WO2023190906A1 - レーザ装置、プログラム、システム、及び方法 - Google Patents

レーザ装置、プログラム、システム、及び方法 Download PDF

Info

Publication number
WO2023190906A1
WO2023190906A1 PCT/JP2023/013260 JP2023013260W WO2023190906A1 WO 2023190906 A1 WO2023190906 A1 WO 2023190906A1 JP 2023013260 W JP2023013260 W JP 2023013260W WO 2023190906 A1 WO2023190906 A1 WO 2023190906A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
photovoltaic panel
light
control unit
Prior art date
Application number
PCT/JP2023/013260
Other languages
English (en)
French (fr)
Inventor
明彦 田近
郁雄 和仁
Original Assignee
ソフトバンク株式会社
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社, 川崎重工業株式会社 filed Critical ソフトバンク株式会社
Priority to EP23780914.0A priority Critical patent/EP4395126A1/en
Priority to KR1020247009008A priority patent/KR20240049328A/ko
Priority to CN202380013657.9A priority patent/CN117981197A/zh
Publication of WO2023190906A1 publication Critical patent/WO2023190906A1/ja
Priority to US18/607,593 priority patent/US20240266999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/30Aircraft characterised by electric power plants
    • B64D27/35Arrangements for on-board electric energy production, distribution, recovery or storage
    • B64D27/353Arrangements for on-board electric energy production, distribution, recovery or storage using solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • B64U50/35In-flight charging by wireless transmission, e.g. by induction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D25/00Control of light, e.g. intensity, colour or phase
    • G05D25/02Control of light, e.g. intensity, colour or phase characterised by the use of electric means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves

