WO2024093371A1 - 信息传输方法、基站、终端及存储介质 - Google Patents

信息传输方法、基站、终端及存储介质 Download PDF

Info

Publication number
WO2024093371A1
WO2024093371A1 PCT/CN2023/108393 CN2023108393W WO2024093371A1 WO 2024093371 A1 WO2024093371 A1 WO 2024093371A1 CN 2023108393 W CN2023108393 W CN 2023108393W WO 2024093371 A1 WO2024093371 A1 WO 2024093371A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
silent
configuration information
domain resource
base station
Prior art date
Application number
PCT/CN2023/108393
Other languages
English (en)
French (fr)
Inventor
牛丽
高媛
沙秀斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024093371A1 publication Critical patent/WO2024093371A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to an information transmission method, a base station, a terminal and a storage medium.
  • some embodiments of the present disclosure provide an information transmission method.
  • the method includes:
  • the base station sends configuration information of a silent time to the terminal, where the silent time is the time during which the base station is in a silent state.
  • some embodiments of the present disclosure provide an information transmission method.
  • the method includes:
  • the terminal receives configuration information of the silent time from the base station; the silent time is the time when the base station is in the silent state.
  • some embodiments of the present disclosure provide an information transmission device.
  • the device includes:
  • the sending unit is used to send configuration information of the silent time to the terminal, where the silent time is the time when the base station is in the silent state.
  • some embodiments of the present disclosure provide an information transmission device.
  • the device includes:
  • the receiving unit is used to receive configuration information of the silent time from the base station; the silent time is the time when the base station is in the silent state.
  • some embodiments of the present disclosure provide a base station, which includes: a processor and a memory, wherein the memory stores instructions executable by the processor, and when the processor is configured to execute the instructions, the base station implements the method provided above.
  • some embodiments of the present disclosure provide a terminal, which includes: a processor and a memory, wherein the memory stores instructions executable by the processor, and when the processor is configured to execute the instructions, the terminal implements the method provided above.
  • some embodiments of the present disclosure provide a computer-readable storage medium, wherein the computer-readable storage medium stores computer instructions.
  • the computer instructions When the computer instructions are executed on a computer, the computer executes the method provided above.
  • some embodiments of the present disclosure provide a computer program product including computer instructions.
  • the computer instructions When the computer instructions are executed on a computer, the computer executes the method provided above.
  • FIG1 is a schematic diagram of the structure of a communication system according to some embodiments.
  • FIG2 is a schematic flow chart of an information transmission method according to some embodiments.
  • FIG3 is a schematic diagram of configuring a silent time of a base station according to some embodiments.
  • FIG4 is a schematic diagram of another configuration information of the silence time of a base station according to some embodiments.
  • FIG5 is a schematic diagram of configuration information of silence time of another base station according to some embodiments.
  • FIG6 is a schematic diagram of configuration information of silence time of another base station according to some embodiments.
  • FIG7 is a schematic diagram of configuration information of silence time of another base station according to some embodiments.
  • FIG8 is a schematic diagram of configuration information of silence time of another base station according to some embodiments.
  • FIG9 is a schematic diagram of the composition of an information transmission device according to some embodiments.
  • FIG10 is a schematic diagram of another information transmission device according to some embodiments.
  • FIG11 is a schematic diagram of the structure of a base station according to some embodiments.
  • FIG12 is a schematic diagram of the structure of a terminal according to some embodiments.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more features. In the description of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection.
  • connection For ordinary technicians in this field, the specific meanings of the above terms in the present disclosure can be understood according to the specific circumstances.
  • connection when describing the pipeline, the "connected” and “connection” used in the present disclosure have the meaning of conduction. The specific meaning needs to be understood in conjunction with the context.
  • words such as “exemplarily” or “for example” are used to indicate examples, illustrations or descriptions. Any embodiment or design described as “exemplarily” or “for example” in the embodiments of the present disclosure should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as “exemplarily” or “for example” is intended to present related concepts in a specific way.
  • 5G network has the advantages of fast network speed and low network latency. Due to the limitations of the frequency band and standard used by 5G network, compared with the fourth generation mobile communication technology (4th Generation mobile networks (4G) networks, 5G networks have the characteristic of small coverage radius, resulting in more 5G base stations than 4G base stations. In addition, 5G base stations deploy more antennas than 4G base stations, which requires more power consumption. For mobile communication networks, the communication traffic volume is not the same in all periods. 5G base stations remain turned on under different communication traffic volumes, resulting in unnecessary power consumption. Therefore, reducing the power consumption of 5G base stations to achieve energy saving of 5G base stations is an urgent problem to be solved.
  • the current energy-saving method for 5G base stations is to determine whether to turn on the 5G base station based on the current communication traffic volume. For example, the 5G base station is turned off when it is detected that the current communication traffic volume is lower than the traffic volume threshold, and the 5G base station is turned on when it is detected that the current communication traffic volume is higher than the traffic volume threshold.
  • this energy-saving method can reduce the power consumption of the 5G base station
  • the practice of turning off the 5G base station when the current communication traffic volume is lower than the traffic volume threshold makes it impossible for the terminals within the network range of the 5G base station to get a response from the 5G base station during the period when the 5G base station is turned off, resulting in users being unable to enjoy 5G network services in a timely manner, reducing the terminal's perception of use. Therefore, how to reduce the power consumption of the base station while ensuring the communication between the terminal and the 5G base station, and then ensuring the terminal's perception of use, is an urgent problem to be solved.
  • the embodiments of the present disclosure provide an information transmission method.
  • the base station sends the configuration information of the silent time to the terminal device, and the silent time is the time when the base station is in a silent state, that is, the terminal is informed of the time when the base station is in a silent state, so that the terminal stops transmitting network data to the base station during the time when the base station is in a silent state; in this way, it is avoided that the terminal transmits network data to the base station during the time when the base station is in a silent state, and does not receive a response from the base station, which causes the terminal's usage perception to be reduced, thereby ensuring the communication between the terminal and the 5G base station.
  • the base station is in a silent state during the silent time, which can reduce the power consumption of the base station, thereby reducing the power consumption of the base station while the terminal communicates with the 5G base station, thereby ensuring the terminal's usage perception.
  • the technical solution provided by the embodiments of the present disclosure can be applied to various communication systems, for example, a new radio (NR) communication system using 5G communication technology, a future evolution system, or a multi-communication convergence system, etc., and the present disclosure is not limited to this.
  • NR new radio
  • FIG. 1 is a schematic diagram of the structure of a communication system according to some embodiments.
  • the communication system 10 includes multiple base stations (e.g., base station 21 and base station 22) and multiple terminals (e.g., terminal 31, terminal 32, terminal 33, and terminal 34).
  • Multiple base stations and multiple terminals may be connected via a wired network or a wireless network.
  • the wired network or wireless network may include a router, a switch, or other devices that facilitate communication between multiple base stations and multiple terminals, which is not limited in the embodiments of the present disclosure.
  • a base station is used to provide wireless access services for multiple terminals.
  • a base station provides a service coverage area (also referred to as a cell). Terminals entering the area can communicate with the base station via wireless signals to receive wireless access services provided by the base station. There may be overlap between the service coverage area of base station 21 and the service coverage area of base station 22, and terminals in the overlapping area can receive wireless signals from multiple base stations.
  • each of the multiple base stations may be connected to multiple terminal devices, for example, base station 21 is connected to terminal 31 and terminal 32.
  • Terminal 31 and terminal 32 may be located in the same cell, or in different cells. That is, a base station may provide network services to a terminal in one cell, or may provide network services to terminals in multiple cells at the same time.
  • each of the multiple base stations may be an evolution nodeB (eNB), a next generation nodeB (gNB), a transmission point (transmission point), or a base station. Any of the access points (receive point, TRP), transmission point (transmission point, TP) and some other access nodes.
  • the base station can be divided into a macro base station for providing macro cells, a micro base station for providing micro cells (Pico cells) and a femto base station for providing femto cells.
  • future base stations may also adopt other names.
  • each of the multiple terminal devices may be a device with wireless transceiver function, such as a mobile phone, a tablet computer, a wearable device, a vehicle-mounted device, an augmented reality (AR)/virtual reality (VR) device, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), etc.
  • a device with wireless transceiver function such as a mobile phone, a tablet computer, a wearable device, a vehicle-mounted device, an augmented reality (AR)/virtual reality (VR) device, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), etc.
  • AR augmented reality
  • VR virtual reality
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • FIG1 is an exemplary structural diagram, and the number of devices included in the communication system illustrated in FIG1 is not limited, for example, the number of base stations is not limited and the number of terminal devices is not limited.
  • the communication system illustrated in FIG1 may also include other devices, which is not limited.
  • Fig. 2 is a schematic flow chart of an information transmission method according to some embodiments.
  • the information transmission method shown in Fig. 2 includes S101 and S102.
  • a base station sends configuration information of a silent time to a terminal.
  • S102 The terminal receives configuration information of the silent time from the base station.
  • the silent time is the time during which the base station is in the silent state. It can be understood that the power consumption of the base station in the silent state is less than that of the base station in the non-silent state.
  • the silent state may be replaced by other names, such as a dormant state, a sleeping state, a power saving state, etc., without limitation.
  • a base station in a silent state performs one or more of the following operations.
  • Operation 1 Disable the dynamic scheduling function.
  • the base station shuts down the dynamic scheduling function including stopping sending the physical downlink control channel (PDCCH) and stopping sending the physical downlink shared channel (PDSCH).
  • PDCCH is used to carry scheduling and other control information, such as transmission format, resource allocation, uplink scheduling permission, power control and uplink retransmission information
  • PDSCH is used to carry data from the transmission channel DSCH.
  • Operation 2 Stop sending downlink signals.
  • the downlink signal includes a PDCCH signal, a PDSCH signal, and a synchronization signal/physical broadcast channel block (SS/PBCH block, SSB) signal, etc., that is, the sending of the PDCCH signal, the PDSCH signal, the SSB signal, etc. is stopped.
  • SS/PBCH block synchronization signal/physical broadcast channel block
  • Operation 3 Stop receiving uplink signals.
  • the uplink signal includes a physical uplink control channel (PUCCH) signal and a physical uplink shared channel (PUSCH) signal, etc., that is, the reception of the PUCCH signal and the PUSCH signal is stopped.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PUCCH is used to carry the acknowledgment (ACK) or negative acknowledgment (NACK) of hybrid automation repeat request (HARQ), scheduling request (SR), and channel quality indicator (CQI).
  • PUSCH is used to carry user data and control information.
  • Operation 4 Turn on the energy saving function.
  • the energy-saving function may have multiple states, such as a light state, a micro state, and a deep state. Different states correspond to different silence durations (i.e., the duration of the silence state). For example, the silence duration of the base station in the light state is shorter than the silence duration of the base station in the micro state, and the silence duration of the base station in the micro state is shorter than the silence duration of the base station in the deep state.
  • the silence duration is the duration of the base station in the silence state.
  • the base station can achieve energy saving by turning off some of its own components. For example, when the base station stops sending downlink signals, the base station can turn off the transmitter. For another example, when the base station stops receiving uplink signals, the base station can turn off the receiver.
  • the silent state may have multiple types, and different types of silent states may have different energy-saving effects.
  • the types of silent states may include a first type, a second type, and a third type.
  • different types of silent states may correspond to different operations, for example, a base station in a first type of silent state performs operations 1 to 4, a base station in a second type of silent state performs operations 1 to 3, and a base station in a third type of silent state performs operation 4.
  • different types of silent states may correspond to different silence durations.
  • the configuration information of the silent time is used to determine the position of the silent time in the time domain. Therefore, the configuration information of the silent time may include relevant parameters for determining the position of the silent time in the time domain. As an example, the terminal may determine the position of the silent time in the time domain only based on the configuration information of the silent time. As another example, the terminal may determine the position of the silent time in the time domain based on the configuration information of the silent time and other information (such as other information sent by the base station, information predefined by the communication standard, etc.).
  • the following introduces the optional implementation method of the configuration information of the silent time.
  • Method 1 The configuration information of the silent time includes one or more of the following parameters: the start time of the silent time, the duration of the silent time, or the end time of the silent time.
  • the end time of the silent time can be obtained from the start time of the silent time and the duration of the silent time.
  • the duration of the silent time can be obtained from the start time of the silent time and the end time of the silent time.
  • the end time of the silent time may be replaced by other names, for example, the end time of the silent time may also be referred to as the termination time of the silent time.
  • FIG3 is a schematic diagram of configuring a silent time of a base station according to some embodiments.
  • the base station enters a silent state at the start time of the silent time, remains in the silent state during the duration of the silent time, and exits the silent state at the end time of the silent time.
  • the configuration information of the silent time can adopt the above-mentioned method 1, so that the terminal can determine the position of a silent time in the time domain.
  • the configuration information of the silent time may include one or more of the following parameters: the length of the first time domain resource including one or more silent periods, the start time of the first time domain resource, the end time of the first time domain resource, the length of the repetition period of the first time domain resource, the duration of the silent time, or the length of the silent period. There is a silent period in the cycle.
  • the first time domain resource may be any time domain resource in the time domain, and is not limited thereto.
  • the configuration information of the silent time may also include the starting time and/or the ending time of the silent time in the silent period.
  • the starting time and/or the ending time of the silent time in the silent period may also be pre-agreed, for example, the starting time of the pre-agreed silent time is the same as the starting time of the silent period.
  • FIG4 is a schematic diagram of another configuration of the silent time of a base station according to some embodiments.
