WO2023190912A1 - 極性基含有オレフィン共重合体及びその製造方法 - Google Patents

極性基含有オレフィン共重合体及びその製造方法 Download PDF

Info

Publication number
WO2023190912A1
WO2023190912A1 PCT/JP2023/013270 JP2023013270W WO2023190912A1 WO 2023190912 A1 WO2023190912 A1 WO 2023190912A1 JP 2023013270 W JP2023013270 W JP 2023013270W WO 2023190912 A1 WO2023190912 A1 WO 2023190912A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
hydrocarbon
polar
Prior art date
Application number
PCT/JP2023/013270
Other languages
English (en)
French (fr)
Inventor
佑輔 満重
玲 冨藤
直道 平間
和心 中本
Original Assignee
日本ポリケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリケム株式会社 filed Critical 日本ポリケム株式会社
Publication of WO2023190912A1 publication Critical patent/WO2023190912A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • C08F234/02Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring in a ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/80Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from iron group metals or platinum group metals

Definitions

  • the present invention relates to a novel polar group-containing olefin copolymer, and more specifically, a novel polar group-containing olefin copolymer in which a structure derived from an olefin having 3 or more carbon atoms and a structure derived from vinylene carbonate are introduced into the main chain. , and its manufacturing method.
  • Olefin copolymers are excellent among resin materials in various properties such as physical properties and moldability, and are also highly economical and environmentally friendly, making them very widely used and important industrial materials.
  • olefin copolymers do not have polar groups, it has been difficult to apply them to applications that require physical properties such as adhesion with other materials, printability, or compatibility with fillers.
  • polar groups into olefin copolymers by copolymerizing olefins and polar vinyl monomers using late period metal complexes (for example, Non-Patent Documents 1, 2, and 3).
  • polar groups are randomly introduced into polypropylene chains, it has been difficult to introduce polar groups into vicinal positions.
  • Vinylene carbonate is a compound produced industrially by chlorination of ethylene carbonate followed by dehydrochlorination reaction, and is mainly used as an additive for lithium-ion batteries.
  • vinylene carbonate contains a carbon-carbon double bond in its structure, it can also be used for copolymerization with olefins. Since the raw material ethylene carbonate can be made from carbon dioxide, the copolymerization of vinylene carbonate and olefins can be regarded as a carbon dioxide fixation method. By copolymerizing vinylene carbonate and olefin, oxygen atoms can be introduced into the vicinal position of polyolefin.
  • Patent Documents 1 and 2 As a copolymer of olefin and vinylene carbonate, a polar group-containing olefin copolymer obtained by radical copolymerization of ethylene and vinylene carbonate has been reported (for example, Patent Documents 1 and 2). Furthermore, copolymerization of ethylene and vinylene carbonate using a metal catalyst and hydrolysis of the obtained polar group-containing olefin copolymer have been reported (Patent Document 3).
  • Non-Patent Documents 4 and 5 it has been reported that the cyclic carbonate structure introduced by copolymerization with vinylene carbonate easily reacts with amines and can be used for graft polymerization and crosslinking of polymer chains (for example, Non-Patent Documents 4 and 5). .
  • the present application discloses a novel polar group-containing olefin copolymer obtained by copolymerizing an olefin having 3 or more carbon atoms and a vinylene carbonate derivative, particularly a novel polar group-containing propylene copolymer obtained by copolymerizing propylene and a vinylene carbonate derivative.
  • the present invention aims to provide a copolymer and a method for producing the same.
  • the present invention relates to the following ⁇ 1> to ⁇ 7>.
  • R x and R y each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a formyl group, a carboxy group, an ester group having 1 to 30 carbon atoms, an acyloxy group having 1 to 30 carbon atoms, and an acyloxy group having 1 to 30 carbon atoms.
  • Acyl group alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, alkylthio group having 1 to 30 carbon atoms, arylthio group having 6 to 30 carbon atoms, nitro group, at least one group having 1 to 30 carbon atoms
  • a hydrocarbon group or a heterocyclic group having 1 to 30 carbon atoms which may be substituted with at least one substituent, or R x and R y are bonded to each other to form a 4 to 10-membered ring. You may do so.
  • the structural unit (B) is at least one type selected from the group consisting of a structural unit represented by the following general formula (I) and a structural unit represented by the following general formula (II).
  • R x and R y are each independently the same as above.
  • ⁇ 3> The polar group-containing olefin copolymer according to ⁇ 1> or ⁇ 2>, wherein at least one of R x and R y is a hydrogen atom.
  • ⁇ 4> The polar group-containing olefin copolymer according to any one of ⁇ 1> to ⁇ 3>, wherein the R x and R y are both hydrogen atoms.
  • ⁇ 5> The polar group-containing olefin copolymer according to any one of ⁇ 1> to ⁇ 4>, wherein at least one of the olefin monomers having 3 to 20 carbon atoms is propylene.
  • ⁇ 6> The polar group-containing olefin copolymer according to any one of ⁇ 1> to ⁇ 5>, wherein the polar group-containing olefin copolymer contains 0.01 mol% to 5 mol% of the structural unit (B). Combined.
  • M represents a Group 10 transition metal
  • A[-C( O)-O-]M
  • A Indicates a divalent group shown in [ ] of [-O-]M or A[-S-]M (However, A and M on both sides are written to indicate the bonding direction of the group.
  • A is a divalent hydrocarbon group having 1 to 30 carbon atoms that connects Q and the phosphorus atom, and may be substituted with a substituent, and R L contains a hydrogen atom or a hetero atom.
  • R 1 and R 2 are each independently a hydrogen atom or a substituted Represents a hydrocarbon group having 1 to 30 carbon atoms which may be substituted with a group.
  • R L and L may form a ring
  • R 1 and R 2 may form a ring
  • R 1 or R 2 may combine with A to form a ring.
  • R x and R y are each independently the same as above.
  • a novel polar group-containing olefin copolymer obtained by copolymerizing an olefin having 3 or more carbon atoms and a vinylene carbonate derivative, particularly a novel polar group-containing propylene obtained by copolymerizing propylene and a vinylene carbonate derivative.
  • a copolymer and a method for producing the same can be provided.
  • FIG. 1 shows the results of 1 H-NMR measurement of polar group-containing propylene copolymer 1 of Example 1.
  • FIG. 2 shows a partially enlarged view of the 1 H-NMR measurement results of the polar group-containing propylene copolymer 1 of Example 1.
  • FIG. 3 shows the results of 13 C-NMR measurement of polar group-containing propylene copolymer 1 of Example 1.
  • FIG. 4 shows an IR chart of polar group-containing propylene copolymer 1 of Example 1.
  • FIG. 5 shows the results of 1 H-NMR measurement of polymer C1 of Comparative Example 1.
  • FIG. 6 shows a partially enlarged view of the 1 H-NMR measurement results of polymer C1 of Comparative Example 1.
  • FIG. 7 is a diagram illustrating the baseline and interval of a chromatogram in GPC.
  • (meth)acrylic acid indicates each of acrylic acid and methacrylic acid
  • (meth)acryloyl indicates each of acryloyl and methacryloyl.
  • indicating a numerical range is used to include the numerical values written before and after it as a lower limit value and an upper limit value. Further, in this specification, any combination of upper and lower limit values indicating a numerical range can be adopted.
  • the polar group-containing olefin copolymer of the present invention comprises a structural unit (A) derived from at least one olefin monomer having 3 to 20 carbon atoms; It is characterized by containing a structural unit (B) derived from at least one polar group-containing monomer represented by the following general formula (1).
  • R x and R y each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a formyl group, a carboxy group, an ester group having 1 to 30 carbon atoms, an acyloxy group having 1 to 30 carbon atoms, and an acyloxy group having 1 to 30 carbon atoms.
  • Acyl group alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, alkylthio group having 1 to 30 carbon atoms, arylthio group having 6 to 30 carbon atoms, nitro group, at least one group having 1 to 30 carbon atoms
  • a hydrocarbon group or a heterocyclic group having 1 to 30 carbon atoms which may be substituted with at least one substituent, or R x and R y are bonded to each other to form a 4 to 10-membered ring. You may do so.
  • the polar group-containing olefin copolymer of the present invention has a vinylene carbonate derivative represented by the general formula (1) in the main chain of an olefin polymer having 3 or more carbon atoms such as propylene.
  • This is a novel polar group-containing olefin copolymer containing a structural unit (B) containing a polar group derived from
  • the structural unit (B) is selected from the group consisting of a structural unit represented by the following general formula (I) and a structural unit represented by the following general formula (II). It can contain at least one kind of structural unit.
  • R x and R y are each independently the same as above.
  • the polar group-containing olefin copolymer of the present invention can introduce an oxygen atom into a vicinal position in a polyolefin having 3 or more carbon atoms such as propylene.
  • a polyolefin having 3 or more carbon atoms such as propylene.
  • the polar group-containing olefin copolymer of the present invention can be expected to be used as a carrier for metal complex catalysts, an adsorbent for recovering metal complexes, and the like.
  • graft polymerization on the polar group of the structural unit (B) of the polar group-containing olefin copolymer of the present invention, further functionalization can be achieved.
  • a copolymer of propylene and a vinylene carbonate derivative has improved heat resistance and material processability compared to a copolymer of ethylene and a vinylene carbonate derivative.
  • carbon dioxide can be fixed by copolymerizing propylene and vinylene carbonate.
  • Polypropylene is the second most produced plastic after polyethylene, and it is clear that there is a need to further improve its functionality and reduce carbon dioxide emissions during production.
  • the structural unit (A) is a structural unit derived from at least one type of olefin monomer having 3 to 20 carbon atoms.
  • the monomer (A) used in the present invention to derive the structural unit (A) is at least one type of olefin having 3 to 20 carbon atoms.
  • the olefin having 3 to 20 carbon atoms may be a chain olefin or a cyclic olefin, and at least one olefin selected from the group consisting of ⁇ -olefins having 3 to 20 carbon atoms and cyclic olefins having 4 to 20 carbon atoms. Examples include seeds.
  • R is a hydrocarbon group having 1 to 18 carbon atoms
  • cyclic olefin having 4 to 20 carbon atoms include cyclobutene, cyclopentene, cyclohexene, and norbornene.
  • monomer (A) examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, and norbornene. etc. From the viewpoint of polymer production efficiency, the monomer (A) is preferably one or more selected from the group consisting of propylene, 1-butene, and norbornene, and more preferably propylene. . Further, the structural unit (A) may be used alone or in combination of two or more types.
  • Examples of the combination of the two types include structural units derived from propylene-1-butene, propylene-1-hexene, propylene-1-octene, propylene-norbornene, and the like.
  • Examples of the combination of the three types include structural units derived from propylene-1-butene-hexene and propylene-1-butene-1-octene.
  • the monomer (A) used in the structural unit (A) preferably essentially contains propylene, and may further contain one or more ⁇ -olefins having 4 to 20 carbon atoms as necessary. good.
  • Propylene in the monomer (A) may be 65 to 100 mol%, or 70 to 100 mol%, based on 100 mol% of the entire monomer (A).
  • Structural unit (B) The structural unit (B) is a structural unit derived from at least one polar group-containing monomer represented by the following general formula (1).
  • R x and R y each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, a formyl group, a carboxy group, an ester group having 1 to 30 carbon atoms, an acyloxy group having 1 to 30 carbon atoms, and an acyloxy group having 1 to 30 carbon atoms.
  • Acyl group alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, alkylthio group having 1 to 30 carbon atoms, arylthio group having 6 to 30 carbon atoms, nitro group, at least one group having 1 to 30 carbon atoms
  • a hydrocarbon group or a heterocyclic group having 1 to 30 carbon atoms which may be substituted with at least one substituent, or R x and R y are bonded to each other to form a 4 to 10-membered ring. You may do so.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the ester group having 1 to 30 carbon atoms is a monovalent group represented by -COOR a , where R a represents a hydrocarbon group having 1 to 30 carbon atoms.
  • R a represents a hydrocarbon group having 1 to 30 carbon atoms.
  • the number of carbon atoms in the ester group does not include the number of carbon atoms in the carbonyl group, and refers to the number of carbon atoms in the above Ra , and the lower limit may be 1 or more, it may be 2 or more, and the upper limit is 30 or less. The number may be 20 or less, or 10 or less.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms in R a include linear, branched, cyclic saturated or unsaturated aliphatic hydrocarbon groups, aromatic hydrocarbon groups, and combinations thereof.
  • the alkyl group having 1 to 30 carbon atoms may be linear, branched, or cyclic, and may be a methyl group, an ethyl group, a 1-propyl group, a 1-butyl group, a 1-pentyl group, 1-hexyl group, 1-heptyl group, 1-octyl group, 1-nonyl group, 1-decyl group, t-butyl group, tricyclohexylmethyl group, isopropyl group, 1-dimethylpropyl group, 1,1,2- Trimethylpropyl group, 1,1-diethylpropyl group, isobutyl group, 1,1-dimethylbutyl group, 2-pentyl group, 3-pentyl group, 2-hexyl group, 3-hexyl group, 2-ethylhexyl group, 2- heptyl group, 3-heptyl group, 4-heptyl group, 2-propylheptyl group, 2-oct
  • the hydrocarbon group may further have a substituent, and examples of the substituent include a halogen atom, an epoxy group, an amino group optionally substituted with a hydrocarbon group having 1 to 30 carbon atoms, Examples include an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a hydroxyl group. Note that the number of carbon atoms included in the substituent is not included in the number of carbon atoms mentioned above.
  • the hydrocarbon group in R a is preferably a hydrocarbon group having 1 to 8 carbon atoms, more preferably a hydrocarbon group having 1 to 6 carbon atoms, and an unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
  • ester groups having 1 to 30 carbon atoms include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, and cyclohexyloxycarbonyl group.
  • Preferred examples include 2-ethylhexyloxycarbonyl group, benzyloxycarbonyl group, and phenoxycarbonyl group.
  • the acyloxy group having 1 to 30 carbon atoms is a monovalent group represented by -OCOR b , where R b represents a hydrocarbon group having 1 to 30 carbon atoms.
  • R b represents a hydrocarbon group having 1 to 30 carbon atoms.
  • the number of carbon atoms in the acyloxy group does not include the number of carbon atoms in the carbonyl group, and refers to the number of carbon atoms in the above R b , and the lower limit may be 1 or more, it may be 2 or more, and the upper limit is 30 or less. The number may be 20 or less, or 10 or less.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include those mentioned above for R a .
  • Preferred examples of the acyloxy group having 1 to 30 carbon atoms include acetyloxy group, propionyloxy group, (meth)acryloyloxy group, and benzoyloxy group.
  • the acyl group having 1 to 30 carbon atoms is a monovalent group represented by -COR c , where R c represents a hydrocarbon group having 1 to 30 carbon atoms. .
  • the number of carbon atoms in the acyl group does not include the number of carbon atoms in the carbonyl group, and refers to the number of carbon atoms in the above R c , and the lower limit may be 1 or more, it may be 2 or more, and the upper limit is 30 or less. The number may be 20 or less, or 10 or less.
  • the hydrocarbon group having 1 to 30 carbon atoms in R c can be the same as those mentioned in R a above.
  • Preferred examples of the acyl group having 1 to 30 carbon atoms include acetyl group, propionyl group, (meth)acryloyl group, and benzoyl group.
  • the alkoxy group having 1 to 30 carbon atoms is a monovalent group represented by -OR d , where R d is an alkyl group having 1 to 30 carbon atoms or an alkyl group having 7 to 30 carbon atoms. represents an aralkyl group.
  • the number of carbon atoms in the alkoxy group may have a lower limit of 1 or more, or 2 or more, and an upper limit of 30 or less, 20 or less, or 10 or less. good.
  • the alkyl group having 1 to 30 carbon atoms and the aralkyl group having 7 to 30 carbon atoms in R d can be the same as those mentioned in R a above.
  • alkoxy group having 1 to 30 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, and t-butoxy group.
  • Preferred examples include n-pentoxy group, n-hexoxy group, cyclopropoxy group, cyclopentoxy group, cyclohexyloxy group, n-octoxy group, n-detoxy group, benzyloxy group and the like.
  • the aryloxy group having 6 to 30 carbon atoms is a monovalent group represented by -OR d' , where R d' represents an aryl group having 6 to 30 carbon atoms.
  • the number of carbon atoms in the aryl group may have a lower limit of 6 or more, and may be 8 or more, and an upper limit of 30 or less, 20 or less, or 12 or less. good.
  • Examples of the aryl group having 6 to 30 carbon atoms in R d' include those corresponding to the aryl group having 6 to 30 carbon atoms among the above R a .
  • aryloxy group having 6 to 30 carbon atoms include phenoxy group, methylphenoxy group, ethylphenoxy group, butylphenoxy group, naphthyloxy group, fluorenyloxy group, anthracenyloxy group, etc. be able to.
  • the alkylthio group having 1 to 30 carbon atoms is a monovalent group represented by -SR e , where R e is an alkyl group having 1 to 30 carbon atoms or an alkyl group having 7 to 30 carbon atoms. represents an aralkyl group.
  • the number of carbon atoms in the alkylthio group may have a lower limit of 1 or more, or 2 or more, and an upper limit of 30 or less, 20 or less, or 10 or less. good.
  • Examples of the alkyl group having 1 to 30 carbon atoms and the aralkyl group having 7 to 30 carbon atoms in R e include the same groups as those for R a above .
  • the alkylthio group having 1 to 30 carbon atoms include methylthio, ethylthio, and benzylthio.
  • the arylthio group having 6 to 30 carbon atoms is a monovalent group represented by -SR e' , where R e' represents an aryl group having 6 to 30 carbon atoms.
  • the number of carbon atoms in the aryl group may have a lower limit of 6 or more, and may be 8 or more, and an upper limit of 30 or less, 20 or less, or 12 or less. good.
  • Examples of the aryl group having 6 to 30 carbon atoms in R e' include those corresponding to the aryl group having 6 to 30 carbon atoms among the above R a .
  • Specific examples of the arylthio group having 6 to 30 carbon atoms include phenylthio group, naphthylthio group, and the like.
  • the amino group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms is a monovalent group represented by -N(R f )R g , where R f and R g each independently represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • the lower limit of the carbon number of the hydrocarbon group substituted with the substituted amino group may be 1 or more, and may be 2 or more, and the upper limit may be 30 or less, and may be 20 or less. It may be 10 or less.
  • the hydrocarbon group having 1 to 30 carbon atoms in R f and R g can be the same as those mentioned in R a above.
  • amino group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms include, for example, an amino group (-NH 2 ), a monomethylamino group, a dimethylamino group, a monoethylamino group, Preferred examples include diethylamino group, monoisopropylamino group, diisopropylamino group, monophenylamino group, and diphenylamino group.
  • the silyl group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms is a monovalent group represented by -SiR h R i R j , where R h , R i and R j each independently represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • the lower limit of the carbon number of the hydrocarbon group substituted by the silyl group may be 1 or more, and may be 2 or more, and the upper limit may be 30 or less, and may be 20 or less. , 10 or less.
  • the hydrocarbon groups having 1 to 30 carbon atoms in R h , R i and R j can be the same as those mentioned in R a above.
  • the amide group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms is a monovalent group represented by -CONR k R l or -NR k COR l. , where R k and R l each independently represent a hydrogen atom or a hydrocarbon group having 1 to 30 carbon atoms.
  • the number of carbon atoms in the hydrocarbon group substituted with the substituted amide group does not include the number of carbon atoms in the carbonyl group, and refers to the number of carbon atoms in R k and R l above, and the lower limit may be 1 or more, and 2 or more.
  • the upper limit may be 30 or less, may be 20 or less, or may be 10 or less.
  • the hydrocarbon group having 1 to 30 carbon atoms in R k and R l can be the same as those mentioned in R a above.
  • Specific examples of the amide group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms include -CONH 2 , -CONH(CH 3 ), -CON(CH 3 ) 2 , -CONH (C 2 H 5 ), -CON(C 2 H 5 ) 2 , -CONH(i-C 3 H 7 ), -CON(i-C 3 H 7 ) 2 , -CONH(Ph), -CON(Ph ) 2 , -NHCOCH 3 , -NHCOC 2 H 5 and the like can be preferably mentioned.
  • Ph represents a phenyl group.
