WO2023190895A1 - Processing agent, processed article, and production method for processed article - Google Patents

Processing agent, processed article, and production method for processed article Download PDF

Info

Publication number
WO2023190895A1
WO2023190895A1 PCT/JP2023/013238 JP2023013238W WO2023190895A1 WO 2023190895 A1 WO2023190895 A1 WO 2023190895A1 JP 2023013238 W JP2023013238 W JP 2023013238W WO 2023190895 A1 WO2023190895 A1 WO 2023190895A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing agent
group
amino acid
amino acids
mass
Prior art date
Application number
PCT/JP2023/013238
Other languages
French (fr)
Japanese (ja)
Inventor
雅彦 山田
Original Assignee
大和紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和紡績株式会社 filed Critical 大和紡績株式会社
Publication of WO2023190895A1 publication Critical patent/WO2023190895A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/13Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/342Amino-carboxylic acids; Betaines; Aminosulfonic acids; Sulfo-betaines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings

Definitions

  • the present invention relates to a processing agent, a processed article, and a method for producing a processed article.
  • Patent Document 1 describes an antibacterial/antiviral composition for textiles containing a silver amino acid, a zinc amino acid, and a copper ion.
  • the antibacterial/antiviral composition for textiles of Patent Document 1 needs to be used at a high concentration, resulting in high cost and poor productivity. Furthermore, since the antibacterial/antiviral composition for textiles of Patent Document 1 is physically bonded to textile products through aggregation, it is likely to fall off due to external loads on textile products (other processing, washing, etc.).
  • the present invention an organic salt of a first amino acid and a second amino acid different from the first amino acid; metal compounds, and an aqueous solvent,
  • the first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof
  • the organic salt relates to a processing agent formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  • the present invention also includes: The product to be processed, comprising an organic salt of a first amino acid and a second amino acid different from the first amino acid, which adheres to the article to be treated, and a metal compound;
  • the first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof,
  • the organic salt relates to a processed article formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  • the present invention further includes: Equipped with a process of bringing the processing agent into contact with the workpiece,
  • the processing agent is an organic salt of a first amino acid and a second amino acid different from the first amino acid; metal compounds, and an aqueous solvent,
  • the first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof
  • the organic salt relates to a method for producing a processed article, in which the organic salt is formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  • a processing agent having excellent antiviral, antibacterial, and deodorizing properties is provided.
  • a processed article to which the above-mentioned processing agent is attached and a method for manufacturing the same.
  • the processing agent according to the present disclosure includes an organic salt whose cation and anion are both amino acids, a metal compound having a metal ion as a cation, and an aqueous solvent.
  • Organic salts are formed by two types of amino acids.
  • the first amino acids are at least one of fatty acylamino acids and derivatives thereof (hereinafter collectively referred to as "basic acylamino acids”) having a basic functional group in the side chain.
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof (hereinafter collectively referred to as “ ⁇ -amino acids”).
  • the processing agent according to the present disclosure uses an organic salt formed by two types of amino acids together with a metal compound.
  • antiviral properties, antibacterial properties, and deodorizing properties are improved.
  • further improvements in other functions can be expected.
  • Other functions include, for example, antiallergic properties and pH control properties.
  • performance including at least antiviral properties, antibacterial properties, and deodorizing properties may be collectively referred to as "functionality".
  • Antiviral properties can be evaluated by antiviral activity values calculated based on JIS L 1922:2016 "Testing method for antiviral properties of textile products” or ISO 18184 (Textiles - Determination of antiviral activity of textile products).
  • the antiviral activity value is 2.0 or more, it can be said that the processing agent has antiviral properties, and when it is 3.0 or more, it can be said that it has excellent antiviral properties.
  • the processing agent according to the present disclosure is particularly useful as an "antiviral agent.”
  • Antibacterial properties can be evaluated by an antibacterial test using Staphylococcus aureus NBRC 12732, a type of Gram-positive bacteria, and/or Klebsiella pneumoniae NBRC 13277, a type of Gram-negative bacteria.
  • the antibacterial test using Staphylococcus aureus is carried out by the bacterial liquid absorption method according to JIS L 1902:2015 "Antibacterial test method and antibacterial effect of textile products”.
  • the antibacterial property against Staphylococcus aureus is evaluated by the antibacterial activity value shown by the following formula.
  • the antibacterial activity value is 2.0 or more, it can be said that the processing agent has antibacterial properties against Staphylococcus aureus, and when it is 3.0 or more, it can be said that it has excellent antibacterial properties against Staphylococcus aureus. .
  • the antibacterial property against Klebsiella pneumoniae is also evaluated by the antibacterial activity value.
  • the antibacterial activity value is 2.0 or more, it can be said that the processing agent has antibacterial properties against Klebsiella pneumoniae, and when it is 3.0 or more, it can be said that it has excellent antibacterial properties against Klebsiella pneumoniae.
  • a processing agent can be said to have excellent antibacterial properties if it has excellent antibacterial properties against at least one of Staphylococcus aureus and Klebsiella pneumoniae. If antibacterial properties are observed against Staphylococcus aureus, it can be said that the processing agent also has antibacterial properties against Gram-positive bacteria. If antibacterial properties are observed against Klebsiella pneumoniae, it can be said that the processing agent further has antibacterial properties against other Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Pseudomonas bacteria, and Moraxella bacteria.
  • Antibacterial activity value (Mb-Ma)-(Mc-Mo) Ma: The average value of the number of viable bacteria or the common logarithm of the ATP amount on the standard cloth immediately after inoculation with the test bacterial solution
  • Mb The average value of the number of viable bacteria or the common logarithm of the ATP amount after 18-hour incubation of the standard cloth
  • Mo Specimen The average value of the number of viable bacteria or the common logarithm of the amount of ATP immediately after inoculation of the test bacterial solution
  • Mc The average value of the number of viable bacteria or the common logarithm of the amount of ATP after culturing the specimen for 18 hours
  • the processing agent according to the present disclosure is particularly useful as an "antibacterial agent.”
  • Deodorizing properties are measured using the "21. Deodorizing properties test (detection tube It can be evaluated using a method that complies with the ⁇ Act, Gas Chromatography Method''.
  • test conditions are as follows. (Initial concentration of each odor component gas) Ammonia 100ppm Acetic acid 30ppm Isovaleric acid 38ppm
  • the size of the sample used in the detector tube method is 100 cm 2 (10 cm long x 10 cm wide).
  • the size of the sample used in the gas chromatography method is 50 cm 2 (5 cm long x 10 cm wide).
  • a sealed 5 L Tedlar (registered trademark, hereinafter the same) bag is prepared, and 3 L of odor component gas is injected into the Tedlar bag using a syringe to reach a specified initial concentration.
  • concentration of the odor component gas present in the Tedlar bag is measured using a detection tube (blank test). This concentration is taken as the blank test concentration, and the average value is taken as Sb.
  • a raw odor solution for generating odor component gas is prepared.
  • the ammonia raw odor solution is prepared by diluting 7.2 ml of ammonia water (ammonia concentration: 28%) with 100 ml of distilled water.
  • the raw odor solution of acetic acid is prepared by diluting 0.5 ml of acetic acid reagent (acetic acid purity: 99.7%) with 100 ml of distilled water.
  • the original odor solution of isovaleric acid is prepared by diluting 1 ml of isovaleric acid reagent (isovaleric acid purity: 98%) with 100 ml of distilled water, and further diluting 0.5 ml of the isovaleric acid diluted solution with 100 ml of distilled water. be done.
  • a magnetic stirrer bar is placed in a 500 ml Erlenmeyer flask, 5 ⁇ l of the original odor solution of each odor is injected with a micropipette, and the flask is tightly stoppered.
  • the magnetic stir bar in the Erlenmeyer flask is stirred with a magnetic stirrer, and after 2 hours, the residual gas in the Erlenmeyer flask is sampled with a syringe, and the concentration of the sampled residual gas is measured with a gas chromatograph analyzer. The average value of the peak areas of these measured values is defined as the numerical value Sb of the blank test.
  • the procedure is carried out in the same manner as the blank test except that 50 cm 2 of the sample is placed in a 500 ml Erlenmeyer flask, and after 2 hours, the remaining gas in the container is sampled in the same manner as in the blank test.
  • the concentration of the sampled residual gas is measured using a gas chromatograph analyzer, and the average value of the peak areas of the measured values is taken as the numerical value Sn of the test using the sample.
  • Odor reduction rate [(Sb-Sn)/Sb] x 100
  • Sb Average value of gas concentration in blank test
  • Sn Average value of gas measurement values in test using sample
  • the processing agent has excellent deodorizing properties. It can be said that it has.
  • the processing agent according to the present disclosure is particularly useful as a "deodorant”.
  • these excellent functionalities are unlikely to deteriorate.
  • the decrease in functionality occurs, for example, when processing agents (more specifically, metal ions) fall off from the processed product.
  • processing agents more specifically, metal ions
  • durability the ability to suppress a decline in functionality
  • Durability can be evaluated by conducting each of the above tests using a sample that has been washed 10 times according to the JIS L 1930:2019 home washing test method for textile products (C4M method).
  • the processing agent improves functionality and furthermore durability is not clear, but it is thought to be as follows.
  • the basic acylamino acids can form a complex with a metal ion derived from a metal compound through an amino group and a carboxy group.
  • the basic functional group of the basic acylamino acids is positively charged in the processing agent and can chemically bond to the article to be processed, typified by fibers.
  • the above basic functional group and the hydroxyl group of the cellulose fiber can be covalently bonded.
  • ⁇ -Amino acids can also form complexes with metal ions derived from metal compounds through amino groups and carboxy groups.
  • the organic salt used in the present disclosure dissociates into a cation of basic acylamino acids and an anion of ⁇ -amino acids in the processing agent. On the other hand, it is thought that a reaction opposite to dissociation also occurs and an equilibrium state is reached. Thus, at least some organic salts may behave as ion pairs.
  • the cation of the organic salt can chemically bond to the product to be treated while forming an ion pair with the anion.
  • the two amino acids in the organic salt can each carry a different metal ion.
  • these metal ions form complexes with the above-mentioned amino acids, they are difficult to fall off. For these reasons, it is thought that functionality is improved and their durability is improved.
  • organic salts consisting of two types of amino acids can be expected to have high safety for the environment and the human body.
  • Organic salts consisting of two types of amino acids are also less likely to cause yellowing of processed products due to heat.
  • the processing agent is in a mixed state and is more preferably in an aqueous solution.
  • a miscible state means that each component is present in an aqueous solvent. At this time, each component may be hydrated in an aqueous solvent or may be dispersed in an aqueous solvent.
  • organic salt is a salt of ⁇ -amino acids and at least one of a fatty acylamino acid and its derivatives (basic acylamino acids) having a basic functional group in its side chain.
  • ⁇ -Amino acids ⁇ ⁇ -Amino acids are blended into processing agents as salts with basic acylamino acids.
  • ⁇ -Amino acids can dissociate into anions in processing agents.
  • ⁇ -Amino acids have a structure in which an amino group is bonded to a carbon ( ⁇ -carbon) to which a carboxy group is bonded, and generally RCH(NH 2 )COOH (R is a group containing a hydrocarbon group) It is expressed as
  • ⁇ -Amino acids can be dissociated into anions derived from anionic groups.
  • anionic groups include a carboxy group, a hydroxyl group, a phosphoric acid group, a sulfuric acid group, a sulfonic acid group, and a halogeno group.
  • the group capable of dissociating into an anion in the processing agent may be a carboxy group bonded to the ⁇ -carbon. Due to the anionic group, ⁇ -amino acids can form salts with basic acylamino acids and can covalently bond with the article to be treated.
  • the ⁇ -amino acids may have a secondary amino group from the viewpoint of solubility in aqueous solvents.
  • Such ⁇ -amino acids include, for example, tryptophan, histidine, proline and pyrrolidone carboxylic acid.
  • the ⁇ -amino group may be a secondary amino group.
  • Such ⁇ -amino acids include, for example, proline and pyrrolidone carboxylic acid.
  • the ⁇ -amino acids may have a nitrogen-containing heterocycle from the viewpoint of solubility in aqueous solvents.
  • Such ⁇ -amino acids include, for example, the above-mentioned tryptophan, histidine, proline, and pyrrolidone carboxylic acid.
  • the ⁇ -amino acids may be pyrrolidone carboxylic acid.
  • Pyrrolidone carboxylic acid has the following formula: It is expressed as
  • the hydrogen atom bonded to the carbon atom of pyrrolidone carboxylic acid may be substituted.
  • substituents include an alkyl group, an acyl group, a hydroxyl group, an amino group, an alkylamino group, a nitro group, and a sulfonyl group.
  • Basic acylamino acids are blended into processing agents as salts with ⁇ -amino acids.
  • Basic acylamino acids usually have a basic functional group in their side chain in addition to the amino group that amino acids have.
  • Basic acylamino acids can dissociate into cations in processing agents.
  • the basic functional groups of basic acylamino acids form cations.
  • Basic acylamino acids are formed by a basic amino acid and a fatty acid acyl group introduced into an amino group other than the basic functional group of the basic amino acid.
  • a basic amino acid has a basic functional group in its side chain along with an amino group and a carboxy group.
  • acylated amino acids are referred to as "acyl amino acids.”
  • Basic functional groups typically contain nitrogen.
  • the basic functional group may be a guanidino group.
  • the basic amino acid may have one selected from the group consisting of a heterocycle, an aromatic ring, a non-aromatic ring, and an aliphatic hydrocarbon group.
  • the basic amino acid may have an aliphatic hydrocarbon group, and may have an aliphatic hydrocarbon group having 4 to 8 carbon atoms.
  • the basic amino acid may be an aliphatic amino acid having 4 to 8 carbon atoms and having a basic functional group in its side chain.
  • the basic amino acid may have the substituents listed in the description of pyrrolidone carboxylic acid.
  • Examples of basic amino acids include arginine, histidine, lysine, and ornithine.
  • the basic amino acid may be arginine.
  • Fatty acid acyl groups are derived from fatty acids.
  • the fatty acyl group is derived from, for example, a saturated or unsaturated fatty acid having 8 to 22 carbon atoms.
  • the above fatty acids may be linear or branched.
  • Examples of fatty acids include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, isostearic acid, undecylenic acid, petroselic acid, oleic acid, ricinoleic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • coconut oil fatty acids, and palm kernel oil fatty acids may be coconut oil fatty acid in terms of its influence on the environment and the human body.
  • the basic acylamino acid derivative may be an alkyl ester of the basic acylamino acid.
  • the carboxy group of the acylamino acid is esterified with, for example, an alkyl group having 1 to 4 carbon atoms.
  • the derivative may be a C1 or C2 alkyl ester of a basic acylamino acid.
