WO2023191573A1 - 압력용기용 온도 감응식 안전밸브 - Google Patents

압력용기용 온도 감응식 안전밸브 Download PDF

Info

Publication number
WO2023191573A1
WO2023191573A1 PCT/KR2023/004337 KR2023004337W WO2023191573A1 WO 2023191573 A1 WO2023191573 A1 WO 2023191573A1 KR 2023004337 W KR2023004337 W KR 2023004337W WO 2023191573 A1 WO2023191573 A1 WO 2023191573A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
valve member
valve
internal flow
safety valve
Prior art date
Application number
PCT/KR2023/004337
Other languages
English (en)
French (fr)
Inventor
홍진용
이익희
김동영
박신규
Original Assignee
남양넥스모 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220040024A external-priority patent/KR20230142037A/ko
Priority claimed from KR1020220040025A external-priority patent/KR20230142038A/ko
Application filed by 남양넥스모 주식회사 filed Critical 남양넥스모 주식회사
Publication of WO2023191573A1 publication Critical patent/WO2023191573A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K15/067Mounting of tanks
    • B60K15/07Mounting of tanks of gas tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures

Definitions

  • the present invention relates to a temperature sensitive safety valve for pressure vessels (TEMPERATURE SENSING REACTION TYPE SAFETY VALVE FOR PRESSURE CONTAINER), and more specifically to a temperature sensitive safety valve for pressure vessels equipped with a fusible metal that melts at a predetermined temperature. It's about.
  • hydrogen fuel cell vehicles use electrical energy generated through a chemical reaction between oxygen and hydrogen in the stack as a power source.
  • the hydrogen fuel cell vehicle has the advantage of being able to continuously generate power regardless of the capacity of the battery by supplying fuel and air from outside, which has the advantage of being highly efficient and emitting almost no pollutants.
  • Recently, the technology of the hydrogen fuel cell vehicle has been developed. It's becoming more active.
  • the hydrogen fuel cell vehicle is equipped with one or more hydrogen tanks filled with high-pressure hydrogen gas.
  • a 'temperature-sensitive pressure safety device' is disclosed in Republic of Korea Patent Publication No. 10-2021-0076757 (June 24, 2021) (hereinafter referred to as 'prior art').
  • 'prior art' is a schematic diagram of the operation of a safety device in the prior art.
  • a support part for supporting the blocking part is provided inside the body, and the support part is configured to melt when the reference temperature is exceeded.
  • the blocking portion when the support portion is in a solid state, the blocking portion is supported by the support portion to block the high-pressure gas discharge path of the body, and when the support portion is in a molten state, the blocking portion is supported by the support portion. Since it is not supported by the support part and the high-pressure gas discharge passage of the body is opened, it is possible to prevent the fuel tank (T) from exploding.
  • the body 10 is mounted on one side of the fuel tank T, and when the surrounding temperature rises due to a fire in the vehicle, etc., the support portion (not shown) inside the body 10 melts.
  • the valve member (not shown) in the body 10 according to the internal pressure (P) of the fuel tank (T) opens the high-pressure gas discharge passage, thereby reducing the internal pressure of the fuel tank (T) before explosion through the high-pressure gas discharge passage. can be lowered.
  • the thickness of the support part is formed relatively thick, it takes a long time for the support part to melt, so the reaction of gas emission when the temperature of the fuel tank (T) increases due to a fire or abnormality in the vehicle There is a problem with slow speed.
  • the technical object of the present invention is to provide a temperature-sensitive safety valve for a pressure vessel that has a fast reaction rate of gas discharge when the temperature of the gas tank rises due to a fire or abnormality.
  • Another technical object of the present invention is to provide a temperature-sensitive safety valve for a pressure vessel that facilitates discharge of molten soluble metal to the outside before hardening in order to open a high-pressure gas discharge passage.
  • the temperature-sensitive safety valve for a pressure vessel is composed of a body, a valve member, a steel ball, and available metal.
  • a gas inlet and a gas outlet are formed in the body.
  • the valve member is disposed within the body.
  • the valve member opens and closes between the gas inlet and the gas outlet.
  • the steel ball is disposed within the body.
  • the steel ball supports the valve member in a closed state.
  • the available metal is disposed within the body. The fusible metal is melted at a predetermined temperature and moves the steel ball to a position where the valve member is opened.
  • the gas inlet may be formed at one end of the body.
  • An internal flow path may be formed inside the body.
  • the internal flow path may extend from the gas inlet to the other end of the body.
  • the internal flow path may be in communication with the gas outlet.
  • the valve member may be arranged to be movable in the longitudinal direction of the valve member in the internal flow passage.
  • the steel ball may be comprised of a plurality of steel balls.
  • the plurality of steel balls may be arranged in a row in the longitudinal direction of the valve member in a closed state.
  • the plurality of steel balls may be out of alignment when the available metal is in a molten state.
  • a cover member may be inserted into the internal flow passage through the other end of the body.
  • the cover member may support the fusible metal and the plurality of steel balls.
  • a melt outlet may be formed in the cover member. The melt discharge port may discharge the soluble metal as it is melted.
  • a center hole may be formed in the center of the available metal.
  • the plurality of steel balls may be inserted into the center hole and arranged in a row.
  • An elastic member may be further disposed in the internal flow path.
  • the elastic member may move the valve member to an open position when the valve member is not supported by the plurality of steel balls.
  • the internal passage may be composed of a first internal passage and a second internal passage.
  • the first internal flow path may extend a predetermined length from the gas inlet toward the other end of the body.
  • the second internal flow passage may extend from the first internal flow passage to the other end of the body.
  • the second internal flow passage may be formed to have a larger diameter than the first internal flow passage.
  • the second internal flow path may be in communication with the gas outlet.
  • the valve member may be composed of a stem portion and a tip portion.
  • the stem portion may be disposed in the second internal flow path.
  • the tip portion may be formed at one end of the stem portion and have a smaller diameter than the stem portion.
  • the tip portion may be inserted into the first internal flow path when the valve member is in a closed state to close a space between the first internal flow path and the second internal flow path.
  • the tip portion may exit the first internal passage and open a space between the first internal passage and the second internal passage.
  • the valve member may further include a piston portion.
  • the piston portion may be formed at the other end of the stem portion to have a larger diameter than the stem portion.
  • the outer peripheral surface of the piston portion may be in close contact with the inner peripheral surface of the internal flow passage.
  • the elastic member may be formed as a coil spring. One end of the coil spring may be in contact with a step between the first internal passage and the second internal passage. The other end of the coil spring may be in contact with the piston unit.
  • the stem portion may penetrate the coil spring.
  • the gas outlet may be formed on the outer peripheral surface of the body or on the other end of the body.
  • the body may be composed of an insertion part and an exposed part.
  • the gas inlet may be formed at one end of the insertion portion.
  • An internal flow path extending from the gas inlet to the other end may be formed in the insertion portion.
  • the gas outlet may be formed on the outer peripheral surface of the insertion part.
  • the gas outlet may be in communication with the internal flow path.
  • the exposed portion may extend perpendicular to the insertion portion.
  • An installation space may be formed inside the exposed portion.
  • the installation space may be in communication with the internal flow passage.
  • the steel ball and the available metal may be installed in the installation space.
  • the valve member may be disposed in the insertion portion to be movable in the longitudinal direction of the insertion portion.
  • the steel ball may be comprised of a plurality of steel balls.
  • the plurality of steel balls may be arranged in a row in the longitudinal direction of the valve member in a closed state.
  • the plurality of steel balls may be out of alignment when the available metal is in a molten state.
  • the available metal may be disposed at one end of the exposed portion in the installation space.
  • a pressing member may be disposed at the other end of the exposed portion in the installation space.
  • the tip of the pressing member may support one side of at least one of the plurality of steel balls.
  • the pressing member may break the linear arrangement of the plurality of steel balls when the soluble metal is melted.
  • a first cover member may be inserted into the installation space through one end of the exposed portion.
  • the first cover member may support the soluble metal.
  • a melt discharge port may be formed in the first cover member. The melt discharge port may discharge the soluble metal as it is melted.
  • a piston panel may be disposed in the installation space between the fusible metal and the plurality of steel balls.
  • the piston panel may discharge the available metal in a molten state to the outside of one end of the exposed portion by the moving force of the pressing member transmitted through the plurality of steel balls that are out of alignment.
  • An elastic member may be further disposed in the installation space.
  • the elastic member may move the pressing member toward one of the plurality of steel balls.
  • a second cover member may be inserted into the installation space through the other end of the exposed portion.
  • the pressing member may be composed of a piston portion and a rod portion.
  • the tip portion may be formed at one end of the piston portion.
  • the piston portion may have a larger diameter than the tip portion.
  • the outer peripheral surface of the piston unit may be in close contact with the inner peripheral surface of the installation space.
  • the rod portion may be formed at the other end of the piston portion and have a smaller diameter than the piston portion.
  • the load unit may be arranged in the longitudinal direction of the installation space.
  • the elastic member may be formed as a coil spring. One end of the coil spring may be in contact with the other end of the piston unit. The other end of the coil spring may be in contact with the inside of the second cover member.
  • the rod portion may be inserted into the coil spring.
  • the internal passage may be composed of a first internal passage and a second internal passage.
  • the first internal flow path may extend a predetermined length from the gas inlet toward the other end of the insertion part.
  • the second internal flow path may extend from the first internal flow path to the other end of the insertion part.
  • the second internal flow passage may be formed to have a larger diameter than the first internal flow passage.
  • the second internal flow path may be in communication with the gas outlet.
  • the valve member may be disposed in the second internal flow path. The valve member may close between the first internal flow passage and the second internal flow passage when the valve member is in a closed state. The valve member may open a space between the first internal flow path and the second internal flow path when the valve member is in an open state.
  • the available metal may be disposed at one end of the exposed portion in the installation space.
  • a pressing member may be disposed at the other end of the exposed portion in the installation space. When the soluble metal is melted, the pressing member may discharge the molten soluble metal from the installation space to the outside. The pressing member may change the support position of the steel ball relative to the valve member so that the valve member is moved from a closed position to an open position when the fusible metal is melted.
  • the pressing member may be composed of a piston portion, a tip portion, a rod portion, and a push panel portion.
  • the outer peripheral surface of the piston unit may be in close contact with the inner peripheral surface of the installation space.
  • the tip portion may be formed at one end of the piston portion and have a smaller diameter than the piston portion.
  • the rod portion may be formed at the other end of the piston portion and have a smaller diameter than the piston portion.
  • the load unit may be arranged in the longitudinal direction of the installation space.
  • the push panel portion may be formed at one end of the front end integrally with the front end. The push panel unit may push the molten metal out of the installation space.
  • the steel ball may be supported by the push panel portion in the closed position of the valve member.
  • the steel ball may be supported by the distal end of the valve member in an open position.
  • the pressing member may receive elastic force from the elastic member.
  • the elastic member may be formed as a coil spring. One end of the coil spring may be in contact with the other end of the piston unit, and the rod unit may be inserted into the coil spring.
  • the temperature-sensitive safety valve for pressure vessels according to the present invention can achieve various effects as follows.
  • the steel ball is configured to support the valve member that opens and closes between the gas inlet and the gas outlet, so the position of the steel ball can change quickly when the available metal is melted, so the temperature of the gas tank due to a fire or abnormality may increase.
  • the valve member quickly opens the space between the gas inlet and the gas outlet, which has the effect of quickly discharging the gas in the gas tank.
  • the molten metal is quickly discharged to the outside before hardening due to the temperature drop due to expansion of the gas, thereby minimizing the rate of operational defects.
  • the arrangement of the plurality of steel balls changes depending on whether the fusible metal is melted, and the emission of high-pressure gas is determined depending on whether the plurality of steel balls are arranged in a row, thereby preventing safety accidents by actively responding to the surrounding temperature. There is a preventive effect.
  • FIG. 1 is a schematic diagram of the operation of a safety device in the prior art
  • Figure 2 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed on a pressure vessel according to the first embodiment of the present invention
  • Figure 3 is a cross-sectional view showing the valve body in the structure of Figure 2;
  • Figure 4 is a cross-sectional view showing the effect of the temperature-sensitive safety valve for a pressure vessel according to the first embodiment of the present invention
  • Figure 5 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed on a pressure vessel according to a second embodiment of the present invention
  • Figure 6 is a cross-sectional view showing the valve body in the configuration of Figure 5;
  • Figure 7 is a cross-sectional view showing the effect of the temperature-sensitive safety valve for a pressure vessel according to a second embodiment of the present invention.
  • Figure 8 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed on a pressure vessel according to a third embodiment of the present invention.
  • Figure 9 is a cross-sectional view showing the valve body in the structure of Figure 8.
  • Figure 10 is a cross-sectional view showing the effect of the temperature-sensitive safety valve for a pressure vessel according to the third embodiment of the present invention.
  • Figure 11 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed on a pressure vessel according to a fourth embodiment of the present invention.
  • Figure 12 is a cross-sectional view showing the operational effect of a temperature-sensitive safety valve for a pressure vessel according to a fourth embodiment of the present invention.
  • 100A, 100B, 100C, 100D Temperature sensitive safety valve for pressure vessels
  • Figure 2 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed in a pressure vessel according to the first embodiment of the present invention
  • Figure 3 is a cross-sectional view showing the valve body in the configuration of Figure 2
  • Figure 4 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel according to the first embodiment of the present invention. This is a cross-sectional view showing the effect of the temperature-sensitive safety valve for a pressure vessel according to the first embodiment.
  • the temperature-sensitive safety valve (100A) for a pressure vessel includes a body 110, valve members 120, 121, and 123, and a steel ball. It may include (130) and soluble metal (140).
  • the body 110 may form the overall external shape of the safety valve 100A.
  • a gas inlet 113 and a gas outlet 114 may be formed in the body 110.
  • the valve members 120, 121, and 123 are disposed within the body 110 to open and close the gas inlet 103 and the gas outlet 104.
  • the valve members 120, 121, and 123 may be movably disposed within the body 110.
  • the steel ball 130 may be disposed within the body 110 to support the valve members 120, 121, and 123 in a closed state.
  • the steel ball 130 may be provided with a plurality of steel balls 130, and the plurality of steel balls 130 are provided inside the body 110 and support the valve members 120, 121, and 123 so that they do not move. can do.
  • Fusible metal 140 may be disposed within body 110.
  • the fusible metal 140 can be melted at a predetermined temperature to move the steel ball 130 to a position where the valve members 120, 121, and 123 are opened.
  • the fusible metal 140 can support a plurality of steel balls 130 arranged in a row inside the body 120, and can melt at a predetermined temperature to collapse the plurality of steel balls 130 arranged in a row. there is.
  • the body 110 may be mounted by partially inserting a portion of the body 110 into a mounting portion (not indicated) provided in the form of a hole on one side of the fuel tank T.
  • the body 110 may include an insertion portion 110A inserted into the mounting portion of the fuel tank T and an exposed portion 110B extending longitudinally from the insertion portion.
  • a male thread 110A-s may be formed that is screwed to a female thread (not shown) machined inside the mounting portion of the fuel tank T.
  • a hexagonal bolt fastening portion 110C that can be bolted to the mounting portion of the fuel tank T using a bolt fastening tool (not shown) may be formed at the longitudinal outer end of the exposed portion 110B. The assembler inserts the insertion part 110A of the body 110 into the mounting part of the fuel tank T using a bolt fastening tool and rotates the bolt fastening part 110C to attach the fuel tank T to the fuel tank T. Bolt assembly of the body 110 can be completed.
