WO2022154498A1 - 배터리 뱅크 전력 제어 장치 및 방법 - Google Patents

배터리 뱅크 전력 제어 장치 및 방법 Download PDF

Info

Publication number
WO2022154498A1
WO2022154498A1 PCT/KR2022/000593 KR2022000593W WO2022154498A1 WO 2022154498 A1 WO2022154498 A1 WO 2022154498A1 KR 2022000593 W KR2022000593 W KR 2022000593W WO 2022154498 A1 WO2022154498 A1 WO 2022154498A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bank
battery
rack
limit value
Prior art date
Application number
PCT/KR2022/000593
Other languages
English (en)
French (fr)
Inventor
이충용
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280005158.0A priority Critical patent/CN115803985A/zh
Priority to JP2022577173A priority patent/JP2023529507A/ja
Priority to US18/012,439 priority patent/US20230179005A1/en
Priority to EP22739693.4A priority patent/EP4156449A4/en
Publication of WO2022154498A1 publication Critical patent/WO2022154498A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technology for controlling the power of a battery, and more particularly, to a technology for controlling the power for a battery bank including a plurality of battery racks.
  • lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, so charging and discharging are free, The self-discharge rate is very low and the energy density is high, attracting attention.
  • Such a lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • a lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate to which the positive electrode active material and the negative electrode active material are applied, respectively, are disposed with a separator interposed therebetween, and a casing for sealing and housing the electrode assembly together with an electrolyte, that is, a battery case.
  • secondary batteries have been widely used for energy storage not only in small devices such as portable electronic devices, but also in medium and large devices.
  • a medium-large device a very large number of secondary batteries are included.
  • the secondary batteries are often configured in a predetermined group type.
  • one battery module is provided by providing several secondary batteries, and a plurality of these battery modules are provided and stacked on a rack frame to configure one battery rack.
  • the battery bank may be configured in a form in which a plurality of such battery racks are disposed.
  • One or more of these battery banks may be included to configure a battery container, a battery box, a battery system, and the like.
  • a plurality of battery racks may be included in the battery bank.
  • a plurality of battery racks of similar performance may be provided in the initial construction stage of the battery bank.
  • the internal resistance of each battery rack may vary. And, such an internal resistance difference, may generate a difference between the amount of power input to output for each battery rack.
  • a difference in the amount of power between each battery rack may occur.
  • FIG. 1 is a diagram schematically showing an example of the amount of power for each of a plurality of battery racks 10 in a battery bank according to the prior art.
  • the battery bank includes 10 battery racks 10 (Rack 1, Rack 2, Rack 3, ..., Rack 10), and the power limit value of each battery rack 10 is all It is the same as 90kW.
  • the power value input to the entire battery bank is 900 kW
  • each of 90 kW may be input into 10 battery racks 10.
  • the internal resistance of a specific battery rack for example, Rack 10 in FIG. 1 is lower than that of other battery racks
  • power of a larger size than other battery racks may be input to Rack 10.
  • 108 kW may be input to Rack 10
  • 88 kW may be input to other battery racks (Rack 1 to Rack 9), respectively.
  • Rack 10 a situation may occur in which the input power amount exceeds the limit value of 90kW as 108kW. And, due to this situation, Rack 10 may be damaged and can no longer be used. In addition, due to the damage of Rack10, the performance and reliability of the entire battery bank may be deteriorated.
  • the amount of power of a specific battery rack is excessive can grow
  • the internal resistance may be relatively low compared to other battery racks. Therefore, in the new battery rack, more current than the existing battery racks can flow.
  • the amount of power of a specific battery rack exceeds the power limit value (power limit) of the corresponding battery rack, the corresponding battery rack is damaged, the performance of the entire battery bank may be reduced.
  • the present invention is a power control device and method that can effectively prevent damage to a specific battery rack due to power imbalance between battery racks in a battery bank including a plurality of battery racks, etc. aims to provide
  • Battery bank power control device for achieving the above object, as a device for controlling the power of a battery bank having a plurality of battery racks, based on the preset bank power limit value, the a power control unit configured to adjust the size of the input or output bank power amount for the entire plurality of battery racks; a power measuring unit configured to measure the amount of rack power for each of the plurality of battery racks; and a bank control unit configured to set the bank power limit value based on the measured value of the rack power of each battery rack measured by the power measurement unit.
  • the bank control unit may be configured to compare the rack power measurement value of each of the battery racks and the rack power limit value stored in advance corresponding to each battery rack, and to set the bank power limit value according to the comparison result.
  • the bank control unit selects a battery rack in which the rack power measurement value exceeds the rack power limit value, and the bank power limit value using the rack power measurement value and the rack power limit value of the selected battery rack can be configured to set.
  • the bank control unit may be configured to calculate the ratio of the rack power limit value to the rack power measurement value as a reduction coefficient, and to calculate the bank power limit value based on the calculated reduction coefficient.
  • the bank control unit may be configured to update the bank power limit value by multiplying the calculated reduction factor by a previously set bank power limit value.
  • the bank control unit the rack power measurement value based on the reduction coefficient of the battery rack exceeding the rack power limit value, it may be configured to calculate the bank power limit value.
  • the bank control unit when the rack power measurement value exceeds the rack power limit value in a plurality of battery racks, based on the lowest calculated reduction coefficient may be configured to calculate the bank power limit value.
  • the bank control unit counting the number of times the rack power measurement value exceeds the rack power limit value, if the counted number is greater than or equal to the reference cumulative number, it may be configured to calculate the bank power limit value.
  • the bank control unit based on the reciprocal of the calculated reduction coefficient, may be configured to determine whether to block the battery rack.
  • the bank control unit when the calculated reciprocal number is greater than or equal to a reference value, may be configured to block the connection of the corresponding battery rack.
  • an energy storage system for achieving the above object includes a battery bank power control device according to the present invention.
  • the battery bank power control method for achieving the above object is a method for controlling the power of a battery bank having a plurality of battery racks, based on a preset bank power limit value , an input/output step of inputting power to the battery bank or outputting power from the battery bank; Measuring the amount of rack power for each of the plurality of battery racks during the input/output step; And based on the measured value of the rack power of each battery rack measured in the measuring step, comprising the step of changing the bank power limit value.
  • the amount of power can be appropriately controlled in a battery bank including a plurality of battery racks.
  • FIG. 1 is a diagram schematically showing an example of the amount of power for each of a plurality of battery racks in a battery bank according to the prior art.
  • FIG. 2 is a diagram schematically showing the configuration of a battery bank to which the battery bank power control apparatus according to an embodiment of the present invention is connected.
  • FIG. 3 is a diagram schematically showing an example of the configuration of one battery rack included in the battery bank of FIG.
  • FIG. 4 is a block diagram schematically showing a functional configuration of a battery bank power control apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating an example of a configuration in which the battery bank power control apparatus according to an embodiment of the present invention is connected to the battery bank.
  • Figure 6 is a table showing a comparison of the rack power limit value of the rack power of a specific battery rack measured by the battery bank power control device according to an embodiment of the present invention and the corresponding battery rack.
  • Figure 7 is a table showing a comparison of the rack power limit value of the rack power of several battery racks measured by the battery bank power control device according to another embodiment of the present invention and the corresponding battery rack.
  • FIG. 8 is a flowchart schematically illustrating a battery bank power control method according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the configuration of a battery bank to which the battery bank power control apparatus 100 according to an embodiment of the present invention is connected.
  • 3 is a diagram schematically showing an example of the configuration of one battery rack 10 included in the battery bank of FIG.
  • the battery bank power control apparatus 100 may be connected to the battery bank and configured to control the power of the battery bank.
  • the battery bank power control apparatus 100 may be connected to the battery bank through the cable 20 .
  • the cable 20 may include a power cable provided to allow charging/discharging power to the battery bank to flow, and a data cable provided to transmit/receive data or control signals for the battery bank.
  • the battery bank may include a plurality of battery racks (10).
  • the cable 20 may be configured to branch to each battery rack 10 at a predetermined point between the battery bank power control device 100 and each battery rack 10 .
  • a plurality of battery racks 10 included in the battery bank may be electrically connected to each other in parallel.
  • one battery rack 10 may include a plurality of battery modules 11 .
  • a plurality of battery modules 11, the rack frame 13 (rack case) can be accommodated in the vertical direction stacked.
  • the stacking configuration of the battery modules 11 is only an example, and the battery modules 11 may be stacked in various other forms.
  • a plurality of battery cells that is, a plurality of secondary batteries, may be included in one battery module 11 in a state in which they are electrically connected to each other in series and/or in parallel.
  • a plurality of battery modules 11 are electrically connected to each other in series and / or parallel, it is possible to increase the output and / or capacity of the battery rack (10).
  • the battery rack 10, the rack control unit 12 is included, it can be configured to control or measure various operations or states of the battery rack 10, etc.
  • the configuration of the battery module 11, the battery rack 10 and the battery bank shown in FIG. 2 or FIG. 3 is merely an example and the present invention is not necessarily limited to this configuration.
  • the configuration of the battery module 11 or the battery rack 10, the battery bank, etc. is widely known at the time of filing of the present invention, a more detailed description thereof will be omitted.
  • FIG. 4 is a block diagram schematically showing the functional configuration of the battery bank power control apparatus 100 according to an embodiment of the present invention.
  • Figure 5 is a diagram schematically showing an example of a configuration in which the battery bank power control apparatus 100 according to an embodiment of the present invention is connected to the battery bank.
  • the battery bank power control apparatus 100 may include a power control unit 110 , a power measurement unit 120 , and a bank control unit 130 .
  • the power control unit 110 may be provided on the power supply path 21 between the battery bank and an external device.
  • the power supply path 21 may be included in the cable 20 shown in FIG. 2 above, but the present invention is not necessarily limited to this form.
  • the battery bank power may be input or output through the power supply path 21 .
  • the battery bank When power is input to the battery bank through the power supply path 21 , the battery bank may be said to be charged. Conversely, when power is output from the battery bank through the power supply path 21 , the battery bank may be said to be discharged.
  • the external device connected to the battery bank is a device capable of sending and receiving power to and from the battery bank, and may be various charging or discharging devices.
  • the external device may be a power generation device such as a solar power generator or a wind power generator, a power plant, or a power system to which commercial power is supplied.
  • the external device may be a load requiring power, such as each home or company, an electric vehicle, or the like.
  • the present invention is not limited by the specific type or shape of the external device to which the battery bank is connected.
  • the power control unit 110 may be configured to adjust the size of the bank power amount.
  • the amount of bank power as indicated by Pt in FIG. 5 , may be an amount of power input or output with respect to the entire plurality of battery racks 10 included in the battery bank. That is, the amount of power in the bank may be referred to as the amount of power for each battery bank, not for each battery rack.
  • the battery bank includes 10 battery racks 10, and the power flowing to each battery rack 10 is P1, P2, P3, ..., P10.
  • the bank power amount Pt may be expressed as follows.
  • the amount of power in the bank can be referred to as the amount of power obtained by summing the amount of power of each battery rack 10 included in the battery bank.
  • the bank power amount is 100kW ⁇ 10, which may be 1000kW.
  • the bank power amount of 1000 kW is introduced into the battery bank through a common path, is distributed by approximately 100 kW through the branch path can be introduced into each battery rack (10).
  • the amount of bank power may be referred to as an amount of power flowing in through a common path.
  • the power control unit 110 may adjust the amount of power for the entire battery bank.
  • the battery bank may adjust the size of the bank power amount based on a preset bank power limit value.
  • the bank power limit value may represent an operating value of the amount of charge/discharge power for the entire battery bank, or may be a value representing the maximum allowable value of the amount of charge/discharge power for the entire battery bank.
  • the power control unit 110 may allow the amount of bank power to be operated in accordance with the bank power limit value. For example, when the bank power limit value is 1000 kW, the power control unit 110 may set the charging power or discharging power to the battery bank to 1000 kW.
  • the power control unit 110 may allow the bank power amount to be operated so as not to exceed the bank power limit value. For example, if the bank power limit value is 1000 kW, the power control unit 110 may charge or discharge power to the battery bank in a line that does not exceed 1000 kW or more, such as 900 kW or 950 kW. can make it happen
  • the limit value of the bank power required for the power control unit 110 to adjust the size of the amount of bank power may be transmitted from other components such as the bank control unit 130 or stored in the power control unit 110 itself.
  • the power control unit 110 may include various configurations necessary for adjusting the size of the bank power amount, or may be implemented in various forms.
  • the power controller 110 may be implemented as a power conversion device such as a PCS (Power Conversion System).
  • a configuration such as a PCS, it may be configured to enable AC-DC conversion for power. Accordingly, AC power supplied from an external device may be converted into DC power and input to the battery bank. Alternatively, the DC power output from the battery bank may be converted into AC power and supplied to an external device by the PCS.
  • the power control unit 110 may be configured to connect or block the power supply path 21 , and may be configured to perform a switching operation on the power supply path 21 .
  • the power control unit 110 is a configuration capable of adjusting the amount of power flowing into and out of the power supply path 21 , and various power control devices or components known at the time of filing of the present invention may be employed.
  • the power measurement unit 120 may be configured to measure the amount of power in the rack.
  • the amount of power in the rack may be referred to as the amount of power flowing in and out from each of a plurality of battery racks 10 included in the battery bank.