  • the basic acylamino acid has the following formula: (wherein A is a hydrocarbon group having a heterocycle, aromatic ring, non-aromatic ring or aliphatic hydrocarbon group, B is a basic functional group, R 1 is a fatty acid residue, R 2 is hydrogen or a hydrocarbon group having 1 to 4 carbon atoms.) It is expressed as
  • A is a hydrocarbon group having a heterocycle, an aromatic ring, a non-aromatic ring, or an aliphatic hydrocarbon group.
  • A may be an aliphatic hydrocarbon group having a prime number of 4 to 8.
  • A is a part of the above basic amino acid excluding the amino group, the carboxy group, the carbon atom to which these groups are bonded, and the basic functional group.
  • B is the basic functional group described above.
  • R 1 is part of an acyl group and is a residue of the above fatty acid.
  • R 2 is hydrogen or a hydrocarbon group having 1 to 4 carbon atoms, and may be a hydrocarbon group having 1 or 2 carbon atoms.
  • the organic salt may be N-coco fatty acid acyl-L-arginine ethyl DL-pyrrolidonecarboxylate from the viewpoint of solubility in aqueous solvents and effects on the environment and the human body.
  • This organic salt has the following formula: (In the formula, R 1 is a residue of coconut oil fatty acid.) It is expressed as
  • Coconut oil fatty acids contain multiple saturated fatty acids and unsaturated fatty acids.
  • Coconut oil fatty acids include, for example, caprylic acid (saturated fatty acid with 8 carbon atoms), capric acid (saturated fatty acid with 10 carbon atoms), lauric acid (saturated fatty acid with 12 carbon atoms), and myristic acid (saturated fatty acid with 14 carbon atoms).
  • palmitic acid saturated fatty acid with 16 carbon atoms
  • stearic acid saturated fatty acid with 18 carbon atoms
  • oleic acid unsaturated fatty acid with 18 carbon atoms
  • linoleic acid unsaturated fatty acid with 18 carbon atoms.
  • the combination of two types of amino acids constituting the organic salt is appropriately determined in consideration of handling properties (for example, solubility in aqueous solvents, stability, and processability).
  • the concentration of the organic salt is not particularly limited, and may be appropriately set in consideration of the viscosity of the processing agent, the method of adhesion of the processing agent to the processed product, the use of the processed product, etc. From the viewpoint of functionality, the concentration of organic salt in the processing agent may be 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more, 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more, 0. It may be 15% by mass, and may be 0.2% by mass or more. The concentration of the organic salt may be 5% by mass or less, 1.5% by mass or less, and 1.0% by mass or less because the processing agent is easy to prepare and has excellent stability and handleability. The content may be 0.75% by mass or less, and may be 0.6% by mass or less. In one embodiment, the concentration of the organic salt is 0.01% by mass or more and 5% by mass or less.
  • the processing agent does not contain a salt of at least one of amino acids, acylamino acids, basic amino acids, and basic acylamino acids (hereinafter sometimes collectively referred to as "amino acids”) and metal ions. Salts consisting of amino acids and metal ions change color when dissolved in an aqueous solvent, so they may stain the product to be treated.
  • the processing agent does not contain alkali metal salts of amino acids.
  • alkali metal salts of amino acids tend to aggregate, making quality control difficult.
  • the alkali metal include Li (lithium), Na (sodium), K (potassium), and Cs (cesium).
  • the processing agent desirably does not contain sodium salts and potassium salts of amino acids, and desirably does not contain sodium salts and potassium salts of acylamino acids.
  • the processing agent does not contain, for example, an alkali metal salt of pyrrolidone carboxylic acid, an alkali metal salt of an acylamino acid, and an alkali metal salt of a basic acylamino acid.
  • the expression that the processing agent does not contain a metal salt of an amino acid means that the amount of the amino acid metal salt added to the processing agent is less than 0.005% by mass.
  • the metal compound is not particularly limited as long as it can generate (or release) metal ions in the processing agent.
  • Examples of such metal compounds include metal salts and metal oxides.
  • the reason why the processing agent according to the present disclosure exhibits antibacterial and antiviral properties is not clear, but it is thought to be as follows.
  • the metal compound contained in the processing agent according to the present disclosure generates metal ions in water, regardless of whether it is dissolved in water.
  • the generated metal ions have a small ionic radius, so they can strongly act on and destroy the membranes of bacteria and viruses.
  • Antibacterial and antiviral properties are primarily caused by metal ions.
  • the reason why the processing agent according to the present disclosure exhibits a deodorizing effect on various odors is not clear, but it is thought to be as follows.
  • Metal ions are present on the surface of the processing agent according to the present disclosure or an object treated using the processing agent. Oxygen in the air is activated by the catalytic action of these metal ions. The generated activated oxygen (superoxide: also called O 2 - ) reacts with malodorous substances and exerts a deodorizing effect.
  • metal ions include Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Pt (platinum), Ag (silver), and Au (gold).
  • metal ions include ions of at least one selected metal.
  • the metal may be at least one selected from the group consisting of Cu, Zn, Pt, Ag, and Au, and at least one selected from the group consisting of Cu, Zn, and Ag. It may be one type.
  • the metal salt is formed, for example, from the above metal ion and a counter anion.
  • the metal salt dissociates into a metal ion and its counter anion in the processing agent.
  • the counter anion is preferably derived from a source other than an amino acid.
  • the counter anion include at least one selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion.
  • at least one selected from the group consisting of polyatomic ions such as sulfate ion, hydroxide ion, nitrate ion, and acetate ion may be used.
  • the ion may be at least one selected from the group consisting of ions.
  • the metal salt is selected from the group consisting of, for example, Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Pt (platinum), Ag (silver) and Au (gold).
  • at least one metal ion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion. It is formed from anion.
  • the metal salt includes at least one selected from the group consisting of copper sulfate, copper chloride, copper acetate, zinc sulfate, zinc nitrate, zinc acetate, iron sulfate, and silver nitrate.
  • it may be at least one selected from the group consisting of copper sulfate, copper acetate, zinc sulfate, zinc nitrate and silver nitrate, and at least one of copper sulfate, zinc sulfate and silver nitrate. It's fine.
  • the concentration of the metal salt is not particularly limited, and may be appropriately set in consideration of the viscosity of the processing agent, the method of adhesion of the processing agent to the processed product, the use of the processed product, etc.
  • the concentration of the metal salt in the processing agent may be 0.0001% by mass or more, 0.001% by mass or more, 0.005% by mass or more, 0.0001% by mass or more, 0.001% by mass or more, 0.005% by mass or more, The amount may be 0.01% by mass or more, and may be 0.02% by mass or more.
  • the concentration of the metal salt may be 10% by mass or less, 5% by mass or less, 2% by mass or less, and 1.5% by mass or less. may be 1% by mass or less, may be 0.5% by mass or less, and may be 0.1% by mass or less.
  • the concentration of the metal salt is 0.0001% by mass or more and 10% by mass or less. Even when the concentration of the metal salt is as low as this, the processing agent according to the present disclosure exhibits excellent functionality.
  • the concentration of the metal salt (i.e., silver salt) in the processing agent may be 0.0001% by weight or more, may be 0.0005% by weight or more, and may be 0.001% by weight or more. It may be 0.005% by mass or more.
  • the concentration of silver salt in the processing agent may be 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, and 0.1% by mass or less. It may be less than 0.01% by mass, and may be less than 0.01% by mass.
  • the concentration of the silver salt is 0.0001% by mass or more and 5% by mass or less.
  • the concentration of the metal salt (i.e., copper salt) in the processing agent may be 0.001% by mass or more, may be 0.005% by mass or more, and 0.01% by mass or more. It may be.
  • the concentration of the copper salt in the processing agent may be 10% by weight or less, 5% by weight or less, 2% by weight or less, and 0.5% by weight or less. In one embodiment, the concentration of the copper salt is 0.001% by mass or more and 10% by mass or less.
  • the ratio of the mass of organic salt W O to the mass of metal salt W M in the processing agent may be from 500/1 to 1/2, and from 300/1 to It may be 1/1, it may be 200/1 to 5/1, it may be 150/1 to 10/1.
  • the ratio of the mass W O of the organic salt and the mass W Ag of the silver salt in the processing agent may be from 500/1 to 1/1, and from 300/1 to 10/1. Often, it may be between 200/1 and 20/1, and between 150/1 and 20/1.
  • the ratio of the mass W O of the organic salt and the mass W Cu of the copper salt in the processing agent (W O /W Cu ) may be 200/1 to 1/1, and may be 100/1 to 5/1. It may well be between 50/1 and 10/1.
  • the metal oxide may be at least one selected from the group consisting of silver oxide (Ag 2 O), zinc oxide (ZnO), and copper (II) oxide (CuO).
  • the metal oxide may be blended into the processing agent while being contained in at least one of the phosphate glass and the inorganic phosphate compound (hereinafter sometimes referred to as "matrix material").
  • Matrix material Metal oxides incorporated into the structure of the matrix material dissociate in the presence of moisture and are gradually eluted as metal ions. That is, part or all of the metal oxide can be dissociated into metal ions in the processing agent.
  • a matrix material containing a metal oxide (hereinafter sometimes referred to as a "metal-containing matrix”) can be produced by, for example, heating the material of the matrix material and a metal salt that serves as a metal source for the desired metal oxide. This can be obtained by: Through heat treatment or the like, the metal salt becomes a metal oxide and is supported in the matrix material.
  • Phosphate glass contains, for example, phosphorus (P), boron (B), and Group 2 elements (alkaline earth metal elements including magnesium) as essential components.
  • inorganic phosphate compounds include hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), silicate apatite (part of the PO 4 3- ions of hydroxyapatite is replaced with SiO 4 4-) , ), titanium hydrogen phosphate hydrate, zirconia hydrogen phosphate hydrate, and zirconium phosphate.
  • the matrix material may be a phosphate glass.
  • Phosphate glass for example, contains 35 to 65 mol% of diphosphorus pentoxide (P 2 O 5 ), 5 to 25 mol % of diboron trioxide (B 2 O 3 ), and Group 2 elements ( 5 to 55 mol% of oxides of alkaline earth metals (including magnesium), and sodium oxide (Na 2 O), potassium oxide (K 2 O), silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O). 3 ) 0 to 20 mol% of at least one selected from the group consisting of:
  • P 2 O 5 contains 35 to 65 mol% of diphosphorus pentoxide (P 2 O 5 ), 5 to 25 mol % of diboron trioxide (B 2 O 3 ), and Group 2 elements ( 5 to 55 mol% of oxides of alkaline earth metals (including magnesium), and sodium oxide (Na 2 O), potassium oxide (K 2 O), silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O
  • the P 2 O 5 contained in the phosphate glass may be 35 to 60 mol%, and may be 40 to 60 mol%.
  • B 2 O 3 may be from 7 to 25 mol%, and from 10 to 20 mol%.
  • the Group 2 element oxide may be 10 to 50 mol%, and may be 10 to 40 mol%.
  • At least one selected from Na 2 O, K 2 O, SiO 2 and Al 2 O 3 may be present in an amount of 0 to 20 mol %.
  • the metal oxide is contained, for example, in an amount of 0.2% by mass or more and 10% by mass or less with respect to 100% by mass of the metal-containing matrix (total of matrix material and metal oxide).
  • the content of metal oxide may be 0.4% by mass or more.
  • the content of metal oxides may be 5% by mass or less, and may be 3.5% by mass or less.
  • the metal-containing matrix contains 40-60 mol% of P 2 O 5 , 10-20 mol% of B 2 O 3 , 10-40 mol% of Group 2 element oxides, Na 2 O, A phosphate-based glass containing 0 to 20 mol% of at least one selected from the group consisting of K 2 O, SiO 2 and Al 2 O 3 , and a metal oxide contained therein.
  • the content of the material may be 0.2% by mass or more and 5% by mass or less based on 100% by mass of the metal-containing matrix. Processing agents containing this metal-containing matrix can exhibit particularly excellent functionality.
  • the concentration of the metal-containing matrix in the processing agent may be 0.01% by weight or more, 0.05% by weight or more, 0.10% by weight or more, 0. It may be .30% by mass or more, and it may be .50% by mass or more. From the viewpoint of suppressing discoloration due to oxidation of metal ions, the concentration of the metal-containing matrix may be 20% by mass or less, may be 10% by mass or less, may be 5% by mass or less, and may be 3.0% by mass. The amount may be less than or equal to 1.5% by mass. In one embodiment, the concentration of the metal-containing matrix is greater than or equal to 0.01% by weight and less than or equal to 20% by weight. Even when the concentration of the metal-containing matrix is as low as this, the processing agent according to the present disclosure exhibits excellent functionality.
  • the ratio of the mass W O of the organic salt in the processing agent to the mass W P of the metal-containing matrix may be from 1/10 to 15/7, and may be 3/14. ⁇ 1/1, and may be 3/10 to 3/4.
  • Processing agents of the present disclosure may include quaternary ammonium salts.
  • a quaternary ammonium salt is a salt of a quaternary ammonium ion and its counter anion.
  • Examples of the quaternary ammonium ion include tetramethylammonium ion, monoalkyltrimethylammonium ion, dialkyldimethylammonium ion, trialkylmonomethylammonium ion, tetraalkylammonium ion, alkyldimethylethylammonium ion, alkyldimethylbenzylammonium ion, and alkyldimethylammonium ion.
  • Examples include pyridinium ions. These may be used alone or in combination of two or more.
  • the quaternary ammonium ion may be a dialkyldimethylammonium ion.
  • the alkyl group contained in the quaternary ammonium ion is a hydrocarbon group having 3 or more carbon atoms, and may be a hydrocarbon group having 8 to 18 carbon atoms.
  • the alkyl group may contain two or more types of alkyl groups having 8 to 18 carbon atoms.
  • counter anion examples include chloride ion, bromide ion, fluoride ion, iodide ion, hydroxide ion, phosphate ion, nitrate ion, and sulfate ion, and other molecular ions (polyatomic ions). These may be used alone or in combination of two or more. Counter anions may be chloride and phosphate ions.
  • the concentration of the quaternary ammonium salt is not particularly limited, and may be appropriately set in consideration of the viscosity of the processing agent, the method of adhesion of the processing agent to the processed article, the use of the processed article, etc.
  • the concentration of the quaternary ammonium salt in the processing agent may be 0.05% by mass or more, 0.075% by mass or more, and 0.1% by mass or more. In terms of influence on the environment and the human body, the concentration may be 2% by mass or less, 1% by mass or less, and 0.5% by mass or less. In one embodiment, the concentration of the quaternary ammonium salt is 0.05% by mass or more and 2% by mass or less.
  • the source of the quaternary ammonium salt is not particularly limited.
  • the source of quaternary ammonium salts may be included, for example, in processing agents or processing agents that are commercially available for other uses (eg, dye fixation).
  • Quaternary ammonium salts have conventionally been used as antiviral agents, but may cause yellowing of processed articles due to heat. Further, when the article to be treated is a fiber, the article can be washed with a detergent containing an anionic surfactant. Then, the quaternary ammonium salt may be masked by the surfactant of the detergent, and the desired antiviral properties may not be exhibited.