  • a sealing groove 111h may be formed on the outer peripheral surface of the distal end of the insertion portion 110A, and an airtight seal 111 may be interposed in the sealing groove 111h.
  • the airtight seal 111 can prevent high-pressure gas from leaking between the inner peripheral surface of the mounting portion of the fuel tank (T) and the outer peripheral surface of the insertion portion (110A) of the body 110.
  • the gas inlet 103 may be formed at one end of the body 110.
  • the gas inlet 103 may be formed at one end of the insertion portion 110A inserted into the fuel tank T.
  • An internal flow path 100S may be formed inside the body 110.
  • the internal flow path 100S may extend from the gas inlet 103 to the other end of the body 110.
  • the internal flow path 100S may be in communication with the gas outlet 104.
  • the valve members 120, 121, and 123 may be arranged to be movable in the longitudinal direction of the valve members 120, 121, and 123 in the internal passage 100S.
  • the valve members 120, 121, and 123 may be disposed in the internal passage 100S in the longitudinal direction of the internal passage 100S.
  • the internal passage 100S may be divided into a first internal passage 101 and a second internal passage 102 based on the points opened and closed by the valve members 120, 121, and 123.
  • the internal flow passage 100S may include a first internal flow passage 101 and a second internal flow passage 102.
  • the first internal flow path 101 may extend a predetermined length from the gas inlet 103 toward the other end of the body 110.
  • the second internal passage 102 may extend from the first internal passage 101 to the other end of the body 110.
  • the second internal flow passage 102 may be formed to have a larger diameter than the first internal flow passage 101.
  • the second internal flow path 102 may be in communication with the gas outlet 104.
  • the gas inlet 103 may be an inlet through which the internal pressure (P) of the fuel tank (T) is directly applied and high-pressure gas flows in, and may be formed at the tip of the insertion portion (110A) of the body (110).
  • the gas outlet 104 is a final outlet for discharging the high-pressure gas flowing into the first internal flow passage 101 and the second internal flow passage 102 through the gas inlet 103, and is an insertion portion of the body 110. (110A) may be formed on the outer peripheral surface.
  • a high-pressure gas discharge passage 11 may be formed in the fuel tank T to communicate with the gas outlet 104.
  • the fuel tank (T) It can perform the function of a passage through which high-pressure gas is discharged.
  • valve members 120, 121, 123, fusible metal 140, and a cover member 160 to be described later may be installed.
  • the valve members 120, 121, and 123 may be installed in the first internal passage 101 and the second internal passage 102, and the fusible metal 140 and cover member 160 may be installed in the second internal passage 102. can be installed in
  • valve members 120, 121, and 123 are arranged to be movable in the longitudinal direction of the body 110, and can serve to open and close the gas inlet 103 and the gas outlet 104.
  • valve members 120, 121, and 123 may include a stem portion 120, a tip portion 121, and a piston portion 123.
  • the stem portion 120 may be protruding from the center of one surface of the piston portion 123 and disposed in the second internal flow path 102.
  • the tip portion 121 may be formed at one end of the stem portion 120 and have a smaller diameter than the stem portion 120 .
  • the tip portion 121 may be inserted into the first internal passage 101 when the valve members 120, 121, and 123 are in a closed state to close the space between the first internal passage 101 and the second internal passage 102.
  • the tip portion 121 may exit the first internal passage 101 when the valve members 120, 121, and 123 are in an open state and open the space between the first internal passage 101 and the second internal passage 102. .
  • the tip portion 121 may be formed in a cylindrical shape with a diameter corresponding to the inner diameter of the first internal passage 101.
  • a groove through which the inner gasket ring 122 is interposed may be formed on the outer peripheral surface of the tip portion 121, and the inner gasket ring 122 is a high-pressure gas gas between the inner peripheral surface of the first internal passage 101 and the outer peripheral surface of the tip portion 121. Leakage can be prevented.
  • the piston portion 123 may be formed at the other end of the stem portion 120 and have a larger diameter than the stem portion 120.
  • the outer peripheral surface of the piston portion 123 may be in close contact with the inner peripheral surface of the internal flow path (100S). Specifically, the outer peripheral surface of the piston portion 123 may be in close contact with the inner peripheral surface of the second internal flow passage 102.
  • a groove through which the outer gasket ring 124 is interposed may be formed on the outer peripheral surface of the piston unit 123, and the outer gasket ring 124 is located between the inner peripheral surface of the second internal flow passage 102 and the outer peripheral surface of the piston unit 123.
  • an elastic member 150 may be further disposed in the internal flow passage 100S.
  • the elastic member 150 may be disposed in the second internal passage 102.
  • the elastic member 150 may generate elastic force in the longitudinal direction of the body 110.
  • the elastic member 150 may be provided to surround the outer peripheral surface of the stem portion 120 among the valve members 120, 121, and 123, and the fusible metal 140 is melted by the plurality of steel balls 130.
  • the valve members 120, 121, and 123 are not supported, the valve members 120, 121, and 123 are placed in an open position (i.e., a position that communicates the first internal passage 101 and the second internal passage 102, It can play the role of moving the gas inlet 103 and the gas outlet 104 to a communicating position.
  • the elastic member 150 may be formed as a coil spring.
  • the coil spring may surround the outer periphery of the stem portion 120 excluding the piston portion 123 among the valve members 120, 121, and 123.
  • One end of the coil spring may be in contact with the step 110s between the first internal passage 101 and the second internal passage 102.
  • the other end of the coil spring may be in contact with one surface 123S of the piston unit 123.
  • the stem portion 120 may penetrate the coil spring.
  • the valve members 120, 121, and 123 are configured to control the pressure (P) inside the fuel tank (T) and the elastic force of the elastic member 150 provided with a coil spring when the row arrangement of the plurality of steel balls 130 collapses. By the sum of , it can be moved toward the other longitudinal end of the body 110 on the internal passage 100S of the body 110.
  • the available metal 140 may be disposed close to the other end of the valve members 120, 121, and 123 in the internal passage 100S of the body 110.
  • the soluble metal 140 may be disposed close to the other end of the valve member 120, 121, and 123 of the second internal passage 102 of the body 110.
  • the fusible metal 140 may be disposed at the other end of the body 110 among the second internal passages 102 of the body 110.
  • the soluble metal 140 may be a metal material that can be melted at a predetermined temperature. That is, the soluble metal 140 may be a metal material that melts when the temperature of the surrounding area of the body portion 110 increases significantly due to a fire or abnormality in the vehicle and reaches the predetermined temperature.
  • the fusible metal 140 must be melted between the valve members 120, 121, 123 and the cover member 160 in the second internal passage 102 of the body 110 to deform the shape of the body. (110), it is preferably formed of a metal material with a lower melting point than the valve members 120, 121, 123, and the cover member 160, and it is also formed of a metal material with a lower melting point than the plurality of steel balls 130 aligned by the available metal 140. It is preferable that it is made of a metal material with a low melting point.
  • the soluble metal 140 may be provided in a cylindrical shape with a diameter corresponding to the inner diameter of the second internal passage 102.
  • a center hole 141 may be formed in the center of the fusible metal 140.
  • a plurality of steel balls 130 may be inserted into the center hole 141 and arranged in a row in the longitudinal direction of the valve members 120, 121, and 123.
  • the inner diameter of the center hole 141 may be formed to a size corresponding to the diameter of each of the plurality of steel balls 130.
  • the plurality of steel balls 130 may be formed in a ball shape.
  • the plurality of steel balls 130 may be inserted into the center hole 141 formed in the center of the fusible metal 140 and arranged in a row in the longitudinal direction of the valve members 120, 121, and 123.
  • a plurality of steel balls 130 may be arranged three in a row in the center hole 141 of the fusible metal 140.
  • the plurality of steel balls 130 may be arranged in a row in the longitudinal direction of the valve members 120, 121, and 123 in a closed state.
  • the linear arrangement of the plurality of steel balls 130 may collapse when the available metal 140 is in a molten state. That is, the plurality of steel balls 130 arranged in a row in the center hole 141 of the available metal 140 are heated as the temperature around the body 110 increases due to a fire or abnormal phenomenon in the vehicle. When melted, the linear arrangement collapses and may serve to move the valve members 120, 121, and 123.
  • the cover member 160 may be inserted into the internal flow passage 100S through the other end of the body 110.
  • the cover member 160 may be inserted into the second internal passage 102 through the other end of the body 110 and placed in the second internal passage 102.
  • the cover member 160 can support the fusible metal 140 and a plurality of steel balls 130.
  • a melt discharge port 165 may be formed in the cover member 160.
  • the soluble metal 140 may be melted and discharged from the melt outlet 165. That is, when the soluble metal 140 is in a molten state, it can be discharged to the outside of the body 110 through the melt outlet 165.
  • the fusible metal 140 has a plurality of steel balls 130 arranged in a row in the inner center hole 141, and the inner end is a piston part of the valve members 120, 121, and 123. It is supported by the outer end of (123), and the outer end may be supported by the inner end of the cover member (160).
  • the fusible metal 140 disposed between the valve members 120, 121, 123 and the cover member 160 is a plurality of steel balls 130 in an unmelted solid state. As the linear arrangement of is maintained, the valve members 120, 121, and 123 can be prevented from moving within the internal flow passage 100S.
  • the fusible metal 140 is in a liquid state when melted as the surrounding temperature rises to a predetermined temperature, and the center hole 141 is removed to form a plurality of steel balls 130. It can cause the row arrangement to collapse. Accordingly, the valve members 120, 121, and 123 are moved toward the other longitudinal end of the body 110 within the internal passage 100S to communicate between the first internal passage 101 and the second internal passage 102.
  • the soluble metal 140 melted within the second internal passage 102 of the body 110 is caused by a decrease in the surrounding temperature that occurs when the high-pressure gas expands and is discharged through the high-pressure gas discharge passage 11. Before hardening, the melt is quickly discharged to the outside through the outlet 165 of the cover member 160, thereby minimizing the operation failure rate of the temperature-sensitive safety valve 100A for a pressure vessel according to the first embodiment of the present invention. You can.
  • Figure 5 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed in a pressure vessel according to a second embodiment of the present invention
  • Figure 6 is a cross-sectional view showing the valve body in the configuration of Figure 5
  • Figure 7 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel according to the second embodiment of the present invention.
  • This is a cross-sectional view showing the effect of the temperature-sensitive safety valve for a pressure vessel according to the second embodiment.
  • the same reference numerals are assigned to the same components as the temperature-sensitive safety valve (100A) for a pressure vessel according to the first embodiment of the present invention described above, and a detailed description thereof will be omitted, and only the differences will be described. do.
  • the temperature-sensitive safety valve 100B for a pressure vessel has an internal structure of the portion of the body 110 where the second internal flow path 102 is formed. It is formed in a different structure from the safety valve 100A of the first embodiment.
  • the internal passage (100S) moves from the gas inlet (103) toward the other longitudinal end of the body (110).
  • a first internal passage 101 extending a predetermined length, extending from the first internal passage 101 to the other end of the body 110, and having a larger diameter than the first internal passage 101, the body 110 It may include a second internal flow path 102 communicating with the gas outlet 104 formed at the other end.
  • the gas outlet 104 is formed on the outer peripheral surface of the insertion portion 110A of the body 110 to form a high-pressure gas discharge passage 11 in the fuel tank T. communicates with However, in the case of the safety valve 100B of the second embodiment, the gas outlet 104 is located at the outer end of the exposed portion 110B of the body 110, which is unrelated to the mounting portion of the fuel tank T. The difference is that it is formed at the other end and can directly discharge the high-pressure gas from the fuel tank (T) to the outside air.
  • the body 110 of the safety valve 100B of the second embodiment has an outlet passage 105 communicating with the second internal passage 102 on the outer side in the radial direction of the second internal passage 102, the length of the body 110. It can be formed long in any direction.
  • one end of the outlet passage 105 communicates with the second internal passage 102, and the other end of the outlet passage 105 may be a gas outlet 104.
  • the temperature-sensitive safety valve (100B) for a pressure vessel according to the second embodiment of the present invention has no other valve members, except for the differences in the formation positions of the outlet passage 105 and the gas outlet 104 described above. (120, 121, 123), a plurality of steel balls 130, fusible metal 140, and cover member 160 are the same as the safety valve 100A of the first embodiment described above, so within the scope of the overlapping configuration Detailed description will be omitted.
  • Figure 8 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed in a pressure vessel according to a third embodiment of the present invention
  • Figure 9 is a cross-sectional view showing the valve body in the configuration of Figure 8
  • Figure 10 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel according to the third embodiment of the present invention. This is a cross-sectional view showing the effect of the temperature-sensitive safety valve for a pressure vessel according to the third embodiment.
  • the temperature-sensitive safety valve (100C) for a pressure vessel includes a body (110) that forms the overall appearance of the safety valve (100C), and a body ( A valve member 120 movably disposed inside the body 110, a plurality of steel balls 130 provided inside the body 110 and supporting the valve member 120 so that it does not move in the normal state of the vehicle. , supporting a plurality of steel balls 130 in a row, and may include fusible metal 140 that melts at a predetermined temperature.
  • the body 110 may be mounted by partially inserting a portion of the body 110 into a mounting portion (not indicated) provided in the form of a hole on one side of the fuel tank T.
  • the body 110 includes an insertion portion 110A inserted into the mounting portion of the fuel tank T, and an exposed portion extending perpendicularly to the insertion portion 110A and having an installation space 113 therein. (110B).
  • a male thread (not shown) is formed that is screwed to the female thread (not shown) machined inside the mounting part of the fuel tank (T), so that the mounting part of the fuel tank (T) is screwed. can be concluded.
  • a sealing groove 111h may be formed on the outer peripheral surface of the distal end of the insertion portion 110A, and an airtight seal 111 may be interposed in the sealing groove 111h to connect the inner peripheral surface of the mounting portion of the fuel tank T and the body 110. ) can prevent high-pressure gas from leaking between the outer peripheral surface of the insertion portion (110A).
  • the gas inlet 103 may be formed at one end of the insertion portion 110A.
  • An internal flow path 100S extending from the gas inlet 103 to the other end may be formed in the insertion portion 110A.
  • the gas outlet 104 may be formed on the outer peripheral surface of the insertion portion 110A. The gas outlet 104 may be in communication with the internal flow path 100S.
  • the internal flow path 100S is formed to extend continuously from the gas inlet 103, which is one end of the insertion part 110A, to the other end of the insertion part 110A, but is based on a point interrupted by the valve member 120, which will be described later. It can be divided into a first internal passage 101 and a second internal passage 102.
  • the internal passage 100S may include a first internal passage 101 and a second internal passage 102.
  • the first internal flow path 101 may extend a predetermined length from the gas inlet 103 toward the other end of the insertion portion 110A.
  • the second internal passage 102 may extend from the first internal passage 101 to the other end of the insertion portion 110A.
  • the second internal flow passage 102 may be formed to have a larger diameter than the first internal flow passage 101.
  • the second internal flow path 102 may be in communication with the gas outlet 103.
  • the valve member 120 may be disposed in the second internal flow passage 102.
  • the valve member 120 may close the space between the first internal passage 101 and the second internal passage 102 when the valve member 120 is in a closed state.
  • the valve member 120 may open the space between the first internal passage 101 and the second internal passage 102 when the valve member 120 is in an open state.
  • the installation space 113 formed in the exposed portion 110B may communicate with the internal flow path 100S formed in the insertion portion 110A.
  • the installation space 113 includes a plurality of steel balls 130, fusible metal 140, an elastic member 150, a cover member 160, 190, a pressure member 170, 173, 175, and a piston panel 180. Can be installed.
  • the valve member 120 may be disposed in the insertion portion 110A to be movable in the longitudinal direction of the insertion portion 110A.