  • the supplied bank power is each battery rack 10 (Rack 1, It can be distributed and introduced into Rack 2, Rack 3, ..., Rack 10).
  • the size of the amount of rack power flowing into each battery rack 10 may be, respectively, P1, P2, P3, ..., P10.
  • the power measurement unit 120 may measure the size (P1, P2, P3, ..., P10) of the amount of rack power flowing in each battery rack 10 in this way.
  • the power measurement unit 120 may be configured to directly measure the amount of power in the rack that flows in each battery rack 10 , and information about the size of the amount of power in the rack from other components, such as each battery rack 10 . may be configured to receive For example, as shown in the configuration of Figure 3, when the rack control unit 12 is included in each battery rack 10, the rack control unit 12 measures the size of the rack power amount of the battery rack 10 can be configured to And, as described above, the rack power amount information measured from the rack control unit 12 may be transmitted to the power measurement unit 120 . In this case, it can be seen that the power measurement unit 120 measures the amount of rack power indirectly.
  • the bank control unit 130 may be configured to set the bank power limit value of the power control unit 110 . At this time, the bank control unit 130, based on the measured value of the rack power of each battery rack 10 measured by the power measurement unit 120, may set the bank power limit value. Here, the bank control unit 130 may set the bank power limit value using the measured value of the rack power of at least some of the battery rack 10 of the entire battery rack 10 .
  • the bank control unit 130 in the configuration of FIG. 5, based on the rack power measurement value (P3) for Rack 3, may be configured to set the bank power limit value. Then, according to the bank power limit value set as described above, the power adjusting unit 110 may adjust the size of the bank power amount Pt flowing into the battery bank.
  • this configuration of the present invention it is possible to adjust the amount of power of the entire battery bank based on the measured value of the rack power of each battery rack 10 included in the battery bank. And, by adjusting the amount of power in the battery bank, it is possible to prevent excessive power from flowing into a specific battery rack 10 or from flowing out of excessive power from a specific battery rack 10 . Therefore, due to excessive use of a specific battery rack 10, the corresponding battery rack 10 can be effectively prevented from being damaged.
  • the bank control unit 130 may be configured to compare the rack power measurement value and the rack power limit value.
  • the rack power measurement value may be provided from the power measurement unit 120 . That is, the bank control unit 130 is electrically connected to the power measurement unit 120 , and may receive a rack power measurement value for each battery rack 10 from the power measurement unit 120 .
  • the rack power limit value to be compared with the measured value of the rack power may be preset and stored in the bank control unit 130 or may be provided from other external components.
  • the rack power limit value may be stored separately for each battery rack (10). For example, such as Pref1, Pref2, Pref3, ..., Pref10 shown in FIG. 5, the rack power limit value is set correspondingly for each battery rack 10, and this setting information is the bank control unit 130 can be provided on
  • the bank control unit 130, the rack power limit value of each battery rack 10, and the power measurement unit 120 can be compared with each other the measured value of the rack power of each battery rack (10).
  • the bank control unit 130 may compare the rack power measurement value P1 transmitted from the power measurement unit 120 with respect to Rack1 and the rack power threshold value Pref1 preset and stored for Rack1.
  • the bank control unit 130 for the entire battery rack 10 included in the battery bank, may be configured to compare the rack power measurement value and the rack power limit value.
  • the bank control unit 130 controls each rack power measurement value (P1, P2, P3, ..., P10) for all of Rack1, Rack2, Rack3, ..., Rack10. ) and the rack power limits (Pref1, Pref2, Pref3, ..., Pref10).
  • the bank control unit 130 may be configured to compare the rack power measurement value and the rack power limit value with respect to some of the battery racks 10 of the entire battery rack 10 included in the battery bank.
  • the bank control unit 130 may be configured to compare the rack power measurement value measured in the largest size among the entire battery rack 10 with a rack power limit value corresponding to the corresponding battery rack 10 .
  • the bank control unit 130 may be configured to be able to change the bank power limit value of the power control unit 110 .
  • the bank control unit 130 in the configuration of FIG. 5, according to the comparison result of the rack power measurement value (P3) and the rack power limit value (Pref3) for Rack 3, to set the bank power limit value can be configured.
  • the power adjusting unit 110 may adjust the size of the bank power amount Pt flowing into the battery bank.
  • this configuration of the present invention it is possible to adjust the amount of power of the entire battery bank based on the comparison result of the rack power measurement value and the rack power limit value of each battery rack 10 included in the battery bank. And, by adjusting the amount of power in the battery bank, it is possible to prevent excessive power from flowing into a specific battery rack 10 or from flowing out of excessive power from a specific battery rack 10 . Therefore, due to excessive use of a specific battery rack 10, the corresponding battery rack 10 can be effectively prevented from being damaged.
  • FIG. 5 has been described focusing on a case in which power is introduced into the battery bank, that is, a case in which the battery bank is charged, the above description may be similarly applied even when the battery bank is discharged.
  • one of the charging and discharging cases will be mainly described, and overlapping descriptions will be omitted as much as possible.
  • At least one of the bank control unit 130, the power measurement unit 120 and the power control unit 110 is a processor known in the art for executing various control logics performed in the present invention, an application-specific (ASIC) integrated circuit), other chipsets, logic circuits, registers, communication modems, data processing devices, etc. may be selectively included or implemented with these components or devices.
  • ASIC application-specific
  • the control logic is implemented in software
  • at least one of the bank control unit 130 , the power measurement unit 120 , and the power control unit 110 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the processor.
  • the memory may be internal or external to the processor, and may be coupled to the processor by various well-known means.
  • the battery bank often includes a control unit referred to by various terms such as a Battery Section Controller (BSC) or an Energy Management System (EMS).
  • BSC Battery Section Controller
  • EMS Energy Management System
  • the bank control unit 130, the power measurement unit 120 and/or the power control unit 110 may be implemented in whole or at least in part by the control units provided in the conventional battery bank.
  • each component when each component is implemented as a processor, etc., with respect to the operation or function of each component, content such as 'configured to' or 'to do' means to perform the corresponding operation or function. It may be understood as the contents of being programmed.
  • the battery bank power control apparatus 100 may further include a memory unit 140 as shown in FIGS. 4 and 5 .
  • the memory unit 140 other components of the battery bank power control apparatus 100 according to the present invention, for example, the bank control unit 130, the power measurement unit 120, the power control unit 110 has its function. It can store programs or data necessary for execution. For example, the memory unit 140 may store a rack power limit value set for each battery rack 10 . In addition, such data or programs may be provided by accessing other components such as the bank control unit 130 .
  • the memory unit 140 is not particularly limited in its type as long as it is a known information storage means capable of writing, erasing, updating, and reading data.
  • the information storage means may include a RAM, a flash memory, a ROM, an EEPROM, a register, and the like.
  • the memory unit 140 may store program codes in which processes executable by other components such as the bank control unit 130 are defined.
  • the bank control unit 130 may be configured to select the battery rack 10, the rack power measurement value exceeds the rack power limit value.
  • the bank control unit 130 includes 10 battery racks 10 (Rack1, Rack2, Rack3, ..., Rack10) included in the battery bank, among the rack power measurement values.
  • (P1, P2, P3, ..., P10) may be configured to screen the battery rack 10 that exceeds the rack power limits (Pref1, Pref2, Pref3, ..., Pref10).
  • the rack power limit values (Pref1, Pref2, Pref3, ..., Pref10) of the entire battery rack 10 are all equal to 90 kW.
  • the measured rack power values (P1, P2, P3, ..., P9) of Rack1, Rack2, Rack3, ..., and Rack9 are all 88kW, and only the measured rack power value of Rack10 (P10) is 108kW.
  • the bank control unit 130 may select Rack10 among 10 battery racks 10 .
  • the bank control unit 130 using the rack power measurement value and the rack power limit value of the selected battery rack 10, to set the bank power limit value can be configured.
  • the bank control unit 130 sets the bank power limit value using the rack power measurement value (P10) and the rack power limit value (Pref10) of Rack10. have.
  • the set bank power limit value information may be provided to the power control unit 110 .
  • the power control unit 110 may be configured to adjust the size of the bank power amount (Pt) according to the set bank power limit value.
  • the power control unit 110 the amount of bank power (Pt) may be configured so as not to exceed the bank power limit value set by the bank control unit (130).
  • the bank control unit 130 may calculate a reduction factor using the rack power measurement value and the rack power limit value of the battery rack 10 .
  • the reduction factor as the ratio of the rack power threshold to the rack power measurement, can be expressed as
  • This reduction factor can be calculated for a specific battery rack (10).
  • the reduction factor may be calculated from the measured value and the limit value of the battery rack 10 selected as the rack power measured value exceeds the rack power limit value in the preceding embodiment.
  • the reduction coefficient for the entire battery bank is calculated as follows, using P10, which is the measured value of rack power of Rack10, and Pref10, which is the limit value of rack power of Rack10. can be
  • the bank control unit 130 may calculate the reduction factor as follows.
  • the bank control unit 130 may calculate the bank power limit value based on the calculated reduction coefficient.
  • the bank control unit 130 calculates the amount of power flowing into the entire battery bank, that is, the bank power limit value, using the reduction coefficient of 0.83.
  • the bank control unit 130 may be configured to update the bank power limit value using the calculated reduction coefficient. That is, power may already flow into and out of the battery bank according to the previously set bank power limit value. In this case, when the bank power limit value is updated by the bank controller 130 , the amount of power of the battery bank may be changed according to the updated bank power limit value.
  • the bank control unit 130 may be configured to update the bank power limit value by multiplying the calculated reduction factor by the previously set bank power limit value.
  • the bank power limit value can be updated according to the following relation have.
  • the bank control unit 130 may update the bank power limit value as follows. have.
  • the bank control unit 130 may newly set the bank power limit value from 900 kW to 747 kW.
  • the power control unit 110 may limit the amount of power of the battery bank according to the newly set bank power limit value. For example, the power controller 110 may reduce the amount of power flowing into or out of the battery bank from 900 kW to 747 kW.
  • the bank control unit 130 based on the reduction factor of the battery rack 10 in which the rack power measurement value exceeds the rack power limit value, it may be configured to calculate the bank power limit value. That is, as described in the previous embodiment, in the exemplary configuration of FIG. 5 , when the rack power measurement value (P10) of Rack10 out of 10 battery racks 10 exceeds the rack power limit value (Pref10), the bank control unit 130 may calculate a bank power limit value for the entire battery bank based on the reduction coefficient of Rack10.
  • each battery rack 10 in the embodiment of Figure 5 is all 90 kW
  • the amount of bank power flowing into the entire battery bank is 90 kW ⁇ 10
  • can be set to 900 kW have.
  • Rack10 is a newly installed rack in the battery bank or a different type of rack different from other battery racks 10 (Rack1 ⁇ Rack9)
  • the internal resistance is lower than other battery racks (10)
  • Rack1 ⁇ Rack9 Compared to that, more current can flow into Rack10.
  • the amount of charging power of the Rakc10 may be greater than that of other racks.
  • each power amount of Rack1 ⁇ Rack9 is 88kW, and only the power amount of Rack10 can be formed as 108kW.
  • Rack10 is highly likely to be damaged when 108kW of power flows in and continues to be used. And, the damage of this particular battery rack, the capacity of the entire battery bank will drop. In addition, if excessive power that is higher than the limit value flows into or out of Rack10, it may cause more serious problems such as ignition or explosion of Rack10.
  • the bank control unit 130 understands that the measured power value of Rack10 (108 kW) is higher than the rack power limit value (90 kW), and the measured power value of Rack10 (108 kW) and the rack power threshold (90 kW) can be used to calculate a reduction factor (0.83).
  • the bank control unit 130 by multiplying the reduction coefficient (0.83) by the existing bank power amount (900kW), it is possible to set the bank power limit value of 747kW. And, by the bank power limit value set in this way, the power control unit 110 can adjust the bank power amount to 747 kW.
  • the difference in internal resistance between each battery rack 10 may exist at a level similar to that of the previous one, a relatively large current may still flow into the Rack10 compared to other battery racks 10 .
  • the power amount of Rack10 may also be reduced than before.
  • the amount of power of Rack10 may also fall below the power limit value (Pref10) of Rack10. At this time, it can be estimated that the ratio of the amount of power between the battery rack 10 will show a similar form as before. Therefore, if the reduced power amount of Rack10 is P10', the following relational expression can be established.
  • the corresponding battery rack 10 can cause the amount of rack wattage of the . Therefore, in this case, the specific battery rack 10 can be fundamentally prevented from being damaged or ignited or exploded due to continued use beyond the limit value.
  • the battery bank power control apparatus 100 may frequently or aperiodically update the bank power limit value according to the above-described process, thereby frequently adjusting the size of the bank power amount.
  • adjustment of the size of the bank power amount may also be performed in real time. Therefore, even if the amount of power of a specific battery rack 10 exceeds the limit value, it can be adjusted quickly, effectively preventing permanent damage or performance degradation of the battery rack 10 or the battery bank.
  • the bank control unit 130 when the rack power measurement value exceeds the rack power limit value is identified as a plurality of battery racks 10, the lowest among the reduction coefficients for each of the identified battery racks (10) and calculate a bank power threshold based on the reduction factor.
  • the bank control unit 130 may calculate a reduction factor for each of the three battery racks 10 . Then, the bank control unit 130 may calculate the bank power limit value using the lowest reduction coefficient among the calculated reduction coefficients.
  • the bank control unit 130 decreases for each of the three battery racks (Rack3, Rack7, Rack9) coefficients can be calculated.
  • the bank control unit 130 may calculate the bank power limit value using 0.81, which is the lowest reduction coefficient.
  • the amount of power in a situation where the amount of power is input and output with respect to a plurality of battery racks 10 above the limit value, even if only the processing process based on one battery rack 10 is performed, the entire battery rack 10 ), the amount of power can be set to be less than or equal to the limit value. Therefore, in this case, it may be possible to more efficiently control the amount of power.
