WO2023140671A1 - 에너지 저장 장치 - Google Patents

에너지 저장 장치 Download PDF

Info

Publication number
WO2023140671A1
WO2023140671A1 PCT/KR2023/000987 KR2023000987W WO2023140671A1 WO 2023140671 A1 WO2023140671 A1 WO 2023140671A1 KR 2023000987 W KR2023000987 W KR 2023000987W WO 2023140671 A1 WO2023140671 A1 WO 2023140671A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
battery
unit
energy storage
container
Prior art date
Application number
PCT/KR2023/000987
Other languages
English (en)
French (fr)
Inventor
양문석
이지원
이형욱
김요환
김지훈
박홍재
윤성한
이현민
이승준
조태신
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380012450.XA priority Critical patent/CN117693851A/zh
Priority to AU2023209311A priority patent/AU2023209311A1/en
Publication of WO2023140671A1 publication Critical patent/WO2023140671A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller

Definitions

  • the present invention relates to energy storage devices.
  • lithium batteries are in the limelight because of their advantages of free charge and discharge, very low self-discharge rate, and high energy density, as they have almost no memory effect compared to nickel-based batteries.
  • An energy storage device using such a battery may be a device that stores large-scale power and provides the stored power to a plurality of load facilities.
  • energy storage devices are used in the form of industrial, building, or household energy management systems, and are used as a regular power grid and/or an emergency power grid by providing stored power to load facilities at each point of use.
  • Conventional energy storage devices are configured in container units, and one container includes a plurality of battery racks and switchboards. That is, a container of a size capable of containing all configurations of the energy storage device was required.
  • each energy storage device is configured as an independent container, there is a problem in that each container-based energy storage device must be individually controlled.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an energy storage device capable of integrated control and management and having an expandable structure.
  • An energy storage device includes a control container configured to be connected to an external power conversion system (PCS) and an external electrical system; and a battery container including one or more battery racks and configured to be connected to the control container.
  • PCS power conversion system
  • battery container including one or more battery racks and configured to be connected to the control container.
  • the control container may include: a DC unit configured to receive DC power from the PCS through a DC line; an AC unit configured to receive AC power from the electrical system through an AC line; and a main control unit connected to the AC unit to receive power from the electrical system through the AC line and to communicate with the PCS.
  • the DC unit may include a main switch having one end connected to the PCS and configured to be positioned on a DC line between the control container and the battery container; and a fuse connected to the other end of the main switch and configured to be positioned on the DC line.
  • the number of fuses corresponding to the number of containers of the battery may be included in the DC unit.
  • the fuse may be detachable from the DC unit.
  • the DC unit may include an insulation measuring unit connected to the DC line and configured to measure an insulation resistance of the DC line; and a surge protection unit connected to the DC line and configured to prevent a surge current from flowing in the DC line.
  • the AC unit may include a first switch configured to have one end connected to the electric system; an uninterruptible power supply unit having one end connected to the other end of the first switch; a second switch configured to have one end connected to the other end of the uninterruptible power supply unit; and a third switch having one end connected between the electrical system and one end of the first switch and the other end connected to the other end of the second switch.
  • the battery container may be directly connected to the AC unit through the AC line and connected in parallel to the DC line.
  • the main control unit may include a battery system controller (BSC); a master controller communicatively connected to the BSC through a first communication line; and a bank battery management system (BBMS) connected to the BSC to be communicatively connected through a second communication line.
  • BSC battery system controller
  • BBMS bank battery management system
  • the battery container may include one or more battery racks connected to the DC unit and configured to receive the DC power through the DC line; and a sub-controller connected to the AC unit to receive power from the electrical system through the AC line and communicatively connected to the main control unit through the first communication line and the second communication line.
  • the sub-controller may include: a slave controller communicatively connected to the master controller through the first communication line; And configured to monitor information of the corresponding battery rack, it may include a rack battery management system (RBMS) connected to communicate with the BBMS through the second communication line.
  • RBMS rack battery management system
  • the master controller may be configured to be directly connected to each of a plurality of slave controllers included in the plurality of battery containers through the first communication line.
  • the BBMS may be connected in series with a plurality of RBMS included in the plurality of battery containers through the second communication line in a daisy chain manner.
  • the energy storage device is connected to the AC unit, receives power from the electric system through the AC line, is connected to the master controller through a third communication line, and is connected to each of the battery racks through a pipeline. It may further include a watering container configured to be connected.
  • the water injection container may be configured to output an internal digestive fluid to the pipeline when receiving an injection command from the master controller.
  • the battery container may include a sub-switch configured such that one end is connected to the DC line and the other end is connected to the one or more battery racks.
  • an energy storage device capable of integrated management and expansion of a battery container may be provided.
  • FIG. 1 is a diagram schematically illustrating an energy storage device according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating an exemplary configuration of a control container according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating exemplary configurations of a control container and a battery container according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating another exemplary configuration of a control container and a battery container according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating an exemplary configuration of an energy storage device according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating an energy storage device 10 according to an embodiment of the present invention.
  • 2 is a diagram schematically illustrating an exemplary configuration of a control container 100 according to an embodiment of the present invention.
  • An energy storage device 10 includes a control container 100 configured to be connected to an external power conversion system (PCS 20) and an external electrical system 30; And it may include a battery container 200 including one or more battery racks 210 and configured to be connected to the control container 100 .
  • PCS 20 external power conversion system
  • PCS 30 external electrical system 30
  • battery container 200 including one or more battery racks 210 and configured to be connected to the control container 100 .
  • the energy storage device 10 may be expressed as a DC-LINK.
  • the control container 100 may be expressed as E-LINK
  • the battery container 200 may be expressed as B-LINK.
  • a control container 100 may include a DC unit 110 , an AC unit 120 and a main control unit 130 .
  • the DC unit 110 may be configured to receive DC power from the PCS 20 through the DC line (DCL).
  • the DC unit 110 may be electrically connected to the PCS 20 through the DC line (DCL). Also, the DC unit 110 may receive DC power from the PCS 20 through the DC line DCL.
  • the PCS 20 may convert AC current introduced from the electrical system 30 into DC current and output the converted DC current to the DC unit 110 as DC power.
  • the DC unit 110 may be electrically connected to the PCS 20 through a DC line (DCL).
  • DCL DC line
  • the AC unit 120 may be configured to receive AC power from the electrical system 30 through an AC line (ACL).
  • ACL AC line
  • the AC unit 120 may be electrically connected to the electrical system 30 through an AC line (ACL). Also, the AC unit 120 may receive AC power from the electrical system 30 through the AC line ACL. For example, AC power may be applied to components such as heating, ventilation and air conditioning (HAVC), lighting, and fire suppression system (FSS) included in the control container 100 .
  • HAVC heating, ventilation and air conditioning
  • FSS fire suppression system
  • the main control unit 130 may be configured to be connected to the AC unit 120 and receive power from the electric system 30 through an AC line (ACL).
  • the main controller 130 may be connected to the PCS 20 so as to be communicable.
  • the main controller 130 may monitor and control states of the control container 100 and the battery container 200 . Also, the main control unit 130 may be connected to the AC line (ACL) and receive AC power from the electric system 30 . That is, since the control container 100 does not have a separate power supply, the main controller 130 can receive AC power from the AC unit 120 .
  • ACL AC line
  • the main control unit 130 may include a power supply unit 134.
  • the power supply unit 134 is an SMPS and may be a unit that converts alternating current (AC) into direct current (DC).
  • the power supply unit 134 may be directly connected to the AC unit 120 through an AC line (ACL).
  • ACL AC line
  • the power supply unit 134 is connected to an AC line (ACL) and may convert AC power to DC power.
  • the power supply unit 134 may supply the converted DC power to the master controller 132 and the BBMS 133 .
  • the main control unit 130 may be connected to the AC unit 120 through an AC line (ACL). Also, the main control unit 130 may receive AC power from the electrical system 30 through the AC line ACL.
  • ACL AC line
  • the energy storage device 10 may include a control container 100 and a battery container 200, respectively.
  • the energy storage device 10 since the control container 100 and the battery container 200 are independent, the energy storage device 10 has an advantage of being easy to install. For example, since the energy storage device 10 can be configured when only the communication line and the power line of the control container 100 and the battery container 200 are connected, space limitations of the energy storage device 10 can be reduced.
  • the energy storage device 10 has an advantage in that the battery container 200 can be easily expanded. That is, since a plurality of battery containers 200 can be easily connected to one control container 100, the capacity of the energy storage device 10 can be easily expanded.
  • the DC unit 110 may include a main switch 111 and a fuse 112 .
  • the main switch 111 may be configured such that one end is connected to the PCS 20 and positioned on a DC line DCL between the control container 100 and the battery container 200 .
  • the main switch 111 may be located on the DC line (DCL). And, one end of the main switch 111 may be connected to the PCS (20).
  • the main switch 111 is located on the DC line (DCL), and one end of the main switch 111 may be connected to the PCS 20 .
  • the fuse 112 may be connected to the other end of the main switch 111 and positioned on the DC line (DCL).
  • the fuse 112 may be located on the DC line (DCL). Also, one end of the fuse 112 may be connected to the other end of the main switch 111 . That is, the PCS 20, the main switch 111, and the fuse 112 may be connected in series on the DC line (DCL).
  • the fuse 112 is located on the DC line (DCL), and one end of the fuse 112 may be connected to the other end of the main switch 111 .
  • the number of fuses 112 corresponding to the number of containers of the battery may be included in the DC unit 110 .
  • the fuse 112 may be included in the DC unit 110 to block short circuit current when a short circuit accident occurs.
  • the capacity of the fuse 112 is set in advance, if the battery container 200 is additionally connected to the control container 100, the short-circuit current of the energy storage device 10 cannot be blocked with only the previously installed fuse 112. There is a problem.
  • the number of fuses 112 corresponding to the number of battery containers 200 may be included in the DC unit 110 .
  • the fuse 112 may be detachable from the DC unit 110 . That is, the fuses 112 may be detachable from the DC unit 110 so that the number of fuses 112 corresponding to the number of battery containers 200 connected to the control container 100 may be included in the DC unit 110.
  • the plurality of fuses 112 when the plurality of fuses 112 are included in the DC unit 110, the plurality of fuses 112 may be connected in parallel. That is, as the plurality of fuses 112 are connected in parallel, the amount of short-circuit current that can be interrupted can be increased.
  • the DC unit 110 may further include an insulation measurement unit 113 and a surge protection unit 114 .
  • the insulation measuring unit 113 may be connected to the DC line (DCL) and configured to measure the insulation resistance of the DC line (DCL). Also, the surge protection unit 114 may be connected to the DC line DCL and prevent a surge current from flowing in the DC line DCL.
  • the insulation measuring unit 113 and the surge protection unit 114 may be connected to the DC line (DCL) between the PCS 20 and the main switch 111 .
  • the insulation measurement unit 113 may monitor the ground fault of the DC line (DCL) and detect the insulation resistance of the battery rack 210 included in the battery container 200 .
  • the insulation measurement unit 113 may be an Insulation monitoring device (IMD).
  • the surge protection unit 114 may protect the control container 100 and the battery container 200 from surge current caused by lightning.
  • the surge protection unit 114 may be a surge protect device (SPD).
  • the AC unit 120 may include a first switch 121, an uninterruptible power supply unit 122, a second switch 123, and a third switch 124.
  • One end of the first switch 121 may be configured to be connected to the electrical system 30 .
  • the first switch 121 may be located on the AC line ACL. Also, one end of the first switch 121 may be connected to the electrical system 30 .
  • One end of the uninterruptible power supply unit 122 may be configured to be connected to the other end of the first switch 121 .
  • the uninterruptible power supply unit 122 may be an uninterruptible power supply system (UPS).
  • UPS uninterruptible power supply system
  • the uninterruptible power supply unit 122 may be located on an AC line (ACL). One end of the uninterruptible power supply unit 122 may be connected to the other end of the first switch 121 .
  • the second switch 123 may be configured so that one end is connected to the other end of the uninterruptible power supply unit 122 .
  • the second switch 123 may be located on the AC line ACL. And, one end of the second switch 123 may be connected to the other end of the uninterruptible power supply unit 122 . That is, the first switch 121, the uninterruptible power supply unit 122, and the second switch 123 may be connected in series on the AC line ACL.
  • the third switch 124 may be configured such that one end is connected between the electrical system 30 and one end of the first switch 121 and the other end is connected to the other end of the second switch 123 .
  • the third switch 124 may be connected in parallel with the first switch 121 , the uninterruptible power supply unit 122 and the second switch 123 .
  • one end of the third switch 124 may be connected to an AC line (ACL) between the electric system 30 and one end of the first switch 121 .
  • the other end of the third switch 124 may be connected to the AC line ACL connected to the other end of the second switch 123 .
  • the main controller 130 may include a BSC 131 (Battery system controller), a master controller 132, and a BBMS 133 (Bank battery management system).
  • BSC 131 Battery system controller
  • master controller 132 Master controller
  • BBMS 133 Bank battery management system
  • the BSC 131 is a top-level controller and may be connected to the master controller 132 and the BBMS 133 so as to be communicable.
  • the BSC 131 may be configured to be connected to the PCS 20 through the first communication line CL1.
  • the first communication line CL1 may be a communication line applied to the first communication protocol.