  • the gas inlet 103 may be an inlet through which the internal pressure (P) of the fuel tank (T) is directly applied and high-pressure gas flows in, and may be formed at the front end of the insertion portion (110A) of the body (110). .
  • the gas outlet 104 may be the final outlet through which the high-pressure gas flowing into the first internal flow passage 101 and the second internal flow passage 102 through the gas inlet 103 is discharged, and the gas outlet 104 may be the final outlet of the body 110. It may be formed on the outer peripheral surface of the insertion portion 110A.
  • the valve member 120 may be arranged to be movable in the longitudinal direction of the insertion portion 110A of the body 110 and movable in a direction perpendicular to the longitudinal direction of the exposed portion 110B of the body 110. can be placed.
  • the valve member 120 can be moved in the longitudinal direction of the insertion portion 110A to open and close the gas inlet 103 and the gas outlet 104.
  • the valve member 120 can be moved in the longitudinal direction of the insertion portion 110A to open and close the first internal passage 101 and the second internal passage 102.
  • a high-pressure gas discharge passage 11 communicating with the gas outlet 104 formed on the outer peripheral surface of the insertion portion 110A may be formed in the fuel tank T.
  • the high-pressure gas discharge passage 11 is such that when the space between the first internal passage 101 and the second internal passage 102 is opened by the valve member 120, which will be described later, the high-pressure gas of the fuel tank T is discharged. It can perform a passage function.
  • an installation space 113 in which the piston panel 180 and the second cover member 190 are installed may be formed.
  • the installation space 113 may be formed long along the longitudinal direction of the exposed portion 110B of the body 110, and the first internal passage 101 and the second internal passage (101) may be formed by the valve member 120. 102) and can be formed so as not to communicate with each other.
  • the soluble metal 140 may be disposed on one end of the exposed portion 110B in the installation space 113.
  • Pressing members 170, 173, and 175 may be disposed at the other end of the exposed portion 110B in the installation space 113.
  • the tip portions 175 of the pressing members 170, 173, and 175 may support one side of at least one of the plurality of steel balls 130.
  • the pressing members 170, 173, and 175 may break the linear arrangement of the plurality of steel balls 130 when the soluble metal 140 is melted.
  • the pressing members 170, 173, and 175 may include a rod portion 170, a piston portion 173, and a tip portion 175.
  • a tip portion 175 may be formed to protrude at one end of the piston portion 173.
  • the tip portion 175 may be formed at the center of one end of the piston portion 173 and have a smaller diameter than the piston portion 173.
  • the piston portion 173 may have a larger diameter than the tip portion 175.
  • the outer peripheral surface of the piston portion 173 may be in close contact with the inner peripheral surface of the installation space 113.
  • the rod portion 170 may be formed at the other end of the piston portion 173 and have a smaller diameter than the piston portion 173 .
  • the rod portion 170 may be formed to protrude at the center of the other end surface of the piston portion 173.
  • the diameter of the rod portion 170 may be the same as the diameter of the tip portion 175.
  • the rod unit 170 may be arranged in the longitudinal direction of the installation space 113.
  • the tip portion 175 is provided in contact with at least one of the plurality of steel balls 130 to exert the elastic force of the elastic member 150 through at least one of the plurality of steel balls 130 when the fusible metal 140 is melted. It can be provided as a piston panel 180, and the piston panel 180 is an elastic member 150 provided from the front end 175 through at least one of the plurality of steel balls 130 when the available metal 150 is melted. ) can be used to push and discharge the soluble metal 140 in a molten state.
  • valve member 120 maintains a closed state between the first internal passage 101 and the second internal passage 102 when the vehicle is in a normal state, as shown in FIG. 8, and FIG. 10 As referred to, when the vehicle is in a fire or abnormal state, it may play a role in maintaining an open state between the first internal passage 101 and the second internal passage 102.
  • the valve member 120 may be formed in a cylindrical shape with a diameter corresponding to the inner diameter of the second internal flow passage 102.
  • a groove through which the inner gasket ring 122 is interposed may be formed on the outer peripheral surface of the valve member 120, and the inner gasket ring 122 is formed between the inner peripheral surface of the second internal flow passage 102 and the outer peripheral surface of the valve member 120. It can play a role in preventing high-pressure gas leaks.
  • the elastic member 150 can move the pressing members 170, 173, and 175 toward one of the plurality of steel balls 130.
  • the elastic member 150 may elastically support the pressing members 170, 173, and 175 in the longitudinal direction of the exposed portion 110B of the body 110 on the installation space 113.
  • the elastic member 150 may be provided to surround the outer peripheral surface of the rod portion 170 of the pressing members 170, 173, and 175 disposed long in the longitudinal direction of the installation space 113.
  • the elastic member 150 may serve to elastically support the pressing members 170, 173, and 175 in order to break the alignment of the plurality of steel balls 130 when the fusible metal 170 is melted.
  • a piston panel 180 may be disposed between the fusible metal 140 and the plurality of steel balls 130.
  • the piston panel 180 is affected by the moving force of the pressing members 170, 173, and 175 transmitted through the plurality of steel balls 130 with the row arrangement collapsed.
  • the soluble metal 140 in a molten state can be discharged to the outside of one end of the exposed portion 110B.
  • the elastic member 150 may be formed as a coil spring. One end of the coil spring may be in contact with the other end of the piston portion 173 of the pressing members 170, 173, and 175. The other end of the coil spring may be in contact with the inside of the second cover member 190.
  • the rod portion 170 of the pressing members 170, 173, and 175 may be inserted into the coil spring.
  • the coil spring may surround the rod portion 170 of the pressing members 170, 173, and 175.
  • the pressing members 170, 173, and 175 are provided so that the tip portion 175 continuously supports one side of one of the plurality of steel balls 130, so that when the fusible metal 140 is melted, the plurality of steel balls At the same time as breaking the row arrangement of (130), it serves to discharge the molten soluble metal (140) to the outside through the melt discharge port (165) of the first cover member (160) via the piston panel (180). You can.
  • valve member 120 When the row arrangement of the plurality of steel balls 130 is broken, the valve member 120 is moved in the longitudinal direction of the valve member 120 by the pressure (P) inside the fuel tank (T) and is moved in the first internal passage (101). ) and the second internal passage 102 can be opened.
  • the fusible metal 140 may be disposed between the first cover member 160 and the piston panel 180 and may be made of a metal material that can be melted at a predetermined temperature. Accordingly, the soluble metal 140 may be melted when the temperature around the exposed portion 110B of the body portion 110 increases significantly due to a fire or abnormality in the vehicle and reaches the predetermined temperature.
  • the fusible metal 140 since the fusible metal 140 must be melted and deformed between the piston panel 180 and the first cover member 160 in the installation space 113 of the body 110, the body 110, It is preferably made of a metal material with a lower melting point than the first cover member 160 and the piston panel 180. In addition, since the fusible metal 140 must support the plurality of steel balls 130 in a line in the longitudinal direction of the valve member 120 when it is not molten, the metal has a lower melting point than the plurality of steel balls 130. It is preferable that it is formed from a material.
  • the plurality of steel balls 130 may be formed in a ball shape, and are positioned between the distal ends 175 of the pressing members 170, 173, and 175 and the piston panel 180 in the closed state of the valve member 120.
  • the valve members 120 may be arranged in a row in the installation space 113 in the longitudinal direction.
  • one of the three supports the other end surface of the valve member 120, and one of the three arranged in the middle serves as a pressing member (170, 173, 175).
  • a pressing member (170, 173, 175).
  • the plurality of steel balls 130 may be arranged three in a row in the longitudinal direction of the valve member 120. In this way, the plurality of steel balls 130 arranged in a row in the installation space 113 of the exposed portion 110B are exposed to the available metal 140 as the temperature around the body 110 increases due to a fire or abnormal phenomenon in the vehicle. When melted, the alignment of the pressing members 170, 173, and 175 is broken by moving them, thereby allowing the valve member 120 to move.
  • first cover member 160 may be inserted and fixed into one end 115 of the installation space 113 through one end of the exposed portion 110B of the body 110, and the second cover member 190 may be inserted into the body 110. It can be inserted and fixed into the other end 117 of the installation space 113 through the other end of the exposed portion 110B of 110.
  • the first cover member 160 may serve to support the solid fusible metal 140 provided between the piston panel 180 and the piston panel 180.
  • a melt discharge port 165 may be formed in the first cover member 160.
  • the soluble metal 140 may be melted and discharged from the melt outlet 165. That is, when the soluble metal 140 is melted, it may be discharged to the outside of the exposed portion 110B of the body 110 through the melt discharge port 165.
  • the fusible metal 140 is composed of a piston panel 180 and a first cover member ( 160), both ends can be supported.
  • the second cover member 190 serves to support the other end of the elastic member 150 provided to surround the outer peripheral surface of the rod portion 170 of the pressing members 170, 173, and 175. As a result, the pressing members 170, 173, and 175 can be supported via the elastic member 170.
  • the fusible metal 140 disposed between the piston panel 180 and the first cover member 160 is a row of a plurality of steel balls 130 in an unmelted solid state.
  • the valve member 120 maintains the space between the first internal passage 101 and the second internal passage 102 in a closed state, but as shown in FIG. 10, the available metal 140 is in the surrounding area.
  • the piston panel 180 is moved toward one end of the exposed portion 110B by the moving force of the pressing members 170, 173, and 175.
  • the distal ends 175 of the pressing members 170, 173, and 175 are formed of a plurality of steel balls ( As the row arrangement of the plurality of steel balls 130 is broken by pushing 130, the valve member 120 moves toward the installation space 113 and moves between the first internal passage 101 and the second internal passage 102. By opening, the high-pressure gas in the fuel tank (T) can be quickly discharged to the outside through the high-pressure gas discharge passage 11, thereby preventing explosion due to an increase in the internal pressure (P) of the fuel tank (T).
  • the soluble metal 140 melted within the installation space 113 of the body 110 is hardened by a decrease in the surrounding temperature that occurs when the high-pressure gas expands and is discharged through the high-pressure gas discharge passage 11.
  • the malfunction rate of the temperature-sensitive safety valve (100C) for a pressure vessel according to the third embodiment of the present invention can be minimized by being quickly discharged to the outside through the melt outlet 165 of the first cover member 160. there is.
  • Figure 11 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel installed in a pressure vessel according to a fourth embodiment of the present invention
  • Figure 12 is a cross-sectional view of the temperature-sensitive safety valve for a pressure vessel according to a fourth embodiment of the present invention.
  • This is a cross-sectional view showing the effect.
  • the same reference numerals are assigned to the same components as the temperature-sensitive safety valve (100C) for a pressure vessel according to the third embodiment of the present invention described above, and a detailed description thereof will be omitted, and only the differences will be described. do.
  • the temperature-sensitive safety valve 100D for a pressure vessel may include a single steel ball 130, and the valve member 120 It can be supported by a single steel ball 130.
  • the configuration of the pressing members 170, 173, 175, and 177 of the safety valve 100D of the fourth embodiment is different from the configuration of the pressing members 170, 173, and 175 of the safety valve 100D of the third embodiment.
  • the pressing members 170, 173, 175, and 177 of the safety valve 100D of the fourth embodiment are composed of a piston portion 173, a tip portion 175, a rod portion 170, and a push panel portion 177. You can.
  • the outer peripheral surface of the piston portion 173 may be in close contact with the inner peripheral surface of the installation space 113.
  • the tip portion 175 may be formed at one end of the piston portion 173 and have a smaller diameter than the piston portion 173 .
  • the rod portion 170 may be formed at the other end of the piston portion 173 and have a smaller diameter than the piston portion 173 .
  • the rod unit 170 may be arranged in the longitudinal direction of the installation space 113.
  • the push panel portion 177 may be formed at one end of the distal end portion 175 integrally with the distal end portion 175 .
  • the push panel unit 177 can push the molten soluble metal 140 out of the installation space 113.
  • a single steel ball 130 may be supported by the push panel portion 177 in the closed position of the valve member 120.
  • a single steel ball 130 may be supported by the distal end 175 of the valve member 120 in the open position.
  • the temperature-sensitive safety valve (100C) for a pressure vessel includes a plurality of steel balls (130) in the exposed portion (110B) of the body (110). are arranged in a line in the installation space 113, and when the available metal 140 is melted, the tip portions 175 of the pressing members 170, 173, and 175 touch one side of any one of the plurality of steel balls 130.
  • the valve member 120 By pushing to break the row arrangement of the plurality of steel balls 130, the valve member 120 is moved and changed to an open state between the first internal passage 101 and the second internal passage 102, thereby opening the fuel tank ( T) applies the principle of discharging high-pressure gas.
  • a single steel ball (130) is integrated into the distal end (175) of the pressing member (170, 173, 175, 177). It is supported by the push panel portion 177 formed to maintain the valve member 120 in a closed state between the first internal passage 101 and the second internal passage 102, and to allow the soluble metal 140 to melt.
  • the push panel portion 177 moves to one side in the longitudinal direction within the installation space 113 of the exposed portion 110B by the moving force of the pressing members 170, 173, 175, and 177 or the elastic force of the elastic member 150.
  • valve member 120 changes to an open state between the first internal passage 101 and the second internal passage 102, and the principle of discharging the high-pressure gas of the fuel tank T is applied.
  • the diameter of the push panel portion 177 may be formed to be larger than the diameter of the tip portion 175.
  • the safety valve 100C of the third embodiment of the present invention is provided with a plurality of valve members 120 (preferably) so that the valve member 120 is moved to the open position and the high-pressure gas can be smoothly discharged when the row arrangement due to melting of the soluble metal 140 is broken.
  • the alignment of the three steel balls 130 must be completely and stably collapsed, there is a possibility that this may not be completely guaranteed depending on the melting speed and melting state of the available metal 140.
  • the fourth embodiment (100D) of the present invention is simply an installation space ( 113), it has the advantage of sufficiently compensating for the shortcomings of the third embodiment (100C) described above just by changing the position to the side.
  • the tip portions 175 of the pressing members 170, 173, and 175 are formed by simply moving one of the plurality of steel balls 130 to form a plurality of steel balls ( 130), the safety valve 100D of the fourth embodiment of the present invention directly supports the fusible metal 140 at the tip 175 of the pressurizing members 170, 173, 175, and 177. It is provided with a push panel portion 177 integrally provided to ) and the push panel portion 177, the tip portion 175 of the pressurizing member 170, 173, 175, 177 has a difference in that it is changed to a position where there is no interference with the valve member 120 in the outer space.
  • the inner peripheral surface of the installation space 113 of the exposed portion 110B equipped with the push panel portion 177 and the pressure member is preferably designed to be at least larger than the diameter of the single steel ball 130.
  • the available metal 140 is melted.
  • the piston panel 180 or the push panel unit 177 which supports a plurality of steel balls 130 or a single steel ball 130, melts the molten fusible metal 140. It can be quickly discharged to the outside before hardening due to the temperature drop due to the expansion of high-pressure gas.
  • the alignment of the plurality of steel balls 130 is broken or the support position of the valve member 120 of the single steel ball 130 is changed so that the valve member 120 can be moved from the closed position to the open position. It can be.
  • the temperature-sensitive safety valves (100A, 100B, 100C, 100D) for pressure vessels when the surrounding temperature of the body 110 increases significantly due to a fire or abnormal phenomenon in the vehicle, the fuel Before explosion due to an increase in the internal pressure (P) in the tank (T), as shown in FIGS. 4, 7, and 10, the available metal 140 in the body 110 is melted and a plurality of steel balls 130 are formed. ) or, as shown in FIG.
  • the available metal 140 in the body 110 is melted to change the support position of the single steel ball 130, and thus the valve member 120 , 121, 123 are moved from a closed position between the first internal passage 101 and the second internal passage 102 to an open position between the first internal passage 101 and the second internal passage 102, thereby opening the fuel tank.
  • the high-pressure gas within (T) can be discharged at an appropriate time.
  • the present invention provides a temperature-sensitive safety valve for a pressure vessel that has a fast reaction rate of gas discharge when the temperature of the gas tank rises due to a fire or abnormality.