Definitions

  • the present invention relates to a laser device, a program, a system, and a method.
  • Patent Document 1 describes a management device that allows a railway operator to easily and safely fly an unmanned aerial vehicle by creating a flight route using the area where railway lines owned by the railway operator are laid. has been done.
  • Patent Document 2 describes a power transmission device that wirelessly transmits power to an electronic device.
  • a laser device may be provided.
  • the laser device may include an output section that outputs laser light.
  • the laser device may include a receiving unit that receives position information indicating the position of the moving body.
  • the laser device may include an imaging section that images the light from the moving object.
  • the laser device is configured to direct more of the laser light to a photovoltaic panel mounted on the mobile body based on the position of the mobile body indicated by the position information and the captured image captured by the imaging unit.
  • the laser beam may include a control unit that controls the output of the laser beam so that the laser beam is irradiated.
  • the imaging unit may image the light emitted by a light source installed at a position corresponding to the photovoltaic panel.
  • the image capturing unit may image the light that is reflected by the laser light from a reflecting plate installed around the photovoltaic panel.
  • the imaging unit may image the light that has passed through a bandpass filter that passes only light in a predetermined wavelength band that includes the wavelength of the laser light.
  • the control unit may control the irradiation direction of the laser beam so that the distance between the center of the laser beam and the center of the photovoltaic panel becomes shorter.
  • the control unit may control the irradiation direction of the laser beam by analyzing the captured image and identifying the center position of the photovoltaic panel.
  • the control unit may control the shape of the laser beam so that a shape error between the shape of the laser beam and the shape of the photovoltaic panel becomes smaller.
  • the control unit may control the shape of the laser beam so that it becomes an ellipse, and the aspect ratio and direction of the ellipse may be controllable by the control unit.
  • the control unit may control the intensity distribution of the laser beam so that the intensity distribution of the laser beam becomes more uniform on the photovoltaic panel.
  • the control unit may control at least one of the shape and intensity distribution of the laser beam so that the power generated by the photovoltaic panel that receives the laser beam is maximized.
  • the control unit may control the beam diameter of the laser beam so that a ratio of the size of the laser beam to the size of the photovoltaic panel becomes a predetermined ratio.
  • the receiving unit may further receive moving speed information indicating a moving speed of the moving body and moving direction information indicating a moving direction of the moving body.
  • the control unit causes the laser light to track the photovoltaic panel further based on the moving speed of the moving body indicated by the moving speed information and the moving direction of the moving body indicated by the moving direction information.
  • the output of the laser beam may be controlled so as to.
  • the control unit determines a target ratio of the size of the laser beam to the size of the photovoltaic panel based on a tracking result of the laser beam tracking the photovoltaic panel, and determines a target ratio of the size of the laser beam to the size of the photovoltaic panel.
  • the beam diameter of the laser beam may be controlled so that the size ratio of the light becomes the determined target ratio.
  • the receiving unit may receive environmental information indicating an environment around the mobile object.
  • the control unit may control the output of the laser beam further based on the environmental information.
  • the control unit may control the timing of outputting the laser beam so that the laser beam does not irradiate objects around a path of the laser beam.
  • the control unit controls the beam diameter of the laser beam so that the size of the laser beam is smaller than the size of the photovoltaic panel by a predetermined percentage when an object exists behind the moving body. You may do so.
  • a program for causing a computer to function as the laser device may be provided.
  • a system may be provided.
  • the system may include the laser device.
  • the system may include the mobile object.
  • a computer-implemented method may be provided.
  • the method may include receiving location information indicative of the location of the mobile object.
  • the method may include an imaging step of imaging light from the moving object.
  • the method includes irradiating a photovoltaic panel mounted on the moving body with more laser light based on the position of the moving body indicated by the position information and the captured image captured in the imaging step.
  • the method may include a control step for controlling the output of the laser beam so that the output of the laser beam is controlled.
  • FIG. 1 schematically depicts an example of a system 10; An example of a functional configuration of a laser device 100 is schematically shown. An example of a photovoltaic panel 250 is schematically shown. An example of a captured image is schematically shown. Another example of the photovoltaic panel 250 is schematically shown. Another example of a captured image is schematically shown. FIG. 3 is an explanatory diagram for explaining an example of the processing flow of the laser device 100. An example of the hardware configuration of a computer 1200 functioning as the laser device 100 is schematically shown.
  • Stratospheric unmanned aerial vehicles which rely solely on sunlight for power supply, face the issue of power shortages at night.
  • One effective solution is to wirelessly supply power to aircraft flying at high altitudes using radio waves, but long-distance wireless power supply has to do with radio wave regulation and impact on communication satellites, and is technically sophisticated. And it hasn't happened yet.
  • drones and the like have energy issues, making it difficult to fly for long periods of time.
  • the system 10 according to one embodiment, for example, installs a solar panel on the bottom surface of a HAPS (High Altitude Platform Station) or a drone, and constantly focuses laser light output from a laser device installed on the ground on the solar panel. By doing so, the solar panel will generate electricity.
  • HAPS High Altitude Platform Station
  • FIG. 1 schematically shows an example of a system 10.
  • the system 10 may include a laser device 100 and a moving object 200.
  • the system 10 may include a laser device management device 300.
  • the laser device 100 may have a wireless power supply function.
  • the laser device 100 may wirelessly supply power to the moving body 200.
  • the laser device 100 may wirelessly supply power to the moving body 200 by, for example, irradiating a photovoltaic panel 250 mounted on the moving body 200 with laser light.
  • the laser device 100 may have a function of accessing the network 20, for example.
  • Laser device 100 may access network 20 directly, for example.
  • the laser device 100 may access the network 20 via a terrestrial base station, for example.
  • the laser device 100 may access the network 20 via HAPS, for example.
  • Laser device 100 may access network 20 via a communication satellite.
  • the network 20 may include, for example, a core network provided by a carrier.
  • the core network may be based on, for example, a 5G (5th Generation) communication system.
  • the core network may be based on a mobile communication system after the 6G (6th Generation) communication system.
  • the core network may conform to a 3G (3rd Generation) communication system.
  • the core network may be compliant with the LTE (Long Term Evolution) communication system.
  • Network 20 may include the Internet.
  • the laser device 100 may have a function of wirelessly communicating with the moving body 200, for example.
  • Wireless communication between the laser device 100 and the mobile object 200 is based on a wireless communication system such as Wi-Fi (registered trademark), microwave, optical communication, Bluetooth (registered trademark), and ZigBee (registered trademark). You may do so.
  • the laser device 100 may wirelessly communicate with the mobile object 200 via the network 20.
  • the laser device 100 may receive, for example, position information indicating the position of the moving body 200 from the moving body 200.
  • the position information of the mobile body 200 may include, for example, longitude information indicating the longitude of the mobile body 200.
  • the position information of the mobile body 200 may include, for example, latitude information indicating the latitude of the mobile body 200.
  • the position information of the mobile body 200 may include, for example, altitude information indicating the altitude of the mobile body 200.
  • the laser device 100 may have a function of controlling laser light, for example.
  • the laser device 100 may generate a laser beam control signal for controlling laser light, and may control the laser beam according to the generated laser beam control signal.
  • the laser device 100 may control the laser beam, for example, based on the position information of the moving body 200 received from the moving body 200 and a captured image of the light from the moving body 200.
  • the captured image may be captured by, for example, an imaging unit included in the laser device 100.
  • the captured image may be, for example, a still image.
  • the captured image may be a moving image.
  • the laser device 100 may control the output of the laser light so that the photovoltaic panel 250 is irradiated with more laser light.
  • the laser device 100 may control the laser beam so that the distance between the center of the laser beam and the center of the photovoltaic panel 250 becomes shorter.
  • the laser device 100 may control the irradiation direction of the laser beam so that the center of the laser beam coincides with the center of the photovoltaic panel 250, for example.
  • the laser device 100 may be installed on the ground, for example.
  • the laser device 100 may be installed in a building such as a tower or a building, for example.
  • the laser device 100 may be installed in a moving object such as a vehicle or a ship.
  • the laser device 100 When the laser device 100 is installed in a building or a moving body, it may be mounted on a spatial stabilization device that performs spatial stabilization of a controlled object by actively or passively alleviating detected vibrations.
  • the mobile object 200 may move in the air, for example.
  • the mobile object 200 may move in the stratosphere, for example.
  • the mobile object 200 may move in outer space, for example.
  • the mobile object 200 may move on the ground, for example.
  • the mobile body 200 may move on the sea, for example.
  • the mobile object 200 may move underwater.
  • the mobile body 200 may, for example, transport any object to be transported.
  • the object to be transported by the moving body 200 may be, for example, an article.
  • the object to be transported by the moving body 200 may be a person.
  • the mobile object 200 may be, for example, a flying object.
  • the flying object may be, for example, an unmanned aerial vehicle.
  • the flying object may be, for example, a drone.
  • the air vehicle may be, for example, a HAPS.
  • the flying object may be, for example, a glider.
  • the flying vehicle may be a manned aircraft.
  • the flying vehicle may be, for example, a flying car.
  • Mobile object 200 may be, for example, a vehicle.
  • the moving object 200 may be a ship. In FIG. 1, an example in which the mobile object 200 is a drone will be mainly described.
  • the mobile body 200 may have one or more photovoltaic panels 250.
  • FIG. 1 shows an example in which the moving body 200 has a photovoltaic panel 250 on the lower portion of the moving body 200.
  • the mobile body 200 may include a photovoltaic panel 250 on an upper portion of the mobile body 200.
  • the moving body 200 may have a photovoltaic panel 250 on a side portion of the moving body 200.
  • the mobile body 200 may have a photovoltaic panel 250 on any other part of the mobile body 200.
  • the photovoltaic panel 250 may be, for example, a solar panel.
  • the solar panel may be, for example, a silicon (Si) based solar panel.
  • the solar panel may be, for example, a CIGS solar panel that has high conversion efficiency for converting light energy in the infrared region into electric power.
  • a CIGS solar panel is a solar panel formed using copper (Cu), indium (In), gallium (Ga), and selenium (Se).
  • the solar panel may be a gallium arsenide (GaAs) based solar panel.
  • the photovoltaic panel 250 may be shaped into any shape, for example, by combining one or more solar cells.
  • the shape of the photovoltaic panel 250 may be, for example, circular.
  • the shape of the photovoltaic panel 250 may be, for example, oval.
  • the shape of the photovoltaic panel 250 may be, for example, rectangular.
  • the shape of the photovoltaic panel 250 may be, for example, square.
  • the photovoltaic panel 250 may be shaped using solar cells of the same size so that the conversion efficiency of laser light with a uniform intensity distribution is increased.
  • the moving body 200 uses a homogenizer that homogenizes the intensity distribution of the laser beam to determine the effect of scintillation on the intensity distribution of the laser beam. may be relaxed.
  • the mobile body 200 may include a battery (not shown).
  • the battery may store power generated by the photovoltaic panel 250.
  • the mobile object 200 may move using electric power stored in a battery.
  • the moving body 200 may further include a storage section (not shown) that stores the object to be transported.
  • the movable body 200 may have a housing section in an upper portion of the movable body 200, for example.
  • the moving body 200 may have a housing section between the lower portion of the moving body 200 and the photovoltaic panel 250, for example.
  • the moving body 200 may have a housing section in any other part of the moving body 200.
  • the mobile body 200 may have, for example, a function of acquiring movement-related information related to movement of the mobile body 200.
  • the function of acquiring the movement-related information of the mobile body 200 includes, for example, the function of acquiring the position information of the mobile body 200.
  • the mobile body 200 may acquire the position information of the mobile body 200 using, for example, a GNSS (Global Navigation Satellite System) function.
  • the mobile body 200 may acquire the position information of the mobile body 200 using, for example, a GPS (Global Positioning System) function.
  • the mobile body 200 may acquire the position information of the mobile body 200 using an RTK (Real Time Kinematic) function.
  • the function of acquiring the movement-related information of the mobile body 200 may include, for example, the function of acquiring movement speed information indicating the movement speed of the mobile body 200.
  • the function of acquiring movement-related information of the mobile body 200 may include, for example, a function of acquiring movement direction information indicating the movement direction of the mobile body 200.
  • the function of acquiring movement-related information of the mobile body 200 may include a function of acquiring posture information indicating the posture of the mobile body 200.
  • the mobile body 200 may have a function of acquiring power generation amount information indicating the amount of power generated by the photovoltaic panel 250.
  • the mobile object 200 may have a function of acquiring remaining battery power information indicating the remaining battery power of a battery mounted on the mobile object 200.
  • the mobile body 200 may have a function of acquiring environmental information indicating the environment around the mobile body 200.
  • the area around the moving body 200 may be an area within a predetermined range from the moving body 200.
  • the mobile object 200 may have a function of accessing the network 20, for example.
  • the mobile object 200 may access the network 20 in the same manner as the laser device 100, for example.
  • the mobile body 200 may have a function of wirelessly communicating with the laser device 100, for example.
  • the moving object 200 may transmit movement-related information to the laser device 100, for example.
  • the moving body 200 may receive installation position information indicating the installation position of the laser apparatus 100 from the laser apparatus 100.
  • the mobile body 200 may have a function of controlling movement of the mobile body 200, for example.
  • the function of controlling the movement of the mobile body 200 may include, for example, the function of controlling the position of the mobile body 200.
  • the function of controlling the movement of the mobile body 200 may include, for example, the function of controlling the movement direction of the mobile body 200.
  • the function of controlling the movement of the mobile body 200 may include the function of controlling the attitude of the mobile body 200.
  • the moving body 200 may have a function of controlling the angle of the photovoltaic panel 250.
  • the moving object 200 may, for example, generate a moving object control signal that controls the moving object 200, and control at least one of the movement of the moving object 200 and the angle of the photovoltaic panel 250 in accordance with the generated moving object control signal.
  • mobile body 200 may be an autonomous mobile body.
  • the mobile body 200 may control at least one of the movement of the mobile body 200 and the angle of the photovoltaic panel 250 in accordance with a mobile body control signal received via the network 20 from a mobile body management device that manages the mobile body 200. .
  • the moving body 200 may control at least one of the movement of the moving body 200 and the angle of the photovoltaic panel 250 so that the photovoltaic panel 250 more efficiently receives the laser light from the laser device 100.
  • the moving body 200 adjusts at least one of the movement of the moving body 200 and the angle of the photovoltaic panel 250 based on the position information of the moving body 200 and the installation position information of the laser device 100 received from the laser device 100. You can control it.
  • the moving object 200 may control at least one of the movement of the moving object 200 and the angle of the photovoltaic panel 250 based on the moving speed information of the moving object 200.
  • the moving body 200 may control at least one of the movement of the moving body 200 and the angle of the photovoltaic panel 250 based on the movement direction information of the moving body 200.
  • the moving body 200 may control at least one of the movement of the moving body 200 and the angle of the photovoltaic panel 250 based on the posture information of the moving body 200.
  • the laser device management device 300 may manage one or more laser devices 100.
  • the laser device management device 300 may manage one laser device 100, for example, so that one laser device 100 wirelessly supplies power to one moving body 200.
  • the laser device management device 300 manages one laser device 100 so that one laser device 100 wirelessly supplies power to a plurality of moving objects 200. You can manage it.
  • the laser device management device 300 may manage the plurality of laser devices 100, for example, so that the plurality of laser devices 100 wirelessly supply power to one mobile object 200.
  • the laser device management device 300 may manage the plurality of laser devices 100 so that the plurality of laser devices 100 wirelessly supply power to the plurality of moving bodies 200.
  • the laser device management device 300 may manage wireless power supply by the laser device 100, for example. For example, the laser device management device 300 generates a laser light control signal based on the movement related information of the moving object 200 received from the laser device 100 via the network 20 and the captured image of the light from the moving object 200. You may do so. The laser device management device 300 may transmit the generated laser light control signal to the laser device 100 via the network 20. The laser device 100 may be wirelessly powered according to the laser light control signal received from the laser device management device 300.
  • the laser device management device 300 may be installed on the ground, for example.
  • the laser device management device 300 may be installed in a building, for example.
  • the laser device management device 300 may be installed in a moving body.
  • the laser device management device 300 may be installed at the same location as the laser device 100, for example.
  • the laser device management device 300 may be installed at a different location from the laser device 100.
  • the laser device 100 determines whether the laser beam is a light beam mounted on the moving object 200 based on the position information of the moving object 200 and a captured image of the light from the moving object 200.
  • the laser light is controlled so that the power generation panel 250 is irradiated with the laser light. Since the laser device 100 can accurately grasp the position, size, and shape of the photovoltaic panel 250 from the position information of the moving body 200 and the captured image, it is possible to irradiate the photovoltaic panel 250 with more laser light.
  • the laser device 100 can wirelessly supply power to the moving moving body 200 with high efficiency, and the solar power generation panel 250 can be irradiated with insufficient sunlight. Even in such a case, the time during which the mobile body 200 can continuously move can be extended.
  • FIG. 2 schematically shows an example of the functional configuration of the laser device 100.
  • the laser device 100 may include a storage section 102, an output section 104, a reception section 106, an imaging section 108, a bandpass filter 109, a control section 110, an environmental information acquisition section 112, and a transmission section 114. Note that it is not essential that the laser device 100 have all of these configurations.
  • the storage unit 102 may store various information.
  • the storage unit 102 may store installation position information of the laser device 100, for example.
  • the storage unit 102 may store mobile body performance information indicating the performance of the mobile body 200.
  • the mobile body performance information may include, for example, power generation panel number information indicating the number of photovoltaic panels 250 mounted on the mobile body 200.