  • the bank control unit 130 may be configured to count the number of times the rack power measurement value exceeds the rack power limit value for each battery rack 10 . And, the bank control unit 130, in the specific battery rack 10, the rack power measurement value is counted as exceeding the rack power limit value (hereinafter, the counting number) is configured to determine whether or not more than the reference cumulative number of times have.
  • the reference accumulation number may be variously set and stored in advance according to various circumstances, such as the specifications of the battery bank or the battery rack 10, the operating form or conditions of the battery bank. For example, the reference accumulation number may be set to 5 and stored in the memory unit 140 or the like.
  • the bank control unit 130 as a result of this comparison, when the counting number is equal to or greater than the reference accumulated number, it may be configured to calculate the bank power limit value. This embodiment will be described in more detail with reference to FIG. 6 .
  • FIG. 6 is a comparison of the rack power limit value of the specific battery rack 10 measured by the battery bank power control apparatus 100 according to an embodiment of the present invention and the rack power limit value of the corresponding battery rack 10 table shown.
  • the results shown in Figure 6, among a plurality of battery racks 10 included in the battery bank, can be said to be a measurement value and a limit value for any one of the battery rack (10).
  • the result of FIG. 6 can be said to represent the rack power measurement value and the rack power limit value for Rack10 among several battery racks 10 shown in FIG. 5 .
  • FIG. 6 for a specific battery rack 10 , for example, Rack10, a total of 12 rack power measurements were made from the 1st to the 12th, and the measured values for each order are described. At this time, the limit value of the battery rack 10 is equally set to 90 kW in all measurement orders. Meanwhile, it is assumed that the reference accumulation number is set to 5 times.
  • the bank control unit 130 may count the number of times the measured value of the rack power exceeds the limit value of the rack power. That is, when the rack power measurement value exceeds the rack power limit value, it can be said at the time of the 3rd, 6th, 7th, 8th, 10th, 11th, and 12th measurements. Therefore, the number of times the rack power measurement value exceeds the rack power limit value is counted as a total of 7 times, which is a value exceeding the reference cumulative number of 5 times. Therefore, the bank control unit 130 may determine that it is necessary to adjust the amount of bank power, and set a new limit value of the bank power.
  • the bank control unit 130 may be configured to change the amount of bank power by calculating the limit value of the bank power when the counting number is equal to or greater than the reference accumulation number.
  • a point in time at which the counting number becomes 5 or more, which is the reference cumulative number, may be referred to as the tenth measurement.
  • the bank control unit 130 may be configured to calculate the bank power limit value at the time when the 10th measurement is made, and to change the amount of bank power through this.
  • the bank control unit 130 may be configured to calculate the bank power limit value using the rack power measurement value at the time when the counting number is equal to or greater than the reference cumulative number.
  • the time point at which the counting number becomes more than the reference cumulative number (5 times) is the 10th measurement, and the measured rack power at this time is 108 kW.
  • the bank control unit 130 may calculate the bank power limit value using the measured value of 108 kW.
  • the rack power limit value can also be configured to use the limit value at the corresponding time point, that is, when the counting number becomes more than the reference cumulative number of times.
  • the measured value of the rack power at a point in time when the counting number is less than the reference cumulative number does not need to be stored.
  • the measurement values from the first to the fourth measurements do not need to be separately stored or managed. Therefore, in this case, it is possible to prevent an unnecessary increase in the operation load of the bank control unit 130 or the storage capacity of the memory unit 140 .
  • the bank control unit 130 when the number of times the rack power measurement value is counted continuously as exceeding the rack power limit value (hereinafter, the continuous counting number) is greater than or equal to the reference continuous number, calculate the bank power limit value.
  • the reference continuous number may be set differently from the previous reference accumulation number.
  • the reference continuous number may be set to a value smaller than the reference accumulation number.
  • This reference continuous number may also be set in advance in consideration of various circumstances, such as the specifications of the battery rack 10 or the specifications of the battery bank, the operating state or conditions of the battery bank.
  • the reference continuous number may be set to 3 times.
  • the bank control unit 130 may determine whether the number of consecutive counting is greater than or equal to the reference number of consecutive counts. At this time, if the number of consecutive counting is greater than or equal to the reference continuous number, the bank control unit 130 may be configured to determine that it is necessary to adjust the bank power amount, and to calculate the bank power limit value.
  • the bank control unit 130 may calculate the bank power limit value at the 8th measurement time point, and thereby adjust the bank power amount.
  • the rack power measurement value in one battery rack 10 has been described based on a situation in which the rack power limit value is exceeded, but the rack power measurement value in a plurality of battery racks 10 is the rack power limit value. Excessive situations may arise. This will be described in more detail with reference to FIG. 7 .
  • FIG. 7 is a comparison of the rack power limit value of the multiple battery racks 10 measured by the battery bank power control device 100 according to another embodiment of the present invention and the rack power limit value of the corresponding battery rack 10 table shown.
  • the present embodiment will be mainly described with respect to parts that are different from the embodiment of FIG. 6 , and detailed descriptions of parts to which the description of the embodiment of FIG. 6 can be applied identically or similarly will be omitted.
  • the three battery racks 10 (Rack2, Rack5, Rack8) for the first to the 12th rack power measurement values and rack power limit values are described. At this time, it is assumed that the rack power limit value of all the battery racks 10 is equal to 90 kW, and the reference accumulation number is set to 5 times.
  • the bank control unit 130 among the three battery racks 10, with respect to Rack5 and Rack8, the number of times the rack power measurement value exceeds the rack power limit value can be determined to be counted as the reference cumulative number of 5 times or more. have.
  • the bank control unit 130 may determine the battery rack 10 in which the counting number (the number of times the rack power measurement value is counted as exceeding the rack power limit value) reaches the reference cumulative number (5 times) first. .
  • the counting number reached the reference accumulation number at the ninth measurement time
  • Rack8 the counting number reached the reference accumulation number at the tenth measurement time point.
  • the bank control unit 130 may calculate the bank power limit value based on the rack power limit value of Rack5 in which the counting number first reaches the reference accumulation number. That is, the bank control unit 130 may calculate the bank power limit value based on 99kW, which is the ninth measurement value of Rack5.
  • the rack power limit value used when calculating the bank power limit value is the battery rack 10 in which the rack power measurement value is selected, such as the above embodiment can cause the rack power limit of Rack5 to be used.
  • the bank control unit 130 may be configured to determine whether to block the battery rack (10). That is, as described above, the reduction coefficient can be calculated using the rack power limit value and the rack power measurement value, the bank control unit 130, using this reduction coefficient of the battery rack 10 in the battery bank You can control whether or not to block.
  • the bank control unit 130 may determine whether to block the battery rack (10).
  • the reciprocal of the reduction coefficient can be expressed as follows.
  • a reference value may be preset. These reference values are determined to be suitable values according to various environments or conditions, such as the specifications of the battery rack 10 or the battery bank, or operating conditions, and may be stored in advance in the memory unit 140 or the like.
  • the bank control unit 130 may determine whether the calculated reciprocal (1/DF) is equal to or greater than a reference value. And, when it is determined that the calculated reciprocal number (1/DF) for a specific battery rack 10 is greater than or equal to the reference value, the bank control unit 130 is configured to block the connection within the battery bank with respect to the corresponding battery rack 10 .
  • the bank control unit 130 controls the corresponding battery rack 10, that is, for Rack10, the battery bank It can be disconnected from other battery racks inside.
  • the bank control unit 130 blocks the connection within the battery bank for the corresponding battery rack 10, that is, Rack5. It can be made to remain as it is.
  • the battery rack 10 when the amount of charge/discharge power greatly exceeds the limit value in a specific battery rack 10, the battery rack 10 may be dropped from the battery bank and not be used anymore. In a state where the amount of charge/discharge power greatly exceeds the limit value, large damage may occur even for a short period of use. Therefore, in this case, for the corresponding battery rack 10, by allowing the use to be stopped immediately, the corresponding battery rack 10 can be more reliably protected.
  • each battery rack 10 is provided with a rack control unit 12, such a rack control unit 12 can be configured to control the on-off of the charging and discharging power flowing in each battery rack (10) have.
  • the bank control unit 130 may transmit a control signal to the rack control unit 12 of the battery rack 10, so that the connection of the battery rack 10 is cut off.
  • the bank control unit 130 turns off such a switching unit so that the connection of the corresponding battery rack 10 is cut off can do.
  • the bank control unit 130 when calculating the bank power limit value, may be configured to give a weight according to the use time. In particular, the bank control unit 130 may allow such a weight to be applied to the reduction coefficient used when calculating the bank power limit value.
  • the reduction coefficient may be calculated in the following form.
  • w is a weight used when calculating the reduction coefficient, and may be set differently according to the usage time of the battery rack 10 or the battery bank.
  • the weight (w), the longer the use time of the battery rack 10, for example, can be set lower and lower as the number of cycles increases.
  • the weight w may be set to w1 under a certain cycle, and set to w2, which is a lower value than w1, when it exceeds a certain cycle.
  • the weight w may be set to 1 for 500 cycles or less, and set to 0.9 for 500 cycles or more.
  • the weight w may be set differently for each section by dividing a section of three or more steps according to the number of cycles. For example, the weight w may be set to 1 in the interval of 1 cycle to 500 cycles, set to 0.9 in the interval of 501 cycles to 1000 cycles, and set to 0.8 in the interval of 1001 cycles or more.
  • the reduction factor may gradually become lower as the cycle progresses.
  • the weights are given differently as 1, 0.9, and 0.8, respectively.
  • the reduction coefficient may be calculated differently for each cycle as follows.
  • the reduction coefficient for each cycle may be calculated differently.
  • the reduction coefficient can be gradually lowered.
  • the secondary battery inside the battery rack 10 may gradually deteriorate. Therefore, for the battery rack 10, even if the officially set rack power limit value is maintained constant, the limit value of the amount of power allowed for the battery rack 10 can be gradually lowered. According to the embodiment, through a change in weight, it is possible to reflect the actual deterioration of the battery rack 10. Therefore, in this case, more effective battery rack 10 protection may be possible.
  • the battery bank power control apparatus according to the present invention described above may be included in the battery bank.
  • the battery bank according to the present invention, along with a plurality of battery racks 10 and cables 20, can be said to include a battery bank power control device according to the present invention.
  • the battery bank power control apparatus according to the present invention may be applied to an energy storage system (ESS). That is, the energy storage system (ESS) according to the present invention may include the battery bank power control apparatus 100 according to the present invention as described above. And, the energy storage system according to the present invention, in addition to the battery bank power control device 100 according to the present invention, may further include various components of the ESS known at the time of filing of the present invention. In addition, the energy storage system according to the present invention may include one or more battery banks. In particular, when a plurality of battery banks are included, the energy storage system may separately include the battery bank power control apparatus 100 corresponding to each battery bank.
  • FIG. 8 is a flowchart schematically illustrating a battery bank power control method according to an embodiment of the present invention.
  • the subject performing each step may be referred to as each component of the battery bank power control apparatus 100 described above.
  • the battery bank power control method is a method of controlling the power of a battery bank having a plurality of battery racks, in particular, a plurality of battery racks connected in parallel to each other, the bank power input/output step (S110), including a rack power measurement step (S120) and a bank power limit value change step (S140).
  • step S110 based on a preset bank power limit value, power may be input to the battery bank or power may be output from the battery bank.
  • step S120 the amount of rack power for each of a plurality of battery racks during step S110 may be measured.
  • step S140 based on the measured value of the rack power of each battery rack measured in step S120, it is possible to change the bank power limit value.
  • the battery bank power control method compares the rack power measurement value of each battery rack measured in step S120 and the rack power limit value stored in advance corresponding to each battery rack It may include further steps.
  • the bank power limit value may be set and changed.
  • the present invention may also be applied to a battery pack including a plurality of battery modules 11 .
  • the description of the battery rack in this specification may be replaced with the description of the battery module 11
  • the description of the battery bank may be replaced with the description of the battery pack.
  • the term 'battery bank power control device' may be replaced with 'battery pack power control device'
  • 'bank control unit 130' may be replaced with 'pack control unit'.
  • the present invention can be applied to an energy storage system having a plurality of battery banks.
  • the description of the battery rack in the present specification may be replaced with a description of the battery bank
  • the description of the battery bank may be replaced with a description of the energy storage system.
  • the technology according to the present invention may be referred to as an energy storage system power control device, and a term such as 'bank control unit' may be replaced with a term such as 'system control unit'.
  • the term ' ⁇ bu' is used for certain components, such as 'power control unit', 'power measurement unit', 'bank control unit', etc., and these components are necessarily physically distinct elements. It can be understood as functionally distinct elements rather than elements. For example, each component may be selectively integrated with other components or each component may be divided into sub-components for efficient execution of control logic(s). In addition, it is apparent to those skilled in the art that even if each component is integrated or divided, if the same function can be recognized, the integrated or divided components should also be interpreted to be within the scope of the present application.
  • 110 power control unit
  • 120 power measurement unit
  • 130 bank control unit
  • 140 memory unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 다수의 배터리 랙이 포함된 배터리 뱅크에서 배터리 랙 간 전력 불균형으로 인해 특정 배터리 랙이 손상되는 것을 효과적으로 방지할 수 있는 전력 제어 장치 등을 개시한다. 본 발명의 일 측면에 따른 배터리 뱅크 전력 제어 장치는, 다수의 배터리 랙을 구비하는 배터리 뱅크의 전력을 제어하는 장치로서, 미리 설정된 뱅크 전력 한계값에 기초하여, 상기 다수의 배터리 랙 전체에 대하여 입력 또는 출력되는 뱅크 전력량의 크기를 조정하도록 구성된 전력 조절부; 상기 다수의 배터리 랙 각각에 대한 랙 전력량을 측정하도록 구성된 전력 측정부; 및 상기 전력 측정부에 의해 측정된 각 배터리 랙의 랙 전력 측정값에 기초하여, 상기 뱅크 전력 한계값을 설정하도록 구성된 뱅크 제어부를 포함한다.