  • a first time domain resource with a length of T2 may include multiple silent periods, such as silent period #1 and silent period #2.
  • the configuration information of the silent period needs to adopt the above-mentioned method 2 so that the terminal can determine the position of the first time domain resource in the time domain, and determine the positions of multiple silent periods that are periodically repeated on the first time domain resource.
  • the configuration information of the silent time may include one or more of the following parameters: the length of the first time domain resource including one or more silent periods, the start time of the first time domain resource, the end time of the first time domain resource, the length of the repetition period of the first time domain resource, the duration of the silent time, or the length of the silent period. There is one silent time in each silent period.
  • FIG5 is a schematic diagram of configuring a silent time of another base station according to some embodiments. As shown in FIG5, there are multiple first time domain resources that are periodically repeated in the time domain, multiple silent periods that are periodically repeated in each first time domain resource, and a silent time in each silent period.
  • the configuration information of the silent time can adopt the above-mentioned method 3 so that the terminal can determine the position of each silent time in the time domain.
  • the configuration information of the silent time includes: first configuration information and second configuration information.
  • the first configuration information is used to configure one or more first silent periods on the first time domain resource, and there is a silent time of a first duration in the first silent period.
  • the second configuration information is used to configure one or more second silent periods in the non-silent time in the first silent period, and there is a silent time of a second duration in the second silent period.
  • the first configuration information includes one or more of the following parameters: the length of the first time domain resource, the start time of the first time domain resource, the end time of the first time domain resource, the first duration, or the length of the first silent period.
  • the second configuration information includes one or more of the following parameters: the second duration, the length of the second silent period, or the length of the second time domain resource, and the second time domain resource is the time domain resource used to configure the second silent period in the non-silent time of the first silent period.
  • FIG6 is a schematic diagram of configuring the silence time of another base station according to some embodiments.
  • a first time domain resource with a length of T2 may include multiple first silence periods, such as first silence period #1 and first silence period #2.
  • There is a silence period with a duration of T1 in each first silence period and there are multiple second silence periods in each first silence period, such as second silence period #1 and second silence period #2, and there is a silence period with a duration of T3 in each second silence period.
  • the configuration information of the silence time can adopt the above-mentioned method four so that the terminal can determine the configuration of each silence time in the time domain.
  • the configuration information of the silent time is discontinuous reception DRX configuration information
  • the DRX configuration information includes one or more of the following parameters: the length of the DRX cycle, the on duration, the length of the first time domain resource including one or more DRX cycles, the start time of the first time domain resource, or the end time of the first time domain resource.
  • the inactive time or off period in the DRX cycle is the silent time.
  • FIG7 is a schematic diagram of configuring the silent time of another base station according to some embodiments.
  • there are multiple periodically repeated first time domain resources in the time domain and there are multiple periodically repeated DRX cycles in each first time domain resource, such as DRX cycle #1 and DRX cycle #2, and there is a silent time in each DRX cycle.
  • the configuration information of the silent time can adopt mode 5 so that the terminal can determine the position of each silent time in the time domain.
  • the configuration information of the silent time includes one or more of the following parameters: a bitmap sequence, a start time of the first time domain resource, or a length of a repetition period of the first time domain resource.
  • the bitmap sequence includes one or more indicator bits, each indicator bit corresponds to a time domain unit in the first time domain resource, and the indicator bit is used to indicate whether the corresponding time domain unit belongs to the silent time.
  • the value of the indicator bit is 0 to indicate that the corresponding time domain unit does not belong to the silent time, and the value of the indicator bit is 1 to indicate that the corresponding time domain unit belongs to the silent time.
  • the time domain unit may be a symbol, a time slot or a subframe, which is not limited.
  • FIG8 is a schematic diagram of the configuration of the silence time of another base station according to some embodiments.
  • a first time domain resource with a length of T2 may include multiple time domain units, such as time domain unit 1, time domain unit 2, time domain unit 3 and time domain unit 4.
  • the indicator bit corresponding to time domain unit 1 is 1, the indicator bit corresponding to time domain unit 2 is 1, the indicator bit corresponding to time domain unit 3 is 0, and the indicator bit corresponding to time domain unit 4 is 0, it means that the base station is in a silent state in time domain unit 1 and time domain unit 2, and in a non-silent state in time domain unit 3 and time domain unit 4.
  • the configuration information of the silent time can adopt the above-mentioned method six, so that the terminal can determine the position of each silent time in the time domain.
  • the configuration information of the silent time is carried in high-level signaling or physical layer signaling.
  • High-level signaling may include radio resource control RRC signaling, medium access control control element (MAC CE) or system message.
  • Physical layer signaling may include control information, such as downlink control information (DCI).
  • DCI downlink control information
  • the high-layer signaling includes configuration information of one or more silent periods, and an index value and/or a silent state type corresponding to the configuration information of each silent period.
  • the terminal can find the corresponding silent period configuration information based on the index value or the silent state type.
  • the configuration information of the silent time sent by the base station is about to take effect (or immediately).
  • the base station sends a MAC CE or DCI carrying the configuration information of the silent time to the terminal, so that the terminal can believe that the configuration information of the silent time carried by the MAC CE or DCI is about to take effect.
  • the base station will enter the silent state at the corresponding silent time according to the configuration information of the silent time.
  • the terminal will also determine the position of the silent time in the time domain according to the configuration information of the silent time.
  • the configuration information of the silent time sent by the base station is not yet effective.
  • the base station can send a first indication information to the terminal, and the first indication information can be used to indicate that the base station enters a silent state, or the first indication information is used to enable the configuration information of the silent time to take effect.
  • the terminal receives the first indication information from the base station, and can determine the effective configuration information of the silent time according to the first indication information, thereby determining the position of the silent time in the time domain according to the effective configuration information of the silent time.
  • the first indication information can be carried in the MAC CE Or in the DCI.
  • the first indication information may include an index value or a silence state type corresponding to the configuration information of the effective silence time.
  • the base station sends a silent time configuration information to the terminal through high-layer signaling or physical layer signaling. Afterwards, the base station can send a MAC CE or DCI to the terminal to indicate that the previously sent silent time configuration information is effective.
  • the base station sends multiple silent time configuration information (such as configuration information #1, configuration information #2, and configuration information #3) to the terminal through high-layer signaling or physical layer signaling.
  • the base station can send a MAC CE or DCI to the terminal, and the MAC CE or DCI includes the index value or silent state type corresponding to the effective silent time configuration information (such as configuration information #1).
  • the base station sends a DRX configuration information (equivalent to the configuration information of the silent time) to the terminal through high-layer signaling or physical layer signaling. Afterwards, the base station can send a MAC CE or DCI to the terminal to indicate that the previously sent DRX configuration information is effective.
  • the base station sends multiple DRX configuration information to the terminal through high-layer signaling or physical layer signaling. After that, the base station can send MAC CE or DCI to the terminal, and the MAC CE or DCI includes the index value and/or silent state type corresponding to the effective DRX configuration information.
  • the first indication information may also be used to indicate the start time of the silent time.
  • the start time of the silent time is determined according to the time when the terminal receives the first indication information.
  • the start time of the silent time is determined according to the time when the terminal receives the first indication information and the first offset value carried by the first indication information, that is, the start time of the silent time is equal to the sum of the time when the terminal receives the first indication information and the first offset value.
  • the start time of the silent time is determined according to the start time carried by the first indication information.
  • the base station may also send second indication information to the terminal, the second indication information being used to indicate that the base station exits the silent state, or the second indication information being used to indicate that the configuration information of the previously effective silent time is invalid.
  • the terminal may no longer determine the position of the silent time in the time domain based on the previously effective configuration information of the silent time.
  • the second indication information is also used to indicate the end time of the silent time.
  • the end time of the silent time is determined according to the moment when the terminal receives the second indication information.
  • the end time of the silent time is determined according to the moment when the terminal receives the second indication information and the second offset value carried by the second indication information.
  • the end time of the silent time is determined according to the end time carried by the second indication information.
  • the second indication information may include an index value and/or a silent state type corresponding to the configuration information of the newly effective silent time.
  • the terminal will re-determine the position of the silent time in the time domain according to the configuration information of the newly effective silent time.
  • the terminal receives the configuration information of the silent time from the base station, and the silent time is the time when the base station is in the silent state, that is, the terminal learns from the base station that the base station is in the silent state, so that the terminal stops transmitting network data to the base station during the silent time of the base station, avoiding the situation where the terminal transmits network data to the base station during the silent time of the base station but does not receive a response from the base station, which causes the terminal to experience reduced usage.
  • the base station being in the silent state during the silent time can reduce the power consumption of the base station, thereby reducing the power consumption of the base station while maintaining It ensures the communication between the terminal and the base station, thereby ensuring the terminal's usage perception.
  • the terminal may increase the priority of the target cell by using the offset value of the frequency.
  • the terminal when the terminal sorts one or more cells, if the target frequency or the target cell is configured with a frequency-based offset value, the terminal introduces the frequency-based offset value Qoffset NES-Freq when calculating the cell accurate R.
  • the terminal adjusts the cell criterion R value of the target cell based on the offset value to obtain an adjusted cell criterion R value (also referred to as a target R value). Thereafter, the priority of the target cell is determined according to the adjusted cell criterion R value.
  • the adjusted cell criterion R value when the offset value is a positive value, is equal to the sum of the cell criterion R value before adjustment and the offset value. In some embodiments, when the offset value is a negative value, the adjusted cell criterion R value is equal to the difference between the cell criterion R value before adjustment and the offset value.
  • the adjusted cell criterion R value of the target cell satisfies the following formula.
  • Rs represents the adjusted cell criterion R value of the serving cell.
  • Q meas,s represents the reference signal received power (RSRP) value obtained by the terminal when measuring the serving cell during cell reselection.
  • Q hyst represents the hysteresis value of the cell reselection.
  • Qoffset temp represents the offset value temporarily used to adjust the cell priority.
  • the adjusted cell criterion R value of the target cell satisfies the following formula.
  • Rn represents the adjusted cell criterion R value of the neighboring cell.
  • Q meas,n represents the reference signal received power value obtained by the terminal when measuring the neighboring cell during cell reselection.
  • the base station can instruct the HARQ feedback of one or more HARQ processes of the terminal to be disabled, so that the terminal stops detecting PDCCH within the processing time X, and the base station stops scheduling the terminal to transmit data within the processing time X.
  • the terminal when the HARQ feedback of the target HARQ process is disabled, after the terminal receives a PDCCH of the target HARQ process, the terminal starts a timer, and the timing duration of the timer is greater than or equal to the above-mentioned processing duration X. During the operation of the timer, the terminal stops detecting the PDCCH. After the timer times out, the timer for detecting the PDCCH is started.
  • the terminal when the HARQ feedback of the target HARQ process is disabled, the terminal receives After receiving a PDCCH of the target HARQ process, the terminal starts timers of all HARQ processes, such as HARQ RTT timer, and the timing duration of the timer is greater than or equal to the above processing duration X. While all timers are running, the terminal stops detecting PDCCH.
  • the terminal starts timers of all HARQ processes, such as HARQ RTT timer, and the timing duration of the timer is greater than or equal to the above processing duration X. While all timers are running, the terminal stops detecting PDCCH.
  • the terminal may send first capability indication information to the base station. Accordingly, the base station receives the first capability indication information from the terminal.
  • the first capability indication information is used to indicate whether the terminal needs X-length processing time when the HARQ feedback is disabled. In some embodiments, when the first capability indication information includes a preset identifier, the first capability indication information is used to indicate that the terminal needs X-length processing time when the HARQ feedback is disabled. In some embodiments, when the first capability indication information does not include a preset identifier, the first capability indication information is used to indicate that the terminal does not need X-length processing time when the HARQ feedback is disabled.
  • the base station may dynamically or semi-statically indicate the enablement or disablement of the HARQ feedback of the target HARQ process.
  • the base station may send third indication information to the terminal.
  • the terminal receives the third indication information from the base station.
  • the third indication information is used to indicate the enablement or disablement of the HARQ feedback of the target HARQ process.
  • the third indication information may be carried in signaling such as DCI and RRC messages.
  • the third indication information may include an identifier of the target HARQ process, and a threshold value of a transport block size (TBS) or a number of repetitions.
  • TBS transport block size
  • the terminal determines that the HARQ feedback of the target HARQ process is enabled. Conversely, when the terminal determines that the TBS or the number of repetitions is less than or equal to the threshold value, the terminal determines that the HARQ feedback of the target HARQ process is disabled.
  • the third indication information may include an identifier of the target HARQ process and information indicating whether HARQ feedback of the target HARQ process is enabled.
  • target HARQ process can be one or more, and there is no limitation to this.
  • the RRC message sent by the base station configures a threshold value of TBS or repetition number. For the terminal, if the TBS or repetition number is greater than the threshold value, the HARQ feedback of the corresponding HARQ process is considered to be enabled; otherwise, if the TBS or repetition number is less than or equal to the threshold value, the HARQ feedback is considered to be disabled.
  • the base station can configure DCI via RRC message whether to dynamically enable or disable HARQ feedback.
  • the terminal can determine whether HARQ feedback is enabled or disabled based on DCI.