Abstract

본 발명에 따른 압력용기용 온도 감응식 안전밸브는, 가스입구 및 가스출구가 형성된 바디와, 상기 바디 내에 배치되어 상기 가스입구 및 상기 가스출구 사이를 개폐하는 밸브부재와, 상기 바디 내에 배치되어 상기 밸브부재를 닫힌 상태로 지지하는 스틸볼과, 상기 바디 내에 배치되고 소정의 온도에서 용융되어 상기 스틸볼을 상기 밸브부재가 열리는 위치로 이동시키는 가용금속을 포함하여, 화재 또는 이상 발생으로 인한 가스탱크의 온도 상승 시 가스배출의 반응속도가 빨라지는 이점이 있다.

Description

압력용기용 온도 감응식 안전밸브
본 발명은 압력용기용 온도 감응식 안전밸브(TEMPERATURE SENSING REACTION TYPE SAFETY VALVE FOR PRESSURE CONTAINER)에 관한 것으로서, 보다 상세하게는 소정의 온도에서 용융되는 가용금속을 구비한 압력용기용 온도 감응식 안전밸브에 관한 것이다.
일반적으로 수소 연료전지 차량은 스택에서 산소와 수소의 화학반응을 이용하여 생성된 전기에너지를 동력원으로 사용한다. 상기 수소 연료전지 차량은 연로와 공기를 외부에서 공급하여 전지의 용량에 관계없이 계속 발전할 수 있어, 효율이 높고 오염물질이 거의 배출되지 않는 이점이 있어서, 최근 상기 수소 연료전지 차량의 기술 개발이 활발해지고 있다.
상기 수소 연료전지 차량은 고압의 수소가스가 충전되는 수소탱크를 하나 이상 장착하고 있다. 상기 수소탱크(=연료탱크, 가스탱크 또는 압력용기)와 같은 가스가 저장되는 연료탱크는 내부의 가스 압력이 고압이므로, 차량 화재 시 또는 차량 이상 발생으로 인해 연료탱크의 온도가 상승하면 내부의 가스 압력에 의해 폭발할 위험이 있다.
상기 연료탱크의 폭발을 방지하기 위한 기술로서, 대한민국 공개특허공보 제10-2021-0076757호(2021.06.24.)(이하, '종래 기술'이라 함)에는 '온도 감응식 압력안전장치'가 개시되어 있고, 도 1은 종래 기술의 안전장치에 따른 작동 개요도이다.
상기 종래 기술은, 바디의 내부에 차단부를 지지하는 지지부가 구비되는데, 상기 지지부는 기준온도 초과일 때 용융되도록 구성된다.
따라서, 상기 종래 기술은, 상기 지지부가 고체상태일 경우에는 상기 차단부가 상기 지지부에 의해 지지되어 상기 바디의 고압가스 배출유로를 차단상태에 놓이도록 하고, 상기 지지부가 용융상태일 경우에는 상기 차단부가 상기 지지부에 의해 지지되지 못하게 되어 상기 바디의 고압가스 배출유로를 개방하게 되므로, 상기 연료탱크(T)의 폭발을 방지할 수 있게 된다.
즉, 도 1에 도시된 바와 같이, 연료탱크(T) 내의 일측에 바디(10)를 장착하고, 차량의 화재 등에 의해 주변 온도가 상승할 때 바디(10) 내부의 지지부(미도시)가 용융되어 연료탱크(T)의 내부 압력(P)에 따른 바디(10) 내의 밸브부재(미도시)가 고압가스 배출유로를 개방함으로써 상기 고압가스 배출유로를 통해 폭발 전 연료탱크(T)의 내부압력을 낮출 수 있다.
그런데, 상기 종래 기술은, 상기 지지부의 두께가 비교적 두껍게 형성되어 있기 때문에, 상기 지지부가 용융되는데 시간이 길게 소용되므로 차량의 화재 또는 이상 발생으로 인한 연료탱크(T)의 온도 상승 시 가스배출의 반응속도가 느린 문제점이 있다.
또한, 상기 지지부가 정상적으로 용융이 시작된 이후라도 가스배출 시 팽창에 따른 순간적인 주변부 온도 저하에 의하여 상기 지지부의 용융이 중단되는 한편, 경화된 상기 지지부의 용융체가 외부로 배출되지 않게 됨에 따라 작동 불량이 발생할 수 있는 문제점도 있다.
본 발명의 기술적 과제는, 화재 또는 이상 발생으로 인한 가스탱크의 온도 상승 시 가스배출의 반응속도가 빠른 압력용기용 온도 감응식 안전밸브를 제공하는 것이다.
본 발명의 다른 기술적 과제는, 고압가스 배출유로를 개방하기 위하여 용융된 가용금속의 경화 전 외부로의 배출이 용이한 압력용기용 온도 감응식 안전밸브를 제공하는 것이다.
본 발명의 기술적 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명에 따른 압력용기용 온도 감응식 안전밸브는, 바디, 밸브부재, 스틸볼 및 가용금속으로 구성된다. 상기 바디에는 가스입구 및 가스출구가 형성된다. 상기 밸브부재는 상기 바디 내에 배치된다. 상기 밸브부재는 상기 가스입구 및 상기 가스출구 사이를 개폐한다. 상기 스틸볼은 상기 바디 내에 배치된다. 상기 스틸볼은 상기 밸브부재를 닫힌 상태로 지지한다. 상기 가용금속은 상기 바디 내에 배치된다. 상기 가용금속은 소정의 온도에서 용융되어 상기 스틸볼을 상기 밸브부재가 열리는 위치로 이동시킨다.
상기 가스입구는 상기 바디의 일단에 형성될 수 있다. 상기 바디의 내부에는 내부유로가 형성될 수 있다. 상기 내부유로는 상기 가스입구에서부터 상기 바디의 타단까지 연장될 수 있다. 상기 내부유로는 상기 가스출구와 연통될 수 있다. 상기 밸브부재는 상기 내부유로에 상기 밸브부재의 길이방향으로 이동 가능하게 배치될 수 있다.
상기 스틸볼은 복수개의 스틸볼로 구비될 수 있다. 상기 복수개의 스틸볼은 상기 밸브부재의 닫힌 상태에서 상기 밸브부재의 길이방향으로 일렬 배열될 수 있다. 상기 복수개의 스틸볼은 상기 가용금속의 용융상태에서 상기 일렬 배열이 무너질 수 있다.
상기 내부유로에는 상기 바디의 타단을 통해 커버부재가 삽입될 수 있다. 상기 커버부재는 상기 가용금속 및 상기 복수개의 스틸볼을 지지할 수 있다. 상기 커버부재에는 용융액 배출구가 형성될 수 있다. 상기 용융액 배출구는 상기 가용금속이 용융되어 배출될 수 있다.
상기 가용금속의 중심부에는 센터홀이 형성될 수 있다. 상기 센터홀에는 상기 복수개의 스틸볼이 삽입되어 상기 일렬 배열될 수 있다.
상기 내부유로에는 탄성부재가 더 배치될 수 있다. 상기 탄성부재는 상기 밸브부재가 상기 복수개의 스틸볼에 의해 지지되지 않을 시 상기 밸브부재를 열린 위치로 이동시킬 수 있다.
상기 내부유로는 제1 내부유로 및 제2 내부유로로 구성될 수 있다. 상기 제1 내부유로는 상기 가스입구에서부터 상기 바디의 타단을 향해 소정길이 연장될 수 있다. 상기 제2 내부유로는 상기 제1 내부유로에서부터 상기 바디의 타단까지 연장될 수 있다. 상기 제2 내부유로는 상기 제1 내부유로보다 직경이 크게 형성될 수 있다. 상기 제2 내부유로는 상기 가스출구와 연통될 수 있다. 상기 밸브부재는 스템부 및 팁부로 구성될 수 있다. 상기 스템부는 상기 제2 내부유로에 배치될 수 있다. 상기 팁부는 상기 스템부의 일단에 상기 스템부보다 직경이 작게 형성될 수 있다. 상기 팁부는 상기 밸브부재의 닫힌 상태일 때 상기 제1 내부유로 삽입되어 상기 제1 내부유로 및 상기 제2 내부유로 사이를 닫을 수 있다. 상기 팁부는 상기 밸브부재의 열린 상태일 때 상기 제1 내부유로에서 빠져나와 상기 제1 내부유로 및 상기 제2 내부유로 사이를 개방할 수 있다.
상기 밸브부재에는 피스톤부가 더 구성될 수 있다. 상기 피스톤부는 상기 스템부의 타단에 상기 스템부보다 직경이 크게 형성될 수 있다. 상기 피스톤부의 외주면은 상기 내부유로의 내주면에 밀착될 수 있다. 상기 탄성부재는 코일 스프링으로 형성될 수 있다. 상기 코일 스프링의 일단은 상기 제1 내부유로 및 상기 제2 내부유로 사이의 단차에 접촉될 수 있다. 상기 코일 스프링의 타단은 상기 피스톤부에 접촉될 수 있다. 상기 코일 스프링에는 상기 스템부가 관통할 수 있다.
상기 가스출구는 상기 바디의 외주면 또는 상기 바디의 타단에 형성될 수 있다.
상기 바디는 삽입부 및 노출부로 구성될 수 있다. 상기 가스입구는 상기 삽입부의 일단에 형성될 수 있다. 상기 삽입부에는 상기 가스입구에서부터 타단까지 연장되는 내부유로가 형성될 수 있다. 상기 가스출구는 상기 삽입부의 외주면에 형성될 수 있다. 상기 가스출구는 상기 내부유로와 연통될 수 있다. 상기 노출부는 상기 삽입부에 대하여 직교되게 연장될 수 있다. 상기 노출부의 내부에는 설치 공간이 형성될 수 있다. 상기 설치 공간은 상기 내부유로와 연통될 수 있다. 상기 설치 공간에는 상기 스틸볼 및 상기 가용금속이 설치될 수 있다. 상기 밸브부재는 상기 삽입부에 상기 삽입부의 길이방향으로 이동 가능하게 배치될 수 있다.
상기 스틸볼은 복수개의 스틸볼로 구비될 수 있다. 상기 복수개의 스틸볼은 상기 밸브부재의 닫힌 상태에서 상기 밸브부재의 길이방향으로 일렬 배열될 수 있다. 상기 복수개의 스틸볼은 상기 가용금속의 용융상태에서 상기 일렬 배열이 무너질 수 있다.
상기 가용금속은 상기 설치 공간 중 상기 노출부의 일단부에 배치될 수 있다. 상기 설치 공간 중 상기 노출부의 타단부에는 가압부재가 배치될 수 있다. 상기 가압부재의 선단부는 상기 복수개의 스틸볼 중 적어도 하나의 일측을 지지할 수 있다. 상기 가압부재는 상기 가용금속이 용융될 때 상기 복수개의 스틸볼의 상기 일렬 배열을 무너뜨릴 수 있다.
상기 설치 공간에는 상기 노출부의 일단을 통해 제1 커버부재가 삽입될 수 있다. 제1 커버부재는 상기 가용금속을 지지할 수 있다. 상기 제1 커버부재에는 용융액 배출구가 형성될 수 있다. 상기 용융액 배출구는 상기 가용금속이 용융되어 배출될 수 있다.
상기 가용금속과 상기 복수개의 스틸볼 사이의 상기 설치 공간에는 피스톤 패널이 배치될 수 있다. 상기 피스톤 패널은 상기 일렬 배열이 무너진 상기 복수개의 스틸볼을 매개하여 전달되는 상기 가압부재의 이동력에 의해 용융 상태의 상기 가용금속을 상기 노출부의 일단부 외측으로 배출시킬 수 있다.
상기 설치 공간에는 탄성부재가 더 배치될 수 있다. 상기 탄성부재는 상기 가압부재를 상기 복수개의 스틸볼 중 어느 하나를 향하여 이동시킬 수 있다.
상기 설치 공간에는 상기 노출부의 타단을 통해 제2 커버부재가 삽입될 수 있다. 상기 가압부재는 피스톤부 및 로드부로 구성될 수 있다. 상기 피스톤부의 일단에는 상기 선단부가 형성될 수 있다. 상기 피스톤부는 상기 선단부보다 직경이 크게 형성될 수 있다. 상기 피스톤부의 외주면은 상기 설치 공간의 내주면에 밀착될 수 있다. 상기 로드부는 상기 피스톤부의 타단에 상기 피스톤부보다 직경이 작게 형성될 수 있다. 상기 로드부는 상기 설치 공간의 길이방향으로 배치될 수 있다. 상기 탄성부재는 코일 스프링으로 형성될 수 있다. 상기 코일 스프링의 일단은 상기 피스톤부의 타단에 접촉될 수 있다. 상기 코일 스프링의 타단은 상기 제2 커버부재의 내측에 접촉될 수 있다. 상기 코일 스프링에는 상기 로드부가 삽입될 수 있다.
상기 내부유로는 제1 내부유로 및 제2 내부유로로 구성될 수 있다. 상기 제1 내부유로는 상기 가스입구에서부터 상기 삽입부의 타단을 향해 소정길이 연장될 수 있다. 상기 제2 내부유로는 상기 제1 내부유로에서부터 상기 삽입부의 타단까지 연장될 수 있다. 상기 제2 내부유로는 상기 제1 내부유로보다 직경이 크게 형성될 수 있다. 상기 제2 내부유로는 상기 가스출구와 연통될 수 있다. 상기 밸브부재는 상기 제2 내부유로에 배치될 수 있다. 상기 밸브부재는 상기 밸브부재의 닫힌 상태일 때 상기 제1 내부유로 및 상기 제2 내부유로 사이를 닫을 수 있다. 상기 밸브부재는 상기 밸브부재의 열린 상태일 때 상기 제1 내부유로 및 상기 제2 내부유로 사이를 개방할 수 있다.
상기 가용금속은 상기 설치 공간 중 상기 노출부의 일단부에 배치될 수 있다. 상기 설치 공간 중 상기 노출부의 타단부에는 가압부재가 배치될 수 있다. 상기 가압부재는 상기 가용금속이 용융될 때, 상기 용융된 가용금속을 상기 설치 공간에서 외부로 배출할 수 있다. 상기 가압부재는 상기 가용금속이 용융될 때, 상기 밸브부재가 닫힌 위치에서 열린 위치로 이동되도록, 상기 밸브부재에 대한 상기 스틸볼의 지지 위치를 변경시킬 수 있다.
상기 가압부재는 피스톤부, 선단부, 로드부 및 푸쉬 패널부로 구성될 수 있다. 상기 피스톤부의 외주면은 상기 설치 공간의 내주면에 밀착될 수 있다. 상기 선단부는 상기 피스톤부의 일단에 상기 피스톤부보다 직경이 작게 형성될 수 있다. 상기 로드부는 상기 피스톤부의 타단에 상기 피스톤부보다 직경이 작게 형성될 수 있다. 상기 로드부는 상기 설치 공간의 길이방향으로 배치될 수 있다. 상기 푸쉬 패널부는 상기 선단부의 일단에 상기 선단부와 일체로 형성될 수 있다. 상기 푸쉬 패널부는 상기 용융된 가용금속을 상기 설치 공간에서 외부로 밀어낼 수 있다. 상기 스틸볼은 상기 밸브부재의 닫힌 위치에서 상기 푸쉬 패널부에 의해 지지될 수 있다. 상기 스틸볼은 상기 밸브부재의 열린 위치에서 상기 선단부에 의해 지지될 수 있다.
상기 가압부재는 탄성부재로부터 탄성력을 제공받을 수 있다. 상기 탄성부재는 코일 스프링으로 형성될 수 있다. 상기 코일 스프링의 일단은 상기 피스톤부의 타단에 접촉될 수 있고, 상기 코일 스프링에는 상기 로드부가 삽입될 수 있다.
기타 실시예의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명에 따른 압력용기용 온도 감응식 안전밸브는 다음과 같은 다양한 효과를 달성할 수 있다.
첫째, 가스입구 및 가스출구 사이를 개폐하는 밸브부재를 스틸볼이 지지하도록 구성되기 때문에, 가용금속이 용융될 시 상기 스틸볼의 위치 변화가 빨라질 수 있으므로, 화재 또는 이상 발생으로 인한 가스탱크의 온도 상승 시 상기 밸브부재가 상기 가스입구 및 상기 가스출구 사이를 신속하게 개방하여 가스탱크 내의 가스를 신속하게 배출할 수 있는 효과가 있다.
둘째, 바디 내에서 주변 온도 상승에 따라 용융된 가용금속을 가스의 팽창에 따른 온도 저하에 의한 경화 전 신속하게 외부로 배출하므로 작동 불량률을 최소화할 수 있는 효과가 있다.
셋째, 가용금속의 용융 여부에 따라 복수개의 스틸볼의 일렬 배치가 변경되고, 복수개의 스틸볼의 일렬 배치 여부에 따라 고압가스 배출 여부가 결정되도록 구비됨으로써 주변 온도에 능동적으로 대처하여 안전사고를 미연에 방지할 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래 기술의 안전장치에 따른 작동 개요도,
도 2는 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력 용기에 대한 설치 단면도,
도 3은 도 2의 구성 중 밸브 바디를 나타낸 단면도,
도 4는 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도,