  • the first communication line CL1 may be a communication line for Modbus TCP/IP communication.
  • the master controller 132 may be communicatively connected to the BSC 131 through the first communication line CL1.
  • the master controller 132 is a programmable logic controller (PLC) included in the E-LINK and may be expressed as an E-PLC. That is, the master controller 132 may be connected to components such as HVAC, uninterruptible power supply unit 122, door sensor, fuse 112, switch, switching mode power supply (SMPS), FSS, surge protection unit 114, and insulation measurement unit 113 included in the control container 100 to control these components. And, the master controller 132 may transmit the control container 100 information obtained from these configurations to the BSC 131 through the first communication line CL1. That is, the BSC 131 may receive control container 100 information acquired by the master controller 132 through the first communication line CL1. Also, the BSC 131 may control the master controller 132 to control each component included in the control container 100 based on the control container 100 information.
  • PLC programmable logic controller
  • the master controller 132 may be communicatively connected to the BSC 131 through the first communication line CL1. That is, the PCS 20, the BSC 131, and the master controller 132 may be connected to each other through the first communication line CL1.
  • the BBMS 133 may be communicatively connected to the BSC 131 through the second communication line CL2.
  • the second communication line CL2 may be a communication line applied to the second communication protocol.
  • the second communication line CL2 may be a communication line for controller area network (CAN) communication.
  • CAN controller area network
  • the BBMS 133 may be communicatively connected to the BSC 131 through the second communication line CL2. That is, the BSC 131 may be connected to the master controller 132 and the BBMS 133 through different communication lines. Accordingly, even if a defect occurs in one communication line, the BSC 131 can continue communication through the remaining communication lines.
  • FIG. 3 is a diagram schematically illustrating exemplary configurations of a control container 100 and a battery container 200 according to an embodiment of the present invention.
  • the battery container 200 may include one or more battery racks 210 and a sub control unit 220 .
  • One or more battery racks 210 are connected to the DC unit 110 and may be configured to receive DC power through a DC line (DCL).
  • DCL DC line
  • one or more battery racks 210 may be included in the battery container 200 . And, each battery rack 210 may include one or more battery modules. And, each battery rack 210 may be connected to the DC line (DCL). That is, each battery module included in each battery rack 210 may receive DC power through a DC line (DCL). For example, in the process of charging the battery rack 210, each battery module included in the corresponding battery rack 210 may be supplied with DC power through the DC line (DCL).
  • DCL DC line
  • the battery rack 210 may be connected in parallel to the DC line (DCL). Since the fuse 112 is connected to the DC line DCL, short-circuit current can be blocked. In addition, the ground fault and insulation of the DC line (DCL) are diagnosed by the insulation measurement unit 113, and the surge current can be prevented from flowing by the surge protection unit 114. Thus, the battery module included in the battery rack 210 by the DC unit 110 can be safely protected.
  • DCL DC line
  • the sub control unit 220 is connected to the AC unit 120, receives power from the electric system 30 through the AC line ACL, and connects to the main control unit 130 through the first communication line CL1 and the second communication line CL2.
  • the sub controller 220 may monitor and control the state of the battery container 200 . Also, the sub controller 220 may be connected to the AC line (ACL) and receive AC power from the electrical system 30 . That is, since the battery container 200 does not have a separate power supply, the sub controller 220 can receive AC power from the AC unit 120 .
  • ACL AC line
  • the sub controller 220 may be connected to the AC unit 120 through an AC line (ACL). Also, the sub controller 220 may receive AC power from the electrical system 30 through the AC line ACL.
  • the main controller 130 and the sub controller 220 may be connected in parallel to the AC unit 120 .
  • the sub controller 220 may be communicatively connected to the main controller 130 through the first communication line CL1 and the second communication line CL2.
  • control container 100 and the battery container 200 are electrically connected through the DC line (DCL) and the AC line (ACL), and are communicatively connected through the first communication line (CL1) and the second communication line (CL2).
  • the energy storage device 10 may easily expand the battery container 200 . That is, based on the connection to the DC line (DCL), the AC line (ACL), the first communication line (CL1), and the second communication line (CL2), the plurality of battery containers 200 can be connected to the control container 100. Therefore, according to an embodiment of the present invention, there is an advantage in that capacity expansion of the energy storage device 10 is easy.
  • the sub controller 220 may include a slave controller 221 and a rack battery management system (RBMS) 222.
  • RBMS rack battery management system
  • the slave controller 221 may be communicatively connected to the master controller 132 through the first communication line CL1.
  • the slave controller 221 is a PLC included in the B-LINK and may be expressed as a B-PLC. That is, the slave controller 221 is connected to the HVAC included in the battery container 200, the uninterruptible power supply unit 122, the door sensor, the gas sensor, the smoke sensor, the switch, the SMPS, the damper, the fan, and the FSS to control these configurations. And, the slave controller 221 may transmit the battery container 200 information obtained from these configurations to the master controller 132 through the first communication line CL1. Also, the BSC 131 may receive the battery container 200 information acquired by the master controller 132 through the first communication line CL1. That is, the BSC 131, the master controller 132, and the slave controller 221 may be connected to each other through the first communication line CL1. Also, the BSC 131 may control the slave controller 221 to control each component included in the battery container 200 based on the battery container 200 information.
  • the slave controller 221 may be communicatively connected to the master controller 132 through the first communication line CL1 . That is, the BSC 131, the master controller 132, and the slave controller 221 may be connected to each other through the first communication line CL1.
  • RBMS (222) is configured to monitor the information of the corresponding battery rack 210, may be connected to communicatively with the BBMS (133) through the second communication line (CL2).
  • one or more battery racks 210 may be included in the battery container 200 .
  • each battery rack 210 may include one or more battery modules.
  • the state of the battery module may be monitored by a module battery management system (MBMS).
  • MBMS module battery management system
  • one or more MBMSs may be connected to the corresponding RBMS 222 through the second communication line CL2. That is, the RBMS (222) may monitor the state of the battery rack 210 and the state of the battery module included in the battery rack (210).
  • the RBMS 222 may be connected to the BBMS 133. That is, the BBMS 133 included in the control container 100 may be connected to the RBMS 222 included in the battery container 200 using the second communication line CL2 . Then, the BBMS (133) may receive information on the corresponding battery rack (210) from one or more RBMS (222) included in the battery container (200).
  • the battery container 200 may include two RBMSs 222 .
  • the RBMS 222 may be connected to the BBMS 133 through the second communication line CL2.
  • the RBMS 222 may be connected to the RBMS 222 through the second communication line CL2. That is, the BSC 131 and the BBMS 133 included in the control container 100 may be communicatively connected to the RBMS 222 included in the battery container 200 through the second communication line CL2.
  • the energy storage device 10 may include a first communication line CL1 connecting the BSC 131, the master controller 132, and the slave controller 221, and a second communication line CL2 connecting the BSC 131, the BBMS 133, and the RBMS 222, respectively. Therefore, even if a defect occurs in one communication line, communication can continue through the other communication lines.
  • the BBMS 133 may receive the information of the battery rack 210 normally from the RBMS 222 through the second communication line CL2. Therefore, the energy storage device 10 has an advantage of establishing independent communication paths through different communication lines in consideration of communication targets and communication purposes. Therefore, stable communication can be performed in the energy storage device 10 .
  • the battery container 200 may further include a sub switch 230 .
  • the sub-switch 230 may be configured such that one end is connected to the DC line (DCL) and the other end is connected to one or more battery racks (210).
  • the slave controller 221 may be configured to control the operating state of the sub switch 230 . Specifically, the slave controller 221 may block the connection between the DC line (DCL) and the battery rack 210 by controlling the operating state of the sub switch 230 to a turn-off state when necessary. For example, when the door of the battery container 200 is open or a fire occurs in the battery container 200, the slave controller 221 may control the operating state of the sub switch 230 to be turned off.
  • DCL DC line
  • the master controller 132 can control the operating state of the main switch 111 to a turn-off state.
  • the slave controller 221 may control the operating state of the sub switch 230 to be turned off. In this case, as the operating states of the main switch 111 and the sub switch 230 are all controlled to a turn-off state, the electrical connection between the DC line (DCL) and the battery rack 210 can be completely cut off.
  • the master controller 132 may control the operating state of the main switch 111 to be turned on. Also, the slave controller 221 included in the target battery container 200 may control the operating state of the corresponding sub switch 230 to be turned off. In this case, DC power may be supplied to the battery containers 200 other than the target battery container 200 .
  • the energy storage device 10 has the advantage of being able to control the electrical connection between the battery container 200 and the DC line (DCL) through the main switch 111 and the sub switch 230.
  • the electrical connection between each battery container 200 and the DC line DCL can be controlled, maintenance and expansion of the battery container 200 is easy.
  • FIG. 4 is a diagram schematically illustrating another exemplary configuration of a control container 100 and a battery container 200 according to an embodiment of the present invention.
  • the battery container 200 may be directly connected to the AC unit 120 through an AC line (ACL) and connected in parallel to a DC line (DCL).
  • ACL AC line
  • DCL DC line
  • the sub controller 220 of the battery container 200 may include a power supply unit 223 .
  • the power supply unit 223 may be an SMPS.
  • the power supply unit 223 may be directly connected to the AC unit 120 through an AC line (ACL).
  • ACL AC line
  • the plurality of battery containers 200 may be directly connected to the AC unit 120 through an AC line ACL.
  • the power supply unit 223 may convert AC power to DC power and supply the converted DC power to the slave controller 221 and the RBMS 222 .
  • the sub switch 230 of the battery container 200 is connected to the DC line (DCL), the other end of the sub switch 230 may be connected to the battery rack (210). That is, the plurality of battery containers 200 may be connected in parallel to the DC line DCL. For example, in the embodiment of FIG. 4 , the plurality of battery containers 200 may be connected in parallel to the DC line DCL through the sub switch 230 .
  • the master controller 132 may be configured to be directly connected to each of the plurality of slave controllers 221 included in the plurality of battery containers 200 through the first communication line CL1.
  • the master controller 132 may be configured to be directly connected to each of the plurality of slave controllers 221 through the first communication line CL1.
  • the master controller 132 may be configured to be directly connected to each of the plurality of slave controllers 221 through the first communication line CL1 in a home run manner.
  • the master controller 132 may be directly connected to the slave controller 221 included in the battery container 200 through the first communication line CL1. Also, the master controller 132 may be directly connected to the slave controller 221 included in the battery container 200 through the first communication line CL1. That is, the communication structure between the master controller 132 and the slave controller 221 may not affect the communication structure between the master controller 132 and the slave controller 221 .
  • the BBMS 133 may be serially connected to each other in a daisy chain manner with the plurality of RBMSs 222 included in the plurality of battery containers 200 through the second communication line CL2.
  • the BBMS 133 may be configured to be serially connected to a plurality of RBMS 222 through the second communication line CL2.
  • the BBMS 133 may be configured to be connected in series with a plurality of RBMS 222 through the second communication line CL2 in a daisy chain manner.
  • the BSC 131 , the BBMS 133 , and the RBMS 222 may be connected in a daisy chain manner through the second communication line CL2 .
  • the energy storage device 10 provides independence to the communication path along the first communication line CL1 and the communication path along the second communication line CL2, thereby improving the stability of each communication path.
  • FIG. 5 is a diagram schematically illustrating an exemplary configuration of an energy storage device 10 according to an embodiment of the present invention.
  • the energy storage device 10 may further include a water filling container 300 .
  • the water injection container 300 may include a water injection device capable of outputting extinguishing liquid to the battery container 200 when a fire occurs in the battery container 200 .
  • the water injection container 300 may be expressed as a water injection unit (WIU).
  • the watering container 300 may be configured to be connected to the AC unit 120 and receive power from the electric system 30 through an AC line (ACL).
  • ACL AC line
  • the water filling container 300 may be electrically connected to the AC unit 120 through an AC line ACL. Also, the water filling container 300 may be supplied with AC power through the AC line (ACL).
  • ACL AC line
  • the watering container 300 may be configured to be connected to the master controller 132 through the third communication line CL3.
  • the watering container 300 may include a control unit and a watering unit.
  • the control unit may control the watering unit to output digestive fluid.
  • Watering container 300 may be configured to be connected to each of the battery racks 210 through the pipeline (PL). In addition, the water injection container 300 may be configured to output the internal digestive fluid to the pipeline PL when receiving an injection command from the master controller 132 .
  • the injection unit may be connected to the RBMS 222 included in the battery container 200 through the pipeline PL.
  • the water injection unit may be connected to each battery module included in the RBMS 222 through a pipeline PL.
  • a breakable bulb may be provided in the pipeline PL.
  • the bulb may be configured to be damaged according to the temperature of the connected battery rack 210 or battery module.
  • the control unit may receive a watering command.
  • the control unit may control the water injection unit so that the water injection unit outputs the digestive fluid to the pipeline PL.
  • the extinguishing liquid may flow into the battery module through the pipeline (PL).
  • the master controller 132 may be communicatively connected to the water injection container 300 through the third communication line CL3.
  • the third communication line CL3 may be a communication line applied to the third communication protocol.
  • the third communication line CL3 may be a communication line for Modbus RTU communication.
  • the energy storage device 10 establishes an independent communication path using each of the first communication line CL1, the second communication line CL2, and the third communication line CL3, thereby securing communication stability for each communication path.