  • the DCI when the RRC message configuration enables HARQ feedback, the DCI cannot dynamically enable or disable HARQ feedback. That is, when the RRC message configuration enables HARQ feedback, the terminal will not determine whether HARQ feedback is enabled or disabled based on the indication of the DCI.
  • the physical layer of the terminal after the physical layer of the terminal receives the DCI carrying the third indication information, the physical layer of the terminal transmits the third indication information to the MAC layer of the terminal.
  • the MAC layer of the terminal determines whether HARQ feedback is enabled according to the third indication information.
  • the MAC layer of the terminal when the MAC layer of the terminal determines that the HARQ feedback is enabled, the MAC layer of the terminal starts the corresponding HARQ RTT timer. When the MAC layer of the terminal determines that the HARQ feedback is disabled, the MAC layer of the terminal does not start the corresponding HARQ RTT timer.
  • FIG9 is a schematic diagram of the composition of an information transmission device according to some embodiments.
  • the information transmission device 40 includes a sending unit 401 and a storage unit 402 .
  • the information transmission device 40 may be a base station or a chip in the base station. When the information transmission device is used to implement the function of the base station in the above method, each unit is used to implement the following functions.
  • the sending unit 401 is used to send configuration information of the silent time to the terminal, where the silent time is the time during which the base station is in the silent state.
  • a base station in a silent state performs one or more of the following operations: turning off a dynamic scheduling function; stopping sending downlink signals; stopping receiving uplink signals; and turning on a power saving function.
  • the configuration information of the silent time includes one or more of the following parameters: the start time of the silent time, the duration of the silent time, or the end time of the silent time.
  • the configuration information of the silent time includes one or more of the following parameters: the length of the first time domain resource including one or more silent periods, the start time of the first time domain resource, the end time of the first time domain resource, the length of the repetition period of the first time domain resource, the duration of the silent time or the length of the silent period, and there is one silent time in each silent period.
  • the configuration information of the silent period includes: first configuration information and second configuration information.
  • the first configuration information is used to configure one or more first silent periods on a first time domain resource, and there is a silent period of a first duration in the first silent period;
  • the second configuration information is used to configure one or more second silent periods in a non-silent time in the first silent period, and there is a silent period of a second duration in the second silent period.
  • the first configuration information includes one or more of the following parameters: the length of the first time domain resource, the start time of the first time domain resource, the end time of the first time domain resource, the first duration, and the length of the first silent period.
  • the second configuration information includes one or more of the following parameters: the second duration, the length of the second silent period, and the length of the second time domain resource, and the second time domain resource is a time domain resource used to configure the second silent period during the non-silent time of the first silent period.
  • the configuration information of the silent time is discontinuous reception DRX configuration information
  • the DRX configuration information includes one or more of the following parameters: the length of the discontinuous reception DRX cycle, the on-duration on Duration, the length of the first time domain resource including one or more DRX cycles, the start time of the first time domain resource, or the end time of the first time domain resource.
  • the configuration information of the silent time includes one or more of the following parameters: a bitmap sequence, a start time of the first time domain resource, or a length of a repetition period of the first time domain resource.
  • the bitmap sequence includes one or more indicator bits, each indicator bit corresponds to a time domain unit in the first time domain resource, and the indicator bit is used to indicate whether the time domain unit belongs to the silent time.
  • the configuration information of the silent time is carried in high-layer signaling or physical layer signaling, and the high-layer signaling includes radio resource control (RRC) signaling, media access control (MAC) control element (CE) or system message.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • the high-layer signaling includes configuration information of one or more silent periods, and an index value and/or a silent state type corresponding to the configuration information of each silent period.
  • the sending unit 401 is further used to send first indication information to the terminal, where the first indication information is used to instruct the base station to enter a silent state.
  • the first indication information includes an index value and/or a silence state type corresponding to the configuration information of the effective silence time.
  • the starting time of the silent time is determined according to the time when the terminal receives the first indication information; or, the starting time of the silent time is determined according to the time when the terminal receives the first indication information and the first offset value carried by the first indication information; or, the starting time of the silent time is determined according to the starting time carried by the first indication information.
  • the sending unit 401 is further used to send second indication information to the terminal, where the second indication information is used to instruct the base station to exit the silent state.
  • the second indication information is also used to indicate the end time of the silent time.
  • the end time of the silent time is determined according to the time when the terminal receives the second indication information; or, the end time of the silent time is determined according to the time when the terminal receives the second indication information and the second offset value carried by the second indication information; or, the end time of the silent time is determined according to the end time carried by the second indication information.
  • the storage unit 402 is used to store configuration information of the silence time of the base station.
  • FIG10 is a schematic diagram of another information transmission device according to some embodiments.
  • the information transmission device 50 includes a receiving unit 501 and a storage unit 502 .
  • the information transmission device 50 may be a terminal or a chip in the terminal.
  • each unit is used to implement the following functions.
  • the receiving unit 501 is used to receive the configuration information of the silent time from the base station; the silent time is the time when the base station is in the silent state.
  • a base station in a silent state performs one or more of the following operations: turning off a dynamic scheduling function; stopping sending downlink signals; stopping receiving uplink signals; and turning on a power saving function.
  • the configuration information of the silent time includes one or more of the following parameters: the start time of the silent time, the duration of the silent time, or the end time of the silent time.
  • the configuration information of the silent time includes one or more of the following parameters: the length of the first time domain resource including one or more silent periods, the start time of the first time domain resource, the end time of the first time domain resource, the length of the repetition period of the first time domain resource, the duration of the silent time or the length of the silent period, and there is one silent time in each silent period.
  • the configuration information of the silent period includes: first configuration information and second configuration information.
  • the first configuration information is used to configure one or more first silent periods on a first time domain resource, and there is a silent period of a first duration in the first silent period;
  • the second configuration information is used to configure one or more second silent periods in a non-silent time in the first silent period, and there is a silent period of a second duration in the second silent period.
  • the first configuration information includes one or more of the following parameters: the length of the first time domain resource, the start time of the first time domain resource, the end time of the first time domain resource, the first duration, the first silent period,
  • the second configuration information includes one or more of the following parameters: the second duration, the length of the second silent period, the length of the second time domain resource, and the second time domain resource is the time domain resource used to configure the second silent period in the non-silent time of the first silent period.
  • the configuration information of the silent time is discontinuous reception DRX configuration information.
  • the DRX configuration information includes one or more of the following parameters: the length of the discontinuous reception DRX cycle, the on duration on Duration, the length of the first time domain resource including at least one DRX cycle, the start time of the first time domain resource, or the end time of the first time domain resource.
  • the configuration information of the silent time includes one or more of the following parameters: a bitmap sequence, a start time of the first time domain resource, or a length of a repetition period of the first time domain resource.
  • the bitmap sequence includes one or more indicator bits, each indicator bit corresponds to a time domain unit in the first time domain resource, and the indicator bit is used to indicate whether the time domain unit belongs to the silent time.
  • the configuration information of the silent time is carried in high-layer signaling or physical layer signaling.
  • High-layer signaling includes radio resource control RRC signaling, MAC CE or system message.
  • the high-layer signaling includes configuration information of one or more silent periods, and an index value and/or a silent state type corresponding to the configuration information of each silent period.
  • the receiving unit 501 is further used to receive first indication information from a base station, where the first indication information is used to instruct the base station to enter a silent state.
  • the first indication information includes an index value and/or a silence state type corresponding to the configuration information of the effective silence time.
  • the first indication information is also used to indicate the starting time of the silent time.
  • the starting time of the silent time is determined according to the time when the terminal receives the first indication information; or, the starting time of the silent time is determined according to the time when the terminal receives the first indication information and the first offset value carried by the first indication information; or, the starting time of the silent time is determined according to the starting time carried by the first indication information.
  • the receiving unit 501 is further used to receive second indication information from a base station, where the second indication information is used to instruct the base station to exit the silent state.
  • the second indication information is also used to indicate the end time of the silent time.
  • the end time of the silent time is determined according to the time when the terminal receives the second indication information; or, the end time of the silent time is determined according to the time when the terminal receives the second indication information and the second offset value carried by the second indication information; or, the end time of the silent time is determined according to the end time carried by the second indication information.
  • the storage unit 502 is used to store the configuration information of the silent time from the base station.
  • the units in Figures 9 and 10 may also be referred to as modules, for example, the sending unit may be referred to as a sending module.
  • the names of the various units may not be the names shown in the figures, for example, the sending unit may also be referred to as a communication unit, and the receiving unit may also be referred to as a communication unit.
  • FIG. 9 and FIG. 10 are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present disclosure can essentially or partly contribute to the prior art or all or part of the technical solution can be embodied in the form of a software product.
  • the software product is stored in a storage medium, including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods of various embodiments of the present disclosure.
  • the storage medium for storing computer software products includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, etc., which can store program codes.
  • the embodiment of the present disclosure provides a schematic diagram of the structure of a base station, which may be the above-mentioned information transmission device 40.
  • the base station 60 includes: a processor 602, a communication interface 603, and a bus 604.
  • the base station 60 may also include a memory 601.
  • the processor 602 may be a processor that implements or executes various exemplary logic blocks, modules, and circuits described in conjunction with the disclosure of the present disclosure.
  • the processor 602 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor 602 may be a processor that implements or executes various exemplary logic blocks, modules, and circuits described in conjunction with the disclosure of the present disclosure.
  • the processor 602 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication interface 603 is used to connect with other devices through a communication network.
  • the communication network can be Ethernet, wireless access network, wireless local area network (WLAN), etc.
  • the memory 601 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 601 may exist independently of the processor 602, and the memory 601 may be connected to the processor 602 via a bus 604 to store instructions or program codes.
  • the processor 602 calls and executes the instructions or program codes stored in the memory 601, the information transmission method provided in the embodiment of the present disclosure can be implemented.
  • the memory 601 may also be integrated with the processor 602 .
  • the bus 604 may be an extended industry standard architecture (EISA) bus, etc.
  • the bus 604 may be divided into an address bus, a data bus, a control bus, etc.
  • FIG11 only uses one thick line, but does not mean that there is only one bus or one type of bus.
  • the embodiment of the present disclosure also provides a schematic diagram of the structure of a terminal.
  • the terminal may be the above-mentioned information transmission device 50.
  • the terminal 70 includes: a processor 702, a communication interface 703, and a bus 704.
  • the terminal 70 may also include a memory 701.
  • Processor 702 may be a processor that implements or executes various exemplary logic blocks, modules, and circuits described in conjunction with the present disclosure.
  • Processor 702 may be a central processing unit, a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array, or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof.
  • Processor 702 may be a processor that implements or executes various exemplary logic blocks, modules, and circuits described in conjunction with the present disclosure.
  • Processor 702 may also be a combination that implements computing functions, such as one or more microprocessors. Processor combination, DSP and microprocessor combination, etc.
  • the communication interface 703 is used to connect with other devices through a communication network.
  • the communication network can be Ethernet, wireless access network, wireless local area network (WLAN), etc.
  • the memory 701 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 701 may exist independently of the processor 702, and the memory 701 may be connected to the processor 702 via a bus 704 to store instructions or program codes.
  • the processor 702 calls and executes the instructions or program codes stored in the memory 701, the information transmission method provided in the embodiment of the present disclosure can be implemented.
  • the memory 701 may also be integrated with the processor 702 .
  • the bus 704 may be an extended industry standard architecture (EISA) bus, etc.
  • the bus 704 may be divided into an address bus, a data bus, a control bus, etc.
  • FIG12 only uses one thick line, but does not mean that there is only one bus or one type of bus.
  • the disclosed embodiment also provides a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by computer instructions to instruct the relevant hardware, and the program can be stored in the above computer-readable storage medium. When the program is executed, it can include the processes of each method embodiment.
  • the computer-readable storage medium can be the memory or memory of any of the above embodiments.
  • the computer-readable storage medium can also be an external storage device of the above base station or terminal, such as a plug-in hard disk, a smart memory card (smart media card, SMC), a secure digital (secure digital, SD) card, a flash card (flash card), etc. equipped on the base station or terminal.
  • the above computer-readable storage medium can also include both the internal storage unit of the above base station or terminal and an external storage device.
  • the computer-readable storage medium is used to store computer programs and other programs and data required by the base station or terminal.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or is to be output.
  • the embodiment of the present disclosure also provides a computer program product, which includes a computer program.
  • the computer program product When the computer program product is run on a computer, the computer is enabled to execute any one of the information transmission methods provided in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种信息传输方法、基站、终端及存储介质。该信息传输方法包括:基站向终端发送静默时间的配置信息,所述静默时间为所述基站处于静默状态的时间。

