module to monitor the first signal according to the indicated monitoring period.
  • the first signal carries at least one of the following information:
  • first information where the first information is used to indicate a wake-up duration of the second communication module or a duration of a first timer
  • the second information is used to indicate a wake-up start time of the second communication module or a start time of the first timer
  • third information where the third information is used to indicate the wake-up degree of the second communication module
  • the start of the first timer is triggered based on the first signal, and the second communication module is awakened during the operation of the first timer.
  • the terminal device After receiving the first signal, the terminal device can determine the wake-up time period of the second communication module according to the information carried by the first signal, and then control the second communication module to monitor the PDCCH in the corresponding wake-up time period.
  • the wake-up time period is determined by the wake-up start time and the wake-up duration.
  • the wake-up time period is determined by the running time of the first timer, that is, the wake-up time period is the time period corresponding to the running period of the first timer.
  • the purpose of monitoring the PDCCH is mainly to receive the PDSCH or send the PUSCH, so the PDCCH is used to schedule the transmission of the PDSCH or PUSCH.
  • in order to extend the scheduling opportunity i.e., extend the time for monitoring PDCCH or extend the time for the second communication module to be awakened
  • the functions of the inactive timer, RTT timer, and retransmission timer can refer to the aforementioned related scheme.
  • the terminal device obtains first configuration information or first indication information, the first configuration information includes the configuration of at least one timer, the first indication information is used to indicate at least one timer, and the at least one timer includes at least one of the following: inactive timer, RTT timer, retransmission timer; wherein, during the operation of the inactive timer, the terminal device monitors PDCCH; the RTT timer timeout is used to trigger the retransmission timer to start; during the operation of the retransmission timer, the terminal device monitors PDCCH.
  • the first configuration information may be carried in RRC signaling.
  • the first indication information may be carried in DCI.
  • the terminal device obtains the startup related information of the at least one timer, and the startup related information includes at least one of the following:
  • the fifth information is used to indicate whether to start the timer
  • sixth information where the sixth information is used to indicate the length of the timer
  • the seventh information is used to indicate the start time of the timer.
  • the startup related information may be carried in RRC signaling or DCI.
  • the at least one timer is independently configured for uplink and downlink; or, the at least one timer is uniformly configured for uplink and downlink; or, some of the at least one timer are independently configured for uplink and downlink, and another part of the timers are uniformly configured for uplink and downlink.
  • the inactivity timer, RTT timer, and retransmission timer are configured independently for uplink and downlink.
  • the RTT timer and the retransmission timer are configured independently for uplink and downlink, and the inactivity timer is configured uniformly for uplink and downlink.
  • the inactivity timer, RTT timer, and retransmission timer are configured uniformly for uplink and downlink.
  • the terminal device when the RTT timer and/or the retransmission timer is not running and the wake-up time determined based on the first signal has expired, the terminal device performs at least one of the following operations:
  • the terminal device starts or restarts the second timer in at least one of the following situations:
  • the second communication module is awakened during the running of the second timer.
  • the second timer is the same as the first timer; or, the second timer is different from the first timer; wherein, the start of the first timer is triggered based on the first signal, and the second communication module is awakened during the operation of the first timer.
  • the second timer when the second timer is different from the first timer, the second timer is configured through RRC signaling or indicated through DCI or indicated through the first signal.
  • the terminal device when the second timer times out, performs at least one of the following operations:
  • the terminal device when the inactivity timer, the first timer, and the retransmission timer are not running, the terminal device performs at least one of the following operations:
  • the terminal device receives a PDCCH, where the PDCCH carries at least one of the following information:
  • Eighth information where the eighth information is used to indicate a PDCCH opportunity that does not need to be monitored
  • the ninth information is used to indicate the search space set group (Search Space Set Group, SSCG) configuration used to monitor PDCCH.
  • search space set group Search Space Set Group, SSCG
  • a PDCCH adaptive scheme is introduced, namely PDCCH skipping and/or SSCG;
  • PDCCH skipping means that the terminal device skips the PDCCH opportunities in a certain time period, and does not need to monitor PDCCH during this time period.
  • SSCG refers to a set of search space sets. The density of PDCCH opportunities between different SSCGs is different. When the terminal device monitors PDCCH opportunities on a sparse SSCG, it will bring lower energy consumption. When the terminal device monitors PDCCH opportunities on a dense SSCG, it will bring higher energy consumption. By switching SSCG, different degrees of energy saving can be achieved.
  • the eighth information in the DCI can dynamically indicate that the terminal device does not need to monitor the PDCCH opportunities in a certain time period.
  • the eighth information is used to indicate the time period when the PDCCH opportunities do not need to be monitored.
  • the ninth information in the DCI (carried in the PDCCH) can dynamically instruct the terminal device to use a certain SSCG configuration to monitor the PDCCH.
  • the configuration of the search space includes the following parameters: period, duration and offset. There are a series of PDCCH occasions in the duration of the search space. The time domain length of a PDCCH occasion in each time slot of the duration is several symbols, which depends on the network configuration.
  • WUR is a low-power receiver used to receive a wake-up signal (i.e., the first signal in the above scheme), and then wake up the main receiver (i.e., the second communication module in the above scheme) for communication.
  • WUR can be applied to terminal devices in RRC idle state, RRC inactive state, and RRC connected state.
  • the main receiver can be awakened by WUR to monitor PDCCH.
  • WUR can be a periodic monitor or a continuous monitor for the wake-up signal.
  • due to the low power of WUR its continuous monitoring of the wake-up signal can tolerate power loss.
  • the terminal device can monitor the PDCCH based on the content carried in the wake-up signal.
  • the wake-up signal may carry first information to indicate the wake-up duration (i.e., communication duration) of the main receiver.
  • the wake-up signal may carry second information to indicate the wake-up start time of the main receiver.
  • the wake-up signal may carry third information to indicate the wake-up degree of the main receiver, such as deep sleep, light sleep, Micro sleep, active period (PDCCH monitor only), PDCCH+PDSCH, etc.
  • the WUR may be configured with multiple monitoring periods (such as long monitoring period and short monitoring period), and the WUR may be controlled to enter which monitoring period according to the instructions carried by the wake-up signal.
  • Solution 1 In order to extend the scheduling opportunity (i.e., extend the time for monitoring PDCCH or extend the time for the main receiver to be awakened), and to maintain discontinuous monitoring and reception, it is necessary to introduce at least one of the inactive timer (T2), RTT timer (T3), and retransmission timer (T4).
  • T2 inactive timer
  • T3 RTT timer
  • T4 retransmission timer
  • the terminal device When neither the retransmission timer nor the inactive timer is running, and the current time has exceeded the wake-up time period indicated by the wake-up signal, the terminal device turns off the main receiver or the terminal device enters the main receiver sleep mode, WUR listening mode, or only WUR listening mode.
  • the inactive timer (T2), RTT timer (T3), and retransmission timer (T4) can be configured separately for downlink reception and uplink transmission, or the same configuration can be used.
  • These three timers can be semi-statically configured through RRC or dynamically indicated through DCI.
  • DCI can also indicate whether these three timers are enabled in a certain scheduling, the duration of the enablement, the start time of the enablement, and other information.
  • Figures 4-1 and 4-2 show a schematic diagram of a downlink reception process.
  • the WUR monitors the wake-up signal and starts timer T1.
  • the main receiver is awakened; after the main receiver is awakened, it monitors the PDCCH.
  • timer T2 i.e., an inactive timer.
  • the main receiver is awakened, and the terminal device receives the newly transmitted PDSCH (recorded as a new PDSCH) according to the monitored PDCCH.
  • timer T3 i.e., RTT timer
  • the terminal device does not monitor the PDCCH used for retransmission scheduling; after timer T3 times out, the terminal device starts timer T4 (i.e., a retransmission timer).
  • timer T4 i.e., a retransmission timer
  • the terminal device monitors the PDCCH used for retransmission scheduling and receives the retransmitted PDSCH according to the monitored PDCCH.
  • the terminal device will start or restart timer T1 or T5 when receiving any PDCCH or PDSCH, thereby extending the wake-up time.
  • timer T1 or T5 times out, the terminal device turns off the main receiver or enters the main receiver sleep mode, enters the WUR listening mode or only the WUR listening mode.
  • the above event that can trigger the start or restart of timer T1 or T5 is only an example, and other possibilities are not excluded.
  • timer T1 or T5 can only be triggered to start or restart when PDCCH is received, and timer T1 or T5 cannot be triggered to start or restart when PDSCH is received.
  • Timer T1 or T5 can be obtained through a wake-up signal from the WUR side, or semi-statically configured through RRC signaling. Among them, timer T5 can be configured independently or the same as T1.
  • the terminal device turns off the main receiver or enters the main receiver sleep mode, enters the WUR listening mode or only the WUR listening mode.
  • FIGs 5-1 and 5-2 show a schematic diagram of an uplink transmission process.
  • WUR monitors the wake-up signal and starts timer T1.
  • timer T1 the main receiver is awakened; after the main receiver is awakened, it monitors PDCCH.
  • PDCCH When it monitors a PDCCH that schedules a new transmission (recorded as a new PDCCH), it starts timer T2 (i.e., an inactive timer).
  • timer T2 the main receiver is awakened, and the terminal device sends a newly transmitted PUSCH (recorded as a new PUSCH) according to the monitored PDCCH, and starts timer T3 (i.e., an RTT timer).
  • timer T3 i.e., an RTT timer
  • the terminal device does not monitor the PDCCH used for retransmission scheduling; after timer T3 times out, the terminal device starts timer T4 (i.e., a retransmission timer).
  • timer T4 i.e., a retransmission timer.
  • the terminal device monitors the PDCCH used for retransmission scheduling and retransmits the PUSCH according to the monitored PDCCH.
  • the terminal device will start or restart timer T1 or T5 when receiving any PDCCH or sending PUSCH. If timer T1 or T5 times out, the terminal device turns off the main receiver or enters the main receiver sleep mode, enters the WUR listening mode or only the WUR listening mode.
  • the above event that can trigger the start or restart of timer T1 or T5 is only an example, and other possibilities are not excluded. For example, timer T1 or T5 can only be triggered to start or restart when PDCCH is received, and timer T1 or T5 cannot be triggered to start or restart when PUSCH is sent.
  • Timer T1 or T5 can be obtained through a wake-up signal from the WUR side, or semi-statically configured through RRC signaling. Among them, timer T5 can be configured independently or the same as T1. In the above process, in the absence of timer T5, if none of timers T1, timer T2 and timer T4 are running, the terminal device turns off the main receiver or enters the main receiver sleep mode, enters the WUR listening mode or only the WUR listening mode.