Description

배터리 뱅크 전력 제어 장치 및 방법
본 출원은 2021년 1월 13일자로 출원된 한국 특허출원 번호 제10-2021-0004821호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리의 전력을 제어하는 기술에 관한 것으로, 보다 상세하게는 다수의 배터리 랙이 포함된 배터리 뱅크에 대하여 전력을 제어하는 기술에 관한 것이다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체와, 전극 조립체를 전해액과 함께 밀봉 수납하는 외장재, 즉 전지 케이스를 구비한다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 중대형 장치에도 에너지 저장용으로 이차 전지가 널리 이용되고 있다. 이러한 중대형 장치의 경우, 매우 많은 수의 이차 전지가 포함된다. 이 경우, 중대형 장치에 포함된 많은 수의 이차 전지에 대한 효율적인 운용, 관리, 또는 제어 등을 위해, 이차 전지들은 일정 그룹 형태로 구성되는 경우가 많다.
특히, ESS로 불리는 에너지 저장 시스템(Energy Storage System)의 경우, 여러 이차 전지를 구비하여 하나의 배터리 모듈을 구성하고, 이러한 배터리 모듈이 다수 구비되어 랙 프레임에 적층됨으로써 하나의 배터리 랙을 구성할 수 있다. 그리고, 이러한 배터리 랙이 다수 배치된 형태로 배터리 뱅크가 구성될 수 있다. 이러한 배터리 뱅크는, 하나 또는 그 이상 포함되어, 배터리 컨테이너나 배터리 박스, 배터리 시스템 등을 구성할 수 있다.
이와 같이, 배터리 뱅크 내에는 다수의 배터리 랙이 포함될 수 있다. 통상적으로, 배터리 뱅크의 초기 구축 단계에서는, 유사한 성능의 배터리 랙이 다수 구비될 수 있다. 그러나, 배터리 뱅크의 운용 중에 배터리 랙에 포함되는 이차 전지들의 퇴화율이나 성능 등에 차이가 생기면서, 각 배터리 랙의 내부 저항이 달라질 수 있다. 그리고, 이러한 내부 저항 차이는, 각 배터리 랙에 대하여 입력 내지 출력되는 전력량 사이의 차이를 발생시킬 수 있다. 뿐만 아니라, 배터리 뱅크의 운용 중에 일부 배터리 랙이 교체되거나, 서로 다른 종류(이종)의 배터리 랙이 배터리 뱅크 내에 함께 사용된 경우, 각 배터리 랙 간 전력량 차이가 발생할 수 있다.
도 1은, 종래 기술에 따른 배터리 뱅크에서 다수의 배터리 랙(10) 각각에 대한 전력량의 일례를 개략적으로 나타내는 도면이다.
도 1을 참조하면, 배터리 뱅크에 10개의 배터리 랙(10)(Rack 1, Rack 2, Rack 3, ..., Rack 10)이 포함되어 있으며, 각 배터리 랙(10)의 전력 한계값은 모두 90㎾로 동일하다. 이때, 배터리 뱅크 전체로 입력되는 전력값이 900㎾인 경우, 각 배터리 랙(10) 간 내부 저항에 차이가 없다면, 10개의 배터리 랙(10)으로 각각 90㎾씩 입력될 수 있다. 그러나, 특정 배터리 랙, 이를테면 도 1에서 Rack 10의 내부 저항이 다른 배터리 랙들에 비해 낮다면, Rack 10으로는 다른 배터리 랙들보다 큰 크기의 전력이 입력될 수 있다. 예를 들어, 도 1에 도시된 바와 같이, Rack 10으로는 108㎾가 입력되고, 다른 배터리 랙들(Rack 1 ~ Rack 9)로는 각각 88㎾씩 입력될 수 있다.
이때, Rack 10의 경우, 입력되는 전력량이 108㎾로서 한계값인 90㎾를 넘어서는 상황이 발생할 수 있다. 그리고, 이러한 상황으로 인해, Rack 10은 파손되어 더 이상 사용되지 못할 수 있다. 뿐만 아니라, 이러한 Rack10의 파손에 의해, 전체 배터리 뱅크의 성능 및 신뢰도가 저하되는 문제가 발생할 수 있다.
이와 같이, 배터리 뱅크에 포함된 다수의 배터리 랙(10)이 서로 병렬로 연결되어 동일한 전압이 인가된다 하더라도, 각 배터리 랙(10) 간 내부 저항 차이 등으로 인해, 특정 배터리 랙의 전력량이 과도하게 커질 수 있다. 특히, 배터리 뱅크의 운용 중에, 특정 배터리 랙의 고장이나 배터리 랙 간 성능 또는 퇴화도 차이 등으로 인해, 일부 배터리 랙을 교체해야 하는 경우가 발생할 수 있다. 이때, 새롭게 교체되어 배터리 뱅크로 편입된 배터리 랙의 경우, 다른 배터리 랙들에 비해 내부 저항이 상대적으로 낮을 수 있다. 따라서, 신규 배터리 랙에서는 기존 배터리 랙들보다 많은 전류가 흐를 수 있다. 이때, 특정 배터리 랙의 전력량이 해당 배터리 랙의 전력 한계값(power limit)을 넘어가게 되면, 해당 배터리 랙이 손상되어, 전체 배터리 뱅크의 성능이 저하될 수 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 다수의 배터리 랙이 포함된 배터리 뱅크에서 배터리 랙 간 전력 불균형으로 인해 특정 배터리 랙이 손상되는 것을 효과적으로 방지할 수 있는 전력 제어 장치 및 방법 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 배터리 뱅크 전력 제어 장치는, 다수의 배터리 랙을 구비하는 배터리 뱅크의 전력을 제어하는 장치로서, 미리 설정된 뱅크 전력 한계값에 기초하여, 상기 다수의 배터리 랙 전체에 대하여 입력 또는 출력되는 뱅크 전력량의 크기를 조정하도록 구성된 전력 조절부; 상기 다수의 배터리 랙 각각에 대한 랙 전력량을 측정하도록 구성된 전력 측정부; 및 상기 전력 측정부에 의해 측정된 각 배터리 랙의 랙 전력 측정값에 기초하여 상기 뱅크 전력 한계값을 설정하도록 구성된 뱅크 제어부를 포함한다.
여기서, 상기 뱅크 제어부는, 상기 각 배터리 랙의 랙 전력 측정값과 각 배터리 랙에 대응하여 미리 저장된 랙 전력 한계값을 비교하고, 비교 결과에 따라 상기 뱅크 전력 한계값을 설정하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 배터리 랙을 선별하고, 선별된 배터리 랙의 랙 전력 측정값과 랙 전력 한계값을 이용하여 상기 뱅크 전력 한계값을 설정하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 랙 전력 측정값에 대한 상기 랙 전력 한계값의 비율을 감소 계수로 산출하고, 산출된 감소 계수에 기초하여 상기 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 산출된 감소 계수를 이전에 설정된 뱅크 전력 한계값에 곱하여 상기 뱅크 전력 한계값을 업데이트하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 배터리 랙의 감소 계수에 기초하여, 상기 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 배터리 랙이 다수인 경우, 가장 낮게 산출된 감소 계수에 기초하여 상기 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 횟수를 카운팅하고, 카운팅된 횟수가 기준 누적 횟수 이상인 경우, 상기 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 산출된 감소 계수의 역수에 기초하여, 상기 배터리 랙의 차단 여부를 결정하도록 구성될 수 있다.
또한, 상기 뱅크 제어부는, 상기 계산된 역수가 참조값 이상인 경우, 해당 배터리 랙의 연결을 차단시키도록 구성될 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 다른 측면에 따른 에너지 저장 시스템은, 본 발명에 따른 배터리 뱅크 전력 제어 장치를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 배터리 뱅크 전력 제어 방법은, 다수의 배터리 랙을 구비하는 배터리 뱅크의 전력을 제어하는 방법으로서, 미리 설정된 뱅크 전력 한계값에 기초하여, 상기 배터리 뱅크로 전력이 입력되거나 상기 배터리 뱅크로부터 전력이 출력되는 입출력 단계; 상기 입출력 단계 중에 상기 다수의 배터리 랙 각각에 대한 랙 전력량을 측정하는 단계; 및 상기 측정 단계에서 측정된 각 배터리 랙의 랙 전력 측정값에 기초하여, 상기 뱅크 전력 한계값을 변경하는 단계를 포함한다.
본 발명에 의하면, 다수의 배터리 랙이 포함된 배터리 뱅크에서 전력량이 적절하게 제어될 수 있다.
특히, 본 발명의 일 측면에 의하면, 다수의 배터리 랙을 충전 또는 방전시키는 과정에서, 다수의 배터리 랙 간 전력 불균형이 발생하더라도, 특정 배터리 랙에서 한계치를 넘어서는 과도한 전력량이 유입되거나 유출되는 것을 방지할 수 있다.
따라서, 본 발명의 이러한 측면에 의하면, 특정 배터리 랙의 파손을 방지하는 한편, 전체 배터리 뱅크의 성능이 안정적으로 유지되도록 할 수 있다.
특히, 본 발명의 일 측면에 의하면, 배터리 랙 간 퇴화도 차이가 있거나, 일부 배터리 랙의 교체가 이루어진 경우, 또는 서로 다른 종류의 랙이 혼합하여 사용되는 경우 등, 배터리 뱅크의 설치 또는 운용 중에 랙 간 차이가 발생할 수 있는 여러 상황에서, 특정 배터리 랙으로 과도하게 전력이 유입되거나 유출되는 것을 방지할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 종래 기술에 따른 배터리 뱅크에서 다수의 배터리 랙 각각에 대한 전력량의 일례를 개략적으로 나타내는 도면이다.
도 2는, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치가 연결된 배터리 뱅크의 구성을 개략적으로 나타내는 도면이다.
도 3은, 도 2의 배터리 뱅크에 포함된 1개의 배터리 랙의 구성의 일례를 개략적으로 나타내는 도면이다.
도 4는, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치의 기능적 구성을 개략적으로 나타내는 블록도이다.
도 5는, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치가 배터리 뱅크에 연결된 구성의 일례를 개략적으로 나타내는 도면이다.
도 6은, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치에 의해 측정된 특정 배터리 랙의 랙 전력 측정값과 해당 배터리 랙의 랙 전력 한계값을 비교하여 나타낸 표이다.
도 7은, 본 발명의 다른 실시예에 따른 배터리 뱅크 전력 제어 장치에 의해 측정된 여러 배터리 랙의 랙 전력 측정값과 해당 배터리 랙의 랙 전력 한계값을 비교하여 나타낸 표이다.
도 8은, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 방법을 개략적으로 나타내는 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2는, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치(100)가 연결된 배터리 뱅크의 구성을 개략적으로 나타내는 도면이다. 도 3은, 도 2의 배터리 뱅크에 포함된 1개의 배터리 랙(10)의 구성의 일례를 개략적으로 나타내는 도면이다.
먼저, 도 2를 참조하면, 본 발명에 따른 배터리 뱅크 전력 제어 장치(100)는, 배터리 뱅크에 연결되어 배터리 뱅크의 전력을 제어하도록 구성될 수 있다. 특히, 배터리 뱅크 전력 제어 장치(100)는, 케이블(20)을 통해 배터리 뱅크와 연결될 수 있다. 여기서, 케이블(20)에는 배터리 뱅크에 대한 충방전 전원이 흐를 수 있도록 마련된 전원 케이블과 배터리 뱅크에 대한 데이터 내지 제어 신호 등이 송수신되도록 마련된 데이터 케이블이 포함될 수 있다.
한편, 배터리 뱅크에는 다수의 배터리 랙(10)이 포함될 수 있다. 이때, 케이블(20)은 배터리 뱅크 전력 제어 장치(100)와 각 배터리 랙(10) 사이의 소정 지점에서 각 배터리 랙(10)으로 분기되도록 구성될 수 있다. 또한, 배터리 뱅크에 포함된 다수의 배터리 랙(10)은, 전기적으로 서로 병렬로 연결될 수 있다.
도 3을 참조하면, 하나의 배터리 랙(10)에는, 다수의 배터리 모듈(11)이 포함될 수 있다. 그리고, 다수의 배터리 모듈(11)은, 랙 프레임(13)(랙 케이스)에 수납되어 상하 방향으로 적층될 수 있다. 다만, 이러한 배터리 모듈(11)의 적층 구성은 일례에 불과할 뿐, 다른 다양한 형태로 배터리 모듈(11)이 적층될 수 있다. 한편, 하나의 배터리 모듈(11)에는, 다수의 배터리 셀, 즉 다수의 이차 전지가 서로 전기적으로 직렬 및/또는 병렬로 연결된 상태로 내부에 포함될 수 있다. 그리고, 다수의 배터리 모듈(11)은 서로 전기적으로 직렬 및/또는 병렬로 연결되어, 배터리 랙(10)의 출력 및/또는 용량을 증대시킬 수 있다. 또한, 배터리 랙(10)에는, 랙 제어부(12)가 포함되어, 배터리 랙(10)의 각종 동작이나 상태 등을 제어 내지 측정하도록 구성될 수 있다.
도 2 또는 도 3에 도시된 배터리 모듈(11), 배터리 랙(10) 및 배터리 뱅크의 구성은, 일례에 불과할 뿐 본 발명이 반드시 이러한 구성으로 제한되는 것은 아니다. 또한, 배터리 모듈(11)이나 배터리 랙(10), 배터리 뱅크의 구성 등에 대해서는, 본 발명의 출원 시점에 널리 알려져 있으므로, 이에 대한 보다 상세한 설명을 생략한다.
도 4는, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치(100)의 기능적 구성을 개략적으로 나타내는 블록도이다. 그리고, 도 5는, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치(100)가 배터리 뱅크에 연결된 구성의 일례를 개략적으로 나타내는 도면이다.
도 4 및 도 5를 참조하면, 본 발명에 따른 배터리 뱅크 전력 제어 장치(100)는, 전력 조절부(110), 전력 측정부(120) 및 뱅크 제어부(130)를 포함할 수 있다.
상기 전력 조절부(110)는, 배터리 뱅크와 외부 장치 사이의 전력 공급 경로(21) 상에 구비될 수 있다. 여기서, 전력 공급 경로(21)는, 앞서 도 2에서 도시된 케이블(20)에 포함될 수 있으나, 본 발명이 반드시 이러한 형태로 한정되는 것은 아니다. 배터리 뱅크는, 전력 공급 경로(21)를 통해, 전력이 입력 또는 출력될 수 있다. 전력 공급 경로(21)를 통해 전력이 배터리 뱅크로 입력되는 경우, 배터리 뱅크는 충전된다고 할 수 있다. 반대로, 전력 공급 경로(21)를 통해 전력이 배터리 뱅크로부터 출력되는 경우, 배터리 뱅크는 방전된다고 할 수 있다.
한편, 배터리 뱅크와 연결된 외부 장치는, 배터리 뱅크와 전력을 주고 받을 수 있는 장치로서 다양한 충전 장치 내지 방전 장치일 수 있다. 예를 들어, 외부 장치는, 태양광 발전 장치나 풍력 발전 장치와 같은 발전 장치나 발전소, 또는 상용 전원이 공급되는 전력 계통 등일 수 있다. 또한, 외부 장치는, 전력을 필요로 하는 부하, 이를테면 각 가정이나 회사, 전기 자동차 등일 수 있다. 본 발명은 이러한 배터리 뱅크가 연결되는 외부 장치의 구체적인 종류나 형태 등에 의해 한정되지 않는다.