  • a hydrocarbon group having 1 to 30 carbon atoms substituted with at least one halogen atom has at least one hydrogen atom substituted with a halogen atom. It is a substituted group.
  • the hydrocarbon group having 1 to 30 carbon atoms can be the same as those mentioned above for R a , but among them, alkyl groups and aryl groups are preferred from the viewpoint of easy availability.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the lower limit of the number of carbon atoms in the halogen-substituted hydrocarbon group having 1 to 30 carbon atoms may be 1 or more, and may be 2 or more, and the upper limit may be 30 or less, and may be 20 or less. It may be 10 or less.
  • halogen-substituted hydrocarbon group having 1 to 30 carbon atoms include, for example, a halomethyl group in which 1 to 3 of the hydrogen atoms of the methyl group are substituted with halogen atoms, a chloroethyl group, a ⁇ -chloropropyl group, , 3',3''-trifluoropropyl group, perfluoropropyl group, perfluorophenyl group, bromophenyl group, chlorophenyl group, fluorophenyl group, dichlorophenyl group, etc.
  • the halomethyl group includes a chloromethyl group, Examples include bromomethyl group, fluoromethyl group, dichloromethyl group, trifluoromethyl group, and the like.
  • the number of carbon atoms is 1 to 30 in a hydrocarbon group having 1 to 30 carbon atoms that may be substituted with at least one substituent selected from the group consisting of oxygen atom, sulfur atom, and nitrogen atom.
  • the hydrocarbon group include the same ones as R a above.
  • the hydrocarbon group having 1 to 30 carbon atoms which may be substituted with at least one substituent selected from the group consisting of an oxygen atom, a sulfur atom, and a nitrogen atom include an alkyl group, an alkenyl group, and an aryl group. , or an aralkyl group are preferred from the viewpoint of copolymer production efficiency.
  • unsubstituted hydrocarbon groups having 1 to 30 carbon atoms include methyl group, ethyl group, 1-propyl group, 1-butyl group, 1-pentyl group, 1-hexyl group, isopropyl group, isobutyl group, Preferred examples include t-butyl group, cyclopentyl group, cyclohexyl group, ethenyl group, propenyl group, butenyl group, and phenyl group.
  • the number of carbon atoms in the heterocycle in the heterocyclic group which may be substituted with at least one substituent selected from the group consisting of oxygen atom, sulfur atom and nitrogen atom is 2 or more.
  • the upper limit value may be 8 or less, may be 6 or less, or may be 5 or less.
  • Specific examples of the heterocyclic group include a pyridyl group, a furanyl group, a thienyl group, an oxazoyl group, an oxazolidinyl group, an isoxazolidinyl group, a thiazolyl group, a dihydrofuranyl group, and a tetrahydrofuranyl group.
  • Examples of the substituent containing at least one selected from the group consisting of an oxygen atom, a sulfur atom, and a nitrogen atom include a hydroxyl group, a formyl group, a carboxy group, an epoxy group, an ester group having 1 to 30 carbon atoms, and a ester group having 1 to 30 carbon atoms.
  • acyloxy group acyl group having 1 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, aryloxy group having 6 to 30 carbon atoms, cyano group, nitro group, at least one hydrocarbon having 1 to 30 carbon atoms
  • the sulfonyl group having 1 to 30 carbon atoms is a monovalent group represented by -SO 2 R m , where R m represents a hydrocarbon group having 1 to 30 carbon atoms.
  • the number of carbon atoms in the sulfonyl group may have a lower limit of 1 or more, or 2 or more, and an upper limit of 30 or less, 20 or less, or 10 or less. good.
  • the hydrocarbon group having 1 to 30 carbon atoms in R m can be the same as those mentioned in R a above. Specific examples of the sulfonyl group having 1 to 30 carbon atoms include -SO 2 CH 3 and -SO 2 Ph.
  • the sulfoxide group having 1 to 30 carbon atoms is a monovalent group represented by -SOR n , where R n represents a hydrocarbon group having 1 to 30 carbon atoms.
  • the number of carbon atoms in the sulfoxide group may have a lower limit of 1 or more, or 2 or more, and an upper limit of 30 or less, 20 or less, or 10 or less. good.
  • the hydrocarbon group having 1 to 30 carbon atoms in R n can be the same as those mentioned in R a above.
  • Specific examples of the sulfoxide group having 1 to 30 carbon atoms include -SOCH 3 and -SOPh.
  • the sulfonic acid ester group having 1 to 30 carbon atoms is a monovalent group represented by -OSO 2 R o , where R o represents a hydrocarbon group having 1 to 30 carbon atoms.
  • R o represents a hydrocarbon group having 1 to 30 carbon atoms.
  • the lower limit of the number of carbon atoms in the sulfonic acid ester group may be 1 or more, or 2 or more, and the upper limit may be 30 or less, 20 or less, or 10 or less. It's okay.
  • the hydrocarbon group having 1 to 30 carbon atoms in R o can be the same as those mentioned in R a above. Specific examples of the sulfonic acid ester group having 1 to 30 carbon atoms include -SO 3 CH 3 and -SO 3 Ph.
  • substituents containing at least one selected from the group consisting of oxygen atoms, sulfur atoms, and nitrogen atoms from the viewpoint of copolymer production efficiency, hydroxyl groups, alkoxy groups having 1 to 30 carbon atoms, carbon atoms Consists of an aryloxy group having 6 to 30 carbon atoms, an amino group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms, an alkylthio group having 1 to 30 carbon atoms, and an arylthio group having 6 to 30 carbon atoms.
  • It is preferably at least one selected from the group, and is substituted with an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and at least one hydrocarbon group having 1 to 30 carbon atoms. More preferably, it is at least one selected from the group consisting of amino groups.
  • R x and R y may be bonded to each other to form a 4- to 10-membered ring together with the unsaturated bond to which R x and R y are bonded; It may form a 6-membered ring.
  • the ring formed by combining R x and R y with each other may be a carbocycle or a heterocycle, and the carbocycle or heterocycle may be monocyclic or polycyclic.
  • R x and R y may be bonded to each other to form a saturated bond or an unsaturated bond, or may form a -CO-O-CO- group, and may be a non-aromatic ring.
  • At least one of the R x and R y may be a substituent different from a hydrogen atom in order to improve the availability of the polar group-containing olefin copolymer.
  • halogen atom hydroxyl group, formyl group, carboxy group, ester group having 1 to 30 carbon atoms, acyloxy group having 1 to 30 carbon atoms, acyl group having 1 to 30 carbon atoms, alkoxy group having 1 to 30 carbon atoms, carbon number Aryloxy group having 6 to 30 carbon atoms, alkylthio group having 1 to 30 carbon atoms, arylthio group having 6 to 30 carbon atoms, nitro group, amino group optionally substituted with at least one hydrocarbon group having 1 to 30 carbon atoms , a silyl group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms, an amide group which may be substituted with at least one hydrocarbon group having 1 to 30 carbon atoms, and at
  • At least one of the R x and R y in the general formula (1) may be a hydrogen atom, and the R x and R y are Both may be hydrogen atoms.
  • Examples of the polar group-containing monomer (monomer (B)) represented by the general formula (1) for inducing the structural unit (B) include, but are not limited to, the following monomers.
  • the polar group-containing monomer represented by the general formula (1) can be produced by appropriately combining conventionally known production methods.
  • R x and R y is a substituent different from a hydrogen atom
  • a cyclization reaction of propargyl alcohol and carbon dioxide using a silver catalyst a reaction using acyloin and a carbonylating agent such as phosgene, etc. can be used to introduce substituents.
  • Synlett (2014), 25, P1178-1180. Tetrahedron Lett. (1972), 17, P1701-1704.
  • Substituents can also be introduced by referring to .
  • the polar group-containing monomer represented by the general formula (1) commercially available products may be used.
  • two or more types of polar group-containing monomers represented by the general formula (1) may be used in combination.
  • the structural unit (B) derived from at least one polar group-containing monomer represented by the general formula (1) includes a structural unit represented by the following general formula (I) and a structural unit represented by the following general formula (II). It is preferable to include at least one structural unit selected from the group consisting of structural units.
  • R x and R y are each independently the same as above.
  • the structural unit (B) may include an aldehyde structure at the terminal. It is presumed that the aldehyde structure is generated by migration and insertion of vinylene carbonate, followed by ⁇ -carbonate elimination, followed by decarboxylation and protonation. The estimated formation mechanism of the aldehyde structure is shown below. In the following scheme, M and Q are the same as in formula (101) described below. Further, the structural unit (B) may include a ketone structure at the terminal when at least one of R x and R y is not a hydrogen atom.
  • the polar group-containing olefin copolymer of the present invention may further contain other structural units different from the structural units (A) and (B).
  • Other structural units include, for example, structural units derived from (meth)acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate, as well as vinyl acetate, allyl acetate, 3-butenyl acetate, Examples include structural units derived from other polar group-containing monomers such as acrylonitrile, 3-cyanopropene, and vinyl ether.
  • the polar group-containing olefin copolymer of the present invention comprises a structural unit (A) derived from at least one olefin monomer having 3 to 20 carbon atoms, and the general formula (1).
  • the polar group-containing olefin copolymer of the present invention must contain one or more structural units (A) and one or more structural units (B), and must contain structural units derived from two or more monomers in total.
  • the proportion of the structural unit (A) in the polar group-containing olefin copolymer may be appropriately selected depending on the desired physical properties, but the lower limit is usually 60 mol% with respect to 100 mol% of the entire structural unit. .00 mol% or more, may be 70.00 mol% or more, may be 80.00 mol% or more, may be 90.00 mol% or more, may be 95.00 mol% or more. It may be 96.00 mol% or more, 97.00 mol% or more, or 98.00 mol% or more.
  • the upper limit is usually 99.99 mol% or less, may be 99.95 mol% or less, may be 99.90 mol% or less, may be 99.85 mol% or less, and may be 99.95 mol% or less. It may be 80 mol% or less, or 99.70 mol% or less.
  • the proportion of the structural unit (B) in the polar group-containing olefin copolymer may be appropriately selected depending on the average molecular weight and desired physical properties, but from the viewpoint of polymerization activity, it is Usually, the lower limit is 0.01 mol% or more, may be 0.05 mol% or more, may be 0.10 mol% or more, may be 0.15 mol% or more, and may be 0.20 mol%. It may be more than 0.30 mol%. On the other hand, the upper limit is usually 5.00 mol% or less, and may be 4.00 mol% or less, 3.00 mol% or less, or 2.00 mol% or less. Any combination of the ratios of structural units (A) and (B) in the polar group-containing olefin copolymer of the present invention can be adopted.
  • the polar group-containing olefin copolymer of the present invention may further contain one or more other structural units.
  • the proportion of the other structural units in the polar group-containing olefin copolymer may be appropriately selected depending on the desired physical properties.
  • the lower limit is usually 0.01 mol% or more, it may be 0.05 mol% or more, it may be 0.10 mol% or more, and it may be 0.50 mol% or more.
  • the upper limit is usually 35.00 mol% or less, and may be 30.00 mol% or less, 20.00 mol% or less, or 10.00 mol% or less.
  • each monomer is defined as one structural unit in the polar group-containing olefin copolymer.
  • the structural unit amount is the ratio of each structural unit expressed in mol% when the total structural units in the polar group-containing olefin copolymer is 100 mol%.
  • the polar group-containing olefin copolymer of the present invention may be a random copolymer, a block copolymer, or a graft copolymer of the structural unit (A), the structural unit (B), and other structural units contained as necessary. Examples include merging. Among these, a random copolymer that can contain a large amount of the structural unit (B) may be used.
  • the amount of structural units can be controlled by selecting the catalyst, the amounts of monomer (A), monomer (B), and other monomers added during polymerization, and the pressure and temperature during polymerization.
  • Specific means for increasing the amount of structural unit (B) in the copolymer include increasing the amount of monomer (B) added during polymerization, selecting a catalyst, reducing olefin pressure during polymerization, and increasing polymerization temperature. is valid. For example, it is required to control these factors to achieve a desired copolymer region.
  • the amount of structural units in the polar group-containing olefin copolymer in the present invention is determined using 1 H-NMR spectrum and 13 C-NMR spectrum. Specifically, the NMR spectrum can be measured by the method described in the Examples. Furthermore, the presence of polar groups such as the structural unit (B) in the polar group-containing olefin copolymer of the present invention can also be confirmed by analyzing the IR spectrum. Specifically, the IR spectrum can be measured by the method described in the Examples.
  • the weight average molecular weight (Mw) of the polar group-containing olefin copolymer in the present invention is usually 1,000 to 2,000,000, preferably 10,000 to 1,500,000, more preferably 10,000 to 1 ,000,000, preferably in the range of 10,000 to 800,000, and more preferably in the range of 5,000 to 600,000.
  • Mw is at least the lower limit, physical properties such as mechanical strength and impact resistance tend to be sufficient, and when Mw is at most the upper limit, it is easy to mold from the viewpoint of melt viscosity.
  • the number average molecular weight (Mn) of the polar group-containing olefin copolymer in the present invention is usually 1,000 to 2,000,000, preferably 3,000 to 1,500,000, more preferably 3,000 to 1 ,000,000, preferably in the range of 3,000 to 800,000, and more preferably in the range of 3,000 to 600,000.
  • Mn is at least the lower limit, physical properties such as mechanical strength and impact resistance tend to be sufficient, and when Mn is at most the upper limit, it is easy to mold from the viewpoint of melt viscosity.
  • the ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) of the polar group-containing olefin copolymer in the present invention is usually 1.0 to 4.0, preferably 1.3 to 3. 5, more preferably in the range of 1.4 to 3.3.
  • Mw/Mn is 1.0 or more, various processability including molding tends to be sufficient, and when it is 4.0 or less, mechanical properties tend to be good.
  • (Mw/Mn) may be expressed as a molecular weight distribution parameter.
  • the polar group-containing olefin copolymer of the present invention can employ any combination of Mw, Mn, and Mw/Mn.
  • Mw and Mn in the present invention are determined by gel permeation chromatography (GPC).
  • GPC measurement in the present invention can be specifically performed by the method described in the Examples.
  • the [1,3 bond] amount may be in the range of 10 mol% or less, preferably It may be 5 mol% or less, more preferably 3 mol% or less, even more preferably 1 mol% or less.
  • the branched propylene polymer of the present invention has structures based on regular 1,2 insertions of propylene ([1,2 bonds]) as well as structures based on irregular insertions of propylene (2,1 insertions, 1, 3 insertion), [2,1 bond] and [1,3 bond].
  • the [2,1 bond] amount (mol%) and the [1,3 bond] amount (mol%) are determined from the following formula using the integrated intensity of the 13 C signal measured by 13 C-NMR measurement.
  • [2,1 bond] amount (mol%) I 2,1-P ⁇ 100/(I 1,2-P +I 2,1-P +I 1,3-P )
  • [1,3 bond] amount (mol%) I 1,3-P ⁇ 100/(I 1,2-P +I 2,1-P +I 1,3-P )
  • I 1,2-P , I 2,1-P , and I 1,3-P are bonds in which the propylene unit is [1,2 bond], [2,1 bond], and [1,3 bond], respectively. It represents the integrated intensity of the 13 C signal assigned to the format, and is determined as follows.
  • I 1,2-P I 48.80-44.50
  • I 2,1-P (I 34.68 ⁇ 34.63 +I 35.47 ⁇ 35.40 +I 35.94 ⁇ 35.70 )/2
  • I 1,3-P I 37.50-37.20 /2
  • the method for producing a polar group-containing olefin copolymer of the present invention is a one-step polymerization reaction, and is expressed by the general formula (1).
  • the presence of a catalyst containing a transition metal is necessary from the viewpoint of introducing at least one polar group-containing monomer into the main chain of the olefin polymer having 3 or more carbon atoms, and from the viewpoint of making the molecular structure of the copolymer linear.
  • the method described below may include polymerizing at least one olefin monomer having 3 to 20 carbon atoms and at least one polar group-containing monomer represented by the general formula (1).
  • the transition metal-containing catalyst may be any catalyst capable of polymerizing at least one polar group-containing monomer (B) represented by the general formula (1) with the monomer (A).
  • Examples include, but are not limited to, transition metal compounds of Groups 5 to 11 having a chelating ligand.
  • Specific examples of preferred transition metals include vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, platinum, ruthenium, cobalt, rhodium, nickel, palladium, copper, and the like.
  • transition metals of Groups 8 to 11 are preferred, and transition metals of Group 10 are more preferred, and examples of the Group 10 transition metals include nickel, palladium, and platinum, and particularly preferred are transition metals of Group 10. are nickel (Ni) and palladium (Pd). These metals may be used alone or in combination.
  • the chelating ligand has at least two atoms selected from the group consisting of P, N, O, and S, and is bidentate or multidentate. Contains a ligand and is electronically neutral or anionic. Its structure is illustrated in the review by Brookhart et al. (Chem. Rev., 2000, 100, 1169).
  • the bidentate anionic P, O ligands include, for example, phosphorus sulfonate, phosphorus carboxylate, phosphorus phenoxide, phosphorus alkoxide, and phosphorus enolate; Examples include pyridine carboxylate, and other examples include diimine ligands, diphenoxide ligands, and diamide ligands.
  • the catalyst containing the transition metal may be a group 8 to group 10 transition metal from the viewpoint of polymer production efficiency, polymer molecular weight, and copolymerizability with the monomer (A) and the monomer (B). It is preferable that the catalyst contains a late transition metal selected from the group consisting of, and especially, it is preferable that it is a catalyst that contains a group 10 transition metal, and furthermore, it is a catalyst that contains a group 10 transition metal, and the catalyst that contains a group 10 transition metal is preferable. It is preferable to have a chelate ligand containing one or more phosphorus atoms as a coordination point to the group transition metal.
  • the catalyst containing the transition metal includes, among others, a Group 10 transition metal, from the viewpoint of polymer production efficiency, polymer molecular weight, and copolymerizability with the monomer (A) and the monomer (B).
  • the catalyst is preferably at least one compound represented by the following general formula (101).
  • M represents a Group 10 transition metal
  • A[-C( O)-O-]M
  • A Indicates a divalent group shown in [ ] of [-O-]M or A[-S-]M (However, A and M on both sides are written to indicate the bonding direction of the group.
  • A is a divalent hydrocarbon group having 1 to 30 carbon atoms that connects Q and the phosphorus atom, and may be substituted with a substituent, and R L contains a hydrogen atom or a hetero atom.
  • a hydrocarbon group having 1 to 20 carbon atoms which may optionally have 1 to 20 carbon atoms, or a ligand coordinated to M
  • L indicates a ligand coordinated to M
  • R 1 and R 2 are each independently a hydrogen atom or a substituted Represents a hydrocarbon group having 1 to 30 carbon atoms which may be substituted with a group.
  • R L and L may form a ring
  • R 1 and R 2 may form a ring
  • R 1 or R 2 may combine with A to form a ring.
  • M represents a Group 10 transition metal, and among them, Ni and Pd are preferable.
  • the left side of each of the above formulas is bonded to A, and the right side is bonded to M.
  • A is a divalent hydrocarbon group having 1 to 30 carbon atoms that connects Q and the phosphorus atom, and the hydrocarbon group may have a substituent.
  • the divalent hydrocarbon group having 1 to 30 carbon atoms may be a divalent hydrocarbon group having 1 to 20 carbon atoms, and preferably includes an alkylene group, an arylene group, and a combination thereof.
  • substituents for the hydrocarbon group in A include a halogen atom, OR ⁇ , CO 2 R ⁇ , CO 2 M', CON(R ⁇ ) 2 , COR ⁇ , OC(O)R ⁇ , SR ⁇ , SO 2 R ⁇ , SOR ⁇ , OSO 2 R ⁇ , PO(OR ⁇ ) 2-y (R ⁇ ) y , CN, NHR ⁇ , N(R ⁇ ) 2 , Si(OR ⁇ ) 3-x (R ⁇ ) x , OSi(OR ⁇ ) 3-x (R ⁇ ) x , NO 2 , SO 3 M', PO 3 M' 2 , P(O)(OR ⁇ ) 2 M', or an epoxy-containing group.
  • R ⁇ represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R ⁇ represents a hydrocarbon group having 1 to 20 carbon atoms
  • M' represents an alkali metal or an alkaline earth metal.
  • x represents an integer of 0 to 3
  • y represents an integer of 0 to 2.
  • the hydrocarbon group having 1 to 20 carbon atoms include those similar to the hydrocarbon groups having 1 to 20 carbon atoms among R a in the general formula (1).
  • Examples of the divalent hydrocarbon group having 1 to 30 carbon atoms in A include the following formulas (a-1) to (a-7).
  • n in -[C(R 101 ) 2 ] n - in (a-3) is an integer from 1 to 3, and indicates the number of repetitions of -[C(R 101 ) 2 ]-.