Abstract

본 발명의 일 실시예에 따른 에너지 저장 장치는 외부의 PCS(Power conversion system) 및 외부의 전기 계통과 연결되도록 구성된 제어 컨테이너; 및 하나 이상의 배터리 랙을 포함하고 상기 제어 컨테이너와 연결되도록 구성된 배터리 컨테이너를 포함한다.

Description

에너지 저장 장치
본 출원은 2022년 01월 19일 자로 출원된 한국 특허 출원번호 제10-2022-0008140에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 에너지 저장 장치에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 배터리가 이용되는 에너지 저장 장치는 대규모의 전력을 저장하고, 복수의 부하 설비에 저장된 전력을 제공하는 장치일 수 있다. 예컨대, 에너지 저장 장치는 산업용, 빌딩용 또는 가정용 에너지 관리 시스템과 같은 형태로 사용되고 있으며, 각각의 사용처에서 저장된 전력을 부하 설비에 제공하여 상시 전력망 및/또는 비상 전력망으로 이용되고 있다.
종래의 에너지 저장 장치는 컨테이너 단위로 구성되고, 하나의 컨테이너에는 복수의 배터리 랙과 배전반 등이 모두 포함되었다. 즉, 에너지 저장 장치의 모든 구성을 포함할 수 있는 크기의 컨테이너가 요구되었다.
또한, 복수의 에너지 저장 장치가 구비되는 경우, 각각의 에너지 저장 장치는 독립된 컨테이너로 구성되기 때문에, 컨테이너 단위의 에너지 저장 장치를 각각 제어해야 하는 문제가 있었다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 통합 제어 관리가 가능하고, 확장 가능한 구조의 에너지 저장 장치를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 에너지 저장 장치는 외부의 PCS(Power conversion system) 및 외부의 전기 계통과 연결되도록 구성된 제어 컨테이너; 및 하나 이상의 배터리 랙을 포함하고 상기 제어 컨테이너와 연결되도록 구성된 배터리 컨테이너를 포함하는 에너지 저장 장치일 수 있다.
상기 제어 컨테이너는, DC 라인을 통해 상기 PCS로부터 DC 전원을 공급받도록 구성된 DC부; AC 라인을 통해 상기 전기 계통으로부터 AC 전원을 공급받도록 구성된 AC부; 및 상기 AC부와 연결되어 상기 AC 라인을 통해 상기 전기 계통으로부터 전원을 공급받고, 상기 PCS와 통신 가능하도록 연결된 메인 제어부를 포함할 수 있다.
상기 DC부는, 일단이 상기 PCS에 연결되고, 상기 제어 컨테이너와 상기 배터리 컨테이너 사이의 DC 라인에 위치하도록 구성된 메인 스위치; 및 상기 메인 스위치의 타단에 연결되고, 상기 DC 라인에 위치하도록 구성된 퓨즈를 더 포함할 수 있다.
상기 퓨즈는, 상기 배터리의 컨테이너의 개수에 대응되는 개수가 상기 DC부에 포함될 수 있다.
상기 퓨즈는, 상기 DC부에 탈착 가능하도록 구성될 수 있다.
상기 DC부는, 상기 DC 라인에 연결되고, 상기 DC 라인의 절연 저항을 측정하도록 구성된 절연 측정 유닛; 및 상기 DC 라인에 연결되고, 상기 DC 라인에 서지 전류가 흐르는 것을 방지하도록 구성된 서지 보호 유닛을 더 포함할 수 있다.
상기 AC부는, 일단이 상기 전기 계통에 연결되도록 구성된 제1 스위치; 일단이 상기 제1 스위치의 타단에 연결되도록 구성된 무정전 전원 유닛; 일단이 상기 무정전 전원 유닛의 타단에 연결되도록 구성된 제2 스위치; 및 일단이 상기 전기 계통과 상기 제1 스위치의 일단 사이에 연결되고, 타단이 상기 제2 스위치의 타단에 연결되도록 구성된 제3 스위치를 포함할 수 있다.
상기 배터리 컨테이너는, 상기 AC 라인을 통해 상기 AC부와 직접 연결되고, 상기 DC 라인에 병렬로 연결되도록 구성될 수 있다.
상기 메인 제어부는, BSC(Battery system controller); 상기 BSC와 제1 통신 라인을 통해 통신 가능하도록 연결된 마스터 컨트롤러; 및 상기 BSC와 제2 통신 라인을 통해 통신 가능하도록 연결된 BBMS(Bank battery management system)를 포함할 수 있다.
상기 배터리 컨테이너는, 상기 DC부와 연결되어 상기 DC 라인을 통해 상기 DC 전원을 공급받도록 구성된 하나 이상의 배터리 랙; 및 상기 AC부와 연결되어 상기 AC 라인을 통해 상기 전기 계통으로부터 전원을 공급받고, 상기 제1 통신 라인 및 상기 제2 통신 라인을 통해 상기 메인 제어부와 통신 가능하도록 연결된 서브 제어부를 포함할 수 있다.
상기 서브 제어부는, 상기 제1 통신 라인을 통해 상기 마스터 컨트롤러와 통신 가능하도록 연결된 슬레이브 컨트롤러; 및 대응되는 배터리 랙의 정보를 모니터링하도록 구성되고, 상기 제2 통신 라인을 통해 상기 BBMS와 통신 가능하도록 연결된 RBMS(Rack battery management system)를 포함할 수 있다.
상기 마스터 컨트롤러는, 상기 배터리 컨테이너가 복수 구비된 경우, 상기 제1 통신 라인을 통해 복수의 배터리 컨테이너에 포함된 복수의 슬레이브 컨트롤러 각각과 직접 연결되도록 구성될 수 있다.
상기 BBMS는, 상기 배터리 컨테이너가 복수인 경우, 상기 제2 통신 라인을 통해 복수의 배터리 컨테이너에 포함된 복수의 RBMS와 데이지 체인 방식으로 서로 직렬로 연결되도록 구성될 수 있다.
본 발명의 다른 측면에 따른 에너지 저장 장치는 상기 AC부와 연결되어 상기 AC 라인을 통해 상기 전기 계통으로부터 전원을 공급받고, 제3 통신 라인을 통해 상기 마스터 컨트롤러와 연결되며, 파이프 라인을 통해 상기 배터리 랙 각각과 연결되도록 구성된 주수 컨테이너를 더 포함할 수 있다.
상기 주수 컨테이너는, 상기 마스터 컨트롤러로부터 주수 명령을 수신하면, 내부의 소화액을 상기 파이프 라인으로 출력하도록 구성될 수 있다.
상기 배터리 컨테이너는, 일단이 상기 DC 라인에 연결되고, 타단이 상기 하나 이상의 배터리 랙에 연결되도록 구성된 서브 스위치를 포함할 수 있다.
본 발명의 일 측면에 따르면, 배터리 컨테이너에 대한 통합 관리 및 확장이 용이한 에너지 저장 장치가 제공될 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 에너지 저장 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 제어 컨테이너의 예시적 구성을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 제어 컨테이너 및 배터리 컨테이너의 예시적 구성을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 제어 컨테이너 및 배터리 컨테이너의 다른 예시적 구성을 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 에너지 저장 장치의 예시적 구성을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 에너지 저장 장치(10)를 개략적으로 도시한 도면이다. 도 2는 본 발명의 일 실시예에 따른 제어 컨테이너(100)의 예시적 구성을 개략적으로 도시한 도면이다.
본 발명의 일 실시예에 따른 에너지 저장 장치(10)는 외부의 PCS(20)(Power conversion system) 및 외부의 전기 계통(30)과 연결되도록 구성된 제어 컨테이너(100); 및 하나 이상의 배터리 랙(210)을 포함하고 제어 컨테이너(100)와 연결되도록 구성된 배터리 컨테이너(200)를 포함할 수 있다.
예컨대, 에너지 저장 장치(10)는 DC-LINK라고 표현될 수 있다. 그리고, 제어 컨테이너(100)는 E-LINK라고 표현될 수 있으며, 배터리 컨테이너(200)는 B-LINK라고 표현될 수 있다.
도 1을 참조하면, 제어 컨테이너(100)는 DC부(110), AC부(120) 및 메인 제어부(130)를 포함할 수 있다.
DC부(110)는 DC 라인(DCL)을 통해 PCS(20)로부터 DC 전원을 공급받도록 구성될 수 있다.
구체적으로, DC부(110)는 DC 라인(DCL)을 통해서 PCS(20)와 전기적으로 연결될 수 있다. 그리고, DC부(110)는 DC 라인(DCL)을 통해서 PCS(20)로부터 DC 전원을 공급받을 수 있다. 예컨대, PCS(20)는 전기 계통(30)으로부터 유입되는 교류 전류를 직류 전류로 변환하고, 변환된 직류 전류를 DC 전원으로 DC부(110)에 출력할 수 있다.
예컨대, 도 2의 실시예에서, DC부(110)는 DC 라인(DCL)을 통해서 PCS(20)와 전기적으로 연결될 수 있다.
AC부(120)는 AC 라인(ACL)을 통해 전기 계통(30)으로부터 AC 전원을 공급받도록 구성될 수 있다.
구체적으로, AC부(120)는 AC 라인(ACL)을 통해서 전기 계통(30)과 전기적으로 연결될 수 있다. 그리고, AC부(120)는 AC 라인(ACL)을 통해서 전기 계통(30)으로부터 AC 전원을 공급받을 수 있다. 예컨대, AC 전원은 제어 컨테이너(100) 포함된 HAVC(Heating, ventilation and air conditioning), 조명 및 FSS(Fire suppression system) 등의 구성들에 인가될 수 있다.
메인 제어부(130)는 AC부(120)와 연결되어 AC 라인(ACL)을 통해 전기 계통(30)으로부터 전원을 공급받도록 구성될 수 있다. 또한, 메인 제어부(130)는 PCS(20)와 통신 가능하도록 연결될 수 있다.