도 5는 본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력 용기에 대한 설치 단면도,
도 6은 도 5의 구성 중 밸브 바디를 나타낸 단면도,
도 7은 본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도,
도 8은 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력용기에 대한 설치 단면도,
도 9는 도 8의 구성 중 밸브 바디를 나타낸 단면도,
도 10은 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도,
도 11은 본 발명의 제4 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력용기에 대한 설치 단면도,
도 12는 본 발명의 제4 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도이다.
<부호의 설명>
100A, 100B, 100C, 100D : 압력용기용 온도 감응식 안전밸브
100S : 내부유로
101 : 제1 내부유로
102 : 제2 내부유로
103 : 가스입구
104 : 가스출구
110 : 바디
110A : 삽입부
110B : 노출부
110s : 단차
113 :설치 공간
120, 121, 123 : 밸브부재
130 : 스틸볼
140 : 가용금속
141 : 센터홀
150 : 탄성부재
160, 190 : 커버부재
165 : 용융액 배출구
170, 173, 175, 177 : 가압부재
이하, 본 발명의 실시예들에 의한 압력용기용 온도 감응식 안전밸브를 도면들을 참고하여 설명하도록 한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예들을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예들에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예들의 구성요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2는 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력 용기에 대한 설치 단면도이고, 도 3은 도 2의 구성 중 밸브 바디를 나타낸 단면도이며, 도 4는 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도이다.
도 2 내지 도 4를 참조하면, 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브(100A)는, 바디(110)와, 밸브부재(120, 121, 123)와, 스틸볼(130)과, 가용금속(140)을 포함할 수 있다.
바디(110)는 안전밸브(100A)의 전체적인 외관 형상을 형성할 수 있다. 바디(110)에는 가스입구(113) 및 가스출구(114)가 형성될 수 있다.
밸브부재(120, 121, 123)는 바디(110) 내에 배치되어 가스입구(103) 및 가스출구(104) 사이를 개폐할 수 있다. 밸브부재(120, 121, 123)는 바디(110)의 내부에서 이동 가능하게 배치될 수 있다.
스틸볼(130)은 바디(110) 내에 배치되어 밸브부재(120, 121, 123)를 닫힌 상태로 지지할 수 있다. 스틸볼(130)은 복수개의 스틸볼(130)로 구비될 수 있고, 복수개의 스틸볼(130)은 바디(110)의 내부에 구비되고 밸브부재(120, 121, 123)를 이동되지 않도록 지지할 수 있다.
가용금속(140)은 바디(110) 내에 배치될 수 있다. 가용금속(140)은 소정의 온도에서 용융되어 스틸볼(130)을 밸브부재(120, 121, 123)가 열리는 위치로 이동시킬 수 있다. 가용금속(140)은 복수개의 스틸볼(130)을 바디(120)의 내부에 일렬 배열되도록 지지할 수 있고, 소정의 온도에서 용융되어 상기 일렬 배열된 복수개의 스틸볼(130)을 무너뜨릴 수 있다.
바디(110)는 연료탱크(T)의 일측에 홀 형태로 구비된 장착부(도면부호 미표기)에 일부가 삽입되어 장착될 수 있다.
보다 상세하게는, 바디(110)는, 연료탱크(T)의 장착부에 삽입되는 삽입부(110A)와, 삽입부로부터 길이방향으로 연장된 노출부(110B)를 포함할 수 있다.
삽입부(110A)의 외주면에는 연료탱크(T)의 장착부 내부에 가공된 암나사산(미도시)에 스크류 체결되는 수나사산(110A-s)이 형성될 수 있다. 노출부(110B)의 길이방향 외측단부에는 미도시의 볼트 체결 공구를 이용하여 연료탱크(T)의 장착부에 대한 볼트 결합이 가능한 육각 형상의 볼트 체결부(110C)가 형성될 수 있다. 조립자는, 볼트 체결 공구를 이용하여 바디(110)의 구성 중 삽입부(110A)를 연료탱크(T)의 장착부에 삽입한 상태에서 볼트 체결부(110C)를 회전시킴으로써, 연료탱크(T)에 대한 바디(110)의 볼트 조립을 완료할 수 있다.
여기서, 삽입부(110A)의 선단부 외주면에는 실링 개재홈(111h)이 형성될 수 있고, 실링 개재홈(111h)에는 밀폐 실링(111)이 개재될 수 있다. 밀폐 실링(111)은 연료탱크(T)의 장착부 내주면과 바디(110)의 삽입부(110A) 외주면 사이로 고압 가스가 새는 것을 방지할 수 있다.
한편, 가스입구(103)는 바디(110)의 일단에 형성될 수 있다. 가스입구(103)는 연료탱크(T)로 삽입되는 삽입부(110A)의 일단에 형성될 수 있다. 바디(110)의 내부에는 내부유로(100S)가 형성될 수 있다. 내부유로(100S)는 가스입구(103)에서부터 바디(110)의 타단까지 연장될 수 있다. 내부유로(100S)는 가스출구(104)와 연통될 수 있다. 밸브부재(120, 121, 123)는 내부유로(100S)에 밸브부재(120, 121, 123)의 길이방향으로 이동 가능하게 배치될 수 있다. 밸브부재(120, 121, 123)는 내부유로(100S)에 내부유로(100S)의 길이방향으로 배치될 수 있다.
내부유로(100S)는 밸브부재(120, 121, 123)에 의해 개폐되는 지점을 기준으로 제1 내부유로(101) 및 제2 내부유로(102)로 구분될 수 있다.
즉, 내부유로(100S)는 제1 내부유로(101) 및 제2 내부유로(102)를 포함할 수 있다. 제1 내부유로(101)는 가스입구(103)에서부터 바디(110)의 타단을 향해 소정길이 연장될 수 있다. 제2 내부유로(102)는 제1 내부유로(101)에서부터 바디(110)의 타단까지 연장될 수 있다. 제2 내부유로(102)는 제1 내부유로(101)보다 직경이 크게 형성될 수 있다. 제2 내부유로(102)는 가스출구(104)와 연통될 수 있다.
가스입구(103)는 연료탱크(T)의 내부 압력(P)이 직접적으로 작용되고 고압 가스가 유입되는 입구일 수 있고, 바디(110)의 삽입부(110A) 중 선단에 형성될 수 있다.
또한, 가스출구(104)는 가스입구(103)를 통해 제1 내부유로(101) 및 제2 내부유로(102)로 유입된 고압 가스를 배출하기 위한 최종 출구로서, 바디(110)의 삽입부(110A) 외주면에 형성될 수 있다.
한편, 연료탱크(T)에는 고압가스 배출유로(11)가 가스출구(104)와 연통되게 형성될 수 있다. 고압가스 배출유로(11)는, 후술하는 밸브부재(120, 121, 123)의 팁부(121)에 의해 제1 내부유로(101)와 제2 내부유로(102) 사이가 개방될 경우, 연료탱크(T)의 고압가스가 배출되는 통로 기능을 수행할 수 있다.
내부유로(100S)에는, 밸브부재(120, 121, 123) 및 가용금속(140)과, 후술하는 커버부재(160)가 설치될 수 있다. 밸브부재(120, 121, 123)는 제1 내부유로(101) 및 제2 내부유로(102)에 설치될 수 있고, 가용금속(140) 및 커버부재(160)는 제2 내부유로(102)에 설치될 수 있다.
밸브부재(120, 121, 123)는 바디(110)의 길이방향으로 이동 가능하게 배치되어, 가스입구(103) 및 가스출구(104) 사이를 개폐하는 역할을 수행할 수 있다.
보다 상세하게는, 밸브부재(120, 121, 123)는, 스템부(120)와, 팁부(121)와, 피스톤부(123)를 포함할 수 있다.
스템부(120)는 피스톤부(123)의 일면 중심부에 돌출 형성되어 제2 내부유로(102)에 배치될 수 있다.
팁부(121)는 스템부(120)의 일단에 스템부(120)보다 직경이 작게 형성될 수 있다. 팁부(121)는 밸브부재(120, 121, 123)의 닫힌 상태일 때 제1 내부유로(101)로 삽입되어 제1 내부유로(101) 및 제2 내부유로(102) 사이를 닫을 수 있다. 팁부(121)는 밸브부재(120, 121, 123)의 열린 상태일 때 제1 내부유로(101)에서 빠져나와 제1 내부유로(101) 및 제2 내부유로(102) 사이를 개방할 수 있다.
팁부(121)는 제1 내부유로(101)의 내경에 대응되는 직경을 가진 원주 형상으로 형성될 수 있다. 팁부(121)의 외주면에는 이너 개스킷링(122)이 개재되는 홈이 형성될 수 있으며, 이너 개스킷링(122)은 제1 내부유로(101)의 내주면과 팁부(121)의 외주면 사이로의 고압가스 누출을 방지할 수 있다.
피스톤부(123)는 스템부(120)의 타단에 스템부(120)보다 직경이 크게 형성될 수 있다. 피스톤부(123)의 외주면은 내부유로(100S)의 내주면에 밀착될 수 있다. 구체적으로 피스톤부(123)의 외주면은 제2 내부유로(102)의 내주면에 밀착될 수 있다.
피스톤부(123)의 외주면에는, 아우터 개스킷링(124)이 개재되는 홈이 형성될 수 있고, 아우터 개스킷링(124)은 제2 내부유로(102)의 내주면 및 피스톤부(123)의 외주면 사이로의 고압가스 누출을 방지함과 아울러, 후술하는 커버부재(160)와의 사이에 구비된 가용금속(140)의 용융액이 역류되는 것을 방지할 수 있다.
한편, 내부유로(100S)에는 탄성부재(150)가 더 배치될 수 있다. 탄성부재(150)는 제2 내부유로(102)에 배치될 수 있다. 탄성부재(150)는 바디(110)의 길이방향으로 탄성력을 발생시킬 수 있다.
탄성부재(150)는 밸브부재(120, 121, 123)의 구성 중 스템부(120)의 외주면을 감싸도록 구비될 수 있고, 가용금속(140)이 용융되어 복수개의 스틸볼(130)에 의해 밸브부재(120, 121, 123)가 지지되지 않을 시 밸브부재(120, 121, 123)를 열린 위치(즉, 제1 내부유로(101)와 제2 내부유로(102)를 연통시키는 위치나, 가스입구(103) 및 가스출구(104)를 연통시키는 위치)로 이동시키는 역할을 수행할 수 있다.
또한, 탄성부재(150)는 코일 스프링으로 형성될 수 있다. 상기 코일 스프링은 밸브부재(120, 121, 123)의 구성 중 피스톤부(123)를 제외한 스템부(120)의 외주를 둘러쌀 수 있다. 상기 코일 스프링의 일단은 제1 내부유로(101) 및 제2 내부유로(102) 사이의 단차(110s)에 접촉될 수 있다. 상기 코일 스프링의 타단은 피스톤부(123)의 일면(123S)에 접촉될 수 있다. 상기 코일 스프링에는 스템부(120)가 관통할 수 있다.
밸브부재(120, 121, 123)는, 복수개의 스틸볼(130)의 일렬 배열이 무너질 때, 연료탱크(T) 내부의 압력(P)과, 코일 스프링으로 구비된 탄성부재(150)의 탄성력의 합에 의하여, 바디(110)의 내부유로(100S) 상에서 바디(110)의 길이방향 타단을 향하여 이동될 수 있다.
한편, 바디(110)의 내부유로(100S) 중 밸브부재(120, 121, 123)의 타단부에 가깝게 가용금속(140)이 배치될 수 있다. 가용금속(140)은 바디(110)의 제2 내부유로(102) 중 밸브부재(120, 121, 123)의 타단부에 가깝게 배치될 수 있다. 가용금속(140)은 바디(110)의 제2 내부유로(102) 중 바디(110)의 타단부에 배치될 수 있다.
가용금속(140)은 소정의 온도에서 용융될 수 있는 금속재료일 수 있다. 즉, 가용금속(140)은 차량의 화재 또는 이상 발생으로 바디부(110)의 주변부 온도가 크게 상승하여 상기 소정의 온도에 도달할 경우 용융되는 금속재료일 수 있다.
다만, 가용금속(140)은, 바디(110)의 제2 내부유로(102) 중 밸브부재(120, 121, 123) 및 커버부재(160) 사이에서 용융되어 형상이 변형되어야 하는 점에서, 바디(110), 밸브부재(120, 121, 123) 및 커버부재(160)보다 녹는점이 낮은 금속재료로 형성되는 것이 바람직하고, 가용금속(140)에 의해 정렬되는 복수개의 스틸볼(130)보다도 역시 녹는점이 낮은 금속재료로 형성되는 것이 바람직하다.
가용금속(140)은 제2 내부유로(102)의 내경과 대응되는 직경을 가진 원주 형태로 구비될 수 있다. 가용금속(140)의 중심부에는 센터홀(141)이 형성될 수 있다. 센터홀(141)에는 복수개의 스틸볼(130)이 삽입되어 밸브부재(120, 121, 123)의 길이방향으로 일렬 배열될 수 있다. 센터홀(141)의 내경은 복수개의 스틸볼(130) 각각의 직경과 대응되는 크기로 형성될 수 있다.
복수개의 스틸볼(130)은 볼 형상으로 형성될 수 있다. 복수개의 스틸볼(130)은 가용금속(140)의 중심부에 형성된 센터홀(141)에 삽입되어, 밸브부재(120, 121, 123)의 길이방향으로 일렬 배열될 수 있다.
복수개의 스틸볼(130)은 가용금속(140)의 센터홀(141)에 일렬로 3개가 나란히 배열될 수 있다. 복수개의 스틸볼(130)은 밸브부재(120, 121, 123)의 닫힌 상태에서 밸브부재(120, 121, 123)의 길이방향으로 일렬 배열될 수 있다.
복수개의 스틸볼(130)은 가용금속(140)의 용융상태에서 상기 일렬 배열이 무너질 수 있다. 즉, 가용금속(140)의 센터홀(141)에 일렬 배열된 복수개의 스틸볼(130)은 차량의 화재 또는 이상 현상에 의하여 바디(110) 주변의 온도가 상승함에 따라 가용금속(140)이 용융될 때 상기 일렬 배열이 무너지면서 밸브부재(120, 121, 123)를 이동시키는 역할을 수행할 수 있다.
한편, 내부유로(100S)에는 바디(110)의 타단을 통해 커버부재(160)가 삽입될 수 있다. 커버부재(160)는 바디(110)의 타단을 통해 제2 내부유로(102)로 삽입되어 제2 내부유로(102)에 배치될 수 있다. 커버부재(160)는 가용금속(140) 및 복수개의 스틸볼(130)을 지지할 수 있다.