  • R 101 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a substituent, or a substituent.
  • Adjacent substituents of a plurality of R 101 are linked to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing at least one heteroatom selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom. You may. At this time, the number of ring members is 5 to 8, and the ring may have a substituent.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms in R 101 include the same hydrocarbon groups having 1 to 20 carbon atoms among R a in the general formula (1).
  • the hydrocarbon group having 1 to 20 carbon atoms is preferably a hydrocarbon group having 1 to 15 carbon atoms, and more preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the divalent hydrocarbon groups having 1 to 30 carbon atoms in A from the viewpoint of catalytic activity, the following formula (a-2) or the following formula (a-7) is preferable.
  • L represents a ligand coordinated to M.
  • L may be a zero-valent ligand that can be detached from the metal.
  • L is preferably a compound that has an electron-donating group and can coordinate to the metal atom M to stabilize the metal complex.
  • L is a hydrocarbon compound having 1 to 20 carbon atoms containing at least one selected from the group consisting of oxygen atom, nitrogen atom, and sulfur atom as a coordinating atom, or carbon capable of coordinating to a transition metal; - Hydrocarbon compounds having carbon unsaturated bonds and optionally containing heteroatoms can also be used.
  • L has 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms.
  • L include cyclic unsaturated hydrocarbons, phosphines, pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, alcohols, and amides.
  • Examples include esters, aliphatic esters, aromatic esters, and amines.
  • Examples of L having a sulfur atom include dimethyl sulfoxide (DMSO).
  • trialkylamines having an alkyl group having 1 to 10 carbon atoms dialkylamines having an alkyl group having 1 to 10 carbon atoms
  • pyridine 2,6-dimethylpyridine (also known as 2,6-lutidine)
  • Aniline 2,6-dimethylaniline, 2,6-diisopropylaniline, N,N,N',N'-tetramethylethylenediamine (TMEDA)
  • TEDA 2,6-dimethylaniline
  • DMAP 4-(N,N-dimethylamino)pyridine
  • acetonitrile examples include benzonitrile, quinoline, and 2-methylquinoline.
  • Examples of those having an oxygen atom include diethyl ether, tetrahydrofuran, and 1,2-dimethoxyethane. From the viewpoint of complex stability and catalytic activity, DMSO, pyridine, 2,6-lutidine, and TMEDA are preferred, and DMSO and 2,6-lutidine are more preferred. More preferred examples of L include cyclic olefins, phosphines, pyridines, cyclic ethers, aliphatic esters, and aromatic esters; more preferred examples of L include trialkylphosphines, pyridine, 2,6-lutidine, Examples include picoline (2-methylpyridine) and R ⁇ CO 2 R ⁇ (the definition of R ⁇ is as described above).
  • R L represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may contain a hetero atom, or a ligand coordinated to M.
  • R L is a ligand coordinated to M
  • the same ligands as L may be mentioned, but it may be an anionic ligand instead of a neutral ligand.
  • the ligand derived from the transition metal compound is R L and L combine with each other to form a ring, forming a ⁇ , ⁇ -cyclooct-4-enyl group.
  • R L preferably has 1 to 16 carbon atoms excluding the number of carbon atoms contained in substituents, and more preferably 1 to 10 carbon atoms.
  • R L include hydride group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-hexyl group, n-octyl group, n-decyl group, Examples include n-dodecyl group, cyclopentyl group, cyclohexyl group, benzyl group, phenyl group, p-methylphenyl group, trimethylsilyl group, triethylsilyl group, and triphenylsilyl group. Note that R L and L may be combined with each other to form a ring. Examples of such groups include ⁇ , ⁇ -cyclooct-4-enyl group, and acetylacetonato group, which are also preferred embodiments of the present invention.
  • R 1 and R 2 each independently represent a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent.
  • the hydrocarbon group having 1 to 30 carbon atoms in R 1 and R 2 can be the same as R a in the above general formula (1).
  • the substituents in R 1 and R 2 may be the same as the substituents in A above.
  • R 1 and R 2 are in the vicinity of the transition metal M and interact with the transition metal M sterically and/or electronically. In order to exert such an effect, it is preferable that R 1 and R 2 be bulky.
  • the number of carbon atoms in R 1 and R 2 is preferably 3 to 30, more preferably 6 to 20.
  • R 1 and R 2 are each independently an alkyl group having 3 to 10 carbon atoms which may have a substituent, a cycloalkyl group having 6 to 20 carbon atoms which may have a substituent, or a substituent and an aryl group having 6 to 20 carbon atoms which may have an alkyl group.
  • Examples of the alkyl group having 3 to 10 carbon atoms which may have a substituent in R 1 and R 2 include straight chain or branched alkyl groups having 3 to 10 carbon atoms which may have a substituent. .
  • Examples of the alkyl group having 3 to 10 carbon atoms include 1-propyl group, 1-butyl group, 1-pentyl group, 1-hexyl group, 1-heptyl group, 1-octyl group, 1-nonyl group, 1-decyl group, i-propyl group, 1-dimethylpropyl group, 1,1,2-trimethylpropyl group, 1,1-diethylpropyl group, i-butyl group, sec-butyl group, t -Butyl group, 1,1-dimethylbutyl group, 2-pentyl group, 3-pentyl group, 2-hexyl group, 3-hexyl group, 2-ethylhexyl group, 2-heptyl group, 3-hepty
  • branched alkyl groups having 3 to 10 carbon atoms which may have a substituent are preferable, such as i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group. is preferred.
  • the cycloalkyl group having 6 to 20 carbon atoms which may have a substituent in R 1 and R 2 is a linear or branched alkyl group having 3 to 10 carbon atoms which may have a substituent. Examples include an optionally substituted cyclohexyl group, cycloheptyl group, cyclooctyl group, and adamantyl group.
  • the cycloalkyl group described in paragraphs 0104 to 0113 of JP 2018-141138 (X in paragraphs 0104 to 0113 of JP 2018-141138 is P (indicates the bonding position of a phosphorus atom)).
  • R 1 and R 2 are, among others, a cyclohexyl group substituted with a linear or branched alkyl group having 3 to 10 carbon atoms, or an adamantyl group, from the viewpoint of controlling the polymer molecular weight and polar monomer copolymerizability. is more preferable. Among these, 2-isopropyl-5-methylcyclohexyl group (menthyl group) or adamantyl group is preferred.
  • the aryl group having 6 to 20 carbon atoms which may have a substituent and an alkyl group in R 1 and R 2 may have a substituent, and may be a linear group having 3 to 10 carbon atoms or Examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, and the like, which may be substituted with a branched alkyl group.
  • the aryl group having 6 to 20 carbon atoms is substituted with a branched alkyl group having 3 to 6 carbon atoms, a silyl group substituted with a hydrocarbon group having 1 to 6 carbon atoms, or a substituent containing at least one of an oxygen atom and a nitrogen atom.
  • the substituent is substituted with a substituent containing at least one of an oxygen atom and a nitrogen atom.
  • the substituent is substituted at the ortho position to the carbon bonded to phosphorus in the aryl group. It is preferable that the This is because by doing so, a spatial arrangement can be taken such that at least one of the oxygen atoms and nitrogen atoms in R 1 and R 2 interacts with the transition metal M.
  • R 1 and R 2 include i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, 2- Isopropyl-5-methylcyclohexyl group, adamantyl group, phenyl group, 2,6-dimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 2,6-di-t-butylphenyl group, 2,4,6- Tri-t-butylphenyl group, 2,6-ditrimethylsilylphenyl group, 4-methyl-2,6-dimethoxyphenyl group, 4-t-butyl-2,6-dimethoxyphenyl group, 1,3-dimethoxy-2- Naphthyl group, 2,6-diethoxyphenyl group, 2,4,6-triethoxyphenyl group
  • R 1 and R 2 may be combined with A to form a ring structure.
  • the structure described in paragraphs 0120 to 0121 of JP 2018-141138 A in this example, the substituent R 16 and A are bonded to form a ring structure
  • P and Q are synonymous with the general formula (101) of the present invention.
  • a compound represented by the following general formula (102) or a compound represented by the following general formula (103) is preferred for the production of polymers. Preferable from the point of view of efficiency.
  • M, L, R L , R 1 and R 2 each have the same meaning as in the above general formula (101), and R 11 , R 12 , R 13 and R 14 each independently, Represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a substituent, or a substituent.
  • R 11 , R 12 , R 13 and R 14 are adjacent substituents connected to each other, and aliphatic A cyclic ring, an aromatic ring, or a heterocycle containing at least one heteroatom selected from the group consisting of oxygen, nitrogen, and sulfur atoms may be formed.In this case, the number of ring members is 5 to 8. (There may be a substituent on the ring.)
  • the hydrocarbon group having 1 to 20 carbon atoms and the substituent which may be substituted with a substituent in R 11 , R 12 , R 13 and R 14 are the same as R 101 explained in A above. It may be similar.
  • R 11 is preferably a hydrocarbon group having 1 to 20 carbon atoms, which may be substituted with a substituent, or a substituent, since the bulkier one tends to give a polymer with a higher molecular weight. It is preferably a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a substituent.
  • hydrocarbon group having 1 to 30 carbon atoms which may be substituted with a substituent used as R 11 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, Isobutyl group, t-butyl group, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 4-t-butylphenyl group, 2,4-di- t-Butylphenyl group, 9-fluorenyl group, cyclohexyl group, trifluoromethyl group, pentafluorophenyl group, perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluorophenyl group, Suitable examples include fluoronaphthyl
  • R 11 specific examples of the substituent used as R 11 include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triphenylsilyl group, cyclohexylamino group, methoxy group, carbazolyl group, and trimethylsilyl group. etc. are mentioned as suitable ones.
  • R 11 may be a hydrocarbon group having 4 to 20 carbon atoms that may be substituted with a substituent.
  • Suitable compounds represented by the general formula (102) include, for example, the following compounds, but are not limited thereto.
  • Ph is a phenyl group
  • DMP is a 2,6-dimethoxyphenyl group
  • iPr is an isopropyl group
  • t-Bu is a t-butyl group
  • Ad is an adamantyl group
  • Cy is a cyclohexyl group
  • Me is a methyl group
  • TMS is a Trimethylsilyl group
  • py represents pyridyl group.
  • M, L, R L , R 1 and R 2 each have the same meaning as in the above general formula (101), and R 21 , R 22 , R 23 and R 24 each independently, It represents a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a substituent, or a substituent.
  • R 21 , R 22 , R 23 and R 24 are alicyclic A formula ring, an aromatic ring, or a heterocycle containing at least one heteroatom selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom may be formed.In this case, the number of ring members is 5 to 8. , may have a substituent on the ring.
  • At least one of R 21 and R 22 is a hydrocarbon group having 1 to 20 carbon atoms, which may be substituted with a substituent, or a substituent, and the direction in which the olefin reacts is controlled by stereocontrol. This is preferable because it can prevent chain transfer.
  • R 21 or R 22 be an electron-withdrawing group because the performance as an olefin polymerization catalyst is further improved.
  • the electron-withdrawing group a trifluoromethyl group, a pentafluorophenyl group, a methoxycarbonyl group, etc. are preferably used.
  • R 21 , R 22 , R 23 and R 24 each have a plurality of groups connected to each other, an alicyclic ring, an aromatic ring, or at least one hetero group selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom.
  • each ring has 5 to 8 members, but two or more rings may further form a fused ring.
  • Suitable compounds represented by the general formula (103) include, for example, the following compounds, but are not limited thereto.
  • Ph represents a phenyl group
  • DMP represents a 2,6-dimethoxyphenyl group
  • t-Bu represents a t-butyl group
  • Ad represents an adamantyl group
  • Me represents a methyl group
  • py represents a pyridyl group.
  • Examples of suitable compounds represented by the general formula (103) include transition metal complexes obtained by reacting the following compounds with Ni(cod) 2 .
  • the transition metal complex used in the present invention can be prepared by a conventionally known method. Further, the transition metal-containing catalyst used in the present invention has the above-mentioned transition metal complex as a main catalyst component, and if necessary, an activator, a carrier, etc. can be used in combination.
  • Examples of the activator include alkylalumoxane and organoaluminum compounds, which are cocatalysts used in metallocene catalysts.
  • An example of an organoaluminum compound is represented by the following general formula.
  • Al(R 31 ) a X (3-a) In the general formula, R 31 is a hydrocarbon group having 1 to 20 carbon atoms, X is a hydrogen atom, a halogen atom, an alkoxy group, or a siloxy group, and a is a number greater than 0 and less than or equal to 3.
  • R 31 is a hydrocarbon group having 1 to 20 carbon atoms, preferably an alkyl group, alkenyl group, aryl group, aralkyl group, etc.
  • organoaluminum compound in which a is 3 is preferable because it is a good cocatalyst.
  • Specific examples of the organoaluminum compound represented by the above general formula include trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and tri-n-octylaluminum, diethylaluminum monochloride, diethylaluminum monochloride, and diethylaluminum monochloride.
  • examples include halogen- or alkoxy-containing aluminum alkyls such as methoxide, and among them trialkylaluminums are preferred.
  • the alkyl group of the trialkylaluminum may be the same as mentioned above, and among them, a methyl group, an isobutyl group, and an n-octyl group are preferable, and among these, triisobutylaluminum or tri-n-octylaluminum is preferable.
  • any carrier can be used as long as it does not impair the gist of the present invention.
  • inorganic oxides and polymer carriers can be suitably used. Specifically, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and mixtures thereof are mentioned, and SiO 2 -Al 2 O 3 , SiO 2 -V 2 O 5 , SiO 2 -TiO 2 , SiO 2 -MgO, SiO 2 -Cr 2 O 3 and other mixed oxides can also be used, inorganic silicates, polyethylene carriers, polypropylene carriers, Polystyrene carriers, polyacrylic acid carriers, polymethacrylic acid carriers, polyacrylic ester carriers, polyester carriers, polyamide carriers, polyimide carriers, etc. can be used. These carriers are not particularly limited in particle size, particle size distribution, pore volume, specific surface area, etc., and
  • (5-2) Polymerization method of polar group-containing olefin copolymer The method of polymerizing the polar group-containing olefin copolymer in the present invention is not limited. Solution polymerization in which all of the produced polymer is dissolved in the medium, slurry polymerization in which at least part of the produced polymer becomes slurry in the medium, bulk polymerization in which the liquefied monomer itself is used as the medium, or monomer liquefied at high temperature and high pressure. High-pressure ionic polymerization or the like is used in which at least a portion of the produced polymer is dissolved.
  • the polymerization format may be batch polymerization, semi-batch polymerization, or continuous polymerization. Specific manufacturing processes and conditions are disclosed in, for example, Japanese Patent Laid-Open Nos. 2010-260913 and 2010-202647.
  • Unreacted monomers and medium may be separated from the produced polymer and recycled for use. During recycling, these monomers and media may be purified and reused, or may be reused without being purified. Conventional known methods can be used to separate the produced polymer from unreacted monomers and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
  • the copolymerization temperature is usually -20°C to 290°C, preferably 0°C to 250°C, more preferably 0°C to 200°C, even more preferably 10°C to 150°C, particularly preferably 20°C to 100°C. be.
  • the copolymerization pressure is 0.1 MPa to 100 MPa, preferably 0.3 MPa to 90 MPa, more preferably 0.5 MPa to 80 MPa, still more preferably 1.0 MPa to 70 MPa, particularly preferably 1.3 MPa to 60 MPa.
  • the copolymerization time can be selected from the range of 0.1 minutes to 50 hours, preferably 0.5 minutes to 40 hours, and more preferably 1 minute to 30 hours.
  • polymerization is generally carried out under an inert gas atmosphere.
  • a nitrogen or argon atmosphere can be used, and a nitrogen atmosphere is preferably used.
  • the supply of the catalyst and monomer to the polymerization reactor there are no particular restrictions on the supply of the catalyst and monomer to the polymerization reactor, and various supply methods can be used depending on the purpose.
  • various supply methods can be used depending on the purpose.
  • additional monomers and additional catalysts may be supplied to the copolymerization reactor.
  • a method can be adopted in which a predetermined amount of monomer and catalyst are continuously or intermittently supplied to a copolymerization reactor to carry out the copolymerization reaction continuously.
  • a method of controlling by changing the monomer supply ratio can generally be used.
  • Other methods include controlling the copolymerization composition by utilizing differences in the monomer reactivity ratio due to differences in catalyst structure, and controlling the copolymerization composition by utilizing the polymerization temperature dependence of the monomer reactivity ratio.
  • Conventionally known methods can be used to control the molecular weight of the copolymer. That is, examples include a method of controlling the molecular weight by controlling the polymerization temperature, a method of controlling the molecular weight by controlling the monomer concentration, and a method of controlling the molecular weight by controlling the ligand structure in the transition metal complex.
  • the baseline and interval of the obtained chromatogram are determined as shown in FIG. Further, the retention capacity obtained by GPC measurement is converted into molecular weight using a standard polystyrene calibration curve prepared in advance.
  • the standard polystyrenes used are the following brands manufactured by Tosoh Corporation. Brand: F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000
  • a calibration curve is created by injecting 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg/mL BHT) so that each sample is 0.5 mg/mL.
  • the calibration curve uses a cubic equation obtained by approximation using the least squares method.
  • Example 1 (1) Preparation of catalyst solution 77.0 mg (280 ⁇ mol) of Ni(cod) 2 was weighed into a 50 mL flask and dissolved in 14 mL of toluene. Additionally, 80.6 mg (240 ⁇ mol) of AL-2 obtained in Synthesis Example 1 was weighed into another flask. 12 mL of a toluene solution of Ni(cod) 2 was measured and added to the flask containing AL-2. The resulting solution was warmed in a 40°C water bath and stirred for 15 minutes to obtain a catalyst solution.
  • the catalyst cylinder was washed with 3 mL of toluene 2 minutes and 17 minutes after the start of the reaction, and the washing liquid was pressurized into the autoclave. 60 minutes after the start of the reaction, 3 mL of a toluene solution (0.2 M) of 1,2-butanediol was added to stop the reaction, and the propylene was depressurized.
  • the autoclave was returned to room temperature and the resulting oily polypropylene was purified by silica gel column chromatography using 100% hexane as a developing solvent. The obtained oily substance was dried under reduced pressure to obtain 1.13 g of polar group-containing olefin copolymer 1 (Polymer 1).
  • Fig. 1 shows the 1 H-NMR spectrum
  • Fig. 2 shows a partially enlarged view of the 1 H-NMR spectrum (around 6 to 3.6 ppm)
  • Fig. 3 shows the 13 C-NMR spectrum.
  • the spectrum and IR chart are shown in FIG.
  • FIG. 5 shows a 1 H-NMR spectrum
  • FIG. 6 shows a partially enlarged view of the 1 H-NMR spectrum (around 6 to 3.8 ppm).
  • Example 1 a novel polar group-containing structural unit (B) derived from a polar group-containing monomer represented by general formula (1) is introduced into the main chain of propylene. An olefin copolymer could be obtained.
  • Comparative Example 1 is an example in which polymerization was carried out using the catalyst used in the Examples of International Publication No. 00/56781.
  • polymer C1 of Comparative Example 1 the structure derived from the polar group-containing monomer represented by general formula (1) was not observed by NMR measurement. That is, in Comparative Example 1, a copolymer was not obtained, but a propylene homopolymer was obtained.
  • the comonomer content (mol%) refers to the content of the structural unit (B) derived from the polar group-containing monomer represented by general formula (1) when the total structural unit of the polymer is 100 mol%. means percentage.
  • the novel polar group-containing olefin copolymer of the present invention has an oxygen atom introduced at the vicinal position in a polyolefin having 3 or more carbon atoms, such as propylene, and thus has a chelate coordination property. It may be possible to realize functions not found in copolymers.
  • the polar group-containing olefin copolymer of the present invention can be expected to be used as a carrier for metal complex catalysts, an adsorbent for recovering metal complexes, and the like.
  • further functionalization can be achieved.
  • carbon dioxide can be fixed by copolymerizing propylene and vinylene carbonate.