구체적으로, 메인 제어부(130)는 제어 컨테이너(100) 및 배터리 컨테이너(200)의 상태를 모니터링 및 제어할 수 있다. 그리고, 메인 제어부(130)는 AC 라인(ACL)에 연결되고, 전기 계통(30)으로부터 AC 전원을 공급받을 수 있다. 즉, 제어 컨테이너(100)에는 별도의 전원 장치가 없기 때문에, 메인 제어부(130)는 AC부(120)로부터 AC 전원을 공급받을 수 있다.
바람직하게, 메인 제어부(130)는 전원 공급 유닛(134)을 포함할 수 있다. 여기서, 전원 공급 유닛(134)은 SMPS로서, AC(Alternating current)를 DC(Direct current)로 변환하는 유닛일 수 있다. 전원 공급 유닛(134)은 AC 라인(ACL)을 통해서 AC부(120)와 직접 연결될 수 있다. 예컨대, 도 2의 실시예에서, 전원 공급 유닛(134)은 AC 라인(ACL)과 연결되고, AC 전원을 DC 전원으로 변환할 수 있다. 그리고, 전원 공급 유닛(134)은 변환한 DC 전원을 마스터 컨트롤러(132) 및 BBMS(133)에 공급할 수 있다.
예컨대, 도 2의 실시예에서, 메인 제어부(130)는 AC부(120)와 AC 라인(ACL)을 통해 연결될 수 있다. 그리고, 메인 제어부(130)는 AC 라인(ACL)을 통해서 전기 계통(30)으로부터 AC 전원을 공급받을 수 있다.
본 발명의 일 실시예에 따른 에너지 저장 장치(10)는 제어 컨테이너(100)와 배터리 컨테이너(200)를 각각 포함할 수 있다.
따라서, 제어 컨테이너(100)와 배터리 컨테이너(200)가 독립되어 있기 때문에, 에너지 저장 장치(10)는 설치가 용이한 장점이 있다. 예컨대, 제어 컨테이너(100)와 배터리 컨테이너(200)의 통신 라인 및 전력 라인만 연결되면 에너지 저장 장치(10)가 구성될 수 있기 때문에, 에너지 저장 장치(10)의 공간적 제약이 줄어들 수 있따.
또한, 에너지 저장 장치(10)는 배터리 컨테이너(200)의 확장이 용이한 장점이 있다. 즉, 하나의 제어 컨테이너(100)에 복수의 배터리 컨테이너(200)를 용이하게 연결할 수 있기 때문에, 에너지 저장 장치(10)의 용량 확장이 용이한 장점이 있다.
도 2를 참조하면, DC부(110)는 메인 스위치(111) 및 퓨즈(112)를 포함할 수 있다.
메인 스위치(111)는 일단이 PCS(20)에 연결되고, 제어 컨테이너(100)와 배터리 컨테이너(200) 사이의 DC 라인(DCL)에 위치하도록 구성될 수 있다.
구체적으로, 메인 스위치(111)는 DC 라인(DCL) 상에 위치할 수 있다. 그리고, 메인 스위치(111)의 일단은 PCS(20)와 연결될 수 있다.
예컨대, 도 2의 실시예에서, 메인 스위치(111)는 DC 라인(DCL)에 위치하고, 메인 스위치(111)의 일단은 PCS(20)에 연결될 수 있다.
퓨즈(112)는 메인 스위치(111)의 타단에 연결되고, DC 라인(DCL)에 위치하도록 구성될 수 있다.
구체적으로, 퓨즈(112)는 DC 라인(DCL) 상에 위치할 수 있다. 그리고, 퓨즈(112)의 일단은 메인 스위치(111)의 타단에 연결될 수 있다. 즉, PCS(20), 메인 스위치(111) 및 퓨즈(112)는 DC 라인(DCL) 상에서 직렬로 연결될 수 있다.
예컨대, 도 2의 실시예에서, 퓨즈(112)는 DC 라인(DCL)에 위치하고, 퓨즈(112)의 일단은 메인 스위치(111)의 타단에 연결될 수 있다.
한편, 퓨즈(112)는 배터리의 컨테이너의 개수에 대응되는 개수가 DC부(110)에 포함될 수 있다.
예컨대, 퓨즈(112)는, 단락 사고가 발생된 경우, 단락 전류를 차단하기 위하여 DC부(110)에 포함될 수 있다. 다만, 퓨즈(112)의 용량은 미리 설정되어 있기 때문에, 제어 컨테이너(100)에 배터리 컨테이너(200)가 추가로 연결된다면, 미리 설치된 퓨즈(112)만으로는 에너지 저장 장치(10)의 단락 전류를 차단할 수 없는 문제가 있다.
따라서, 단락 전류를 효과적으로 차단하기 위하여, 퓨즈(112)는 배터리 컨테이너(200)의 개수에 대응되는 개수가 DC부(110)에 포함될 수 있다. 이를 위해, 퓨즈(112)는 DC부(110)에 탈착 가능하도록 구성될 수 있다. 즉, 제어 컨테이너(100)에 연결된 배터리 컨테이너(200)의 개수에 대응되는 개수의 퓨즈(112)가 DC부(110)에 포함될 수 있도록, 퓨즈(112)는 DC부(110)에서 탈착 가능하도록 구성될 수 있다.
그리고, DC부(110)에 복수의 퓨즈(112)가 포함되는 경우, 복수의 퓨즈(112)는 병렬로 연결될 수 있다. 즉, 복수의 퓨즈(112)가 병렬로 연결됨으로써, 차단할 수 있는 단락 전류량이 증가될 수 있다.
도 2를 참조하면, DC부(110)는 절연 측정 유닛(113) 및 서지 보호 유닛(114)을 더 포함할 수 있다.
절연 측정 유닛(113)은 DC 라인(DCL)에 연결되고, DC 라인(DCL)의 절연 저항을 측정하도록 구성될 수 있다. 그리고, 서지 보호 유닛(114)은 DC 라인(DCL)에 연결되고, DC 라인(DCL)에 서지 전류가 흐르는 것을 방지하도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, PCS(20)와 메인 스위치(111) 사이의 DC 라인(DCL)에 절연 측정 유닛(113)과 서지 보호 유닛(114)이 연결될 수 있다.
절연 측정 유닛(113)은 DC 라인(DCL)의 지락을 감시하고, 배터리 컨테이너(200)에 포함된 배터리 랙(210)의 절연 저항을 감지할 수 있다. 예컨대, 절연 측정 유닛(113)은 IMD(Insulation monitoring device)일 수 있다.
서지 보호 유닛(114)은 낙뢰에 의한 서지 전류로부터 제어 컨테이너(100) 및 배터리 컨테이너(200)를 보호할 수 있다. 예컨대, 서지 보호 유닛(114)은 SPD(Surge protect device)일 수 있다.
도 2를 참조하면, 도 AC부(120)는 제1 스위치(121), 무정전 전원 유닛(122), 제2 스위치(123) 및 제3 스위치(124)를 포함할 수 있다.
제1 스위치(121)는 일단이 전기 계통(30)에 연결되도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, 제1 스위치(121)는 AC 라인(ACL) 상에 위치할 수 있다. 그리고, 제1 스위치(121)의 일단은 전기 계통(30)에 연결될 수 있다.
무정전 전원 유닛(122)은 일단이 제1 스위치(121)의 타단에 연결되도록 구성될 수 있다.
구체적으로, 무정전 전원 유닛(122)은 UPS(Uninterruptible power supply system)일 수 있다.
예컨대, 도 2의 실시예에서, 무정전 전원 유닛(122)은 AC 라인(ACL) 상에 위치할 수 있다. 무정전 전원 유닛(122)의 일단은 제1 스위치(121)의 타단에 연결될 수 있다.
제2 스위치(123)는 일단이 무정전 전원 유닛(122)의 타단에 연결되도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, 제2 스위치(123)는 AC 라인(ACL) 상에 위치할 수 있다. 그리고, 제2 스위치(123)의 일단은 무정전 전원 유닛(122)의 타단에 연결될 수 있다. 즉, 제1 스위치(121), 무정전 전원 유닛(122) 및 제2 스위치(123)는 AC 라인(ACL) 상에서 직렬로 연결될 수 있다.
제3 스위치(124)는 일단이 전기 계통(30)과 제1 스위치(121)의 일단 사이에 연결되고, 타단이 제2 스위치(123)의 타단에 연결되도록 구성될 수 있다.
예컨대, 도 2의 실시예에서, 제3 스위치(124)는 제1 스위치(121), 무정전 전원 유닛(122) 및 제2 스위치(123)와 병렬로 연결될 수 있다. 구체적으로, 제3 스위치(124)의 일단은 전기 계통(30)과 제1 스위치(121)의 일단 사이의 AC 라인(ACL)에 연결될 수 있다. 그리고, 제3 스위치(124)의 타단은 제2 스위치(123)의 타단에 연결된 AC 라인(ACL)에 연결될 수 있다.
메인 제어부(130)는 BSC(131)(Battery system controller), 마스터 컨트롤러(132) 및 BBMS(133)(Bank battery management system)를 포함할 수 있다.
BSC(131)는 최상위 제어기로서, 마스터 컨트롤러(132) 및 BBMS(133)와 통신 가능하도록 연결될 수 있다.
또한, BSC(131)는 제1 통신 라인(CL1)을 통해 PCS(20)와 연결되도록 구성될 수 있다. 예컨대, 제1 통신 라인(CL1)은 제1 통신 프로토콜에 적용되는 통신 라인일 수 있다. 구체적인 예로, 제1 통신 라인(CL1)은 Modbus TCP/IP 통신을 위한 통신 라인일 수 있다.
마스터 컨트롤러(132)는 BSC(131)와 제1 통신 라인(CL1)을 통해 통신 가능하도록 연결될 수 있다.
여기서, 마스터 컨트롤러(132)는 E-LINK에 포함된 PLC(Programmable logic controller)로서, E-PLC라고 표현될 수 있다. 즉, 마스터 컨트롤러(132)는 제어 컨테이너(100)에 포함된 HVAC, 무정전 전원 유닛(122), 도어 센서(Door sensor), 퓨즈(112), 스위치(Switch), SMPS(Switching mode power supply), FSS, 서지 보호 유닛(114) 및 절연 측정 유닛(113) 등의 구성들과 연결되어, 이들 구성들을 제어할 수 있다. 그리고, 마스터 컨트롤러(132)는 이들 구성들로부터 획득한 제어 컨테이너(100) 정보를 제1 통신 라인(CL1)을 통해 BSC(131)로 송신할 수 있다. 즉, BSC(131)는 마스터 컨트롤러(132)가 획득한 제어 컨테이너(100) 정보를 제1 통신 라인(CL1)을 통해 수신할 수 있다. 그리고, BSC(131)는 제어 컨테이너(100) 정보를 토대로 제어 컨테이너(100)에 포함된 각각의 구성을 제어하도록 마스터 컨트롤러(132)를 제어할 수 있다.