Description

信息传输方法、基站、终端及存储介质
本公开要求于2022年11月03日提交的、申请号为202211372713.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法、基站、终端及存储介质。
背景技术
随着第五代移动通信技术(5th generation mobile networks,5G)的发展,5G网络建设需求也越来越高,因此5G基站也被大量部署。
发明内容
一方面,本公开一些实施例提供一种信息传输方法。该方法包括:
基站向终端发送静默时间的配置信息,所述静默时间为所述基站处于静默状态的时间。
另一方面,本公开一些实施例提供一种信息传输方法。该方法包括:
终端接收来自于基站的静默时间的配置信息;所述静默时间为所述基站处于静默状态的时间。
又一方面,本公开一些实施例提供一种信息传输装置。该装置包括:
发送单元,用于向终端发送静默时间的配置信息,所述静默时间为基站处于静默状态的时间。
又一方面,本公开一些实施例提供一种信息传输装置。该装置包括:
接收单元,用于接收来自于基站的静默时间的配置信息;所述静默时间为所述基站处于静默状态的时间。
又一方面,本公开一些实施例提供一种基站。该基站包括:处理器和存储器;所述存储器存储有所述处理器可执行的指令;所述处理器被配置为执行指令时,使得所述基站实现如上述所提供的方法。
又一方面,本公开一些实施例提供一种终端。该终端包括:处理器和存储器;所述存储器存储有所述处理器可执行的指令;所述处理器被配置为执行指令时,使得所述终端实现如上述所提供的方法。
又一方面,本公开一些实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行上述所提供的方法。
又一方面,本公开一些实施例提供一种包含计算机指令的计算机程序产品,当所述计算机指令在计算机上运行时,使得计算机执行上述所提供的方法。
附图说明
附图用来提供对本公开中的技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为根据一些实施例的一种通信系统的结构示意图;
图2为根据一些实施例的一种信息传输方法的流程示意图;
图3为根据一些实施例的一种基站的静默时间的配置示意图;
图4为根据一些实施例的另一种基站的静默时间的配置信息的示意图;
图5为根据一些实施例的又一种基站的静默时间的配置信息的示意图;
图6为根据一些实施例的又一种基站的静默时间的配置信息的示意图;
图7为根据一些实施例的又一种基站的静默时间的配置信息的示意图;
图8为根据一些实施例的又一种基站的静默时间的配置信息的示意图;
图9为根据一些实施例的一种信息传输装置的组成示意图;
图10为根据一些实施例的另一种信息传输装置的组成示意图;
图11为根据一些实施例的一种基站的结构示意图;
图12为根据一些实施例的一种终端的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变,则方向性指示也相应地随之改变。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。术语“和/或”包括一个或多个相关列举条目的任何和所有组合。例如,A和/或B包括仅A、仅B以及A和B。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。另外,在对管线进行描述时,本公开中所用“相连”、“连接”则具有进行导通的意义。具体意义需结合上下文进行理解。
在本公开实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
在5G通信中,波束赋形得到了广泛的应用。5G网络存在网络速度快、网络延迟低等优点。由于5G网络所使用的频段、制式的限制,相比于第四代移动通信技术(4th  generation mobile networks,4G)网络,5G网络存在覆盖半径小的特点,导致5G基站的数量多于4G基站的数量。另外5G基站相比4G基站部署了更多的天线,这使得5G基站需要更多的电力消耗。而对于移动通信网络而言,并非所有时段的通信业务量都相同,5G基站在不同的通信业务量下均保持开启,造成了不必要的电能消耗。因此降低5G基站的功耗,以实现5G基站的节能是亟待解决的问题。
目前针对5G基站的节能方法,是根据当前的通信业务量确定是否要开启5G基站。例如,在检测到当前通信业务量低于业务量门限值时关闭5G基站,在检测到当前通信业务量高于业务量门限值时开启5G基站。尽管此节能方法能够降低5G基站的功耗,但在当前通信业务量低于业务量门限值时关闭5G基站的做法,使得该5G基站网络范围内的终端在该5G基站关闭期间无法得到5G基站的回应,从而导致用户无法及时享受到5G网络服务,降低了终端的使用感知。因此,如何在降低基站的功耗的同时,保证终端与5G基站的交流,进而保证终端的使用感知是亟待解决的问题。
为了解决以上问题,本公开实施例提供一种信息传输方法。在该信息传输方法中,基站向终端设备发送静默时间的配置信息,而静默时间为基站处于静默状态的时间,也就是使得终端获知到基站处于静默状态的时间,以使得终端在基站处于静默状态的时间内停止向基站传输网络数据;这样,避免了终端在基站处于静默状态的时间内向基站传输网络数据,而得不到基站的回应所造成终端的使用感知降低的情况发生,从而保证了终端与5G基站的交流。此外,基站在静默时间内处于静默状态能够降低基站的功耗,实现了降低基站的功耗的同时,终端与5G基站的交流,进而保证了终端的使用感知。
本公开实施例提供的技术方案可以应用于各种通信系统,例如,采用5G通信技术的新空口(New Radio,NR)通信系统,未来演进系统或者多种通信融合系统等,本公开对此不作限定。
图1为根据一些实施例的一种通信系统的结构示意图。如图1所示,通信系统10包括多个基站(例如基站21和基站22)和多个终端(例如终端31、终端32、终端33和终端34)。多个基站和多个终端可以通过有线网络或无线网络连接。有线网络或无线网络可以包括路由器、交换器、或者促进多个基站和多个终端之间通信的其他设备,本公开实施例对此不作限制。
在一些实施例中,基站用于为多个终端提供无线接入服务。本公开一些实施例中,一个基站提供一个服务覆盖区域(又可称为小区)。进入该区域的终端可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站21的服务覆盖区域和基站22的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端可收到来自多个基站的无线信号。
在一些实施例中,多个基站中的每个基站可以连接多个终端设备,例如基站21连接终端31和终端32。终端31和终端32可以位于同一个小区,终端31和终端32也可以位于不同的小区。也即一个基站可以向一个小区的终端提供网络服务,也可以同时向多个小区的终端提供网络服务。
在一些实施例中,多个基站中的每个基站(例如基站21)可以是演进型基站(evolution nodeB,eNB)、下一代基站(generation nodeB,gNB)、收发点(transmission  receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。根据所提供的服务覆盖区域的大小,基站又可分为用于提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站和用于提供毫微微蜂窝(Femto cell)的毫微微基站。随着无线通信技术的不断演进,未来的基站也可以采用其他的名称。
在一些实施例中,多个终端设备中的每个终端设备(例如终端设备31),可以是一种具有无线收发功能的设备,例如手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等。本公开实施例对终端设备的种类不作限制。
可以理解的是,图1是示例性的结构图,图1示例的通信系统包括的设备的数量不受限制,例如基站的数量不受限制以及终端设备的数量不受限制。并且,除图1所示的设备外,图1示例的通信系统还可以包括其他设备,对此不予限定。
图2为根据一些实施例的一种信息传输方法的流程示意图。图2所示的信息传输方法包括S101和S102。
S101、基站向终端发送静默时间的配置信息。
S102、终端接收来自于基站的静默时间的配置信息。
静默时间为基站处于静默状态的时间。可以理解的是,处于静默状态的基站的耗电量小于处于非静默状态的基站的耗电量。
在一些实施例中,静默状态可以由其他名称来替代,例如休眠状态、睡眠状态、节能状态等,对此不作限定。
在一些实施例中,处于静默状态的基站执行以下操作中的一项或多项。
操作1、关闭动态调度功能。
在一些实施例中,基站关闭动态调度功能包括停止发送物理下行控制信道(physical downlink control channel,PDCCH)和停止发送物理下行共享信道(physical downlink shared channel,PDSCH)等。PDCCH用于承载调度以及其他控制信息,该调度以及其他控制信息例如包含传输格式、资源分配、上行调度许可、功率控制以及上行重传信息等,PDSCH用于承载来自传输信道DSCH的数据。
操作2、停止发送下行信号。
在一些实施例中,下行信号包括PDCCH信号、PDSCH信号和同步信号/物理广播信道块(SS/PBCH block,SSB)信号等,也即停止发送PDCCH信号、PDSCH信号和SSB信号等。
操作3、停止接收上行信号。
在一些实施例中,上行信号包括物理上行链路控制通道(physical uplink control channel,PUCCH)信号和物理上行共享信道(physical uplink shared channel,PUSCH)信号等,也即停止接收PUCCH信号和PUSCH信号。
PUCCH用于承载混合自动重传请求(hybrid automation repeat request,HARQ)的确认字符(acknowledgement,ACK)或非确认字符(Negative Acknowledgement,NACK)、调度请求(scheduling request,SR)、信道质量指示(channel quality indicator,CQI) 等信息。PUSCH用于承载用户数据和控制信息。
操作4、开启节能功能。
在一些实施例中,节能功能可以具有多种状态,例如轻度状态(light state)、微状态(micro state)和深度状态(deep state)。不同的状态对应不同的静默时长(也即静默状态的持续时长),例如基站在light state下的静默时长小于基站在micro state下的静默时长,基站在micro state下的静默时长小于基站在deep state下的静默时长。静默时长为基站处于静默状态的持续时长。
可以理解的是,上述操作1至操作4仅是举例,处于静默状态的基站还可以执行其他有利于节能的操作。
可以理解的是,在基站执行上述与静默状态相关的操作时,基站可以通过关闭自身的部分元器件来实现节能的目的。例如,在基站停止发送下行信号的过程中,基站可以关闭发送机。又例如,在基站停止接收上行信号的过程中,基站可以关闭接收机。
在一些实施例中,静默状态可以具有多种类型,不同类型的静默状态可以起到不同的节能效果。例如,静默状态的类型可以包括第一类型、第二类型以及第三类型。作为一种示例,不同类型的静默状态可以对应不同的操作,例如处于第一类型的静默状态的基站执行上述操作1至操作4,处于第二类型的静默状态的基站执行上述操作1至操作3,处于第三类型的静默状态的基站执行上述操作4。作为再一种示例,不同类型的静默状态可以对应不同的静默时长。
在一些实施例中,静默时间的配置信息用于确定静默时间在时域上的位置。因此,静默时间的配置信息可以包括用于确定静默时间在时域上的位置的相关参数。作为一种示例,终端可以仅根据静默时间的配置信息确定静默时间在时域上的位置。作为另一种示例,终端可以根据静默时间的配置信息以及其他信息(例如基站下发的其他信息、通信标准预先规定的信息等)来确定静默时间在时域上的位置。
下面对静默时间的配置信息的可选实现方式进行介绍。
方式一、静默时间的配置信息包括以下参数中的一项或多项:静默时间的起始时刻,静默时间的持续时长或者静默时间的结束时刻。
在一些实施例中,静默时间的结束时刻可以由静默时间的起始时刻和静默时间的持续时长来得到。或者,静默时间的持续时长可以由静默时间的起始时刻和静默时间的结束时刻来得到。
在一些实施例中,静默时间的结束时刻可以由其他称呼来替代,例如静默时间的结束时刻还可以称作静默时间的终止时刻。
图3为根据一些实施例的一种基站的静默时间的配置示意图。由图3可以看出,基站在静默时间的起始时刻进入静默状态,在静默时间的持续时长中保持静默状态,在静默时间的结束时刻退出静默状态。静默时间的配置信息可以采用上述方式一,以使得终端可以在时域上确定一个静默时间的位置。
方式二、静默时间的配置信息可以包括以下参数中的一项或多项:包含一个或多个静默周期的第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一时域资源的重复周期的长度、静默时间的持续时长或者静默周期的长度。每个静默 周期中存在一个静默时间。
第一时域资源可以是时域上的任意时域资源,对此不作限定。
作为一种示例,静默时间的配置信息还可以包括静默时间在静默周期中的起始时刻和/或结束时刻。作为另一种示例,还可以预先约定静默时间在静默周期中的起始时刻和/或结束时刻,例如预先约定静默时间的起始时刻与静默周期的起始时刻相同。
图4为根据一些实施例的另一种基站的静默时间的配置示意图。如图4所示,在长度为T2的第一时域资源中可以包括多个静默周期,例如静默周期#1和静默周期#2。每个静默周期内存在持续时长为T1的静默时间。静默时间的配置信息需要采用上述方式二,以使得终端可以在时域上确定第一时域资源的位置,并在第一时域资源上确定周期性重复的多个静默时间的位置。
方式三、静默时间的配置信息可以包括以下参数中的一项或多项:包含一个或多个静默周期的第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一时域资源的重复周期的长度、静默时间的持续时长或者静默周期的长度。每个静默周期中存在一个静默时间。