Abstract

炭素数3~20のオレフィンモノマーの少なくとも1種に由来する構造単位(A)と、下記一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位(B)と、を含む、極性基含有オレフィン共重合体。 (一般式(1)中のRおよびRは、明細書に記載のとおりである。)

Description

極性基含有オレフィン共重合体及びその製造方法
 本発明は、新規な極性基含有オレフィン共重合体に関し、詳しくは、主鎖に炭素数3以上のオレフィン由来の構造と炭酸ビニレン由来の構造が導入されている新規な極性基含有オレフィン共重合体、及びその製造方法に関するものである。
 オレフィン共重合体は、樹脂材料の中で物性や成型性などの諸性質に優れ、経済性や環境問題適合性なども高く、非常に汎用される重要な産業資材である。
 しかし、オレフィン共重合体は極性基を持たないため、他の材料との接着性や印刷適性、あるいはフィラーなどとの相溶性の物性が要求される用途への適用は困難であった。かかる状況において、近年、後周期金属錯体を用いたオレフィンと極性ビニルモノマーとの共重合により、オレフィン共重合体に極性基を導入する研究がおこなわれている(例えば、非特許文献1、2、及び3)。しかしながら、極性基はランダムにポリプロピレン鎖に導入されるため、ビシナル位に極性基を導入することは難しかった。
 炭酸ビニレンは工業的に炭酸エチレンのクロロ化と引き続く脱塩酸反応によって作られる化合物であり、主にリチウムイオンバッテリーへの添加剤として用いられる。一方で、炭酸ビニレンは構造内に炭素-炭素二重結合を含むことから、オレフィンとの共重合にも用いることができる。原料の炭酸エチレンは二酸化炭素から作ることができるため、炭酸ビニレンとオレフィンの共重合は二酸化炭素固定法としてみなすことができる。炭酸ビニレンとオレフィンとの共重合により酸素原子をポリオレフィンのビシナル位に導入することができる。
 オレフィンと炭酸ビニレンの共重合体として、エチレンと炭酸ビニレンのラジカル共重合による極性基含有オレフィン共重合体が報告されている(例えば、特許文献1及び2)。また、金属触媒を用いたエチレンと炭酸ビニレンの共重合、及び得られた極性基含有オレフィン共重合体の加水分解が報告されている(特許文献3)。
 さらに、炭酸ビニレンとの共重合で導入される環状カーボナート構造はアミンと容易に反応し、グラフト重合やポリマー鎖の架橋に用いることができることが報告されている(例えば、非特許文献4、5)。
米国特許第2847398号明細書 米国特許第3114728号明細書 国際公開第00/56781号公報
J.Am.Chem.Soc.2015,137,10934-10937. Angew.Chem.Int.Ed.2016,55,7505-7509. ACS Macro Lett.2018,7,213-217. J.Polym.Sci.A:Polym.Chem.2001,39,860-867. J.Network Polym.Japan 2015,36,160-166.
 しかしながら、エチレン以外のオレフィンと炭酸ビニレンを共重合することにより、オレフィン共重合体の接着性や印刷適性、相溶性を改善する試みは今まで行われていなかった。
 プロピレン重合が進行する一般的な触媒であるメタロセン触媒では、極性基含有モノマーの重合が困難であるためと考えられる。
 かかる状況において本願は、炭素数3以上のオレフィンと、炭酸ビニレン誘導体とを共重合した新規な極性基含有オレフィン共重合体、特にプロピレンと、炭酸ビニレン誘導体とを共重合した新規な極性基含有プロピレン共重合体、及びその製造方法を提供することを目的とする。
 本発明は以下の<1>~<7>に関する。
<1> 炭素数3~20のオレフィンモノマーの少なくとも1種に由来する構造単位(A)と、
 下記一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位(B)と、を含む、極性基含有オレフィン共重合体。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、
およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。)
<2> 前記構造単位(B)が下記一般式(I)で表される構造単位及び下記一般式(II)で表される構造単位のからなる群より選ばれる少なくとも1種である、前記<1>に記載の極性基含有オレフィン共重合体。
Figure JPOXMLDOC01-appb-C000006
(式(I)及び式(II)中、RおよびRは、それぞれ独立して、前記と同様である。)
<3> 前記RおよびRの少なくとも1つが水素原子である、前記<1>または<2>に記載の極性基含有オレフィン共重合体。
<4> 前記RおよびRが、いずれも水素原子である、前記<1>~<3>のいずれか1項に記載の極性基含有オレフィン共重合体。
<5> 前記炭素数3~20のオレフィンモノマーの少なくとも1種のモノマーが、プロピレンである、前記<1>~<4>のいずれか1項に記載の極性基含有オレフィン共重合体。
<6> 極性基含有オレフィン共重合体が、前記構造単位(B)を0.01mol%~5mol%含む、前記<1>~<5>のいずれか1項に記載の極性基含有オレフィン共重合体。
<7> 下記一般式(101)で表される化合物から選択される少なくとも1種を含む触媒下で、
 炭素数3~20のオレフィンモノマーの少なくとも1種のモノマーと、下記一般式(1)で表される極性基含有モノマーの少なくとも1種のモノマーとを重合させる、極性基含有オレフィン共重合体の製造方法。
Figure JPOXMLDOC01-appb-C000007
(一般式(101)中、Mは第10族遷移金属を示し、QはA[-S(=O)-O-]M、A[-C(=O)-O-]M、A[-O-]M、又はA[-S-]Mの「[  ]」の中に示される2価の基を示す(ただし、両側のA、Mは基の結合方向を示すために記載している)。Aは、Qとリン原子を連結する炭素数1~30の2価の炭化水素基であって置換基で置換されていてもよく、Rは水素原子、ヘテロ原子を含有していてもよい炭素数1~20の炭化水素基、またはMに配位したリガンドを示し、LはMに配位したリガンドを示し、RとRはそれぞれ独立に、水素原子、又は置換基で置換されていてもよい炭素数1~30の炭化水素基を示す。RとLは環を形成してもよく、RとRは環を形成してもよく、R又はRはAと結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000008
(式(1)中、RおよびRは、それぞれ独立して、前記と同様である。)
 本発明によれば、炭素数3以上のオレフィンと、炭酸ビニレン誘導体とを共重合した新規な極性基含有オレフィン共重合体、特にプロピレンと、炭酸ビニレン誘導体とを共重合した新規な極性基含有プロピレン共重合体、及びその製造方法を提供することができる。
図1は、実施例1の極性基含有プロピレン共重合体1のH-NMR測定結果を示す。 図2は、実施例1の極性基含有プロピレン共重合体1のH-NMR測定結果の一部拡大図を示す。 図3は、実施例1の極性基含有プロピレン共重合体1の13C-NMR測定結果を示す。 図4は、実施例1の極性基含有プロピレン共重合体1のIRチャートを示す。 図5は、比較例1の重合体C1のH-NMR測定結果を示す。 図6は、比較例1の重合体C1のH-NMR測定結果の一部拡大図を示す。 図7は、GPCにおけるクロマトグラムのベースラインと区間を説明する図である。
 以下、本発明の極性基含有オレフィン共重合体について、項目毎に詳細に説明する。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸及びメタクリル酸の各々を示し、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの各々を示す。また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。また、本明細書において数値範囲を示す上限値と下限値は任意の組合せを採用できる。
 本発明の極性基含有オレフィン共重合体は、炭素数3~20のオレフィンモノマーの少なくとも1種に由来する構造単位(A)と、
 下記一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位(B)と、を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000009
(式(1)中、
およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。)
 本発明の極性基含有オレフィン共重合体は、図1等に示されるように、プロピレン等の炭素数3以上のオレフィン重合体の主鎖に、前記一般式(1)で表される炭酸ビニレン誘導体由来の極性基を含有する構造単位(B)を含む、新規な極性基含有オレフィン共重合体である。
 本発明の極性基含有オレフィン共重合体は、前記構造単位(B)として、下記一般式(I)で表される構造単位及び下記一般式(II)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を含むことができる。
Figure JPOXMLDOC01-appb-C000010
(式(I)及び式(II)中、RおよびRは、それぞれ独立して、前記と同様である。)
 このようにして、本発明の極性基含有オレフィン共重合体は、プロピレン等の炭素数3以上のポリオレフィン中に、酸素原子をビシナル位に導入することができる。
 これにより、本発明によれば、例えばプロピレン/炭酸ビニレン共重合体が金属へのキレート配位性を有するなどの、従来のプロピレン共重合体にない機能を実現できる可能性がある。例えば、本発明の極性基含有オレフィン共重合体は、金属錯体触媒のための担体や金属錯体回収のための吸着材などの用途も期待できる。
 また、本発明の極性基含有オレフィン共重合体の構造単位(B)の極性基にグラフト重合を行うことで、さらなる機能化を行うことも可能となる。
 また、プロピレンと炭酸ビニレン誘導体の共重合体は、エチレンと炭酸ビニレン誘導体の共重合体に比べて、耐熱性や材料加工性が向上する。
 さらに、プロピレンと炭酸ビニレンの共重合により、二酸化炭素の固定を行うことができる。なお、ポリプロピレンはポリエチレンに次いで二番目に製造量の多いプラスチックであり、そのさらなる機能化と製造時の二酸化炭素排出量を減らすことが求められているのは明白である。
(1)構造単位(A)
 構造単位(A)は、炭素数3~20のオレフィンモノマーの少なくとも1種に由来する構造単位である。
 構造単位(A)を誘導する本発明に用いられるモノマー(A)は、炭素数3~20のオレフィンの少なくとも1種である。炭素数3~20のオレフィンは、鎖状オレフィンであっても環状オレフィンであってもよく、炭素数3~20のα-オレフィン及び炭素数4~20の環状オレフィンからなる群より選ばれる少なくとも1種が挙げられる。
 本発明に用いられる炭素数3~20のα-オレフィンは、構造式:CH=CHRで表される炭素数3~20のα-オレフィン(ここでRは炭素数1~18の炭化水素基であり、直鎖構造であっても分岐を有していてもよい)、より好ましくは、炭素数3~12のα-オレフィンである。
 また、炭素数4~20の環状オレフィンは、例えば、シクロブテン、シクロペンテン、シクロヘキセン、ノルボルネン等が挙げられる。
 モノマー(A)の具体例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、及びノルボルネン等が挙げられる。モノマー(A)としては、重合体の製造効率の点から、中でも、プロピレン、1-ブテン、及びノルボルネンからなる群より選択される1種以上であることが好ましく、更に、プロピレンであることが好ましい。
 また、構造単位(A)は、1種単独であってもよいし、2種以上であってもよい。
 二種の組み合わせとしては、プロピレン-1-ブテン、プロピレン-1-ヘキセン、プロピレン-1-オクテン、プロピレン-ノルボルネンなどに由来する構造単位が挙げられる。
 三種の組み合わせとしては、プロピレン-1-ブテン-ヘキセン、プロピレン-1-ブテン-1-オクテンに由来する構造単位などが挙げられる。
 本発明においては、構造単位(A)に用いられるモノマー(A)としては、好ましくは、プロピレンを必須で含み、必要に応じて1種以上の炭素数4~20のα-オレフィンをさらに含んでもよい。
 モノマー(A)中のプロピレンは、モノマー(A)全体100mol%に対して、65~100mol%であってもよく、70~100mol%であってもよい。
(2)構造単位(B)
 構造単位(B)は、下記一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位である。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、
およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。)
 一般式(1)中、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 一般式(1)中、炭素数1~30のエステル基は、-COORで示される1価の基であり、ここでRは、炭素数1~30の炭化水素基を示す。当該エステル基における炭素数は、カルボニル基の炭素数は含まれず、前記Rにおける炭素数をいい、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30の炭化水素基としては、例えば、直鎖、分岐、環状の飽和又は不飽和脂肪族炭化水素基、芳香族炭化水素基、及びこれらの組み合わせが挙げられ、例えば、下記炭素数1~30のアルキル基の例の他、エテニル基、プロペニル基、ブテニル基、ペンテニル基等のアルケニル基、フェニル基、メチルフェニル基、n-プロピルフェニル基、i-プロピルフェニル基、n-ブチルフェニル基、i-ブチルフェニル基、s-ブチルフェニル基、t-ブチルフェニル基、n-ヘキシルフェニル基、トリメチルフェニル基、ペンタメチルフェニル基、ビフェニル基、ナフチル基、アントラセニル基、フルオレニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ジフェニルメチル基、トリフェニルメチル基等のアラルキル基等を好適に挙げることができる。
 また、炭素数1~30のアルキル基としては、例えば、直鎖、分岐、環状のいずれであってもよく、メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、1-ヘプチル基、1-オクチル基、1-ノニル基、1-デシル基、t-ブチル基、トリシクロヘキシルメチル基、イソプロピル基、1-ジメチルプロピル基、1,1,2-トリメチルプロピル基、1,1-ジエチルプロピル基、イソブチル基、1,1-ジメチルブチル基、2-ペンチル基、3-ペンチル基、2-ヘキシル基、3-ヘキシル基、2-エチルヘキシル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、2-プロピルヘプチル基、2-オクチル基、3-ノニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、メチルシクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、1-アダマンチル基、2-アダマンチル基、ノルボルニル基、等を好適に挙げることができる。
 当該炭化水素基は、更に置換基を有していてもよく、当該置換基としては、例えば、ハロゲン原子、エポキシ基、炭素数1~30の炭化水素基で置換されていてもよいアミノ基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、水酸基等が挙げられる。なお、置換基に含まれる炭素数は、前記炭素数に含まれないものとする。
 前記Rにおける炭化水素基は、中でも炭素数1~8の炭化水素基であることが好ましく、炭素数1~6の炭化水素基であることがより好ましく、炭素数1~6の無置換の炭化水素基であることがより更に好ましい。
 炭素数1~30のエステル基の具体例としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基、シクロヘキシロキシカルボニル基、2-エチルヘキシロキシカルボニル基、ベンジルオキシカルボニル基、フェノキシカルボニル基等を好適に挙げることができる。
 一般式(1)中、炭素数1~30のアシルオキシ基は、-OCORで示される1価の基であり、ここでRは、炭素数1~30の炭化水素基を示す。当該アシルオキシ基における炭素数は、カルボニル基の炭素数は含まれず、前記Rにおける炭素数をいい、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 炭素数1~30の炭化水素基としては、前記Rと同様のものを挙げることができる。
 炭素数1~30のアシルオキシ基の具体例としては、アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基、ベンゾイルオキシ基等を好適に挙げることができる。
 一般式(1)中、炭素数1~30のアシル基は、-CORで表される示される1価の基であり、ここでRは、炭素数1~30の炭化水素基を示す。当該アシル基における炭素数は、カルボニル基の炭素数は含まれず、前記Rにおける炭素数をいい、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 炭素数1~30のアシル基の具体例としては、アセチル基、プロピオニル基、(メタ)アクリロイル基、ベンゾイル基等を好適に挙げることができる。
 一般式(1)中、炭素数1~30のアルコキシ基は、-ORで示される1価の基であり、ここでRは、炭素数1~30のアルキル基又は炭素数7~30のアラルキル基を示す。当該アルコキシ基における炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30のアルキル基及び炭素数7~30のアラルキル基は、前記Rと同様のものを挙げることができる。
 炭素数1~30のアルコキシ基の具体例としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基,i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、シクロプロポキシ基、シクロペントキシ基、シクロヘキシロキシ基、n-オクトキシ基、n-デトキシ基、ベンジルオキシ基等を好適に挙げることができる。
 また、炭素数6~30のアリールオキシ基は、-ORd’で示される1価の基であり、ここでRd’は、炭素数6~30のアリール基を示す。当該アリール基における炭素数は、下限値が6以上であればよく、8以上であってもよく、上限値は30以下であればよく、20以下であってもよく、12以下であってもよい。
 Rd’における炭素数6~30のアリール基は、前記Rのうち、炭素数6~30のアリール基に相当するものを挙げることができる。
 炭素数6~30のアリールオキシ基の具体例としては、例えば、フェノキシ基、メチルフェノキシ基、エチルフェノキシ基、ブチルフェノキシ基、ナフチルオキシ基、フルオレニルオキシ基、アントラセニルオキシ基等を挙げることができる。
 一般式(1)中、炭素数1~30のアルキルチオ基は、-SRで示される1価の基であり、ここでRは、炭素数1~30のアルキル基又は炭素数7~30のアラルキル基を示す。当該アルキルチオ基における炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30のアルキル基及び炭素数7~30のアラルキル基としては、前記Rと同様のものを挙げることができる。
 炭素数1~30のアルキルチオ基の具体例としては、例えば、メチルチオ基、エチルチオ、ベンジルチオ基等を好適に挙げることができる。