  • quaternary ammonium salts may not be used, or the amount used may be reduced. Therefore, yellowing of the processed article due to heat is further suppressed, and functionality can be exhibited. However, as noted above, this disclosure does not exclude the use of quaternary ammonium salts.
  • aqueous solvent examples include pure water, distilled water, ion exchange water, industrial water, and tap water.
  • the processing agent may contain an organic solvent, if necessary.
  • the processing agent according to the present disclosure may further include a binder resin.
  • Durability can be further improved by fixing the organic salt and the metal compound to the treated article via the binder resin.
  • Adhesion refers to being more firmly attached than “adhesion.”
  • the binder resin is not particularly limited, and examples include acrylic resin, polyvinyl alcohol, ethylene/vinyl acetate resin, polyurethane resin, polyamide resin, polyester resin, silicone resin, and fluorine resin. Binder resins may be used singly or in combination of two or more.
  • the blending amount of the binder resin is also not particularly limited, and may be, for example, 0.1% by mass or more, or 1.0% by mass or more of the processing agent.
  • the blending amount of the binder resin may be 50% by mass or less of the processing agent, and may be 15% by mass or less. In one embodiment, the blending amount of the binder resin is 0.1% by mass or more and 50% by mass or less of the processing agent.
  • the binder resin may be included in any form. For example, a commercially available agent containing a binder resin may be blended into a mixture containing an organic salt, a metal compound, an aqueous solvent, and the like.
  • the processing agent according to the present disclosure may further include a crosslinking agent.
  • the durability can be further improved by attaching the organic salt and the metal compound to the article to be treated in a crosslinked state or by crosslinking the organic salt and the article to be treated by the crosslinking agent.
  • the crosslinking agent is not particularly limited, and examples thereof include amino resins, acid anhydrides, polyepoxy compounds, silane compounds, melamine resins, glyoxal resins, and isocyanate compounds having at least one of an isocyanate group and a blocked isocyanate group.
  • the crosslinking agents may be used alone or in combination of two or more. Among these, it may be an isocyanate compound.
  • the blending amount of the crosslinking agent is also not particularly limited, and may be, for example, 0.1% by mass or more, or 1.0% by mass or more of the processing agent.
  • the blending amount of the crosslinking agent may be 50% by mass or less of the processing agent, and may be 15% by mass or less. In one embodiment, the amount of the crosslinking agent is 0.1% by mass or more and 50% by mass or less of the processing agent.
  • the crosslinking agent may be included in any form. For example, a commercially available agent containing a crosslinking agent may be incorporated into a mixture containing an organic salt, a metal compound, an aqueous solvent, and the like.
  • an organic salt coordinated to a metal ion can be bonded to a processed article through a chemical bond. Therefore, even if the binder resin and/or crosslinking agent is not used or the amount used is reduced, the processing agent is difficult to fall off. However, as noted above, this disclosure does not exclude the use of binder resins and/or crosslinking agents.
  • the processing agent further contains other components as necessary.
  • Other components include, for example, a softener that improves the texture of the article to be treated, a dye fixing agent, an antistatic agent, and a water repellent.
  • the other components are preferably those that do not easily destabilize the metal ions derived from the metal compound or those that do not easily form complexes with the metal ions, and more preferably those that do not form complexes with the metal ions.
  • the processed article according to the present disclosure includes an article to be treated, and an organic salt and a metal compound attached to the article to be treated.
  • Organic salts and metal compounds are derived from the processing agents mentioned above.
  • This processed article exhibits high functionality. Furthermore, this processed article is less likely to lose its functionality.
  • the processed article can be durable, in other words wash-resistant, even when washed repeatedly.
  • the amount of organic salt and metal compound deposited is not particularly limited, and may be appropriately set depending on the form of the metal compound, the usage form of the processed article, etc.
  • the total adhesion amount (mass) of the organic salt and metal salt may be 0.01% or more of the mass of the product to be treated, and 0.025 % or more, and may be 0.04% or more. From the viewpoint of cost and the like, the total amount of organic salt and metal salt deposited may be 8% or less, 5% or less, or 2% or less of the mass of the article to be treated. A preferable total amount of the organic salt and metal salt deposited is 0.01% or more and 8% or less of the mass of the article to be treated.
  • the total amount (mass) of the organic salt and the metal-containing matrix may be 3.0% or more of the mass of the product to be treated, and 1. It may be .5% or more, and it may be .65% or more. From the viewpoint of cost etc., the total amount of the organic salt and the metal-containing matrix deposited may be 2.0% or less, 1.5% or less, 1.2% or less of the mass of the product to be treated. It may be. A preferable total amount of the organic salt and metal-containing matrix deposited is 1.0% or more and 2.0% or less of the mass of the article to be treated.
  • the organic salt and the metal compound may be attached (fixed) to the article to be treated via a binder resin.
  • the article to be treated may contain at least one selected from the group consisting of natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers.
  • the processing agent according to the present disclosure particularly tends to form chemical bonds with fibers.
  • the processing agent according to the present disclosure is suitable for antiviral processing of fibers.
  • Natural fibers are broadly classified into vegetable fibers and animal fibers. Examples of plant fibers include cotton, linen, and pulp. Examples of animal fibers include feathers, silk, and animal hair (wool, angora, cashmere, mohair, and camel). Examples of regenerated fibers include regenerated cellulose fibers such as rayon, polynosic, cupro, and solvent-spun cellulose fibers. Examples of semi-synthetic fibers include acetate and triacetate. Examples of synthetic fibers include polyester, polyolefin, polyamide, polyurethane, and acrylic.
  • the article to be treated may include fibers having hydroxyl groups on the surface.
  • the fibers having hydroxyl groups on the surface include cellulose fibers such as the above-mentioned vegetable fibers and regenerated cellulose fibers. Since the hydroxyl groups on the fiber surface and the basic functional groups of the basic acylamino acids can be covalently bonded, durability is further improved.
  • the article to be treated may be the above-mentioned fibers themselves, may be threads obtained by twisting at least one of the above-mentioned fibers, or may be a fibrous structure formed from the above-mentioned fibers or threads.
  • the article to be treated may be pretreated in various ways.
  • the yarn may be a monofilament yarn, a multifilament yarn, or a spun yarn.
  • the fineness and length of the fibers or threads are not particularly limited, and are appropriately set depending on the purpose and the like.
  • Fiber structures include woven fabrics, knitted fabrics, non-woven fabrics, granular cotton (also referred to as beaded cotton or granular cotton, etc.) in which fibers are aggregated in granular form, and lumps formed by entangled fibers (also referred to as batting).
  • Fiber structures can be used, for example, in bedding products such as duvet covers, bed sheets, and pillowcases; general clothing such as nightwear (pajamas), underwear, and cut shirts; stuffing for down, coats, futons, cushions, etc.; curtains and tablecloths.
  • Bathroom supplies such as hand towels, bath towels and foot mats; Industrial materials such as industrial filters and tents; Sanitary materials such as infection prevention masks, mask filters, gauze and bandages.
  • the processing agent according to the present disclosure is difficult to fall off from the processed product and has excellent durability. Therefore, the article to be treated may be used repeatedly or washed repeatedly.
  • the processed article according to the present disclosure is manufactured, for example, by a method including a step of bringing the above-mentioned processing agent into contact with the above-mentioned object to be processed.
  • the fiber or thread may be used to form a fibrous structure after the contact step.
  • the article to be processed may be a fibrous structure before being cut, or may be a fibrous structure after being cut and sewn.
  • the method of bringing the processing agent and the article to be processed into contact is not particularly limited.
  • the contact method include a dipping method and a spraying method (eg, a spray method and an inkjet method).
  • the dipping method is preferably used for fibers, threads, and fiber structures (which may be before or after sewing).
  • the mode of dipping may be continuous or batch processing.
  • the processing agent may penetrate into the interior of the fiber or thread by heating.
  • the spraying method is particularly preferably used for textile structures after sewing.
  • the contact method also includes a coating method.
  • the coating method is particularly preferably used for the fibrous structure before sewing (and even before cutting).
  • the coating method is not particularly limited, and includes, for example, a die coating method, a knife coating method, a roll coating method (for example, a gravure coating method, a flexo coating method), a rotary printing method, and a flat printing method.
  • a processing agent containing a binder resin may be used.
  • the processing agent is brought into contact with the article to be processed so that the total amount of organic salt and metal compound deposited falls within the above range.
  • the conditions of the contact step are not particularly limited, and are appropriately set according to the shape and type of the workpiece, the viscosity of the processing agent, etc.
  • Example 1 (1) Preparation of processing agent As shown in Table 1, a processing agent was prepared by dissolving an organic salt and a metal compound in an aqueous solvent.
  • Example 2-8 Comparative Example 1-3
  • Each component was mixed as shown in Table 1 to prepare each processing agent. Processed articles were produced in the same manner as in Example 1 using each processing agent. Impregnation conditions were adjusted so that the pickup rate was 100%.
  • Example 5 the product name CAE manufactured by Ajinomoto Co., Inc. was used as the N-coconut oil fatty acyl-L-arginine ethyl DL-pyrrolidone carboxylate.
  • Example 5 and Comparative Example 3 Super Amide, a product name manufactured by Service Tech Japan Co., Ltd., which is a mixture of N-coconut oil fatty acid acyl-L-arginine ethyl DL-pyrrolidone carboxylate and dialkyldimethylammonium salt, was used.
  • Art F was used.
  • the alkyl group of the dialkyldimethylammonium salt contains multiple types of alkyl groups having 8 to 18 carbon atoms.
  • the counteranion of the dialkyldimethylammonium salt is the chloride ion.
  • zinc sulfate was used as the metal salt.
  • Example 7 a commercially available silver-based phosphate glass was used as the metal-containing matrix 1.
  • the metal-containing matrix 1 has a composition containing 55 mol% of P2O5 , 15 mol% of B2O3 , 20 mol% of MgO , and 10 mol% of aluminum oxide ( Al2O3 ) .
  • Silver oxide (Ag 2 O) is contained in an amount of 2.0% by mass based on 100% by mass of the metal-containing matrix 1 .
  • Silver oxide (Ag 2 O) is contained in an amount of 2.9% by mass based on 100% by mass of the metal-containing matrix 2 .
  • Test condition Human influenza virus (H3N2)
  • Host cell Human influenza virus (H3N2)
  • MDCK cell canine kidney-derived cell
  • Washing solution SCDLP medium
  • Action conditions 25°C, 2 hours
  • Infectious titer measurement method Plaque measurement method
  • Mv lg(Va)-lg(Vb) Mv: Antiviral activity value lg (Va): Common logarithm of the virus infectivity of the standard cloth (PFU/standard cloth) immediately after inoculation lg (Vb): Virus infectivity of the specimen after standing for 2 hours (PFU/sample) common logarithm of
  • the antiviral activity value was evaluated as follows. Antiviral activity value ⁇ 3.0: Sufficient effect 3.0>Antiviral activity value ⁇ 2.0: Effective
  • Antibacterial activity value (Mb-Ma)-(Mc-Mo) Ma: The average value of the number of viable bacteria or the common logarithm of the ATP amount on the standard cloth immediately after inoculation with the test bacterial solution
  • Mb The average value of the number of viable bacteria or the common logarithm of the ATP amount after 18-hour incubation of the standard cloth
  • Mo Specimen The average value of the number of viable bacteria or the common logarithm of the amount of ATP immediately after inoculation of the test bacterial solution
  • Mc The average value of the number of viable bacteria or the common logarithm of the amount of ATP after culturing the specimen for 18 hours
  • Test methods using the detector tube method and gas chromatography method are as follows. (detector tube method) 3 L of odor component gas was injected into a 5 L Tedlar bag using a syringe to reach a specified initial concentration, and the bag was sealed. Two hours after the odor gas was injected into the Tedlar bag, the concentration of the odor gas present in the Tedlar bag was measured using a detection tube (blank test). This concentration was taken as the blank test concentration, and the average value was taken as Sb.
  • the above sample was placed in a 5L Tedlar bag. Subsequently, 3 L of odor component gas was injected into the above Tedlar bag using a syringe to reach a specified initial concentration, and the bag was sealed. As in the blank test, the concentration of the odor gas was measured using a detection tube 2 hours after the odor gas was injected into the Tedlar bag, and the average value of the measured concentrations was taken as Sn.
  • a raw odor solution for generating odor component gas was prepared.
  • An ammonia raw odor solution was prepared by diluting 7.2 ml of ammonia water (ammonia concentration: 28%) with 100 ml of distilled water.
  • the raw odor solution of acetic acid was prepared by diluting 0.5 ml of acetic acid reagent (acetic acid purity: 99.7%) with 100 ml of distilled water.
  • the original odor solution of isovaleric acid is prepared by diluting 1 ml of isovaleric acid reagent (isovaleric acid purity: 98%) with 100 ml of distilled water, and further diluting 0.5 ml of the isovaleric acid diluted solution with 100 ml of distilled water. did.
  • a magnetic stirrer bar was placed in a 500 ml Erlenmeyer flask, 5 ⁇ l of the original odor solution of each odor was injected with a micropipette, and the flask was tightly stoppered.
  • the magnetic stir bar in the Erlenmeyer flask was stirred with a magnetic stirrer, and after 2 hours, the residual gas in the Erlenmeyer flask was sampled with a syringe, and the concentration of the sampled residual gas was measured with a gas chromatograph analyzer. The average value of the peak areas of these measured values was taken as the numerical value Sb of the blank test.
  • the operation was carried out in the same manner as the blank test except that the above sample was placed in a 500 ml Erlenmeyer flask, and after 2 hours, the residual gas in the container was sampled in the same manner as in the blank test.
  • the concentration of the sampled residual gas was measured using a gas chromatograph analyzer, and the average value of the peak areas of the measured values was taken as the numerical value Sn of the test using the sample.
  • the processed articles (L0) using the processing agents of Examples 1-8 all had antiviral activity values of 2.0 or more and had antiviral properties.
  • the processed articles (L10) using the processing agents of Examples 1-4 and 6-8 also had antiviral activity values of 2.0 or more, and had antiviral durability. From this result, it is expected that the processed article (L10) using the processing agent of Example 5 also has high antiviral durability.
  • the processed articles (L0) using the processing agents of Examples 1-2 and 6 both have antibacterial properties against Staphylococcus aureus of 3.0 or higher, and antibacterial properties against Klebsiella pneumoniae of 3.0 or higher, making them excellent. It had antibacterial properties. Considering the mechanism by which the above functionality is exhibited, it is expected that the processed articles (L0) using the processing agents of Examples 3-5 and 7-8 also have high antibacterial properties. Furthermore, as mentioned above, considering that the processed article (L10) has high antiviral durability, it is expected that the processed article (L10) also has high antibacterial durability. be done.