  • a PDCCH adaptive solution is introduced, namely PDCCH skipping and/or SSCG;
  • PDCCH skipping means that the terminal device skips the PDCCH opportunities within a certain time period, and does not need to monitor PDCCH during this time period.
  • SSCG refers to a set of search space sets. The density of PDCCH opportunities between different SSCGs is different. The terminal device will monitor the PDCCH opportunities on a sparser SSCG, which will bring lower energy consumption. The terminal device will monitor the PDCCH opportunities on a denser SSCG, which will bring higher energy consumption. By switching SSCG, different degrees of energy saving can be achieved.
  • the terminal device After WUR wakes up the main receiver, the terminal device is in a dormant state and will monitor the PDCCH at the appropriate PDCCH opportunity according to the PDCCH configuration. At the same time, the PDCCH will also dynamically indicate the PDCCH opportunities that do not need to be monitored. In this process, the network equipment can also dynamically adjust the SSSG through DCI to achieve dynamic adjustment of the PDCCH configuration.
  • the above technical solution replaces the DRX function through WUR combined with solutions 1 and 2, realizes discontinuous reception, reduces the processing complexity of the MAC layer, and effectively achieves energy saving of terminal equipment.
  • the terminal device performs a first operation within a first time period, and the first operation includes at least one of the following operations: measuring, reading system broadcast information; wherein the first time period is a time period when there is no PDCCH opportunity and/or a time period configured for the network device.
  • the terminal device performs the first operation within the first time period, which can be achieved by the following scheme:
  • the terminal device receives second configuration information sent by the network device, where the second configuration information includes configuration of a first interval, where the first interval is a one-time interval and a time period corresponding to the one-time interval is the first time period.
  • the first interval may also be referred to as a one-time interval (one short Gap).
  • the second configuration information is used to determine a group of candidate intervals
  • the first interval is the first candidate interval in the group of candidate intervals or the first candidate interval in the group of candidate intervals that satisfies a first condition
  • the first condition is that the time from the candidate interval to the terminal device receiving the measurement command is greater than or equal to a first threshold.
  • the interval length and/or interval period and/or start time of the candidate interval are configured through the second configuration information.
  • the start time of the candidate interval is configured by the second configuration information, which may be implemented in the following manner:
  • the system frame number and subframe number of the start time of the candidate interval are configured through the second configuration information.
  • the system frame number and subframe number of the start time of the candidate interval are determined based on at least one parameter, and the at least one parameter is configured through the second configuration information.
  • the at least one parameter includes at least one of the following: interval length, interval period, and interval offset.
  • the system frame number and subframe number of the start time are determined by the following formula:
  • SFN represents the system frame number
  • subframe number represents the subframe number
  • Gap length represents the interval length or interval period
  • gapOffset represents the interval offset
  • mod represents the modulo operation
  • the system frame number and subframe number of the start time are determined by the following formula:
  • subframe number gapOffset mod 10;
  • SFN represents the system frame number
  • subframe number represents the subframe number
  • gapOffset represents the gap offset
  • T Gap length/10
  • Gap length represents the gap length or interval period
  • mod represents the remainder operation
  • FLOOR represents the floor operation.
  • the terminal device receives third configuration information sent by the network device, the third configuration information includes the configuration of the first operation, the configuration of the first operation includes the configuration of the first time period, and the first time period is a time period when there is no PDCCH opportunity.
  • the configuration of the first operation further includes the configuration of a third timer, during which the third timer is running, the terminal device can execute the first operation, and after the third timer times out, the terminal device exits executing the first operation.
  • the terminal device determines the first time period based on the configuration of the PDCCH opportunity, and the first time period is a time period when there is no PDCCH opportunity.
  • the network device will instruct the terminal device to measure the cell group identifier (CGI).
  • CGI cell group identifier
  • the terminal device measures the CGI during the silent period of the DRX mode (also called the idle period), that is, reading the cell group identifier (CGI reading).
  • CGI reading the cell group identifier belongs to the system broadcast information.
  • the DRX function is cancelled, it is necessary to clarify how to implement the ANR measurement.
  • the same situation also occurs in the frame timing deviation (SFTD) measurement.
  • the network device configures a one-time interval (one short Gap) for the terminal device, and the terminal device performs ANR measurement and/or SFTD measurement within the one short Gap.
  • the network device can configure one short Gap through RRC signaling, and the configured parameters include: interval length and/or interval period and/or start time.
  • a group of candidate intervals (a group of periodic intervals) can be determined through these parameters, and one short Gap is the first candidate interval in the group of candidate intervals; or, one short Gap is the first candidate interval in the group of candidate intervals that meets the first condition, and the first condition is that the time from the candidate interval to the time when the terminal device receives the measurement command is greater than or equal to the first threshold.
  • the first threshold can be a threshold configured by the network device, that is, one short Gap is the first candidate measurement interval in the group of candidate intervals whose reception time of the distance measurement command is greater than or equal to the first threshold.
  • the RRC signaling for configuring the one short Gap described above may be configured to the terminal device together with the measurement configuration using the one short Gap.
  • the system frame number and subframe number of the start time of the candidate interval can be determined by the following options:
  • the network device directly configures (eg, through RRC signaling) the system frame number and subframe number of the start time of the terminal candidate interval.
  • SFN represents the system frame number
  • subframe number represents the subframe number
  • Gap length represents the interval length or interval period
  • gapOffset represents the interval offset
  • mod represents the modulus operation.
  • Gap length and gapOffset depend on the configuration of the network device, for example, through RRC signaling.
  • subframe number gapOffset mod 10;
  • SFN represents the system frame number
  • subframe number represents the subframe number
  • gapOffset represents the gap offset
  • T Gap length/10
  • Gap length represents the gap length or gap period
  • mod represents the modulus operation
  • FLOOR represents the floor operation.
  • Gap length and gapOffset depend on the configuration of the network device, for example, through RRC signaling.
  • the network device can determine the time period when there is a PDCCH opportunity and the time period when there is no PDCCH opportunity according to the PDCCH period (i.e., the period of the search space). Based on this, the network device configures a time period without a PDCCH opportunity for the terminal device, and the terminal device performs ANR measurement and/or SFTD measurement during the time period. Furthermore, the network device can also configure a timer, and after the timer times out, the terminal device exits the measurement operation.
  • Solution 3 The terminal device performs ANR measurement and/or SFTD measurement during a time period without PDCCH opportunities according to its own implementation.
  • the terminal device can perform measurements during a time period without PDCCH opportunities.
  • the terminal device uses the first time period as a DRX period to perform measurements and/or define known known cells and/or define unknown unknown cells.
  • the first time period is a period configured by the network device.
  • the first time period is the same as the PDCCH period; or, the first time period is different from the PDCCH period.
  • the information of the DRX cycle needs to be applied.
  • the time period for PSS/SSS detection, the time period for time index detection, the measurement period for intra/inter-frequency measurements, and the SFTD measurement requirement are all related to the DRX cycle.
  • Table 1 shows the relationship between the measurement period for intra-frequency measurement and the DRX cycle:
  • the network device may configure a time period for the terminal device or the terminal device may directly use the PDCCH period to replace the DRX period and apply it to operations associated with the DRX period.
  • the length of time required to obtain downlink synchronization of a cell is related to the DRX cycle.
  • the definition of known cells and unknown cells is related to the DRX cycle.
  • Table 2 gives the relationship between the definition of known cells and unknown cells and the DRX cycle.
  • the network device can configure a time period for the terminal device or the terminal device can directly use the PDCCH period to replace the DRX period, and apply it to the definition associated with the DRX period, such as the definition of known cells and unknown cells, that is, replace the "DRX cycles" in Table 2 with the time period or PDCCH period configured by the network device.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • downlink indicates that the transmission direction of the signal or data
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the site
  • side is used to indicate that the transmission direction of the signal or data is the third direction sent from user equipment 1 to user equipment 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term "and/or” is only a description of the association relationship of the associated objects, indicating that there can be three relationships. Specifically, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. In addition, the character “/" in this article generally indicates that the front and back associated objects are in an "or" relationship.
  • FIG6 is a schematic diagram of the structure of a device for implementing discontinuous reception provided in an embodiment of the present application, which is applied to a terminal device.
  • the device for implementing discontinuous reception includes:
  • the receiving unit 601 is used to monitor the PDCCH based on a first signal; wherein, the first signal is monitored through the first communication module of the terminal device, and the PDCCH is monitored through the second communication module of the terminal device, the working energy consumption of the first communication module is lower than that of the second communication module, and the first signal is used to wake up the second communication module.
  • the first signal carries at least one of the following information:
  • first information where the first information is used to indicate a wake-up duration of the second communication module or a duration of a first timer
  • the second information is used to indicate a wake-up start time of the second communication module or a start time of the first timer
  • third information where the third information is used to indicate the wake-up degree of the second communication module
  • the start of the first timer is triggered based on the first signal, and the second communication module is awakened during the operation of the first timer.
  • the receiving unit 601 is configured to periodically monitor the first signal; or continuously monitor the first signal.
  • the first signal carries fourth information, where the fourth information is used to indicate a listening period of the first communication module.
  • the receiving unit 601 is used to obtain first configuration information or first indication information, where the first configuration information includes a configuration of at least one timer, and the first indication information is used to indicate at least one timer, where the at least one timer includes at least one of the following: an inactive timer, an RTT timer, and a retransmission timer;
  • the terminal device monitors PDCCH during the operation of the inactivation timer; the timeout of the RTT timer is used to trigger the start of the retransmission timer; and the terminal device monitors PDCCH during the operation of the retransmission timer.
  • the receiving unit 601 is configured to obtain information related to starting the at least one timer, where the information related to starting includes at least one of the following:
  • the fifth information is used to indicate whether to start the timer
  • sixth information where the sixth information is used to indicate the length of the timer
  • the seventh information is used to indicate the start time of the timer.
  • the apparatus further includes: a processing unit 602, configured to, when the RTT timer and/or the retransmission timer is not running and the wake-up time determined based on the first signal ends, perform at least one of the following operations:
  • the at least one timer is independently configured for uplink and downlink; or, the at least one timer is uniformly configured for uplink and downlink; or, some of the at least one timer are independently configured for uplink and downlink, and another part of the timers are uniformly configured for uplink and downlink.