 また、炭素数6~30のアリールチオ基は、-SRe’で示される1価の基であり、ここでRe’は、炭素数6~30のアリール基を示す。当該アリール基における炭素数は、下限値が6以上であればよく、8以上であってもよく、上限値は30以下であればよく、20以下であってもよく、12以下であってもよい。
 Re’における炭素数6~30のアリール基は、前記Rのうち、炭素数6~30のアリール基に相当するものを挙げることができる。
 炭素数6~30のアリールチオ基の具体例としては、例えば、フェニルチオ基、ナフチルチオ基等を挙げることができる。
 一般式(1)中、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基は、-N(R)Rで示される1価の基であり、ここでR及びRはそれぞれ独立に、水素原子、又は炭素数1~30の炭化水素基を示す。当該置換アミノ基に置換される炭化水素基の炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 R及びRにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基の具体例としては、例えば、アミノ基(-NH)、モノメチルアミノ基、ジメチルアミノ基、モノエチルアミノ基、ジエチルアミノ基、モノイソプロピルアミノ基、ジイソプロピルアミノ基、モノフェニルアミノ基、ジフェニルアミノ基等を好適に挙げることができる。
 一般式(1)中、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基は、-SiRで示される1価の基であり、ここでR、R及びRはそれぞれ独立に、水素原子、又は炭素数1~30の炭化水素基を示す。当該シリル基に置換される炭化水素基の炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 R、R及びRにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基の具体例としては、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、トリイソプロピルシリル基、tert-ブチルジフェニルシリル基等を好適に挙げることができる。
 一般式(1)中、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基は、-CONRまたは-NRCORで示される1価の基であり、ここでR及びRはそれぞれ独立に、水素原子、又は炭素数1~30の炭化水素基を示す。当該置換アミド基に置換される炭化水素基の炭素数は、カルボニル基の炭素数を含まず、前記R及びRにおける炭素数をいい、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 R及びRにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基の具体例としては、例えば、-CONH、-CONH(CH)、-CON(CH、-CONH(C)、-CON(C、-CONH(i-C)、-CON(i-C、-CONH(Ph)、-CON(Ph)、-NHCOCH、-NHCOC等を好適に挙げることができる。なお、本明細書において、Phはフェニル基を示す。
 一般式(1)中、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基(炭素数1~30のハロゲン置換炭化水素基)は、少なくとも1つの水素原子がハロゲン原子に置換された基である。当該炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができるが、中でも、アルキル基及びアリール基が入手の容易性の点から好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 当該炭素数1~30のハロゲン置換炭化水素基の炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 炭素数1~30のハロゲン置換炭化水素基の具体例としては、例えば、メチル基の水素原子の1~3個がハロゲン原子で置換されているハロメチル基、クロロエチル基、γ-クロロプロピル基、3,3’,3”-トリフルオロプロピル基、パーフルオロプロピル基、パーフルオロフェニル基、ブロモフェニル基、クロロフェニル基、フルオロフェニル基、ジクロロフェニル基等が挙げられ、前記ハロメチル基としては、クロロメチル基、ブロモメチル基、フルオロメチル基、ジクロロメチル基、トリフルオロメチル基等が挙げられる。
 一般式(1)中、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む置換基で置換されていてもよい炭素数1~30の炭化水素基における炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む置換基で置換されていてもよい炭素数1~30の炭化水素基としては、中でも、アルキル基、アルケニル基、アリール基、又はアラルキル基が、共重合体の製造効率の点から好ましい。
 無置換の炭素数1~30の炭化水素基の具体例としては、メチル基、エチル基、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、イソプロピル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基、エテニル基、プロペニル基、ブテニル基、フェニル基等を好適に挙げることができる。
 一般式(1)中、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む置換基で置換されていてもよい複素環基における複素環の炭素数は、2以上が挙げられ、上限値は8以下であればよく、6以下であってもよく、5以下であってもよい。
 当該複素環基の具体例としては、ピリジル基、フラニル基、チエニル基、オキサゾイル基、オキサゾリジニル基、イソキサゾリジニル基、チアゾリル基、ジヒドロフラニル基、テトラヒドロフラニル基等が挙げられる。
 酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む置換基としては、例えば、水酸基、ホルミル基、カルボキシ基、エポキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、シアノ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、炭素数1~30のスルホニル基、炭素数1~30のスルホキシド基、炭素数1~30のスルホン酸エステル基等が挙げられる。
 当該炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基は、前述と同様であってよい。
 前記炭素数1~30のスルホニル基は、-SOで示される1価の基であり、ここでRは炭素数1~30の炭化水素基を示す。当該スルホニル基の炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 炭素数1~30のスルホニル基の具体例としては、例えば、-SOCH、-SOPh等を好適に挙げることができる。
 前記炭素数1~30のスルホキシド基は、-SORで示される1価の基であり、ここでRは炭素数1~30の炭化水素基を示す。当該スルホキシド基の炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 炭素数1~30のスルホキシド基の具体例としては、例えば、-SOCH、-SOPh等を好適に挙げることができる。
 前記炭素数1~30のスルホン酸エステル基は、-OSOで示される1価の基であり、ここでRは炭素数1~30の炭化水素基を示す。当該スルホン酸エステル基の炭素数は、下限値が1以上であればよく、2以上であってもよく、上限値は30以下であればよく、20以下であってもよく、10以下であってもよい。
 Rにおける炭素数1~30の炭化水素基は、前記Rと同様のものを挙げることができる。
 炭素数1~30のスルホン酸エステル基の具体例としては、例えば、-SOCH、-SOPh等を好適に挙げることができる。
 前記酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む置換基としては、中でも、共重合体の製造効率の点から、水酸基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、炭素数1~30のアルキルチオ基、及び炭素数6~30のアリールチオ基からなる群より選ばれる少なくとも1種であることが好ましく、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、及び少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基からなる群より選ばれる少なくとも1種であることがより好ましい。
 一般式(1)中、RおよびRは、互いに結合して、RおよびRが結合している不飽和結合と共に4~10員環の環を形成していてもよく、5~6員環の環を形成していてもよい。RおよびRが互いに結合して形成される環は、炭素環または複素環であってよく、該炭素環または複素環は単環でも多環であってもよい。RおよびRは、互いに結合して飽和結合または不飽和結合を形成してよく、或いは、-CO-O-CO-基を形成していてもよく、非芳香環であってよい。
 前記構造単位(B)においては、極性基含有オレフィン共重合体の利用可能性が向上する点から、前記RとRの少なくとも1つは、水素原子とは異なる置換基であってもよく、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。
 なお、一般式(1)中のRおよびRは、同一であっても異なっていてもよい。
 一方で、前記構造単位(B)においては重合活性の点から、前記一般式(1)中の前記RとRの少なくとも1つが水素原子であってよく、前記RおよびRが、いずれも水素原子であってよい。
 構造単位(B)を誘導する前記一般式(1)で表される極性基含有モノマー(モノマー(B))としては、例えば以下のモノマーが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000012
 前記一般式(1)で表される極性基含有モノマーは、従来公知の製造方法を適宜組み合わせて製造することができる。RとRの少なくとも1つが水素原子とは異なる置換基である場合、例えば、銀触媒を用いたプロパルギルアルコールと二酸化炭素の環化反応、アシロインとホスゲンなどのカルボニル化剤を用いた反応を利用して置換基を導入できる。また、Synlett(2014),25,P1178-1180.、Tetrahedron Lett.(1972), 17,P1701-1704.、Adv. Synth.Catal.(2021),363,P5129-5137.を参考にすることでも置換基を導入できる。
 前記一般式(1)で表される極性基含有モノマーとしては、市販品を用いてもよい。
 また、前記一般式(1)で表される極性基含有モノマーとしては、2種以上混合して用いてもよい。
 一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位(B)としては、下記一般式(I)で表される構造単位及び下記一般式(II)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(I)及び式(II)中、RおよびRは、それぞれ独立して、前記と同様である。)
 さらに、構造単位(B)としては、末端にアルデヒド構造を含んでもよい。当該アルデヒド構造は、炭酸ビニレンの移動挿入後、β-カーボナート脱離、続いて脱炭酸、プロトン化が起こることにより生成されると推定される。アルデヒド構造の生成機構推定を以下に示す。以下のスキームにおいて、M及びQは後述する式(101)と同様である。
 また構造単位(B)として、RおよびRの少なくとも一方が水素原子でない場合に、末端にケトン構造を含んでもよい。
Figure JPOXMLDOC01-appb-C000014
 (3)その他の構造単位
 本発明の極性基含有オレフィン共重合体は、前記構造単位(A)及び構造単位(B)とは異なるその他の構造単位をさらに含んでいてもよい。その他の構造単位としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等の(メタ)アクリル酸エステル由来の構造単位、さらに、酢酸ビニル、酢酸アリル、3-酢酸ブテニル、アクリロニトリル、3-シアノプロペン、ビニルエーテル等のその他の極性基含有モノマー由来の構造単位等が挙げられる。
 (4)極性基含有オレフィン共重合体
 本発明の極性基含有オレフィン共重合体は、炭素数3~20のオレフィンモノマーの少なくとも1種に由来する構造単位(A)と、前記一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位(B)とを含むものである。
 本発明の極性基含有オレフィン共重合体は、構造単位(A)及び構造単位(B)をそれぞれ1種以上含有し、合計2種以上のモノマーに由来する構造単位を含むことが必要である。
 本発明において、極性基含有オレフィン共重合体中の構造単位(A)の割合は、所望の物性に応じて適宜選択されればよいが、構造単位全体100mol%に対して、通常下限値が60.00mol%以上が挙げられ、70.00mol%以上であってもよく、80.00mol%以上であってもよく、90.00mol%以上であってもよく、95.00mol%以上であってもよく、96.00mol%以上であってもよく、97.00mol%以上であってもよく、98.00mol%以上であってもよい。一方、通常上限値は99.99mol%以下が挙げられ、99.95mol%以下であってもよく、99.90mol%以下であってもよく、99.85mol%以下であってもよく、99.80mol%以下であってもよく、99.70mol%以下であってもよい。
 極性基含有オレフィン共重合体中の構造単位(B)の割合は、平均分子量や所望の物性に応じて適宜選択されればよいが、重合活性の点から、構造単位全体100mol%に対して、通常下限値が0.01mol%以上が挙げられ、0.05mol%以上であってもよく、0.10mol%以上であってもよく、0.15mol%以上であってもよく、0.20mol%以上であってもよく、0.30mol%以上であってもよい。一方、通常上限値は5.00mol%以下が挙げられ、4.00mol%以下であってもよく、3.00mol%以下であってもよく、2.00mol%以下であってもよい。
 本発明の極性基含有オレフィン共重合体中の構造単位(A)及び(B)の割合は、任意の組み合わせを採用できる。
 本発明の極性基含有オレフィン共重合体は、さらに、その他の構造単位を1種以上含むものであってもよい。
 本発明の極性基含有オレフィン共重合体がその他の構造単位を含む場合、極性基含有オレフィン共重合体中のその他の構造単位の割合は、所望の物性に応じて適宜選択されればよいが、構造単位全体100mol%に対して、通常下限値が0.01mol%以上が挙げられ、0.05mol%以上であってもよく、0.10mol%以上であってもよく、0.50mol%以上であってもよい。一方、通常上限値は35.00mol%以下が挙げられ、30.00mol%以下であってもよく、20.00mol%以下であってもよく、10.00mol%以下であってもよい。
 なお、各モノマー1分子に由来する構造を、極性基含有オレフィン共重合体中の1構造単位と定義する。
 そして、極性基含有オレフィン共重合体中の構造単位全体を100mol%とした時に各構造単位の比率をmol%で表したものが構造単位量である。
 本発明の極性基含有オレフィン共重合体では、構造単位(A)、構造単位(B)、及び必要に応じて含まれるその他の構造単位等のランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。これらの中では、構造単位(B)を多く含むことが可能なランダム共重合体であってよい。
 なお、構造単位量は、触媒の選択や、重合時に添加するモノマー(A)、モノマー(B)及びその他のモノマーの量、重合時の圧力や温度で制御することが可能である。共重合体中の構造単位(B)の量を増加させる具体的手段としては、重合時に添加するモノマー(B)の量の増加、触媒の選択、重合時のオレフィン圧力の低減、重合温度の増加が有効である。例えば、これらの因子を調節して、目的とするコポリマー領域に制御することが求められる。
 本発明における極性基含有オレフィン共重合体中の構造単位量はH-NMRスペクトル及び13C-NMRスペクトルを用いて求められる。NMRスペクトルは、具体的には実施例に記載した方法によって測定することができる。
 また、本発明における極性基含有オレフィン共重合体中に構造単位(B)等の極性基が含まれることは、IRスペクトルを解析することによっても確認できる。IRスペクトルは、具体的には実施例に記載した方法によって測定することができる。
 本発明における極性基含有オレフィン共重合体の重量平均分子量(Mw)は、通常1,000~2,000,000、好ましくは10,000~1,500,000、更に好ましくは10,000~1,000,000、好適なのは10,000~800,000、より好適なのは5,000~600,000の範囲である。Mwが下限値以上であると機械的強度や耐衝撃性などの物性が充分になりやすく、Mwが上限値以下であると溶融粘度の点から、成形加工しやすい。
 本発明における極性基含有オレフィン共重合体の数平均分子量(Mn)は、通常1,000~2,000,000、好ましくは3,000~1,500,000、更に好ましくは3,000~1,000,000、好適なのは3,000~800,000、より好適なのは3,000~600,000の範囲である。Mnが下限値以上であると機械的強度や耐衝撃性などの物性が充分になりやすく、Mnが上限値以下であると溶融粘度の点から、成形加工しやすい。
 本発明における極性基含有オレフィン共重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、通常1.0~4.0、好ましくは1.3~3.5、更に好ましくは1.4~3.3の範囲である。Mw/Mnが1.0以上であれば成形を始めとして各種加工性が充分になりやすく、4.0以下であると機械物性が良好になりやすい。
 また、本発明においては(Mw/Mn)を分子量分布パラメーターと表現することがある。
 本発明の極性基含有オレフィン共重合体は、Mw、MnおよびMw/Mnについて任意の組み合わせを採用できる。
 本発明におけるMw及びMnはゲルパーミエイションクロマトグラフィー(GPC)によって求められる。
 本発明におけるGPCの測定は、具体的には実施例に記載した方法によって測定することができる。
 本発明における極性基含有オレフィン共重合体が、極性基含有プロピレン共重合体である場合、所望する物性の点から、[1,3結合]量が10mol%以下の範囲であってよく、好ましくは5mol%以下、より好ましくは3mol%以下、さらに好ましくは1mol%以下であってよい。
 13C-NMRで測定する、[1,3結合]量の測定方法と算出方法は以下のとおりである。
[試料調製と測定条件]
 試料200mgを溶媒(o-ジクロロベンゼン(ODCB)/重水素化臭化ベンゼン(CBr)=2/1(体積比))2.4mLおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れ、150℃のブロックヒーターで均一に溶解する。
H-NMR)
装置:ブルカー・バイオスピン(株)のAV400型NMR装置
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:4.5°
パルス間隔:2秒
積算回数:512回
化学シフト:化学シフトはヘキサメチルジシロキサンのプロトンシグナルを0.09ppmに設定し、他のプロトンによるシグナルの化学シフトはこれを基準とする。
13C-NMR)
装置:ブルカー・バイオスピン(株)のAV400型NMR装置
プローブ:10mmφのクライオプローブ