커버부재(160)에는 용융액 배출구(165)가 형성될 수 있다. 용융액 배출구(165)는 가용금속(140)이 용융되어 배출될 수 있다. 즉, 가용금속(140)은 용융된 상태일 때 용융액 배출구(165)를 통해 바디(110)의 외부로 배출될 수 있다.
보다 상세하게는, 가용금속(140)은 내부의 센터홀(141)에 복수개의 스틸볼(130)이 일렬 배열된 상태에서, 내측단은 밸브부재(120, 121, 123)의 구성 중 피스톤부(123)의 외측단에 의하여 지지되고, 외측단은 커버부재(160)의 내측단에 의하여 지지될 수 있다.
이와 같은 밸브부재(120, 121, 123)와 커버부재(160) 사이에 배치된 가용금속(140)은, 도 2에 참조된 바와 같이, 용융이 되지 않은 고체 상태에서는 복수개의 스틸볼(130)의 일렬 배열이 유지됨에 따라 밸브부재(120, 121, 123)가 내부유로(100S) 내에서 이동되는 것을 방지할 수 있다. 또한, 가용금속(140)은, 도 4에 참조된 바와 같이, 주변의 온도가 소정의 온도로 상승함에 따라 용융될 시 액체 상태로 되면서 센터홀(141)이 제거되어 복수개의 스틸볼(130)의 일렬 배열을 무너지게 할 수 있다. 이에 따라, 밸브부재(120, 121, 123)는 내부유로(100S) 내에서 바디(110)의 길이방향 타단을 향해 이동되어 제1 내부유로(101) 및 제2 내부유로(102) 사이를 연통시켜 연료탱크(T) 내의 고압가스를 고압가스 배출유로(11)를 통해 외부로 신속하게 배출함으로써, 연료탱크(T)의 내부 압력(P)이 상승하여 폭발하는 것을 방지할 수 있다.
여기서, 바디(110)의 제2 내부유로(102) 내에서 용융된 가용금속(140)은, 고압가스 배출유로(11)를 통해 고압 가스가 팽창하면서 배출될 때 작용하는 주변의 온도 저하에 의하여 경화되기 전에, 커버부재(160)의 용융액 배출구(165)를 통해 신속하게 외부로 배출됨으로써, 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브(100A)의 작동 불량률을 최소화시킬 수 있다.
도 5는 본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력 용기에 대한 설치 단면도이고, 도 6은 도 5의 구성 중 밸브 바디를 나타낸 단면도이며, 도 7은 본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도이다. 여기서는, 전술한 본 발명의 제1 실시예에 따른 압력용기용 온도 감응식 안전밸브(100A)와 동일한 구성에 대해서는 동일한 도면부호를 부여하여, 그에 대한 자세한 설명은 생략하고, 다른 점만을 설명하기로 한다.
도 5 내지 도 7을 참조하면, 본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브(100B)는, 바디(110) 중 제2 내부유로(102)가 형성된 부분의 내부구조가 제1 실시예의 안전밸브(100A)와는 다른 구조로 형성된다.
보다 상세하게는, 본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브(100B)에서, 내부유로(100S)는, 가스입구(103)에서부터 바디(110)의 길이방향 타단을 향해 소정길이 연장되는 제1 내부유로(101)와, 제1 내부유로(101)에서부터 바디(110)의 타단까지 연장되고, 제1 내부유로(101)보다 직경이 크게 형성되며, 바디(110)의 타단에 형성된 가스출구(104)와 연통되는 제2 내부유로(102)를 포함할 수 있다.
여기서, 상술한 제1 실시예의 안전밸브(100A)의 경우, 가스출구(104)가 바디(110)의 삽입부(110A) 외주면에 형성되어 연료탱크(T) 내에 형성된 고압가스 배출유로(11)와 연통된다. 하지만, 제2 실시예의 안전밸브(100B)의 경우, 가스출구(104)는 연료탱크(T)의 장착부와는 무관한 바디(110)의 노출부(110B)의 외측단인 바디(110)의 타단에 형성되어 연료탱크(T)의 고압 가스를 직접 외기로 배출할 수 있다는 차이점을 가진다.
제2 실시예의 안전밸브(100B)의 바디(110)에는 제2 내부유로(102)의 반경방향으로 외측에 제2 내부유로(102)와 연통되는 출구유로(105)가 바디(110)의 길이방향으로 길게 형성될 수 있다. 여기서, 출구유로(105)의 일단은 제2 내부유로(102)와 연통되고, 출구유로(105)의 타단은 가스출구(104)가 될 수 있다.
본 발명의 제2 실시예에 따른 압력용기용 온도 감응식 안전밸브(100B)는, 상술한 출구유로(105) 및 가스출구(104)의 형성 위치에 관한 차이점을 제외하고는, 그 외의 밸브부재(120, 121, 123), 복수개의 스틸볼(130), 가용금속(140) 및 커버부재(160)는 상술한 제1 실시예의 안전밸브(100A)와 동일하므로 중복되는 구성의 범위 내에서의 상세한 설명은 생략하기로 한다.
도 8은 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력용기에 대한 설치 단면도이고, 도 9는 도 8의 구성 중 밸브 바디를 나타낸 단면도이며, 도 10은 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도이다.
도 8 내지 도 10을 참조하면, 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브(100C)는, 안전밸브(100C)의 전체적인 외관을 형성하는 바디(110)와, 바디(110)의 내부에서 이동 가능하게 배치된 밸브부재(120)와, 바디(110)의 내부에 구비되고 차량의 정상 상태에서는 밸브부재(120)가 이동되지 않도록 지지하는 복수개의 스틸볼(130)과, 복수개의 스틸볼(130)을 일렬 배열로 지지하되, 소정의 온도에서 용융되는 가용금속(140)을 포함할 수 있다.
바디(110)는 연료탱크(T)의 일측에 홀 형태로 구비된 장착부(도면부호 미표기)에 일부가 삽입되어 장착될 수 있다.
보다 상세하게는, 바디(110)는, 연료탱크(T)의 장착부에 삽입되는 삽입부(110A)와, 삽입부(110A)에 대하여 직교되게 연장되고 내부에 설치 공간(113)이 형성된 노출부(110B)를 포함할 수 있다.
삽입부(110A)의 외주면에는, 연료탱크(T)의 장착부 내부에 가공된 암나사산(미도시)에 스크류 체결되는 수나사산(미도시)이 형성되어 나사 체결 방식으로 연료탱크(T)의 장착부에 체결될 수 있다.
여기서, 삽입부(110A)의 선단부 외주면에는 실링 개재홈(111h)이 형성될 수 있고, 실링 개재홈(111h)에는 밀폐 실링(111)이 개재되어 연료탱크(T)의 장착부 내주면과 바디(110)의 삽입부(110A) 외주면 사이로 고압 가스가 새는 것을 방지할 수 있다.
가스입구(103)는 삽입부(110A)의 일단에 형성될 수 있다. 삽입부(110A)에는 가스입구(103)에서부터 타단까지 연장되는 내부유로(100S)가 형성될 수 있다. 가스출구(104)는 삽입부(110A)의 외주면에 형성될 수 있다. 가스출구(104)는 내부유로(100S)와 연통될 수 있다.
내부유로(100S)는, 삽입부(110A)의 일단인 가스입구(103)부터 삽입부(110A)의 타단까지 연속적으로 연장되어 형성되나, 후술하는 밸브부재(120)에 의해 단속되는 지점을 기준으로 제1 내부유로(101) 및 제2 내부유로(102)로 구분할 수 있다.
내부유로(100S)는 제1 내부유로(101) 및 제2 내부유로(102)를 포함할 수 있다. 제1 내부유로(101)는 가스입구(103)에서부터 삽입부(110A)의 타단을 향해 소정길이 연장될 수 있다. 제2 내부유로(102)는 제1 내부유로(101)에서부터 삽입부(110A)의 타단까지 연장될 수 있다. 제2 내부유로(102)는 제1 내부유로(101)보다 직경이 크게 형성될 수 있다. 제2 내부유로(102)는 가스출구(103)와 연통될 수 있다. 밸브부재(120)는 제2 내부유로(102)에 배치될 수 있다. 밸브부재(120)는 밸브부재(120)의 닫힌 상태일 때 제1 내부유로(101) 및 제2 내부유로(102) 사이를 닫을 수 있다. 밸브부재(120)는 밸브부재(120)의 열린 상태일 때 제1 내부유로(101) 및 제2 내부유로(102) 사이를 개방할 수 있다.
노출부(110B)에 형성된 설치 공간(113)은, 삽입부(110A)에 형성된 내부유로(100S)와 연통될 수 있다. 설치 공간(113)에는 복수개의 스틸볼(130), 가용금속(140), 탄성부재(150), 커버부재(160, 190), 가압부재(170, 173, 175) 및 피스톤 패널(180)이 설치될 수 있다.
밸브부재(120)는 삽입부(110A)에 삽입부(110A)의 길이방향으로 이동 가능하게 배치될 수 있다.
가스입구(103)는, 연료탱크(T)의 내부 압력(P)이 직접적으로 작용되고 고압 가스가 유입되는 입구일 수 있고, 바디(110)의 삽입부(110A) 중 선단부에 형성될 수 있다.
또한, 가스출구(104)는, 가스입구(103)를 통해 제1 내부유로(101) 및 제2 내부유로(102)로 유입된 고압 가스가 배출되는 최종 출구일 수 있고, 바디(110)의 삽입부(110A) 외주면에 형성될 수 있다.
밸브부재(120)는, 바디(110)의 삽입부(110A)의 길이방향으로 이동 가능하게 배치될 수 있고, 바디(110)의 노출부(110B)의 길이방향과 직교되는 방향으로 이동 가능하게 배치될 수 있다. 밸브부재(120)는 삽입부(110A)의 길이방향으로 이동되어 가스입구(103) 및 가스출구(104) 사이를 개폐할 수 있다. 구체적으로, 밸브부재(120)는 삽입부(110A)의 길이방향으로 이동되어 제1 내부유로(101) 및 제2 내부유로(102) 사이를 개폐할 수 있다.
한편, 연료탱크(T)에는 삽입부(110A)의 외주면에 형성된 가스출구(104)와 연통되는 고압가스 배출유로(11)가 형성될 수 있다.
고압가스 배출유로(11)는, 후술하는 밸브부재(120)에 의해 제1 내부유로(101)와 제2 내부유로(102) 사이가 개방될 경우, 연료탱크(T)의 고압가스가 배출되는 통로 기능을 수행할 수 있다.
아울러, 바디(110) 중 노출부(110B)의 내부에는, 복수개의 스틸볼(130), 가용금속(140), 탄성부재(150), 제1 커버부재(160), 가압부재(170, 173, 175), 피스톤 패널(180) 및 제2 커버부재(190)가 설치되는 설치 공간(113)이 형성될 수 있다.
여기서, 설치 공간(113)은, 바디(110) 중 노출부(110B)의 길이방향을 따라 길게 형성될 수 있고, 밸브부재(120)에 의하여 제1 내부유로(101) 및 제2 내부유로(102)와는 연통되지 않게 형성될 수 있다.
가용금속(140)은 설치 공간(113) 중 노출부(110B)의 일단부에 배치될 수 있다. 설치 공간(113) 중 노출부(110B)의 타단부에는 가압부재(170, 173, 175)가 배치될 수 있다. 가압부재(170, 173, 175)의 선단부(175)는 복수개의 스틸볼(130) 중 적어도 하나의 일측을 지지할 수 있다. 가압부재(170, 173, 175)는 가용금속(140)이 용융될 때 복수개의 스틸볼(130)의 상기 일렬 배열을 무너뜨릴 수 있다.
가압부재(170, 173, 175)는, 로드부(170)와, 피스톤부(173)와, 선단부(175)를 포함할 수 있다.
피스톤부(173)의 일단에는 선단부(175)가 돌출 형성될 수 있다. 선단부(175)는 피스톤부(173)의 일단면 중심부에 피스톤부(173)보다 직경이 작게 형성될 수 있다. 피스톤부(173)는 선단부(175)보다 직경이 크게 형성될 수 있다. 피스톤부(173)의 외주면은 설치 공간(113)의 내주면에 밀착될 수 있다.
로드부(170)는 피스톤부(173)의 타단에 피스톤부(173)보다 직경이 작게 형성될 수 있다. 로드부(170)는 피스톤부(173)의 타단면 중심부에 돌출 형성될 수 있다. 로드부(170)의 직경은 선단부(175)의 직경과 동일할 수 있다. 로드부(170)는 설치 공간(113)의 길이방향으로 배치될 수 있다.
선단부(175)는 복수개의 스틸볼(130) 중 적어도 하나와 접촉되게 구비되어 가용금속(140)이 용융될 때 복수개의 스틸볼(130) 중 적어도 하나를 매개로 탄성부재(150)의 탄성력을 피스톤 패널(180)로 제공할 수 있으며, 피스톤 패널(180)은 가용금속(150)이 용융될 때 복수개의 스틸볼(130) 중 적어도 하나를 매개로 선단부(175)로부터 제공되는 탄성부재(150)의 탄성력을 이용하여 용융 상태인 가용금속(140)을 밀어 배출할 수 있다.
보다 상세하게는, 밸브부재(120)는, 도 8에 참조된 바와 같이 차량이 정상 상태일 때 제1 내부유로(101) 및 제2 내부유로(102) 사이를 닫은 상태를 유지하고, 도 10에 참조된 바와 같이 차량이 화재 또는 이상 상태일 때 제1 내부유로(101) 및 제2 내부유로(102) 사이를 개방한 상태를 유지하는 역할을 수행할 수 있다.
밸브부재(120)는 제2 내부유로(102)의 내경에 대응되는 직경을 가진 원주 형상으로 형성될 수 있다. 밸브부재(120)의 외주면에는 이너 개스킷링(122)이 개재되는 홈이 형성될 수 있고, 이너 개스킷링(122)은 제2 내부유로(102)의 내주면과 밸브부재(120)의 외주면 사이로의 고압가스 누출을 방지하는 역할을 수행할 수 있다.
탄성부재(150)는 가압부재(170, 173, 175)를 복수개의 스틸볼(130) 중 어느 하나를 향하여 이동시킬 수 있다. 탄성부재(150)는 가압부재(170, 173, 175)를 설치 공간(113) 상에서 바디(110) 중 노출부(110B)의 길이방향으로 탄성 지지할 수 있다.
탄성부재(150)는 설치 공간(113)의 길이방향으로 길게 배치된 가압부재(170, 173, 175)의 로드부(170) 외주면을 감싸도록 구비될 수 있다. 탄성부재(150)는 가용금속(170)이 용융될 때 복수개의 스틸볼(130)의 일렬 배열을 무너뜨리기 위해 가압부재(170, 173, 175)를 탄성 지지하는 역할을 수행할 수 있다.
가용금속(140)과 복수개의 스틸볼(130) 사이에는 피스톤 패널(180)이 배치될 수 있다. 피스톤 패널(180)은 복수개의 스틸볼(130)의 일렬 배열이 무너지면, 상기 일렬 배열이 무너진 복수개의 스틸볼(130)을 매개하여 전달되는 가압부재(170, 173, 175)의 이동력에 의해 용융 상태의 가용금속(140)을 노출부(110B)의 일단부 외측으로 배출시킬 수 있다.