  • the processed articles (L0) using the processing agents of Examples 1-2 and 6 had excellent deodorizing properties against ammonia, acetic acid, and isovaleric acid. Furthermore, the processed articles (L10) using the processing agents of Examples 1-2 and 6 had excellent deodorizing durability against ammonia and acetic acid. Considering the mechanism for exhibiting the functionality described above, it is expected that the processed articles (L10) using the processing agents of Examples 1-2 and 6 will also have excellent durability in deodorizing properties against isovaleric acid. Ru. Similarly, processed articles (L0) and processed articles (L10) using the processing agents of Examples 3-5 and 7-8 also have high deodorizing properties and durability against any gas. It is expected that
  • the processed article of Comparative Example 1 (L0) using the amino acid metal salt did not exhibit antiviral properties. This is considered to be because the metal salt of pyrrolidone carboxylic acid could not covalently bond to the fiber and was not fixed on the fiber.
  • the processed article of Comparative Example 1 (L0) is also not expected to exhibit antibacterial and deodorizing properties.
  • the processed articles of Comparative Examples 2 and 3 (L0) in which no metal compound was used also did not exhibit antiviral activity. This is thought to be due to the fact that although the organic salt was covalently bonded to the fiber, it did not contain metal ions and was unable to sufficiently inactivate the virus.
  • the processed articles (L0) of Comparative Examples 2 and 3 are also not expected to exhibit antibacterial and deodorizing properties.
  • the Ag content per 1 g of processed article (LO) was 6.8 ⁇ g/g
  • the Ag content per 1 g of processed article (L10) was 3.7 ⁇ g/g. From this, it was confirmed that the processed article according to the present disclosure retained a sufficient amount of Ag even after washing. Note that no Ag ions were detected in the unprocessed product.
  • the present disclosure includes the following aspects.
  • (Aspect 1) an organic salt of a first amino acid and a second amino acid different from the first amino acid; metal compounds, and an aqueous solvent
  • the first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof
  • the organic salt is a processing agent formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  • (Aspect 2) The processing agent according to aspect 1, wherein the amino acid forming the first amino acids has an aliphatic hydrocarbon group having 4 to 8 carbon atoms.
  • the metal compound is ions of at least one metal selected from the group consisting of iron, cobalt, nickel, copper, zinc, platinum, silver and gold; A metal salt formed from at least one anion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion.
  • the processing agent according to any one of aspects 1 to 9.
  • the metal salt includes at least one of copper sulfate, zinc sulfate, copper acetate, and silver nitrate.
  • the metal compound is at least one metal oxide selected from the group consisting of silver oxide, zinc oxide, and copper oxide, The processing agent according to any one of aspects 1 to 9, wherein the metal oxide is contained in at least one of a phosphate glass and an inorganic phosphate compound.
  • the metal oxide is contained in an amount of 0.2% by mass or more and 10% by mass or less with respect to a total of 100% by mass of the metal oxide and at least one of the phosphate glass and the inorganic phosphate compound. , the processing agent of aspect 13.
  • the phosphate glass is 35 to 65 mol% of diphosphorus pentoxide, 5 to 25 mol% diboron trioxide, 5 to 55 mol% of an oxide of a Group 2 element, and
  • the ratio of the mass W O of the organic salt to the mass W P of at least one of the phosphate glass containing the metal oxide and the inorganic phosphate compound (W O /W P ) is 1/10.
  • the product to be processed comprising an organic salt of a first amino acid and a second amino acid different from the first amino acid, which adheres to the article to be treated, and a metal compound;
  • the first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof,
  • the organic salt is a processed article formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  • the processed article according to aspect 17, wherein the article to be treated includes at least one selected from the group consisting of natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers.
  • the processing agent is an organic salt of a first amino acid and a second amino acid different from the first amino acid; metal compounds, and an aqueous solvent,
  • the first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain
  • the second amino acids are at least one of ⁇ -amino acids and derivatives thereof
  • the organic salt is formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  • the processing agent of the present invention has excellent antiviral, antibacterial, and deodorizing properties, and is therefore suitable for various uses.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided is a processing agent having excellent antiviral properties, antimicrobial properties, and odor elimination properties. The processing agent comprises: organic salts of first amino acids and second amino acids different from the first amino acids; a metal compound; and an aqueous solvent. The first amino acids are at least one of a fatty acid acyl amino acid having a basic functional group at a side chain thereof and a derivative thereof, the second amino acids are at least one of an α-amino acid and a derivative thereof, and the organic salts are formed of cations derived from the basic functional group of the first amino acids and anions derived from an anionic group of the second amino acids.

Description

加工剤、加工物品ならびに加工物品の製造方法Processing agents, processed articles, and methods for producing processed articles
 本発明は、加工剤、加工物品ならびに加工物品の製造方法に関する。 The present invention relates to a processing agent, a processed article, and a method for producing a processed article.
 近年の衛生に関する意識の高まりにより、身の回りにある種々の物品に抗菌あるいは抗ウイルス加工が施されている。これに伴い、様々な抗菌および抗ウイルス加工剤が提案されている。例えば、特許文献1には、アミノ酸銀、アミノ酸亜鉛および銅イオンを含む繊維用抗菌・抗ウイルス性組成物が記載されている。 With the recent rise in awareness regarding hygiene, various everyday items are being treated with antibacterial or antiviral treatments. Along with this, various antibacterial and antiviral processing agents have been proposed. For example, Patent Document 1 describes an antibacterial/antiviral composition for textiles containing a silver amino acid, a zinc amino acid, and a copper ion.
特開2017-133137号公報Japanese Patent Application Publication No. 2017-133137
 しかしながら、特許文献1の繊維用抗菌・抗ウイルス性組成物は、高濃度で使用する必要があるため、高コストであり、また生産性に劣る。さらに、特許文献1の繊維用抗菌・抗ウイルス性組成物は、凝集により繊維製品に物理的に結合するため、繊維製品に対する外的な負荷(他の加工処理、洗濯など)によって脱落し易い。 However, the antibacterial/antiviral composition for textiles of Patent Document 1 needs to be used at a high concentration, resulting in high cost and poor productivity. Furthermore, since the antibacterial/antiviral composition for textiles of Patent Document 1 is physically bonded to textile products through aggregation, it is likely to fall off due to external loads on textile products (other processing, washing, etc.).
 本発明の目的は、優れた抗ウイルス性、抗菌性および消臭性を有する加工剤を提供することである。本発明の目的は、また、上記加工剤が付着した加工物品およびその製造方法を提供することである。 An object of the present invention is to provide a processing agent that has excellent antiviral, antibacterial, and deodorizing properties. Another object of the present invention is to provide a processed article to which the above-mentioned processing agent is attached, and a method for manufacturing the same.
 本発明は、
 第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、
 金属化合物、および、
 水性溶媒、を含み、
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
 前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
 前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、を含む加工剤に関する。
The present invention
an organic salt of a first amino acid and a second amino acid different from the first amino acid;
metal compounds, and
an aqueous solvent,
The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
The second amino acids are at least one of α-amino acids and derivatives thereof,
The organic salt relates to a processing agent formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
 本発明は、また、
 被処理品と、
 前記被処理品に付着する、第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、および、金属化合物、を備え、
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
 前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
 前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工物品に関する。
The present invention also includes:
The product to be processed,
comprising an organic salt of a first amino acid and a second amino acid different from the first amino acid, which adheres to the article to be treated, and a metal compound;
The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
The second amino acids are at least one of α-amino acids and derivatives thereof,
The organic salt relates to a processed article formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
 本発明は、さらに、
  加工剤と被処理品とを接触させる工程を備え、
 前記加工剤は、
 第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、
 金属化合物、および、
 水性溶媒、を含み、
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
 前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
 前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工物品の製造方法に関する。
The present invention further includes:
Equipped with a process of bringing the processing agent into contact with the workpiece,
The processing agent is
an organic salt of a first amino acid and a second amino acid different from the first amino acid;
metal compounds, and
an aqueous solvent,
The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
The second amino acids are at least one of α-amino acids and derivatives thereof,
The organic salt relates to a method for producing a processed article, in which the organic salt is formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
 本発明によれば、優れた抗ウイルス性、抗菌性および消臭性を有する加工剤が提供される。本発明によれば、さらに、上記加工剤が付着した加工物品およびその製造方法が提供される。 According to the present invention, a processing agent having excellent antiviral, antibacterial, and deodorizing properties is provided. According to the present invention, there is further provided a processed article to which the above-mentioned processing agent is attached, and a method for manufacturing the same.
[加工剤]
 本開示に係る加工剤は、カチオンおよびアニオンともにアミノ酸類である有機塩と、金属イオンをカチオンとして有する金属化合物と、水性溶媒とを含む。
 有機塩は、2種のアミノ酸類により形成される。第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体(以下、「塩基性アシルアミノ酸類」と総称する。)の少なくとも一方である。第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方(以下、「α-アミノ酸類」と総称する。)である。
[Processing agent]
The processing agent according to the present disclosure includes an organic salt whose cation and anion are both amino acids, a metal compound having a metal ion as a cation, and an aqueous solvent.
Organic salts are formed by two types of amino acids. The first amino acids are at least one of fatty acylamino acids and derivatives thereof (hereinafter collectively referred to as "basic acylamino acids") having a basic functional group in the side chain. The second amino acids are at least one of α-amino acids and derivatives thereof (hereinafter collectively referred to as “α-amino acids”).
 特許文献1のように、アミノ酸の金属塩と他の金属塩とを使用する場合に比べ、本開示に係る加工剤では、金属化合物と共に、2種のアミノ酸により形成される有機塩を使用するため、特に、抗ウイルス性、抗菌性および消臭性が向上する。本開示に係る加工剤によれば、さらに、他の機能の向上も期待できる。他の機能としては、例えば、抗アレルギー性、pHコントロール性が挙げられる。以下、少なくとも抗ウイルス性、抗菌性および消臭性を含む性能を、「機能性」と総称する場合がある。 Compared to the case where a metal salt of an amino acid and another metal salt are used as in Patent Document 1, the processing agent according to the present disclosure uses an organic salt formed by two types of amino acids together with a metal compound. In particular, antiviral properties, antibacterial properties, and deodorizing properties are improved. According to the processing agent according to the present disclosure, further improvements in other functions can be expected. Other functions include, for example, antiallergic properties and pH control properties. Hereinafter, performance including at least antiviral properties, antibacterial properties, and deodorizing properties may be collectively referred to as "functionality".
 抗ウイルス性は、JIS L 1922:2016「繊維製品の抗ウイルス性試験方法」あるいはISO18184(Textiles - Determination of antiviral activity of textile products)に基づいて算出される、抗ウイルス活性値により評価できる。抗ウイルス活性値が2.0以上であると、加工剤は、抗ウイルス性を有し、3.0以上であると優れた抗ウイルス性を有しているといえる。 Antiviral properties can be evaluated by antiviral activity values calculated based on JIS L 1922:2016 "Testing method for antiviral properties of textile products" or ISO 18184 (Textiles - Determination of antiviral activity of textile products). When the antiviral activity value is 2.0 or more, it can be said that the processing agent has antiviral properties, and when it is 3.0 or more, it can be said that it has excellent antiviral properties.
 本開示に係る加工剤は、特に、「抗ウイルス剤」として有用である。 The processing agent according to the present disclosure is particularly useful as an "antiviral agent."
 抗菌性の評価は、グラム陽性菌の一種である黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)および/またはグラム陰性菌の一種である肺炎桿菌(Klebsiella pneumoniae NBRC 13277)を用いた抗菌試験により評価できる。黄色ブドウ球菌を用いた抗菌試験は、JIS L 1902:2015「繊維製品の抗菌性試験方法及び抗菌効果」を準用して、菌液吸収法により実施される。 Antibacterial properties can be evaluated by an antibacterial test using Staphylococcus aureus NBRC 12732, a type of Gram-positive bacteria, and/or Klebsiella pneumoniae NBRC 13277, a type of Gram-negative bacteria. The antibacterial test using Staphylococcus aureus is carried out by the bacterial liquid absorption method according to JIS L 1902:2015 "Antibacterial test method and antibacterial effect of textile products".
 黄色ブドウ球菌に対する抗菌性は、以下の式で示される抗菌活性値で評価する。抗菌活性値が2.0以上であると、加工剤は、黄色ブドウ球菌に対する抗菌性を有し、3.0以上であると黄色ブドウ球菌に対して優れた抗菌性を有しているといえる。 The antibacterial property against Staphylococcus aureus is evaluated by the antibacterial activity value shown by the following formula. When the antibacterial activity value is 2.0 or more, it can be said that the processing agent has antibacterial properties against Staphylococcus aureus, and when it is 3.0 or more, it can be said that it has excellent antibacterial properties against Staphylococcus aureus. .
 肺炎桿菌に対する抗菌性もまた抗菌活性値で評価する。抗菌活性値が2.0以上であると、加工剤は、肺炎桿菌に対する抗菌性を有し、3.0以上であると、肺炎桿菌に対して優れた抗菌性を有しているといえる。 The antibacterial property against Klebsiella pneumoniae is also evaluated by the antibacterial activity value. When the antibacterial activity value is 2.0 or more, it can be said that the processing agent has antibacterial properties against Klebsiella pneumoniae, and when it is 3.0 or more, it can be said that it has excellent antibacterial properties against Klebsiella pneumoniae.
 黄色ブドウ球菌および肺炎桿菌の少なくとも一方に対する抗菌性に優れる場合、加工剤は、優れた抗菌性を有しているといえる。黄色ブドウ球菌に対して抗菌性が認められる場合、加工剤は、グラム陽性菌に対しても抗菌性を有しているといえる。肺炎桿菌に対して抗菌性が認められる場合、加工剤は、さらに大腸菌、緑膿菌、サルモネラ菌、シュードモナス菌、モラクセラ菌等の他のグラム陰性菌に対して抗菌性を有しているといえる。 A processing agent can be said to have excellent antibacterial properties if it has excellent antibacterial properties against at least one of Staphylococcus aureus and Klebsiella pneumoniae. If antibacterial properties are observed against Staphylococcus aureus, it can be said that the processing agent also has antibacterial properties against Gram-positive bacteria. If antibacterial properties are observed against Klebsiella pneumoniae, it can be said that the processing agent further has antibacterial properties against other Gram-negative bacteria such as Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Pseudomonas bacteria, and Moraxella bacteria.