試料温度:120℃
パルス角:90°
パルス間隔:51.5秒
積算回数:3072回
デカップリング条件:逆ゲートデカップリング法
化学シフト:化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とした。
[立体規則性の算出方法;mm、mr、rr分率]
 13C-NMRスペクトルで21.2ppm~22.0ppmのピークがmm、20.3ppm~21.2ppmのピークがmr、19.7ppm~20.3ppmのピークがrrに相当し、これらの積分比を計算することでmm、mr、rrの比率を求めることができる。
[位置規則性の算出方法]
 本発明の分岐状プロピレン系重合体には、プロピレンの規則的な1,2挿入に基づく構造([1,2結合])の他に、プロピレンの不規則な挿入(2,1挿入、1,3挿入)に基づく[2,1結合]、[1,3結合]を含みうる。
 [2,1結合]量(mol%)、および[1,3結合]量(mol%)は、13C-NMR測定により測定された13Cシグナルの積分強度を用い、以下の式から求める。
[2,1結合]量(mol%)=I2,1-P×100/(I1,2-P+I2,1-P+I1,3-P
[1,3結合]量(mol%)=I1,3-P×100/(I1,2-P+I2,1-P+I1,3-P
ここで、I1,2-P、I2,1-P、I1,3-Pはそれぞれプロピレン単位が[1,2結合]、[2,1結合]、[1,3結合]の結合様式に帰属される13Cシグナルの積分強度を表し、下記のように求める。
1,2-P=I48.80~44.50
2,1-P=(I34.68~34.63+I35.47~35.40+I35.94~35.70)/2
1,3-P=I37.50~37.20/2
(5)極性基含有オレフィン共重合体の製造方法
(5-1)触媒
 本発明の極性基含有オレフィン共重合体の製造方法は、一段階の重合反応で、前記一般式(1)で表される極性基含有モノマーの少なくとも1種を、炭素数3以上のオレフィン重合体の主鎖に導入する観点、及び共重合体の分子構造を直鎖状とする観点から、遷移金属を含む触媒の存在下で、炭素数3~20のオレフィンモノマーの少なくとも1種と、前記一般式(1)で表される極性基含有モノマーの少なくとも1種とを重合させる方法であってよい。
 前記遷移金属を含む触媒としては、前記一般式(1)で表される極性基含有モノマーの少なくとも1種のモノマー(B)を、前記モノマー(A)と重合させることが可能なものであれば特に限定されないが、例えば、キレート性配位子を有する第5~11族の遷移金属化合物が挙げられる。
 好ましい遷移金属の具体例として、バナジウム、ニオビウム、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、白金、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、銅などが挙げられる。これらの中で好ましくは、第8~11族の遷移金属であり、さらに好ましくは第10族遷移金属であり、当該第10族遷移金属としては、ニッケル、パラジウム、又は白金が挙げられ、特に好ましくはニッケル(Ni)、パラジウム(Pd)である。これらの金属は、単一であっても複数を併用してもよい。
 キレート性配位子は、P、N、O、及びSからなる群より選択される少なくとも2個の原子を有しており、二座配位(bidentate)又は多座配位(multidentate)であるリガンドを含み、電子的に中性又は陰イオン性である。Brookhartらによる総説に、その構造が例示されている(Chem.Rev.,2000,100,1169)。
 好ましくは、二座アニオン性P、O配位子として例えば、リンスルホナート、リンカルボキシラート、リンフェノキシド、リンアルコキシド、リンエノラートが挙げられ、他に、二座アニオン性N、O配位子として例えば、ピリジンカルボキシラートが挙げられ、他に、ジイミン配位子、ジフェノキシド配位子、ジアミド配位子が挙げられる。
 前記遷移金属を含む触媒としては、重合体の製造効率、重合体の分子量、並びに前記モノマー(A)及び前記モノマー(B)との共重合性の点から、第8族~第10族遷移金属からなる群より選ばれる後周期遷移金属を含む触媒であることが好ましく、中でも、第10族遷移金属を含む触媒であることが好ましく、更に、第10族遷移金属を含む触媒であり、当該10族遷移金属への配位点として一つ以上のリン原子を含むキレート配位子を有することが好ましい。
 前記遷移金属を含む触媒としては、重合体の製造効率、重合体の分子量、並びに前記モノマー(A)及び前記モノマー(B)との共重合性の点から、中でも、第10族遷移金属を含む触媒であり、下記一般式(101)で表される化合物の少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
(一般式(101)中、Mは第10族遷移金属を示し、QはA[-S(=O)-O-]M、A[-C(=O)-O-]M、A[-O-]M、又はA[-S-]Mの「[  ]」の中に示される2価の基を示す(ただし、両側のA、Mは基の結合方向を示すために記載している)。Aは、Qとリン原子を連結する炭素数1~30の2価の炭化水素基であって置換基で置換されていてもよく、Rは水素原子、ヘテロ原子を含有していてもよい炭素数1~20の炭化水素基、またはMに配位したリガンドを示し、LはMに配位したリガンドを示し、RとRはそれぞれ独立に、水素原子、又は置換基で置換されていてもよい炭素数1~30の炭化水素基を示す。RとLは環を形成してもよく、RとRは環を形成してもよく、R又はRはAと結合して環を形成してもよい。)
 一般式(101)中、Mは第10族遷移金属を示し、中でも、Ni、Pdであることが好ましい。
 Qは、-S(=O)-O-、-C(=O)-O-、-O-、または-S-で示される2価の基を表し、Mに1電子配位する部位である。前記各式の左側がAに結合し、右側がMに結合している。これらの中でも触媒活性の面から-S(=O)-O-または-O-が好ましく、-O-が特に好ましい。
 Aは、Qとリン原子を連結する炭素数1~30の2価の炭化水素基であり、当該炭化水素基は、置換基を有していてもよい。
 炭素数1~30の2価の炭化水素基としては、炭素数1~20の2価の炭化水素基であってよく、好ましくはアルキレン基、アリーレン基、及びこれらの組み合わせが挙げられる。
 Aにおける炭化水素基の置換基としては、例えば、ハロゲン原子、ORβ、COβ、COM’、CON(Rα、CORβ、OC(O)Rβ、SRβ、SOβ、SORβ、OSOβ、PO(ORβ2-y(Rα、CN、NHRβ、N(Rβ、Si(ORα3-x(Rα、OSi(ORα3-x(Rα、NO、SOM’、POM’、P(O)(ORβM’、またはエポキシ含有基等が挙げられる(ここで、Rαは、水素原子または炭素数1~20の炭化水素基を表し、Rβは、炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アルカリ土類金属、アンモニウム、4級アンモニウム又はホスホニウムを表し、xは0~3の整数を表し、yは0~2の整数を表す)。
 ここでの炭素数1~20の炭化水素基は、前記一般式(1)のRのうち、炭素数1~20の炭化水素基と同様のものを挙げることができる。
 Aにおける炭素数1~30の2価の炭化水素基としては、例えば、下記式(a-1)~(a-7)が挙げられる。(a-3)の-[C(R101-におけるnは1~3の整数であり、-[C(R101]-の繰り返し数を示す。下記式において、R101は、それぞれ独立に、水素原子、置換基で置換されていてもよい炭素数1~20の炭化水素基、又は置換基を示す。複数のR101は隣接置換基同士が互いに連結し、脂環式環、芳香族環、または酸素原子、窒素原子および硫黄原子からなる群より選ばれる少なくとも1つのヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していてもよい。
 R101における、炭素数1~20の炭化水素基は、前記一般式(1)のRのうち、炭素数1~20の炭化水素基と同様のものを挙げることができる。当該炭素数1~20の炭化水素基は、中でも1~15の炭化水素基が好ましく、1~10の炭化水素基が更に好ましい。
 Aにおける炭素数1~30の2価の炭化水素基としては、中でも、触媒活性の面から、下記式(a-2)または下記式(a-7)であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 LはMに配位したリガンドを示す。Lは金属から脱離可能な0価の配位子であってよい。
 Lは、電子供与性基を有し、金属原子Mに配位して金属錯体を安定化させることのできる化合物であることが好ましい。Lは、配位結合可能な原子として、酸素原子、窒素原子及び硫黄原子からなる群より選ばれる少なくとも1種を含む炭素数1~20の炭化水素化合物、或いは、遷移金属に配位可能な炭素-炭素不飽和結合を有し、ヘテロ原子を含有していてもよい炭化水素化合物も使用することができる。好ましくは、Lの炭素数は1~16であり、更に好ましくは1~10である。
 好ましいLとしては、環状不飽和炭化水素類、ホスフィン類、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類などを挙げることができる。
 Lは、硫黄原子を有するものとしてジメチルスルホキシド(DMSO)が挙げられる。
窒素原子を有するものとして、アルキル基の炭素数1~10のトリアルキルアミン、アルキル基の炭素数1~10のジアルキルアミン、ピリジン、2,6-ジメチルピリジン(別名:2,6-ルチジン)、アニリン、2,6-ジメチルアニリン、2,6-ジイソプロピルアニリン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、4-(N,N-ジメチルアミノ)ピリジン(DMAP)、アセトニトリル、ベンゾニトリル、キノリン、2-メチルキノリンなどが挙げられる。酸素原子を有するものとして、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタンが挙げられる。錯体の安定性及び触媒活性の観点から、DMSO、ピリジン、2,6-ルチジン、TMEDAが好ましく、DMSO、2,6-ルチジンがより好ましい。
 さらに好ましいLとしては、環状オレフィン類、ホスフィン類、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類が挙げられ、より好ましいLとして、トリアルキルホスフィン、ピリジン、2,6-ルチジン、ピコリン(2-メチルピリジン)、RβCOβ(Rβの定義は、前記の通り)を挙げることができる。
本発明においてRは、水素原子、ヘテロ原子を含有していてもよい炭素数1~20の炭化水素基、またはMに配位したリガンドを表す。
 Rが、Mに配位したリガンドである場合、前記Lと同様のものが挙げられるが、中性リガンドではなく、アニオン性リガンドであってよい。例えば、配位子と、遷移金属化合物としてニッケル(0)ビス(1,5-シクロオクタジエン)(Ni(cod))とが反応した場合、遷移金属化合物由来の配位子は、RとLが互いに結合して環を形成したσ、π-シクロオクタ-4-エニル基となる。
 本発明における重合反応は、MとRの結合に本発明におけるプロピレン等の上記オレフィンまたはその共重合モノマーが挿入されることによって、開始されると考えられる。したがって、Rの炭素数が過度に多いと、この開始反応が阻害される傾向にある。このため、好ましいRとしては、置換基に含まれる炭素数を除く炭素数が1~16、さらに好ましくは当該炭素数が1~10である。
 Rの具体的な例としては、ヒドリド基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、フェニル基、p-メチルフェニル基、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等を挙げることができる。
 なお、RとLが互いに結合して環を形成してもよい。そのような例として、σ、π-シクロオクタ-4-エニル基、アセチルアセトナト基を挙げることができ、これも本発明における好ましい様態である。
 RとRは、それぞれ独立に、置換基を有していてもよい炭素数1~30の炭化水素基を示す。
 RとRにおける炭素数1~30の炭化水素基は、前記一般式(1)のRと同様のものを挙げることができる。
 RとRにおける置換基は、前記Aにおける置換基と同様であってよい。
 RとRは、遷移金属Mの近傍にあって、立体的及び/又は電子的に遷移金属Mに相互作用を及ぼす。こうした効果を及ぼすためには、RとRは嵩高い方が好ましい。RとRの好ましい炭素数は3~30、より更に好ましくは6~20である。
 RとRはそれぞれ独立に、置換基を有していてもよい炭素数3~10のアルキル基、置換基を有していてもよい炭素数6~20のシクロアルキル基、または置換基及びアルキル基を有していてもよい炭素数6~20のアリール基であることが好ましい。
 RとRにおける置換基を有していてもよい炭素数3~10のアルキル基としては、置換基を有していてもよい炭素数3~10の直鎖又は分岐アルキル基が挙げられる。当該炭素数3~10の炭素数3~10のアルキル基としては、例えば、1-プロピル基、1-ブチル基、1-ペンチル基、1-ヘキシル基、1-ヘプチル基、1-オクチル基、1-ノニル基、1-デシル基、i-プロピル基、1-ジメチルプロピル基、1,1,2-トリメチルプロピル基、1,1-ジエチルプロピル基、i-ブチル基、sec-ブチル基、t-ブチル基、1,1-ジメチルブチル基、2-ペンチル基、3-ペンチル基、2-ヘキシル基、3-ヘキシル基、2-エチルヘキシル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、2-プロピルヘプチル基、2-オクチル基、3-ノニル基、メトキシメチル基、エトキシメチル基、i-プロポキシメチル基、t-ブトキシメチル基等が挙げられる。
 中でも、置換基を有していてもよい炭素数3~10の分岐アルキル基であることが好ましく、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基が好ましい。
 RとRにおける置換基を有していてもよい炭素数6~20のシクロアルキル基としては、置換基を有していてもよく、炭素数3~10の直鎖又は分岐アルキル基が置換されていてもよいシクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基等が挙げられる。
 また、例えば特開2018-141138号公報の段落0104~0113に記載されているシクロアルキル基(特開2018-141138号公報の段落0104~0113におけるXは、本発明の一般式(101)においてP(リン原子)の結合位置を示す)であってもよい。
 RとRは、中でも、重合体分子量制御および極性モノマー共重合性制御の点から、炭素数3~10の直鎖又は分岐アルキル基が置換されているシクロヘキシル基、またはアダマンチル基であることがより好ましい。中でも、2-イソプロピル-5-メチルシクロヘキシル基(メンチル基)またはアダマンチル基であることが好ましい。
 また、RとRにおける置換基及びアルキル基を有していてもよい炭素数6~20のアリール基としては、置換基を有していてもよく、炭素数3~10の直鎖又は分岐アルキル基が置換されていてもよいフェニル基、ナフチル基、アントラセニル基等が挙げられる。当該炭素数6~20のアリール基は、炭素数3~6の分岐アルキル基、炭素数1~6の炭化水素基置換シリル基または酸素原子及び窒素原子の少なくとも1種を含む置換基が置換されていることが好ましく、酸素原子及び窒素原子の少なくとも1種を含む置換基が置換されていることがより好ましい。
 当該炭素数6~20のアリール基が酸素原子及び窒素原子の少なくとも1種を含む置換基で置換されている場合、当該置換基は、アリール基においてリンに結合した炭素に対してオルト位に置換されていることが好ましい。このようにすることによって、RとR中の酸素原子及び窒素原子の少なくとも1種が遷移金属Mと相互作用を持つように空間的配置をとることができるからである。
 好ましいRとRの具体例としては、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、2-イソプロピル-5-メチルシクロヘキシル基、アダマンチル基、フェニル基、2,6-ジメトキシフェニル基、2,4,6-トリメトキシフェニル基、2,6-ジt-ブチルフェニル基、2,4,6-トリt-ブチルフェニル基、2,6-ジトリメチルシリルフェニル基、4-メチル-2,6-ジメトキシフェニル基、4-t-ブチル-2,6-ジメトキシフェニル基、1,3-ジメトキシ-2-ナフチル基、2,6-ジエトキシフェニル基、2,4,6-トリエトキシフェニル基、4-メチル-2,6-ジエトキシフェニル基、4-t-ブチル-2,6-ジエトキシフェニル基、1,3-ジエトキシ-2-ナフチル基、2,6-ジフェノキシフェニル基、2,4,6-トリフェノキシフェニル基、4-メチル-2,6-ジフェノキシフェニル基、4-t-ブチル-2,6-ジフェノキシフェニル基、1,3-ジフェノキシ-2-ナフチル基、2,6-ジメトキシメチルフェニル基、2,4,6-トリメトキシメチルフェニル基、4-メチル-2,6-ジメトキシメチルフェニル基、4-t-ブチル-2,6-ジメトキシメチルフェニル基、1,3-ジメトキシメチル-2-ナフチル基、2,6-ジフェノキシメチルフェニル基、2,4,6-トリフェノキシメチルフェニル基、4-メチル-2,6-ジフェノキシメチルフェニル基、4-t-ブチル-2,6-ジフェノキシメチルフェニル基、1,3-ジフェノキシメチル-2-ナフチル基、2,6-ジ(2-メトキシエチル)フェニル基、2,4,6-トリ(2-メトキシエチル)フェニル基、4-メチル-2,6-ジ(2-メトキシエチル)フェニル基、4-t-ブチル-2,6-ジ(2-メトキシエチル)フェニル基、1,3-ジ(2-メトキシエチル)-2-ナフチル基、2,6-ジ(2-フェノキシエチル)フェニル基、2,4,6-トリ(2-フェノキシエチル)フェニル基、4-メチル-2,6-ジ(2-フェノキシエチル)フェニル基、4-t-ブチル-2,6-ジ(2-フェノキシエチル)フェニル基、1,3-ジ(2-フェノキシエチル)-2-ナフチル基などを挙げることができる。 
 RとRは、Aと結合して環構造を形成してもよい。具体的には例えば特開2018-141138号公報の段落0120~0121に記載されている構造(なお、ここでの例は、置換基R16とAが結合して環構造を形成している場合を示しており、PとQは本発明の一般式(101)と同義である。)が挙げられる。
 本発明の一般式(101)で表される化合物の中でも、下記一般式(102)で表される化合物、または、下記一般式(103)で表される化合物であることが、重合体の製造効率の点から好ましい。
Figure JPOXMLDOC01-appb-C000017
(一般式(102)中、M、L、R、R及びRは、それぞれ前記一般式(101)と同義であり、R11、R12、R13及びR14はそれぞれ独立に、水素原子、置換基で置換されていてもよい炭素数1~20の炭化水素基、又は置換基を示す。R11、R12、R13及びR14は隣接置換基同士が互いに連結し、脂環式環、芳香族環、または酸素原子、窒素原子及び硫黄原子からなる群より選ばれる少なくとも1つのヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していてもよい。)
 一般式(102)中、R11、R12、R13及びR14における置換基で置換されていてもよい炭素数1~20の炭化水素基及び置換基は、前記Aに説明したR101と同様のものであってよい。
 中でも、R11は、嵩高い方が、高分子量の重合体を与える傾向にあり、置換基で置換されていてもよい炭素数1~20の炭化水素基、または置換基であることが好ましく、置換基で置換されていてもよい炭素数1~20の炭化水素基であることが好ましい。