탄성부재(150)는 코일 스프링으로 형성될 수 있다. 상기 코일 스프링의 일단의 가압부재(170, 173, 175)의 피스톤부(173)의 타단에 접촉될 수 있다. 상기 코일 스프링의 타단은 제2 커버부재(190)의 내측에 접촉될 수 있다. 상기 코일 스프링에는 가압부재(170, 173, 175)의 로드부(170)가 삽입될 수 있다. 상기 코일 스프링은 가압부재(170, 173, 175)의 로드부(170)를 둘러쌀 수 있다.
가압부재(170, 173, 175)는, 선단부(175)가 복수개의 스틸볼(130) 중 어느 하나의 일측을 지속적으로 지지하도록 구비됨으로써, 가용금속(140)이 용융될 때, 복수개의 스틸볼(130)의 일렬 배열을 무너뜨림과 동시에, 용융된 가용금속(140)을 피스톤 패널(180)을 매개로 제1 커버부재(160)의 용융액 배출구(165)를 통해 외부로 배출시키는 역할을 수행할 수 있다.
복수개의 스틸볼(130)의 일렬 배열이 무너지면, 밸브부재(120)는 연료탱크(T) 내부의 압력(P)에 의하여 밸브부재(120)의 길이방향으로 이동되어 제1 내부유로(101) 및 제2 내부유로(102) 사이를 개방할 수 있다.
한편, 가용금속(140)은, 제1 커버부재(160)와 피스톤 패널(180) 사이에 배치될 수 있고, 소정의 온도에서 용융될 수 있는 금속재료로 구비될 수 있다. 따라서, 가용금속(140)은 가령 차량의 화재 또는 이상 발생으로 바디부(110)의 노출부(110B) 주변부 온도가 크게 상승하여 상기 소정의 온도에 도달할 경우 용융될 수 있다.
다만, 가용금속(140)은, 바디(110)의 설치 공간(113) 중 피스톤 패널(180)과 제1 커버부재(160) 사이에서 용융되어 형상이 변형되어야 하는 점에서, 바디(110), 제1 커버부재(160) 및 피스톤 패널(180)보다 녹는점이 낮은 금속재료로 형성되는 것이 바람직하다. 또한, 가용금속(140)은 용융되지 않은 상태일 때 복수개의 스틸볼(130)을 밸브부재(120)의 길이방향으로 일렬 배열되게 지지하여야 하므로, 복수개의 스틸볼(130)보다 녹는점이 낮은 금속재료로 형성됨이 바람직하다.
복수개의 스틸볼(130)은, 볼 형상으로 형성될 수 있고, 밸브부재(120)의 닫힌 상태에서 가압부재(170, 173, 175)의 선단부(175)와 피스톤 패널(180) 사이에 해당하는 설치 공간(113)에 밸브부재(120)의 길이방향으로 일렬 배열될 수 있다.
보다 상세하게는, 복수개의 스틸볼(130)은, 3개 중 하나가 밸브부재(120)의 타단면을 지지함과 아울러 3개 중 가운데에 배열된 하나가 가압부재(170, 173, 175)의 선단부(175)에 의해 탄성 지지될 수 있으며, 3개 중 나머지 하나는 설치 공간(113)의 내주면에 의해 지지될 수 있다.
즉, 복수개의 스틸볼(130)은, 밸브부재(120)의 길이방향으로 3개가 나란히 일렬 배열될 수 있다. 이와 같이, 노출부(110B)의 설치 공간(113)에 일렬 배치된 복수개의 스틸볼(130)은 차량의 화재 또는 이상 현상에 의하여 바디(110) 주변의 온도가 상승함에 따라 가용금속(140)이 용융될 때 가압부재(170, 173, 175)의 이동에 의하여 일렬 배치가 무너지면서 밸브부재(120)가 이동되도록 하는 역할을 수행할 수 있다.
한편, 제1 커버부재(160)는 바디(110)의 노출부(110B) 일단을 통해 설치 공간(113)의 일단부(115)로 삽입 고정될 수 있고, 제2 커버부재(190)는 바디(110)의 노출부(110B) 타단을 통해 설치 공간(113)의 타단부(117)로 삽입 고정될 수 있다.
제1 커버부재(160)는, 상술한 바와 같이, 피스톤 패널(180)과의 사이에 구비된 고체 상태의 가용금속(140)을 지지하는 역할을 수행할 수 있다. 제1 커버부재(160)에는 용융액 배출구(165)가 형성될 수 있다. 용융액 배출구(165)는 가용금속(140)이 용융되어 배출될 수 있다. 즉, 가용금속(140)은 용융될 시 용융액 배출구(165)를 통해 바디(110)의 노출부(110B) 외부로 배출될 수 있다.
보다 상세하게는, 가용금속(140)은 복수개의 스틸볼(130) 중 적어도 하나를 매개로 가압부재(170, 173, 175)의 이동력을 전달받는 피스톤 패널(180)과 제1 커버부재(160) 사이에 양단이 지지될 수 있다.
아울러, 제2 커버부재(190)는, 상술한 바와 같이, 가압부재(170, 173, 175)의 로드부(170) 외주면을 감싸도록 구비된 탄성부재(150)의 타단이 접촉 지지되도록 하는 역할을 수행하여, 결과적으로 가압부재(170, 173, 175)를 탄성부재(170)를 매개로 하여 지지할 수 있다.
이와 같은 피스톤 패널(180)과 제1 커버부재(160) 사이에 배치된 가용금속(140)은, 도 8에 참조된 바와 같이, 용융이 되지 않은 고체 상태에서는 복수개의 스틸볼(130)의 일렬 배치를 유지시킴에 따라 밸브부재(120)가 제1 내부유로(101) 및 제2 내부유로(102) 사이를 닫힌 상태로 유지하나, 도 10에 참조된 바와 같이, 가용금속(140)이 주변의 온도가 소정의 온도로 상승함에 따라 용융될 시 액체 상태로 전환되면, 피스톤 패널(180)이 가압부재(170, 173, 175)의 이동력에 의해 노출부(110B)의 일단부를 향해 이동되면서 용융된 상태의 가용금속(140)을 제1 커버부재(160)의 용융액 배출구(165)를 통해 배출함과 동시에, 가압부재(170, 173, 175)의 선단부(175)가 복수개의 스틸볼(130)을 밀어 복수개의 스틸볼(130)의 일렬 배열을 무너뜨림에 따라, 밸브부재(120)가 설치 공간(113) 측으로 이동되어 제1 내부유로(101) 및 제2 내부유로(102) 사이를 개방시킴으로써, 연료탱크(T) 내의 고압가스를 고압가스 배출유로(11)를 통해 외부로 신속하게 배출하여 연료탱크(T)의 내부 압력(P)이 상승하여 폭발하는 것을 방지할 수 있다.
특히, 바디(110)의 설치 공간(113) 내에서 용융된 가용금속(140)은, 고압가스 배출유로(11)를 통해 고압 가스가 팽창하면서 배출될 때 작용하는 주변의 온도 저하에 의하여 경화되기 전에, 제1 커버부재(160)의 용융액 배출구(165)를 통해 외부로 신속하게 배출됨으로써 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브(100C)의 작동 불량률을 최소화시킬 수 있다.
도 11은 본 발명의 제4 실시예에 따른 압력용기용 온도 감응식 안전밸브의 압력용기에 대한 설치 단면도이고, 도 12는 본 발명의 제4 실시예에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 나타낸 단면도이다. 여기서는, 전술한 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브(100C)와 동일한 구성에 대해서는 동일한 도면부호를 부여하여, 그에 대한 자세한 설명은 생략하고, 다른 점만을 설명하기로 한다.
도 11 및 도 12를 참조하면, 본 발명의 제4 실시예에 따른 압력용기용 온도 감응식 안전밸브(100D)는, 단수개의 스틸볼(130)을 포함할 수 있고, 밸브부재(120)는 단수개의 스틸볼(130)에 의하여 지지될 수 있다.
또한, 제4 실시예의 안전밸브(100D)의 가압부재(170, 173, 175, 177)의 구성은 제3 실시예의 안전밸브(100D)의 가압부재(170, 173, 175)의 구성과 차이가 있다. 즉, 제4 실시예의 안전밸브(100D)의 가압부재(170, 173, 175, 177)는 피스톤부(173), 선단부(175), 로드부(170) 및 푸쉬 패널부(177)로 구성될 수 있다. 피스톤부(173)의 외주면은 설치 공간(113)의 내주면에 밀착될 수 있다. 선단부(175)는 피스톤부(173)의 일단에 피스톤부(173)보다 직경이 작게 형성될 수 있다. 로드부(170)는 피스톤부(173)의 타단에 피스톤부(173)보다 직경이 작게 형성될 수 있다. 로드부(170)는 설치 공간(113)의 길이방향으로 배치될 수 있다. 푸쉬 패널부(177)는 선단부(175)의 일단에 선단부(175)와 일체로 형성될 수 있다. 푸쉬 패널부(177)는 용융된 가용금속(140)을 설치 공간(113)에서 외부로 밀어낼 수 있다. 단일의 스틸볼(130)은 밸브부재(120)의 닫힌 위치에서 푸쉬 패널부(177)에 의해 지지될 수 있다. 단일의 스틸볼(130)은 밸브부재(120)의 열린 위치에서 선단부(175)에 의해 지지될 수 있다.
도 8 내지 도 10을 참조하여 설명했던 본 발명의 제3 실시예에 따른 압력용기용 온도 감응식 안전밸브(100C)는, 복수개의 스틸볼(130)이 바디(110) 중 노출부(110B)의 설치 공간(113)에 일렬 배열되어 있다가, 가용금속(140)이 용융될 시 가압부재(170, 173, 175)의 선단부(175)가 복수개의 스틸볼(130) 중 어느 하나의 일측을 밀어서 복수개의 스틸볼(130)의 일렬 배열을 무너뜨리는 방식으로, 밸브부재(120)가 이동되어 제1 내부유로(101) 및 제2 내부유로(102) 사이를 열린 상태로 변경함으로써 연료탱크(T)의 고압 가스를 배출하는 원리를 적용한 것이다.
그러나, 본 발명의 제4 실시예에 따른 압력용기용 온도 감응식 안전밸브(100D)는, 단수개의 스틸볼(130)이 가압부재(170, 173, 175, 177)의 선단부(175)에 일체로 형성된 푸쉬 패널부(177)에 의하여 지지되어, 밸브부재(120)가 제1 내부유로(101) 및 제2 내부유로(102) 사이를 닫힌 상태로 유지시키고, 가용금속(140)이 용융될 시 푸쉬 패널부(177)가 가압부재(170, 173, 175, 177)의 이동력 또는 탄성부재(150)의 탄성력에 의해 노출부(110B)의 설치 공간(113) 내에서 길이방향 일측으로 이동될 때, 단수개의 스틸볼(130)이 가압부재(170, 173, 175, 177)의 선단부(175)의 외주 공간(즉, 피스톤부(173)와 푸쉬 패널부(177) 사이의 공간)으로 이동되어, 밸브부재(120)가 제1 내부유로(101) 및 제2 내부유로(102) 사이를 열린 상태로 변경하여, 연료탱크(T)의 고압가스를 배출하는 원리가 적용된다.
여기서, 푸쉬 패널부(177)의 직경은 선단부(175)의 직경보다 크게 형성될 수 있다.
본 발명의 제3 실시예의 안전밸브(100C)는, 가용금속(140)의 용융에 따른 일렬 배열이 무너질 때 밸브부재(120)가 열린 위치로 이동되어 고압가스의 배출이 원할하도록 복수개(바람직하게는 3개)의 스틸볼(130)의 일렬 배열이 완전하고도 안정적으로 무너져야 하지만, 가용금속(140)의 용융 속도 및 용융 상태에 따라 이를 완전히 보장받지 못할 가능성이 있다.
이에 비하여, 본 발명의 제4 실시예(100D)는, 단수개의 스틸볼(130)의 위치만 밸브부재(120)가 닫힌 위치에서 열린 위치로 이동 가능하도록 단순히 노출부(110B)의 설치 공간(113) 측으로 이동되는 위치 변경만으로도 충분히 상술한 제3 실시예(100C)의 단점을 보완할 수 있는 이점을 가진다.
또한, 본 발명의 제3 실시예의 안전밸브(100C)는, 가압부재(170, 173, 175)의 선단부(175)는 단순히 복수개의 스틸볼(130) 중 어느 하나를 이동시켜 복수개의 스틸볼(130)의 일렬 배열을 무너뜨리는데 반하여, 본 발명의 제4 실시예의 안전밸브(100D)는, 가압부재(170, 173, 175, 177)의 선단부(175)에 가용금속(140)을 직접 지지하도록 일체로 구비된 푸쉬 패널부(177)을 구비하고 제3 실시예의 안전밸브(100C)에서와 같은 피스톤 패널(180)을 별도로 구비하지 않으며, 단수개의 스틸볼(130)은, 피스톤부(173)와 푸쉬 패널부(177) 사이인 가압부재(170, 173, 175, 177)의 선단부(175) 외주 공간에서 밸브부재(120)와의 간섭이 없는 위치로 변경되는 차이점을 가진다.
그러므로, 단수개의 스틸볼(130)이 밸브부재(120)를 열린 위치로 이동 가능하도록 하기 위해서는, 푸쉬 패널부(177)가 구비된 노출부(110B)의 설치 공간(113) 내주면과 가압부재(170, 173, 175, 177)의 선단부(175)의 외주면 사이의 거리는 적어도 단수개의 스틸볼(130)의 직경보다 더 크도록 설계됨이 바람직하다.
상기와 같이 구성된 본 발명의 제3 실시예(100C) 및 제4 실시예(100D)에 따른 압력용기용 온도 감응식 안전밸브의 작용 효과를 첨부된 도면을 참조하여 간략하게 설명하면 다음과 같다.
먼저, 차량이 화재 또는 이상 상태로 인하여 연료탱크(T) 주변(특히, 바디(110)의 노출부(110B) 주변) 온도가 소정의 온도에 도달하면 가용금속(140)이 용융된다.
이때, 가용금속(140)이 용융되면 복수개의 스틸볼(130) 또는 단수개의 스틸볼(130)을 지지하고 있는 피스톤 패널(180) 또는 푸쉬 패널부(177)가 용융된 가용금속(140)을 고압가스의 팽창에 따른 온도 저하로 경화되기 전에 외부로 신속하게 배출할 수 있다.
이와 동시에, 복수개의 스틸볼(130)의 일렬 배열이 무너지거나 단수개의 스틸볼(130)의 밸브부재(120) 지지 위치가 변경됨으로써 밸브부재(120)가 닫힌 위치에서 열린 위치로 이동될 수 있게 될 수 있다.
본 발명의 실시예들에 따른 압력용기용 온도 감응식 안전밸브(100A, 100B, 100C, 100D)에 따르면, 차량의 화재 또는 이상 현상으로 인하여 바디(110)의 주변 온도가 크게 상승할 경우, 연료탱크(T) 내의 내부압력(P)의 상승에 따른 폭발 전에, 도 4, 도 7 및 도 10에 참조된 바와 같이, 바디(110) 내의 가용금속(140)이 용융되어 복수개의 스틸볼(130)의 일렬 배열을 무너뜨리거나, 도 12에 참조된 바와 같이, 바디(110) 내의 가용금속(140)이 용융되어 단수개의 스틸볼(130)의 지지 위치를 변경시키고, 이에 따라 밸브부재(120, 121, 123)를 제1 내부유로(101) 및 제2 내부유로(102) 사이가 닫히는 위치에서 제1 내부유로(101) 및 제2 내부유로(102) 사이가 열리는 위치로 이동시킴으로써 연료탱크(T) 내의 고압가스를 적절한 시기에 배출할 수 있다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 화재 또는 이상 발생으로 인한 가스탱크의 온도 상승 시 가스배출의 반응속도가 빠른 압력용기용 온도 감응식 안전밸브를 제공한다.