  • the mobile body performance information may include power generation performance information indicating the power generation performance of the photovoltaic panel 250 mounted on the mobile body 200.
  • the moving object performance information may include, for example, panel shape information indicating the shape of the photovoltaic panel 250 mounted on the moving object 200.
  • the mobile body performance information may include, for example, size information indicating the size of the photovoltaic panel 250 mounted on the mobile body 200.
  • the mobile body performance information may include, for example, maximum capacity information indicating the maximum capacity of the battery mounted on the mobile body 200.
  • the moving object performance information may include, for example, maximum moving speed information indicating the maximum moving speed of the moving object 200.
  • the mobile body performance information may include, for example, mobile weight information indicating the weight of the mobile body 200.
  • the mobile body performance information may include maximum transport weight information indicating the maximum weight of a transport target that the mobile body 200 can transport.
  • the output unit 104 may output laser light.
  • Laser device 100 may have multiple output units 104.
  • the output unit 104 may be, for example, a solid-state laser.
  • the solid-state laser may be, for example, a fiber laser that uses an optical fiber as an amplification medium.
  • the output unit 104 may be, for example, a semiconductor laser.
  • the output unit 104 may be, for example, a gas laser.
  • the output unit 104 may be a liquid laser.
  • the output unit 104 may output a laser beam with a wavelength in the infrared region, for example.
  • the output unit 104 uses a so-called "atmospheric wavelength region" in which the transmittance of atmospheric light is high, in order to prevent the laser light from being attenuated by the atmosphere. It is possible to output laser light in the wavelength range of ⁇ window''.
  • the output unit 104 may output a laser beam having a wavelength of 1070 nm ⁇ 100 nm, for example.
  • the output unit 104 may output a laser beam having a wavelength of 1070 nm, for example.
  • the output unit 104 may output a laser beam having a wavelength in the visible range, for example.
  • the output unit 104 may include one or more optical elements that constitute an optical system for laser light.
  • the optical element may be, for example, a homogenizer that converts a Gaussian beam of laser light into a top hat beam of laser light.
  • the optical element may be, for example, a beam shaper.
  • the optical element may be, for example, a diffraction grating. Note that the optical element is not limited to the above example.
  • the optical element may be configured as long as it can configure an optical system for laser light, and may be configured using conventionally known optical techniques such as a mirror including a deformable mirror, a prism, a transmission type element, a reflection type element, and the like.
  • the receiving unit 106 may receive various information from an external device.
  • the receiving unit 106 may store various information received from an external device in the storage unit 102.
  • the receiving unit 106 may receive various information from the mobile object 200, for example.
  • the receiving unit 106 may receive various information from the moving object 200, for example, via wireless communication between the laser device 100 and the moving object 200.
  • the receiving unit 106 may receive various information from the mobile object 200 via the network 20.
  • the receiving unit 106 may receive movement-related information of the mobile body 200 from the mobile body 200, for example.
  • the movement related information of the mobile body 200 may include, for example, position information of the mobile body 200.
  • the movement related information of the mobile body 200 may include movement speed information of the mobile body 200.
  • the movement related information of the mobile body 200 may include, for example, movement direction information of the mobile body 200.
  • the movement related information of the moving body 200 may include posture information of the moving body 200.
  • the receiving unit 106 may receive, for example, power generation amount information of the photovoltaic panel 250 mounted on the moving body 200 from the moving body 200.
  • the receiving unit 106 may receive, for example, from the moving object 200, battery remaining amount information of a battery mounted on the moving object 200.
  • the receiving unit 106 may receive, for example, requested power feeding amount information from the moving body 200 indicating the amount of power feeding that the moving body 200 requests from the laser device 100 .
  • the receiving unit 106 may receive mobile performance information of the mobile body 200 from the mobile body 200, for example.
  • the receiving unit 106 may receive, from the moving body 200, conveyance target weight information indicating the total weight of the conveyance targets carried by the mobile body 200.
  • the receiving unit 106 may receive environmental information around the mobile body 200 from the mobile body 200.
  • the environment information around the mobile body 200 may include, for example, weather information indicating the weather around the mobile body 200.
  • the weather information around the mobile body 200 may include, for example, radiant intensity information indicating the radiant intensity of sunlight around the mobile body 200.
  • the weather information around the mobile body 200 may include, for example, cloud amount information indicating the amount of clouds around the mobile body 200.
  • the weather information around the mobile body 200 may include, for example, rainfall amount information indicating the amount of rainfall around the mobile body 200.
  • the weather information around the mobile body 200 may include, for example, snowfall amount information indicating the amount of snowfall around the mobile body 200.
  • the weather information around the moving body 200 may include, for example, wind speed information indicating the wind speed around the moving body 200.
  • the weather information around the mobile body 200 may include, for example, wind direction information indicating the wind direction around the mobile body 200.
  • the weather information around the mobile body 200 may include, for example, temperature information indicating the temperature around the mobile body 200.
  • the weather information around the mobile body 200 may include, for example, humidity information indicating the humidity around the mobile body 200.
  • the weather information around the mobile body 200 may include atmospheric pressure information indicating the atmospheric pressure around the mobile body 200.
  • the environment information around the moving body 200 may include object information indicating objects existing around the moving body 200.
  • the objects that exist around the moving body 200 may be, for example, moving bodies such as flying bodies, artificial satellites, vehicles, and ships.
  • the objects that exist around the moving body 200 may be, for example, animals such as birds.
  • the objects that exist around the moving body 200 may be people.
  • the object information about objects existing around the moving body 200 may include, for example, information indicating the positions of objects existing around the moving body 200.
  • the object information about objects existing around the moving body 200 may include information indicating the size of objects existing around the moving body 200, for example.
  • the object information about objects existing around the moving body 200 may include information indicating the types of objects existing around the moving body 200.
  • the receiving unit 106 may receive various information from the mobile body management device of the mobile body 200 via the network 20, for example.
  • the receiving unit 106 may receive information similar to the information received from the mobile object 200 from the mobile object management device.
  • the receiving unit 106 may receive environmental information around the mobile object 200 via the network 20 from an environmental information management device that manages environmental information.
  • the receiving unit 106 receives, via the network 20, operation plan information indicating an operation plan for a mobile object, from an operation plan management device that manages an operation plan for a mobile object such as an aircraft, an artificial satellite, a vehicle, or a ship. Good too.
  • the imaging unit 108 may image the light from the moving body 200.
  • the imaging unit 108 may, for example, image light emitted by a light source installed at a position corresponding to the photovoltaic panel 250 mounted on the moving body 200.
  • the imaging unit 108 may, for example, image light emitted from a plurality of light sources installed at positions corresponding to the photovoltaic panel 250.
  • a corner mirror may be further installed at a position corresponding to the photovoltaic panel 250.
  • the light source may be, for example, an LED (Light Emitting Diode) lamp.
  • the light source may be any other light source.
  • the position corresponding to the photovoltaic panel 250 may be, for example, the center of the photovoltaic panel 250.
  • the location corresponding to the photovoltaic panel 250 may be around the photovoltaic panel 250.
  • the imaging unit 108 may image the laser light from the output unit 104 reflected by a reflecting plate installed around the photovoltaic panel 250.
  • a reflecting plate may be installed around the photovoltaic panel 250 in order to protect the moving body 200 from heat caused by irradiating the body of the moving body 200 with the laser light from the output unit 104.
  • the imaging unit 108 may zoom and image the moving body 200.
  • the imaging unit 108 may, for example, zoom in and take an image of the photovoltaic panel 250.
  • the imaging unit 108 may zoom and image the moving body 200 and the photovoltaic panel 250 using, for example, a telephoto lens.
  • the imaging unit 108 may be, for example, an optical camera.
  • the imaging unit 108 may be, for example, a visible light camera.
  • the imaging unit 108 may be an infrared camera. In this case, the imaging unit 108 may image the infrared light caused by the temperature rise of the irradiated region irradiated with the laser light from the output unit 104.
  • the irradiated site may be, for example, the photovoltaic panel 250.
  • the irradiated area may be, for example, a corner mirror.
  • the irradiated site may be a reflecting plate.
  • the bandpass filter 109 may pass only a wavelength band within a predetermined range.
  • the bandpass filter 109 may pass only a wavelength band within a predetermined range including the wavelength of the laser beam outputted by the output unit 104.
  • the imaging unit 108 may image the light that has passed through the bandpass filter 109.
  • a captured image obtained by capturing only the light that has passed through the band-pass filter 109 makes it easy to discover the moving body 200 that is irradiated with the laser light that has passed through the band-pass filter 109.
  • the bandpass filter 109 may further pass the light emitted by the light source installed at the position corresponding to the photovoltaic panel 250.
  • the control unit 110 may control the laser light output by the output unit 104.
  • the control unit 110 may control the laser beam by controlling the output unit 104, for example.
  • the control unit 110 may control the laser beam by, for example, controlling one or more optical elements included in the output unit 104.
  • the control unit 110 may control the output of the laser light so that the photovoltaic panel 250 is irradiated with more laser light.
  • the control unit 110 may, for example, generate a laser light control signal and control the laser light according to the generated laser light control signal.
  • the control unit 110 may control the laser light according to the laser light control signal that the receiving unit 106 receives from the laser device management device 300 via the network 20.
  • the laser light control signal may include, for example, an irradiation direction control signal that controls the irradiation direction of the laser light.
  • the laser light control signal may include, for example, a shape control signal that controls the shape of the laser light.
  • the laser light control signal may include, for example, an intensity distribution control signal that controls the intensity distribution of the laser light.
  • the laser light control signal may include, for example, a beam diameter control signal that controls the beam diameter of the laser light.
  • the laser light control signal may include a wavefront control signal that controls the wavefront of the laser light.
  • the laser light control signal may include, for example, an output power control signal that controls the output power of the laser light.
  • the laser light control signal may include a timing control signal that controls the timing of outputting the laser light.
  • control unit 110 uses the position of the moving body 200 indicated by the position information of the moving body 200 included in the movement-related information of the moving body 200 received by the receiving unit 106 and the captured image captured by the imaging unit 108. Based on this, the laser light may be controlled. For example, the control unit 110 analyzes a captured image captured by the imaging unit 108 of an area including the position of the mobile body 200 so that the photovoltaic panel 250 mounted on the mobile body 200 is irradiated with laser light.
  • the laser light may be controlled to For example, before causing the output unit 104 to output laser light, the control unit 110 transmits an instruction to start emitting light from a light source installed at a position corresponding to the photovoltaic panel 250 to the moving body 200, and The light source may start emitting light. Next, the control unit 110 specifies the position of the photovoltaic panel 250 by analyzing the captured image captured by the imaging unit 108 of the area including the position of the moving body 200 and specifying the position of the light source. good. After that, the control unit 110 may cause the output unit 104 to output a laser beam so that the photovoltaic panel 250 whose position has been identified is irradiated with the laser beam.
  • the control unit 110 may identify the position of the photovoltaic panel 250 from the reflected light from the corner mirror or the reflector. After the output unit 104 starts outputting the laser light, the control unit 110 may transmit an instruction to end the light emission of the light source to the moving object 200, and cause the moving object 200 to end the emission of light from the light source.
  • the control unit 110 may control the laser beam, for example, further based on the installation position of the laser device 100 indicated by the installation position information of the laser device 100 stored in the storage unit 102.
  • the control unit 110 may, for example, control the irradiation direction of the laser light.
  • the control unit 110 may control the irradiation direction of the laser beam so that the distance between the center of the laser beam and the center of the photovoltaic panel 250 becomes shorter.
  • the control unit 110 may control the irradiation direction of the laser beam so that the center of the laser beam coincides with the center of the photovoltaic panel 250.
  • the control unit 110 may control the irradiation direction of the laser beam, for example, by analyzing the captured image of the photovoltaic panel 250 taken by the imaging unit 108 and specifying the center position of the photovoltaic panel 250.
  • the control unit 110 may control the irradiation direction of the laser beam using, for example, a gimbal.
  • the control unit 110 may control the irradiation direction of the laser beam by controlling optical elements such as mirrors and prisms included in the output unit 104.
  • the control unit 110 may control the shape of the laser beam, for example.
  • the control unit 110 may control the shape of the laser beam so that it becomes circular, for example.
  • the control unit 110 may control the shape of the laser beam so that it becomes an ellipse, for example.
  • the control unit 110 may be able to control the aspect ratio and orientation of the ellipse, for example.
  • the control unit 110 may control the shape of the laser beam so that it becomes rectangular, for example.
  • the control unit 110 may be able to control the aspect ratio and orientation of the rectangle, for example.
  • the control unit 110 may control the shape of the laser beam so that it becomes a square, for example.
  • the control unit 110 may be able to control the orientation of the square.
  • control unit 110 may control the shape of the laser beam so that the shape error between the shape of the laser beam and the shape of the photovoltaic panel 250 becomes smaller.
  • control unit 110 may control the shape of the laser beam so that the shape of the laser beam matches the shape of the photovoltaic panel 250.
  • the control unit 110 may control the intensity distribution of the laser beam, for example.
  • the control unit 110 may control the intensity distribution of the laser beam so that the intensity distribution of the laser beam becomes more uniform on the photovoltaic panel 250.
  • the control unit 110 may, for example, control the beam diameter of the laser light.
  • the control unit 110 may control the beam diameter of the laser beam so that the ratio of the size of the laser beam to the size of the photovoltaic panel 250 becomes a predetermined ratio.
  • the predetermined ratio may be, for example, 1.1.
  • control unit 110 analyzes the captured image of the photovoltaic panel 250 taken by the imaging unit 108, thereby determining the shape of the photovoltaic panel 250, the size of the photovoltaic panel 250, and the laser beam for the size of the photovoltaic panel 250. At least one of the size proportions of the light may be specified.
  • the control unit 110 controls the photovoltaic panel based on the moving body performance information of the moving body 200 stored in the storage unit 102 and the installation position information of the laser device 100 and the position information of the moving body 200 received by the receiving unit 106. At least one of the shape of the photovoltaic panel 250, the size of the photovoltaic panel 250, and the ratio of the size of the laser beam to the size of the photovoltaic panel 250 may be specified.
  • the control unit 110 may control the output unit 104 so that the power generated by the photovoltaic panel 250 that receives the laser beam is maximized.
  • the control unit 110 may control one or more optical elements included in the output unit 104 so that the power generated by the photovoltaic panel 250 that receives the laser beam is maximized.
  • the control unit 110 controls the shape and intensity distribution of the laser beam so that the power generated by the photovoltaic panel 250 that receives the laser beam is maximized by controlling an optical element such as a beam shaper. , and at least one of the beam diameter may be controlled.
  • the control unit 110 may control the wavefront of the laser beam, for example.
  • the control unit 110 may control the wavefront of the laser beam, for example, by controlling an optical element such as a deformable mirror included in the output unit 104.
  • the control unit 110 controls the output unit 104 to control the deformable mirror included in the output unit 104 in order to reduce the influence of scintillation that occurs in the laser beam at random times and positions due to atmospheric fluctuations in the propagation path of the laser beam.
  • the wavefront of the laser beam may be controlled by controlling optical elements such as the following.
  • the control unit 110 may control the wavefront of the laser beam, for example, based on the amount of power generated by the photovoltaic panel 250 indicated by the amount of power generation information received by the receiving unit 106.
  • the control unit 110 may control the output power of the laser beam, for example.
  • the control unit 110 controls the output power of the laser beam based on the power feeding amount that the moving body 200 requests from the laser device 100, which is indicated by the requested power feeding amount information of the moving body 200 received by the receiving unit 106. good.
  • the control unit 110 controls the output power of the laser beam based on the remaining battery level of the battery mounted on the moving body 200, which is indicated by the remaining battery capacity information of the moving body 200 received by the receiving unit 106. good.
  • the control unit 110 may control the output power of the laser beam based on the moving body performance information stored in the storage unit 102.
  • the control unit 110 determines the moving speed of the moving body 200 indicated by the moving speed information of the moving body 200 included in the movement related information of the moving body 200 received by the receiving unit 106 and the movement indicated by the moving direction information of the moving body 200. Further based on the direction of movement of the body 200, the laser light output by the output unit 104 may be controlled so that it tracks the photovoltaic panel 250. For example, the control unit 110 may control the laser beam so that the center of the laser beam tracks the center of the photovoltaic panel 250. The control unit 110 predicts the position of the moving body 200 after a predetermined period of time based on the position of the moving body 200, the moving speed of the moving body 200, and the moving direction of the moving body 200. , the laser light may be controlled such that the laser light tracks the photovoltaic panel 250.
  • the control unit 110 determines a target ratio of the size of the laser beam to the size of the photovoltaic panel 250 based on the tracking result of the laser beam tracking the photovoltaic panel 250, and determines the target ratio of the size of the laser beam to the size of the photovoltaic panel 250.
  • the beam diameter of the laser beam may be controlled so that the ratio of the size of the laser beam becomes the determined target ratio.
  • the control unit 110 may determine the target ratio so that the size of the laser beam covers the entire photovoltaic panel 250.
  • the control unit 110 may determine the target ratio so that the size of the laser beam covers the entire photovoltaic panel 250 and the size of the laser beam becomes smaller.
  • the control unit 110 may determine the size of the laser beam relative to the size of the photovoltaic panel 250, for example, within a range in which the size of the laser beam is larger than the size of the photovoltaic panel 250.