 R11として用いられる置換基で置換されていてもよい炭素数1~30の炭化水素基としては、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、4-t-ブチルフェニル基、2,4-ジ-t-ブチルフェニル基、9-フルオレニル基、シクロヘキシル基、トリフルオロメチル基、ペンタフルオロフェニル基、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロフェニル基、パーフルオロナフチル基、ジフルオロフェニル基、トリフルオロフェニル基、ニトロフェニル基、ジニトロフェニル基、シアノフェニル基等が好適なものとして挙げられる。
 また、R11として用いられる置換基としては、具体的には、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリフェニルシリル基、シクロヘキシルアミノ基、メトキシ基、カルバゾリル基、トリメチルシロキシ基等が好適なものとして挙げられる。
 中でも、R11は、置換基で置換されていてもよい炭素数4~20の炭化水素基であってよい。
 前記一般式(102)で表される化合物として好適なものとしては、例えば下記化合物が挙げられるが、これらに限定されるものではない。
 下記化学式において、Phはフェニル基、DMPは2,6-ジメトキシフェニル基、iPrはイソプロピル基、t-Buはt-ブチル基、Adはアダマンチル基、Cyはシクロヘキシル基、Meはメチル基、TMSはトリメチルシリル基、pyはピリジル基を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(一般式(103)中、M、L、R、R及びRは、それぞれ前記一般式(101)と同義であり、R21、R22、R23及びR24はそれぞれ独立に、水素原子、置換基で置換されていてもよい炭素数1~20の炭化水素基、又は置換基を示す。R21、R22、R23及びR24は複数の基が互いに連結し、脂環式環、芳香族環、または酸素原子、窒素原子及び硫黄原子からなる群より選ばれる少なくとも1つのヘテロ原子を含有する複素環を形成してもよい。このとき、環員数は5~8であり、該環上に置換基を有していてもよい。)
 R21及びR22は、少なくともいずれか一方が、置換基で置換されていてもよい炭素数1~20の炭化水素基、又は置換基であることが、立体制御によりオレフィンが反応する方向を制御することや連鎖移動の防止ができるため、好ましい。特に、R21またはR22が、電子求引性基であると、オレフィン重合触媒としての性能がより向上するため好ましい。
 電子求引性基としては、トリフルオロメチル基、ペンタフルオロフェニル基、メトキシカルボニル基等が好適に用いられる。
 また、R21、R22、R23及びR24は複数の基が互いに連結し、脂環式環、芳香族環、または酸素原子、窒素原子および硫黄原子からなる群より選ばれる少なくとも1つのヘテロ原子を含有する複素環を形成している場合、1つの環員数は5~8であるが、さらに2つ以上の環が縮合環を形成していてもよい。
 前記一般式(103)で表される化合物として好適なものとしては、例えば下記化合物が挙げられるが、これらに限定されるものではない。
 下記化学式において、Phはフェニル基、DMPは2,6-ジメトキシフェニル基、t-Buはt-ブチル基、Adはアダマンチル基、Meはメチル基、pyはピリジル基を表す。
Figure JPOXMLDOC01-appb-C000020
 また、前記一般式(103)で表される化合物として好適なものとしては、例えば下記化合物とNi(cod)との反応により得られる遷移金属錯体も挙げられる。
Figure JPOXMLDOC01-appb-C000021
 本発明に用いられる遷移金属錯体は、従来公知の方法で調製することができる。
 また、本発明に用いられる遷移金属を含む触媒は、前記の遷移金属錯体を主要な触媒成分とするものであり、必要により、活性化剤、担体などを併用することができる。
 上記活性化剤としては、メタロセン触媒で使用される助触媒であるアルキルアルモキサンや有機アルミニウム化合物が例示される。
 有機アルミニウム化合物の一例は、次の一般式で表される。
  Al(R31(3-a)
 一般式中、R31は、炭素数1~20の炭化水素基、Xは、水素原子、ハロゲン原子、アルコキシ基又はシロキシ基を示し、aは0より大きく3以下の数を示す。
 R31は、炭素数1~20の炭化水素基であるが、好ましくは1~12のアルキル基、アルケニル基、アリール基、アラルキル基などが挙げられる。
 中でも、良好な助触媒である点から、aが3である有機アルミニウム化合物であることが好ましい。
 前記一般式で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリ-n-オクチルアルミニウムなどのトリアルキルアルミニウム、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノメトキシドなどのハロゲン又はアルコキシ含有アルキルアルミニウムが挙げられ、中でもトリアルキルアルミニウムが好ましい。
 トリアルキルアルミニウムのアルキル基としては、前述と同様であってよく、中でもメチル基、イソブチル基、n-オクチル基が好ましく、これらの中では、トリイソブチルアルミニウムまたはトリ-n-オクチルアルミニウムが好ましい。
 また、担体としては、本発明の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。
 具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThOなど又はこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Crなどの混合酸化物も使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。
(5-2)極性基含有オレフィン共重合体の重合方法:
 本発明における極性基含有オレフィン共重合体の重合方法は限定されない。
 媒体中に全ての生成重合体が溶解する溶液重合、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、又は、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などが用いられる。
 重合形式としては、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。
 具体的な製造プロセス及び条件については、例えば、特開2010-260913号公報、特開2010-202647号公報に開示されている。
 未反応モノマーや媒体は、生成重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成重合体と未反応モノマー及び媒体との分離には、従来の公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
 共重合温度、共重合圧力及び共重合時間に特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。
 即ち、共重合温度は、通常-20℃~290℃、好ましくは0℃~250℃、より好ましくは0℃~200℃、さらに好ましくは10℃~150℃、特に好ましくは20℃~100℃である。共重合圧力は、0.1MPa~100MPa、好ましくは、0.3MPa~90MPa、より好ましくは0.5MPa~80MPa、さらに好ましくは1.0MPa~70MPa、特に好ましくは1.3MPa~60MPaである。共重合時間は、0.1分~50時間、好ましくは、0.5分~40時間、更に好ましくは1分~30時間の範囲から選ぶことができる。
 本発明において、重合は、一般に不活性ガス雰囲気下で行われる。例えば、窒素、アルゴン雰囲気が使用でき、窒素雰囲気が好ましく使用される。
 重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じて様々な供給法をとることができる。例えばバッチ重合の場合、予め所定量のモノマーを共重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を共重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を共重合反応器に連続的に、又は間歇的に供給し、共重合反応を連続的に行う手法をとることができる。
 共重合体の組成の制御に関しては、モノマーの供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
 共重合体の分子量制御には、従来公知の方法を使用することができる。即ち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、遷移金属錯体中の配位子構造の制御により分子量を制御するなどが挙げられる。
 次に本発明を実施例によって具体的に説明するが、本発明はその要旨を逸脱しない限りこれらの実施例によって制約を受けるものではない。なお、極性基含有オレフィン共重合体等の物性等は、以下の方法で測定した。
[極性基含有オレフィン共重合体の構造]
(1)H-NMR及び13C-NMR解析
 一般式(I)と一般式(II)の類似化合物のH-NMR及び13C-NMRスペクトル(国立研究開発法人産業技術総合研究所が提供するスペクトルデータベース)を参考にNMRスペクトルを帰属し、極性基含有オレフィン共重合体の構造を決定した。
 一般式(I)の類似構造として炭酸ジエチル(δH=4.2ppm付近、δ13C=64ppm付近)、一般式(II)の類似構造として2,3-ブタンジオール(δH=3.8ppm付近、δ13C=71ppm付近)の化学シフト値と同等の位置にシグナルが検出することを2次元NMRで検証した。
[測定条件]
 試料200mgを溶媒(ODCB/CBr=3/1(体積比))2.4mLおよび化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れ、150℃のブロックヒーターで均一に溶解した。
(2次元-NMR:HSQC)
装置:ブルカー・バイオスピン(株)のAV400型NMR装置
プローブ:10mmφのクライオプローブ
試料温度:120℃
積算回数:128回
F2軸のテータポイント:1026
F1軸のデータポイント:64
F2軸のスペクトル幅:9ppm
F1軸のスペクトル幅:180ppm
(2)IR解析
 金属製へらを高粘度の試料に触れさせることで試料を採取し、これを縦×横×厚みが5×5×1mmの臭化カリウム板に塗布し、その後、同じ臭化カリウム板をかぶせる事で2枚の臭化カリウム板に挟まれた測定用試料を調製した。測定は以下の装置、条件で行った。
装置:日本分光社製フーリエ変換式IR(FT-IR6600)
測定モード:透過
スキャン回数:16回
分解能:4cm-1
測定範囲:400-4000cm-1
(3)数平均分子量及び重量平均分子量]
 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって求めた。
 装置:Waters社製GPC(ALC/GPC、150C)
 検出器:Polymer Char社製IR-4
 カラム:昭和電工社製AT-806MS(3本)
 移動相溶媒;ODCB
 測定温度;140℃
 溶媒流速;1.0mL/分
 試料濃度:1mg/mL
 試料注入量:0.3ml
 試料の調製は、試料とODCB(0.5mg/mLのジブチルヒドロキシトルエン(BHT)を含む)を用いて、1mg/mLの溶液を調製し、140℃で約1時間要して溶解させて行う。
 なお、得られたクロマトグラムのベースラインと区間の決定は、図7のように行う。
 また、GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは、いずれも東ソー社製の以下の銘柄である。
 銘柄:F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
 各々が0.5mg/mLとなるように、ODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して、較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。
 分子量への換算に使用する粘度式:[η]=K×Mαは、以下の数値を用いる。
 PS:K=1.38×10-4、α=0.7
 PP:K=1.03×10-4、α=0.78
(合成例1)AL-2の合成
Figure JPOXMLDOC01-appb-C000022
 以下の操作はすべて窒素雰囲気下で行った。
 シュレンク管にジtert-ブチルホスフィンのヘキサン溶液(10wt%)を21.931g(15mmol)量り取り、テトラヒドロフランを100mL加えた。得られた溶液に、室温にてボラン-テトラヒドロフランコンプレックス(約0.9mol/L)を36.2mL(33mmol)加え、室温で1時間攪拌した後、溶媒を完全に留去した。このシュレンク管にテトラヒドロフランを50mL加え、-78℃に冷やした後、ノルマルブチルリチウムを10.5mL(16.5mmol)ゆっくりと滴下した。滴下終了後、室温で1時間混合物を撹拌した。その後混合物を0℃に冷やしてから、テトラヒドロフラン15mLに溶解させたα-(トリフルオロメチル)スチレンオキシド2.822g(15.0mmol)をゆっくり加え、室温で1時間撹拌した。得られた混合物から溶媒を完全に留去し、残留物をヘキサン40mLと30mLで1回ずつ洗浄した。洗浄後、溶媒を完全に留去してから残留物にテトラヒドロフランを50mL加え、0℃に冷やした後、塩酸エーテル溶液を9.0mL(18.0mmol)ゆっくりと滴下した。室温で15分混合物を撹拌した後、脱気した水30mLとエーテル40mLを加え、有機層を抽出した。水層にエーテルを40mL加えて有機層を抽出する操作を2回繰り返した。集めた有機層を硫酸ナトリウムで乾燥させた後、ガラスフィルターを用いて硫酸ナトリウムを除去し、回収した有機層の溶媒を完全に留去した。
 上記の残留物にトルエンを20mL加え、そこにトルエン10mLに溶解させた1,4-ジアザビシクロ[2.2.2]オクタン1.682g(15.0mmol)を加え、60℃に昇温してから2時間撹拌した。撹拌後、溶媒を完全に留去してからトルエンを用いてシリカゲルカラムクロマトグラフィーで精製し、3.16gの固体を得た。31P-NMRから求めた純度は99%であった。
H-NMR(400MHz、CDCl)δ:7.61(d、J=7.7Hz、2H)、7.38~7.28(m、3H)、4.10(d、J=10.1Hz、1H)、2.51(dd、J=15.7,4.4Hz、1H)、2.21(dd、J=15.7,4.7Hz、1H)、1.22(d、J=12.0Hz、9H)、0.87(d、J=12.0Hz、9H)
19F-NMR(376MHz、CDCl)δ:-78.6(d、J=11.0Hz)31P-NMR(162MHz、CDCl)δ:6.7(q、J=8.0Hz)
(比較合成例1)金属錯体PIの合成
 非特許文献Dalton Trans. 2018,47,15857-15872.およびOrganometallics 1998,17,15,3149-3151.の記載に基づき、下記構造の金属錯体PIの合成を行った。
Figure JPOXMLDOC01-appb-C000023
   金属錯体PI
なお、図中Dipは2,6-ジイソプロピルフェニル基を表す。
 以下の操作はすべて窒素雰囲気下で行った。また、各実験における重合条件を表1に、得られた重合体の各種分析結果を表2に示した。表中の「-」は、不存在又は分析に必要なサンプル量がなく、測定できなかったことを意味する。
(実施例1)
(1)触媒溶液の調製
 50mLフラスコに、Ni(cod)を77.0mg(280μmol)量り取り、14mLのトルエンに溶解させた。また、別のフラスコに80.6mg(240μmol)の合成例1で得られたAL-2を量り取った。Ni(cod)のトルエン溶液を12mL量り取り、この溶液をAL-2の入ったフラスコに加えた。生じた溶液を40℃の水浴で温め、15分間撹拌して触媒溶液を得た。
(2)極性基含有オレフィン共重合体1の製造
 0.2Lのオートクレーブにトルエンを30mL、1.768gの炭酸ビニレン(20.5mmol)、トリノルマルオクチルアルミニウム(TNOA)のトルエン溶液(0.1M)を100μL、プロピレン(25g)を加え、50℃に昇温した。触媒シリンダーに3.0mLの触媒溶液を加え、高圧窒素で触媒をオートクレーブに圧入し、この時点を反応開始時刻とした。さらに反応開始16分後に2mLの上記触媒溶液を触媒シリンダーから圧入した。反応開始2分後、17分後にそれぞれ3mLのトルエンで触媒シリンダーを洗浄し、洗浄液をオートクレーブに圧入した。反応開始60分後に、3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、プロピレンを脱圧した。当該オートクレーブを室温に戻し、濃縮することで得られた油状のポリプロピレンを、ヘキサン100%を展開溶媒としてシリカゲルカラムクロマトグラフィーで精製した。得られた油状の物質を減圧乾燥し、1.13gの極性基含有オレフィン共重合体1(重合体1)を得た。
 得られた共重合体1について、図1にH-NMRスペクトルを、図2にH-NMRスペクトルの部分的な拡大図(6~3.6ppm付近)を、図3に13C-NMRスペクトルを、図4にIRチャートを示した。
 (比較例1)
(1)触媒溶液の調製
 50mLフラスコに、比較合成例1で得られた金属錯体PIを85.5mg(100μmol)量り取り、5mLのトルエンに溶解し、触媒溶液を得た。
(2)金属錯体PIによる重合
 0.2Lのオートクレーブにトルエンを30mL、4.300gの炭酸ビニレン(50.4mmol)、TNOAのトルエン溶液(0.1M)を100μL、プロピレン(25g)を加え、50℃に昇温した。触媒シリンダーに3.0mLの触媒溶液を加え、高圧窒素で触媒をオートクレーブに圧入し、この時点を反応開始時刻とした。反応開始から2分後に3mLのトルエンで触媒シリンダーを洗浄し、その洗浄液をオートクレーブに圧入した。反応開始60分後に、3mLの1,2-ブタンジオールのトルエン溶液(0.2M)を加えて反応を停止し、プロピレンを脱圧した。当該オートクレーブを室温に戻し、濃縮することで得られた油状のポリプロピレンを、ヘキサン100%を展開溶媒としてシリカゲルカラムクロマトグラフィーで精製した。得られた油状の物質を減圧乾燥し、0.070gの重合体C1を得た。
 得られた重合体C1について、図5にH-NMRスペクトルを、図6にH-NMRスペクトルの部分的な拡大図(6~3.8ppm付近)を示した。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 NMR測定結果から明らかなように、実施例1では、プロピレンの主鎖に、一般式(1)で表される極性基含有モノマー由来の構造単位(B)が導入されている新規な極性基含有オレフィン共重合体を得ることができた。一方で比較例1では、国際公開第00/56781号公報の実施例に用いられている触媒を用いて重合を行った例である。比較例1の重合体C1では、一般式(1)で表される極性基含有モノマー由来の構造がNMR測定からは観察されなかった。つまり、比較例1において共重合体は得られず、プロピレンのホモ重合体が得られた。
 なお、表2において、コモノマー含有量(mol%)は、重合体の構造単位全体を100mol%とした場合の一般式(1)で表される極性基含有モノマー由来の構造単位(B)の含有割合を意味する。
 本発明の新規な極性基含有オレフィン共重合体は、プロピレン等の炭素数3以上のポリオレフィン中に、酸素原子をビシナル位に導入されているため、キレート配位性を有するなどの、従来のオレフィン共重合体にない機能を実現できる可能性がある。例えば、本発明の極性基含有オレフィン共重合体は、金属錯体触媒のための担体や金属錯体回収のための吸着材などの用途も期待できる。
 また、本発明の極性基含有オレフィン共重合体の構造単位(B)の極性基にグラフト重合を行うことで、さらなる機能化を行うことも可能となる。
 さらに、プロピレンと炭酸ビニレンの共重合により、二酸化炭素の固定を行うことができる。