 抗菌活性値=(Mb-Ma)-(Mc-Mo)
  Ma:標準布の試験菌液接種直後の生菌数またはATP量の常用対数値の平均値
  Mb:標準布の18時間培養後の生菌数またはATP量の常用対数値の平均値
  Mo:検体の試験菌液接種直後の生菌数またはATP量の常用対数値の平均値
  Mc:検体の18時間培養後の生菌数またはATP量の常用対数値の平均値
Antibacterial activity value = (Mb-Ma)-(Mc-Mo)
Ma: The average value of the number of viable bacteria or the common logarithm of the ATP amount on the standard cloth immediately after inoculation with the test bacterial solution Mb: The average value of the number of viable bacteria or the common logarithm of the ATP amount after 18-hour incubation of the standard cloth Mo: Specimen The average value of the number of viable bacteria or the common logarithm of the amount of ATP immediately after inoculation of the test bacterial solution Mc: The average value of the number of viable bacteria or the common logarithm of the amount of ATP after culturing the specimen for 18 hours
 本開示に係る加工剤は、特に、「抗菌剤」として有用である。 The processing agent according to the present disclosure is particularly useful as an "antibacterial agent."
 消臭性は、SEKマーク繊維製品認証基準(制定者:一般社団法人繊維評価技術協議会 製品認証部、改訂日:2022年4月1日)に記載の「21.消臭性試験(検知管法、ガスクロマトグラフ法)」を準拠した方法により評価できる。 Deodorizing properties are measured using the "21. Deodorizing properties test (detection tube It can be evaluated using a method that complies with the ``Act, Gas Chromatography Method''.
 試験条件は、以下の通りである。
(各臭気成分ガスの初発濃度)
  アンモニア 100ppm
  酢酸 30ppm
  イソ吉草酸 38ppm
The test conditions are as follows.
(Initial concentration of each odor component gas)
Ammonia 100ppm
Acetic acid 30ppm
Isovaleric acid 38ppm
 検知管法で使用する試料の大きさは、100cm2(縦10cm×横10cm)とする。ガスクロマトグラフ法で使用する試料の大きさは、50cm2(縦5cm×横10cm)とする。試料を密閉容器に入れた後、初発濃度に調整した臭気成分ガスを封入する。臭気成分ガスを封入してから2時間放置した後、臭気成分ガスの濃度を測定する。 The size of the sample used in the detector tube method is 100 cm 2 (10 cm long x 10 cm wide). The size of the sample used in the gas chromatography method is 50 cm 2 (5 cm long x 10 cm wide). After placing the sample in a sealed container, odor component gas adjusted to the initial concentration is sealed. After sealing the odor component gas and leaving it for 2 hours, the concentration of the odor component gas is measured.
 検知管法およびガスクロマトグラフ法による試験方法は、具体的には、以下の通りである。 The specific testing methods using the detector tube method and gas chromatography method are as follows.
 (検知管法)
 密封された5Lのテドラー(登録商標、以下同様)バックを準備し、シリンジを用いて規定の初発濃度になるように臭気成分ガス3Lを上記テドラーバックに注入する。臭気成分ガスをテドラーバックに注入してから2時間後に、テドラーバック中に存在する臭気成分ガスの濃度を検知管により測定する(空試験)。この濃度を、空試験濃度とし、平均値をSbとする。
(detector tube method)
A sealed 5 L Tedlar (registered trademark, hereinafter the same) bag is prepared, and 3 L of odor component gas is injected into the Tedlar bag using a syringe to reach a specified initial concentration. Two hours after injecting the odor component gas into the Tedlar bag, the concentration of the odor component gas present in the Tedlar bag is measured using a detection tube (blank test). This concentration is taken as the blank test concentration, and the average value is taken as Sb.
 別途、試料片を100cm採取し、5Lのテドラーバックに入れる。次に、シリンジを用いて規定の初発濃度になるように、臭気成分ガス3Lを上記テドラーバッグに注入する。空試験と同様、臭気成分ガスをテドラーバックに注入してから2時間後の臭気成分ガスの濃度を検知管により測定し、測定した濃度の平均値をSnとする。 Separately, take a 100cm2 sample piece and place it in a 5L Tedlar bag. Next, 3 L of odor component gas is injected into the Tedlar bag using a syringe to reach a specified initial concentration. As in the blank test, the concentration of the odor component gas was measured using a detection tube 2 hours after the odor component gas was injected into the Tedlar bag, and the average value of the measured concentrations was taken as Sn.
 (ガスクロマトグラフ法(GC法))
 最初に臭気成分ガスを発生させる原臭溶液の調製を行う。アンモニアの原臭溶液は、アンモニア水(アンモニア濃度:28%)7.2mlを蒸留水100mlにて希釈して調製される。酢酸の原臭溶液は、酢酸試薬(酢酸純度:99.7%)0.5mlを蒸留水100mlで希釈して調製される。イソ吉草酸の原臭溶液は、イソ吉草酸試薬(イソ吉草酸純度:98%)1mlを蒸留水100mlで希釈し、そのイソ吉草酸希釈液0.5mlを蒸留水100mlでさらに希釈して調製される。
(Gas chromatography method (GC method))
First, a raw odor solution for generating odor component gas is prepared. The ammonia raw odor solution is prepared by diluting 7.2 ml of ammonia water (ammonia concentration: 28%) with 100 ml of distilled water. The raw odor solution of acetic acid is prepared by diluting 0.5 ml of acetic acid reagent (acetic acid purity: 99.7%) with 100 ml of distilled water. The original odor solution of isovaleric acid is prepared by diluting 1 ml of isovaleric acid reagent (isovaleric acid purity: 98%) with 100 ml of distilled water, and further diluting 0.5 ml of the isovaleric acid diluted solution with 100 ml of distilled water. be done.
 次に、各臭気について空試験を行う。500mlの三角フラスコにマグネチィックスターラーバーを入れ、各臭気の原臭溶液5μlをマイクロピペットにて注入し、密栓する。三角フラスコ中のマグネチィックスターラーバーをマグネットスターラーで攪拌し、2時間後、三角フラスコ内の残存ガスをシリンジによりサンプリングし、サンプリングした残存ガスの濃度をガスクロマトグラフ分析装置で測定する。この測定値のピーク面積の平均値を空試験の数値Sbとする。 Next, conduct a blank test for each odor. A magnetic stirrer bar is placed in a 500 ml Erlenmeyer flask, 5 μl of the original odor solution of each odor is injected with a micropipette, and the flask is tightly stoppered. The magnetic stir bar in the Erlenmeyer flask is stirred with a magnetic stirrer, and after 2 hours, the residual gas in the Erlenmeyer flask is sampled with a syringe, and the concentration of the sampled residual gas is measured with a gas chromatograph analyzer. The average value of the peak areas of these measured values is defined as the numerical value Sb of the blank test.
 次に、試料50cmを500mlの三角フラスコへ入れること以外は、空試験同様に操作して、2時間後、容器内の残存ガスを、空試験と同じ操作でサンプリングする。サンプリングした残存ガスの濃度をガスクロマトグラフ分析装置で測定し、この測定値のピーク面積の平均値を、試料を用いた試験の数値Snとする。 Next, the procedure is carried out in the same manner as the blank test except that 50 cm 2 of the sample is placed in a 500 ml Erlenmeyer flask, and after 2 hours, the remaining gas in the container is sampled in the same manner as in the blank test. The concentration of the sampled residual gas is measured using a gas chromatograph analyzer, and the average value of the peak areas of the measured values is taken as the numerical value Sn of the test using the sample.
 (臭気減少率)
 検知管法またはガスクロマトグラフ法にて測定した、空試験におけるガス濃度の平均値(Sb)、および試料を用いた場合におけるガス濃度の平均値(Sn)から、下記式により臭気成分ガスの減少率を求める。
  臭気減少率(%)=[(Sb-Sn)/Sb]×100
   Sb:空試験におけるガス濃度の平均値
   Sn:試料を用いた試験におけるガス測定値の平均値
(Odor reduction rate)
From the average value of gas concentration in a blank test (Sb) and the average value of gas concentration in the case of using a sample (Sn), measured by the detector tube method or gas chromatography method, the reduction rate of odor component gas is determined by the following formula. seek.
Odor reduction rate (%) = [(Sb-Sn)/Sb] x 100
Sb: Average value of gas concentration in blank test Sn: Average value of gas measurement values in test using sample
 アンモニア濃度の減少率が70%以上、酢酸濃度の減少率が70%以上、および、イソ吉草酸濃度の減少率が85%以上の少なくとも1つを満たす場合、加工剤は、優れた消臭性を有しているといえる。 If the reduction rate of ammonia concentration is 70% or more, the reduction rate of acetic acid concentration is 70% or more, and the reduction rate of isovaleric acid concentration is 85% or more, the processing agent has excellent deodorizing properties. It can be said that it has.
 本開示に係る加工剤は、特に、「消臭剤」として有用である。 The processing agent according to the present disclosure is particularly useful as a "deodorant".
 加えて、本開示に係る加工剤によれば、これらの優れた機能性は、低下し難い。機能性の低下は、例えば、被処理品から加工剤(より具体的には、金属イオン)が脱落することによって生じる。以下、機能性の低下を抑制する性能を、耐久性と表現する。 In addition, according to the processing agent according to the present disclosure, these excellent functionalities are unlikely to deteriorate. The decrease in functionality occurs, for example, when processing agents (more specifically, metal ions) fall off from the processed product. Hereinafter, the ability to suppress a decline in functionality will be expressed as durability.
 耐久性は、JIS L 1930:2019 繊維製品の家庭洗濯試験方法 C4M法に準じて10回洗濯した後の試料を用いて、上記の各試験を行うことにより評価できる。 Durability can be evaluated by conducting each of the above tests using a sample that has been washed 10 times according to the JIS L 1930:2019 home washing test method for textile products (C4M method).
 本開示に係る加工剤により、機能性、さらにはこの耐久性が向上する理由は明らかではないが、以下のように考えられる。
 加工剤中において、塩基性アシルアミノ酸類は、アミノ基およびカルボキシ基により、金属化合物由来の金属イオンと錯体を形成することができる。さらに、塩基性アシルアミノ酸類の塩基性官能基は、加工剤中において正電荷を帯びており、繊維に代表される被処理品と化学的に結合し得る。例えば、上記の塩基性官能基とセルロース繊維の水酸基とは共有結合し得る。
The reason why the processing agent according to the present disclosure improves functionality and furthermore durability is not clear, but it is thought to be as follows.
In the processing agent, the basic acylamino acids can form a complex with a metal ion derived from a metal compound through an amino group and a carboxy group. Furthermore, the basic functional group of the basic acylamino acids is positively charged in the processing agent and can chemically bond to the article to be processed, typified by fibers. For example, the above basic functional group and the hydroxyl group of the cellulose fiber can be covalently bonded.
 α-アミノ酸類もまた、アミノ基およびカルボキシ基により、金属化合物由来の金属イオンと錯体を形成することができる。 α-Amino acids can also form complexes with metal ions derived from metal compounds through amino groups and carboxy groups.
 本開示で用いられる有機塩は、加工剤中において、塩基性アシルアミノ酸類のカチオンと、α-アミノ酸類のアニオンとに解離する。一方で、解離とは逆の反応も生じて、平衡状態に達すると考えられる。よって、少なくとも一部の有機塩は、イオン対として挙動し得る。 The organic salt used in the present disclosure dissociates into a cation of basic acylamino acids and an anion of α-amino acids in the processing agent. On the other hand, it is thought that a reaction opposite to dissociation also occurs and an equilibrium state is reached. Thus, at least some organic salts may behave as ion pairs.
 そのため、有機塩のカチオンは、アニオンとイオン対を形成した状態で、被処理品と化学的に結合することができる。加えて、有機塩における2種のアミノ酸は、それぞれ別の金属イオンを保持できる。さらに、これら金属イオンは上記のアミノ酸とそれぞれ錯体を形成するため、脱落し難い。これらのことから、機能性が向上し、これらの耐久性が向上すると考えられる。 Therefore, the cation of the organic salt can chemically bond to the product to be treated while forming an ion pair with the anion. In addition, the two amino acids in the organic salt can each carry a different metal ion. Furthermore, since these metal ions form complexes with the above-mentioned amino acids, they are difficult to fall off. For these reasons, it is thought that functionality is improved and their durability is improved.
 さらに、2種のアミノ酸類からなる有機塩は、環境や人体に対して高い安全性を有することが期待できる。2種のアミノ酸類からなる有機塩は、また、加工物品の熱による黄変の原因になり難い。 Furthermore, organic salts consisting of two types of amino acids can be expected to have high safety for the environment and the human body. Organic salts consisting of two types of amino acids are also less likely to cause yellowing of processed products due to heat.
 加工剤は、混和状態であり、水溶液であることがより好ましい。混和状態とは、水性溶媒中に各成分が存在していることを意味している。このとき、各成分は、水性溶媒に水和していてもよいし、水性溶媒中に分散していてもよい。 The processing agent is in a mixed state and is more preferably in an aqueous solution. A miscible state means that each component is present in an aqueous solvent. At this time, each component may be hydrated in an aqueous solvent or may be dispersed in an aqueous solvent.
(有機塩)
 有機塩は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体(塩基性アシルアミノ酸類)の少なくとも一方と、α-アミノ酸類との塩である。
(organic salt)
The organic salt is a salt of α-amino acids and at least one of a fatty acylamino acid and its derivatives (basic acylamino acids) having a basic functional group in its side chain.
《α-アミノ酸類》
 α-アミノ酸類は、塩基性アシルアミノ酸類との塩として、加工剤に配合されている。α-アミノ酸類は、加工剤中において、アニオンに解離し得る。
《α-Amino acids》
α-Amino acids are blended into processing agents as salts with basic acylamino acids. α-Amino acids can dissociate into anions in processing agents.
 α-アミノ酸類は、アミノ基が、カルボキシ基が結合している炭素(α-炭素)に結合した構造を有し、一般に、RCH(NH)COOH(Rは、炭化水素基を含む基)で表される。 α-Amino acids have a structure in which an amino group is bonded to a carbon (α-carbon) to which a carboxy group is bonded, and generally RCH(NH 2 )COOH (R is a group containing a hydrocarbon group) It is expressed as
 α-アミノ酸類は、アニオン性基由来のアニオンに解離し得る。アニオン性基としては、例えば、例えば、カルボキシ基、水酸基、リン酸基、硫酸基、スルホン酸基、ハロゲノ基などが挙げられる。加工剤中においてアニオンに解離し得る基は、α-炭素に結合するカルボキシ基であってよい。アニオン性基によって、α-アミノ酸は、塩基性アシルアミノ酸と塩を形成することができ、また、被処理品と共有結合し得る。 α-Amino acids can be dissociated into anions derived from anionic groups. Examples of the anionic group include a carboxy group, a hydroxyl group, a phosphoric acid group, a sulfuric acid group, a sulfonic acid group, and a halogeno group. The group capable of dissociating into an anion in the processing agent may be a carboxy group bonded to the α-carbon. Due to the anionic group, α-amino acids can form salts with basic acylamino acids and can covalently bond with the article to be treated.