  • control unit 110 determines the distance between the center of the laser beam and the center of the photovoltaic panel 250 based on the tracking result of the laser beam tracking the photovoltaic panel 250, and controls the photovoltaic power generation according to the determined distance.
  • a target ratio of the size of the laser beam to the size of the panel 250 may be determined.
  • the control unit 110 controls the size of the photovoltaic panel 250 when the distance between the center of the laser beam and the center of the photovoltaic panel 250 is shorter than a predetermined distance threshold for a predetermined period. It may be decided to reduce the target percentage of the size of the laser beam.
  • control unit 110 may decide to reduce the target ratio of the size of the laser beam to the size of the photovoltaic panel 250 from 1.1 to 1.05. For example, when the distance between the center of the laser beam and the center of the photovoltaic panel 250 is longer than a predetermined distance threshold for a predetermined period, the control unit 110 controls the size of the photovoltaic panel 250. It may be decided to increase the target percentage of the size of the laser beam. For example, the control unit 110 may decide to increase the target ratio of the size of the laser beam to the size of the photovoltaic panel 250 from 1.1 to 1.2.
  • the environmental information acquisition unit 112 may acquire environmental information around the mobile object 200.
  • the environmental information acquisition unit 112 may acquire, for example, the environmental information around the mobile body 200 that the reception unit 106 has received.
  • the environmental information acquisition unit 112 may acquire environmental information around the mobile object 200 by, for example, analyzing the captured image captured by the imaging unit 108.
  • the environmental information acquisition unit 112 may acquire environmental information around the mobile object 200 using, for example, RADAR (Radio Detection and Ranging).
  • the environmental information acquisition unit 112 may acquire environmental information around the mobile object 200 using LiDAR (Light Detection and Ranging).
  • control unit 110 may control the laser light further based on the environmental information around the moving body 200 acquired by the environmental information acquisition unit 112.
  • the control unit 110 may control the output power of the laser beam, for example, based on the radiation intensity of sunlight around the mobile body 200, which is indicated by the radiation intensity information included in the environmental information around the mobile body 200.
  • the control unit 110 may control the output power of the laser beam such that, for example, the lower the radiation intensity of sunlight around the moving body 200, the stronger the output power of the laser beam.
  • the control unit 110 controls the timing of outputting the laser light so that the laser light does not irradiate objects around the moving body 200, which are indicated by object information included in the environment information around the moving body 200. You can control it.
  • the control unit 110 may control the timing of outputting the laser beam so that objects existing around the path of the laser beam are not irradiated.
  • the area around the path of the laser beam may be a region within a predetermined range from the path of the laser beam.
  • the control unit 110 may control the timing of outputting the laser light so that the laser light does not irradiate an object that is present in front of the moving body 200.
  • control unit 110 may control the timing of outputting the laser light so that an object between the laser device 100 and the moving object 200 is not irradiated. Controlling the timing of outputting laser light includes stopping irradiation of laser light for a predetermined period. Further, the control unit 110 controls the beam diameter of the laser beam so that the size of the laser beam is smaller than the size of the photovoltaic panel 250 by a predetermined percentage when an object exists behind the moving body 200. You may. For example, the control unit 110 may control the beam diameter of the laser beam so that the ratio of the size of the laser beam to the size of the photovoltaic panel 250 is 0.85. According to these, the possibility of an unexpected accident occurring due to irradiation of the moving body 200 with laser light can be reduced.
  • the front of the moving body 200 is an area in the direction toward the laser device 100 that irradiates the moving body 200 with laser light when viewed from the position of the moving body 200
  • the rear of the moving body 200 is the area facing the moving body 200. This is an area in the opposite direction to the direction toward the laser device 100 that irradiates the moving body 200 with laser light when viewed from the position.
  • control unit 110 may control the laser light further based on the flight plan information received by the reception unit 106.
  • control unit 110 may control the timing of outputting the laser light so that the laser light does not irradiate other moving bodies that move around the moving body 200 according to the flight plan indicated by the flight plan information.
  • the control unit 110 may, for example, control the timing of outputting the laser light so that the laser light does not irradiate other moving bodies that move around the path of the laser light according to the flight plan.
  • the control unit 110 may, for example, control the timing of outputting the laser light so that the laser light does not irradiate other moving objects moving in front of the moving object 200 according to the flight plan.
  • the control unit 110 may, for example, control the timing of outputting the laser light so that the laser light does not irradiate other moving objects existing between the laser device 100 and the moving object 200 according to the flight plan.
  • the control unit 110 controls the laser beam so that the size of the laser beam is smaller than the size of the photovoltaic panel 250 by a predetermined percentage when there is another moving object behind the moving object 200 that moves according to the flight plan.
  • the beam diameter of the light may be controlled.
  • the transmitter 114 may transmit various information to an external device.
  • the transmitter 114 may transmit various information to the mobile object 200, for example.
  • the transmitter 114 may transmit various information to the mobile body 200 via wireless communication between the laser device 100 and the mobile body 200, for example.
  • the transmitter 114 may transmit various information to the mobile object 200 via the network 20.
  • the transmitter 114 may transmit installation position information of the laser device 100 to the moving body 200, for example.
  • the transmitter 114 may transmit various information to the laser device management device 300 via the network 20, for example.
  • the transmitter 114 may transmit various information received by the receiver 106 to the laser device management device 300, for example.
  • the transmitter 114 may transmit the tracking result of the laser light tracking the photovoltaic panel 250 to the laser device management device 300.
  • the transmitting unit 114 may transmit the environmental information around the moving body 200 that the environmental information acquiring unit 112 has acquired to the laser device management device 300.
  • FIG. 3 schematically shows an example of a photovoltaic panel 250.
  • a light source 260 is installed at the center of the photovoltaic panel 250 in FIG.
  • FIG. 3 shows a state in which the laser beam 150 at the center 155 is irradiated onto the photovoltaic panel 250.
  • FIG. 4 schematically shows an example of a captured image.
  • the captured image in FIG. 4 is a captured image of the photovoltaic panel 250 in the state shown in FIG. 3.
  • the captured image in FIG. 4 may be, for example, a captured image that includes reflected light that is a part of the laser light 150 received by the photovoltaic panel 250 that has passed through the band-pass filter 109 and light emitted by the light source 260.
  • the brightness of the captured image in FIG. 4 increases in the following order: the brightness of the light emitting area of the light emitted by the light source 260, the brightness of the reflected light area of the reflected light from the photovoltaic panel 250 that reflects the laser beam 150, and the brightness of the other areas. Become.
  • the control unit 110 may identify the center position of the photovoltaic panel 250 by analyzing the captured image of FIG. 4 and identifying the position of the light emitting region of the light emitted by the light source 260.
  • the control unit 110 may control the irradiation direction of the laser beam 150 so that the distance between the center 155 of the laser beam 150 and the identified center of the photovoltaic panel 250 becomes shorter.
  • the laser device 100 emits light from a light source 260 installed at the center of the photovoltaic panel 250, which serves as a marker for the center of the photovoltaic panel 250.
  • the position of the light is specified, and the irradiation direction of the laser beam 150 is controlled so that the distance between the center 155 of the laser beam 150 and the specified center of the photovoltaic panel 250 becomes shorter.
  • the laser device 100 can further reduce the loss of the laser beam 150 due to the photovoltaic panel 250 not being irradiated with the laser beam 150.
  • FIG. 5 schematically shows another example of the photovoltaic panel 250.
  • a reflective plate 270 is installed around the photovoltaic panel 250 in FIG.
  • FIG. 5 shows a state in which the laser beam 150 at the center 155 is irradiated onto the photovoltaic panel 250 and the reflecting plate 270.
  • FIG. 6 schematically shows another example of the captured image.
  • the captured image in FIG. 6 is a captured image of the photovoltaic panel 250 in the state shown in FIG. 5.
  • the captured image in FIG. 6 includes, for example, reflected light that is a part of the laser light 150 received by the photovoltaic panel 250 that has passed through the band-pass filter 109 and reflected light that is reflected by the reflector plate 270. It may be a captured image.
  • the brightness of the captured image in FIG. 6 includes the brightness of the reflected light area of the reflected light from the laser beam 150 reflected by the reflecting plate 270, the brightness of the reflected light area of the reflected light of the laser beam 150 reflected by the photovoltaic panel 250, and the other brightness. The brightness of the area increases in the order of .
  • the control unit 110 may control the irradiation direction of the laser beam 150 so that the distance between the center 155 of the laser beam 150 and the center of the photovoltaic panel 250 becomes shorter.
  • the control unit 110 controls the irradiation direction of the laser beam 150 based on the reflected light area of the reflected light that is reflected by the reflecting plate 270, which is identified by image analysis of the captured image in FIG. 6. good.
  • the control unit 110 may control the irradiation direction of the laser beam 150 so that the width of the reflected light region becomes more uniform.
  • control unit 110 specifies the largest maximum width w max and the smallest minimum width w min of the reflected light area, and determines that w min increases by (w max - w min ) ⁇ 2.
  • the irradiation direction of the laser beam 150 may be controlled as follows.
  • the laser device 100 uses the reflected light from the laser beam 150 reflected by the reflector plate 270, which serves as a mark for determining the irradiation direction of the laser beam 150.
  • the irradiation direction of the laser beam 150 is controlled so that the distance between the center 155 of the laser beam 150 and the center of the photovoltaic panel 250 becomes shorter.
  • the laser device 100 can further reduce the loss of the laser beam 150 due to the photovoltaic panel 250 not being irradiated with the laser beam 150.
  • FIG. 7 is an explanatory diagram for explaining an example of the processing flow of the laser device 100.
  • a state in which the laser device 100 irradiates the moving object 200 with laser light 150 will be described as a starting state.
  • step (step may be abbreviated as S) 102 the environmental information acquisition unit 112 may acquire environmental information around the mobile object 200.
  • the control unit 110 may determine whether an object exists around the mobile body 200 based on the environmental information around the mobile body 200 acquired by the environmental information acquisition unit 112 in S102. If the control unit 110 determines that an object exists around the moving body 200, the process may proceed to S106. If the control unit 110 determines that there is no object around the moving body 200, the process may proceed to S114.
  • control unit 110 may determine whether an object exists behind the moving body 200 based on the environmental information around the moving body 200 acquired by the environmental information acquisition unit 112 in S102. If the control unit 110 determines that the object exists behind the moving body 200, the process may proceed to S108. If the control unit 110 determines that the object exists other than behind the moving body 200, the process may proceed to S112.
  • the control unit 110 may determine whether the size of the laser beam 150 is larger than the size of the photovoltaic panel 250. If the control unit 110 determines that the size of the laser beam 150 is larger than the size of the photovoltaic panel 250, the process may proceed to S110. If the control unit 110 determines that the size of the laser beam 150 is smaller than the size of the photovoltaic panel 250, the process of controlling the laser beam 150 based on the environmental information may end.
  • control unit 110 may control the beam diameter of the laser beam so that the size of the laser beam 150 is smaller than the size of the photovoltaic panel 250 by a predetermined ratio. After that, the process of controlling the laser beam 150 based on the environmental information may end.
  • control unit 110 may stop outputting the laser beam 150 so that objects around the moving body 200 are not irradiated with the laser beam 150 . After that, the process of controlling the laser beam 150 based on the environmental information may end.
  • the control unit 110 may determine whether the size of the laser beam 150 is smaller than the size of the photovoltaic panel 250. If the control unit 110 determines that the size of the laser beam 150 is smaller than the size of the photovoltaic panel 250, the process may proceed to S116. If the control unit 110 determines that the size of the laser beam 150 is larger than the size of the photovoltaic panel 250, the process of controlling the laser beam 150 based on the environmental information may end.
  • control unit 110 may control the beam diameter of the laser beam so that the size of the laser beam 150 is larger than the size of the photovoltaic panel 250 by a predetermined ratio. After that, the process of controlling the laser beam 150 based on the environmental information may end.
  • FIG. 8 schematically shows an example of the hardware configuration of a computer 1200 that functions as the laser device 100.
  • the program installed on the computer 1200 causes the computer 1200 to function as one or more "parts" of the apparatus according to the above embodiment, or causes the computer 1200 to perform operations associated with the apparatus according to the above embodiment or the one or more "parts" of the apparatus according to the above embodiment.
  • Multiple units may be executed and/or the computer 1200 may execute a process or a step of a process according to the embodiments described above.
  • Such programs may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • Computer 1200 includes a CPU 1212, RAM 1214, and graphics controller 1216, which may be interconnected by a host controller 1210.
  • Computer 1200 also includes input/output units such as a communication interface 1222, a storage device 1224, a DVD drive 1226, and an IC card drive, which may be connected to host controller 1210 via input/output controller 1220.
  • DVD drive 1226 may be a DVD-ROM drive, a DVD-RAM drive, or the like.
  • Storage device 1224 may be a hard disk drive, solid state drive, or the like.
  • Computer 1200 also includes legacy input/output units, such as ROM 1230 and keyboard 1242, which may be connected to input/output controller 1220 via input/output chip 1240.
  • the CPU 1212 may operate according to programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit.
  • Graphics controller 1216 may obtain image data generated by CPU 1212, such as in a frame buffer provided in RAM 1214 or itself, and cause the image data to be displayed on display device 1218.
  • Communication interface 1222 may communicate with other electronic devices via a network.
  • Storage device 1224 may store programs and data used by CPU 1212 within computer 1200.
  • the DVD drive 1226 may read a program or data from a DVD-ROM 1227 or the like and provide it to the storage device 1224.
  • the IC card drive may read programs and data from and/or write programs and data to the IC card.
  • ROM 1230 may store therein programs that are dependent on the computer 1200 hardware, such as a boot program that is executed by the computer 1200 upon activation.
  • I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
  • the program may be provided by a computer readable storage medium such as a DVD-ROM 1227 or an IC card.
  • the program may be read from a computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212.
  • the information processing described within these programs may be read by computer 1200, resulting in coordination between the programs and the various types of hardware resources described above.
  • An apparatus or method may be configured to implement the operation or processing of information according to the use of computer 1200.
  • the CPU 1212 executes a communication program loaded into the RAM 1214 and sends communication processing to the communication interface 1222 based on the processing written in the communication program. You may give orders.
  • the communication interface 1222 reads transmission data stored in a transmission buffer area provided in a recording medium such as a RAM 1214, a storage device 1224, a DVD-ROM 1227, or an IC card under the control of the CPU 1212, and transmits the read transmission data. Data may be sent to the network, or received data received from the network may be written to a receive buffer area provided on the recording medium or the like.
  • the CPU 1212 causes the RAM 1214 to read all or a necessary part of a file or database stored in an external recording medium such as a storage device 1224, a DVD drive 1226 (DVD-ROM 1227), or an IC card. Various types of processing may be performed on the data. CPU 1212 may then write the processed data back to an external storage medium.
  • an external recording medium such as a storage device 1224, a DVD drive 1226 (DVD-ROM 1227), or an IC card.
  • Various types of processing may be performed on the data.
  • CPU 1212 may then write the processed data back to an external storage medium.
  • CPU 1212 performs various types of operations, information processing, conditional determination, conditional branching, unconditional branching, and information retrieval on data read from RAM 1214 as described elsewhere in this disclosure and specified by the program's instruction sequence. Various types of processing may be performed, including /substitutions, etc., and the results may be written back to RAM 1214. Further, the CPU 1212 may search for information in a file in a recording medium, a database, or the like.
  • the CPU 1212 selects the first entry from among the plurality of entries. Search for an entry whose attribute value matches the specified condition, read the attribute value of the second attribute stored in the entry, and then set the attribute value to the first attribute that satisfies the predetermined condition. An attribute value of the associated second attribute may be obtained.
  • the programs or software modules described above may be stored in a computer-readable storage medium on or near computer 1200.
  • a storage medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby allowing the program to be transferred to the computer 1200 via the network. You may provide it.
  • Blocks in flowcharts and block diagrams in one embodiment may represent stages in a process in which an operation is performed or a "part" of a device responsible for performing the operation.
  • Certain steps and units may be provided with dedicated circuitry, programmable circuitry provided with computer readable instructions stored on a computer readable storage medium, and/or provided with computer readable instructions stored on a computer readable storage medium. May be implemented by a processor.
  • Dedicated circuitry may include digital and/or analog hardware circuits, and may include integrated circuits (ICs) and/or discrete circuits.
  • Programmable circuits can perform AND, OR, EXCLUSIVE OR, NAND, NOR, and other logical operations, such as field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), etc. , flip-flops, registers, and memory elements.
  • a computer-readable storage medium may include any tangible device capable of storing instructions for execution by a suitable device such that a computer-readable storage medium with instructions stored therein may be illustrated in a flowchart or block diagram.
  • a product will be provided that includes instructions that can be executed to create a means for performing specified operations.
  • Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like. More specific examples of computer readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disk Read Only Memory
  • DVD Digital Versatile Disk
  • Blu-ray Disc Memory Stick
  • integrated circuit cards and the like.
  • Computer-readable instructions may include assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state configuration data, or instructions such as Smalltalk®, JAVA®, C++, etc. any source code or object code written in any combination of one or more programming languages, including object-oriented programming languages such as may include.
  • ISA instruction set architecture
  • the computer-readable instructions are for producing means for a processor of a general purpose computer, special purpose computer, or other programmable data processing device, or programmable circuit to perform the operations specified in the flowchart or block diagrams.
  • a general purpose computer, special purpose computer, or other programmable data processor locally or over a local area network (LAN), wide area network (WAN), such as the Internet, to execute the computer readable instructions. It may be provided in a processor or programmable circuit of the device. Examples of processors may include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Lasers (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