  • the processing unit 602 is configured to start or restart the second timer in at least one of the following situations:
  • the second communication module is awakened during the running of the second timer.
  • the second timer is the same as the first timer; or, the second timer is different from the first timer; wherein, the start of the first timer is triggered based on the first signal, and the second communication module is awakened during the operation of the first timer.
  • the second timer when the second timer is different from the first timer, the second timer is configured through RRC signaling or indicated through DCI or indicated through the first signal.
  • the processing unit 602 is configured to perform at least one of the following operations when the second timer times out:
  • the processing unit 602 is configured to perform at least one of the following operations when the inactivity timer, the first timer, and the retransmission timer are not running:
  • the receiving unit 601 is configured to receive a PDCCH, where the PDCCH carries at least one of the following information:
  • Eighth information where the eighth information is used to indicate a PDCCH opportunity that does not need to be monitored
  • the ninth information is used to indicate the search space set group SSCG configuration used to monitor PDCCH.
  • the receiving unit 601 is used to perform a first operation within a first time period, and the first operation includes at least one of the following operations: measuring, reading system broadcast information; wherein the first time period is a time period when there is no PDCCH opportunity and/or a time period configured for a network device.
  • the receiving unit 601 is used to receive second configuration information sent by the network device, where the second configuration information includes configuration of a first interval, where the first interval is a one-time interval and a time period corresponding to the one-time interval is the first time period.
  • the second configuration information is used to determine a group of candidate intervals
  • the first interval is the first candidate interval in the group of candidate intervals or the first candidate interval in the group of candidate intervals that satisfies a first condition
  • the first condition is that the time from the candidate interval to the terminal device receiving the measurement command is greater than or equal to a first threshold.
  • the interval length and/or interval period and/or start time of the candidate interval are configured through the second configuration information.
  • system frame number and subframe number of the start time of the candidate interval are configured through the second configuration information; or, the system frame number and subframe number of the start time of the candidate interval are determined based on at least one parameter, and the at least one parameter is configured through the second configuration information.
  • the at least one parameter includes at least one of the following: interval length, interval period, and interval offset.
  • system frame number and subframe number of the start time are determined by the following formula:
  • SFN represents the system frame number
  • subframe number represents the subframe number
  • Gap length represents the interval length or interval period
  • gapOffset represents the interval offset
  • mod represents the modulo operation
  • system frame number and subframe number of the start time are determined by the following formula:
  • subframe number gapOffset mod 10;
  • SFN represents the system frame number
  • subframe number represents the subframe number
  • gapOffset represents the gap offset
  • T Gap length/10
  • Gap length represents the gap length or interval period
  • mod represents the remainder operation
  • FLOOR represents the floor operation.
  • the receiving unit 601 is used to receive third configuration information sent by the network device, the third configuration information includes the configuration of the first operation, the configuration of the first operation includes the configuration of the first time period, and the first time period is a time period when there is no PDCCH opportunity.
  • the configuration of the first operation further includes the configuration of a third timer, during which the third timer is running, the terminal device can execute the first operation, and after the third timer times out, the terminal device exits executing the first operation.
  • the apparatus further includes: a determining unit configured to determine the first time period based on a configuration of a PDCCH opportunity, wherein the first time period is a time period in which no PDCCH opportunity exists.
  • the processing unit 602 is configured to use the first time period as a DRX period to perform measurement and/or define a known cell and/or define an unknown cell.
  • the first time period is a period configured by the network device.
  • the first time period is the same as a PDCCH period; or, the first time period is different from a PDCCH period.
  • FIG7 is a schematic structural diagram of a communication device 700 provided in an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 700 shown in FIG7 includes a processor 710, which may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated into the processor 710 .
  • the communication device 700 may further include a transceiver 730 , and the processor 710 may control the transceiver 730 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna, and the number of the antennas may be one or more.
  • the communication device 700 may specifically be a network device of an embodiment of the present application, and the communication device 700 may implement corresponding processes implemented by the network device in each method of the embodiment of the present application, which will not be described in detail here for the sake of brevity.