상기 전력 조절부(110)는, 뱅크 전력량의 크기를 조정하도록 구성될 수 있다. 여기서, 뱅크 전력량은, 도 5에서 Pt로 표시된 바와 같이, 배터리 뱅크에 포함된 다수의 배터리 랙(10) 전체에 대하여 입력 또는 출력되는 전력량이라 할 수 있다. 즉, 뱅크 전력량은, 각 배터리 랙이 아닌 배터리 뱅크에 대한 전력량이라 할 수 있다. 예를 들어, 도 5에 도시된 구성과 같이, 배터리 뱅크에 10개의 배터리 랙(10)이 포함되고, 각 배터리 랙(10)에 흐르는 전력이 P1, P2, P3, ..., P10인 경우, 뱅크 전력량 Pt는 다음과 같이 표시될 수 있다.
Pt = P1 + P2 + P3 + ... + P10
즉, 뱅크 전력량은, 배터리 뱅크에 포함된 각 배터리 랙(10)의 전력량을 합산한 전력량이라 할 수 있다.
보다 구체적인 예로서, 각 배터리 뱅크마다 100㎾의 전력이 입력되는 경우, 뱅크 전력량은, 100㎾×10개로서, 1000㎾라 할 수 있다. 이 경우, 1000㎾의 뱅크 전력량은 공통 경로를 통해 배터리 뱅크로 유입되며, 분기 경로를 통해 대략 100㎾씩 분배되어 각 배터리 랙(10)으로 유입될 수 있다.
이와 같이, 뱅크 전력량은, 공통 경로를 통해 유입되는 전력량이라 할 수 있다. 상기 전력 조절부(110)는, 이러한 배터리 뱅크 전체에 대한 전력량의 크기를 조절할 수 있다.
특히, 상기 배터리 뱅크는, 미리 설정된 뱅크 전력 한계값에 기초하여 뱅크 전력량의 크기를 조정할 수 있다. 여기서, 뱅크 전력 한계값은, 배터리 뱅크 전체에 대한 충방전 전력량의 운용값을 나타낸 것일 수도 있고, 배터리 뱅크 전체에 대한 충방전 전력량의 최대 허용치를 나타내는 값일 수도 있다.
먼저, 전력 조절부(110)는, 뱅크 전력 한계값에 맞추어 뱅크 전력량이 운용되도록 할 수 있다. 예를 들어, 뱅크 전력 한계값이 1000㎾인 경우, 전력 조절부(110)는 배터리 뱅크에 대한 충전 전력 내지 방전 전력이 1000㎾가 되도록 할 수 있다.
또는, 전력 조절부(110)는, 뱅크 전력 한계값을 넘지 않도록 뱅크 전력량이 운용되도록 할 수 있다. 예를 들어, 뱅크 전력 한계값이 1000㎾인 경우, 전력 조절부(110)는 배터리 뱅크에 대한 충전 전력 내지 방전 전력이 1000㎾가 넘지 않는 선에서, 충방전 전력이 900㎾ 또는 950㎾와 같이 되도록 할 수 있다.
한편, 전력 조절부(110)가 뱅크 전력량의 크기를 조정하기 위해 필요한 뱅크 전력 한계값은 뱅크 제어부(130) 등 다른 구성요소로부터 전송되거나, 전력 조절부(110)에 자체적으로 저장될 수 있다.
전력 조절부(110)는, 뱅크 전력량의 크기를 조정하기 위해 필요한 다양한 구성을 포함하거나, 다양한 형태로 구현될 수 있다. 특히, 전력 조절부(110)는, PCS(Power Conversion System)와 같은 전력 변환 장치로 구현될 수 있다. 더욱이, PCS와 같은 구성의 경우, 전력에 대하여 AC-DC 간 변환이 가능하도록 구성될 수 있다. 따라서, 외부 장치로부터 공급되는 교류 전원은 직류 전원으로 변환되어 배터리 뱅크로 입력될 수 있다. 또는, PCS에 의해, 배터리 뱅크로부터 출력되는 직류 전원은 교류 전원으로 변환되어 외부 장치로 공급될 수 있다. 또한, 전력 조절부(110)는, 전력 공급 경로(21)를 연결 또는 차단 가능하도록 구성되어, 전력 공급 경로(21)에 대한 스위칭 동작을 수행하도록 구성될 수 있다.
상기 전력 조절부(110)는, 전원 공급 경로(21)로 유출입되는 전력량의 크기를 조정할 수 있는 구성으로서, 본 발명의 출원 시점에 공지된 다양한 전력 조정 장치 내지 부품 등을 채용할 수 있다.
상기 전력 측정부(120)는, 랙 전력량을 측정하도록 구성될 수 있다. 여기서, 랙 전력량은, 배터리 뱅크에 포함된 다수의 배터리 랙(10) 각각에서 유출입되는 전력량이라 할 수 있다.
예를 들어, 도 5에 도시된 구성을 참조하면, 10개의 배터리 랙(10)이 포함된 배터리 뱅크로 뱅크 전력이 공급될 때, 공급된 뱅크 전력은 각각의 배터리 랙(10)(Rack 1, Rack 2, Rack 3, ..., Rack 10)으로 분산되어 유입될 수 있다. 이때, 각 배터리 랙(10)으로 유입되는 랙 전력량의 크기는, 각각 P1, P2, P3, ..., P10일 수 있다. 상기 전력 측정부(120)는, 이와 같이 각 배터리 랙(10)에 흐르는 랙 전력량의 크기(P1, P2, P3, ..., P10)를 측정할 수 있다.
여기서, 전력 측정부(120)는, 각 배터리 랙(10)에 흐르는 랙 전력량의 크기를 직접 측정하도록 구성될 수도 있고, 다른 구성요소, 이를테면 각 배터리 랙(10)으로부터 랙 전력량의 크기에 대한 정보를 수신하도록 구성될 수도 있다. 예를 들어, 도 3의 구성에 도시된 바와 같이, 각 배터리 랙(10)에 랙 제어부(12)가 포함된 경우, 랙 제어부(12)가 해당 배터리 랙(10)의 랙 전력량의 크기를 측정하도록 구성될 수 있다. 그리고, 이와 같이 랙 제어부(12)로부터 측정된 랙 전력량 정보는 전력 측정부(120)로 전송될 수 있다. 이 경우, 전력 측정부(120)는, 랙 전력량을 간접적으로 측정한다고 볼 수 있다.
상기 뱅크 제어부(130)는, 전력 조절부(110)의 뱅크 전력 한계값을 설정 가능하도록 구성될 수 있다. 이때, 상기 뱅크 제어부(130)는, 전력 측정부(120)에 의해 측정된 각 배터리 랙(10)의 랙 전력 측정값에 기초하여, 뱅크 전력 한계값을 설정할 수 있다. 여기서, 뱅크 제어부(130)는, 전체 배터리 랙(10) 중 적어도 일부 배터리 랙(10)의 랙 전력 측정값을 이용하여 뱅크 전력 한계값을 설정할 수 있다.
예를 들어, 상기 뱅크 제어부(130)는, 도 5의 구성에서, Rack 3에 대한 랙 전력 측정값(P3)에 기초하여, 뱅크 전력 한계값을 설정하도록 구성될 수 있다. 그러면, 이와 같이 설정된 뱅크 전력 한계값에 따라, 전력 조절부(110)는 배터리 뱅크로 유입되는 뱅크 전력량(Pt)의 크기를 조절할 수 있다.
본 발명의 이와 같은 구성에 의하면, 배터리 뱅크에 포함된 각 배터리 랙(10)의 랙 전력 측정값에 기초하여 전체 배터리 뱅크의 전력량을 조정할 수 있다. 그리고, 이와 같은 배터리 뱅크 전력량 조정에 의해, 특정 배터리 랙(10)으로 과도한 전력이 유입되거나 특정 배터리 랙(10)으로부터 과도한 전력이 유출되는 것을 방지할 수 있다. 따라서, 특정 배터리 랙(10)의 과도한 사용으로 인해 해당 배터리 랙(10)이 파손되는 것이 효과적으로 방지될 수 있다.
더욱이, 상기 뱅크 제어부(130)는, 랙 전력 측정값과 랙 전력 한계값을 비교하도록 구성될 수 있다. 여기서, 랙 전력 측정값은 전력 측정부(120)로부터 제공받을 수 있다. 즉, 상기 뱅크 제어부(130)는, 전력 측정부(120)와 전기적으로 연결되어, 전력 측정부(120)로부터 각 배터리 랙(10)에 대한 랙 전력 측정값을 수신할 수 있다.
또한, 이러한 랙 전력 측정값과 비교되기 위한 랙 전력 한계값은, 미리 설정되어 뱅크 제어부(130)에 저장되어 있거나, 외부의 다른 구성요소로부터 제공받을 수 있다. 특히, 랙 전력 한계값은, 각각의 배터리 랙(10)마다 구분되어 저장될 수 있다. 예를 들어, 도 5에 도시된 Pref1, Pref2, Pref3, ..., Pref10과 같이, 각각의 배터리 랙(10)마다 대응하여 랙 전력 한계값이 설정되고, 이러한 설정 정보가 뱅크 제어부(130)에 제공될 수 있다.
그리고, 상기 뱅크 제어부(130)는, 각 배터리 랙(10)의 랙 전력 한계값과, 전력 측정부(120)로부터 전송된 각 배터리 랙(10)의 랙 전력 측정값을 서로 비교할 수 있다. 예를 들어, 상기 뱅크 제어부(130)는, Rack1에 대하여 전력 측정부(120)로부터 전송된 랙 전력 측정값 P1과 Rack1에 대하여 미리 설정되어 저장된 랙 전력 한계값 Pref1을 비교할 수 있다.
여기서, 뱅크 제어부(130)는, 배터리 뱅크에 포함된 전체 배터리 랙(10)에 대하여, 랙 전력 측정값과 랙 전력 한계값을 비교하도록 구성될 수 있다. 예를 들어, 도 5의 구성에서, 뱅크 제어부(130)는, Rack1, Rack2, Rack3, ..., Rack10 전체에 대하여, 각각의 랙 전력 측정값(P1, P2, P3, ..., P10)과 랙 전력 한계값(Pref1, Pref2, Pref3, ..., Pref10)을 비교하도록 구성될 수 있다.
또는, 뱅크 제어부(130)는, 배터리 뱅크에 포함된 전체 배터리 랙(10) 중, 일부 배터리 랙(10)에 대하여 랙 전력 측정값과 랙 전력 한계값을 비교하도록 구성될 수 있다. 예를 들어, 뱅크 제어부(130)는, 전체 배터리 랙(10) 중 가장 큰 크기로 측정된 랙 전력 측정값을 해당 배터리 랙(10)에 대응하는 랙 전력 한계값과 비교하도록 구성될 수 있다.
이와 같이, 랙 전력 측정값과 랙 전력 한계값이 비교되면, 그러한 비교 결과에 따라, 상기 뱅크 제어부(130)는, 전력 조절부(110)의 뱅크 전력 한계값을 변경 가능하도록 구성될 수 있다. 예를 들어, 상기 뱅크 제어부(130)는, 도 5의 구성에서, Rack 3에 대한 랙 전력 측정값(P3)과 랙 전력 한계값(Pref3)의 비교 결과에 따라, 뱅크 전력 한계값을 설정하도록 구성될 수 있다. 그러면, 이와 같이 설정된 뱅크 전력 한계값에 따라, 전력 조절부(110)는 배터리 뱅크로 유입되는 뱅크 전력량(Pt)의 크기를 조절할 수 있다.
본 발명의 이와 같은 구성에 의하면, 배터리 뱅크에 포함된 각 배터리 랙(10)의 랙 전력 측정값과 랙 전력 한계값의 비교 결과에 기초하여 전체 배터리 뱅크의 전력량을 조정할 수 있다. 그리고, 이와 같은 배터리 뱅크 전력량 조정에 의해, 특정 배터리 랙(10)으로 과도한 전력이 유입되거나 특정 배터리 랙(10)으로부터 과도한 전력이 유출되는 것을 방지할 수 있다. 따라서, 특정 배터리 랙(10)의 과도한 사용으로 인해 해당 배터리 랙(10)이 파손되는 것이 효과적으로 방지될 수 있다.
한편, 앞선 도 5의 실시예에서는, 배터리 뱅크에 10개의 배터리 랙(10)이 포함된 구성이 도시되어, 이를 기준으로 본 발명이 설명되었다. 그러나, 이러한 배터리 랙(10)의 개수는 일례에 해당할 뿐, 배터리 랙(10)은 다른 다양한 개수로 배터리 뱅크에 포함될 수 있다.
또한, 앞선 도 5의 실시예서는, 배터리 뱅크로 전력이 유입되는 경우, 즉 배터리 뱅크가 충전되는 경우를 중심으로 설명되었으나, 배터리 뱅크가 방전되는 경우에도 상술한 내용이 유사하게 적용될 수 있다. 이하에서도, 충전 및 방전되는 경우 중 하나를 중심으로 설명하며, 중복되는 설명에 대해서는 최대한 생략되도록 한다.
상기 뱅크 제어부(130), 상기 전력 측정부(120) 및 상기 전력 조절부(110) 중 적어도 하나는, 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함거나 이러한 부품 내지 장치로 구현될 수 있다. 특히, 제어 로직이 소프트웨어로 구현될 때, 상기 뱅크 제어부(130), 상기 전력 측정부(120) 및 상기 전력 조절부(110) 중 적어도 하나는, 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 상기 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 또한, 배터리 뱅크에는 BSC(Battery Section Controller) 내지 EMS(Energy Management System)와 같은 다양한 용어로 지칭되는 제어 유닛이 포함되는 경우가 많다. 이때, 상기 뱅크 제어부(130), 상기 전력 측정부(120) 및/또는 상기 전력 조절부(110)는, 이러한 종래 배터리 뱅크에 구비된 제어 유닛들로 전체 또는 적어도 일부 구성이 구현될 수도 있다.
한편, 본 발명에서, 각 구성요소가 프로세서 등으로 구현되는 경우, 각 구성요소의 동작 또는 기능에 대하여 '~하도록 구성된다' 또는 '~한다'는 등의 내용은, 해당 동작 또는 기능을 수행하도록 프로그래밍되어 있다는 내용으로 이해될 수도 있다.
본 발명에 따른 배터리 뱅크 전력 제어 장치(100)는, 도 4 및 도 5에 도시된 바와 같이, 메모리부(140)를 더 포함할 수 있다.
상기 메모리부(140)는, 본 발명에 따른 배터리 뱅크 전력 제어 장치(100)의 다른 구성요소, 이를테면, 뱅크 제어부(130)나 전력 측정부(120), 전력 조절부(110)가 그 기능을 수행하는데 필요한 프로그램이나 데이터 등을 저장할 수 있다. 예를 들어, 상기 메모리부(140)는, 각 배터리 랙(10)에 대하여 설정된 랙 전력 한계값이 저장될 수 있다. 그리고, 이러한 데이터나 프로그램들은, 뱅크 제어부(130)와 같은 다른 구성요소들이 액세스하여 제공받을 수 있다.
상기 메모리부(140)는, 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 메모리부(140)는 뱅크 제어부(130) 등 다른 구성요소에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
상기 뱅크 제어부(130)는, 랙 전력 측정값이 랙 전력 한계값을 초과하는 배터리 랙(10)을 선별하도록 구성될 수 있다.
예를 들어, 도 5의 구성을 참조하면, 뱅크 제어부(130)는, 배터리 뱅크에 포함된 10개의 배터리 랙(10)(Rack1, Rack2, Rack3, ..., Rack10) 중, 랙 전력 측정값(P1, P2, P3, ..., P10)이 랙 전력 한계값(Pref1, Pref2, Pref3, ..., Pref10)을 초과하는 배터리 랙(10)을 선별하도록 구성될 수 있다.
보다 구체적인 예로서, 도 5의 실시 구성에서, 전체 배터리 랙(10)의 랙 전력 한계값(Pref1, Pref2, Pref3, ..., Pref10)이 모두 90㎾로 동일한 것으로 가정한다. 이 때, Rack1, Rack2, Rack3, ..., Rack9의 랙 전력 측정값(P1, P2, P3, ..., P9)은 모두 88㎾이고, Rack10의 랙 전력 측정값(P10)만이 108㎾인 경우, Rack10에 대해서만 랙 전력 측정값이 랙 전력 한계값보다 크므로, 상기 뱅크 제어부(130)는, 10개의 배터리 랙(10) 중 Rack10을 선별할 수 있다.
그리고, 이와 같이 특정 배터리 랙(10)이 선별되면, 상기 뱅크 제어부(130)는, 선별된 배터리 랙(10)의 랙 전력 측정값과 랙 전력 한계값을 이용하여, 뱅크 전력 한계값을 설정하도록 구성될 수 있다.
예를 들어, 상기 실시예와 같이 Rack10이 선별된 경우, 상기 뱅크 제어부(130)는, Rack10의 랙 전력 측정값(P10)과 랙 전력 한계값(Pref10)을 이용하여 뱅크 전력 한계값을 설정할 수 있다.