レーザ光を出力する出力部と、移動体の位置を示す位置情報を受信する受信部と、前記移動体からの光を撮像する撮像部と、前記位置情報によって示される前記移動体の前記位置と、前記撮像部によって撮像された撮像画像とに基づいて、より多くの前記レーザ光が前記移動体に搭載された光発電パネルに照射されるように、前記レーザ光の出力を制御する制御部とを備える、レーザ装置、及び、コンピュータによって実行される方法であって、移動体の位置を示す位置情報を受信する受信段階と、前記移動体からの光を撮像する撮像段階と、前記位置情報によって示される前記移動体の前記位置と、前記撮像段階で撮像された撮像画像とに基づいて、より多くのレーザ光が前記移動体に搭載された光発電パネルに照射されるように、前記レーザ光の出力を制御する制御段階とを備える、方法を提供する。

Description

レーザ装置、プログラム、システム、及び方法
 本発明は、レーザ装置、プログラム、システム、及び方法に関する。
 特許文献1には、鉄道事業者が土地を所有する鉄道線路が敷設された範囲を利用して飛行経路を作成することで、容易かつ安全に無人飛行体を飛行させることができる管理装置が記載されている。特許文献2には、電子機器に無線で送電を行う送電装置が記載されている。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2020-006916号公報
 [特許文献2]特開2019-129678号公報
一般的開示
 本発明の一実施態様によれば、レーザ装置が提供されてよい。レーザ装置は、レーザ光を出力する出力部を備えてよい。レーザ装置は、移動体の位置を示す位置情報を受信する受信部を備えてよい。レーザ装置は、前記移動体からの光を撮像する撮像部を備えてよい。レーザ装置は、前記位置情報によって示される前記移動体の前記位置と、前記撮像部によって撮像された撮像画像とに基づいて、より多くの前記レーザ光が前記移動体に搭載された光発電パネルに照射されるように、前記レーザ光の出力を制御する制御部を備えてよい。
 前記撮像部は、前記光発電パネルに対応する位置に設置された光源が発光した前記光を撮像してよい。前記撮像部は、前記光発電パネルの周囲に設置された反射板が前記レーザ光を反射した前記光を撮像してよい。前記撮像部は、前記レーザ光の波長を含む予め定められた範囲の波長帯の光のみを通過させるバンドパスフィルタを通過した前記光を撮像してよい。
 前記制御部は、前記レーザ光の中心と前記光発電パネルの中心との間の距離がより短くなるように、前記レーザ光の照射方向を制御してよい。前記制御部は、前記撮像画像を画像解析して前記光発電パネルの中心の位置を特定することによって、前記レーザ光の前記照射方向を制御してよい。前記制御部は、前記レーザ光の形状と前記光発電パネルの形状との間の形状誤差がより小さくなるように、前記レーザ光の前記形状を制御してよい。前記制御部は、楕円形となるように前記レーザ光の前記形状を制御し、前記楕円形の縦横比及び向きは、前記制御部によって制御可能であってよい。前記制御部は、前記レーザ光の強度分布が前記光発電パネルでより均一になるように、前記レーザ光の強度分布を制御してよい。前記制御部は、前記レーザ光を受光した前記光発電パネルの発電電力が最大となるように、前記レーザ光の形状及び強度分布のうちの少なくともいずれかを制御してよい。前記制御部は、前記光発電パネルのサイズに対する前記レーザ光のサイズの割合が予め定められた割合になるように、前記レーザ光のビーム径を制御してよい。
 前記受信部は、前記移動体の移動速度を示す移動速度情報と、前記移動体の移動方向を示す移動方向情報とをさらに受信してよい。前記制御部は、前記移動速度情報によって示される前記移動体の前記移動速度と、前記移動方向情報によって示される前記移動体の前記移動方向にさらに基づいて、前記レーザ光が前記光発電パネルを追跡するように、前記レーザ光の出力を制御してよい。前記制御部は、前記レーザ光が前記光発電パネルを追跡した追跡結果に基づいて、前記光発電パネルのサイズに対する前記レーザ光のサイズの目標割合を決定し、前記光発電パネルのサイズに対する前記レーザ光のサイズの割合が決定した前記目標割合になるように、前記レーザ光のビーム径を制御してよい。
 前記受信部は、前記移動体の周囲の環境を示す環境情報を受信してよい。前記制御部は、前記環境情報にさらに基づいて、前記レーザ光の出力を制御してよい。前記制御部は、前記レーザ光が前記レーザ光の通り道の周辺に存在する物体に照射されないように、前記レーザ光を出力するタイミングを制御してよい。前記制御部は、前記移動体の後方に物体が存在する場合に、前記レーザ光のサイズが前記光発電パネルのサイズより予め定められた割合だけ小さくなるように、前記レーザ光のビーム径を制御してよい。
 本発明の一実施態様によれば、コンピュータを、前記レーザ装置として機能させるためのプログラムが提供されてよい。
 本発明の一実施態様によれば、システムが提供されてよい。システムは、前記レーザ装置を備えてよい。システムは、前記移動体を備えてよい。
 本発明の一実施態様によれば、コンピュータによって実行される方法が提供されてよい。方法は、移動体の位置を示す位置情報を受信する受信段階を備えてよい。方法は、前記移動体からの光を撮像する撮像段階を備えてよい。方法は、前記位置情報によって示される前記移動体の前記位置と、前記撮像段階で撮像された撮像画像とに基づいて、より多くのレーザ光が前記移動体に搭載された光発電パネルに照射されるように、前記レーザ光の出力を制御する制御段階を備えてよい。
 尚、前記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
システム10の一例を概略的に示す。 レーザ装置100の機能構成の一例を概略的に示す。 光発電パネル250の一例を概略的に示す。 撮像画像の一例を概略的に示す。 光発電パネル250の他の一例を概略的に示す。 撮像画像の他の一例を概略的に示す。 レーザ装置100の処理の流れの一例を説明するための説明図である。 レーザ装置100として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。
 太陽光のみに電力供給を頼る成層圏無人航空機は、夜間における電力不足が課題となっている。高高度を飛行する航空機に電波により無線給電することが有効な解決策の一つであるが、長距離の無線給電は電波のレギュレーションや、通信衛星への影響等があり、技術的にも高度で未だ実現していない。また、ドローン等も成層圏無人航空機と同様にエネルギーの問題があり、長時間の飛行が困難である。一実施形態に係るシステム10は、例えば、HAPS(High Altitude Platform Station)やドローンの下面にソーラーパネルを設置し、地上に配備されたレーザ装置によって出力されたレーザ光を当該ソーラーパネルに常時集光することで、当該ソーラーパネルに発電させる。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、システム10の一例を概略的に示す。システム10は、レーザ装置100及び移動体200を備えてよい。システム10は、レーザ装置管理装置300を備えてもよい。
 レーザ装置100は、無線給電する機能を有してよい。レーザ装置100は、例えば、移動体200に無線給電してよい。レーザ装置100は、例えば、移動体200に搭載された光発電パネル250にレーザ光を照射することによって、移動体200に無線給電してよい。
 レーザ装置100は、例えば、ネットワーク20にアクセスする機能を有してよい。レーザ装置100は、例えば、ネットワーク20に直接アクセスしてよい。レーザ装置100は、例えば、地上の基地局を介して、ネットワーク20にアクセスしてよい。レーザ装置100は、例えば、HAPSを介して、ネットワーク20にアクセスしてよい。レーザ装置100は、通信衛星を介して、ネットワーク20にアクセスしてもよい。
 ネットワーク20は、例えば、通信事業者によって提供されるコアネットワークを含んでよい。コアネットワークは、例えば、5G(5th Generation)通信システムに準拠してよい。コアネットワークは、6G(6th Generation)通信システム以降の移動体通信システムに準拠してもよい。コアネットワークは、3G(3rd Generation)通信システムに準拠してもよい。コアネットワークは、LTE(Long Term Evolution)通信システムに準拠してもよい。ネットワーク20は、インターネットを含んでよい。
 レーザ装置100は、例えば、移動体200と無線通信する機能を有してよい。レーザ装置100と移動体200との間の無線通信は、例えば、Wi-Fi(登録商標)、マイクロ波、光通信、Bluetooth(登録商標)、及びZigBee(登録商標)等の無線通信システムに準拠してよい。レーザ装置100は、ネットワーク20を介して、移動体200と無線通信してもよい。
 レーザ装置100は、例えば、移動体200から、移動体200の位置を示す位置情報を受信してよい。移動体200の位置情報は、例えば、移動体200の経度を示す経度情報を含んでよい。移動体200の位置情報は、例えば、移動体200の緯度を示す緯度情報を含んでよい。移動体200の位置情報は、例えば、移動体200の高度を示す高度情報を含んでよい。
 レーザ装置100は、例えば、レーザ光を制御する機能を有してよい。レーザ装置100は、例えば、レーザ光を制御するレーザ光制御信号を生成し、生成したレーザ光制御信号に従ってレーザ光を制御してよい。
 レーザ装置100は、例えば、移動体200から受信した移動体200の位置情報と、移動体200からの光を撮像した撮像画像とに基づいて、レーザ光を制御してよい。撮像画像は、例えば、レーザ装置100が有する撮像部によって撮像されてよい。
 撮像画像は、例えば、静止画像であってよい。撮像画像は、動画像であってもよい。
 レーザ装置100は、例えば、より多くのレーザ光が光発電パネル250に照射されるように、レーザ光の出力を制御してよい。レーザ装置100は、例えば、レーザ光の中心と光発電パネル250の中心との間の距離がより短くなるように、レーザ光を制御してよい。レーザ装置100は、例えば、レーザ光の中心が光発電パネル250の中心と一致するように、レーザ光の照射方向を制御してよい。
 レーザ装置100は、例えば、地上に設置されてよい。レーザ装置100は、例えば、タワーやビル等の建物に設置されてよい。レーザ装置100は、車両や船舶等の移動体に設置されてもよい。レーザ装置100は、建物や移動体に設置される場合、検知された振動を能動的に又は受動的に緩和することによって制御対象の空間安定化を行う空間安定装置上に搭載されてよい。
 移動体200は、例えば、空中を移動してよい。移動体200は、例えば、成層圏を移動してよい。移動体200は、例えば、宇宙空間を移動してよい。移動体200は、例えば、地上を移動してよい。移動体200は、例えば、海上を移動してよい。移動体200は、海中を移動してもよい。
 移動体200は、例えば、任意の運搬対象を運搬してよい。移動体200の運搬対象は、例えば、物品であってよい。移動体200の運搬対象は、人であってもよい。
 移動体200は、例えば、飛行体であってよい。飛行体は、例えば、無人航空機であってよい。飛行体は、例えば、ドローンであってよい。飛行体は、例えば、HAPSであってよい。飛行体は、例えば、グライダーであってよい。飛行体は、有人航空機であってもよい。飛行体は、例えば、空飛ぶ車であってよい。移動体200は、例えば、車両であってよい。移動体200は、船舶であってもよい。図1では、移動体200がドローンである場合の一例を主に説明する。
 移動体200は、1又は複数の光発電パネル250を有してよい。図1では、移動体200が移動体200の下側部分に光発電パネル250を有する一例を示している。移動体200は、移動体200の上側部分に光発電パネル250を有してもよい。移動体200は、移動体200の側面部分に光発電パネル250を有してもよい。移動体200は、移動体200のその他の任意の部分に光発電パネル250を有してもよい。
 光発電パネル250は、例えば、ソーラーパネルであってよい。ソーラーパネルは、例えば、シリコン(Si)系ソーラーパネルであってよい。ソーラーパネルは、例えば、赤外線領域の光エネルギーを電力に変換する変換効率が高いCIGS系ソーラーパネルであってよい。CIGS系ソーラーパネルとは、銅(Cu)、インジウム(In)、ガリウム(Ga)、及びセレン(Se)を用いて成形されたソーラーパネルである。ソーラーパネルは、ガリウムヒ素(GaAs)系ソーラーパネルであってもよい。
 光発電パネル250は、例えば、1又は複数のソーラーセルを組み合わせることによって、任意の形状となるように整形されてよい。光発電パネル250の形状は、例えば、円形であってよい。光発電パネル250の形状は、例えば、楕円形であってよい。光発電パネル250の形状は、例えば、矩形であってよい。光発電パネル250の形状は、例えば、正方形であってもよい。
 光発電パネル250は、強度分布が均一なレーザ光の変換効率が高くなるように、同一サイズのソーラーセル用いて整形してもよい。この場合、移動体200は、大気の揺らぎ等に起因してレーザ光にシンチレーションが発生した場合に、レーザ光の強度分布を均一化するホモジナイザーを用いて、シンチレーションがレーザ光の強度分布に与える影響を緩和させてもよい。
 移動体200は、不図示のバッテリを有してよい。バッテリは、光発電パネル250によって発電された電力を蓄電してよい。移動体200は、バッテリに蓄電された電力を用いて移動してよい。
 移動体200は、運搬対象を収容する不図示の収容部をさらに有してもよい。移動体200は、例えば、移動体200の上側部分に収容部を有してよい。移動体200は、例えば、移動体200の下側部分と光発電パネル250との間に収容部を有してよい。移動体200は、移動体200のその他の任意の部分に収容部を有してもよい。
 移動体200は、例えば、移動体200の移動に関連する移動関連情報を取得する機能を有してよい。移動体200の移動関連情報を取得する機能は、例えば、移動体200の位置情報を取得する機能を含む。移動体200は、例えば、GNSS(Global Navigation Satellite System)機能を用いて、移動体200の位置情報を取得してよい。移動体200は、例えば、GPS(Global Positioning System)機能を用いて、移動体200の位置情報を取得してよい。移動体200は、RTK(Real Time Kinematic)機能を用いて、移動体200の位置情報を取得してもよい。
 移動体200の移動関連情報を取得する機能は、例えば、移動体200の移動速度を示す移動速度情報を取得する機能を含んでよい。移動体200の移動関連情報を取得する機能は、例えば、移動体200の移動方向を示す移動方向情報を取得する機能を含んでよい。移動体200の移動関連情報を取得する機能は、移動体200の姿勢を示す姿勢情報を取得する機能を含んでもよい。
 移動体200は、光発電パネル250が発電した発電量を示す発電量情報を取得する機能を有してよい。移動体200は、移動体200に搭載されたバッテリのバッテリ残量を示すバッテリ残量情報を取得する機能を有してもよい。
 移動体200は、移動体200の周囲の環境を示す環境情報を取得する機能を有してよい。移動体200の周囲とは、移動体200から予め定められた範囲の領域であってよい。
 移動体200は、例えば、ネットワーク20にアクセスする機能を有してよい。移動体200は、例えば、レーザ装置100と同様にして、ネットワーク20にアクセスしてよい。
 移動体200は、例えば、レーザ装置100と無線通信する機能を有してよい。移動体200は、例えば、移動関連情報をレーザ装置100に送信してよい。移動体200は、レーザ装置100から、レーザ装置100の設置位置を示す設置位置情報を受信してもよい。
 移動体200は、例えば、移動体200の移動を制御する機能を有してよい。移動体200の移動を制御する機能は、例えば、移動体200の位置を制御する機能を含んでよい。移動体200の移動を制御する機能は、例えば、移動体200の移動方向を制御する機能を含んでよい。移動体200の移動を制御する機能は、移動体200の姿勢を制御する機能を含んでもよい。移動体200は、光発電パネル250の角度を制御する機能を有してもよい。
 移動体200は、例えば、移動体200を制御する移動体制御信号を生成し、生成した移動体制御信号に従って移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してよい。この場合、移動体200は、自律移動体であってよい。移動体200は、移動体200を管理する移動体管理装置からネットワーク20を介して受信した移動体制御信号に従って移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してもよい。
 移動体200は、例えば、光発電パネル250がレーザ装置100からのレーザ光をより効率的に受光するように、移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してよい。移動体200は、例えば、移動体200の位置情報と、レーザ装置100から受信したレーザ装置100の設置位置情報とに基づいて、移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してよい。移動体200は、移動体200の移動速度情報にさらに基づいて、移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してよい。移動体200は、移動体200の移動方向情報にさらに基づいて、移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してよい。移動体200は、移動体200の姿勢情報にさらに基づいて、移動体200の移動及び光発電パネル250の角度の少なくともいずれかを制御してもよい。
 レーザ装置管理装置300は、1又は複数のレーザ装置100を管理してよい。レーザ装置管理装置300は、例えば、1つのレーザ装置100が1機の移動体200に無線給電するように、1つのレーザ装置100を管理してよい。レーザ装置管理装置300は、例えば、レーザ装置100が複数のレーザ光を出力する機能を有する場合、1つのレーザ装置100が複数機の移動体200に無線給電するように、1つのレーザ装置100を管理してよい。レーザ装置管理装置300は、例えば、複数のレーザ装置100が1機の移動体200に無線給電するように、複数のレーザ装置100を管理してよい。レーザ装置管理装置300は、複数のレーザ装置100が複数機の移動体200に無線給電するように、複数のレーザ装置100を管理してもよい。