图5为根据一些实施例的又一种基站的静默时间的配置示意图。如图5所示,时域上具有周期性重复的多个第一时域资源,每个第一时域资源中存在周期性重复的多个静默周期,每个静默周期中存在一个静默时间。静默时间的配置信息可以采用上述方式三,以使得终端能够确定时域上各个静默时间的位置。
方式四、静默时间的配置信息包括:第一配置信息和第二配置信息。第一配置信息用于在第一时域资源上配置一个或多个第一静默周期,第一静默周期中存在第一持续时长的静默时间。第二配置信息用于在第一静默周期中的非静默时间内配置一个或多个第二静默周期,第二静默周期中存在第二持续时长的静默时间。
在一些实施例中,第一配置信息包括以下参数中的一项或多项:第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一持续时长或者第一静默周期的长度。
在一些实施例中,第二配置信息包括以下参数中的一项或多项:第二持续时长、第二静默周期的长度或者第二时域资源的长度,第二时域资源为第一静默周期的非静默时间中用于配置第二静默周期的时域资源。
图6为根据一些实施例的又一种基站的静默时间的配置示意图。如图6所示,在长度为T2的第一时域资源中可以包括多个第一静默周期,例如第一静默周期#1和第一静默周期#2。每个第一静默周期内存在持续时长为T1的静默时间,且在每个第一静默周期内存在多个第二静默周期,例如第二静默周期#1和第二静默周期#2,每一个第二静默周期内存在持续时长为T3的静默时间。静默时间的配置信息可以采用上述方式四,以使得终端能够确定时域上各个静默时间的配置。
方式五、静默时间的配置信息为非连续接收DRX配置信息,DRX配置信息包括以下参数中的一项或多项:DRX周期的长度、接通持续时间on Duration、包括一个或多个DRX周期的第一时域资源的长度、第一时域资源的起始时刻或者第一时域资源的结束时刻。
DRX周期中的inactive time或off period为静默时间。
图7为根据一些实施例的又一种基站的静默时间的配置示意图。如图7所示,时域上具有周期性重复的多个第一时域资源,每个第一时域资源中存在周期性重复的多个DRX周期,例如DRX周期#1和DRX周期#2,每个DRX周期中存在一个静默时间。静默时间的配置信息可以采用方式五,以使得终端能够确定时域上各个静默时间的位置。
方式六、静默时间的配置信息包括以下参数中的一项或多项:位图序列、第一时域资源的起始时刻或者第一时域资源的重复周期的长度。位图序列包括一个或多个指示位,每个指示位对应第一时域资源中的一个时域单元,指示位用于指示对应的时域单元是否属于静默时间。
例如,以每个指示位以一个比特来实现为例,指示位的取值为0以表示对应的时域单元不属于静默时间,指示位的取值为1以表示对应的时域单元属于静默时间。
在一些实施例中,时域单元可以是符号、时隙或者子帧,对此不作限定。
图8为根据一些实施例的又一种基站的静默时间的配置示意图。如图8所示,在长度为T2的第一时域资源中可以包括多个时域单元,例如时域单元1、时域单元2、时域单元3和时域单元4。在一些实施例中,假设时域单元1对应的指示位取值为1,时域单元2对应的指示位取值为1,时域单元3对应的指示位取值为0,时域单元4对应的指示位取值为0,则代表基站在时域单元1和时域单元2处于静默状态,在时域单元3和时域单元4处于非静默状态。静默时间的配置信息可以采用上述方式六,以使得终端能够确定时域上各个静默时间的位置。
以上是对静默时间的配置信息的实现方式的示例性介绍,本公开不限于此。
在一些实施例中,静默时间的配置信息承载于高层信令或物理层信令。高层信令可以包括无线资源控制RRC信令、媒体接入控制控制元素(medium access control control element,MAC CE)或者系统消息。物理层信令可以包括控制信息,例如下行控制信息(downlink control information,DCI)。
在一些实施例中,高层信令包括一个或多个静默时间的配置信息,以及每个静默时间的配置信息对应的索引值和/或静默状态类型。终端可以基于索引值或者静默状态类型,查找到对应的静默时间的配置信息。
在一些实施例中,基站下发的静默时间的配置信息是即将生效的(或者说立即生效的)。例如,基站向终端发送携带一个静默时间的配置信息的MAC CE或者DCI,从而终端可以认为该MAC CE或者DCI所携带的静默时间的配置信息是即将生效的。基站会根据该静默时间的配置信息,在相应的静默时间进入静默状态。终端也会根据该静默时间的配置信息确定静默时间在时域上的位置。
在一些实施例中,基站下发的静默时间的配置信息是暂未生效的。基站可以向终端发送第一指示信息,第一指示信息可以用于指示基站进入静默状态,或者说第一指示信息用于使能静默时间的配置信息生效。终端接收到来自于基站的第一指示信息,可以根据第一指示信息确定生效的静默时间的配置信息,从而根据生效的静默时间的配置信息确定静默时间在时域上的位置。在一些实施例中,第一指示信息可以承载于MAC CE 或者DCI中。在一些实施例中,第一指示信息可以包括生效的静默时间的配置信息对应的索引值或者静默状态类型。
例如,基站通过高层信令或者物理层信令向终端下发一个静默时间的配置信息。之后,基站可以向终端发送MAC CE或者DCI以指示之前下发的静默时间的配置信息生效。
又例如,基站通过高层信令或者物理层信令向终端下发多个静默时间的配置信息(例如配置信息#1、配置信息#2以及配置信息#3)。之后,基站可以向终端发送MAC CE或者DCI,该MAC CE或DCI包括生效的静默时间的配置信息(例如配置信息#1)对应的索引值或者静默状态类型。
又例如,基站通过高层信令或者物理层信令向终端下发一个DRX配置信息(相当于静默时间的配置信息)。之后,基站可以向终端发送MAC CE或者DCI以指示之前下发的DRX配置信息生效。
又例如,基站通过高层信令或者物理层信令向终端下发多个DRX配置信息。之后,基站可以向终端发送MAC CE或者DCI,MAC CE或者DCI包括生效的DRX配置信息对应的索引值和/或静默状态类型。
在一些实施例中,第一指示信息还可以用于指示静默时间的起始时刻。作为一个示例,静默时间的起始时刻根据终端接收到第一指示信息的时刻确定。作为另一个示例,静默时间的起始时刻根据终端接收到第一指示信息的时刻以及第一指示信息所携带的第一偏移值确定,也即静默时间的起始时刻等于终端接收到第一指示信息的时刻与第一偏移值之和。作为又一个示例,静默时间的起始时刻根据第一指示信息所携带的起始时刻确定。
在一些实施例中,基站还可以向终端发送第二指示信息,第二指示信息用于指示基站退出静默状态,或者该第二指示信息用于指示之前生效的静默时间的配置信息失效。终端在接收到第二指示信息之后,可以不再依据之前生效的静默时间的配置信息,确定静默时间在时域上的位置。
在一些实施例中,第二指示信息还用于指示静默时间的结束时刻。作为一个示例,静默时间的结束时刻根据终端接收到第二指示信息的时刻确定。作为另一个示例,静默时间的结束时刻根据终端接收到第二指示信息的时刻以及第二指示信息所携带的第二偏移值确定。作为又一个示例,静默时间的结束时刻根据第二指示信息所携带的结束时刻确定。
在一些实施例中,第二指示信息可以包括新生效的静默时间的配置信息对应的索引值和/或静默状态类型。终端会根据新生效的静默时间的配置信息,重新确定静默时间在时域上的位置。
本公开实施例中,终端接收到来自于基站的静默时间的配置信息,而静默时间为基站处于静默状态的时间,也即终端从基站处获知到基站处于静默状态的时间,以便于终端在基站的静默时间内停止向基站传输网络数据,避免了终端在基站的静默时间内向基站传输网络数据而得不到基站的回应所造成的终端使用感知降低的情况发生。而基站在静默时间内处于静默状态能够降低基站的功耗,实现了降低基站的功耗的同时,保 证了终端与基站的交流,进而保证了终端的使用感知。
在一些实施例中,在目标频点上的目标小区采用了节能策略(例如支持前文中的静默状态)的情况下,在小区重新选择过程中,终端可以通过频点的偏移值,来提高该目标小区的优先级。
可以理解的是,通过提高该目标小区的优先级,使得一些不能支持网络节能的终端选择到不支持网络节能的小区,而让一些能够支持网络节能的终端选择到支持网络节能的小区,从而实现负载均衡。
在小区重新选择过程中,终端对一个或多个小区进行排序时,如果目标频点或者目标小区被配置了基于频点的偏移值,终端在计算小区准确R时引入该基于频点的偏移值QoffsetNES-Freq
在一些实施例中,终端基于该偏移值,调整目标小区的小区准则R值,得到调整后的小区准则R值(也可以称为目标R值)。之后,根据调整后的小区准则R值,确定目标小区的优先级。
在一些实施例中,在偏移值为正值的情况下,调整后的小区准则R值等于调整前的小区准则R值与该偏移值之和。在一些实施例中,在偏移值为负值的情况下,调整后的小区准则R值等于调整前的小区准则R值与该偏移值之差。
在一些实施例中,在目标小区所在频点或者目标小区配置了基于频点的偏移值QoffsetNES-Freq的情况下,在目标小区为终端的服务小区时,目标小区的调整后的小区准则R值满足以下公式。
Rs=Qmeas,s+Qhyst-Qoffsettemp+QoffsetNES-Freq
在该公式中,Rs表示服务小区的调整后的小区准则R值。Qmeas,s表示终端在进行小区重选时对服务小区进行测量得到的参考信号接收功率(Reference Signal Received Power,RSRP)值。Qhyst表示小区重选的迟滞值。Qoffsettemp表示临时用于调整小区优先级的偏移值。
在一些实施例中,在目标小区所在频点或者目标小区配置了基于频点的偏移值QoffsetNES-Freq的情况下,在目标小区为终端的邻小区时,目标小区的调整后的小区准则R值满足以下公式。
Rn=Qmeas,n-Qoffset-Qoffsettemp+QoffsetNES-Freq
在该公式中,Rn表示邻小区的调整后的小区准则R值。Qmeas,n表示终端在进行小区重选时对邻小区进行测量得到的参考信号接收功率值。
对于一些终端,例如NB-IoT窄带物联网(Narrow Band Internet of Things,NB-IoT)UE,为了确保终端能够对接收到的PDSCH进行成功解码,需要预留足够的处理时长X。基站可以指示终端的一个或多个HARQ进程的HARQ反馈去使能,从而在处理时长X内终端停止检测PDCCH,基站在该处理时长X内停止调度终端传输数据。
在一些实施例中,在目标HARQ进程的HARQ反馈被去使能的情况下,在终端接收到该目标HARQ进程的一个PDCCH之后,终端启动一个定时器,定时器的定时时长大于或等于上述处理时长X。在定时器运行期间,终端停止检测PDCCH。该定时器超时后,启动用于检测PDCCH的定时器。
在一些实施例中,在目标HARQ进程的HARQ反馈被去使能的情况下,在终端接 收到该目标HARQ进程的一个PDCCH之后,终端启动所有HARQ进程的定时器,例如HARQ RTT timer,定时器的定时时长大于或等于上述处理时长X。在所有定时器运行期间,终端停止检测PDCCH。
在一些实施例中,终端可以向基站发送第一能力指示信息。相应地,基站接收来自于终端的第一能力指示信息。该第一能力指示信息用于指示终端在HARQ反馈被去使能时是否需要X时长的处理时间。在一些实施例中,在第一能力指示信息包括预设标识的情形下,第一能力指示信息用于指示终端在HARQ反馈被去使能时需要X时长的处理时间。在一些实施例中,在第一能力指示信息不包括预设标识的情形下,第一能力指示信息用于指示终端在HARQ反馈被去使能时不需要X时长的处理时间。
在一些实施例中,基站可以动态或者半静态地指示目标HARQ进程的HARQ反馈的使能或者去使能。例如,基站可以向终端发送第三指示信息。相应地,终端接收来自于基站的第三指示信息。第三指示信息用于指示使能或者去使能目标HARQ进程的HARQ反馈。第三指示信息可以承载于DCI、RRC消息等信令中。
在一些实施例中,第三指示信息可以包括目标HARQ进程的标识,以及传输块大小(Transport Block Size,TBS)或者重复次数的门限值。终端在确定TBS或者重复次数大于该门限值时,确定目标HARQ进程的HARQ反馈使能。反之,终端在确定TBS或者重复次数小于或等于该门限值时,确定目标HARQ进程的HARQ反馈去使能。
在一些实施例中,第三指示信息可以包括目标HARQ进程的标识以及用于指示目标HARQ进程的HARQ反馈是否使能的信息。
可以理解的是,目标HARQ进程可以是一个或多个,对此不作限定。
在一些实施例中,基站下发的RRC消息配置TBS或者重复次数的门限值。对于终端,如果TBS或者重复次数大于门限值,则认为对应HARQ进程的HARQ反馈使能;否则,如果TBS或者重复次数小于或等于门限值,则认为HARQ反馈去使能。
在一些实施例中,基站可以通过RRC消息配置DCI是否能够动态地使能或去使能HARQ反馈。在RRC消息配置DCI能够动态地使能或去使能HARQ反馈的前提下,终端可以基于DCI,判断HARQ反馈是否使能或去使能。
在一些实施例中,在RRC消息配置使能HARQ反馈的情况下,DCI不能够动态地使能或去使能HARQ反馈。也即,在RRC消息配置使能HARQ反馈的情况下,终端不会基于DCI的指示,判断HARQ反馈是否使能或去使能。
在一些实施例中,在终端的物理层接收到携带第三指示信息的DCI之后,终端的物理层向终端的MAC层传递该第三指示信息。终端的MAC层根据第三指示信息,判断HARQ反馈是否使能。
在一些实施例中,在终端的MAC层确定HARQ反馈使能的情况下,终端的MAC层启动对应的HARQ RTT timer。在终端的MAC层确定HARQ反馈去使能的情况下,终端的MAC层不启动对应的HARQ RTT timer。
上述主要从各个节点之间交互的角度对本公开一些实施例提供的方案进行了介绍。可以理解的是,各个节点,例如基站以及终端为了实现上述功能,包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公 开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图9为根据一些实施例的一种信息传输装置的组成示意图。如图9所示,信息传输装置40包括发送单元401和存储单元402。