그리고, 이와 같이 뱅크 전력 한계값이 설정되면, 설정된 뱅크 전력 한계값 정보는 전력 조절부(110)로 제공될 수 있다. 그러면, 전력 조절부(110)는, 설정된 뱅크 전력 한계값에 따라 뱅크 전력량(Pt)의 크기를 조정하도록 구성될 수 있다. 특히, 전력 조절부(110)는, 뱅크 전력량(Pt)이 뱅크 제어부(130)에 의해 설정된 뱅크 전력 한계값을 넘지 않도록 구성될 수 있다.
또한, 상기 뱅크 제어부(130)는, 배터리 랙(10)의 랙 전력 측정값과 랙 전력 한계값을 이용하여 감소 계수를 산출할 수 있다. 특히, 감소 계수는, 랙 전력 측정값에 대한 랙 전력 한계값의 비로서, 다음과 같이 나타낼 수 있다.
감소 계수 = (랙 전력 한계값/랙 전력 측정값)
이러한 감소 계수는, 특정 배터리 랙(10)에 대하여 산출될 수 있다.
특히, 감소 계수는, 앞선 실시예에서, 랙 전력 측정값이 랙 전력 한계값을 초과하는 것으로 선별된 배터리 랙(10)의 측정값 및 한계값으로부터 산출될 수 있다.
예를 들어, 도 5의 실시 구성에서, Rack10이 선별된 경우, Rack10의 랙 전력 측정값인 P10과 Rack10의 랙 전력 한계값인 Pref10을 이용하여, 배터리 뱅크 전체에 대한 감소 계수는 다음과 같이 산출될 수 있다.
감소 계수 = Pref10/P10
보다 구체적인 예로서, Rack10의 전력 측정값 P10이 108㎾이고, Rack10의 전력 한계값 Pref10이 90㎾인 경우, 뱅크 제어부(130)는 다음과 같이 감소 계수를 산출할 수 있다.
감소 계수 = 90/108 ≒ 0.83
그리고, 이와 같이 감소 계수가 산출되면, 상기 뱅크 제어부(130)는, 산출된 감소 계수에 기초하여 뱅크 전력 한계값을 연산할 수 있다.
예를 들어, 상기 실시예와 같이, 감소 계수가 0.83으로 산출된 경우, 뱅크 제어부(130)는 0.83이라는 감소 계수를 이용하여 배터리 뱅크 전체로 유입되는 전력의 크기, 즉 뱅크 전력 한계값을 연산할 수 있다.
더욱이, 상기 뱅크 제어부(130)는, 산출된 감소 계수를 이용하여 뱅크 전력 한계값을 업데이트하도록 구성될 수 있다. 즉, 이전에 설정된 뱅크 전력 한계값에 따라 배터리 뱅크에는 이미 전력이 유출입될 수 있다. 이때, 뱅크 제어부(130)에 의해 뱅크 전력 한계값이 업데이트되면, 업데이트된 뱅크 전력 한계값에 따라 배터리 뱅크의 전력량이 변경될 수 있다.
특히, 상기 뱅크 제어부(130)는, 산출된 감소 계수를 이전에 설정된 뱅크 전력 한계값에 곱하여, 뱅크 전력 한계값을 업데이트하도록 구성될 수 있다.
예를 들어, 산출된 감소 계수를 DF, 이전에 설정된 뱅크 전력 한계값을 Pb, 그리고 새롭게 업데이트된 뱅크 전력 한계값을 Pb'으로 나타내는 경우, 다음과 같은 관계식에 따라 뱅크 전력 한계값을 업데이트할 수 있다.
Pb' = Pb × DF
보다 구체적인 예로서, 현재 뱅크 전력 한계값이 900㎾로 설정되어 있고, 감소 계수 DF가 상기 실시예와 같이 0.83으로 산출된 경우, 뱅크 제어부(130)는 다음과 같이 뱅크 전력 한계값을 업데이트할 수 있다.
Pb' = 900 × 0.83 = 747
즉, 뱅크 제어부(130)는, 뱅크 전력 한계값을 900㎾에서 747㎾로 새롭게 설정할 수 있다.
그리고, 이와 같이 새롭게 설정된 뱅크 전력 한계값에 대한 정보는 전력 조절부(110)로 전송될 수 있다. 그러면, 전력 조절부(110)는, 새롭게 설정된 뱅크 전력 한계값에 따라 배터리 뱅크의 전력량을 제한할 수 있다. 예를 들어, 전력 조절부(110)는, 배터리 뱅크로 유입되거나 배터리 뱅크로부터 유출되는 전력량의 크기를 900㎾에서 747㎾로 감소시킬 수 있다.
특히, 상기 뱅크 제어부(130)는, 랙 전력 측정값이 랙 전력 한계값을 초과하는 배터리 랙(10)의 감소 계수에 기초하여, 뱅크 전력 한계값을 연산하도록 구성될 수 있다. 즉, 앞선 실시예에서 설명한 바와 같이, 도 5의 실시 구성에서, 10개의 배터리 랙(10) 중 Rack10의 랙 전력 측정값(P10)이 랙 전력 한계값(Pref10)을 초과하는 경우, 상기 뱅크 제어부(130)는, 이러한 Rack10의 감소 계수에 기초하여 전체 배터리 뱅크에 대한 뱅크 전력 한계값을 연산할 수 있다.
본 발명의 이와 같은 실시 구성에 의하면, 배터리 랙(10) 간 내부 저항 차이로 인해 전류가 불균형하게 흐른다 하더라도, 특정 배터리 랙(10)이 손상되는 것을 보다 효과적으로 방지할 수 있다.
예를 들어, 도 5의 실시 구성에서 각 배터리 랙(10)의 랙 전력 한계값이 모두 90㎾인 경우, 배터리 뱅크 전체로 유입되는 뱅크 전력량은, 90㎾×10으로서, 900㎾로 설정될 수 있다. 그런데, 만일 Rack10이 배터리 뱅크에 신규 설치된 랙이거나 다른 배터리 랙(10)들(Rack1 ~ Rack9)과 다른 종류의 이종 랙으로서, 내부 저항이 다른 배터리 랙(10)들보다 낮다면, Rack1~Rack9에 비해 Rack10으로 보다 많은 전류가 유입될 수 있다. 그리고, 이로 인해 Rakc10의 충전 전력량이 다른 랙들보다 클 수 있다. 이를테면, Rack1 ~ Rack9의 각 전력량은 88㎾이고, Rack10의 전력량만 108㎾로 형성될 수 있다. 이때, Rack10은, 108㎾의 전력량이 유입되어 계속해서 사용 시 파손될 가능성이 높다. 그리고, 이러한 특정 배터리 랙의 파손은, 전체 배터리 뱅크의 용량을 떨어뜨리게 된다. 뿐만 아니라, Rack10에 한계치보다 높은 과도한 전력이 유출입되는 경우, Rack10의 발화나 폭발 등 보다 심각한 문제를 야기시킬 수도 있다.
하지만, 본 발명의 상기 실시 구성에 의하면, 뱅크 제어부(130)가 Rack10의 전력 측정값(108㎾)이 랙 전력 한계값(90㎾)보다 높다는 것을 파악하고, Rack10의 전력 측정값(108㎾)과 랙 전력 한계값(90㎾)을 이용하여 감소 계수(0.83)를 산출할 수 있다.
그리고, 뱅크 제어부(130)는, 감소 계수(0.83)를 기존 뱅크 전력량(900㎾)에 곱합으로써, 747㎾라는 뱅크 전력 한계값을 설정할 수 있다. 그리고, 이와 같이 설정된 뱅크 전력 한계값에 의해, 전력 조절부(110)가 뱅크 전력량을 747㎾로 조정할 수 있다. 이때, 각 배터리 랙(10) 간 내부 저항 차이는 이전과 유사한 수준으로 존재할 수 있으므로, 여전히 다른 배터리 랙(10)들에 비해 Rack10으로 상대적으로 큰 전류가 유입될 수 있다. 하지만, 전체적인 뱅크 전력량이 감소되었으므로, Rack10의 전력량 역시 기존보다 감소될 수 있다.
특히, 상기 실시 구성에 의하면, Rack10의 전력량도 Rack10의 전력 한계값(Pref10) 이하로 떨어질 수 있다. 이때, 배터리 랙(10) 간 전력량의 비는 이전과 유사한 형태를 보일 것이라 추정될 수 있다. 따라서, Rack10의 감소된 전력량을 P10'이라 하면, 다음과 같은 관계식이 성립될 수 있다.
900 : 108 = 747 : P10'
따라서, P10'은 다음과 같이 계산될 수 있다.
P10' = (747×108)÷900 = 89.64 [㎾]
즉, 새롭게 설정된 뱅크 전력 한계값으로 인해, Rack10의 전력량은 기존 108㎾에서 89.64㎾로 감소된다고 할 수 있다 그리고, 이는 Rack10의 랙 전력 한계값인 90㎾ 이하가 된다.
따라서, 본 발명의 상기 실시 구성에 의하면, 배터리 뱅크에 포함된 다수의 배터리 랙(10) 중 특정 배터리 랙(10)이 랙 전력 한계값을 넘어서는 형태로 운용되는 상황에서, 해당 배터리 랙(10)의 랙 전력량이 랙 전력 한계값 이하로 낮아지도록 할 수 있다. 그러므로, 이 경우, 특정 배터리 랙(10)이 한계값 이상으로 계속해서 사용됨으로 인해 손상되거나 발화 또는 폭발되는 것을 원천적으로 방지할 수 있다.
더욱이, 본 발명에 따른 배터리 뱅크 전력 제어 장치(100)는, 주기적 또는 비주기적으로 상술한 과정에 따라 뱅크 전력 한계값을 업데이트함으로써, 뱅크 전력량의 크기를 자주 조정할 수 있다. 또한, 이러한 업데이트 주기의 설정 정도에 따라, 뱅크 전력량의 크기에 대한 조정도 실시간으로 수행할 수 있다. 그러므로, 특정 배터리 랙(10)의 전력량이 한계값 이상으로 넘어서더라도, 신속하게 조정하여, 배터리 랙(10)이나 배터리 뱅크의 영구 손상 내지 성능 저하 등을 효과적으로 방지할 수 있다.
또한, 상기 뱅크 제어부(130)는, 랙 전력 측정값이 랙 전력 한계값을 초과하는 배터리 랙(10)이 다수로 파악된 경우, 파악된 배터리 랙(10)들 각각에 대한 감소 계수 중 가장 낮은 감소 계수에 기초하여 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
예를 들어, 랙 전력 측정값이 랙 전력 한계값을 초과하는 배터리 랙(10)이 3개인 경우, 뱅크 제어부(130)는 3개의 배터리 랙(10) 각각에 대하여 감소 계수를 산출할 수 있다. 그리고, 뱅크 제어부(130)는, 산출된 감소 계수 중 가장 낮은 감소 계수를 이용하여 뱅크 전력 한계값을 연산할 수 있다.
보다 구체적인 예로서, Rack3, Rack7, Rack9에 대하여 랙 전력 측정값이 랙 전력 한계값을 초과하는 것으로 파악된 경우, 뱅크 제어부(130)는 3개의 배터리 랙(Rack3, Rack7, Rack9) 각각에 대하여 감소 계수를 산출할 수 있다.
이때, Rack3에 대하여 산출된 감소 계수는 0.95이고, Rack7에 대하여 산출된 감소 계수는 0.81이며, Rack9에 대하여 산출된 감소 계수는 0.89일 경우, 가장 낮은 감소 계수는 Rack7의 0.81이다. 따라서, 뱅크 제어부(130)는, 가장 낮은 감소 계수인 0.81을 이용하여 뱅크 전력 한계값을 연산할 수 있다.
본 발명의 이러한 구성에 의하면, 다수의 배터리 랙(10)에 대하여 전력량이 한계값 이상으로 입출력되는 상황에서, 하나의 배터리 랙(10)을 기준으로 한 처리 과정만 수행하더라도, 전체 배터리 랙(10)에 대하여 각각의 전력량이 한계값 이하가 되도록 할 수 있다. 그러므로, 이 경우, 보다 효율적인 전력량 조절이 가능할 수 있다.
또한, 상기 뱅크 제어부(130)는, 각각의 배터리 랙(10)에 대하여 랙 전력 측정값이 랙 전력 한계값을 초과하는 횟수를 카운팅하도록 구성될 수 있다. 그리고, 뱅크 제어부(130)는, 특정 배터리 랙(10)에 있어서 랙 전력 측정값이 랙 전력 한계값을 초과하는 것으로 카운팅된 횟수(이하, 카운팅 횟수)가 기준 누적 횟수 이상인지 판단하도록 구성될 수 있다. 여기서, 기준 누적 횟수는, 배터리 뱅크나 배터리 랙(10)의 사양, 배터리 뱅크의 운용 형태나 조건 등 여러 상황에 따라 다양하게 설정되어 미리 저장될 수 있다. 예를 들어, 기준 누적 횟수는 5회로 설정되어 메모리부(140) 등에 저장될 수 있다. 그리고, 뱅크 제어부(130)는, 이러한 비교 결과, 카운팅 횟수가 기준 누적 횟수 이상인 경우, 뱅크 전력 한계값을 연산하도록 구성될 수 있다. 이러한 실시예에 대해서는, 도 6을 참조하여 보다 구체적으로 설명한다.
도 6은, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 장치(100)에 의해 측정된 특정 배터리 랙(10)의 랙 전력 측정값과 해당 배터리 랙(10)의 랙 전력 한계값을 비교하여 나타낸 표이다.
도 6에 도시된 결과는, 배터리 뱅크에 포함된 다수의 배터리 랙(10) 중, 어느 하나의 배터리 랙(10)에 대한 측정값 및 한계값이라 할 수 있다. 예를 들어, 도 6의 결과는, 도 5에 도시된 여러 배터리 랙(10) 중, Rack10에 대한 랙 전력 측정값과 랙 전력 한계값을 나타낸 것이라 할 수 있다.
도 6에서, 특정 배터리 랙(10), 이를테면 Rack10에 대하여, 1차부터 12차까지 총 12번의 랙 전력량 측정이 이루어졌으며, 각 차수 별 측정값이 기재되어 있다. 이때, 해당 배터리 랙(10)의 한계값은 모든 측정 차수에서 90㎾로 동일하게 설정되어 있다. 한편, 기준 누적 횟수는 5회로 설정된 것으로 가정한다.
이러한 상황에서, 도 6에 도시된 바와 같이 랙 전력 측정값이 파악되면, 뱅크 제어부(130)는, 랙 전력 측정값이 랙 전력 한계값을 초과하는 횟수를 카운팅할 수 있다. 즉, 랙 전력 측정값이 랙 전력 한계값을 초과하는 경우는, 3차, 6차, 7차, 8차, 10차, 11차, 12차 측정 시라고 할 수 있다. 따라서, 랙 전력 측정값이 랙 전력 한계값을 초과하는 것으로 카운팅된 횟수는 총 7회이며, 이는 기준 누적 횟수인 5회를 초과하는 값이다. 그러므로, 상기 뱅크 제어부(130)는, 뱅크 전력량의 조정이 필요한 것으로 판단하고, 뱅크 전력 한계값을 새롭게 설정하도록 할 수 있다.
특히, 상기 뱅크 제어부(130)는, 카운팅 횟수가 기준 누적 횟수 이상이 되는 시점에서 뱅크 전력 한계값을 연산하여 뱅크 전력량이 변경되도록 구성될 수 있다.
예를 들어, 도 6의 실시예에서, 카운팅 횟수가 기준 누적 횟수인 5회 이상이 되는 시점은, 10차 측정 시라고 할 수 있다.
따라서, 뱅크 제어부(130)는, 10차 측정이 이루어진 시점에 뱅크 전력 한계값을 연산하고, 이를 통해 뱅크 전력량이 변경되도록 구성될 수 있다.
또한, 상기 뱅크 제어부(130)는, 카운팅 횟수가 기준 누적 횟수 이상이 되는 시점의 랙 전력 측정값을 이용하여 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
예를 들어, 도 6의 실시예에서, 카운팅 횟수가 기준 누적 횟수(5회) 이상이 되는 시점은 10차 측정 시이며, 이 때의 랙 전력 측정값은 108㎾이다. 이 경우, 뱅크 제어부(130)는, 108㎾의 측정값을 이용하여 뱅크 전력 한계값을 연산할 수 있다. 또한, 랙 전력 한계값이 각 차수 별로 서로 다르다면, 랙 전력 한계값 역시, 해당 시점, 즉 카운팅 횟수가 기준 누적 횟수 이상이 되는 시점에서의 한계값을 이용하도록 뱅크 제어부가 구성될 수 있다.
본 발명의 이러한 구성에 의하면, 랙 전력 측정값이 랙 전력 한계값을 초과하는 경우의 측정값이 서로 다르다 하더라도, 뱅크 전력 한계값이 연산되는 기준이 명확하게 설정되어 있다고 할 수 있다. 따라서, 뱅크 전력 한계값의 연산에 대한 명확성이 확보될 수 있다. 더욱이, 이러한 실시예에 의하면, 카운팅 횟수가 기준 누적 횟수 미만인 시점에서의 랙 전력 측정값은 저장될 필요가 없다. 예를 들어, 앞선 실시 구성에서, 1차부터 4차 측정 시까지의 측정값들은 따로 저장되거나 관리될 필요가 없다. 그러므로, 이 경우, 뱅크 제어부(130)의 연산 부하나 메모리부(140)의 저장 용량이 불필요하게 증가하는 것을 방지할 수 있다.
또한, 상기 뱅크 제어부(130)는, 랙 전력 측정값이 랙 전력 한계값을 초과하는 것으로 연속으로 카운팅된 횟수(이하, 연속 카운팅 횟수)가 기준 연속 횟수 이상인 경우, 뱅크 전력 한계값을 연산하도록 구성될 수 있다. 이 때의 기준 연속 횟수는 앞선 기준 누적 횟수와 다르게 설정될 수 있다. 특히, 기준 연속 횟수는 기준 누적 횟수보다 작은 값으로 설정될 수 있다.
이러한 기준 연속 횟수 역시 배터리 랙(10)의 사양이나 배터리 뱅크의 사양, 배터리 뱅크의 운용 상태나 조건 등 여러 상황을 고려하여 미리 설정될 수 있다. 예를 들어, 기준 연속 횟수는 3회로 설정될 수 있다.