Claims (20)

  1. 가스입구 및 가스출구가 형성된 바디;
    상기 바디 내에 배치되어 상기 가스입구 및 상기 가스출구 사이를 개폐하는 밸브부재;
    상기 바디 내에 배치되어 상기 밸브부재를 닫힌 상태로 지지하는 스틸볼; 및
    상기 바디 내에 배치되고, 소정의 온도에서 용융되어 상기 스틸볼을 상기 밸브부재가 열리는 위치로 이동시키는 가용금속;을 포함하는 압력용기용 온도 감응식 안전밸브.
  2. 청구항 1에 있어서,
    상기 가스입구는 상기 바디의 일단에 형성되고,
    상기 바디의 내부에는, 상기 가스입구에서부터 상기 바디의 타단까지 연장되고 상기 가스출구와 연통되는 내부유로가 형성되며,
    상기 밸브부재는 상기 내부유로에 밸브부재의 길이방향으로 이동 가능하게 배치되는 압력용기용 온도 감응식 안전밸브.
  3. 청구항 2에 있어서,
    상기 스틸볼은 상기 밸브부재의 닫힌 상태에서 상기 밸브부재의 길이방향으로 일렬 배열되는 복수개의 스틸볼로 구비되고,
    상기 복수개의 스틸볼은 상기 가용금속의 용융상태에서 상기 일렬 배열이 무너지는 압력용기용 온도 감응식 안전밸브.
  4. 청구항 3에 있어서,
    상기 바디의 타단을 통해 상기 내부유로로 삽입되어 상기 가용금속 및 상기 복수개의 스틸볼을 지지하는 커버부재;를 더 포함하고,
    상기 커버부재에는, 상기 가용금속이 용융되어 배출되는 용융액 배출구가 형성되는 압력용기용 온도 감응식 안전밸브.
  5. 청구항 3에 있어서,
    상기 가용금속의 중심부에는 상기 복수개의 스틸볼이 삽입되어 상기 일렬 배열되는 센터홀이 형성되는 압력용기용 온도 감응식 안전밸브.
  6. 청구항 3에 있어서,
    상기 내부유로에 배치되어 상기 밸브부재가 상기 복수개의 스틸볼에 의해 지지되지 않을 시 상기 밸브부재를 열린 위치로 이동시키는 탄성부재;를 더 포함하는 압력용기용 온도 감응식 안전밸브.
  7. 청구항 6에 있어서,
    상기 내부유로는,
    상기 가스입구에서부터 상기 바디의 타단을 향해 소정길이 연장되는 제1 내부유로와,
    상기 제1 내부유로에서부터 상기 바디의 타단까지 연장되고, 상기 제1 내부유로보다 직경이 크게 형성되며, 상기 가스출구와 연통되는 제2 내부유로를 포함하고,
    상기 밸브부재는,
    상기 제2 내부유로에 배치되는 스템부와,
    상기 스템부의 일단에 상기 스템부보다 직경이 작게 형성되어, 상기 밸브부재의 닫힌 상태일 때 상기 제1 내부유로 삽입되어 상기 제1 내부유로 및 상기 제2 내부유로 사이를 닫고, 상기 밸브부재의 열린 상태일 때 상기 제1 내부유로에서 빠져나와 상기 제1 내부유로 및 상기 제2 내부유로 사이를 개방하는 팁부를 포함하는 압력용기용 온도 감응식 안전밸브.
  8. 청구항 7에 있어서,
    상기 밸브부재는, 상기 스템부의 타단에 상기 스템부보다 직경이 크게 형성되어 상기 내부유로의 내주면에 외주면이 밀착되는 피스톤부를 더 포함하고,
    상기 탄성부재는, 상기 제1 내부유로 및 상기 제2 내부유로 사이의 단차에 일단이 접촉되고, 상기 피스톤부에 타단이 접촉되며, 상기 스템부가 관통하는 코일 스프링으로 형성되는 압력용기용 온도 감응식 안전밸브.
  9. 청구항 7에 있어서,
    상기 가스출구는 상기 바디의 외주면 또는 상기 바디의 타단에 형성되는 압력용기용 온도 감응식 안전밸브.
  10. 청구항 1에 있어서,
    상기 바디는,
    일단에 형성된 상기 가스입구에서부터 타단까지 연장되는 내부유로가 형성되고, 외주면에 상기 내부유로와 연통되는 상기 가스출구가 형성되는 삽입부와,
    상기 삽입부에 대하여 직교되게 연장되고, 내부에 상기 내부유로와 연통되고 상기 스틸볼 및 상기 가용금속이 설치되는 설치 공간이 형성된 노출부를 포함하고,
    상기 밸브부재는 상기 삽입부에 상기 삽입부의 길이방향으로 이동 가능하게 배치되는 압력용기용 온도 감응식 안전밸브.
  11. 청구항 10에 있어서,
    상기 스틸볼은 상기 밸브부재의 닫힌 상태에서 상기 밸브부재의 길이방향으로 일렬 배열되는 복수개의 스틸볼로 구비되고,
    상기 복수개의 스틸볼은 상기 가용금속의 용융상태에서 상기 일렬 배열이 무너지는 압력용기용 온도 감응식 안전밸브.
  12. 청구항 11에 있어서,
    상기 가용금속은 상기 설치 공간 중 상기 노출부의 일단부에 배치되고,
    상기 설치 공간 중 상기 노출부의 타단부에 배치되되 선단부가 상기 복수개의 스틸볼 중 적어도 하나의 일측을 지지하고, 상기 가용금속이 용융될 때 상기 복수개의 스틸볼의 상기 일렬 배열을 무너뜨리는 가압부재;를 더 포함하는 압력용기용 온도 감응식 안전밸브.
  13. 청구항 12에 있어서,
    상기 노출부의 일단을 통해 상기 설치 공간으로 삽입되어 상기 가용금속을 지지하는 제1 커버부재;를 더 포함하고,
    상기 제1 커버부재에는, 상기 가용금속이 용융되어 배출되는 용융액 배출구가 형성되는 압력용기용 온도 감응식 안전밸브.
  14. 청구항 12에 있어서,
    상기 가용금속과 상기 복수개의 스틸볼 사이의 상기 설치 공간에 배치되고, 상기 일렬 배열이 무너진 상기 복수개의 스틸볼을 매개하여 전달되는 상기 가압부재의 이동력에 의해 용융 상태의 상기 가용금속을 상기 노출부의 일단부 외측으로 배출시키는 피스톤 패널;을 더 포함하는 압력용기용 온도 감응식 안전밸브.
  15. 청구항 12에 있어서,
    상기 설치 공간에 배치되어 상기 가압부재를 상기 복수개의 스틸볼 중 어느 하나를 향하여 이동시키는 탄성부재를 더 포함하는 압력용기용 온도 감응식 안전밸브.
  16. 청구항 15에 있어서,
    상기 노출부의 타단을 통해 상기 설치 공간으로 삽입되는 제2 커버부재;를 더 포함하고,
    상기 가압부재는,
    일단에 상기 선단부가 형성되고, 상기 선단부보다 직경이 크게 형성되어 상기 설치 공간의 내주면에 외주면이 밀착되는 피스톤부와,
    상기 피스톤부의 타단에 상기 피스톤부보다 직경이 작게 형성되고, 상기 설치 공간의 길이방향으로 배치되는 로드부를 포함하고,
    상기 탄성부재는, 상기 피스톤부의 타단에 일단이 접촉되고, 상기 제2 커버부재의 내측에 타단이 접촉되며, 상기 로드부가 삽입되는 코일 스프링으로 형성되는 압력용기용 온도 감응식 안전밸브.
  17. 청구항 10에 있어서,
    상기 내부유로는,
    상기 가스입구에서부터 상기 삽입부의 타단을 향해 소정길이 연장되는 제1 내부유로와,
    상기 제1 내부유로에서부터 상기 삽입부의 타단까지 연장되고, 상기 제1 내부유로보다 직경이 크게 형성되며, 상기 가스출구와 연통되는 제2 내부유로를 포함하고,
    상기 밸브부재는, 상기 제2 내부유로에 배치되어, 상기 밸브부재의 닫힌 상태일 때 상기 제1 내부유로 및 상기 제2 내부유로 사이를 닫고, 상기 밸브부재의 열린 상태일 때 상기 제1 내부유로 및 상기 제2 내부유로 사이를 개방하는 압력용기용 온도 감응식 안전밸브.
  18. 청구항 10에 있어서,
    상기 가용금속은 상기 설치 공간 중 상기 노출부의 일단부에 배치되고,
    상기 설치 공간 중 상기 노출부의 타단부에 배치되고, 상기 가용금속이 용융될 때, 상기 용융된 가용금속을 상기 설치 공간에서 외부로 배출함과 아울러, 상기 밸브부재가 닫힌 위치에서 열린 위치로 이동되도록, 상기 밸브부재에 대한 상기 스틸볼의 지지 위치를 변경시키는 가압부재를 더 포함하는 압력용기용 온도 감응식 안전밸브.
  19. 청구항 18에 있어서,
    상기 가압부재는,
    상기 가압부재는,
    상기 설치 공간의 내주면에 외주면이 밀착되는 피스톤부와,
    상기 피스톤부의 일단에 상기 피스톤부보다 직경이 작게 형성된 선단부와,
    상기 피스톤부의 타단에 상기 피스톤부보다 직경이 작게 형성되고, 상기 설치 공간의 길이방향으로 배치되는 로드부와,
    상기 선단부의 일단에 상기 선단부와 일체로 형성되어, 상기 용융된 가용금속을 상기 설치 공간에서 외부로 밀어내는 푸쉬 패널부를 포함하고,
    상기 스틸볼은, 상기 밸브부재의 닫힌 위치에서 상기 푸쉬 패널부에 의해 지지되고, 상기 밸브부재의 열린 위치에서 상기 선단부에 의해 지지되는 압력용기용 온도 감응식 안전밸브.
  20. 청구항 19에 있어서,
    상기 피스톤부의 타단에 일단이 접촉되고, 상기 로드부가 삽입되어 상기 가압부재에 탄성력을 제공하는 코일 스프링으로 형성된 탄성부재를 더 포함하는 압력용기용 온도 감응식 안전밸브.
PCT/KR2023/004337 2022-03-31 2023-03-31 압력용기용 온도 감응식 안전밸브 WO2023191573A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0040025 2022-03-31
KR10-2022-0040024 2022-03-31
KR1020220040024A KR20230142037A (ko) 2022-03-31 2022-03-31 온도 감응식 압력용기용 안전밸브
KR1020220040025A KR20230142038A (ko) 2022-03-31 2022-03-31 온도 감응식 압력용기용 안전밸브

Publications (1)

Publication Number Publication Date
WO2023191573A1 true WO2023191573A1 (ko) 2023-10-05

Family

ID=88203147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004337 WO2023191573A1 (ko) 2022-03-31 2023-03-31 압력용기용 온도 감응식 안전밸브

Country Status (1)

Country Link
WO (1) WO2023191573A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012780A (ja) * 2009-07-03 2011-01-20 Toyota Motor Corp 車両用高圧タンクのバルブ装置
KR20140037404A (ko) * 2012-09-18 2014-03-27 대우조선해양 주식회사 안전밸브 및 그 안전밸브의 폭발방지 방법
JP2015078709A (ja) * 2013-10-15 2015-04-23 株式会社フジキン 安全弁
KR20200110897A (ko) * 2019-03-18 2020-09-28 주식회사 유니크 온도 감응형 안전장치
KR20200132413A (ko) * 2019-05-17 2020-11-25 현대자동차주식회사 연료전지 차량의 온도감응식 압력안전장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012780A (ja) * 2009-07-03 2011-01-20 Toyota Motor Corp 車両用高圧タンクのバルブ装置
KR20140037404A (ko) * 2012-09-18 2014-03-27 대우조선해양 주식회사 안전밸브 및 그 안전밸브의 폭발방지 방법
JP2015078709A (ja) * 2013-10-15 2015-04-23 株式会社フジキン 安全弁
KR20200110897A (ko) * 2019-03-18 2020-09-28 주식회사 유니크 온도 감응형 안전장치
KR20200132413A (ko) * 2019-05-17 2020-11-25 현대자동차주식회사 연료전지 차량의 온도감응식 압력안전장치

Similar Documents

Publication Publication Date Title
WO2021054625A1 (ko) 소화 유닛을 포함한 배터리 팩
WO2013183871A1 (ko) 유체 제어용 밸브 어셈블리
WO2019160290A1 (ko) 자동 소화 장치
WO2012070703A1 (ko) 건설기계용 유량 제어밸브
WO2013051741A1 (ko) 건설기계용 우선 제어시스템
WO2016153291A1 (en) Wafer storage container
WO2023191573A1 (ko) 압력용기용 온도 감응식 안전밸브
WO2014208787A1 (ko) 건설기계의 제어밸브 제어장치 및 제어방법, 유압펌프 토출유량 제어방법
WO2020017817A1 (ko) 스위치 진단 장치 및 방법
WO2019027276A1 (ko) 가스통 밸브 자동 개폐장치 및 그 방법
WO2017155272A1 (ko) 배터리 과충전 방지 장치 및 이를 이용한 배터리 과충전 방지 방법
WO2023140671A1 (ko) 에너지 저장 장치
WO2017179887A1 (ko) 내부압력 조절이 가능한 약액주입장치
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2022124500A1 (ko) 다단 복동 공압 실린더
WO2022240137A1 (ko) 에너지 저장 시스템의 소화 시스템
WO2024058598A1 (ko) 배터리 팩
WO2024101772A1 (ko) 전기차의 배터리 팩에 적용되는 소화시스템
WO2015012548A1 (ko) 수위조절장치 및 이를 포함하는 수처리장치
WO2024010395A1 (ko) 불순물 제거 장치, 이를 포함하는 3차원 프린터 및 이를 활용한 내부 기체 제어 방법
WO2024010361A1 (ko) 배터리 팩, 이를 포함하는 전력저장장치 및 자동차
WO2024010151A1 (ko) 튜브형 차량화재진화장치
WO2023080513A1 (ko) 극저온 유체를 이용한 이동장치 및 제어방법
WO2022211494A1 (en) Device for regulating a through-flow and expanding of a fluid in a fluid circuit
WO2024071693A1 (ko) 기판 승하강모듈, 이를 포함하는 기판처리모듈 및 기판처리시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781424

Country of ref document: EP

Kind code of ref document: A1