Claims (7)

  1.  炭素数3~20のオレフィンモノマーの少なくとも1種に由来する構造単位(A)と、
     下記一般式(1)で表される極性基含有モノマーの少なくとも1種に由来する構造単位(B)と、を含む、極性基含有オレフィン共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
    およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。)
  2.  前記構造単位(B)が下記一般式(I)で表される構造単位及び下記一般式(II)で表される構造単位からなる群より選ばれる少なくとも1種である、請求項1に記載の極性基含有オレフィン共重合体。
    Figure JPOXMLDOC01-appb-C000002
    (式(I)及び式(II)中、
    およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。)
  3.  前記RおよびRの少なくとも1つが水素原子である、請求項1または2に記載の極性基含有オレフィン共重合体。
  4.  前記RおよびRが、いずれも水素原子である、請求項1~3のいずれか1項に記載の極性基含有オレフィン共重合体。
  5.  前記炭素数3~20のオレフィンモノマーの少なくとも1種のモノマーが、プロピレンである、請求項1~4のいずれか1項に記載の極性基含有オレフィン共重合体。
  6.  極性基含有オレフィン共重合体が、前記構造単位(B)を0.01mol%~5mol%含む、請求項1~5のいずれか1項に記載の極性基含有オレフィン共重合体。
  7.  下記一般式(101)で表される化合物から選択される少なくとも1種を含む触媒下で、
     炭素数3~20のオレフィンモノマーの少なくとも1種のモノマーと、下記一般式(1)で表される極性基含有モノマーの少なくとも1種のモノマーとを重合させる、極性基含有オレフィン共重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(101)中、Mは第10族遷移金属を示し、QはA[-S(=O)-O-]M、A[-C(=O)-O-]M、A[-O-]M、又はA[-S-]Mの「[  ]」の中に示される2価の基を示す(ただし、両側のA、Mは基の結合方向を示すために記載している)。Aは、Qとリン原子を連結する炭素数1~30の2価の炭化水素基であって置換基で置換されていてもよく、Rは水素原子、ヘテロ原子を含有していてもよい炭素数1~20の炭化水素基、またはMに配位したリガンドを示し、LはMに配位したリガンドを示し、RとRはそれぞれ独立に、水素原子、又は置換基で置換されていてもよい炭素数1~30の炭化水素基を示す。RとLは環を形成してもよく、RとRは環を形成してもよく、R又はRはAと結合して環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、
    およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、ホルミル基、カルボキシ基、炭素数1~30のエステル基、炭素数1~30のアシルオキシ基、炭素数1~30のアシル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基、炭素数1~30のアルキルチオ基、炭素数6~30のアリールチオ基、ニトロ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミノ基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいシリル基、少なくとも1つの炭素数1~30の炭化水素基で置換されていてもよいアミド基、少なくとも1つのハロゲン原子で置換されている炭素数1~30の炭化水素基、又は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種を含む少なくとも1つの置換基で置換されていてもよい炭素数1~30の炭化水素基若しくは複素環基であるか、或いは、RとRは互いに結合して4~10員環の環を形成していてもよい。)
PCT/JP2023/013270 2022-03-31 2023-03-30 極性基含有オレフィン共重合体及びその製造方法 WO2023190912A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022058069 2022-03-31
JP2022-058069 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190912A1 true WO2023190912A1 (ja) 2023-10-05

Family

ID=88202914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013270 WO2023190912A1 (ja) 2022-03-31 2023-03-30 極性基含有オレフィン共重合体及びその製造方法

Country Status (2)

Country Link
JP (1) JP2023153026A (ja)
WO (1) WO2023190912A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472294A (en) * 1977-11-18 1979-06-09 Hoechst Ag Plastic material having improved adaptability with blood and method of making same
WO2000056781A2 (en) * 1999-03-23 2000-09-28 Cryovac, Inc. Linear functionalized copolymer and articles formed thereof
JP2017088883A (ja) * 2015-11-11 2017-05-25 国立大学法人 東京大学 極性基含有プロピレン系オレフィン共重合体及びその製造方法
CN106832122A (zh) * 2017-02-28 2017-06-13 宁波工程学院 降冰片烯类、戊烯类和碳酸亚乙烯酯三元共聚催化剂以及三元共聚方法
JP2023036036A (ja) * 2021-08-31 2023-03-13 国立大学法人 東京大学 極性基含有オレフィン共重合体、及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472294A (en) * 1977-11-18 1979-06-09 Hoechst Ag Plastic material having improved adaptability with blood and method of making same
WO2000056781A2 (en) * 1999-03-23 2000-09-28 Cryovac, Inc. Linear functionalized copolymer and articles formed thereof
JP2017088883A (ja) * 2015-11-11 2017-05-25 国立大学法人 東京大学 極性基含有プロピレン系オレフィン共重合体及びその製造方法
CN106832122A (zh) * 2017-02-28 2017-06-13 宁波工程学院 降冰片烯类、戊烯类和碳酸亚乙烯酯三元共聚催化剂以及三元共聚方法
JP2023036036A (ja) * 2021-08-31 2023-03-13 国立大学法人 東京大学 極性基含有オレフィン共重合体、及びその製造方法

Also Published As

Publication number Publication date
JP2023153026A (ja) 2023-10-17

Similar Documents

Publication Publication Date Title
JP5763312B2 (ja) 極性基含有アリルモノマー共重合体の製造方法
US6900153B2 (en) Supported olefin polymerization catalysts
KR100560061B1 (ko) 에틸렌계 불포화 단량체로부터의 중합체 제조용 촉매조성물, 이의 제조 및 용도
CN107075005B (zh) 乙烯系离聚物的制造方法和乙烯系离聚物
CN106397264A (zh) 一种二亚胺配体化合物、配合物及应用
US20030130453A1 (en) Polymerization of olefins
JP2014159540A (ja) 極性基含有オレフィン系共重合体の製造方法
CN106397261A (zh) 一种二亚胺配体化合物、配合物及应用
KR101160556B1 (ko) 촉매 조성물, 그의 제조 방법 및 에틸렌계 불포화단량체로부터 중합체를 제조하기 위한 그의 용도
JP7213504B6 (ja) 極性基含有オレフィン共重合体
CN109942638A (zh) 用于乙烯聚合的含邻位二对甲基苯甲基取代的不对称α-二亚胺镍(Ⅱ)配合物
Sun et al. Vinyl polymerization of norbornene with novel nickel (II) diphosphinoamine/methylaluminoxane catalytic system
KR20060049579A (ko) 촉매 조성물, 그의 제조 방법 및 에틸렌계 불포화단량체로부터 중합체를 제조하기 위한 그의 용도
Hong et al. Synthesis, characterization, and reactivity of dinuclear organo-rare-earth-metal alkyl complexes supported by 2-amidate-functionalized indolyl ligands: substituent effects on coordination and reactivity
WO2023190912A1 (ja) 極性基含有オレフィン共重合体及びその製造方法
KR20130026443A (ko) 카르복실레이트 금속 착체 및 올레핀 중합용 촉매
US20030060357A1 (en) Catalysts for olefin polymerization
WO2023033030A1 (ja) 極性基含有オレフィン共重合体、及びその製造方法
US6670433B2 (en) Polymers of substituted cyclopentenes
VATANKHAH et al. High performance bulky α-diimine nickel (II) catalysts for ethylene polymerization
WO2020241715A1 (ja) 極性基含有オレフィン共重合体
KR101283959B1 (ko) 입체적으로 방해된 두자리 및 세자리 나프톡시-이민 금속 착물
JP2020193341A (ja) 極性基含有オレフィン重合体の製造方法
US20030027957A1 (en) Catalysts for olefin polymerization
JP2023153028A (ja) 極性基含有オレフィン共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780920

Country of ref document: EP

Kind code of ref document: A1