예컨대, 도 2의 실시예에서, 마스터 컨트롤러(132)는 제1 통신 라인(CL1)을 통해 BSC(131)와 통신 가능하도록 연결될 수 있다. 즉, PCS(20), BSC(131) 및 마스터 컨트롤러(132)는 제1 통신 라인(CL1)을 통해 서로 연결될 수 있다.
BBMS(133)는 BSC(131)와 제2 통신 라인(CL2)을 통해 통신 가능하도록 연결될 수 있다.
예컨대, 제2 통신 라인(CL2)은 제2 통신 프로토콜에 적용되는 통신 라인일 수 있다. 구체적인 예로, 제2 통신 라인(CL2)은 CAN(Controller area network) 통신을 위한 통신 라인일 수 있다.
예컨대, 도 2의 실시예에서, BBMS(133)는 제2 통신 라인(CL2)을 통해 BSC(131)와 통신 가능하도록 연결될 수 있다. 즉, BSC(131)는 마스터 컨트롤러(132)와 BBMS(133)에 서로 다른 통신 라인을 통해 연결될 수 있다. 따라서, 어느 하나의 통신 라인에 결함이 발생하더라도, BSC(131)는 나머지 통신 라인을 통해 통신을 지속할 수 있다.
도 3은 본 발명의 일 실시예에 따른 제어 컨테이너(100) 및 배터리 컨테이너(200)의 예시적 구성을 개략적으로 도시한 도면이다.
배터리 컨테이너(200)는 하나 이상의 배터리 랙(210)과 서브 제어부(220)를 포함할 수 있다.
하나 이상의 배터리 랙(210)은 DC부(110)와 연결되어 DC 라인(DCL)을 통해 DC 전원을 공급받도록 구성될 수 있다.
구체적으로, 배터리 컨테이너(200)에는 하나 이상의 배터리 랙(210)이 포함될 수 있다. 그리고, 각각의 배터리 랙(210)에는 하나 이상의 배터리 모듈이 포함될 수 있다. 그리고, 각각의 배터리 랙(210)은 DC 라인(DCL)과 연결될 수 있다. 즉, 각각의 배터리 랙(210)에 포함된 각각의 배터리 모듈은 DC 라인(DCL)을 통해 DC 전원을 공급받을 수 있다. 예컨대, 배터리 랙(210)의 충전 과정에서, 해당 배터리 랙(210)에 포함된 각각의 배터리 모듈은 DC 라인(DCL)을 통해 DC 전원을 공급받을 수 있다.
예컨대, 도 3의 실시예에서, 배터리 랙(210)은 DC 라인(DCL)에 병렬로 연결될 수 있다. 이러한 DC 라인(DCL)에는 퓨즈(112)가 연결되어 있기 때문에, 단락 전류가 차단될 수 있다. 또한, 절연 측정 유닛(113)에 의해 DC 라인(DCL)의 지락 및 절연이 진단되고, 서지 보호 유닛(114)에 의해 서지 전류가 흐르는 것이 방지될 수 있다. 따라서, DC부(110)에 의해 배터리 랙(210)에 포함된 배터리 모듈이 안전하게 보호될 수 있다.
서브 제어부(220)는 AC부(120)와 연결되어 AC 라인(ACL)을 통해 전기 계통(30)으로부터 전원을 공급받고, 제1 통신 라인(CL1) 및 제2 통신 라인(CL2)을 통해 메인 제어부(130)와 통신 가능하도록 연결될 수 있다.
구체적으로, 서브 제어부(220)는 배터리 컨테이너(200)의 상태를 모니터링 및 제어할 수 있다. 그리고, 서브 제어부(220)는 AC 라인(ACL)에 연결되고, 전기 계통(30)으로부터 AC 전원을 공급받을 수 있다. 즉, 배터리 컨테이너(200)에는 별도의 전원 장치가 없기 때문에, 서브 제어부(220)는 AC부(120)로부터 AC 전원을 공급받을 수 있다.
예컨대, 도 3의 실시예에서, 서브 제어부(220)는 AC부(120)와 AC 라인(ACL)을 통해 연결될 수 있다. 그리고, 서브 제어부(220)는 AC 라인(ACL)을 통해서 전기 계통(30)으로부터 AC 전원을 공급받을 수 있다. 여기서, 메인 제어부(130)와 서브 제어부(220)는 AC부(120)에 대하여 병렬로 연결될 수 있다.
또한, 도 3의 실시예에서, 서브 제어부(220)는 메인 제어부(130)와 제1 통신 라인(CL1) 및 제2 통신 라인(CL2)을 통해 통신 가능하도록 연결될 수 있다.
즉, 제어 컨테이너(100)와 배터리 컨테이너(200)는 DC 라인(DCL) 및 AC 라인(ACL)을 통해 전기적으로 연결되고, 제1 통신 라인(CL1) 및 제2 통신 라인(CL2)을 통해 통신 가능하도록 연결될 수 있다.
따라서, 에너지 저장 장치(10)는 배터리 컨테이너(200)의 확장이 용이할 수 있다. 즉, DC 라인(DCL), AC 라인(ACL), 제1 통신 라인(CL1) 및 제2 통신 라인(CL2)으로의 연결에 기반하여, 제어 컨테이너(100)에 복수의 배터리 컨테이너(200)가 연결될 수 있따. 따라서, 본 발명의 일 실시예에 따르면, 에너지 저장 장치(10)의 용량 확장이 용이한 장점이 있다.
서브 제어부(220)는 슬레이브 컨트롤러(221) 및 RBMS(222)(Rack battery management system)를 포함할 수 있다.
슬레이브 컨트롤러(221)는 제1 통신 라인(CL1)을 통해 마스터 컨트롤러(132)와 통신 가능하도록 연결될 수 있다.
여기서, 슬레이브 컨트롤러(221)는 B-LINK에 포함된 PLC로서, B-PLC라고 표현될 수 있다. 즉, 슬레이브 컨트롤러(221)는 배터리 컨테이너(200)에 포함된 HVAC, 무정전 전원 유닛(122), 도어 센서, 가스 센서(Gas sensor), 연기 센서(Smoke sensor), 스위치, SMPS, 댐퍼(Damper), 팬(FAN) 및 FSS 등과 연결되어, 이들 구성을 제어할 수 있다. 그리고, 슬레이브 컨트롤러(221)는 이들 구성으로부터 획득한 배터리 컨테이너(200) 정보를 제1 통신 라인(CL1)을 통해 마스터 컨트롤러(132)로 송신할 수 있다. 그리고, BSC(131)는 마스터 컨트롤러(132)가 획득한 배터리 컨테이너(200) 정보를 제1 통신 라인(CL1)을 통해 수신할 수 있다. 즉, BSC(131), 마스터 컨트롤러(132) 및 슬레이브 컨트롤러(221)는 제1 통신 라인(CL1)을 통해 서로 연결될 수 있다. 그리고, BSC(131)는 배터리 컨테이너(200) 정보를 토대로 배터리 컨테이너(200)에 포함된 각각의 구성을 제어하도록 슬레이브 컨트롤러(221)를 제어할 수 있다.
예컨대, 도 3의 실시예에서, 슬레이브 컨트롤러(221)는 제1 통신 라인(CL1)을 통해 마스터 컨트롤러(132)와 통신 가능하도록 연결될 수 있다. 즉, BSC(131), 마스터 컨트롤러(132) 및 슬레이브 컨트롤러(221)는 제1 통신 라인(CL1)을 통해 서로 연결될 수 있다.
RBMS(222)는 대응되는 배터리 랙(210)의 정보를 모니터링하도록 구성되고, 제2 통신 라인(CL2)을 통해 BBMS(133)와 통신 가능하도록 연결될 수 있다.
구체적으로, 배터리 컨테이너(200)에는 하나 이상의 배터리 랙(210)이 포함될 수 있다. 그리고, 각각의 배터리 랙(210)에는 하나 이상의 배터리 모듈이 포함될 수 있다. 이러한 배터리 모듈의 상태는 MBMS(Module battery management system)에 의해 모니터링될 수 있다. 그리고, 하나 이상의 MBMS는 대응되는 RBMS(222)와 제2 통신 라인(CL2)을 통해 연결될 수 있다. 즉, RBMS(222)는 배터리 랙(210)의 상태 및 배터리 랙(210)에 포함된 배터리 모듈의 상태를 모니터링할 수 있다.
그리고, RBMS(222)는 BBMS(133)와 연결될 수 있다. 즉, 제어 컨테이너(100)에 포함된 BBMS(133)는 제2 통신 라인(CL2)을 이용하여 배터리 컨테이너(200)에 포함된 RBMS(222)와 연결될 수 있다. 그리고, BBMS(133)는 배터리 컨테이너(200)에 포함된 하나 이상의 RBMS(222)로부터 대응되는 배터리 랙(210)의 정보를 수신할 수 있다.
예컨대, 도 2의 실시예에서, 배터리 컨테이너(200)에는 2개의 RBMS(222)가 포함될 수 있다. RBMS(222)는 BBMS(133)와 제2 통신 라인(CL2)을 통해 연결될 수 있다. 그리고, RBMS(222)는 RBMS(222)와 제2 통신 라인(CL2)을 통해 연결될 수 있다. 즉, 제어 컨테이너(100)에 포함된 BSC(131)와 BBMS(133)는 제2 통신 라인(CL2)을 통해 배터리 컨테이너(200)에 포함된 RBMS(222)와 통신 가능하도록 연결될 수 있다.
본 발명의 일 실시예에 따른 에너지 저장 장치(10)는 BSC(131), 마스터 컨트롤러(132) 및 슬레이브 컨트롤러(221)를 연결하는 제1 통신 라인(CL1)과 BSC(131), BBMS(133) 및 RBMS(222)를 연결하는 제2 통신 라인(CL2)을 각각 포함할 수 있다. 따라서, 어느 하나의 통신 라인에 결함이 발생되더라도, 나머지 통신 라인을 통해 통신이 지속될 수 있다.
예컨대, 제1 통신 라인(CL1)에 문제가 발생되어 마스터 컨트롤러(132)와 슬레이브 컨트롤러(221)의 통신이 정상적으로 수행되지 않더라도, BBMS(133)는 제2 통신 라인(CL2)을 통해 RBMS(222)로부터 배터리 랙(210)의 정보를 정상적으로 수신할 수 있다. 따라서, 에너지 저장 장치(10)는 통신 대상 및 통신 목적을 고려하여 서로 다른 통신 라인을 통해 독립된 통신 경로를 구축한 장점이 있다. 따라서, 에너지 저장 장치(10)에서는 안정적인 통신이 수행될 수 있다.
또한, 배터리 컨테이너(200)는 서브 스위치(230)를 더 포함할 수 있다.