  • the communication device 700 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 700 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, which will not be described again for the sake of brevity.
  • Fig. 8 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 800 shown in Fig. 8 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method according to the embodiment of the present application.
  • the chip 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
  • the chip 800 may further include an input interface 830.
  • the processor 810 may control the input interface 830 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 800 may further include an output interface 840.
  • the processor 810 may control the output interface 1940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • FIG9 is a schematic block diagram of a communication system 900 provided in an embodiment of the present application.
  • the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For the sake of brevity, they are not repeated here.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application can be a volatile memory or a non-volatile memory, or can include both volatile and non-volatile memories.
  • the non-volatile memory can be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory can be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on a computer, the computer executes the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application. For the sake of brevity, they are not repeated here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种非连续接收的实现方法及装置、终端设备,该方法包括:终端设备基于第一信号监听PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。

Description

一种非连续接收的实现方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种非连续接收的实现方法及装置、终端设备。
背景技术
为了终端设备的节能,引入了非连续接收(Discontinuous Reception,DRX)机制。网络设备为终端设备配置DRX配置,终端设备使用该DRX配置进行物理下行控制信道(Physical Downlink Control Channel,PDCCH)监听。
然而,目前的DRX机制虽然可以实现终端设备的节能,但是也存在一些弊端,例如操作复杂度较高等问题。
发明内容
本申请实施例提供一种非连续接收的实现方法及装置、终端设备、芯片、计算机可读存储介质、计算机程序产品、计算机程序。
本申请实施例提供的非连续接收的实现方法,包括:
终端设备基于第一信号监听PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。
本申请实施例提供的非连续接收的实现装置,应用于终端设备,所述装置包括:
接收单元,用于基于第一信号监听PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的非连续接收的实现方法。
本申请实施例提供的芯片,用于实现上述的非连续接收的实现方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的非连续接收的实现方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的非连续接收的实现方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的非连续接收的实现方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的非连续接收的实现方法。
通过上述技术方案,终端设备无需连续监听PDCCH,而是基于第一信号监听PDCCH,实现了非连续接收。其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块,如此,通过第一通信模块监听第一信号,在监听到第一信号的情况下通过第一信号唤醒第二通信模块,进而通过第二通信模块监听PDCCH;一方面,由于第一通信模块的能耗相对于第二通信模块的能耗较低,因而可以有效实现终端设备的节能;另一方面,由于PDCCH的监听是基于第一信号实现,代替了传统移动通信系统中使用的DRX机制,因而可以降低终端设备的操作复杂度,同时也可以有效达到终端设备节能的效果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实 施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是一种应用场景的示意图;
图2是一种DRX周期的示意图;
图3是本申请实施例提供的非连续接收的实现方法的流程示意图;
图4-1是本申请实施例提供的下行接收过程的示意图一;
图4-2是本申请实施例提供的下行接收过程的示意图二;
图5-1是本申请实施例提供的上行接收过程的示意图一;
图5-2是本申请实施例提供的上行接收过程的示意图二;
图6是本申请实施例提供的非连续接收的实现装置的结构组成示意图;
图7是本申请实施例提供的一种通信设备示意性结构图;
图8是本申请实施例的芯片的示意性结构图;
图9是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C) 设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在LTE中,为了终端设备的节能,引入了DRX机制,终端设备的全部业务都使用一套DRX配置,例如实时业务和非实时业务使用一套DRX配置。如图2所示,图2给出了DRX机制的基本示意图,DRX周期由“持续时间(On Duration)”和“DRX机会(Opportunity for DRX)”组成,其中,On Duration也可以称为激活期,Opportunity for DRX也可以称为静默期。在On Duration内,终端设备监听PDCCH,进一步基于监听到的PDCCH在其调度的共享信道资源上接收数据或者发送数据,或者,终端设备直接在预分配的共享信道资源上接收数据或者发送数据。在Opportunity for DRX内,终端设备不需要监听PDCCH,也不接收任何下行数据以及发送任何上行数据,处于节电状态。
在LTE中,除了要满足快速的吞吐量需求,还要满足很好的节能效果,为此,引入了两种DRX周期,即短DRX(short DRX)周期和长DRX(long DRX)周期,可以同时满足语音业务和上网业务的要求。长DRX周期和短DRX周期之间的转换可以基于定时器或者命令来实现,命令例如是媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)。关于DRX起点位置(即On Duration的起点位置),考虑到①终端设备的DRX起点不能过于集中,否则会导致调度负荷不均衡,造成资源浪费;②DRX周期和BCCH/MBMS资源位置不能冲突,否则导致调度受限;③DRX起点必须先于半持续调度资源进行配置,否则可能导致二者不匹配;决定通过RRC信令显示通知终端设备一个DRX起点的偏移量(DRX Start Offset),采用如下的公式确定DRX起点位置:[(SFN*10)+subframe number]modulo(current DRX)=DRX Start Offset,其中,SFN代表DRX起点位置对应的系统帧号,subframe number代表DRX起点位置对应的子帧号。
在LTE中,引入DRX非激活定时器(DRX inactivity timer),通过DRX inactivity timer可以对激活期进行适当延长,增加终端设备的调度机会。终端设备收到一次调度新数据传输的控制信令就会启动DRX inactivity timer,在这之后终端设备每收到一次调度新数据传输的控制信令都会重启 DRX inactivity timer,DRX inactivity timer运行期间属于激活期,从而实现对激活期进行延长,增加终端设备的调度机会,缩短数据传输时延。DRX inactivity timer的引入,一方面,可以保证业务性能,另一方面,终端设备的耗电也会有所增加,但是考虑到保证业务性能更为重要。对于下行采用异步混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)的情况来说,终端设备很难确定为了等待重传调度需保持激活状态多久,DRX inactivity timer可以限制这个等待重传调度的时间,从而达到省电的目的。
在下行方向,为了兼顾终端设备的节电性能和数据传输性能,引入了两个定时器,分别为:HARQ往返时间定时器(HARQ RTT Timer)和HARQ重传定时器(HARQ Retransmission Timer),这两个定时器都是针对HAQR进程(HARQ process)进行定义的,每个HARQ进程使用独立的定时器。上行采用异步HARQ后,引入针对上行进程的HARQ RTT Timer和HARQ Retransmission Timer。
LTE的DRX设计主要是从下行方向,即终端设备监听PDCCH或者在预分配的下行共享信道资源上接收物理下行共享信道(Physical Downlink Shared Channel,PDSCH)角度出发进行描述的。上行传输对于DRX的影响以及DRX和其他特性之间的互操作规定如下:
1)DRX与切换测量
为了保证切换的成功率以及终端设备的移动鲁棒性,规定测量上报不受DRX状态的约束,即测量上报可以发生在DRX的静默期,例如终端设备在静默期使用随机接入信道(Random Access Channel,RACH)进行测量上报,上报完成后允许终端设备连续监听PDCCH,进而可以实现接收切换命令,避免了无线链路失败。在测量间隔(Measurement Gap)期间,终端设备会执行异频测量,在此期间终端设备不监听PDCCH。
2)DRX与上行传输之CQI/SRS
从实现复杂度,物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源利用率,调度性能和终端设备耗电四个角度进行比较,决定信道质量指示(CQI)上报与DRX绑定,只允许在DRX的激活期上报。关于探测参考信号(SRS)的传输,其与CQI上报类似,只允许在激活期进行SRS的传输。
3)DRX与上行传输之数据传输
为了保证上行数据的传输性能,决定允许在DRX的任何时期发起,当处于DRX睡眠期(即静默期)时,允许终端设备使用最近的RACH发送调度请求(SR),既而发起上行数据传输。终端设备收到随机接入响应(RAR)后,离开睡眠期(即静默期),连续监听PDCCH,如果监测到新数据传输的调度,则重启DRX inactivity timer,后续行为由DRX inactivity timer决定。对于半持续调度(SPS),终端设备只有在DRX激活期才可以进行收发。
在NR中,DRX的设计机制和LTE类似。即所有业务共用一套DRX配置(即共用一套DRX参数)。由于NR中上下行都采用异步HARQ,所以在下行和上行方向上配置独立的HARQ RTT Timer和HARQ Retransmission Timer,这两个定时器是HARQ进程级别(即per HARQ process)的。同时NR中存在URLLC业务,为了满足该类业务的传输时延需求,允许半持续调度(SPS)和配置授权(CG)在DRX非激活态进行数据的收发。
NR支持FR1和FR2,可以配置双DRX(dual DRX)分别应用于FR1和FR2。双DRX中的部分参数是共享的,通常,第一个DRX配置了全部的DRX参数,第二个DRX仅仅配置了独立的drx-onDurationTimer和drx-InactivityTimer,其他参数共享第一个DRX的配置。
为了终端设备节能,终端设备可以通过UE辅助信息(UEAssistanceInformation)消息上报终端设备倾向的DRX参数,来辅助网络设备配置合适的DRX参数,从而达到终端设备节能的目的。终端设备倾向的DRX参数例如有:倾向的DRX非激活定时器(preferredDRX-InactivityTimer)、倾向的DRX长周期(preferredDRX-LongCycle)、倾向的DRX短周期(preferredDRX-ShortCycle)、倾向的DRX短周期定时器(preferredDRX-ShortCycleTimer)。