信息传输装置40可以为基站或者基站中的芯片。信息传输装置用于实现上述方法中基站的功能时,各个单元用于实现以下功能。
发送单元401,用于向终端发送静默时间的配置信息,静默时间为基站处于静默状态的时间。
在一些实施例中,处于静默状态的基站执行以下操作中的一项或多项:关闭动态调度功能;停止发送下行信号;停止接收上行信号;开启节能功能。
在一些实施例中,静默时间的配置信息包括以下参数中的一项或多项:静默时间的起始时刻、静默时间的持续时长或者静默时间的结束时刻。
在一些实施例中,静默时间的配置信息包括以下参数中的一项或多项:包含一个或多个静默周期的第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一时域资源的重复周期的长度、静默时间的持续时长或者静默周期的长度,每个静默周期中存在一个静默时间。
在一些实施例中,静默时间的配置信息包括:第一配置信息和第二配置信息。第一配置信息用于在第一时域资源上配置一个或多个第一静默周期,第一静默周期中存在第一持续时长的静默时间;第二配置信息用于在第一静默周期中的非静默时间内配置一个或多个第二静默周期,第二静默周期中存在第二持续时长的静默时间。
在一些实施例中,第一配置信息包括以下参数中的一项或多项:第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一持续时长、第一静默周期的长度。第二配置信息包括以下参数中的一项或多项:第二持续时长、第二静默周期的长度、第二时域资源的长度,第二时域资源为第一静默周期的非静默时间中用于配置第二静默周期的时域资源。
在一些实施例中,静默时间的配置信息为非连续接收DRX配置信息,DRX配置信息包括以下参数中的一项或多项:非连续接收DRX周期的长度、接通持续时间on Duration、包括一个或多个DRX周期的第一时域资源的长度、第一时域资源的起始时刻或者第一时域资源的结束时刻。
在一些实施例中,静默时间的配置信息包括以下参数中的一项或多项:位图(bitmap)序列、第一时域资源的起始时刻或者第一时域资源的重复周期的长度。位图序列包括一个或多指示位,每个指示位对应第一时域资源中的一个时域单元,指示位用于指示时域单元是否属于静默时间。
在一些实施例中,静默时间的配置信息承载于高层信令或者物理层信令中,高层信令包括无线资源控制(radio resource control,RRC)信令、媒体访问控制(media access control,MAC)控制元素(control element,CE)或者系统消息。
在一些实施例中,高层信令包括一个或多个静默时间的配置信息,以及每个静默时间的配置信息对应的索引值和/或静默状态类型。
在一些实施例中,发送单元401,还用于向终端发送第一指示信息,第一指示信息用于指示基站进入静默状态。
在一些实施例中,第一指示信息包括生效的静默时间的配置信息对应的索引值和/或静默状态类型。
在一些实施例中,静默时间的起始时刻根据终端接收到第一指示信息的时刻确定;或,静默时间的起始时刻根据终端接收到第一指示信息的时刻以及第一指示信息所携带的第一偏移值确定;或,静默时间的起始时刻根据第一指示信息所携带的起始时刻确定。
在一些实施例中,发送单元401,还用于向终端发送第二指示信息,第二指示信息用于指示基站退出静默状态。
在一些实施例中,第二指示信息还用于指示静默时间的结束时刻。
在一些实施例中,静默时间的结束时刻根据终端接收到第二指示信息的时刻确定;或者,静默时间的结束时刻根据终端接收到第二指示信息的时刻以及第二指示信息所携带的第二偏移值确定;或,静默时间的结束时刻根据第二指示信息所携带的结束时刻确定。
在一些实施例中,存储单元402用于存储基站的静默时间的配置信息。
图10为根据一些实施例的另一种信息传输装置的组成示意图。如图10所示,信息传输装置50包括接收单元501和存储单元502。
信息传输装置50可以为终端或者终端中的芯片。信息传输装置用于实现上述方法中终端的功能时,各个单元用于实现以下功能。
接收单元501,用于接收来自于基站的静默时间的配置信息;静默时间为基站处于静默状态的时间。
一些实施例中,处于静默状态的基站执行以下操作中的一项或多项:关闭动态调度功能;停止发送下行信号;停止接收上行信号;开启节能功能。
在一些实施例中,静默时间的配置信息包括以下参数中的一项或多项:静默时间的起始时刻、静默时间的持续时长或者静默时间的结束时刻。
在一些实施例中,静默时间的配置信息包括以下参数中的一项或多项:包含一个或多个静默周期的第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一时域资源的重复周期的长度、静默时间的持续时长或者静默周期的长度,每个静默周期中存在一个静默时间。
在一些实施例中,静默时间的配置信息包括:第一配置信息和第二配置信息。第一配置信息用于在第一时域资源上配置一个或多个第一静默周期,第一静默周期中存在第一持续时长的静默时间;第二配置信息用于在第一静默周期中的非静默时间内配置一个或多个第二静默周期,第二静默周期中存在第二持续时长的静默时间。
在一些实施例中,第一配置信息包括以下参数中的一项或多项:第一时域资源的长度、第一时域资源的起始时刻、第一时域资源的结束时刻、第一持续时长、第一静默周 期的长度;第二配置信息包括以下参数中的一项或多项:第二持续时长、第二静默周期的长度、第二时域资源的长度,第二时域资源为第一静默周期的非静默时间中用于配置第二静默周期的时域资源。
在一些实施例中,静默时间的配置信息为非连续接收DRX配置信息。DRX配置信息包括以下参数中的一项或多项:非连续接收DRX周期的长度、接通持续时间on Duration、包括至少一个DRX周期的第一时域资源的长度、第一时域资源的起始时刻或者第一时域资源的结束时刻。
在一些实施例中,静默时间的配置信息包括以下参数中的一项或多项:位图序列、第一时域资源的起始时刻或者第一时域资源的重复周期的长度。位图序列包括一个或多个指示位,每个指示位对应第一时域资源中的一个时域单元,指示位用于指示时域单元是否属于静默时间。
在一些实施例中,静默时间的配置信息承载于高层信令或者物理层信令中。高层信令包括无线资源控制RRC信令、MAC CE或者系统消息。
在一些实施例中,高层信令包括一个或多个静默时间的配置信息,以及每个静默时间的配置信息对应的索引值和/或静默状态类型。
在一些实施例中,接收单元501,还用于接收来自于基站的第一指示信息,第一指示信息用于指示基站进入静默状态。
在一些实施例中,第一指示信息包括生效的静默时间的配置信息对应的索引值和/或静默状态类型。
在一些实施例中,第一指示信息还用于指示静默时间的起始时刻。
在一些实施例中,静默时间的起始时刻根据终端接收到第一指示信息的时刻确定;或者,静默时间的起始时刻根据终端接收到第一指示信息的时刻以及第一指示信息所携带的第一偏移值确定;或,静默时间的起始时刻根据第一指示信息所携带的起始时刻确定。
在一些实施例中,接收单元501,还用于接收来自于基站的第二指示信息,第二指示信息用于指示基站退出静默状态。
在一些实施例中,第二指示信息还用于指示静默时间的结束时刻。
在一些实施例中,静默时间的结束时刻根据终端接收到第二指示信息的时刻确定;或者,静默时间的结束时刻根据终端接收到第二指示信息的时刻以及第二指示信息所携带的第二偏移值确定;或,静默时间的结束时刻根据第二指示信息所携带的结束时刻确定。
在一些实施例中,存储单元502用于存储来自于基站的静默时间的配置信息。
需要说明的是,图9和图10中的单元也可以称为模块,例如,发送单元可以称为发送模块。在图9和图10所示的实施例中,各个单元的名称也可以不是图中所示的名称,例如,发送单元也可以称为通信单元,接收单元也可以称作通信单元。
图9和图10中的各个单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。本公开实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,计算机软 件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在采用硬件的形式实现集成的模块的功能的情况下,本公开实施例提供一种基站的结构示意图,基站可以是上述信息传输装置40。如图11所示,基站60包括:处理器602,通信接口603,总线604。在一些实施例中,基站60还可以包括存储器601。
处理器602,可以是实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器602可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器602可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器602也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
通信接口603,用于与其他设备通过通信网络连接。通信网络可以是以太网,无线接入网,无线局域网(wireless local area networks,WLAN)等。
存储器601,可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
作为一种示例,存储器601可以独立于处理器602存在,存储器601可以通过总线604与处理器602相连接,用于存储指令或者程序代码。处理器602调用并执行存储器601中存储的指令或程序代码时,能够实现本公开实施例提供的信息传输方法。
另一种示例中,存储器601也可以和处理器602集成在一起。
总线604,可以是扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线604可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用硬件的形式实现上述集成的模块的功能的情况下,本公开实施例还提供一种终端的结构示意图。终端可以是上述信息传输装置50。如图12所示,终端70包括:处理器702,通信接口703,总线704。在一些实施例中,终端70还可以包括存储器701。
处理器702,可以是实现或执行结合本公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器702可以是中央处理器,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器702可以实现或执行结合本公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器702也可以是实现计算功能的组合,例如包含一个或多个微处 理器组合,DSP和微处理器的组合等。
通信接口703,用于与其他设备通过通信网络连接。通信网络可以是以太网,无线接入网,无线局域网(wireless local area networks,WLAN)等。
存储器701,可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
作为一种示例,存储器701可以独立于处理器702存在,存储器701可以通过总线704与处理器702相连接,用于存储指令或者程序代码。处理器702调用并执行存储器701中存储的指令或程序代码时,能够实现本公开实施例提供的信息传输方法。
另一种示例中,存储器701也可以和处理器702集成在一起。
总线704,可以是扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线704可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明。实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将基站或终端的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
本公开实施例还提供一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机指令来指示相关的硬件完成,程序可存储于上述计算机可读存储介质中,程序在执行时,可包括如各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的或内存。计算机可读存储介质也可以是上述基站或终端的外部存储设备,例如基站或终端上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述基站或终端的内部存储单元也包括外部存储设备。计算机可读存储介质用于存储计算机程序以及基站或终端所需的其他程序和数据。计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
本公开实施例还提供一种计算机程序产品,计算机产品包含计算机程序。当该计算机程序产品在计算机上运行时,使得该计算机执行上述实施例中所提供的任一项信息传输方法。
尽管在此结合各实施例对本公开进行了描述,然而,在实施所要求保护的本公开过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(Comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合详细特征及其实施例对本公开进行了描述,显而易见的,在不脱离本公开的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本公开的示例性说明,且视为已覆盖本公开范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。倘若本申请的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
以上,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何在本公开揭露的技术范围内的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (37)