그리고, 상기 뱅크 제어부(130)는, 연속 카운팅 횟수가 기준 연속 횟수 이상이 되는지 여부를 판단할 수 있다. 이때, 연속 카운팅 횟수가 기준 연속 횟수 이상인 경우, 뱅크 제어부(130)는 뱅크 전력량에 대한 조정이 필요한 것으로 판단하고, 뱅크 전력 한계값을 연산하도록 구성될 수 있다.
예를 들어, 기준 연속 횟수가 3회로 설정된 경우, 도 6의 실시예에서, 랙 전력 측정값이 랙 전력 한계값을 연속으로 3회 이상 초과하는 시점은, 8차 측정시라고 할 수 있다. 즉, 도 6에서, 6차, 7차 및 8차의 연속된 측정 차수에서, 랙 전력 측정값이 랙 전력 한계값을 연속으로 3회 이상 초과한 것으로 볼 수 있다. 그러므로, 상기 뱅크 제어부(130)는 8차 측정 시점에서 뱅크 전력 한계값을 연산하고, 이를 통해 뱅크 전력량이 조정되도록 할 수 있다.
본 발명의 이러한 구성에 의하면, 특정 배터리 랙(10)의 전력량이 한계값 이상으로 유지되는 것을 신속하게 파악하여, 문제 상황이 보다 적절하게 해결되도록 할 수 있다. 즉, 랙 전력 측정값이 랙 전력 한계값을 연속으로 초과하는 경우, 해당 배터리 랙(10)에 문제가 발생할 확률이 높아질 수 있는데, 본 실시예에서는 이러한 문제 상황에 대하여 보다 신속한 감지 및 후속 조치가 가능하도록 할 수 있다.
한편, 도 6에서는 하나의 배터리 랙(10)에서 랙 전력 측정값이 랙 전력 한계값을 초과하는 상황을 기준으로 설명되었으나, 다수의 배터리 랙(10)에서 랙 전력 측정값이 랙 전력 한계값을 초과하는 상황도 발생할 수 있다. 이에 대해서는 도 7을 참조하여 보다 구체적으로 설명한다.
도 7은, 본 발명의 다른 실시예에 따른 배터리 뱅크 전력 제어 장치(100)에 의해 측정된 여러 배터리 랙(10)의 랙 전력 측정값과 해당 배터리 랙(10)의 랙 전력 한계값을 비교하여 나타낸 표이다. 본 실시예에 대해서는, 앞선 도 6의 실시예와 차이점이 있는 부분을 위주로 설명하며, 도 6의 실시예에 대한 설명이 동일 또는 유사하게 적용될 수 있는 부분에 대해서는 상세한 설명을 생략한다.
도 7을 참조하면, 3개의 배터리 랙(10)(Rack2, Rack5, Rack8)에 대하여 1차부터 12차까지의 랙 전력 측정값과 랙 전력 한계값이 기재되어 있다. 이때, 모든 배터리 랙(10)의 랙 전력 한계값은 90㎾로 동일하며, 기준 누적 횟수는 5회로 설정되어 있다고 가정한다.
뱅크 제어부(130)는, 3개의 배터리 랙(10) 중에서, Rack5 및 Rack8에 대하여, 랙 전력 측정값이 랙 전력 한계값을 초과하는 횟수가 기준 누적 횟수인 5회 이상으로 카운팅된 것으로 판단할 수 있다. 특히, 뱅크 제어부(130)는, 카운팅 횟수(랙 전력 측정값이 랙 전력 한계값을 초과하는 것으로 카운팅된 횟수)가 먼저 기준 누적 횟수(5회)에 도달한 배터리 랙(10)을 파악할 수 있다. 도 7의 실시예에서는, Rack5의 경우 9차 측정 시점에서 카운팅 횟수가 기준 누적 횟수에 도달하였고, Rack8의 경우 10차 측정 시점에서 카운팅 횟수가 기준 누적 횟수에 도달하였다고 볼 수 있다. 따라서, 뱅크 제어부(130)는, 카운팅 횟수가 먼저 기준 누적 횟수에 도달한 Rack5의 랙 전력 한계값을 기초로 뱅크 전력 한계값을 연산할 수 있다. 즉, 뱅크 제어부(130)는, Rack5의 9차 측정값인 99㎾를 기초로 뱅크 전력 한계값을 연산할 수 있다.
한편, 각각의 배터리 랙(10)마다 랙 전력 한계값이 다르다면, 뱅크 전력 한계값을 연산할 때 이용되는 랙 전력 한계값은, 랙 전력 측정값이 선택된 배터리 랙(10), 이를테면 상기 실시예에서 Rack5의 랙 전력 한계값이 이용되도록 할 수 있다.
또한, 상기 뱅크 제어부(130)는, 감소 계수에 기초하여, 배터리 랙(10)의 차단 여부를 결정하도록 구성될 수 있다. 즉, 앞서 설명한 바와 같이, 감소 계수는 랙 전력 한계값과 랙 전력 측정값을 이용하여 계산될 수 있는데, 뱅크 제어부(130)는, 이러한 감소 계수를 이용하여 배터리 뱅크에서의 배터리 랙(10)의 차단 여부를 제어할 수 있다.
특히, 뱅크 제어부(130)는, 감소 계수의 역수에 기초하여, 배터리 랙(10)의 차단 여부를 결정할 수 있다. 여기서, 감소 계수를 DF라 하면, 감소 계수의 역수는 다음과 같이 나타낼 수 있다.
1/DF = (랙 전력 측정값/랙 전력 한계값)
그리고, 이러한 감소 계수의 역수(1/DF)와 비교되기 위한 값으로서, 참조값이 미리 설정될 수 있다. 이러한 참조값은, 배터리 랙(10)이나 배터리 뱅크의 사양, 또는 운용 상태 등 다양한 환경 내지 조건에 따라 적합한 값으로 결정되어 메모리부(140) 등에 미리 저장될 수 있다.
이때, 뱅크 제어부(130)는, 계산된 역수(1/DF)가 참조값 이상인지 여부를 판단할 수 있다. 그리고, 특정 배터리 랙(10)에 대하여 계산된 역수(1/DF)가 참조값 이상으로 판단되는 경우, 상기 뱅크 제어부(130)는 해당 배터리 랙(10)에 대하여 배터리 뱅크 내에서 연결이 차단되도록 할 수 있다.
예를 들어, 참조값이 1.3으로 설정된 상태에서, 특정 배터리 랙(10), 이를테면 Rack10에 대하여 계산된 역수가 1.4인 경우, 뱅크 제어부(130)는 해당 배터리 랙(10), 즉 Rack10에 대해서는 배터리 뱅크 내에서 다른 배터리 랙들과 연결이 차단되도록 할 수 있다. 반면, 특정 배터리 랙(10), 이를테면 Rack5에 대하여 계산된 역수가 1.2인 경우, 이는 참조값 미만이므로, 뱅크 제어부(130)는 해당 배터리 랙(10), 즉 Rack5에 대해서는 배터리 뱅크 내에서 연결이 차단되지 않고 그대로 유지되도록 할 수 있다.
상기 실시 구성에 의하면, 특정 배터리 랙(10)에 있어서 충방전 전력량이 한계값을 크게 초과하는 경우, 해당 배터리 랙(10)에 대해서는 배터리 뱅크로부터 탈락되고 더 이상 이용되지 않도록 할 수 있다. 충방전 전력량이 한계값을 크게 초과하는 상태에서는, 단시간의 사용에도 큰 손상이 발생할 수 있다. 따라서, 이 경우, 해당 배터리 랙(10)에 대해서는 즉시 사용이 중지되도록 함으로써, 해당 배터리 랙(10)이 보다 확실하게 보호되도록 할 수 있다.
한편, 배터리 뱅크 내부에서 특정 배터리 랙(10)에 대한 연결을 차단하는 방식은 다양한 형태로 구현될 수 있다. 예를 들어, 각각의 배터리 랙(10)에는 랙 제어부(12)가 구비되고, 이러한 랙 제어부(12)가 각 배터리 랙(10)에 흐르는 충방전 전력의 온오프를 제어할 수 있도록 구성될 수 있다. 이 경우, 뱅크 제어부(130)는 해당 배터리 랙(10)의 랙 제어부(12)로 제어 신호를 전송하여, 해당 배터리 랙(10)의 연결이 차단되도록 할 수 있다.
다른 예로, 각각의 배터리 랙(10)에 대하여 충방전 전력 경로 상에 별도의 스위칭부가 구비된 경우, 상기 뱅크 제어부(130)는 이러한 스위칭부를 턴오프시켜 해당 배터리 랙(10)의 연결이 차단되도록 할 수 있다.
상기 뱅크 제어부(130)는, 뱅크 전력 한계값을 연산할 때, 사용 시간에 따른 가중치를 부여하도록 구성될 수 있다. 특히, 뱅크 제어부(130)는, 뱅크 전력 한계값을 연산할 때 이용되는 감소 계수에 이러한 가중치가 적용되도록 할 수 있다.
예를 들어, 감소 계수는 다음과 같은 형태로 계산될 수 있다.
감소 계수 = (랙 전력 한계값/랙 전력 측정값)×w
여기서, w는 감소 계수를 계산할 때 이용되는 가중치로서, 배터리 랙(10) 또는 배터리 뱅크의 사용 시간에 따라 다르게 설정되어 부여될 수 있다.
특히, 가중치(w)는, 배터리 랙(10)의 사용 시간이 길어질수록, 이를테면 사이클 횟수가 많아질수록 점점 낮게 설정될 수 있다.
예를 들어, 가중치(w)는 일정 사이클 이하에서는 w1으로 설정되다가, 일정 사이클을 넘어서면 w1보다 낮은 값인 w2로 설정될 수 있다. 보다 구체적인 예로서, 가중치(w)는, 500 사이클 이하에서는 1로 설정되고, 500 사이클 이상인 경우에는 0.9로 설정될 수 있다.
더욱이, 이러한 가중치(w)는, 사이클 횟수에 따라 3단계 이상의 구간을 나누고, 각 구간 별로 다르게 설정될 수 있다. 예를 들어, 가중치(w)는, 1 사이클 ~ 500 사이클의 구간에서는 1로 설정되고, 501 사이클 ~ 1000 사이클의 구간에서는 0.9로 설정되며, 1001 사이클 이상의 구간에서는 0.8로 설정될 수 있다.
이 경우, 감소 계수는 사이클이 진행됨에 따라 점점 낮아질 수 있다. 예를 들어, 100 사이클 지점, 600 사이클 지점 및 1100 사이클 지점 각각에서, (랙 전력 한계값/랙 전력 측정값)이 모두 0.8로 동일하게 계산되었다 하더라도, 가중치는 각각 1, 0.9, 0.8로 다르게 부여될 수 있다.
이때, 감소 계수는, 다음과 같이 사이클 별로 서로 다르게 연산될 수 있다.
100 사이클 시점의 감소 계수: DF100 = 0.8×1 = 0.8
600 사이클 시점의 감소 계수: DF600 = 0.8×0.9 = 0.72
1100 사이클의 감소 계수: DF1100 = 0.8×0.8 = 0.64
즉, (랙 전력 한계값/랙 전력 측정값)이 모두 동일하다 하더라도, 사이클 별로 감소 계수는 서로 다르게 연산될 수 있다. 특히, 해당 배터리 랙(10)의 사이클이 늘어남에 따라, 감소 계수는 점차 낮아질 수 있다.
배터리 랙(10)이 사용됨에 따라, 배터리 랙(10) 내부의 이차 전지는 점차 퇴화될 수 있다. 따라서, 배터리 랙(10)에 대하여, 공식적으로 설정된 랙 전력 한계값은 일정하게 유지된다 하더라도, 실질적으로는 배터리 랙(10)에 대하여 허용되는 전력량의 한계치는 점점 낮아질 수 있다. 상기 실시 구성에 의하면, 가중치의 변화를 통해, 이러한 배터리 랙(10)의 실질적인 퇴화 상황이 반영되도록 할 수 있다. 그러므로, 이 경우, 보다 효과적인 배터리 랙(10) 보호가 가능할 수 있다.
상술한 본 발명에 따른 배터리 뱅크 전력 제어 장치는, 배터리 뱅크 내부에 포함될 수 있다. 이 경우, 본 발명에 따른 배터리 뱅크는, 다수의 배터리 랙(10) 및 케이블(20)과 함께, 본 발명에 따른 배터리 뱅크 전력 제어 장치를 포함한다고 할 수 있다.
또한 본 발명에 따른 배터리 뱅크 전력 제어 장치는, 에너지 저장 시스템(ESS)에 적용될 수 있다. 즉, 본 발명에 따른 에너지 저장 시스템(ESS)은, 상술한 바와 같은 본 발명에 따른 배터리 뱅크 전력 제어 장치(100)를 포함할 수 있다. 그리고, 본 발명에 따른 에너지 저장 시스템은, 본 발명에 따른 배터리 뱅크 전력 제어 장치(100) 이외에, 본 발명의 출원 시점에 공지된 ESS의 다양한 구성요소를 더 포함할 수 있다. 또한, 본 발명에 따른 에너지 저장 시스템은, 하나 이상의 배터리 뱅크를 포함할 수 있다. 특히, 다수의 배터리 뱅크가 포함되는 경우, 에너지 저장 시스템은, 각각의 배터리 뱅크에 대응되는 배터리 뱅크 전력 제어 장치(100)를 별도로 포함할 수 있다.
도 8은, 본 발명의 일 실시예에 따른 배터리 뱅크 전력 제어 방법을 개략적으로 나타내는 흐름도이다. 도 8에서, 각 단계의 수행 주체는, 앞서 설명한 배터리 뱅크 전력 제어 장치(100)의 각 구성요소라 할 수 있다.
도 8에 도시된 바와 같이, 본 발명에 따른 배터리 뱅크 전력 제어 방법은, 다수의 배터리 랙, 특히 서로 병렬로 연결된 다수의 배터리 랙을 구비하는 배터리 뱅크의 전력을 제어하는 방법으로서, 뱅크 전력 입출력 단계(S110), 랙 전력량 측정 단계(S120) 및 뱅크 전력 한계값 변경 단계(S140)를 포함한다.
먼저, S110 단계에서는, 미리 설정된 뱅크 전력 한계값에 기초하여, 배터리 뱅크로 전력이 입력되거나 배터리 뱅크로부터 전력이 출력될 수 있다.
또한, S120 단계에서는, S110 단계 중에 다수의 배터리 랙 각각에 대한 랙 전력량이 측정될 수 있다.
다음으로, S140 단계에서는, S120 단계에서 측정된 각 배터리 랙의 랙 전력 측정값에 기초하여, 뱅크 전력 한계값을 변경할 수 있다.
더욱이, 도 8에 도시된 바와 같이, 본 발명에 따른 배터리 뱅크 전력 제어 방법은, S120 단계에서 측정된 각 배터리 랙의 랙 전력 측정값과 각 배터리 랙에 대응하여 미리 저장된 랙 전력 한계값을 비교하는 단계를 더 포함할 수 있다.
이 경우, 상기 S140 단계에서는, S130 단계에서 비교된 결과에 따라, 뱅크 전력 한계값이 설정 변경될 수 있다.
본 발명에 따른 배터리 뱅크 전력 제어 방법은, 앞선 배터리 뱅크 전력 제어 장치(100)에서 설명된 여러 내용들이 동일 또는 유사하게 적용될 수 있다. 따라서, 이에 대한 상세한 설명을 생략한다.
한편, 본 명세서에서는, 다수의 배터리 랙을 구비하는 배터리 뱅크를 기준으로 전력이 제어되는 기술이 설명되었으나, 이는 다수의 배터리 그룹을 포함하는 다양한 형태의 배터리 시스템에도, 그 용어만 변경되어 본 발명이 적용될 수 있다.
예를 들어, 다수의 배터리 모듈(11)을 구비하는 배터리 팩에 대해서도 본 발명이 적용될 수 있다. 이 경우, 본 명세서에서 배터리 랙에 대한 설명은 배터리 모듈(11)에 대한 설명으로 대체되고, 배터리 뱅크에 대한 설명은 배터리 팩에 대한 설명으로 대체될 수 있다. 그리고, 본 발명의 이러한 측면에서는, '배터리 뱅크 전력 제어 장치'는 '배터리 팩 전력 제어 장치'로, '뱅크 제어부(130)'는 '팩 제어부'로 그 용어가 대체될 수 있다.
또한, 다수의 배터리 뱅크를 구비하는 에너지 저장 시스템에 대해서도 본 발명이 적용될 수 있다. 이 경우, 본 명세서에서 배터리 랙에 대한 설명은 배터리 뱅크에 대한 설명으로 대체되고, 배터리 뱅크에 대한 설명은 에너지 저장 시스템에 대한 설명으로 대체될 수 있다. 이 경우, 본 발명에 따른 기술은, 에너지 저장 시스템 전력 제어 장치라 할 수 있으며, '뱅크 제어부'와 같은 용어는 '시스템 제어부'와 같은 용어로 대체될 수 있다.
한편, 본 명세서에서는, '전력 조절부', '전력 측정부', '뱅크 제어부' 등과 같이, 소정 구성요소에 대하여 '~부'라는 용어가 사용되었는데, 이러한 구성 요소들은 반드시 물리적으로 구분되는 요소들이라기보다는 기능적으로 구분되는 요소들로 이해될 수 있다. 예를 들어, 각각의 구성요소는 다른 구성요소와 선택적으로 통합되거나 각각의 구성요소가 제어 로직(들)의 효율적인 실행을 위해 서브 구성요소들로 분할될 수 있다. 또한, 각 구성요소들이 통합 또는 분할되더라도 기능의 동일성이 인정될 수 있다면, 통합 또는 분할된 구성요소들도 본 출원의 범위 내에 있다고 해석되어야 함은 당업자에게 자명하다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
[부호의 설명]
10: 배터리 랙
11: 배터리 모듈 12: 랙 제어부, 13: 랙 프레임
20: 케이블
21: 전력 공급 경로
100: 배터리 뱅크 전력 제어 장치
110: 전력 조절부, 120: 전력 측정부, 130: 뱅크 제어부, 140: 메모리부