 レーザ装置管理装置300は、例えば、レーザ装置100による無線給電を管理してよい。例えば、レーザ装置管理装置300は、レーザ装置100からネットワーク20を介して受信した移動体200の移動関連情報と移動体200からの光を撮像した撮像画像とに基づいて、レーザ光制御信号を生成してよい。レーザ装置管理装置300は、ネットワーク20を介して、生成したレーザ光制御信号をレーザ装置100に送信してよい。レーザ装置100は、レーザ装置管理装置300から受信したレーザ光制御信号に従って無線給電してよい。
 レーザ装置管理装置300は、例えば、地上に設置されてよい。レーザ装置管理装置300は、例えば、建物に設置されてよい。レーザ装置管理装置300は、移動体に設置されてもよい。
 レーザ装置管理装置300は、例えば、レーザ装置100と同一の場所に設置されてよい。レーザ装置管理装置300は、レーザ装置100とは異なる場所に設置されてもよい。
 現在、飛行体等の移動体は、移動体に搭載された光発電パネルが太陽光から発電した電力のみで移動する場合において、夜間に移動する場合、冬季に移動する場合、悪天地域を移動する場合、及び高緯度地域を移動する場合等の光発電パネルに照射される太陽光が不十分である場合に、移動体の連続移動可能な時間が限られている。したがって、光発電パネルに照射される太陽光が不十分である場合でも移動体の連続移動可能な時間を長くできることが望ましい。
 一実施形態に係るシステム10によれば、レーザ装置100は、移動体200の位置情報と移動体200からの光を撮像した撮像画像とに基づいて、レーザ光が移動体200に搭載された光発電パネル250に照射されるように、レーザ光を制御する。レーザ装置100は、移動体200の位置情報及び撮像画像から光発電パネル250の位置、大きさ、及び形状を正確に把握できるので、より多くのレーザ光を光発電パネル250に照射できる。これにより、一実施形態に係るシステム10は、レーザ装置100が、移動中の移動体200に対して高効率に無線給電することができ、光発電パネル250に照射される太陽光が不十分である場合でも移動体200の連続移動可能な時間を長くすることができる。
 図2は、レーザ装置100の機能構成の一例を概略的に示す。レーザ装置100は、格納部102、出力部104、受信部106、撮像部108、バンドパスフィルタ109、制御部110、環境情報取得部112、及び送信部114を有してよい。尚、レーザ装置100がこれらの全ての構成を有することが必須とは限らない。
 格納部102は、各種情報を格納してよい。格納部102は、例えば、レーザ装置100の設置位置情報を格納してよい。格納部102は、移動体200の性能を示す移動体性能情報を格納してもよい。
 移動体性能情報は、例えば、移動体200に搭載された光発電パネル250の数を示す発電パネル数情報を含んでよい。移動体性能情報は、移動体200に搭載された光発電パネル250の発電性能を示す発電性能情報を含んでよい。移動体性能情報は、例えば、移動体200に搭載された光発電パネル250の形状を示すパネル形状情報を含んでよい。移動体性能情報は、例えば、移動体200に搭載された光発電パネル250のサイズを示すサイズ情報を含んでよい。移動体性能情報は、例えば、移動体200に搭載されたバッテリの最大容量を示す最大容量情報を含んでよい。移動体性能情報は、例えば、移動体200の最高移動速度を示す最高移動速度情報を含んでよい。移動体性能情報は、例えば、移動体200の重量を示す移動体重量情報を含んでよい。移動体性能情報は、移動体200が運搬可能な運搬対象の最大重量を示す最大運搬重量情報を含んでもよい。
 出力部104は、レーザ光を出力してよい。レーザ装置100は、複数の出力部104を有してもよい。
 出力部104は、例えば、固体レーザであってよい。固体レーザは、例えば、増幅媒質に光ファイバーを用いるファイバレーザであってよい。出力部104は、例えば、半導体レーザであってよい。出力部104は、例えば、気体レーザであってよい。出力部104は、液体レーザであってもよい。
 出力部104は、例えば、赤外領域の波長のレーザ光を出力してよい。出力部104は、例えば、レーザ装置100の給電対象の移動体200がHAPSである場合、大気によるレーザ光の減衰を防ぐために、大気の光の透過率が高い波長領域である、いわゆる「大気の窓」の波長帯のレーザ光を出力してよい。出力部104は、例えば、1070nm±100nmの波長のレーザ光を出力してよい。出力部104は、例えば、1070nmの波長のレーザ光を出力してよい。出力部104は、例えば、可視領域の波長のレーザ光を出力してもよい。
 出力部104は、レーザ光の光学系を構成する1又は複数の光学素子を有してよい。光学素子は、例えば、ガウシアンビームのレーザ光をトップハットビームのレーザ光に変換するホモジナイザーをであってよい。光学素子は、例えば、ビームシェーパをであってよい。光学素子は、例えば、回折格子であってよい。尚、光学素子は上記の例に限定されない。光学素子は、レーザ光の光学系を構成可能であればよく、例えば、形状可変ミラーを含むミラー、プリズム、透過型素子、反射型素子等の従来周知の光学技術により構成されてもよい。
 受信部106は、外部装置から、各種情報を受信してよい。受信部106は、外部装置から受信した各種情報を格納部102に格納してよい。
 受信部106は、例えば、移動体200から、各種情報を受信してよい。受信部106は、例えば、移動体200から、レーザ装置100と移動体200との間の無線通信を介して、各種情報を受信してよい。受信部106は、移動体200から、ネットワーク20を介して、各種情報を受信してもよい。
 受信部106は、例えば、移動体200から、移動体200の移動関連情報を受信してよい。移動体200の移動関連情報は、例えば、移動体200の位置情報を含んでよい。移動体200の移動関連情報は、移動体200の移動速度情報を含んでよい。移動体200の移動関連情報は、例えば、移動体200の移動方向情報を含んでよい。移動体200の移動関連情報は、移動体200の姿勢情報を含んでもよい。
 受信部106は、移動体200から、例えば、移動体200に搭載された光発電パネル250の発電量情報を受信してよい。受信部106は、例えば、移動体200から、移動体200に搭載されたバッテリのバッテリ残量情報を受信してよい。受信部106は、例えば、移動体200から、移動体200がレーザ装置100に要求する給電量を示す要求給電量情報を受信してよい。受信部106は、例えば、移動体200から、移動体200の移動体性能情報を受信してよい。受信部106は、例えば、移動体200から、移動体200が運搬する運搬対象の総重量を示す運搬対象重量情報を受信してよい。
 受信部106は、移動体200から、移動体200の周囲の環境情報を受信してもよい。移動体200の周囲の環境情報は、例えば、移動体200の周囲の天気を示す天気情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の太陽光の放射強度を示す放射強度情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の雲量を示す雲量情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の降雨量を示す降雨量情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の降雪量を示す降雪量情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の風速を示す風速情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の風向を示す風向情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の温度を示す温度情報を含んでよい。移動体200の周囲の天気情報は、例えば、移動体200の周囲の湿度を示す湿度情報を含んでよい。移動体200の周囲の天気情報は、移動体200の周囲の気圧を示す気圧情報を含んでもよい。
 移動体200の周囲の環境情報は、移動体200の周囲に存在する物体を示す物体情報を含んでもよい。移動体200の周囲に存在する物体は、例えば、飛行体、人工衛星、車両、船舶等の移動体であってよい。移動体200の周囲に存在する物体は、例えば、鳥等の動物であってよい。移動体200の周囲に存在する物体は、人であってもよい。
 移動体200の周囲に存在する物体の物体情報は、例えば、移動体200の周囲に存在する物体の位置を示す情報を含んでよい。移動体200の周囲に存在する物体の物体情報は、例えば、移動体200の周囲に存在する物体のサイズを示す情報を含んでよい。移動体200の周囲に存在する物体の物体情報は、移動体200の周囲に存在する物体の種類を示す情報を含んでもよい。
 受信部106は、例えば、移動体200の移動体管理装置から、ネットワーク20を介して、各種情報を受信してよい。受信部106は、例えば、移動体200から受信した情報と同様の情報を、移動体管理装置から受信してよい。
 受信部106は、環境情報を管理する環境情報管理装置から、ネットワーク20を介して、移動体200の周囲の環境情報を受信してもよい。受信部106は、飛行体、人工衛星、車両、船舶等の移動体の運航計画を管理する運航計画管理装置から、ネットワーク20を介して、移動体の運航計画を示す運航計画情報を受信してもよい。
 撮像部108は、移動体200からの光を撮像してよい。撮像部108は、例えば、移動体200に搭載された光発電パネル250に対応する位置に設置された光源が発光した光を撮像してよい。撮像部108は、例えば、光発電パネル250に対応する位置に設置された複数の光源が発光した光を撮像してよい。尚、光発電パネル250に対応する位置には、コーナーミラーがさらに設置されてもよい。
 光源は、例えば、LED(Light Emitting Diode)ランプであってよい。光源は、その他の任意の光源であってもよい。
 光発電パネル250に対応する位置は、例えば、光発電パネル250の中心であってよい。光発電パネル250に対応する位置は、光発電パネル250の周囲であってもよい。
 撮像部108は、光発電パネル250の周囲に設置された反射板が出力部104によるレーザ光を反射した光を撮像してもよい。反射板は、出力部104によるレーザ光が移動体200の機体に照射されることに起因する熱から移動体200を保護するために、光発電パネル250の周囲に設置されてよい。
 撮像部108は、例えば、移動体200をズームして撮像してよい。撮像部108は、例えば、光発電パネル250をズームして撮像してよい。撮像部108は、例えば、望遠レンズを用いて、移動体200や光発電パネル250をズームして撮像してよい。
 撮像部108は、例えば、光学カメラであってよい。撮像部108は、例えば、可視光カメラであってよい。撮像部108は、赤外線カメラであってもよい。この場合、撮像部108は、出力部104によるレーザ光が照射された被照射部位の温度上昇に起因する赤外光を撮像してよい。被照射部位は、例えば、光発電パネル250であってよい。被照射部位は、例えば、コーナーミラーであってよい。被照射部位は、反射板であってもよい。
 バンドパスフィルタ109は、予め定められた範囲の波長帯のみを通過させてよい。バンドパスフィルタ109は、例えば、出力部104が出力したレーザ光の波長を含む予め定められた範囲の波長帯のみを通過させてよい。撮像部108は、バンドパスフィルタ109を通過した光を撮像してよい。バンドパスフィルタ109を通過した光のみを撮像した撮像画像は、バンドパスフィルタ109を通過するレーザ光が照射されている移動体200を発見しやすい。バンドパスフィルタ109は、光発電パネル250に対応する位置に設置された光源が発光した光をさらに通過させてもよい。
 制御部110は、出力部104が出力するレーザ光を制御してよい。制御部110は、例えば、出力部104を制御することによって、レーザ光を制御してよい。制御部110は、例えば、出力部104が有する1又は複数の光学素子を制御することによって、レーザ光を制御してよい。制御部110は、例えば、より多くのレーザ光が光発電パネル250に照射されるように、レーザ光の出力を制御してよい。
 制御部110は、例えば、レーザ光制御信号を生成し、生成したレーザ光制御信号に従ってレーザ光を制御してよい。制御部110は、受信部106がレーザ装置管理装置300からネットワーク20を介して受信したレーザ光制御信号に従ってレーザ光を制御してもよい。
 レーザ光制御信号は、例えば、レーザ光の照射方向を制御する照射方向制御信号を含んでよい。レーザ光制御信号は、例えば、レーザ光の形状を制御する形状制御信号を含んでよい。レーザ光制御信号は、例えば、レーザ光の強度分布を制御する強度分布制御信号を含んでよい。レーザ光制御信号は、例えば、レーザ光のビーム径を制御するビーム径制御信号を含んでよい。レーザ光制御信号は、レーザ光の波面を制御する波面制御信号を含んでよい。レーザ光制御信号は、例えば、レーザ光の出力パワーを制御する出力パワー制御信号を含んでよい。レーザ光制御信号は、レーザ光を出力するタイミングを制御するタイミング制御信号を含んでもよい。
 制御部110は、例えば、受信部106が受信した移動体200の移動関連情報に含まれる移動体200の位置情報によって示される移動体200の位置と、撮像部108によって撮像された撮像画像とに基づいて、レーザ光を制御してよい。制御部110は、例えば、撮像部108が移動体200の位置を含む領域を撮像した撮像画像を画像解析することによって、レーザ光が移動体200に搭載された光発電パネル250に照射されるように、レーザ光を制御してよい。例えば、制御部110は、出力部104にレーザ光を出力させる前に、光発電パネル250に対応する位置に設置された光源の発光開始指示を移動体200に送信して、移動体200に当該光源の発光を開始させてよい。次に、制御部110は、撮像部108が移動体200の位置を含む領域を撮像した撮像画像を画像解析して当該光源の位置を特定することによって、光発電パネル250の位置を特定してよい。その後、制御部110は、位置を特定した光発電パネル250にレーザ光が照射されるように、出力部104にレーザ光を出力させてよい。制御部110は、出力部104がレーザ光の出力を開始した後は、コーナーミラーや反射板がレーザ光を反射した反射光から、光発電パネル250の位置を特定してよい。制御部110は、出力部104がレーザ光の出力を開始した後に、当該光源の発光終了指示を移動体200に送信して、移動体200に当該光源の発光を終了させてもよい。制御部110は、例えば、格納部102に格納されているレーザ装置100の設置位置情報によって示されるレーザ装置100の設置位置にさらに基づいて、レーザ光を制御してよい。
 制御部110は、例えば、レーザ光の照射方向を制御してよい。制御部110は、例えば、レーザ光の中心と光発電パネル250の中心との間の距離がより短くなるように、レーザ光の照射方向を制御してよい。制御部110は、例えば、レーザ光の中心が光発電パネル250の中心と一致するように、レーザ光の照射方向を制御してよい。制御部110は、例えば、撮像部108が光発電パネル250を撮像した撮像画像を画像解析して光発電パネル250の中心の位置を特定することによって、レーザ光の照射方向を制御してよい。
 制御部110は、例えば、ジンバルを用いて、レーザ光の照射方向を制御してよい。制御部110は、出力部104が有するミラーやプリズム等の光学素子を制御することによって、レーザ光の照射方向を制御してもよい。
 制御部110は、例えば、レーザ光の形状を制御してよい。制御部110は、例えば、円形になるようにレーザ光の形状を制御してよい。制御部110は、例えば、楕円形となるようにレーザ光の形状を制御してよい。制御部110は、例えば、楕円形の縦横比及び向きを制御可能であってよい。制御部110は、例えば、矩形になるようにレーザ光の形状を制御してよい。制御部110は、例えば、矩形の縦横比及び向きを制御可能であってよい。制御部110は、例えば、正方形になるようにレーザ光の形状を制御してよい。制御部110は、例えば、正方形の向きを制御可能であってよい。
 制御部110は、例えば、レーザ光の形状と、光発電パネル250の形状との間の形状誤差がより小さくなるように、レーザ光の形状を制御してよい。制御部110は、例えば、レーザ光の形状が光発電パネル250の形状と一致するように、レーザ光の形状を制御してよい。
 制御部110は、例えば、レーザ光の強度分布を制御してよい。制御部110は、例えば、レーザ光の強度分布が光発電パネル250でより均一になるように、レーザ光の強度分布を制御してよい。
 制御部110は、例えば、レーザ光のビーム径を制御してよい。制御部110は、光発電パネル250のサイズに対するレーザ光のサイズの割合が予め定められた割合になるように、レーザ光のビーム径を制御してよい。予め定められた割合は、例えば、1.1であってよい。
 制御部110は、例えば、撮像部108が光発電パネル250を撮像した撮像画像を画像解析することによって、光発電パネル250の形状、光発電パネル250のサイズ、及び光発電パネル250のサイズに対するレーザ光のサイズの割合のうちの少なくともいずれかを特定してよい。制御部110は、格納部102に格納されている移動体200の移動体性能情報及びレーザ装置100の設置位置情報及び受信部106が受信した移動体200の位置情報にさらに基づいて、光発電パネル250の形状、光発電パネル250のサイズ、及び光発電パネル250のサイズに対するレーザ光のサイズの割合のうちの少なくともいずれかを特定してもよい。
 制御部110は、レーザ光を受光した光発電パネル250の発電電力が最大となるように、出力部104を制御してよい。制御部110は、例えば、レーザ光を受光した光発電パネル250の発電電力が最大となるように、出力部104が有する1又は複数の光学素子を制御してよい。具体的には、制御部110は、例えば、ビームシェーパ等の光学素子を制御することにより、レーザ光を受光した光発電パネル250の発電電力が最大となるように、レーザ光の形状、強度分布、及びビーム径のうちの少なくともいずれかを制御してよい。
 制御部110は、例えば、レーザ光の波面を制御してよい。制御部110は、例えば、出力部104が有する形状可変ミラー等の光学素子を制御することによって、レーザ光の波面を制御してよい。制御部110は、例えば、レーザ光の伝搬経路の大気の揺らぎ等に起因して、時間及び位置がランダムでレーザ光に発生したシンチレーションの影響を緩和させるために、出力部104が有する形状可変ミラー等の光学素子を制御することによって、レーザ光の波面を制御してよい。制御部110は、例えば、受信部106が受信した発電量情報によって示される光発電パネル250の発電量に基づいて、レーザ光の波面を制御してもよい。