구체적으로, 서브 스위치(230)는 일단이 DC 라인(DCL)에 연결되고, 타단이 하나 이상의 배터리 랙(210)에 연결되도록 구성될 수 있다.
슬레이브 컨트롤러(221)는 서브 스위치(230)의 동작 상태를 제어하도록 구성될 수 있다. 구체적으로, 슬레이브 컨트롤러(221)는 필요 시에 서브 스위치(230)의 동작 상태를 턴 오프 상태로 제어하여, DC 라인(DCL)과 배터리 랙(210)의 연결을 차단시킬 수 있다. 예컨대, 배터리 컨테이너(200)의 문이 열려있거나 배터리 컨테이너(200)에 화재가 발생된 경우, 슬레이브 컨트롤러(221)는 서브 스위치(230)의 동작 상태를 턴 오프 상태로 제어할 수 있다.
예컨대, DC 라인(DCL)과 모든 배터리 컨테이너(200)의 전기적 연결을 차단해야 하는 경우, 마스터 컨트롤러(132)는 메인 스위치(111)의 동작 상태를 턴 오프 상태로 제어할 수 있다. 그리고, 슬레이브 컨트롤러(221)는 서브 스위치(230)의 동작 상태를 턴 오프 상태로 제어할 수 있다. 이 경우, 메인 스위치(111) 및 서브 스위치(230)의 동작 상태가 모두 턴 오프 상태로 제어됨으로써, DC 라인(DCL)과 배터리 랙(210) 간의 전기적 연결이 완벽 차단될 수 있다.
다른 예로, DC 라인(DCL)과 타겟 배터리 컨테이너(200)의 연결을 차단해야 하는 경우, 마스터 컨트롤러(132)는 메인 스위치(111)의 동작 상태를 턴 온 상태로 제어할 수 있다. 그리고, 타겟 배터리 컨테이너(200)에 포함된 슬레이브 컨트롤러(221)는 대응되는 서브 스위치(230)의 동작 상태를 턴 오프 상태로 제어할 수 있다. 이 경우, 타겟 배터리 컨테이너(200)를 제외한 나머지 배터리 컨테이너(200)로는 DC 전원이 공급될 수 있다.
본 발명의 일 실시예에 따른 에너지 저장 장치(10)는 메인 스위치(111)와 서브 스위치(230)를 통해서 배터리 컨테이너(200)와 DC 라인(DCL) 간의 전기적 연결을 제어할 수 있는 장점이 있다. 특히, 배터리 컨테이너(200) 각각과 DC 라인(DCL)의 전기적 연결이 제어될 수 있기 때문에, 배터리 컨테이너(200)의 유지 보수 및 확장이 용이하다는 장점이 있다.
도 4는 본 발명의 일 실시예에 따른 제어 컨테이너(100) 및 배터리 컨테이너(200)의 다른 예시적 구성을 개략적으로 도시한 도면이다.
배터리 컨테이너(200)는 AC 라인(ACL)을 통해 AC부(120)와 직접 연결되고, DC 라인(DCL)에 병렬로 연결되도록 구성될 수 있다.
배터리 컨테이너(200)의 서브 제어부(220)는 전원 공급 유닛(223)을 포함할 수 있다. 여기서, 전원 공급 유닛(223)은 SMPS일 수 있다. 전원 공급 유닛(223)은 AC 라인(ACL)을 통해서 AC부(120)와 직접 연결될 수 있다. 예컨대, 도 4의 실시예에서, 복수의 배터리 컨테이너(200)는 AC 라인(ACL)을 통해서 AC부(120)와 직접 연결될 수 있다. 그리고, 전원 공급 유닛(223)은 AC 전원을 DC 전원으로 변환하고, 변환된 DC 전원을 슬레이브 컨트롤러(221) 및 RBMS(222)에 공급할 수 있다.
그리고, 배터리 컨테이너(200)의 서브 스위치(230)의 일단은 DC 라인(DCL)에 연결되고, 서브 스위치(230)의 타단은 배터리 랙(210)에 연결될 수 있다. 즉, 복수의 배터리 컨테이너(200)는 DC 라인(DCL)에 병렬로 연결될 수 있다. 예컨대, 도 4의 실시예에서, 복수의 배터리 컨테이너(200)는 서브 스위치(230)를 통해서 DC 라인(DCL)에 병렬로 연결될 수 있다.
배터리 컨테이너(200)가 복수 구비된 경우, 마스터 컨트롤러(132)는 제1 통신 라인(CL1)을 통해 복수의 배터리 컨테이너(200)에 포함된 복수의 슬레이브 컨트롤러(221) 각각과 직접 연결되도록 구성될 수 있다.
구체적으로, 마스터 컨트롤러(132)는 제1 통신 라인(CL1)을 통해 복수의 슬레이브 컨트롤러(221) 각각과 직접 연결되도록 구성될 수 있다. 예컨대, 마스터 컨트롤러(132)는 제1 통신 라인(CL1)을 통해 복수의 슬레이브 컨트롤러(221) 각각과 홈 런 방식으로 직접 연결되도록 구성될 수 있다.
예컨대, 도 4의 실시예에서, 마스터 컨트롤러(132)는 배터리 컨테이너(200)에 포함된 슬레이브 컨트롤러(221)와 제1 통신 라인(CL1)을 통해 직접 연결될 수 있다. 그리고, 마스터 컨트롤러(132)는 배터리 컨테이너(200)에 포함된 슬레이브 컨트롤러(221)와 제1 통신 라인(CL1)을 통해 직접 연결될 수 있다. 즉, 마스터 컨트롤러(132)와 슬레이브 컨트롤러(221) 간의 통신 구조는 마스터 컨트롤러(132)와 슬레이브 컨트롤러(221) 간의 통신 구조에 영향을 미치지 않을 수 있다.
배터리 컨테이너(200)가 복수인 경우, BBMS(133)는 제2 통신 라인(CL2)을 통해 복수의 배터리 컨테이너(200)에 포함된 복수의 RBMS(222)와 데이지 체인 방식으로 서로 직렬로 연결되도록 구성될 수 있다.
구체적으로, BBMS(133)는 제2 통신 라인(CL2)을 통해 복수의 RBMS(222)와 직렬로 연결되도록 구성될 수 있다. BBMS(133)는 제2 통신 라인(CL2)을 통해 복수의 RBMS(222)와 데이지 체인 방식으로 서로 직렬로 연결되도록 구성될 수 있다.
예컨대, 도 4의 실시예에서, BSC(131), BBMS(133) 및 RBMS(222)는 제2 통신 라인(CL2)을 통해서 데이지 체인 방식으로 연결될 수 있다.
본 발명의 일 실시예에 따른 에너지 저장 장치(10)는 제1 통신 라인(CL1)에 따른 통신 경로와 제2 통신 라인(CL2)에 따른 통신 경로에 독립성을 부여함으로써, 각각의 통신 경로에 대한 안정성을 향상시킨 장점이 있다.
도 5는 본 발명의 일 실시예에 따른 에너지 저장 장치(10)의 예시적 구성을 개략적으로 도시한 도면이다.
도 5를 참조하면, 에너지 저장 장치(10)는 주수 컨테이너(300)를 더 포함할 수 있다.
구체적으로, 주수 컨테이너(300)는 배터리 컨테이너(200)에 화재가 발생하면 소화액을 배터리 컨테이너(200)로 출력할 수 있는 주수 장치를 포함할 수 있다. 그리고, 주수 컨테이너(300)는 WIU(Water injection unit)로 표현될 수 있다.
주수 컨테이너(300)는 AC부(120)와 연결되어 AC 라인(ACL)을 통해 전기 계통(30)으로부터 전원을 공급받도록 구성될 수 있다.
예컨대, 도 3의 실시예에서, 주수 컨테이너(300)는 AC 라인(ACL)을 통해서 AC부(120)와 전기적으로 연결될 수 있다. 그리고, 주수 컨테이너(300)는 AC 라인(ACL)을 통해서 AC 전원을 공급받을 수 있다.
주수 컨테이너(300)는 제3 통신 라인(CL3)을 통해 마스터 컨트롤러(132)와 연결되도록 구성될 수 있다.
예컨대, 주수 컨테이너(300)는 제어 유닛 및 주수 유닛을 포함할 수 있다. 제어 유닛은 마스터 컨트롤러(132)로부터 주수 명령을 수신하면, 소화액이 출력되도록 주수 유닛을 제어할 수 있다.
주수 컨테이너(300)는 파이프 라인(PL)을 통해 배터리 랙(210) 각각과 연결되도록 구성될 수 있다. 그리고, 주수 컨테이너(300)는 마스터 컨트롤러(132)로부터 주수 명령을 수신하면, 내부의 소화액을 파이프 라인(PL)으로 출력하도록 구성될 수 있다.
또한, 주수 유닛은 파이프 라인(PL)을 통해 배터리 컨테이너(200)에 포함된 RBMS(222)와 연결될 수 있다. 구체적으로, 주수 유닛은 파이프 라인(PL)을 통해 RBMS(222)에 포함된 각각의 배터리 모듈과 연결될 수 있다. 여기서, 파이프 라인(PL)에는 파손 가능한 벌브가 구비될 수 있다. 예컨대, 벌브는 연결된 배터리 랙(210) 또는 배터리 모듈의 온도에 따라 파손 가능하도록 구성될 수 있다.
예컨대, 배터리 컨테이너(200)에 화재가 발생된 경우, 제어 유닛이 주수 명령을 수신할 수 있다. 제어 유닛은 주수 유닛이 파이프 라인(PL)으로 소화액을 출력하도록 주수 유닛을 제어할 수 있다. 이 경우, 화재가 발생된 배터리 모듈에 대응되는 파이프 라인(PL)에는 벌브가 파손되어 있을 것이므로, 소화액이 파이프 라인(PL)을 통해 배터리 모듈의 내부로 유입될 수 있다.
도 5의 실시예에서, 마스터 컨트롤러(132)는 제3 통신 라인(CL3)을 통해 주수 컨테이너(300)와 통신 가능하도록 연결될 수 있다. 예컨대, 제3 통신 라인(CL3)은 제3 통신 프로토콜에 적용되는 통신 라인일 수 있다. 구체적인 예로, 제3 통신 라인(CL3)은 Modbus RTU 통신을 위한 통신 라인일 수 있다.
본 발명의 일 실시예에 따른 에너지 저장 장치(10)는 제1 통신 라인(CL1), 제2 통신 라인(CL2) 및 제3 통신 라인(CL3) 각각을 이용한 독립된 통신 경로를 구축함으로써, 각각의 통신 경로에 대한 통신 안정성을 확보한 장점이 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
10: 에너지 저장 장치
20: PCS
30: 전기 계통
100: 제어 컨테이너
110: DC부
111: 메인 스위치
112: 퓨즈
113: 절연 측정 유닛
114: 서지 보호 유닛
120: AC부
121: 제1 스위치
122: 무정전 전원 유닛
123: 제2 스위치
124: 제3 스위치
130: 메인 제어부
131: BSC
132: 마스터 컨트롤러
133: BBMS
134: 정원 공급 유닛
200: 배터리 컨테이너
210: 배터리 랙
220: 서브 제어부
221: 슬레이브 컨트롤러
222: RBMS
223: 전원 공급 유닛
230: 서브 스위치
300: 주수 컨테이너