在MBS课题中,为MBS业务配置了独立于单播业务的DRX配置,进一步,可以为每个MBS业务配置各自的DRX配置(每个DRX配置和G-RNTI对应),且相互之间独立。
在NR中,一套DRX配置包括如下DRX参数:
-DRX状态定时器(drx-onDurationTimer):用于确定DRX周期(DRX cycle)开始后的一段时间;
-DRX时隙偏移量(drx-SlotOffset):用于确定启动DRX状态定时器之前的时延;
-DRX非激活定时器(drx-InactivityTimer):用于确定PDCCH时机(PDCCH occasion)之后的一段时间,其中,该PDCCH时机中被检测到PDCCH且该PDCCH指示了一个新的上行或下行传输;
-下行DRX重传定时器(drx-RetransmissionTimerDL):用于确定接收到下行重传之前的最长时间;
-上行DRX重传定时器(drx-RetransmissionTimerUL):用于确定在接收到上行重传的授权之前的最长时间;
-DRX长周期开始偏移量(drx-LongCycleStartOffset):用于确定DRX长周期和DRX开始时间偏移量(drx-StartOffset),其中,drx-StartOffset用于确定DRX长周期和DRX短周期的开始时间(例如开始时间对应的子帧);
-DRX短周期(drx-ShortCycle):为可选配置,用于确定DRX短周期;
-DRX短周期循环定时器(drx-ShortCycleTimer):为可选配置,用于确定DRX短周期的持续时间,其取值指代的是DRX短周期的倍数;
-下行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerDL):MAC实体期望的用于HARQ重传的下行分配之前的最小持续时间;
-上行DRX HARQ RTT定时器(drx-HARQ-RTT-TimerUL):MAC实体期望的用于HARQ重传的上行授权之前的最小持续时间。
上述方案中,DRX参数的单位为毫秒(ms),适用于DRX周期为整数倍ms周期的业务。
上述方案中,下行DRX重传定时器、上行DRX重传定时器、下行DRX HARQ RTT定时器、上行DRX HARQ RTT定时器与HARQ进行相关。
如果终端设备配置了DRX配置,则终端设备需要在DRX激活时间(DRX active time)监听PDCCH。DRX激活时间包括如下几种情况:
1)drx-onDurationTimer、drx-InactivityTimer、drx-RetransmissionTimerDL、drx-RetransmissionTimerUL以及ra-ContentionResolutionTimer这5个定时器中的任何一个定时器的运行期间属于DRX激活时间。
2)终端设备在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上发送了调度请求(SR)后,该SR处于悬挂(pending)状态期间属于DRX激活时间。
3)在基于竞争的随机接入过程中,终端设备在成功接收到随机接入响应后还没有接收到C-RNTI加扰的PDCCH指示的一次初始传输的期间属于DRX激活时间。
终端设备根据当前使用DRX周期是DRX短周期(short DRX cycle)还是DRX长周期(long DRX cycle),来决定drx-onDurationTimer的启动时间,具体规定如下:
1.1>如果使用的是DRX短周期,那么,drx-onDurationTimer的启动时间的SFN和子帧号满足:[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle);
1.2>如果使用的是DRX长周期,那么,drx-onDurationTimer的启动时间的SFN和子帧号满足:[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset;
2>在上述公式所确定的子帧的起始时间向后偏移drx-SlotOffset个时隙的时刻启动drx-onDurationTimer。
终端设备启动或重启drx-InactivityTimer的条件为:
如果终端设备接收到一个指示下行或者上行的初始传输的PDCCH,则终端设备启动或者重启drx-InactivityTimer。
终端设备启动和停止drx-RetransmissionTimerDL的条件为:
当终端设备接收到一个指示下行传输的PDCCH,或者当终端设备在配置的下行授权资源上接收到一个MAC PDU,则终端设备停止该HARQ进程对应的drx-RetransmissionTimerDL。终端设备在完成针对这次下行传输的HARQ进程反馈的传输之后启动该HARQ进程对应的drx-HARQ-RTT-TimerDL。
如果终端设备的某个HARQ进程对应的drx-HARQ-RTT-TimerDL超时,并且使用这个HARQ进程传输的下行数据解码不成功,则终端设备启动这个HARQ进程对应的drx-RetransmissionTimerDL。
终端设备启动和停止drx-RetransmissionTimerUL的条件为:
当终端设备接收到一个指示上行传输的PDCCH,或者当终端设备在配置的上行授权资源上发送一个MAC PDU,则终端设备停止该HARQ进程对应的drx-RetransmissionTimerUL。终端设备在完成这次物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的第一次传输之后启动该HARQ进程对应的drx-HARQ-RTT-TimerUL。
如果终端设备的某个HARQ进程对应的drx-HARQ-RTT-TimerUL超时,则终端设备启动这个 HARQ进程对应的drx-RetransmissionTimerUL。
目前,网络设备为终端设备配置的DRX配置是按照UE粒度(per UE)进行配置的,终端设备对于任何传输情况都将使用同一套DRX配置,也就是无论是什么业务,无论传输的是什么承载的数据以及承载中的什么数据,终端设备都将使用一套DRX配置,对于与HARQ进行相关DRX参数,也都使用相同的DRX参数。
DRX机制虽然可以实现终端设备的节能,但是也存在一些弊端,例如操作复杂度较高,特别对应媒体接入控制(Media Access Control,MAC)层来说,MAC层实现DRX机制存在操作复杂度较高的问题。此外,由于业务的多样性以及业务特性的多样性,使得DRX机制的弊端越来越明显,例如非周期业务特性,抖动(jitter)业务特性等,使得当前的DRX机制在满足业务性能的前提下很难做到终端设备节能,或者在做到终端设备节能的前提下无法满足业务性能,例如XR业务中,jitter的范围典型为[-4,4]ms,最大为[-5,5]ms,为了满足jitter,drx-onDurationTimer就需要配置的很长,不利于节能。而XR业务中的视频(video)业务的周期是非整数周期,例如帧率30fps,60fps,90fps,120fps对应的业务周期为1/30s,1/60s,1/90s,1/120s,为了满足非整数周期业务的传输需求,例如时延,DRX周期要不停的重新配置,这是因为DRX周期是整数ms配置的。
鉴于DRX机制存在的一些弊端,提出了本申请实施例的以下技术方案。本申请实施例的技术方案,取消DRX机制,通过新的非连续接收方案实现终端设备的节能。进一步,DRX机制除了可以达到终端设备省电的目的以外,还与一些其他功能有关,在取消DRX机制后,与DRX机制有关的功能该如何处理也会在本申请实施例的技术方案中明确。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
需要说明的是,本申请实施例中描述的“唤醒”也可以替换为“激活”。
需要说明的是,本申请实施例中的技术方案可以但不局限于应用于5G、6G以及未来通信系统。
图3是本申请实施例提供的非连续接收的实现方法的流程示意图,如图3所示,所述非连续接收的实现方法包括以下步骤:
步骤301:终端设备基于第一信号监听PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。
本申请实施例中,终端设备具有第一通信模块和第二通信模块,第一通信模块的工作能耗低于第二通信模块,第一通信模块用于监听第一信号(低功耗信号),所述第一信号用于唤醒所述第二通信模块。第二通信模块被唤醒后,第二通信模块用于下行接收和/或上行发送,其中,下行接收对象包括:PDCCH、PDSCH、SPS、同步信号块(SSB)以及信道状态信息-参考信号(CSI-RS)等。这里,SPS可以理解为半静态的PDSCH。上行发送对象包括:PUSCH、CG、SRS、PUCCH等。这里,CG可以理解为半静态的PUSCH。PUCCH可以承载SR、CSI、HARQ反馈等信息。其中,PDSCH的接收和PDCCH的接收有关系(PDCCH调度PDSCH的传输),PUSCH的发送和PDCCH的接收有关系(PDCCH调度PUSCH的传输)。
在一些实施方式中,所述第一通信模块也可以称为唤醒接收机(Wake Up Receiver,WUR),所述第二通信模块也可以称为主接收机。
本申请实施例中,通过第一通信模块监听第一信号,在监听到第一信号的情况下通过第一信号唤醒第二通信模块,进而通过第二通信模块监听PDCCH;一方面,由于第一通信模块的能耗相对于第二通信模块的能耗较低,因而可以有效实现终端设备的节能;另一方面,由于PDCCH的监听是基于第一信号实现,代替了传统移动通信系统中使用的DRX机制,因而可以降低终端设备的操作复杂度,同时也可以有效达到终端设备节能的效果。
在一些实施方式中,终端设备在搜索空间的PDCCH时机上监听PDCCH,搜索空间在时域上是周期性分布的,因而PDCCH时机在时域上也是周期性分布的,PDCCH时机的周期可以理解为搜索空间的周期,由于终端设备是周期性的PDCCH时机上监听PDCCH,因而终端设备自然不会在时域上连续监听PDCCH,从这一方面看,可以达到终端设备省电的目的。
在一些实施方式中,所述终端设备周期性监听所述第一信号;或者,所述终端设备连续监听所述第一信号。
在一些实施方式中,所述终端设备周期性监听所述第一信号的情况下,所述第一信号携带第四信息,所述第四信息用于指示所述第一通信模块的监听周期。所述终端设备接收到所述第一信 号后,根据所述第一信号中第四信息的指示确定所述第一通信模块的监听周期,控制所述第一通信模块按照指示的监听周期监听第一信号。
在一些实施方式中,所述第一信号携带以下至少一种信息:
第一信息,所述第一信息用于指示所述第二通信模块的唤醒时长或者指示第一定时器的时长;
第二信息,所述第二信息用于指示所述第二通信模块的唤醒起始时间或者指示第一定时器的启动时间;
第三信息,所述第三信息用于指示所述第二通信模块的唤醒程度;
其中,所述第一定时器的启动基于所述第一信号触发,所述第一定时器运行期间所述第二通信模块被唤醒。
终端设备接收到第一信号后,根据第一信号携带的信息可以确定第二通信模块的唤醒时间段,进而控制所述第二通信模块在相应的唤醒时间段监听PDCCH。作为一种实现方式,唤醒时间段由唤醒起始时间和唤醒时长确定。作为另一种实现方式,唤醒时间段由第一定时器的运行时间确定,即唤醒时间段为第一定时器运行期间对应的时间段。
需要说明的是,监听PDCCH的目的主要是为了接收PDSCH或发送PUSCH,因而PDCCH用于调度PDSCH或PUSCH的传输。
在一些实施方式中,为了延长调度机会(即延长监听PDCCH的时间或者说延长第二通信模块被唤醒的时间),需要引入非激活定时器、RTT定时器、重传定时器中的至少之一。这里,非激活定时器、RTT定时器、重传定时器的功能可以参照前述相关方案。具体地,所述终端设备获取第一配置信息或第一指示信息,所述第一配置信息包括至少一个定时器的配置,所述第一指示信息用于指示至少一个定时器,所述至少一个定时器包括以下至少之一:非激活定时器、RTT定时器、重传定时器;其中,所述非激活定时器运行期间所述终端设备监听PDCCH;所述RTT定时器超时用于触发所述重传定时器开启;所述重传定时器运行期间所述终端设备监听PDCCH。
这里,所述第一配置信息可以携带在RRC信令中。所述第一指示信息可以携带在DCI中。
在一些实施方式中,所述终端设备获取所述至少一个定时器的启动相关信息,所述启动相关信息包括以下至少之一:
第五信息,所述第五信息用于指示是否开启定时器;
第六信息,所述第六信息用于指示定时器的长度;
第七信息,所述第七信息用于指示定时器的启动时间。
这里,所述启动相关信息可以携带在RRC信令或者DCI中。
在一些实施方式中,所述至少一个定时器对于上行和下行独立配置;或者,所述至少一个定时器对于上行和下行统一配置;或者,所述至少一个定时器中的部分定时器对于上行和下行独立配置,且另一部分定时器对于上行和下行统一配置。
例如:非激活定时器、RTT定时器以及重传定时器对于上行和下行独立配置。
例如:RTT定时器以及重传定时器对于上行和下行独立配置,非激活定时器对于上行和下行统一配置。
例如:非激活定时器、RTT定时器以及重传定时器对于上行和下行统一配置。
在一些实施方式中,在所述RTT定时器和/或所述重传定时器未运行,且基于所述第一信号确定的唤醒时间结束的情况下,所述终端设备执行以下至少一种操作:
关闭所述第二通信模块;
控制所述第二通信模块进入睡眠模式;
控制所述第一通信模块进入监听模式。
在一些实施方式中,所述终端设备在以下至少一种情况下,启动或重启第二定时器:
接收到PDCCH;
接收到PDSCH;
发送PUSCH;
其中,所述第二定时器运行期间所述第二通信模块被唤醒。
这里,所述第二定时器与第一定时器相同;或者,所述第二定时器与第一定时器不同;其中,所述第一定时器的启动基于所述第一信号触发,所述第一定时器运行期间所述第二通信模块被唤醒。
在一些实施方式中,所述第二定时器与第一定时器不同的情况下,所述第二定时器通过RRC信令进行配置或者通过DCI进行指示或者通过所述第一信号进行指示。
在一些实施方式中,在所述第二定时器超时的情况下,所述终端设备执行以下至少一种操作:
关闭所述第二通信模块;