 制御部110は、例えば、レーザ光の出力パワーを制御してよい。制御部110は、例えば、受信部106が受信した移動体200の要求給電量情報によって示される、移動体200がレーザ装置100に要求する給電量に基づいて、レーザ光の出力パワーを制御してよい。制御部110は、例えば、受信部106が受信した移動体200のバッテリ残量情報によって示される、移動体200に搭載されたバッテリのバッテリ残量に基づいて、レーザ光の出力パワーを制御してよい。制御部110は、格納部102に格納されている移動体性能情報に基づいて、レーザ光の出力パワーを制御してもよい。
 制御部110は、受信部106が受信した移動体200の移動関連情報に含まれる移動体200の移動速度情報によって示される移動体200の移動速度と、移動体200の移動方向情報によって示される移動体200の移動方向にさらに基づいて、出力部104が出力するレーザ光が光発電パネル250を追跡するように、レーザ光を制御してよい。制御部110は、例えば、レーザ光の中心が光発電パネル250の中心を追跡するように、レーザ光を制御してよい。制御部110は、移動体200の位置、移動体200の移動速度、及び移動体200の移動方向から、予め定められた期間が経過した後の移動体200の位置を予測した予測結果に基づいて、レーザ光が光発電パネル250を追跡するように、レーザ光を制御してもよい。
 制御部110は、例えば、レーザ光が光発電パネル250を追跡した追跡結果に基づいて、光発電パネル250のサイズに対するレーザ光のサイズの目標割合を決定し、光発電パネル250のサイズに対するレーザ光のサイズの割合が決定した目標割合になるように、レーザ光のビーム径を制御してよい。制御部110は、例えば、レーザ光のサイズが光発電パネル250全体をカバーするように、目標割合を決定してよい。制御部110は、例えば、レーザ光のサイズが光発電パネル250全体をカバーし、且つ、レーザ光のサイズがより小さくなるように、目標割合を決定してよい。制御部110は、例えば、レーザ光のサイズが光発電パネル250のサイズより大きくなる範囲内で、光発電パネル250のサイズに対するレーザ光のサイズを決定してよい。
 制御部110は、例えば、レーザ光が光発電パネル250を追跡した追跡結果に基づいて、レーザ光の中心と光発電パネル250の中心との距離を決定し、決定した距離に応じて、光発電パネル250のサイズに対するレーザ光のサイズの目標割合を決定してよい。制御部110は、例えば、予め定められた期間の間、レーザ光の中心と光発電パネル250の中心との間の距離が予め定められた距離閾値より短い場合に、光発電パネル250のサイズに対するレーザ光のサイズの目標割合を小さくすることを決定してよい。制御部110は、例えば、光発電パネル250のサイズに対するレーザ光のサイズの目標割合を1.1から1.05に小さくすることを決定してよい。制御部110は、例えば、予め定められた期間の間、レーザ光の中心と光発電パネル250の中心との間の距離が予め定められた距離閾値より長い場合に、光発電パネル250のサイズに対するレーザ光のサイズの目標割合を大きくすることを決定してよい。制御部110は、例えば、光発電パネル250のサイズに対するレーザ光のサイズの目標割合を1.1から1.2に大きくすることを決定してよい。
 環境情報取得部112は、移動体200の周囲の環境情報を取得してよい。環境情報取得部112は、例えば、受信部106が受信した移動体200の周囲の環境情報を取得してよい。環境情報取得部112は、例えば、撮像部108が撮像した撮像画像を画像解析することによって、移動体200の周囲の環境情報を取得してよい。環境情報取得部112は、例えば、RADAR(Radio Detection And Ranging)を用いて、移動体200の周囲の環境情報を取得してよい。環境情報取得部112は、LiDAR(Light Detection And Ranging)を用いて、移動体200の周囲の環境情報を取得してもよい。
 制御部110は、例えば、環境情報取得部112が取得した移動体200の周囲の環境情報にさらに基づいて、レーザ光を制御してよい。制御部110は、例えば、移動体200の周囲の環境情報に含まれる放射強度情報によって示される移動体200の周囲の太陽光の放射強度に基づいて、レーザ光の出力パワーを制御してよい。制御部110は、例えば、移動体200の周囲の太陽光の放射強度が少ないほどレーザ光の出力パワーが強くなるように、レーザ光の出力パワーを制御してよい。
 制御部110は、例えば、レーザ光が、移動体200の周囲の環境情報に含まれる物体情報によって示される、移動体200の周囲に存在する物体に照射されないように、レーザ光を出力するタイミングを制御してよい。制御部110は、例えば、レーザ光の通り道の周辺に存在する物体に照射されないように、レーザ光を出力するタイミングを制御してよい。レーザ光の通り道の周辺とは、レーザ光の通り道から予め定められた範囲の領域であってよい。制御部110は、例えば、移動体200の前方に物体が存在する物体に照射されないように、レーザ光を出力するタイミングを制御してよい。制御部110は、例えば、レーザ装置100と移動体200との間に存在する物体に照射されないように、レーザ光を出力するタイミングを制御してよい。レーザ光を出力するタイミングを制御することは、レーザ光の照射を予め定められた期間の間、停止することを含む。また、制御部110は、移動体200の後方に物体が存在する場合に、レーザ光のサイズが光発電パネル250のサイズより予め定められた割合だけ小さくなるように、レーザ光のビーム径を制御してもよい。制御部110は、例えば、光発電パネル250のサイズに対するレーザ光のサイズの割合が0.85になるように、レーザ光のビーム径を制御してよい。これらによれば、移動体200に対するレーザ光の照射に伴う不慮の事故が発生する可能性を低減し得る。尚、移動体200の前方とは、移動体200の位置からみて移動体200にレーザ光を照射しているレーザ装置100に向かう方向の領域であり、移動体200の後方とは、移動体200の位置からみて移動体200にレーザ光を照射しているレーザ装置100に向かう方向とは反対方向の領域である。
 制御部110は、例えば、受信部106が受信した運航計画情報にさらに基づいて、レーザ光を制御してよい。制御部110は、例えば、レーザ光が、運航計画情報によって示される運航計画に従って移動体200の周囲を移動する他の移動体に照射されないように、レーザ光を出力するタイミングを制御してよい。制御部110は、例えば、レーザ光が、運航計画に従ってレーザ光の通り道の周辺を移動する他の移動体に照射されないように、レーザ光を出力するタイミングを制御してよい。制御部110は、例えば、レーザ光が、運航計画に従って移動体200の前方を移動する他の移動体に照射されないように、レーザ光を出力するタイミングを制御してよい。制御部110は、例えば、レーザ光が、運航計画に従ってレーザ装置100と移動体200との間に存在する他の移動体に照射されないように、レーザ光を出力するタイミングを制御してよい。制御部110は、移動体200の後方に運航計画に従って移動する他の移動体が存在する場合に、レーザ光のサイズが光発電パネル250のサイズより予め定められた割合だけ小さくなるように、レーザ光のビーム径を制御してもよい。
 送信部114は、外部装置に各種情報を送信してよい。送信部114は、例えば、移動体200に各種情報を送信してよい。送信部114は、例えば、レーザ装置100と移動体200との間の無線通信を介して、移動体200に各種情報を送信してよい。送信部114は、ネットワーク20を介して、移動体200に各種情報を送信してもよい。送信部114は、例えば、移動体200にレーザ装置100の設置位置情報を送信してよい。
 送信部114は、例えば、ネットワーク20を介して、レーザ装置管理装置300に各種情報を送信してよい。送信部114は、例えば、レーザ装置管理装置300に受信部106が受信した各種情報を送信してよい。送信部114は、例えば、レーザ光が光発電パネル250を追跡した追跡結果をレーザ装置管理装置300に送信してよい。送信部114は、レーザ装置管理装置300に環境情報取得部112が取得した移動体200の周囲の環境情報を送信してもよい。
 図3は、光発電パネル250の一例を概略的に示す。図3の光発電パネル250の中心には、光源260が設置されている。図3では、中心155のレーザ光150が光発電パネル250に照射されている状態を示している。
 図4は、撮像画像の一例を概略的に示す。図4の撮像画像は、図3に示されている状態の光発電パネル250を撮像した撮像画像である。図4の撮像画像は、例えば、バンドパスフィルタ109を通過した、光発電パネル250が受光したレーザ光150の一部を反射した反射光及び光源260が発光した光を含む撮像画像であってよい。図4の撮像画像の輝度は、光源260が発光した光の発光領域の輝度、光発電パネル250がレーザ光150を反射した反射光の反射光領域の輝度、それ以外の領域の輝度の順に高くなる。
 制御部110は、図4の撮像画像を画像解析して光源260が発光した光の発光領域の位置を特定することによって、光発電パネル250の中心の位置を特定してよい。制御部110は、レーザ光150の中心155と特定した光発電パネル250の中心との間の距離がより短くなるように、レーザ光150の照射方向を制御してよい。
 図3及び図4に示す一例によれば、レーザ装置100は、光発電パネル250の中心の位置の目印としての役割を果たす、光発電パネル250の中心の位置に設置された光源260が発光した光の位置を特定し、レーザ光150の中心155と特定した光発電パネル250の中心との間の距離がより短くなるようにレーザ光150の照射方向を制御する。これにより、レーザ装置100は、レーザ光150が光発電パネル250に照射されないことに起因するレーザ光150の損失をより少なくできる。
 図5は、光発電パネル250の他の一例を概略的に示す。図5の光発電パネル250の周囲には、反射板270が設置されている。図5では、中心155のレーザ光150が光発電パネル250及び反射板270に照射されている状態を示している。
 図6は、撮像画像の他の一例を概略的に示す。図6の撮像画像は、図5に示されている状態の光発電パネル250を撮像した撮像画像である。図6の撮像画像は、例えば、バンドパスフィルタ109を通過した、光発電パネル250が受光したレーザ光150の一部を反射した反射光及び反射板270がレーザ光150を反射した反射光を含む撮像画像であってよい。図6の撮像画像の輝度は、反射板270がレーザ光150を反射した反射光の反射光領域の輝度、光発電パネル250がレーザ光150を反射した反射光の反射光領域の輝度、それ以外の領域の輝度の順に高くなる。
 制御部110は、レーザ光150の中心155と光発電パネル250の中心との間の距離がより短くなるように、レーザ光150の照射方向を制御してよい。制御部110は、例えば、図6の撮像画像を画像解析して特定した、反射板270がレーザ光150を反射した反射光の反射光領域に基づいて、レーザ光150の照射方向を制御してよい。制御部110は、例えば、当該反射光領域の幅がより均一になるように、レーザ光150の照射方向を制御してよい。制御部110は、例えば、当該反射光領域のうち最も幅が大きい最大幅wmax及び最も幅が小さい最小幅wminをそれぞれ特定し、wminが(wmax-wmin)÷2だけ大きくなるように、レーザ光150の照射方向を制御してよい。
 図5及び図6に示す一例によれば、レーザ装置100は、レーザ光150の照射方向を決定するための目印としての役割を果たす、反射板270がレーザ光150を反射した反射光に基づいて、レーザ光150の中心155と光発電パネル250の中心との間の距離がより短くなるように、レーザ光150の照射方向を制御する。これにより、レーザ装置100は、レーザ光150が光発電パネル250に照射されないことに起因するレーザ光150の損失をより少なくできる。
 図7は、レーザ装置100の処理の流れの一例を説明するための説明図である。図7では、レーザ装置100が移動体200にレーザ光150を照射している状態を開始状態として説明する。
 ステップ(ステップをSと省略して記載する場合がある。)102において、環境情報取得部112は、移動体200の周囲の環境情報を取得してよい。S104において、制御部110は、S102で環境情報取得部112が取得した移動体200の周囲の環境情報に基づいて、移動体200の周囲に物体が存在するか否かを判定してよい。移動体200の周囲に物体が存在すると制御部110が判定した場合、S106に進んでよい。移動体200の周囲に物体が存在しないと制御部110が判定した場合、S114に進んでよい。
 S106において、制御部110は、S102で環境情報取得部112が取得した移動体200の周囲の環境情報に基づいて、物体が移動体200の後方に存在するか否かを判定してよい。物体が移動体200の後方に存在すると制御部110が判定した場合、S108に進んでよい。物体が移動体200の後方以外に存在すると制御部110が判定した場合、S112に進んでよい。
 S108において、制御部110は、レーザ光150のサイズが光発電パネル250のサイズより大きいか否かを判定してよい。レーザ光150のサイズが光発電パネル250のサイズより大きいと制御部110が判定した場合、S110に進んでよい。レーザ光150のサイズが光発電パネル250のサイズより小さいと制御部110が判定した場合、環境情報に基づいてレーザ光150を制御する処理が終了してよい。
 S110において、制御部110は、レーザ光150のサイズが光発電パネル250のサイズより予め定められた割合だけ小さくなるように、レーザ光のビーム径を制御してよい。その後、環境情報に基づいてレーザ光150を制御する処理が終了してよい。
 S112において、制御部110は、レーザ光150が移動体200の周囲に存在する物体に照射されないように、レーザ光150の出力を停止してよい。その後、環境情報に基づいてレーザ光150を制御する処理が終了してよい。
 S114において、制御部110は、レーザ光150のサイズが光発電パネル250のサイズより小さいか否かを判定してよい。レーザ光150のサイズが光発電パネル250のサイズより小さいと制御部110が判定した場合、S116に進んでよい。レーザ光150のサイズが光発電パネル250のサイズより大きいと制御部110が判定した場合、環境情報に基づいてレーザ光150を制御する処理が終了してよい。
 S116において、制御部110は、レーザ光150のサイズが光発電パネル250のサイズより予め定められた割合だけ大きくなるように、レーザ光のビーム径を制御してよい。その後、環境情報に基づいてレーザ光150を制御する処理が終了してよい。
 図8は、レーザ装置100として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、上記実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、上記実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、上記実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 一実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されてよい。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ1226、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されてよい。DVDドライブ1226は、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボード1242のようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されてよい。
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御してよい。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにしてよい。
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信してよい。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納してよい。DVDドライブ1226は、プログラム又はデータをDVD-ROM1227等から読み取り、記憶装置1224に提供してよい。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込んでよい。
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納してよい。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムは、DVD-ROM1227又はICカードのようなコンピュータ可読記憶媒体によって提供されてよい。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行されてよい。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらしてよい。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM1227、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込んでよい。
 また、CPU1212は、記憶装置1224、DVDドライブ1226(DVD-ROM1227)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックしてよい。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラム又はソフトウェアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供してよい。
 一実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含んでよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 10 システム、20 ネットワーク、100 レーザ装置、102 格納部、104 出力部、106 受信部、108 撮像部、109 バンドパスフィルタ、110 制御部、112 環境情報取得部、114 送信部、150 レーザ光、155 中心、200 移動体、250 光発電パネル、260 光源、270 反射板、300 レーザ装置管理装置、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1226 DVDドライブ、1227 DVD-ROM、1230 ROM、1240 入出力チップ、1242 キーボード