Claims (15)

  1. 외부의 PCS(Power conversion system) 및 외부의 전기 계통과 연결되도록 구성된 제어 컨테이너; 및 하나 이상의 배터리 랙을 포함하고 상기 제어 컨테이너와 연결되도록 구성된 배터리 컨테이너를 포함하는 에너지 저장 장치에 있어서,
    상기 제어 컨테이너는,
    DC 라인을 통해 상기 PCS로부터 DC 전원을 공급받도록 구성된 DC부;
    AC 라인을 통해 상기 전기 계통으로부터 AC 전원을 공급받도록 구성된 AC부; 및
    상기 AC부와 연결되어 상기 AC 라인을 통해 상기 전기 계통으로부터 전원을 공급받고, 상기 PCS와 통신 가능하도록 연결된 메인 제어부를 포함하는 것을 특징으로 하는 에너지 저장 장치.
  2. 제1항에 있어서,
    상기 DC부는,
    일단이 상기 PCS에 연결되고, 상기 제어 컨테이너와 상기 배터리 컨테이너 사이의 DC 라인에 위치하도록 구성된 메인 스위치; 및
    상기 메인 스위치의 타단에 연결되고, 상기 DC 라인에 위치하도록 구성된 퓨즈를 더 포함하는 것을 특징으로 하는 에너지 저장 장치.
  3. 제2항에 있어서,
    상기 퓨즈는,
    상기 배터리의 컨테이너의 개수에 대응되는 개수가 상기 DC부에 포함되는 것을 특징으로 하는 에너지 저장 장치.
  4. 제3항에 있어서,
    상기 퓨즈는,
    상기 DC부에 탈착 가능하도록 구성된 것을 특징으로 하는 에너지 저장 장치.
  5. 제2항에 있어서,
    상기 DC부는,
    상기 DC 라인에 연결되고, 상기 DC 라인의 절연 저항을 측정하도록 구성된 절연 측정 유닛; 및
    상기 DC 라인에 연결되고, 상기 DC 라인에 서지 전류가 흐르는 것을 방지하도록 구성된 서지 보호 유닛을 더 포함하는 것을 특징으로 하는 에너지 저장 장치.
  6. 제1항에 있어서,
    상기 AC부는,
    일단이 상기 전기 계통에 연결되도록 구성된 제1 스위치;
    일단이 상기 제1 스위치의 타단에 연결되도록 구성된 무정전 전원 유닛;
    일단이 상기 무정전 전원 유닛의 타단에 연결되도록 구성된 제2 스위치; 및
    일단이 상기 전기 계통과 상기 제1 스위치의 일단 사이에 연결되고, 타단이 상기 제2 스위치의 타단에 연결되도록 구성된 제3 스위치를 포함하는 것을 특징으로 하는 에너지 저장 장치.
  7. 제1항에 있어서,
    상기 배터리 컨테이너는,
    상기 AC 라인을 통해 상기 AC부와 직접 연결되고, 상기 DC 라인에 병렬로 연결되도록 구성된 것을 특징으로 하는 에너지 저장 장치.
  8. 제1항에 있어서,
    상기 메인 제어부는,
    BSC(Battery system controller);
    상기 BSC와 제1 통신 라인을 통해 통신 가능하도록 연결된 마스터 컨트롤러; 및
    상기 BSC와 제2 통신 라인을 통해 통신 가능하도록 연결된 BBMS(Bank battery management system)를 포함하는 것을 특징으로 하는 에너지 저장 장치.
  9. 제8항에 있어서,
    상기 배터리 컨테이너는,
    상기 DC부와 연결되어 상기 DC 라인을 통해 상기 DC 전원을 공급받도록 구성된 하나 이상의 배터리 랙; 및
    상기 AC부와 연결되어 상기 AC 라인을 통해 상기 전기 계통으로부터 전원을 공급받고, 상기 제1 통신 라인 및 상기 제2 통신 라인을 통해 상기 메인 제어부와 통신 가능하도록 연결된 서브 제어부를 포함하는 것을 특징으로 하는 에너지 저장 장치.
  10. 제9항에 있어서,
    상기 서브 제어부는,
    상기 제1 통신 라인을 통해 상기 마스터 컨트롤러와 통신 가능하도록 연결된 슬레이브 컨트롤러; 및
    대응되는 배터리 랙의 정보를 모니터링하도록 구성되고, 상기 제2 통신 라인을 통해 상기 BBMS와 통신 가능하도록 연결된 RBMS(Rack battery management system)를 포함하는 것을 특징으로 하는 에너지 저장 장치.
  11. 제10항에 있어서,
    상기 마스터 컨트롤러는,
    상기 배터리 컨테이너가 복수 구비된 경우, 상기 제1 통신 라인을 통해 복수의 배터리 컨테이너에 포함된 복수의 슬레이브 컨트롤러 각각과 직접 연결되도록 구성된 것을 특징으로 하는 에너지 저장 장치.
  12. 제10항에 있어서,
    상기 BBMS는,
    상기 배터리 컨테이너가 복수인 경우, 상기 제2 통신 라인을 통해 복수의 배터리 컨테이너에 포함된 복수의 RBMS와 데이지 체인 방식으로 서로 직렬로 연결되도록 구성된 것을 특징으로 하는 에너지 저장 장치.
  13. 제9항에 있어서,
    상기 AC부와 연결되어 상기 AC 라인을 통해 상기 전기 계통으로부터 전원을 공급받고, 제3 통신 라인을 통해 상기 마스터 컨트롤러와 연결되며, 파이프 라인을 통해 상기 배터리 랙 각각과 연결되도록 구성된 주수 컨테이너를 더 포함하는 것을 특징으로 하는 에너지 저장 장치.
  14. 제13항에 있어서,
    상기 주수 컨테이너는,
    상기 마스터 컨트롤러로부터 주수 명령을 수신하면, 내부의 소화액을 상기 파이프 라인으로 출력하도록 구성된 것을 특징으로 하는 에너지 저장 장치.
  15. 제1항에 있어서,
    상기 배터리 컨테이너는,
    일단이 상기 DC 라인에 연결되고, 타단이 상기 하나 이상의 배터리 랙에 연결되도록 구성된 서브 스위치를 포함하는 것을 특징으로 하는 에너지 저장 장치.
PCT/KR2023/000987 2022-01-19 2023-01-19 에너지 저장 장치 WO2023140671A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380012450.XA CN117693851A (zh) 2022-01-19 2023-01-19 储能系统
AU2023209311A AU2023209311A1 (en) 2022-01-19 2023-01-19 Energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220008140 2022-01-19
KR10-2022-0008140 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023140671A1 true WO2023140671A1 (ko) 2023-07-27