 α-アミノ酸類は、水性溶媒への溶解性の観点から、第二級アミノ基を有していてよい。このようなα-アミノ酸類としては、例えば、トリプトファン、ヒスチジン、プロリンおよびピロリドンカルボン酸が挙げられる。なかでも、α-アミノ基が第二級アミノ基であってよい。このようなα-アミノ酸類としては、例えば、プロリンおよびピロリドンカルボン酸が挙げられる。 The α-amino acids may have a secondary amino group from the viewpoint of solubility in aqueous solvents. Such α-amino acids include, for example, tryptophan, histidine, proline and pyrrolidone carboxylic acid. Among these, the α-amino group may be a secondary amino group. Such α-amino acids include, for example, proline and pyrrolidone carboxylic acid.
 α-アミノ酸類は、水性溶媒への溶解性の観点から、窒素含有複素環を有していてよい。このようなα-アミノ酸類としては、例えば、上記のトリプトファン、ヒスチジン、プロリンおよびピロリドンカルボン酸が挙げられる。 The α-amino acids may have a nitrogen-containing heterocycle from the viewpoint of solubility in aqueous solvents. Such α-amino acids include, for example, the above-mentioned tryptophan, histidine, proline, and pyrrolidone carboxylic acid.
 α-アミノ酸類は、ピロリドンカルボン酸であってよい。ピロリドンカルボン酸は、下記式:
Figure JPOXMLDOC01-appb-C000001
で表される。
The α-amino acids may be pyrrolidone carboxylic acid. Pyrrolidone carboxylic acid has the following formula:
Figure JPOXMLDOC01-appb-C000001
It is expressed as
 ピロリドンカルボン酸の炭素原子に結合する水素原子は、置換されていてよい。置換基としては、例えば、アルキル基、アシル基、水酸基、アミノ基、アルキルアミノ基、ニトロ基、スルフォニル基が挙げられる。 The hydrogen atom bonded to the carbon atom of pyrrolidone carboxylic acid may be substituted. Examples of the substituent include an alkyl group, an acyl group, a hydroxyl group, an amino group, an alkylamino group, a nitro group, and a sulfonyl group.
《塩基性アシルアミノ酸類》
 塩基性アシルアミノ酸類は、α-アミノ酸類との塩として、加工剤に配合されている。塩基性アシルアミノ酸類は、通常アミノ酸が有するアミノ基に加え、側鎖に塩基性官能基を有している。塩基性アシルアミノ酸類は、加工剤中においてカチオンに解離し得る。塩基性アシルアミノ酸類の塩基性官能基がカチオンを形成する。
《Basic acylamino acids》
Basic acylamino acids are blended into processing agents as salts with α-amino acids. Basic acylamino acids usually have a basic functional group in their side chain in addition to the amino group that amino acids have. Basic acylamino acids can dissociate into cations in processing agents. The basic functional groups of basic acylamino acids form cations.
 塩基性アシルアミノ酸類は、塩基性アミノ酸と、塩基性アミノ酸の塩基性官能基以外のアミノ基に導入された脂肪酸アシル基とにより形成される。塩基性アミノ酸は、アミノ基およびカルボキシ基とともに、側鎖に塩基性官能基を有する。以下、アシル化されているアミノ酸を、「アシルアミノ酸」と称する。 Basic acylamino acids are formed by a basic amino acid and a fatty acid acyl group introduced into an amino group other than the basic functional group of the basic amino acid. A basic amino acid has a basic functional group in its side chain along with an amino group and a carboxy group. Hereinafter, acylated amino acids are referred to as "acyl amino acids."
 塩基性官能基は、典型的には窒素を含有する。塩基性官能基としては、例えば、グアニジノ基(-NH-C(=NH)-NH)、アミノ基(-NR、Rは、例えば、水素または炭素数1~4の炭化水素基)、イミダゾール基(-C)、シアノ基(-C≡N)が挙げられる。塩基性官能基は、グアニジノ基であってよい。 Basic functional groups typically contain nitrogen. Examples of the basic functional group include a guanidino group (-NH-C(=NH)-NH 2 ), an amino group (-NR 2 , R is, for example, hydrogen or a hydrocarbon group having 1 to 4 carbon atoms), Examples include an imidazole group (-C 3 H 4 N 2 ) and a cyano group (-C≡N). The basic functional group may be a guanidino group.
 塩基性アミノ酸は、複素環、芳香環、非芳香環および脂肪族炭化水素基よりなる群から選択される1つを有していてよい。塩基性アミノ酸は、脂肪族炭化水素基を有していてよく、炭素数4~8の脂肪族炭化水素基を有していてよい。言い換えれば、塩基性アミノ酸は、側鎖に塩基性官能基を有する炭素数4~8の脂肪族アミノ酸であってよい。塩基性アミノ酸は、ピロリドンカルボン酸の説明で挙げられた置換基を有していてよい。 The basic amino acid may have one selected from the group consisting of a heterocycle, an aromatic ring, a non-aromatic ring, and an aliphatic hydrocarbon group. The basic amino acid may have an aliphatic hydrocarbon group, and may have an aliphatic hydrocarbon group having 4 to 8 carbon atoms. In other words, the basic amino acid may be an aliphatic amino acid having 4 to 8 carbon atoms and having a basic functional group in its side chain. The basic amino acid may have the substituents listed in the description of pyrrolidone carboxylic acid.
 塩基性アミノ酸としては、例えば、アルギニン、ヒスチジン、リジン、オルニチンが挙げられる。塩基性アミノ酸は、アルギニンであってよい。 Examples of basic amino acids include arginine, histidine, lysine, and ornithine. The basic amino acid may be arginine.
 脂肪酸アシル基は、脂肪酸に由来する。脂肪酸アシル基は、例えば、炭素数8~22の飽和あるいは不飽和脂肪酸に由来する。上記の脂肪酸は、直鎖状であってよく、分岐していてよい。脂肪酸としては、例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、イソステアリン酸、ウンデシレン酸、ペトロセリン酸、オレイン酸、リシノール酸、リノール酸、リノレン酸、アラキドン酸、ヤシ油脂肪酸、パーム核油脂肪酸が挙げられる。なかでも、環境や人体に対する影響の点で、脂肪酸は、ヤシ油脂肪酸であってよい。 Fatty acid acyl groups are derived from fatty acids. The fatty acyl group is derived from, for example, a saturated or unsaturated fatty acid having 8 to 22 carbon atoms. The above fatty acids may be linear or branched. Examples of fatty acids include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, isostearic acid, undecylenic acid, petroselic acid, oleic acid, ricinoleic acid, linoleic acid, linolenic acid, and arachidonic acid. , coconut oil fatty acids, and palm kernel oil fatty acids. Among these, the fatty acid may be coconut oil fatty acid in terms of its influence on the environment and the human body.
 塩基性アシルアミノ酸の誘導体は、塩基性アシルアミノ酸のアルキルエステルであってよい。塩基性アシルアミノ酸のアルキルエステルにおいて、アシルアミノ酸のカルボキシ基は、例えば、炭素数1~4のアルキル基でエステル化されている。加工剤の安定性の観点から、誘導体は、塩基性アシルアミノ酸の炭素数1または2のアルキルエステルであってよい。 The basic acylamino acid derivative may be an alkyl ester of the basic acylamino acid. In the alkyl ester of basic acylamino acid, the carboxy group of the acylamino acid is esterified with, for example, an alkyl group having 1 to 4 carbon atoms. From the viewpoint of stability of the processing agent, the derivative may be a C1 or C2 alkyl ester of a basic acylamino acid.
 塩基性アシルアミノ酸は、例えば、下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、Aは、複素環、芳香環、非芳香環または脂肪族炭化水素基を有する炭化水素基であり、Bは、塩基性官能基であり、Rは、脂肪酸残基であり、Rは、水素または炭素数1~4の炭化水素基である。)
で表される。
For example, the basic acylamino acid has the following formula:
Figure JPOXMLDOC01-appb-C000002
(wherein A is a hydrocarbon group having a heterocycle, aromatic ring, non-aromatic ring or aliphatic hydrocarbon group, B is a basic functional group, R 1 is a fatty acid residue, R 2 is hydrogen or a hydrocarbon group having 1 to 4 carbon atoms.)
It is expressed as
 Aは、複素環、芳香環、非芳香環または脂肪族炭化水素基を有する炭化水素基である。Aは、素数4~8の脂肪族炭化水素基であってよい。Aは、アミノ基とカルボキシ基とこれらが結合する炭素原子と塩基性官能基とを除いた、上記の塩基性アミノ酸の一部である。Bは、上記の塩基性官能基である。Rは、アシル基の一部であり、上記の脂肪酸の残基である。Rは、水素または炭素数1~4の炭化水素基であり、炭素数1または2の炭化水素基であってよい。 A is a hydrocarbon group having a heterocycle, an aromatic ring, a non-aromatic ring, or an aliphatic hydrocarbon group. A may be an aliphatic hydrocarbon group having a prime number of 4 to 8. A is a part of the above basic amino acid excluding the amino group, the carboxy group, the carbon atom to which these groups are bonded, and the basic functional group. B is the basic functional group described above. R 1 is part of an acyl group and is a residue of the above fatty acid. R 2 is hydrogen or a hydrocarbon group having 1 to 4 carbon atoms, and may be a hydrocarbon group having 1 or 2 carbon atoms.
 有機塩は、水性溶媒への溶解性および環境や人体に対する影響の観点から、N-ヤシ油脂肪酸アシル-L-アルギニンエチル・DL-ピロリドンカルボン酸塩であってよい。この有機塩は、下記式:
Figure JPOXMLDOC01-appb-C000003
(式中、Rはヤシ油脂肪酸の残基である。)
で表される。
The organic salt may be N-coco fatty acid acyl-L-arginine ethyl DL-pyrrolidonecarboxylate from the viewpoint of solubility in aqueous solvents and effects on the environment and the human body. This organic salt has the following formula:
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 is a residue of coconut oil fatty acid.)
It is expressed as
 ヤシ油脂肪酸は、複数の飽和脂肪酸と不飽和脂肪酸とを含む。ヤシ油脂肪酸は、例えば、カプリル酸(炭素数8の飽和脂肪酸)、カプリン酸(炭素数10の飽和脂肪酸)、ラウリン酸(炭素数12の飽和脂肪酸)、ミリスチン酸(炭素数14の飽和脂肪酸)、パルミチン酸(炭素数16の飽和脂肪酸)、ステアリン酸(炭素数18の飽和脂肪酸)、オレイン酸(炭素数18の不飽和脂肪酸)、リノール酸(炭素数18の不飽和脂肪酸)を含む。 Coconut oil fatty acids contain multiple saturated fatty acids and unsaturated fatty acids. Coconut oil fatty acids include, for example, caprylic acid (saturated fatty acid with 8 carbon atoms), capric acid (saturated fatty acid with 10 carbon atoms), lauric acid (saturated fatty acid with 12 carbon atoms), and myristic acid (saturated fatty acid with 14 carbon atoms). , palmitic acid (saturated fatty acid with 16 carbon atoms), stearic acid (saturated fatty acid with 18 carbon atoms), oleic acid (unsaturated fatty acid with 18 carbon atoms), and linoleic acid (unsaturated fatty acid with 18 carbon atoms).
 有機塩を構成する2種のアミノ酸類の組み合わせは、取り扱い性(例えば、水性溶媒への溶解性、安定性、加工性)を考慮して、適宜決定される。 The combination of two types of amino acids constituting the organic salt is appropriately determined in consideration of handling properties (for example, solubility in aqueous solvents, stability, and processability).
 有機塩の濃度は特に限定されず、加工剤の粘度、加工剤の被処理品への付着方法、加工物品の用途等を考慮して、適宜設定すればよい。機能性の観点から、加工剤における有機塩の濃度は、0.01質量%以上であってよく、0.05質量%以上であってよく、0.1質量%以上であってよく、0.15質量%であってよく、0.2質量%以上であってよい。加工剤の調製が容易で、安定性および取り扱い性に優れる点から、有機塩の濃度は、5質量%以下であってよく、1.5質量%以下であってよく、1.0質量%以下であってよく、0.75質量%以下であってよく、0.6質量%以下であってよい。一態様において、有機塩の濃度は、0.01質量%以上5質量%以下である。 The concentration of the organic salt is not particularly limited, and may be appropriately set in consideration of the viscosity of the processing agent, the method of adhesion of the processing agent to the processed product, the use of the processed product, etc. From the viewpoint of functionality, the concentration of organic salt in the processing agent may be 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more, 0.01% by weight or more, 0.05% by weight or more, 0.1% by weight or more, 0. It may be 15% by mass, and may be 0.2% by mass or more. The concentration of the organic salt may be 5% by mass or less, 1.5% by mass or less, and 1.0% by mass or less because the processing agent is easy to prepare and has excellent stability and handleability. The content may be 0.75% by mass or less, and may be 0.6% by mass or less. In one embodiment, the concentration of the organic salt is 0.01% by mass or more and 5% by mass or less.
 加工剤は、アミノ酸、アシルアミノ酸、塩基性アミノ酸および塩基性アシルアミノ酸(以下、「アミノ酸類」と総称する場合がある。)の少なくとも1種と、金属イオンとの塩を含まないことが望ましい。アミノ酸類と金属イオンとからなる塩は、水性溶媒に溶解させると呈色するため、被処理品を着色させてしまう場合がある。 It is desirable that the processing agent does not contain a salt of at least one of amino acids, acylamino acids, basic amino acids, and basic acylamino acids (hereinafter sometimes collectively referred to as "amino acids") and metal ions. Salts consisting of amino acids and metal ions change color when dissolved in an aqueous solvent, so they may stain the product to be treated.
 なかでも、加工剤は、アミノ酸類のアルカリ金属塩を含まないことが望ましい。アミノ酸類のアルカリ金属塩は凝集し易く、品質管理が難しいためである。アルカリ金属としては、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Cs(セシウム)が挙げられる。加工剤は、特に、アミノ酸類のナトリウム塩およびカリウム塩を含まないことが望ましく、アシルアミノ酸のナトリウム塩およびカリウム塩を含まないことが望ましい。加工剤は、例えば、ピロリドンカルボン酸のアルカリ金属塩、アシルアミノ酸のアルカリ金属塩および塩基性アシルアミノ酸のアルカリ金属塩を含まないことが望ましい。加工剤がアミノ酸類の金属塩を含まないとは、加工剤へのアミノ酸金属塩の配合量が、0.005質量%未満であることをいう。 Among these, it is desirable that the processing agent does not contain alkali metal salts of amino acids. This is because alkali metal salts of amino acids tend to aggregate, making quality control difficult. Examples of the alkali metal include Li (lithium), Na (sodium), K (potassium), and Cs (cesium). In particular, the processing agent desirably does not contain sodium salts and potassium salts of amino acids, and desirably does not contain sodium salts and potassium salts of acylamino acids. It is desirable that the processing agent does not contain, for example, an alkali metal salt of pyrrolidone carboxylic acid, an alkali metal salt of an acylamino acid, and an alkali metal salt of a basic acylamino acid. The expression that the processing agent does not contain a metal salt of an amino acid means that the amount of the amino acid metal salt added to the processing agent is less than 0.005% by mass.