  1. 一种信息传输方法,包括:
    基站向终端发送静默时间的配置信息,所述静默时间为所述基站处于静默状态的时间。
  2. 根据权利要求1所述的方法,其中,处于静默状态的基站执行以下操作中的一项或多项:
    关闭动态调度功能;
    停止发送下行信号;
    停止接收上行信号;或,
    开启节能功能。
  3. 根据权利要求1所述的方法,其中,所述静默时间的配置信息包括以下参数中的一项或多项:所述静默时间的起始时刻、所述静默时间的持续时长或者所述静默时间的结束时刻。
  4. 根据权利要求1所述的方法,其中,所述静默时间的配置信息包括以下参数中的一项或多项:包含一个或多个静默周期的第一时域资源的长度、所述第一时域资源的起始时刻、所述第一时域资源的结束时刻、所述第一时域资源的重复周期的长度、所述静默时间的持续时长或者所述静默周期的长度,每个所述静默周期中存在一个静默时间。
  5. 根据权利要求1所述的方法,其中,所述静默时间的配置信息包括:第一配置信息和第二配置信息;所述第一配置信息用于在第一时域资源上配置一个或多个第一静默周期,所述第一静默周期中存在第一持续时长的静默时间;所述第二配置信息用于在所述第一静默周期中的非静默时间内配置一个或多个第二静默周期,所述第二静默周期中存在第二持续时长的静默时间。
  6. 根据权利要求5所述的方法,其中,所述第一配置信息包括以下参数中的一项或多项:所述第一时域资源的长度、所述第一时域资源的起始时刻、所述第一时域资源的结束时刻、所述第一持续时长或者所述第一静默周期的长度;
    所述第二配置信息包括以下参数中的一项或多项:所述第二持续时长、所述第二静默周期的长度或者第二时域资源的长度,所述第二时域资源为所述第一静默周期的非静默时间中用于配置所述第二静默周期的时域资源。
  7. 根据权利要求1所述的方法,其中,所述静默时间的配置信息为非连续接收DRX配置信息,所述DRX配置信息包括以下参数中的一项或多项:DRX周期的长度、接通持续时间on Duration、包括一个或多个DRX周期的第一时域资源的长度、所述第一时域资源的起始时刻或者所述第一时域资源的结束时刻。
  8. 根据权利要求1所述的方法,其中,所述静默时间的配置信息包括以下参数中的一项或多项:位图序列、第一时域资源的起始时刻或者所述第一时域资源的重复周期的长度,所述位图序列包括一个或多指示位,每个指示位对应所述第一时域资源中的一个时域单元,所述指示位用于指示所述指示位对应的时域单元是否属于静默时间。
  9. 根据权利要求1至8任一项所述的方法,其中,所述静默时间的配置信息承载于高层信令或者物理层信令中,所述高层信令包括无线资源控制RRC信令、媒体接入控制控制单元MAC CE或者系统消息。
  10. 根据权利要求9所述的方法,其中,所述高层信令包括一个或多个所述静默时间的配置信息,以及每个所述静默时间的配置信息对应的索引值和/或静默状态类型。
  11. 根据权利要求9所述的方法,还包括:
    所述基站向所述终端发送第一指示信息,所述第一指示信息用于指示所述基站进入静默状态。
  12. 根据权利要求11所述的方法,其中,所述第一指示信息包括生效的所述静默时间的配置信息对应的索引值和/或静默状态类型。
  13. 根据权利要求11或12所述的方法,其中,所述第一指示信息还用于指示所述静默时间的起始时刻。
  14. 根据权利要求13所述的方法,其中,所述静默时间的起始时刻根据所述终端接收到所述第一指示信息的时刻确定;或者,
    所述静默时间的起始时刻根据所述终端接收到所述第一指示信息的时刻以及所述第一指示信息所携带的第一偏移值确定;或者,
    所述静默时间的起始时刻根据所述第一指示信息所携带的起始时刻确定。
  15. 根据权利要求1所述的方法,还包括:
    所述基站向所述终端发送第二指示信息,所述第二指示信息用于指示所述基站退出静默状态。
  16. 根据权利要求15所述的方法,其中,所述第二指示信息还用于指示所述静默时间的结束时刻。
  17. 根据权利要求16所述的方法,其中,所述静默时间的结束时刻根据所述终端接收到所述第二指示信息的时刻确定;或者,
    所述静默时间的结束时刻根据所述终端接收到所述第二指示信息的时刻以及所述第二指示信息所携带的第二偏移值确定;或者,
    所述静默时间的结束时刻根据所述第二指示信息所携带的结束时刻确定。
  18. 一种信息传输方法,包括:
    终端接收来自于基站的静默时间的配置信息;所述静默时间为所述基站处于静默状态的时间。
  19. 根据权利要求18所述的方法,其中,处于静默状态的基站执行以下操作中的一项或多项:
    关闭动态调度功能;
    停止发送下行信号;
    停止接收上行信号;或,
    开启节能功能。
  20. 根据权利要求18所述的方法,其中,所述静默时间的配置信息包括以下参数中的一项或多项:所述静默时间的起始时刻、所述静默时间的持续时长或者所述静默时间的结束时刻。
  21. 根据权利要求18所述的方法,其中,所述静默时间的配置信息包括以下参数中的一项或多项:包含一个或多个静默周期的第一时域资源的长度、所述第一时域资源的起始时刻、所述第一时域资源的结束时刻、所述第一时域资源的重复周期的长度、所述静默时间的持续时长或者所述静默周期的长度,每个所述静默周期中存在一个静默时间。
  22. 根据权利要求18所述的方法,其中,所述静默时间的配置信息包括:第一配置信息和第二配置信息;所述第一配置信息用于在第一时域资源上配置一个或多个第一静默周期,所述第一静默周期中存在第一持续时长的静默时间;所述第二配置信息用于在所述第一静默周期中的非静默时间内配置一个或多个第二静默周期,所述第二静默周期中存在第二持续时长的静默时间。
  23. 根据权利要求22所述的方法,其中,所述第一配置信息包括以下参数中的一项或多项:所述第一时域资源的长度、所述第一时域资源的起始时刻、所述第一时域资源的结束时刻、所述第一持续时长、所述第一静默周期的长度;
    所述第二配置信息包括以下参数中的一项或多项:所述第二持续时长、所述第二静默周期的长度、第二时域资源的长度,所述第二时域资源为所述第一静默周期的非静默时间中用于配置所述第二静默周期的时域资源。
  24. 根据权利要求18所述的方法,其中,所述静默时间的配置信息为非连续接收DRX配置信息,所述DRX配置信息包括以下参数中的一项或多项:非连续接收DRX周期的长度、接通持续时间on Duration、包括一个或多个DRX周期的第一时域资源的长度、所述第一时域资源的起始时刻或者所述第一时域资源的结束时刻。
  25. 根据权利要求18所述的方法,其中,所述静默时间的配置信息包括以下参数中的一项或多项:位图序列、第一时域资源的起始时刻或者所述第一时域资源的重复周期的长度,所述位图序列包括一个或多指示位,每个指示位对应所述第一时域资源中的一个时域单元,所述指示位用于指示所述时域单元是否属于静默时间。
  26. 根据权利要求18至25任一项所述的方法,其中,所述静默时间的配置信息承载于高层信令或者物理层信令中,所述高层信令包括无线资源控制RRC信令、MAC CE或者系统消息。
  27. 根据权利要求26所述的方法,其中,所述高层信令包括一个或多个所述静默时间的配置信息,以及每个所述静默时间的配置信息对应的索引值和/或静默状态类型。
  28. 根据权利要求26所述的方法,还包括:
    所述终端接收来自于所述基站的第一指示信息,所述第一指示信息用于指示所述基站进入静默状态。
  29. 根据权利要求28所述的方法,其中,所述第一指示信息包括生效的所述静 默时间的配置信息对应的索引值和/或静默状态类型。
  30. 根据权利要求28或29所述的方法,其中,所述第一指示信息还用于指示所述静默时间的起始时刻。
  31. 根据权利要求30所述的方法,其中,所述静默时间的起始时刻根据所述终端接收到所述第一指示信息的时刻确定;或者,
    所述静默时间的起始时刻根据所述终端接收到所述第一指示信息的时刻以及所述第一指示信息所携带的第一偏移值确定;或者,
    所述静默时间的起始时刻根据所述第一指示信息所携带的起始时刻确定。
  32. 根据权利要求18所述的方法,还包括:
    所述终端接收来自于所述基站的第二指示信息,所述第二指示信息用于指示所述基站退出静默状态。
  33. 根据权利要求32所述的方法,其中,所述第二指示信息还用于指示所述静默时间的结束时刻。
  34. 根据权利要求33所述的方法,其中,所述静默时间的结束时刻根据所述终端接收到所述第二指示信息的时刻确定;或者,
    所述静默时间的结束时刻根据所述终端接收到所述第二指示信息的时刻以及所述第二指示信息所携带的第二偏移值确定;或者,
    所述静默时间的结束时刻根据所述第二指示信息所携带的结束时刻确定。
  35. 一种基站,包括:处理器和存储器;
    所述存储器存储有所述处理器可执行的指令;
    所述处理器被配置为执行所述指令时,使得所述基站实现如权利要求1至17中任一项所述的方法。
  36. 一种终端,包括:处理器和存储器;
    所述存储器存储有所述处理器可执行的指令;
    所述处理器被配置为执行所述指令时,使得所述终端实现如权利要求18至34中任一项所述的方法。
  37. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至17中任一项所述的方法,或者,如权利要求18至34中任一项所述的方法。
PCT/CN2023/108393 2022-11-03 2023-07-20 信息传输方法、基站、终端及存储介质 WO2024093371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211372713.1A CN117998536A (zh) 2022-11-03 2022-11-03 信息传输方法、基站、终端及存储介质
CN202211372713.1 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024093371A1 true WO2024093371A1 (zh) 2024-05-10