Family

ID=87348486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000987 WO2023140671A1 (ko) 2022-01-19 2023-01-19 에너지 저장 장치

Country Status (4)

Country Link
KR (1) KR20230112087A (ko)
CN (1) CN117693851A (ko)
AU (1) AU2023209311A1 (ko)
WO (1) WO2023140671A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102616748B1 (ko) * 2022-01-19 2023-12-21 주식회사 엘지에너지솔루션 에너지 저장 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130055156A (ko) * 2011-11-18 2013-05-28 삼성에스디아이 주식회사 배터리 관리 모듈의 오류 통보 장치 및 이를 구비한 에너지 저장 시스템
KR20180009569A (ko) * 2016-07-19 2018-01-29 삼성에스디아이 주식회사 배터리 시스템
KR20200072665A (ko) * 2018-12-13 2020-06-23 보성파워텍 주식회사 에너지 저장 시스템이 적용된 컨테이너
KR102151107B1 (ko) * 2019-03-19 2020-09-02 엘에스일렉트릭(주) 에너지 저장 시스템의 보호 배전반
KR20200134418A (ko) * 2019-05-22 2020-12-02 권오정 Ess의 화재 예방 및 확산을 방지하기 위한 에너지소비장치 및 그의 제어방법
KR20220008140A (ko) 2020-07-13 2022-01-20 한양대학교 산학협력단 가상 사용자 및 상품 증강을 이용한 콜드-스타트 문제 해결 방안

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130055156A (ko) * 2011-11-18 2013-05-28 삼성에스디아이 주식회사 배터리 관리 모듈의 오류 통보 장치 및 이를 구비한 에너지 저장 시스템
KR20180009569A (ko) * 2016-07-19 2018-01-29 삼성에스디아이 주식회사 배터리 시스템
KR20200072665A (ko) * 2018-12-13 2020-06-23 보성파워텍 주식회사 에너지 저장 시스템이 적용된 컨테이너
KR102151107B1 (ko) * 2019-03-19 2020-09-02 엘에스일렉트릭(주) 에너지 저장 시스템의 보호 배전반
KR20200134418A (ko) * 2019-05-22 2020-12-02 권오정 Ess의 화재 예방 및 확산을 방지하기 위한 에너지소비장치 및 그의 제어방법
KR20220008140A (ko) 2020-07-13 2022-01-20 한양대학교 산학협력단 가상 사용자 및 상품 증강을 이용한 콜드-스타트 문제 해결 방안

Also Published As

Publication number Publication date
KR20230112087A (ko) 2023-07-26
AU2023209311A1 (en) 2024-03-14
CN117693851A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2019117606A1 (ko) 배터리 팩의 양극 컨택터 진단 장치 및 방법
WO2019117607A1 (ko) 배터리 팩의 음극 컨택터 진단 장치 및 방법
WO2018186573A1 (ko) 차량 구동용 전력 공급 시스템
WO2022154498A1 (ko) 배터리 뱅크 전력 제어 장치 및 방법
WO2023140671A1 (ko) 에너지 저장 장치
WO2019156373A1 (ko) 계통 연계형 인버터 시스템
WO2015099349A1 (ko) 에너지 저장 시스템용 소화 장치 및 상기 소화 장치 제어 방법
WO2018159910A1 (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
WO2018117530A1 (ko) Ess용 pcs 및 pcs 운전 방법
WO2019031686A1 (ko) 에너지 저장 시스템
WO2021006571A1 (ko) 배터리 팩의 결함 검출 장치 및 방법
WO2019078475A1 (ko) 병렬연결 구조의 배터리 팩의 히터 제어 시스템 및 그 방법
WO2021045539A1 (ko) 배터리 시스템 및 배터리 시스템의 제어방법
WO2019107806A1 (ko) 계층형 전력 제어 시스템
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2018216899A1 (ko) 군용 마이크로그리드 시스템
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2019107801A1 (ko) 에너지 저장 시스템
WO2020149557A1 (ko) 배터리 관리 장치 및 방법
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2015147527A1 (ko) 배터리팩, 셀 모듈 및 셀 모듈 조립체
WO2019231047A1 (ko) 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
WO2021066357A1 (ko) 배터리 관리 장치
WO2023204382A1 (ko) 에너지 저장 시스템 및 에너지 저장 시스템의 접지구조 제어 장치
WO2023113169A1 (ko) 에너지 저장 시스템 및 에너지 저장 시스템의 접지구조 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023209311

Country of ref document: AU

Ref document number: AU2023209311

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023209311

Country of ref document: AU

Date of ref document: 20230119

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023743515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023743515

Country of ref document: EP

Effective date: 20240315