(金属化合物)
 金属化合物は、加工剤中で金属イオンを生成(あるいは放出)できる限り、特に限定されない。このような金属化合物としては、例えば、金属塩、金属酸化物が挙げられる。
(metal compound)
The metal compound is not particularly limited as long as it can generate (or release) metal ions in the processing agent. Examples of such metal compounds include metal salts and metal oxides.
 本開示に係る加工剤が抗菌性および抗ウイルス性を発揮する理由は定かではないが、次のように考えられる。本開示に係る加工剤に含まれる金属化合物は、水に溶解するか否かに関わらず、水中で金属イオンを発生させる。発生した金属イオンは、強いカチオン性を示すことに加え、イオン半径が小さいため、細菌およびウイルスの膜に強く作用して、これらを破壊し得る。抗菌性および抗ウイルス性は、主に金属イオンによって生じる。 The reason why the processing agent according to the present disclosure exhibits antibacterial and antiviral properties is not clear, but it is thought to be as follows. The metal compound contained in the processing agent according to the present disclosure generates metal ions in water, regardless of whether it is dissolved in water. In addition to exhibiting strong cationic properties, the generated metal ions have a small ionic radius, so they can strongly act on and destroy the membranes of bacteria and viruses. Antibacterial and antiviral properties are primarily caused by metal ions.
 本開示に係る加工剤が各種臭気に対して消臭効果を発揮する理由は定かではないが、次のように考えられる。本開示に係る加工剤あるいは当該加工剤を用いて処理した物体の表面には金属イオンが存在する。この金属イオンの触媒作用によって、空気中の酸素が活性化する。発生した活性化した酸素(スーパーオキシド:O2 とも呼ばれる。)が悪臭物質と反応し、消臭効果を発揮する。 The reason why the processing agent according to the present disclosure exhibits a deodorizing effect on various odors is not clear, but it is thought to be as follows. Metal ions are present on the surface of the processing agent according to the present disclosure or an object treated using the processing agent. Oxygen in the air is activated by the catalytic action of these metal ions. The generated activated oxygen (superoxide: also called O 2 - ) reacts with malodorous substances and exerts a deodorizing effect.
 金属イオンとしては、例えば、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Pt(白金)、Ag(銀)およびAu(金)よりなる群から選択される少なくとも1種の金属のイオンが挙げられる。なかでも、機能性の観点から、金属は、Cu、Zn、Pt、AgおよびAuよりなる群から選択される少なくとも1種であってよく、Cu、Zn、およびAgよりなる群から選択される少なくとも1種であってよい。 Examples of metal ions include Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Pt (platinum), Ag (silver), and Au (gold). Examples include ions of at least one selected metal. Among them, from the viewpoint of functionality, the metal may be at least one selected from the group consisting of Cu, Zn, Pt, Ag, and Au, and at least one selected from the group consisting of Cu, Zn, and Ag. It may be one type.
《金属塩》
 金属塩は、例えば上記の金属イオンと、カウンターアニオンとから形成される。金属塩は、加工剤中において金属イオンとそのカウンターアニオンとに解離する。
《Metal salt》
The metal salt is formed, for example, from the above metal ion and a counter anion. The metal salt dissociates into a metal ion and its counter anion in the processing agent.
 カウンターアニオンは、上記の通り、アミノ酸由来以外であることが望ましい。カウンターアニオンとしては、例えば、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン、硫酸イオン、水酸化物イオン、硝酸イオンおよび酢酸イオンよりなる群から選択される少なくとも1種が挙げられる。なかでも、製造コスト等の点で、多原子イオンである硫酸イオン、水酸化物イオン、硝酸イオンおよび酢酸イオンよりなる群から選択される少なくとも1種であってよく、硫酸イオン、硝酸イオンおよび酢酸イオンよりなる群から選択される少なくとも1種であってよい。 As mentioned above, the counter anion is preferably derived from a source other than an amino acid. Examples of the counter anion include at least one selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion. Among them, from the viewpoint of production cost, etc., at least one selected from the group consisting of polyatomic ions such as sulfate ion, hydroxide ion, nitrate ion, and acetate ion may be used. The ion may be at least one selected from the group consisting of ions.
 金属塩は、例えば、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Pt(白金)、Ag(銀)およびAu(金)よりなる群から選択される少なくとも1種の金属のイオンと、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン、硫酸イオン、水酸化物イオン、硝酸イオンおよび酢酸イオンよりなる群から選択される少なくとも1種のアニオンと、から形成される。 The metal salt is selected from the group consisting of, for example, Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Pt (platinum), Ag (silver) and Au (gold). at least one metal ion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion. It is formed from anion.
 金属塩としては、具体的には、硫酸銅、塩化銅、酢酸銅、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛、硫酸鉄および硝酸銀よりなる群から選択される少なくとも1種が挙げられる。なかでも、機能性の観点から、硫酸銅、酢酸銅、硫酸亜鉛、硝酸亜鉛および硝酸銀よりなる群から選択される少なくとも1種であってよく、硫酸銅、硫酸亜鉛および硝酸銀の少なくとも1種であってよい。 Specifically, the metal salt includes at least one selected from the group consisting of copper sulfate, copper chloride, copper acetate, zinc sulfate, zinc nitrate, zinc acetate, iron sulfate, and silver nitrate. Among them, from the viewpoint of functionality, it may be at least one selected from the group consisting of copper sulfate, copper acetate, zinc sulfate, zinc nitrate and silver nitrate, and at least one of copper sulfate, zinc sulfate and silver nitrate. It's fine.
 金属塩の濃度は特に限定されず、加工剤の粘度、加工剤の被処理品への付着方法、加工物品の用途等を考慮して、適宜設定すればよい。 The concentration of the metal salt is not particularly limited, and may be appropriately set in consideration of the viscosity of the processing agent, the method of adhesion of the processing agent to the processed product, the use of the processed product, etc.
 機能性の観点から、加工剤における金属塩の濃度は、0.0001質量%以上であってよく、0.001質量%以上であってよく、0.005質量%以上であってよく、0.01質量%以上であってよく、0.02質量%以上であってよい。金属イオンの酸化による変色抑制の観点から、金属塩の濃度は、10質量%以下であってよく、5質量%以下であってよく、2質量%以下であってよく、1.5質量%以下であってよく、1質量%以下であってよく、0.5質量%以下であってよく、0.1質量%以下であってよい。一態様において、金属塩の濃度は、0.0001質量%以上10質量%以下である。金属塩の濃度がこのように低い場合であっても、本開示に係る加工剤によれば、優れた機能性が発揮される。 From the viewpoint of functionality, the concentration of the metal salt in the processing agent may be 0.0001% by mass or more, 0.001% by mass or more, 0.005% by mass or more, 0.0001% by mass or more, 0.001% by mass or more, 0.005% by mass or more, The amount may be 0.01% by mass or more, and may be 0.02% by mass or more. From the viewpoint of suppressing discoloration due to oxidation of metal ions, the concentration of the metal salt may be 10% by mass or less, 5% by mass or less, 2% by mass or less, and 1.5% by mass or less. may be 1% by mass or less, may be 0.5% by mass or less, and may be 0.1% by mass or less. In one embodiment, the concentration of the metal salt is 0.0001% by mass or more and 10% by mass or less. Even when the concentration of the metal salt is as low as this, the processing agent according to the present disclosure exhibits excellent functionality.
 金属がAgである場合、加工剤における金属塩(すなわち、銀塩)の濃度は、0.0001質量%以上であってよく、0.0005質量%以上であってよく、0.001質量%以上であってよく、0.005質量%以上であってよい。加工剤における銀塩の濃度は、5質量%以下であってよく、2質量%以下であってよく、1.5質量%以下であってよく、1質量%以下であってよく、0.1質量%以下であってよく、0.01質量%以下であってよい。一態様において、銀塩の濃度は、0.0001質量%以上5質量%以下である。金属がCuである場合、加工剤における金属塩(すなわち、銅塩)の濃度は、0.001質量%以上であってよく、0.005質量%以上であってよく、0.01質量%以上であってよい。加工剤における銅塩の濃度は、10質量%以下であってよく、5質量%以下であってよく、2質量%以下であってよく、0.5質量%以下であってよい。一態様において、銅塩の濃度は、0.001質量%以上10質量%以下である。 When the metal is Ag, the concentration of the metal salt (i.e., silver salt) in the processing agent may be 0.0001% by weight or more, may be 0.0005% by weight or more, and may be 0.001% by weight or more. It may be 0.005% by mass or more. The concentration of silver salt in the processing agent may be 5% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, and 0.1% by mass or less. It may be less than 0.01% by mass, and may be less than 0.01% by mass. In one embodiment, the concentration of the silver salt is 0.0001% by mass or more and 5% by mass or less. When the metal is Cu, the concentration of the metal salt (i.e., copper salt) in the processing agent may be 0.001% by mass or more, may be 0.005% by mass or more, and 0.01% by mass or more. It may be. The concentration of the copper salt in the processing agent may be 10% by weight or less, 5% by weight or less, 2% by weight or less, and 0.5% by weight or less. In one embodiment, the concentration of the copper salt is 0.001% by mass or more and 10% by mass or less.
 機能性の観点から、加工剤における有機塩の質量Wと金属塩の質量Wとの比率(W/W)は、500/1~1/2であってよく、300/1~1/1であってよく、200/1~5/1であってよく、150/1~10/1であってよい。 From the viewpoint of functionality, the ratio of the mass of organic salt W O to the mass of metal salt W M in the processing agent (W O /W M ) may be from 500/1 to 1/2, and from 300/1 to It may be 1/1, it may be 200/1 to 5/1, it may be 150/1 to 10/1.
 加工剤における有機塩の質量Wと銀塩の質量WAgとの比率(W/WAg)は、500/1~1/1であってよく、300/1~10/1であってよく、200/1~20/1であってよく、150/1~20/1であってよい。加工剤における有機塩の質量Wと銅塩の質量WCuとの比率(W/WCu)は、200/1~1/1であってよく、100/1~5/1であってよく、50/1~10/1であってよい。 The ratio of the mass W O of the organic salt and the mass W Ag of the silver salt in the processing agent (W O /W Ag ) may be from 500/1 to 1/1, and from 300/1 to 10/1. Often, it may be between 200/1 and 20/1, and between 150/1 and 20/1. The ratio of the mass W O of the organic salt and the mass W Cu of the copper salt in the processing agent (W O /W Cu ) may be 200/1 to 1/1, and may be 100/1 to 5/1. It may well be between 50/1 and 10/1.
《金属酸化物》
 金属酸化物は、酸化銀(AgO)、酸化亜鉛(ZnO)および酸化銅(II)(CuO)よりなる群から選択される少なくとも1種であってよい。
《Metal oxide》
The metal oxide may be at least one selected from the group consisting of silver oxide (Ag 2 O), zinc oxide (ZnO), and copper (II) oxide (CuO).
 金属酸化物は、リン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方(以下、「マトリックス物質」と称する場合がある。)の中に含有された状態で、加工剤に配合され得る。マトリックス物質の構造内に取り込まれた金属酸化物は、水分の存在下で解離して、金属イオンとして徐々に溶出される。すなわち、金属酸化物の一部あるいは全部は、加工剤中において、金属イオンに解離し得る。 The metal oxide may be blended into the processing agent while being contained in at least one of the phosphate glass and the inorganic phosphate compound (hereinafter sometimes referred to as "matrix material"). Metal oxides incorporated into the structure of the matrix material dissociate in the presence of moisture and are gradually eluted as metal ions. That is, part or all of the metal oxide can be dissociated into metal ions in the processing agent.
 金属酸化物を含有するマトリックス物質(以下、「金属含有マトリックス」と称する場合がある。)は、例えば、マトリックス物質の材料と、目的の金属酸化物の金属源となる金属塩とを加熱等することにより、得られる。加熱処理等により、金属塩は金属酸化物となって、マトリックス物質の中に担持される。 A matrix material containing a metal oxide (hereinafter sometimes referred to as a "metal-containing matrix") can be produced by, for example, heating the material of the matrix material and a metal salt that serves as a metal source for the desired metal oxide. This can be obtained by: Through heat treatment or the like, the metal salt becomes a metal oxide and is supported in the matrix material.
 リン酸塩系ガラスは、必須成分として、例えば、リン(P)、ホウ素(B)、第2族元素(マグネシウムを含むアルカリ土類金属元素)を含む。 Phosphate glass contains, for example, phosphorus (P), boron (B), and Group 2 elements (alkaline earth metal elements including magnesium) as essential components.
 無機リン酸塩系化合物としては、例えば、水酸アパタイト(Ca10(PO)(OH))、ケイ酸アパタイト(水酸アパタイトのPO 3-イオンの一部をSiO 4-で置き換えたもの)、リン酸水素チタン水和物、リン酸水素ジルコニア水和物、リン酸ジルコニウムが挙げられる。 Examples of inorganic phosphate compounds include hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), silicate apatite (part of the PO 4 3- ions of hydroxyapatite is replaced with SiO 4 4-) , ), titanium hydrogen phosphate hydrate, zirconia hydrogen phosphate hydrate, and zirconium phosphate.
 マトリックス物質は、リン酸塩系ガラスであってよい。リン酸塩系ガラスは、例えば、五酸化二リン(P)を35~65モル%と、三酸化二ホウ素(B)を5~25モル%と、第2族元素(マグネシウムを含むアルカリ土類金属)の酸化物を5~55モル%と、および、酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化ケイ素(SiO)および酸化アルミニウム(Al)よりなる群から選択される少なくとも1種を0~20モル%と、を含む。これにより、リン酸塩系ガラスの構造内に担持された金属酸化物から、金属イオンが水分の存在下で速やかに溶出することができて、優れた機能性が発揮され易くなる。 The matrix material may be a phosphate glass. Phosphate glass, for example, contains 35 to 65 mol% of diphosphorus pentoxide (P 2 O 5 ), 5 to 25 mol % of diboron trioxide (B 2 O 3 ), and Group 2 elements ( 5 to 55 mol% of oxides of alkaline earth metals (including magnesium), and sodium oxide (Na 2 O), potassium oxide (K 2 O), silicon oxide (SiO 2 ) and aluminum oxide (Al 2 O). 3 ) 0 to 20 mol% of at least one selected from the group consisting of: As a result, metal ions can be rapidly eluted from the metal oxide supported within the structure of the phosphate glass in the presence of moisture, making it easier to exhibit excellent functionality.