Family

ID=90900309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108393 WO2024093371A1 (zh) 2022-11-03 2023-07-20 信息传输方法、基站、终端及存储介质

Country Status (2)

Country Link
CN (1) CN117998536A (zh)
WO (1) WO2024093371A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025687A (zh) * 2011-11-07 2014-09-03 高通股份有限公司 用于弹性宽带系统的反向链路吞吐量管理
US20150003273A1 (en) * 2012-02-20 2015-01-01 China Academy Of Telecommunications Technology Method for configuring quiet period in cognitive radio systm and device thereof
WO2018119792A1 (zh) * 2016-12-28 2018-07-05 华为技术有限公司 天线校准方法、装置及基站
US20200221392A1 (en) * 2019-01-08 2020-07-09 Qualcomm Incorporated Transmission power dependent quiet periods for nr-u

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025687A (zh) * 2011-11-07 2014-09-03 高通股份有限公司 用于弹性宽带系统的反向链路吞吐量管理
US20150003273A1 (en) * 2012-02-20 2015-01-01 China Academy Of Telecommunications Technology Method for configuring quiet period in cognitive radio systm and device thereof
WO2018119792A1 (zh) * 2016-12-28 2018-07-05 华为技术有限公司 天线校准方法、装置及基站
US20200221392A1 (en) * 2019-01-08 2020-07-09 Qualcomm Incorporated Transmission power dependent quiet periods for nr-u

Also Published As

Publication number Publication date
CN117998536A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11910311B2 (en) Method and apparatus for enhancing discontinuous reception in wireless systems
US20210392582A1 (en) Reference Signal Receiving Method, Reference Signal Sending Method, and Apparatus
WO2021104521A1 (zh) 用于非授权频段的drx的方法和终端装置
JP2019507975A (ja) Ue edrx下での信頼性のあるページング送信の方法
JP2023510290A (ja) 不連続受信drxパラメーター構成方法及び装置
WO2021082012A1 (zh) 用于确定非连续接收持续定时器的启动状态的方法及设备
US20230106109A1 (en) Communications Method and Apparatus
WO2020215332A1 (zh) 非连续接收的方法和设备
WO2021239064A1 (zh) 通信方法及装置
WO2022062685A1 (zh) 一种通信方法及设备
CN113596963A (zh) 通信方法及装置
WO2022222892A1 (zh) 一种非连续接收的配置方法及装置
WO2021128341A1 (zh) 非连续接收控制方法、设备及存储介质
JP2022539694A (ja) ダウンリンク制御チャネルのモニタリングに関するユーザ装置
WO2024093371A1 (zh) 信息传输方法、基站、终端及存储介质
WO2023193198A1 (zh) 一种参数确定方法及装置、终端设备
WO2022083418A1 (zh) 一种节能信号传输方法及装置
CN111867013B (zh) 一种节能及其控制方法及装置
WO2024092570A1 (zh) 一种非连续接收的实现方法及装置、终端设备
WO2023206533A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2024103234A1 (zh) 无线通信方法及装置、终端设备、网络设备
WO2023123241A1 (zh) 无线通信方法、终端设备和网络设备
WO2024092522A1 (zh) 一种drx实现方法及装置、终端设备
WO2022028212A1 (zh) 信息处理方法、装置及终端
WO2023060447A1 (zh) 信号发送方法、信号接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884310

Country of ref document: EP

Kind code of ref document: A1