控制所述第二通信模块进入睡眠模式;
控制所述第一通信模块进入监听模式。
在一些实施方式中,在非激活定时器、第一定时器以及重传定时器均未运行的情况下,所述终端设备执行以下至少一种操作:
关闭所述第二通信模块;
控制所述第二通信模块进入睡眠模式;
控制所述第一通信模块进入监听模式。
在一些实施方式中,所述终端设备接收到PDCCH,所述PDCCH携带以下至少之一种信息:
第八信息,所述第八信息用于指示不需要监听的PDCCH时机;
第九信息,所述第九信息用于指示监听PDCCH所使用的搜索空间集组(Search Space Set Group,SSCG)配置。
这里,引入PDCCH自适应方案,即PDCCH skipping和/或SSCG;其中,PDCCH skipping是指终端设备跳过某个时间段内的PDCCH时机,在该时间段内不需要监听PDCCH。SSCG是指一组搜索空间集,不同SSCG之间的PDCCH时机的疏密程度不同,终端设备在较为稀疏的SSCG上监听PDCCH时机会带来较低的能耗,终端设备在较为密集的SSCG上监听PDCCH时机会带来较高的能耗,通过切换SSCG可以实现不同程度的节能。
这里,通过DCI(承载于PDCCH中)中第八信息可以动态指示终端设备跳过某个时间段内的PDCCH时机不需要监听。在一些实施方式中,所述第八信息用于指示不需要监听PDCCH时机的时间段。
这里,通过DCI(承载于PDCCH中)中第九信息可以动态指示终端设备使用某个SSCG配置监听PDCCH。
以下结合具体应用实例对上述技术方案进行举例说明。
应用实例一
关于搜索空间的配置,包括以下参数:周期、长度(duration)和偏移量(offset)。其中,在搜索空间的duration上具有一系列的PDCCH时机(PDCCH occasion),duration的每个时隙上的一个PDCCH时机的时域长度为几个符号取决于网络侧配置。
关于WUR(即上述方案中的第一通信模块),WUR是一种低功率接收机,用于接收唤醒信号(即上述方案中的第一信号),然后唤醒主接收机(即上述方案中的第二通信模块)进行通信。WUR可以应用在RRC空闲态、RRC非激活态以及RRC连接态下的终端设备。其中,对于RRC空闲态、RRC非激活态以及RRC连接态下的终端设备下的终端设备,可以通过WUR唤醒主接收机进而进行PDCCH监听。WUR可以是周期性监听或者连续监听唤醒信号,这里,由于WUR的功率较低,其连续监听唤醒信号对于功率损耗可以容忍。无论WUR是周期性监听或者连续监听唤醒信号,终端设备都可以基于唤醒信号中携带的内容来监听PDCCH。在一些实施方式中,唤醒信号中可以携带第一信息,用于指示主接收机的唤醒时长(也即通信时长)。唤醒信号中可以携带第二信息,用于指示主接收机的唤醒起始时间。唤醒信号中可以携带第三信息,用于指示主接收机的唤醒程度,例如深度静默期(deep sleep)、静默期(light sleep)、休眠期(Micro sleep),激活期(PDCCH monitor only)、PDCCH+PDSCH等。如果WUR是周期性监听唤醒信号,则WUR可以被配置多个监听周期(如长监听周期、短监听周期),根据唤醒信号携带的指令可以控制WUR进入哪种监听周期。
方案1:为了延长调度机会(即延长监听PDCCH的时间或者说延长主接收机被唤醒的时间),能够维持非连续监听和接收,需要引入非激活定时器(T2)、RTT定时器(T3)、重传定时器(T4)中的至少之一。这三个定时器的使用方法与NR中DRX中对应的定时器的使用方法类似,可以参照前述相关技术方案。在重传定时器和非激活定时器都没有运行,且当前时间已经超过唤醒信号指示的唤醒时间段,则终端设备关闭主接收机或者终端设备进入主接收机睡眠模式,WUR监听模式或者仅WUR监听模式。
这里,非激活定时器(T2)、RTT定时器(T3)、重传定时器(T4)可以对于下行接收和上行发送单独配置,也可以使用相同配置。这三个定时器可以通过RRC半静态配置,也可以通过DCI动态指示,同时DCI还可以指示这三个定时器在某次调度中是否开启、开启时长、开启的起始时间等信息。
图4-1和图4-2给出了一种下行接收过程的示意图。如图4-1所示,WUR监听到唤醒信号,启动定时器T1,定时器T1运行期间主接收机被唤醒;主接收机被唤醒后监听PDCCH,监听到一个调度新传的PDCCH(记作新PDCCH)时,启动定时器T2(即非激活定时器),定时器T2运行期间主接收机被唤醒,终端设备根据监听到的PDCCH接收新传的PDSCH(记作新PDSCH),接收失败进行HARQ NACK反馈,并启动定时器T3(即RTT定时器),定时器T3运行期间终端设备不监听用于重传调度的PDCCH;定时器T3超时后,终端设备启动定时器T4(即重传定时器),定时器T4运行期间终端设备监听用于重传调度的PDCCH,并根据监听到的PDCCH接收重传的PDSCH。如图4-2所示,相对于图4-1所示的过程,终端设备在接收到任何一个PDCCH或者接收到PDSCH都会启动或者重启定时器T1或者T5,从而延长唤醒时长。如果定时器T1或者T5超时,则终端设备关闭主接收机或者进入主接收机睡眠模式,进入WUR监听模式或者仅WUR监听模式。上述能够触发定时器T1或者T5启动或者重启的事件只是一个示例,不排除其他可能,例如也可以仅仅在接收到PDCCH才可以触发定时器T1或者T5启动或者重启,而在接收到PDSCH不能触发定时器T1或者T5启动或者重启。定时器T1或者T5可以通过来自WUR侧的唤醒信号来获取,或者通过RRC信令半静态配置。其中定时器T5可以独立配置,也可以与T1相同。上述过程中,在没有定时器T5的情况下,如果定时器T1、定时器T2和定时器T4没有任何一个定时器运行,则终端设备关闭主接收机或者进入主接收机睡眠模式,进入WUR监听模式或者仅WUR监听模式。
图5-1和图5-2给出了一种上行发送过程的示意图。如图5-1所示,WUR监听到唤醒信号,启动定时器T1,定时器T1运行期间主接收机被唤醒;主接收机被唤醒后监听PDCCH,监听到一个调度新传的PDCCH(记作新PDCCH)时,启动定时器T2(即非激活定时器),定时器T2运行期间主接收机被唤醒,终端设备根据监听到的PDCCH发送新传的PUSCH(记作新PUSCH),并启动定时器T3(即RTT定时器),定时器T3运行期间终端设备不监听用于重传调度的PDCCH;定时器T3超时后,终端设备启动定时器T4(即重传定时器),定时器T4运行期间终端设备监听用于重传调度的PDCCH,并根据监听到的PDCCH重传PUSCH。如图5-2所示,相对于图5-1所示的过程,终端设备在接收到任何一个PDCCH,或者发送PUSCH都会启动或者重启定时器T1或者T5,如果定时器T1或者T5超时,则终端设备关闭主接收机或者进入主接收机睡眠模式,进入WUR监听模式或者仅WUR监听模式。上述能够触发定时器T1或者T5启动或者重启的事件只是一个示例,不排除其他可能,例如也可以仅仅在接收到PDCCH才可以触发定时器T1或者T5启动或者重启,而在发送PUSCH不能触发定时器T1或者T5启动或者重启。定时器T1或者T5可以通过来自WUR侧的唤醒信号来获取,或者通过RRC信令半静态配置。其中定时器T5可以独立配置,也可以与T1相同。上述过程中,在没有定时器T5的情况下,如果定时器T1、定时器T2和定时器T4没有任何一个定时器运行,则终端设备关闭主接收机或者进入主接收机睡眠模式,进入WUR监听模式或者仅WUR监听模式。
方案2:为了终端设备节能,引入PDCCH自适应方案,即PDCCH skipping和/或SSCG;其中,PDCCH skipping是指终端设备跳过某个时间段内的PDCCH时机,在该时间段内不需要监听PDCCH。SSCG是指一组搜索空间集,不同SSCG之间的PDCCH时机的疏密程度不同,终端设备在较为稀疏的SSCG上监听PDCCH时机会带来较低的能耗,终端设备在较为密集的SSCG上监听PDCCH时机会带来较高的能耗,通过切换SSCG可以实现不同程度的节能。WUR唤醒主接收机之后,终端设备处于休眠状态,会根据PDCCH配置在合适的PDCCH时机监听PDCCH,同时PDCCH也会动态指示不需要监听的PDCCH时机。在该过程中,网络设备也可以通过DCI动态调整SSSG,从而实现动态调整PDCCH配置。
上述技术方案,通过WUR结合方案1、2,来替代DRX功能,实现了非连续接收,降低了了MAC层的处理复杂度,同时有效达到终端设备节能。
在一些实施方式中,所述终端设备在第一时间段内执行第一操作,所述第一操作包括以下至少一种操作:测量、读取系统广播信息;其中,所述第一时间段为不存在PDCCH时机的时间段和/或为网络设备配置的时间段。
这里,所述终端设备在第一时间段内执行第一操作,可以通过以下方案来实现:
方案A)
在一些实施方式中,所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息包括第一间隔的配置,所述第一间隔为一次性间隔且所述一次性间隔对应的时间段为所述第一时间段。
这里,所述第一间隔也可以称为一次性间隔(one short Gap)。
在一些实施方式中,所述第二配置信息用于确定一组候选间隔,所述第一间隔为所述一组候选间隔中的第一个候选间隔或者为所述一组候选间隔中满足第一条件的第一个候选间隔,所述第一条件为候选间隔距离所述终端设备接收到测量命令的时间大于等于第一门限。
这里,所述候选间隔的间隔长度和/或间隔周期和/或起始时间通过所述第二配置信息进行配置。
这里,所述候选间隔的起始时间通过所述第二配置信息进行配置,可以有如下实现方式:
方式一:
所述候选间隔的起始时间所在的系统帧号和子帧号通过所述第二配置信息进行配置。
方式二:
所述候选间隔的起始时间所在的系统帧号和子帧号基于至少一个参数确定,所述至少一个参数通过所述第二配置信息进行配置。
在一些实施方式中,所述至少一个参数包括以下至少之一:间隔长度、间隔周期、间隔偏移量。
选项1)在一些实施方式中,所述起始时间所在的系统帧号和子帧号通过以下公式确定:
(SFN*10+subframe number)mod(Gap length)=gapOffset;
其中,SFN代表系统帧号,subframe number代表子帧号,Gap length代表间隔长度或者间隔周期,gapOffset代表间隔偏移量,mod代表取余运算。
选项2)在一些实施方式中,所述起始时间所在的系统帧号和子帧号通过以下公式确定:
SFN mod T=FLOOR(gapOffset/10);
subframe number=gapOffset mod 10;
其中,SFN代表系统帧号,subframe number代表子帧号,gapOffset代表间隔偏移量,T=Gap length/10,Gap length代表间隔长度或者间隔周期,mod代表取余运算,FLOOR代表向下取整运算。
方案B)
在一些实施方式中,所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一操作的配置,所述第一操作的配置包括所述第一时间段的配置,所述第一时间段为不存在PDCCH时机的时间段。
在一些实施方式中,所述第一操作的配置还包括第三定时器的配置,所述第三定时器运行期间所述终端设备能够执行所述第一操作,所述第三定时器超时后所述终端设备退出执行所述第一操作。
方案C)
在一些实施方式中,所述终端设备基于PDCCH时机的配置确定所述第一时间段,所述第一时间段为不存在PDCCH时机的时间段。
以下结合具体应用实例对上述技术方案进行举例说明。
应用实例二
一些功能与DRX功能相关,当DRX功能取消后,如何实现这些功能需要明确。以自动邻区关系(Automatic Neighbor Relations,ANR)测量为例,网络设备会指示终端设备测量小区组标识(CGI),终端设备在DRX模式的静默期(也可以称为空闲期(Idle period))测量CGI,即读取小区组标识(CGI reading),这里,小区组标识属于系统广播信息。如果DRX功能取消,如何实现ANR测量需要明确。同样的情况也出现在帧定时偏差(SFTD)测量。为此,网络设备给终端设备配置一个一次性间隔(one short Gap),终端设备在one short Gap内执行ANR测量和/或SFTD测量。
方案1:网络设备可以通过RRC信令配置one short Gap,配置的参数包括:间隔长度和/或间隔周期和/或起始时间。这里,通过这些参数可以确定出一组候选间隔(周期性的一组间隔),one short Gap为所述一组候选间隔中的第一个候选间隔;或者,one short Gap为所述一组候选间隔中满足第一条件的第一个候选间隔,所述第一条件为候选间隔距离所述终端设备接收到测量命令的时间大于等于第一门限,这里,第一门限可以是网络设备配置的门限,也就是说,one short Gap为所述一组候选间隔中距离测量命令的接收时间大于等于第一门限的第一个候选测量间隔。
上述配置one short Gap的RRC信令可以与用到该one short Gap的测量配置一起配置给终端设备。
上述候选间隔的起始时间所在的系统帧号和子帧号可以通过以下选项来确定:
选项1)网络设备直接配置(例如通过RRC信令)终端候选间隔的起始时间所在的系统帧号和子帧号。
选项2)候选间隔的起始时间所在的系统帧号和子帧号通过以下公式确定:
(SFN*10+subframe number)mod(Gap length)=gapOffset;
其中,SFN代表系统帧号,subframe number代表子帧号,Gap length代表间隔长度或者间隔周期,gapOffset代表间隔偏移量,mod代表取余运算。这里,Gap length和gapOffset取决于网络设备的配置,例如通过RRC信令进行配置。
选项3)候选间隔的起始时间所在的系统帧号和子帧号通过以下公式确定:
SFN mod T=FLOOR(gapOffset/10);
subframe number=gapOffset mod 10;
其中,SFN代表系统帧号,subframe number代表子帧号,gapOffset代表间隔偏移量,T=Gap length/10,Gap length代表间隔长度或者间隔周期,mod代表取余运算,FLOOR代表向下取整运算。这里,Gap length和gapOffset取决于网络设备的配置,例如通过RRC信令进行配置。