Claims (19)

  1.  レーザ光を出力する出力部と、
     移動体の位置を示す位置情報を受信する受信部と、
     前記移動体からの光を撮像する撮像部と、
     前記位置情報によって示される前記移動体の前記位置と、前記撮像部によって撮像された撮像画像とに基づいて、より多くの前記レーザ光が前記移動体に搭載された光発電パネルに照射されるように、前記レーザ光の出力を制御する制御部と
     を備える、レーザ装置。
  2.  前記撮像部は、前記光発電パネルに対応する位置に設置された光源が発光した前記光を撮像する、請求項1に記載のレーザ装置。
  3.  前記撮像部は、前記光発電パネルの周囲に設置された反射板が前記レーザ光を反射した前記光を撮像する、請求項1又は2に記載のレーザ装置。
  4.  前記撮像部は、前記レーザ光の波長を含む予め定められた範囲の波長帯の光のみを通過させるバンドパスフィルタを通過した前記光を撮像する、請求項3に記載のレーザ装置。
  5.  前記制御部は、前記レーザ光の中心と前記光発電パネルの中心との間の距離がより短くなるように、前記レーザ光の照射方向を制御する、請求項1から4のいずれか一項に記載のレーザ装置。
  6.  前記制御部は、前記撮像画像を画像解析して前記光発電パネルの中心の位置を特定することによって、前記レーザ光の前記照射方向を制御する、請求項5に記載のレーザ装置。
  7.  前記制御部は、前記レーザ光の形状と前記光発電パネルの形状との間の形状誤差がより小さくなるように、前記レーザ光の前記形状を制御する、請求項1から6のいずれか一項に記載のレーザ装置。
  8.  前記制御部は、楕円形となるように前記レーザ光の前記形状を制御し、前記楕円形の縦横比及び向きは、前記制御部によって制御可能である、請求項7に記載のレーザ装置。
  9.  前記制御部は、前記レーザ光の強度分布が前記光発電パネルでより均一になるように、前記レーザ光の強度分布を制御する、請求項1から8のいずれか一項に記載のレーザ装置。
  10.  前記制御部は、前記レーザ光を受光した前記光発電パネルの発電電力が最大となるように、前記レーザ光の形状及び強度分布のうちの少なくともいずれかを制御する、請求項1から9のいずれか一項に記載のレーザ装置。
  11.  前記制御部は、前記光発電パネルのサイズに対する前記レーザ光のサイズの割合が予め定められた割合になるように、前記レーザ光のビーム径を制御する、請求項1から10のいずれか一項に記載のレーザ装置。
  12.  前記受信部は、前記移動体の移動速度を示す移動速度情報と、前記移動体の移動方向を示す移動方向情報とをさらに受信し、
     前記制御部は、前記移動速度情報によって示される前記移動体の前記移動速度と、前記移動方向情報によって示される前記移動体の前記移動方向にさらに基づいて、前記レーザ光が前記光発電パネルを追跡するように、前記レーザ光の出力を制御する、
     請求項1から11のいずれか一項に記載のレーザ装置。
  13.  前記制御部は、前記レーザ光が前記光発電パネルを追跡した追跡結果に基づいて、前記光発電パネルのサイズに対する前記レーザ光のサイズの目標割合を決定し、前記光発電パネルのサイズに対する前記レーザ光のサイズの割合が決定した前記目標割合になるように、前記レーザ光のビーム径を制御する、請求項12に記載のレーザ装置。
  14.  前記受信部は、前記移動体の周囲の環境を示す環境情報を受信し、
     前記制御部は、前記環境情報にさらに基づいて、前記レーザ光の出力を制御する、
     請求項1から13のいずれか一項に記載のレーザ装置。
  15.  前記制御部は、前記レーザ光が前記レーザ光の通り道の周辺に存在する物体に照射されないように、前記レーザ光を出力するタイミングを制御する、請求項14に記載のレーザ装置。
  16.  前記制御部は、前記移動体の後方に物体が存在する場合に、前記レーザ光のサイズが前記光発電パネルのサイズより予め定められた割合だけ小さくなるように、前記レーザ光のビーム径を制御する、請求項14に記載のレーザ装置。
  17.  コンピュータを、請求項1から16のいずれか一項に記載のレーザ装置として機能させるためのプログラム。
  18.  請求項1から16のいずれか一項に記載のレーザ装置と、
     前記移動体と
     を備える、システム。
  19.  コンピュータによって実行される方法であって、
     移動体の位置を示す位置情報を受信する受信段階と、
     前記移動体からの光を撮像する撮像段階と、
     前記位置情報によって示される前記移動体の前記位置と、前記撮像段階で撮像された撮像画像とに基づいて、より多くのレーザ光が前記移動体に搭載された光発電パネルに照射されるように、前記レーザ光の出力を制御する制御段階と
     を備える、方法。
PCT/JP2023/013260 2022-03-30 2023-03-30 レーザ装置、プログラム、システム、及び方法 WO2023190906A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP23780914.0A EP4395126A1 (en) 2022-03-30 2023-03-30 Laser device, program, system, and method
KR1020247009008A KR20240049328A (ko) 2022-03-30 2023-03-30 레이저 장치, 프로그램, 시스템, 및 방법
CN202380013657.9A CN117981197A (zh) 2022-03-30 2023-03-30 激光装置、程序、系统以及方法
US18/607,593 US20240266999A1 (en) 2022-03-30 2024-03-18 Laser device, computer-readable storage medium, system, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-057753 2022-03-30
JP2022057753A JP7364729B1 (ja) 2022-03-30 2022-03-30 レーザ装置、プログラム、システム、及び方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/607,593 Continuation US20240266999A1 (en) 2022-03-30 2024-03-18 Laser device, computer-readable storage medium, system, and method

Publications (1)

Publication Number Publication Date
WO2023190906A1 true WO2023190906A1 (ja) 2023-10-05

Family

ID=88202857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013260 WO2023190906A1 (ja) 2022-03-30 2023-03-30 レーザ装置、プログラム、システム、及び方法

Country Status (6)

Country Link
US (1) US20240266999A1 (ja)
EP (1) EP4395126A1 (ja)
JP (1) JP7364729B1 (ja)
KR (1) KR20240049328A (ja)
CN (1) CN117981197A (ja)
WO (1) WO2023190906A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171616A (ja) * 2015-03-11 2016-09-23 日産自動車株式会社 移動体用光給電システム、移動体用光給電方法
US20180123403A1 (en) * 2015-05-18 2018-05-03 Lasermotive, Inc. Locating power receivers
JP2019013063A (ja) * 2017-06-29 2019-01-24 国立大学法人東北大学 赤外光による遠方物体への無線電力伝送方式
JP2019511407A (ja) * 2015-12-29 2019-04-25 フェイスブック,インク. 無人航空機用遠隔供給電力
JP2019129678A (ja) 2018-01-26 2019-08-01 京セラ株式会社 電子機器、送電装置、送電システム、及び送電方法
JP2020006916A (ja) 2018-07-12 2020-01-16 株式会社東芝 管理装置、無人飛行体、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171616A (ja) * 2015-03-11 2016-09-23 日産自動車株式会社 移動体用光給電システム、移動体用光給電方法
US20180123403A1 (en) * 2015-05-18 2018-05-03 Lasermotive, Inc. Locating power receivers
JP2019511407A (ja) * 2015-12-29 2019-04-25 フェイスブック,インク. 無人航空機用遠隔供給電力
JP2019013063A (ja) * 2017-06-29 2019-01-24 国立大学法人東北大学 赤外光による遠方物体への無線電力伝送方式
JP2019129678A (ja) 2018-01-26 2019-08-01 京セラ株式会社 電子機器、送電装置、送電システム、及び送電方法
JP2020006916A (ja) 2018-07-12 2020-01-16 株式会社東芝 管理装置、無人飛行体、及びプログラム

Also Published As

Publication number Publication date
CN117981197A (zh) 2024-05-03
KR20240049328A (ko) 2024-04-16
JP7364729B1 (ja) 2023-10-18
JP2023157026A (ja) 2023-10-26
EP4395126A1 (en) 2024-07-03
US20240266999A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
US10155586B2 (en) Remotely supplied power for unmanned aerial vehicle
JP6370040B2 (ja) 航空森林調査システム
US10078328B1 (en) Solar array remote acoustic sensing (SARAS)
EP3825235B1 (en) System, control device, and light aircraft
US20160299229A1 (en) Method and system for detecting objects
JP2016161572A (ja) 侵入オブジェクトを検出するシステムおよび方法
CN113759940A (zh) 无人机降落方法、装置、无人机系统、机场、设备和介质
CN102501978B (zh) 利用量子纠缠态光实现全天候飞机着陆或着舰的方法及系统
JP7364729B1 (ja) レーザ装置、プログラム、システム、及び方法
CN117665946A (zh) 一种具有高隐蔽性的电子侦察装置
KR101537324B1 (ko) 영상기반 비행체 자동 이착륙 유도 시스템
US11853083B2 (en) Drone coordinated satellite communications, energy harvesting, and camouflage
JP7319244B2 (ja) 制御装置、プログラム、システム、及び方法
US20230333573A1 (en) Control device, computer readable storage medium, system, and control method
JP2020063968A (ja) 航空機の位置計測システム、航空機の位置計測方法及び航空機
JP7320018B2 (ja) 受光装置及び通信システム
US20240275468A1 (en) Information processing device, program, information processing system, and information processing method
WO2023189255A1 (ja) 給電管理装置、プログラム、システム、飛行体、及び方法
JP6910392B2 (ja) 無人航空機、プログラム、方法、及びシステム
CN117389314A (zh) 一种无人机搜寻拦截系统及方法
Lawson An Automated System for Measuring Microphysical and Radiative Cloud Characteristics from a Tethered Balloon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247009008

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380013657.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023780914

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023780914

Country of ref document: EP

Effective date: 20240325