Claims (12)

  1. 다수의 배터리 랙을 구비하는 배터리 뱅크의 전력을 제어하는 장치에 있어서,
    미리 설정된 뱅크 전력 한계값에 기초하여, 상기 다수의 배터리 랙 전체에 대하여 입력 또는 출력되는 뱅크 전력량의 크기를 조정하도록 구성된 전력 조절부;
    상기 다수의 배터리 랙 각각에 대한 랙 전력량을 측정하도록 구성된 전력 측정부; 및
    상기 전력 측정부에 의해 측정된 각 배터리 랙의 랙 전력 측정값에 기초하여 상기 뱅크 전력 한계값을 설정하도록 구성된 뱅크 제어부
    를 포함하는 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  2. 제1항에 있어서,
    상기 뱅크 제어부는, 상기 각 배터리 랙의 랙 전력 측정값과 각 배터리 랙에 대응하여 미리 저장된 랙 전력 한계값을 비교하고, 비교 결과에 따라 상기 뱅크 전력 한계값을 설정하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  3. 제2항에 있어서,
    상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 배터리 랙을 선별하고, 선별된 배터리 랙의 랙 전력 측정값과 랙 전력 한계값을 이용하여 상기 뱅크 전력 한계값을 설정하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  4. 제2항에 있어서,
    상기 뱅크 제어부는, 상기 랙 전력 측정값에 대한 상기 랙 전력 한계값의 비율을 감소 계수로 산출하고, 산출된 감소 계수에 기초하여 상기 뱅크 전력 한계값을 연산하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  5. 제4항에 있어서,
    상기 뱅크 제어부는, 상기 산출된 감소 계수를 이전에 설정된 뱅크 전력 한계값에 곱하여 상기 뱅크 전력 한계값을 업데이트하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  6. 제4항에 있어서,
    상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 배터리 랙의 감소 계수에 기초하여, 상기 뱅크 전력 한계값을 연산하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  7. 제6항에 있어서,
    상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 배터리 랙이 다수인 경우, 가장 낮게 산출된 감소 계수에 기초하여 상기 뱅크 전력 한계값을 연산하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  8. 제6항에 있어서,
    상기 뱅크 제어부는, 상기 랙 전력 측정값이 상기 랙 전력 한계값을 초과하는 횟수를 카운팅하고, 카운팅된 횟수가 기준 누적 횟수 이상인 경우, 상기 뱅크 전력 한계값을 연산하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  9. 제4항에 있어서,
    상기 뱅크 제어부는, 상기 산출된 감소 계수의 역수에 기초하여, 상기 배터리 랙의 차단 여부를 결정하도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  10. 제9항에 있어서,
    상기 뱅크 제어부는, 상기 계산된 역수가 참조값 이상인 경우, 해당 배터리 랙의 연결을 차단시키도록 구성된 것을 특징으로 하는 배터리 뱅크 전력 제어 장치.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 배터리 뱅크 전력 제어 장치를 포함하는 에너지 저장 시스템.
  12. 다수의 배터리 랙을 구비하는 배터리 뱅크의 전력을 제어하는 방법에 있어서,
    미리 설정된 뱅크 전력 한계값에 기초하여, 상기 배터리 뱅크로 전력이 입력되거나 상기 배터리 뱅크로부터 전력이 출력되는 입출력 단계;
    상기 입출력 단계 중에 상기 다수의 배터리 랙 각각에 대한 랙 전력량을 측정하는 단계; 및
    상기 측정 단계에서 측정된 각 배터리 랙의 랙 전력 측정값에 기초하여, 상기 뱅크 전력 한계값을 변경하는 단계
    를 포함하는 것을 특징으로 하는 배터리 뱅크 전력 제어 방법.
PCT/KR2022/000593 2021-01-13 2022-01-12 배터리 뱅크 전력 제어 장치 및 방법 WO2022154498A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280005158.0A CN115803985A (zh) 2021-01-13 2022-01-12 电池库电力控制装置和方法
JP2022577173A JP2023529507A (ja) 2021-01-13 2022-01-12 バッテリーバンク電力制御装置及び方法
US18/012,439 US20230179005A1 (en) 2021-01-13 2022-01-12 Battery bank power control apparatus and method
EP22739693.4A EP4156449A4 (en) 2021-01-13 2022-01-12 DEVICE AND METHOD FOR CONTROLLING BATTERY BANK POWER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0004821 2021-01-13
KR1020210004821A KR20220102453A (ko) 2021-01-13 2021-01-13 배터리 뱅크 전력 제어 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2022154498A1 true WO2022154498A1 (ko) 2022-07-21

Family

ID=82447538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000593 WO2022154498A1 (ko) 2021-01-13 2022-01-12 배터리 뱅크 전력 제어 장치 및 방법

Country Status (6)

Country Link
US (1) US20230179005A1 (ko)
EP (1) EP4156449A4 (ko)
JP (1) JP2023529507A (ko)
KR (1) KR20220102453A (ko)
CN (1) CN115803985A (ko)
WO (1) WO2022154498A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220407332A1 (en) * 2021-06-21 2022-12-22 Lenovo (United States) Inc. Charging control method of a battery pack for portable electronic devices
KR102658099B1 (ko) 2022-09-27 2024-04-17 주식회사 엘지에너지솔루션 전압 평탄 구간을 갖는 배터리를 위한 배터리 관리 장치 및 이의 제어 방법
KR20240043647A (ko) 2022-09-27 2024-04-03 주식회사 엘지에너지솔루션 통신 이상 상황의 대응을 위한 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템
KR20240043646A (ko) 2022-09-27 2024-04-03 주식회사 엘지에너지솔루션 통신 이상 상황의 대응을 위한 배터리 제어 장치 및 이를 포함하는 에너지 저장 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070609A (ja) * 2010-09-24 2012-04-05 Lite On Clean Energy Technology Corp ハイブリッドバッテリーモジュール及びバッテリーの管理方法
KR101651772B1 (ko) * 2014-12-31 2016-08-29 주식회사 포스코아이씨티 다수의 에너지 저장의 전력 제어 시스템
KR20190057757A (ko) * 2017-11-20 2019-05-29 주식회사 엘지화학 배터리 파워 한계 값 제어 방법
KR20200059966A (ko) * 2018-11-22 2020-05-29 주식회사 엘지화학 Ess의 저전압 배터리 랙 관리 장치 및 방법
KR20200112248A (ko) * 2019-03-21 2020-10-05 주식회사 엘지화학 배터리 뱅크 제어 장치 및 방법
KR20210004821A (ko) 2019-07-05 2021-01-13 토토 가부시키가이샤 위생 세정 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701279B2 (ja) * 2012-12-11 2015-04-15 三菱重工業株式会社 充電制御装置、電池システム、及び充電制御方法
US11277013B2 (en) * 2017-06-08 2022-03-15 Panasonic Intellectual Property Management Co., Ltd. Power storage system having a plurality of power storage blocks interconnected in parallel and control device
JP7117534B2 (ja) * 2017-09-11 2022-08-15 パナソニックIpマネジメント株式会社 蓄電システム、管理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070609A (ja) * 2010-09-24 2012-04-05 Lite On Clean Energy Technology Corp ハイブリッドバッテリーモジュール及びバッテリーの管理方法
KR101651772B1 (ko) * 2014-12-31 2016-08-29 주식회사 포스코아이씨티 다수의 에너지 저장의 전력 제어 시스템
KR20190057757A (ko) * 2017-11-20 2019-05-29 주식회사 엘지화학 배터리 파워 한계 값 제어 방법
KR20200059966A (ko) * 2018-11-22 2020-05-29 주식회사 엘지화학 Ess의 저전압 배터리 랙 관리 장치 및 방법
KR20200112248A (ko) * 2019-03-21 2020-10-05 주식회사 엘지화학 배터리 뱅크 제어 장치 및 방법
KR20210004821A (ko) 2019-07-05 2021-01-13 토토 가부시키가이샤 위생 세정 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156449A4

Also Published As

Publication number Publication date
EP4156449A1 (en) 2023-03-29
EP4156449A4 (en) 2024-03-06
US20230179005A1 (en) 2023-06-08
KR20220102453A (ko) 2022-07-20
CN115803985A (zh) 2023-03-14
JP2023529507A (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
WO2022154498A1 (ko) 배터리 뱅크 전력 제어 장치 및 방법
WO2018139764A2 (ko) 배터리 관리 장치 및 방법
WO2017142385A1 (ko) 스위치 부품의 고장 진단 장치 및 방법
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2018105881A1 (ko) 배터리 관리 장치 및 방법
WO2019066214A1 (ko) 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차
WO2018235995A1 (ko) 전기자동차용 배터리의 열화 발생을 저감하면서 고속충전과 최대방전을 수행하기 위한 방법 및 그 장치
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2020189918A1 (ko) 배터리 관리 장치
WO2021006571A1 (ko) 배터리 팩의 결함 검출 장치 및 방법
WO2021006708A1 (ko) 배터리 팩의 상태 진단 장치 및 방법
WO2023054928A1 (ko) 단락 전류 예측 장치 및 방법
WO2021118118A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2019151781A1 (ko) 릴레이 구동 회로 진단 장치
WO2020166914A1 (ko) 충전 상태 추정 장치 및 방법
WO2021054716A1 (ko) 배터리 전압 데이터 및 온도 데이터를 이용한 이상 상태 사전 감지 시스템
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2020149557A1 (ko) 배터리 관리 장치 및 방법
WO2022015116A1 (ko) 배터리 관리 장치 및 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법
WO2023140671A1 (ko) 에너지 저장 장치
WO2020111899A1 (ko) 스위치 제어 장치 및 방법
WO2019231047A1 (ko) 태양광 연계 에너지 저장 시스템용 dc-dc 컨버터 및 그 제어방법
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2019235657A1 (en) Solar energy storage system divided into daytime and night mode, and its operation method and battery replacement method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577173

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022739693

Country of ref document: EP

Effective date: 20221220

NENP Non-entry into the national phase

Ref country code: DE