方案2:网络设备根据PDCCH周期(即搜索空间的周期)可以确定出存在PDCCH时机的时间段以及不存在PDCCH时机的时间段,基于此,网络设备给终端设备配置一个没有PDCCH时机的时间段,终端设备在该时间段内进行ANR测量和/或SFTD测量。进一步,网络设备还可以配置一个定时器,定时器超时后,终端设备退出测量操作。
方案3:终端设备根据自身实现在没有PDCCH时机的时间段内进行ANR测量和/或SFTD测量。
通过上述方案,在取消DRX功能后,终端设备可以在没有PDCCH时机的时间段内执行测量。
在一些实施方式中,所述终端设备使用第一时间周期作为DRX周期执行测量和/或定义已知known小区和/或定义未知unknown小区。
这里,所述第一时间周期为网络设备配置的周期。
这里,所述第一时间周期与PDCCH周期相同;或者,所述第一时间周期与PDCCH周期不同。
以下结合具体应用实例对上述技术方案进行举例说明。
应用实例三
对于一些操作和定义,需要应用到DRX周期这一信息。
以测量为例,以下测量需要应用到DRX周期:
PSS/SSS检测的时间段(Time period for PSS/SSS detection)、时间索引检测的时间段(Time period for time index detection)、频内/频间测量的测量时期(Measurement period for intra/inter-frequency measurements)、SFTD测量需求(SFTD measurement requirement)等,都与DRX周期相关。以下表1给出了频内测量的测量时期与DRX周期的关系:
Figure PCTCN2022129327-appb-000001
表1
在取消DRX功能后,网络设备可以给终端设备配置一个时间周期或者终端设备直接使用PDCCH周期来代替DRX周期,应用到与DRX周期关联的操作。
获取小区的下行同步需要的时间长度和DRX周期有关,例如定义已知小区(known cell)和未知小区(unknown cell),都与DRX周期相关。以下表2给出了已知小区(known cell)和未知小区(unknown cell)的定义与DRX周期的关系。
Figure PCTCN2022129327-appb-000002
Figure PCTCN2022129327-appb-000003
表2
在取消DRX功能后,网络设备可以给终端设备配置一个时间周期或者终端设备直接使用PDCCH周期来代替DRX周期,应用到与DRX周期关联的定义,例如应用到已知小区(known cell)和未知小区(unknown cell)的定义,即将表2中的“DRX cycles”替换为网络设备配置的时间周期或者PDCCH周期。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行”用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图6是本申请实施例提供的非连续接收的实现装置的结构组成示意图,应用于终端设备,如图6所示,所述非连续接收的实现装置包括:
接收单元601,用于基于第一信号监听PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。
在一些实施方式中,所述第一信号携带以下至少一种信息:
第一信息,所述第一信息用于指示所述第二通信模块的唤醒时长或者指示第一定时器的时长;
第二信息,所述第二信息用于指示所述第二通信模块的唤醒起始时间或者指示第一定时器的启动时间;
第三信息,所述第三信息用于指示所述第二通信模块的唤醒程度;
其中,所述第一定时器的启动基于所述第一信号触发,所述第一定时器运行期间所述第二通信模块被唤醒。
在一些实施方式中,所述接收单元601,用于周期性监听所述第一信号;或者,连续监听所述第一信号。
在一些实施方式中,所述第一信号携带第四信息,所述第四信息用于指示所述第一通信模块的监听周期。
在一些实施方式中,所述接收单元601,用于获取第一配置信息或第一指示信息,所述第一配置信息包括至少一个定时器的配置,所述第一指示信息用于指示至少一个定时器,所述至少一个定时器包括以下至少之一:非激活定时器、RTT定时器、重传定时器;
其中,所述非激活定时器运行期间所述终端设备监听PDCCH;所述RTT定时器超时用于触发所述重传定时器开启;所述重传定时器运行期间所述终端设备监听PDCCH。
在一些实施方式中,所述接收单元601,用于获取所述至少一个定时器的启动相关信息,所述启动相关信息包括以下至少之一:
第五信息,所述第五信息用于指示是否开启定时器;
第六信息,所述第六信息用于指示定时器的长度;
第七信息,所述第七信息用于指示定时器的启动时间。
在一些实施方式中,所述装置还包括:处理单元602,用于在所述RTT定时器和/或所述重传定时器未运行,且基于所述第一信号确定的唤醒时间结束的情况下,执行以下至少一种操作:
关闭所述第二通信模块;
控制所述第二通信模块进入睡眠模式;
控制所述第一通信模块进入监听模式。
在一些实施方式中,所述至少一个定时器对于上行和下行独立配置;或者,所述至少一个定时器对于上行和下行统一配置;或者,所述至少一个定时器中的部分定时器对于上行和下行独立配置,且另一部分定时器对于上行和下行统一配置。
在一些实施方式中,所述处理单元602,用于在以下至少一种情况下,启动或重启第二定时器:
接收到PDCCH;
接收到物理下行共享信道PDSCH;
发送物理上行共享信道PUSCH;
其中,所述第二定时器运行期间所述第二通信模块被唤醒。
在一些实施方式中,所述第二定时器与第一定时器相同;或者,所述第二定时器与第一定时器不同;其中,所述第一定时器的启动基于所述第一信号触发,所述第一定时器运行期间所述第二通信模块被唤醒。
在一些实施方式中,所述第二定时器与第一定时器不同的情况下,所述第二定时器通过RRC信令进行配置或者通过DCI进行指示或者通过所述第一信号进行指示。
在一些实施方式中,所述处理单元602,用于在所述第二定时器超时的情况下,执行以下至少一种操作:
关闭所述第二通信模块;
控制所述第二通信模块进入睡眠模式;
控制所述第一通信模块进入监听模式。
在一些实施方式中,所述处理单元602,用于在非激活定时器、第一定时器以及重传定时器均未运行的情况下,执行以下至少一种操作:
关闭所述第二通信模块;
控制所述第二通信模块进入睡眠模式;
控制所述第一通信模块进入监听模式。
在一些实施方式中,所述接收单元601,用于接收到PDCCH,所述PDCCH携带以下至少之一种信息:
第八信息,所述第八信息用于指示不需要监听的PDCCH时机;
第九信息,所述第九信息用于指示监听PDCCH所使用的搜索空间集组SSCG配置。
在一些实施方式中,所述接收单元601,用于在第一时间段内执行第一操作,所述第一操作包括以下至少一种操作:测量、读取系统广播信息;其中,所述第一时间段为不存在PDCCH时机的时间段和/或为网络设备配置的时间段。
在一些实施方式中,所述接收单元601,用于接收所述网络设备发送的第二配置信息,所述第二配置信息包括第一间隔的配置,所述第一间隔为一次性间隔且所述一次性间隔对应的时间段为所述第一时间段。
在一些实施方式中,所述第二配置信息用于确定一组候选间隔,所述第一间隔为所述一组候选间隔中的第一个候选间隔或者为所述一组候选间隔中满足第一条件的第一个候选间隔,所述第一条件为候选间隔距离所述终端设备接收到测量命令的时间大于等于第一门限。
在一些实施方式中,所述候选间隔的间隔长度和/或间隔周期和/或起始时间通过所述第二配置信息进行配置。
在一些实施方式中,所述候选间隔的起始时间所在的系统帧号和子帧号通过所述第二配置信息 进行配置;或者,所述候选间隔的起始时间所在的系统帧号和子帧号基于至少一个参数确定,所述至少一个参数通过所述第二配置信息进行配置。
在一些实施方式中,所述至少一个参数包括以下至少之一:间隔长度、间隔周期、间隔偏移量。
在一些实施方式中,所述起始时间所在的系统帧号和子帧号通过以下公式确定:
(SFN*10+subframe number)mod(Gap length)=gapOffset;
其中,SFN代表系统帧号,subframe number代表子帧号,Gap length代表间隔长度或者间隔周期,gapOffset代表间隔偏移量,mod代表取余运算。
在一些实施方式中,所述起始时间所在的系统帧号和子帧号通过以下公式确定:
SFN mod T=FLOOR(gapOffset/10);
subframe number=gapOffset mod 10;
其中,SFN代表系统帧号,subframe number代表子帧号,gapOffset代表间隔偏移量,T=Gap length/10,Gap length代表间隔长度或者间隔周期,mod代表取余运算,FLOOR代表向下取整运算。
在一些实施方式中,所述接收单元601,用于接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一操作的配置,所述第一操作的配置包括所述第一时间段的配置,所述第一时间段为不存在PDCCH时机的时间段。
在一些实施方式中,所述第一操作的配置还包括第三定时器的配置,所述第三定时器运行期间所述终端设备能够执行所述第一操作,所述第三定时器超时后所述终端设备退出执行所述第一操作。
在一些实施方式中,所述装置还包括:确定单元,用于基于PDCCH时机的配置确定所述第一时间段,所述第一时间段为不存在PDCCH时机的时间段。
在一些实施方式中,所述处理单元602,用于使用第一时间周期作为DRX周期执行测量和/或定义已知known小区和/或定义未知unknown小区。
在一些实施方式中,所述第一时间周期为网络设备配置的周期。
在一些实施方式中,所述第一时间周期与PDCCH周期相同;或者,所述第一时间周期与PDCCH周期不同。
本领域技术人员应当理解,本申请实施例的上述非连续接收的实现装置的相关描述可以参照本申请实施例的非连续接收的实现方法的相关描述进行理解。
图7是本申请实施例提供的一种通信设备700示意性结构图。该通信设备可以终端设备,也可以是网络设备。图7所示的通信设备700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,如图7所示,通信设备700还可以包括收发器730,处理器710可以控制该收发器730与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器730可以包括发射机和接收机。收发器730还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备700具体可为本申请实施例的网络设备,并且该通信设备700可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备700具体可为本申请实施例的移动终端/终端设备,并且该通信设备700可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的芯片的示意性结构图。图8所示的芯片800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,芯片800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,该芯片800还可以包括输入接口830。其中,处理器810可以控制该输入接口830与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片800还可以包括输出接口840。其中,处理器810可以控制该输出接口1940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各 个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统900的示意性框图。如图9所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行 时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (34)

  1. 一种非连续接收的实现方法,所述方法包括:
    终端设备基于第一信号监听物理下行控制信道PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。
  2. 根据权利要求1所述的方法,其中,所述第一信号携带以下至少一种信息:
    第一信息,所述第一信息用于指示所述第二通信模块的唤醒时长或者指示第一定时器的时长;
    第二信息,所述第二信息用于指示所述第二通信模块的唤醒起始时间或者指示第一定时器的启动时间;
    第三信息,所述第三信息用于指示所述第二通信模块的唤醒程度;
    其中,所述第一定时器的启动基于所述第一信号触发,所述第一定时器运行期间所述第二通信模块被唤醒。
  3. 根据权利要求1或2所述的方法,其中,所述终端设备基于第一信号监听PDCCH之前,所述方法还包括:
    所述终端设备周期性监听所述第一信号;或者,
    所述终端设备连续监听所述第一信号。
  4. 根据权利要求3所述的方法,其中,所述终端设备周期性监听所述第一信号的情况下,所述第一信号携带第四信息,所述第四信息用于指示所述第一通信模块的监听周期。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述方法还包括:
    所述终端设备获取第一配置信息或第一指示信息,所述第一配置信息包括至少一个定时器的配置,所述第一指示信息用于指示至少一个定时器,所述至少一个定时器包括以下至少之一:非激活定时器、往返时间RTT定时器、重传定时器;
    其中,所述非激活定时器运行期间所述终端设备监听PDCCH;所述RTT定时器超时用于触发所述重传定时器开启;所述重传定时器运行期间所述终端设备监听PDCCH。
  6. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述终端设备获取所述至少一个定时器的启动相关信息,所述启动相关信息包括以下至少之一:
    第五信息,所述第五信息用于指示是否开启定时器;
    第六信息,所述第六信息用于指示定时器的长度;
    第七信息,所述第七信息用于指示定时器的启动时间。
  7. 根据权利要求5或6所述的方法,其中,所述方法还包括:
    在所述RTT定时器和/或所述重传定时器未运行,且基于所述第一信号确定的唤醒时间结束的情况下,所述终端设备执行以下至少一种操作:
    关闭所述第二通信模块;
    控制所述第二通信模块进入睡眠模式;
    控制所述第一通信模块进入监听模式。
  8. 根据权利要求5至7中任一项所述的方法,其中,
    所述至少一个定时器对于上行和下行独立配置;或者,
    所述至少一个定时器对于上行和下行统一配置;或者,
    所述至少一个定时器中的部分定时器对于上行和下行独立配置,且另一部分定时器对于上行和下行统一配置。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述方法还包括:
    所述终端设备在以下至少一种情况下,启动或重启第二定时器:
    接收到PDCCH;
    接收到物理下行共享信道PDSCH;
    发送物理上行共享信道PUSCH;
    其中,所述第二定时器运行期间所述第二通信模块被唤醒。
  10. 根据权利要求9所述的方法,其中,
    所述第二定时器与第一定时器相同;或者,
    所述第二定时器与第一定时器不同;
    其中,所述第一定时器的启动基于所述第一信号触发,所述第一定时器运行期间所述第二通信模块被唤醒。
  11. 根据权利要求10所述的方法,其中,所述第二定时器与第一定时器不同的情况下,所述第二定时器通过无线资源控制RRC信令进行配置或者通过下行控制信息DCI进行指示或者通过所述第一信号进行指示。
  12. 根据权利要求9至11中任一项所述的方法,其中,所述方法还包括:
    在所述第二定时器超时的情况下,所述终端设备执行以下至少一种操作:
    关闭所述第二通信模块;
    控制所述第二通信模块进入睡眠模式;
    控制所述第一通信模块进入监听模式。
  13. 根据权利要求9至11中任一项所述的方法,其中,所述方法还包括:
    在非激活定时器、第一定时器以及重传定时器均未运行的情况下,所述终端设备执行以下至少一种操作:
    关闭所述第二通信模块;
    控制所述第二通信模块进入睡眠模式;
    控制所述第一通信模块进入监听模式。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收到PDCCH,所述PDCCH携带以下至少之一种信息:
    第八信息,所述第八信息用于指示不需要监听的PDCCH时机;
    第九信息,所述第九信息用于指示监听PDCCH所使用的搜索空间集组SSCG配置。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述方法还包括:
    所述终端设备在第一时间段内执行第一操作,所述第一操作包括以下至少一种操作:测量、读取系统广播信息;其中,所述第一时间段为不存在PDCCH时机的时间段和/或为网络设备配置的时间段。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息包括第一间隔的配置,所述第一间隔为一次性间隔且所述一次性间隔对应的时间段为所述第一时间段。
  17. 根据权利要求16所述的方法,其中,所述第二配置信息用于确定一组候选间隔,所述第一间隔为所述一组候选间隔中的第一个候选间隔或者为所述一组候选间隔中满足第一条件的第一个候选间隔,所述第一条件为候选间隔距离所述终端设备接收到测量命令的时间大于等于第一门限。
  18. 根据权利要求17所述的方法,其中,所述候选间隔的间隔长度和/或间隔周期和/或起始时间通过所述第二配置信息进行配置。
  19. 根据权利要求18所述的方法,其中,
    所述候选间隔的起始时间所在的系统帧号和子帧号通过所述第二配置信息进行配置;或者,
    所述候选间隔的起始时间所在的系统帧号和子帧号基于至少一个参数确定,所述至少一个参数通过所述第二配置信息进行配置。
  20. 根据权利要求19所述的方法,其中,所述至少一个参数包括以下至少之一:间隔长度、间隔周期、间隔偏移量。
  21. 根据权利要求20所述的方法,其中,所述起始时间所在的系统帧号和子帧号通过以下公式确定:
    (SFN*10+subframe number)mod(Gap length)=gapOffset;
    其中,SFN代表系统帧号,subframe number代表子帧号,Gap length代表间隔长度或者间隔周期,gapOffset代表间隔偏移量,mod代表取余运算。
  22. 根据权利要求20所述的方法,其中,所述起始时间所在的系统帧号和子帧号通过以下公式确定:
    SFN mod T=FLOOR(gapOffset/10);
    subframe number=gapOffset mod 10;
    其中,SFN代表系统帧号,subframe number代表子帧号,gapOffset代表间隔偏移量,T=Gap  length/10,Gap length代表间隔长度或者间隔周期,mod代表取余运算,FLOOR代表向下取整运算。
  23. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息包括所述第一操作的配置,所述第一操作的配置包括所述第一时间段的配置,所述第一时间段为不存在PDCCH时机的时间段。
  24. 根据权利要求23所述的方法,其中,所述第一操作的配置还包括第三定时器的配置,所述第三定时器运行期间所述终端设备能够执行所述第一操作,所述第三定时器超时后所述终端设备退出执行所述第一操作。
  25. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述终端设备基于PDCCH时机的配置确定所述第一时间段,所述第一时间段为不存在PDCCH时机的时间段。
  26. 根据权利要求1至25中任一项所述的方法,其中,所述方法还包括:
    所述终端设备使用第一时间周期作为DRX周期执行测量和/或定义已知known小区和/或定义未知unknown小区。
  27. 根据权利要求26所述的方法,其中,所述第一时间周期为网络设备配置的周期。
  28. 根据权利要求26或27所述的方法,其中,
    所述第一时间周期与PDCCH周期相同;或者,
    所述第一时间周期与PDCCH周期不同。
  29. 一种非连续接收的实现装置,应用于终端设备,所述装置包括:
    接收单元,用于基于第一信号监听PDCCH;其中,所述第一信号通过所述终端设备的第一通信模块来监听,所述PDCCH通过所述终端设备的第二通信模块来监听,所述第一通信模块的工作能耗低于所述第二通信模块,所述第一信号用于唤醒所述第二通信模块。
  30. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至28中任一项所述的方法。
  31. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至28中任一项所述的方法。
  32. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至28中任一项所述的方法。
  33. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至28中任一项所述的方法。
  34. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至28中任一项所述的方法。
PCT/CN2022/129327 2022-11-02 2022-11-02 一种非连续接收的实现方法及装置、终端设备 WO2024092570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129327 WO2024092570A1 (zh) 2022-11-02 2022-11-02 一种非连续接收的实现方法及装置、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129327 WO2024092570A1 (zh) 2022-11-02 2022-11-02 一种非连续接收的实现方法及装置、终端设备

Publications (1)

Publication Number Publication Date
WO2024092570A1 true WO2024092570A1 (zh) 2024-05-10

Family

ID=90929219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129327 WO2024092570A1 (zh) 2022-11-02 2022-11-02 一种非连续接收的实现方法及装置、终端设备

Country Status (1)

Country Link
WO (1) WO2024092570A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180332533A1 (en) * 2017-05-15 2018-11-15 Qualcomm Incorporated Wake-up signal (wus) and wake-up receiver (wur) in a communication device
US20200022081A1 (en) * 2017-03-20 2020-01-16 Sony Mobile Communications Inc. Wake-up signal with reconfigurable sequence design
CN110740498A (zh) * 2019-09-30 2020-01-31 华为终端有限公司 降低终端功耗的方法、装置及设备
CN111586812A (zh) * 2019-02-15 2020-08-25 海信集团有限公司 一种终端接收节能信号的方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200022081A1 (en) * 2017-03-20 2020-01-16 Sony Mobile Communications Inc. Wake-up signal with reconfigurable sequence design
US20180332533A1 (en) * 2017-05-15 2018-11-15 Qualcomm Incorporated Wake-up signal (wus) and wake-up receiver (wur) in a communication device
CN111586812A (zh) * 2019-02-15 2020-08-25 海信集团有限公司 一种终端接收节能信号的方法及终端
CN110740498A (zh) * 2019-09-30 2020-01-31 华为终端有限公司 降低终端功耗的方法、装置及设备

Similar Documents

Publication Publication Date Title
US11064559B2 (en) Method of sharing a UE receiver between D2D and cellular operations based on activity
US9961638B2 (en) Wireless device, a radio network node and methods for discontinuous reception in device to device communications
JP7462053B2 (ja) 不連続受信drxパラメーター構成方法及び装置
WO2020019187A1 (zh) 一种信道监听方法及装置、终端设备、网络设备
WO2021120013A1 (zh) 监听唤醒信号的方法、终端设备和网络设备
WO2013020417A1 (zh) 一种非连续接收方法及系统
WO2020107479A1 (zh) 一种传输数据的方法、终端设备和网络设备
WO2013020401A1 (zh) 一种非连续接收方法及系统
US20220039013A1 (en) Method and device for discontinuous reception
WO2021082012A1 (zh) 用于确定非连续接收持续定时器的启动状态的方法及设备
WO2021056136A1 (zh) 监听wus的方法、发送信息的方法及设备
WO2020243931A1 (zh) 调整pdcch监听周期的方法和设备
WO2021092861A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022222892A1 (zh) 一种非连续接收的配置方法及装置
WO2023193198A1 (zh) 一种参数确定方法及装置、终端设备
WO2024092570A1 (zh) 一种非连续接收的实现方法及装置、终端设备
WO2024092522A1 (zh) 一种drx实现方法及装置、终端设备
JP2024511608A (ja) サイドリンク不連続受信命令のトリガー方法、装置及びシステム
WO2024103234A1 (zh) 无线通信方法及装置、终端设备、网络设备
WO2023011240A1 (zh) 数据传输方法、装置、网络侧设备及终端
WO2024093371A1 (zh) 信息传输方法、基站、终端及存储介质
WO2023000201A1 (zh) 一种drx配置方法及装置、终端设备、网络设备
WO2022199368A1 (zh) 一种资源分配方法、装置及终端
WO2023123241A1 (zh) 无线通信方法、终端设备和网络设备
WO2022199369A1 (zh) 一种直通链路激活状态的处理方法及终端