 リン酸塩系ガラスに含まれるPは、35~60モル%であってよく、40~60モル%であってよい。Bは7~25モル%であってよく、10~20モル%であってよい。第2族元素の酸化物は10~50モル%であってよく、10~40モル%であってよい。NaO、KO、SiOおよびAlから選ばれる少なくとも1種は0~20モル%であってよい。 The P 2 O 5 contained in the phosphate glass may be 35 to 60 mol%, and may be 40 to 60 mol%. B 2 O 3 may be from 7 to 25 mol%, and from 10 to 20 mol%. The Group 2 element oxide may be 10 to 50 mol%, and may be 10 to 40 mol%. At least one selected from Na 2 O, K 2 O, SiO 2 and Al 2 O 3 may be present in an amount of 0 to 20 mol %.
 金属酸化物は、例えば、金属含有マトリックス(マトリックス物質および金属酸化物の合計)100質量%に対し、0.2質量%以上10質量%以下含有されている。金属酸化物の上記含有量は、0.4質量%以上であってよい。金属酸化物の上記含有量は、5質量%以下であってよく、3.5質量%以下であってよい。 The metal oxide is contained, for example, in an amount of 0.2% by mass or more and 10% by mass or less with respect to 100% by mass of the metal-containing matrix (total of matrix material and metal oxide). The content of metal oxide may be 0.4% by mass or more. The content of metal oxides may be 5% by mass or less, and may be 3.5% by mass or less.
 特に、金属含有マトリックスは、Pを40~60モル%と、Bを10~20モル%と、第2族元素の酸化物を10~40モル%と、NaO、KO、SiOおよびAlよりなる群から選択される少なくとも1種を0~20モル%と含むリン酸塩系ガラスと、これに含有された金属酸化物とを含み、金属酸化物の金属含有マトリックス100質量%に対する含有量が0.2質量%以上5質量%以下であってよい。この金属含有マトリックスを含む加工剤は、特に優れた機能性を発揮し得る。 In particular, the metal-containing matrix contains 40-60 mol% of P 2 O 5 , 10-20 mol% of B 2 O 3 , 10-40 mol% of Group 2 element oxides, Na 2 O, A phosphate-based glass containing 0 to 20 mol% of at least one selected from the group consisting of K 2 O, SiO 2 and Al 2 O 3 , and a metal oxide contained therein. The content of the material may be 0.2% by mass or more and 5% by mass or less based on 100% by mass of the metal-containing matrix. Processing agents containing this metal-containing matrix can exhibit particularly excellent functionality.
 機能性の観点から、加工剤における金属含有マトリックスの濃度は、0.01質量%以上であってよく、0.05質量%以上であってよく、0.10質量%以上であってよく、0.30質量%以上であってよく、0.50質量%以上であってよい。金属イオンの酸化による変色抑制の観点から、金属含有マトリックスの濃度は、20質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよく、3.0質量%以下であってよく、1.5質量%以下であってよい。一態様において、金属含有マトリックスの濃度は、0.01質量%以上20質量%以下である。金属含有マトリックスの濃度がこのように低い場合であっても、本開示に係る加工剤によれば、優れた機能性が発揮される。 From a functionality point of view, the concentration of the metal-containing matrix in the processing agent may be 0.01% by weight or more, 0.05% by weight or more, 0.10% by weight or more, 0. It may be .30% by mass or more, and it may be .50% by mass or more. From the viewpoint of suppressing discoloration due to oxidation of metal ions, the concentration of the metal-containing matrix may be 20% by mass or less, may be 10% by mass or less, may be 5% by mass or less, and may be 3.0% by mass. The amount may be less than or equal to 1.5% by mass. In one embodiment, the concentration of the metal-containing matrix is greater than or equal to 0.01% by weight and less than or equal to 20% by weight. Even when the concentration of the metal-containing matrix is as low as this, the processing agent according to the present disclosure exhibits excellent functionality.
 機能性の観点から、加工剤における有機塩の質量Wと金属含有マトリックスの質量Wとの比率(W/W)は、1/10~15/7であってよく、3/14~1/1であってよく、3/10~3/4であってよい。 From the functionality point of view, the ratio of the mass W O of the organic salt in the processing agent to the mass W P of the metal-containing matrix (W O /W P ) may be from 1/10 to 15/7, and may be 3/14. ˜1/1, and may be 3/10 to 3/4.
(第4級アンモニウム塩)
 本開示の加工剤は、第4級アンモニウム塩を含んでいてよい。第4級アンモニウム塩は、第4級アンモニウムイオンとそのカウンターアニオンとの塩である。
(Quaternary ammonium salt)
Processing agents of the present disclosure may include quaternary ammonium salts. A quaternary ammonium salt is a salt of a quaternary ammonium ion and its counter anion.
 第4級アンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、モノアルキルトリメチルアンモニウムイオン、ジアルキルジメチルアンモニウムイオン、トリアルキルモノメチルアンモニウムイオン、テトラアルキルアンモニウムイオン、アルキルジメチルエチルアンモニウムイオン、アルキルジメチルベンジルアンモニウムイオン、アルキルピリジニウムイオンが挙げられる。これらは、1種を単独で、あるいは2種以上を組み合わせて用いられる。特に、第4級アンモニウムイオンは、ジアルキルジメチルアンモニウムイオンであってよい。第4級アンモニウムイオンに含まれるアルキル基は、炭素数3以上の炭化水素基であって、炭素数8~18の炭化水素基であってよい。アルキル基は、炭素数8~18のアルキル基を2種以上含んでいてよい。 Examples of the quaternary ammonium ion include tetramethylammonium ion, monoalkyltrimethylammonium ion, dialkyldimethylammonium ion, trialkylmonomethylammonium ion, tetraalkylammonium ion, alkyldimethylethylammonium ion, alkyldimethylbenzylammonium ion, and alkyldimethylammonium ion. Examples include pyridinium ions. These may be used alone or in combination of two or more. In particular, the quaternary ammonium ion may be a dialkyldimethylammonium ion. The alkyl group contained in the quaternary ammonium ion is a hydrocarbon group having 3 or more carbon atoms, and may be a hydrocarbon group having 8 to 18 carbon atoms. The alkyl group may contain two or more types of alkyl groups having 8 to 18 carbon atoms.
 カウンターアニオンとしては、例えば、塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン、水酸化物イオン、リン酸イオン、硝酸イオンおよび硫酸イオン、その他の分子イオン(多原子イオン)が挙げられる。これらは、1種を単独で、あるいは2種以上を組み合わせて用いられる。カウンターアニオンは、塩化物イオンおよびリン酸イオンであってよい。 Examples of the counter anion include chloride ion, bromide ion, fluoride ion, iodide ion, hydroxide ion, phosphate ion, nitrate ion, and sulfate ion, and other molecular ions (polyatomic ions). These may be used alone or in combination of two or more. Counter anions may be chloride and phosphate ions.
 第4級アンモニウム塩の濃度は特に限定されず、加工剤の粘度、加工剤の被処理品への付着方法、加工物品の用途等を考慮して、適宜設定すればよい。加工剤における第4級アンモニウム塩の濃度は、0.05質量%以上であってよく、0.075質量%以上であってよく、0.1質量%以上であってよい。環境や人体に対する影響の点で、上記濃度は、2質量%以下であってよく、1質量%以下であってよく、0.5質量%以下であってよい。一態様において、第4級アンモニウム塩の濃度は、0.05質量%以上2質量%以下である。 The concentration of the quaternary ammonium salt is not particularly limited, and may be appropriately set in consideration of the viscosity of the processing agent, the method of adhesion of the processing agent to the processed article, the use of the processed article, etc. The concentration of the quaternary ammonium salt in the processing agent may be 0.05% by mass or more, 0.075% by mass or more, and 0.1% by mass or more. In terms of influence on the environment and the human body, the concentration may be 2% by mass or less, 1% by mass or less, and 0.5% by mass or less. In one embodiment, the concentration of the quaternary ammonium salt is 0.05% by mass or more and 2% by mass or less.
 第4級アンモニウム塩の供給源は特に限定されない。第4級アンモニウム塩の供給源は、例えば、他の用途(例えば、染料固着)のために市販されている加工剤あるいは加工剤に含まれていてもよい。 The source of the quaternary ammonium salt is not particularly limited. The source of quaternary ammonium salts may be included, for example, in processing agents or processing agents that are commercially available for other uses (eg, dye fixation).
 第4級アンモニウム塩は、従来、抗ウイルス性の薬剤として用いられているが、熱によって加工物品を黄変させる場合がある。また、被処理品が繊維である場合、被処理品はアニオン系の界面活性剤を含む洗剤により洗濯され得る。すると、第4級アンモニウム塩が洗剤の界面活性剤によってマスキングされて、所望の抗ウイルス性が発揮されなくなる場合がある。 Quaternary ammonium salts have conventionally been used as antiviral agents, but may cause yellowing of processed articles due to heat. Further, when the article to be treated is a fiber, the article can be washed with a detergent containing an anionic surfactant. Then, the quaternary ammonium salt may be masked by the surfactant of the detergent, and the desired antiviral properties may not be exhibited.
 本開示では、第4級アンモニウム塩を使用しないか、あるいはその使用量を低減することができる。よって、加工物品の熱による黄変はさらに抑制され、また、機能性を発揮することができる。ただし、上記の通り、本開示は第4級アンモニウム塩の使用を排除するものではない。 In the present disclosure, quaternary ammonium salts may not be used, or the amount used may be reduced. Therefore, yellowing of the processed article due to heat is further suppressed, and functionality can be exhibited. However, as noted above, this disclosure does not exclude the use of quaternary ammonium salts.
(水性溶媒)
 水性溶媒としては、例えば、純水、蒸留水、イオン交換水、工業用水および上水が挙げられる。加工剤には、必要に応じて、有機溶剤が含まれていてもよい。
(Aqueous solvent)
Examples of the aqueous solvent include pure water, distilled water, ion exchange water, industrial water, and tap water. The processing agent may contain an organic solvent, if necessary.
(バインダー樹脂)
 本開示に係る加工剤は、さらにバインダー樹脂を含んでよい。有機塩および金属化合物が、バインダー樹脂を介して被処理品に固着されることにより、耐久性はさらに向上し得る。「固着」とは、「付着」よりも強固に着いていることをいう。
(binder resin)
The processing agent according to the present disclosure may further include a binder resin. Durability can be further improved by fixing the organic salt and the metal compound to the treated article via the binder resin. "Adhesion" refers to being more firmly attached than "adhesion."
 バインダー樹脂は特に限定されず、例えば、アクリル樹脂、ポリビニルアルコール、エチレン・酢酸ビニル樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、シリコーン系樹脂、フッ素系樹脂が挙げられる。バインダー樹脂は、1種を単独で、あるいは2種以上を組み合わせて用いられる。 The binder resin is not particularly limited, and examples include acrylic resin, polyvinyl alcohol, ethylene/vinyl acetate resin, polyurethane resin, polyamide resin, polyester resin, silicone resin, and fluorine resin. Binder resins may be used singly or in combination of two or more.
 バインダー樹脂の配合量も特に限定されず、例えば、加工剤の0.1質量%以上であってよく、1.0質量%以上であってよい。バインダー樹脂の配合量は、加工剤の50質量%以下であってよく、15質量%以下であってよい。一態様において、バインダー樹脂の配合量は、加工剤の0.1質量%以上50質量%以下である。バインダー樹脂は、どのような形態で含まれてもよい。例えば、バインダー樹脂を含む市販の薬剤を、有機塩、金属化合物および水性溶媒等を含む混合物に配合してもよい。 The blending amount of the binder resin is also not particularly limited, and may be, for example, 0.1% by mass or more, or 1.0% by mass or more of the processing agent. The blending amount of the binder resin may be 50% by mass or less of the processing agent, and may be 15% by mass or less. In one embodiment, the blending amount of the binder resin is 0.1% by mass or more and 50% by mass or less of the processing agent. The binder resin may be included in any form. For example, a commercially available agent containing a binder resin may be blended into a mixture containing an organic salt, a metal compound, an aqueous solvent, and the like.
(架橋剤)
 本開示に係る加工剤は、さらに架橋剤を含んでよい。架橋剤により、有機塩と金属化合物とが架橋された状態で被処理品に付着したり、有機塩と被処理品とが架橋されたりすることにより、耐久性はさらに向上し得る。
(Crosslinking agent)
The processing agent according to the present disclosure may further include a crosslinking agent. The durability can be further improved by attaching the organic salt and the metal compound to the article to be treated in a crosslinked state or by crosslinking the organic salt and the article to be treated by the crosslinking agent.
 架橋剤は特に限定されず、例えば、アミノ樹脂類、酸無水物類、ポリエポキシ化合物、シラン化合物、メラミン樹脂、グリオキザール樹脂、イソシアネート基およびブロックイソシアネート基の少なくとも一方を有するイソシアネート化合物が挙げられる。架橋剤は、1種を単独で、あるいは2種以上を組み合わせて用いられる。なかでも、イソシアネート化合物であってよい。 The crosslinking agent is not particularly limited, and examples thereof include amino resins, acid anhydrides, polyepoxy compounds, silane compounds, melamine resins, glyoxal resins, and isocyanate compounds having at least one of an isocyanate group and a blocked isocyanate group. The crosslinking agents may be used alone or in combination of two or more. Among these, it may be an isocyanate compound.
 架橋剤の配合量も特に限定されず、例えば、加工剤の0.1質量%以上であってよく、1.0質量%以上であってよい。架橋剤の配合量は、加工剤の50質量%以下であってよく、15質量%以下であってよい。一態様において、架橋剤の配合量は、加工剤の0.1質量%以上50質量%以下である。架橋剤は、どのような形態で含まれてもよい。例えば、架橋剤を含む市販の薬剤を、有機塩、金属化合物および水性溶媒等を含む混合物に配合してもよい。 The blending amount of the crosslinking agent is also not particularly limited, and may be, for example, 0.1% by mass or more, or 1.0% by mass or more of the processing agent. The blending amount of the crosslinking agent may be 50% by mass or less of the processing agent, and may be 15% by mass or less. In one embodiment, the amount of the crosslinking agent is 0.1% by mass or more and 50% by mass or less of the processing agent. The crosslinking agent may be included in any form. For example, a commercially available agent containing a crosslinking agent may be incorporated into a mixture containing an organic salt, a metal compound, an aqueous solvent, and the like.
 本開示では、金属イオンに配位した有機塩が化学的結合により被処理品に結合し得る。そのため、バインダー樹脂および/または架橋剤を使用しないか、あるいはその使用量を低減しても、加工剤は脱落し難い。ただし、上記の通り、本開示はバインダー樹脂および/または架橋剤の使用を排除するものではない。 In the present disclosure, an organic salt coordinated to a metal ion can be bonded to a processed article through a chemical bond. Therefore, even if the binder resin and/or crosslinking agent is not used or the amount used is reduced, the processing agent is difficult to fall off. However, as noted above, this disclosure does not exclude the use of binder resins and/or crosslinking agents.
 加工剤は、必要に応じて、さらに他の成分を含む。他の成分としては、例えば、被処理品の風合いを改良する柔軟剤、染料固着剤、帯電防止剤、撥水剤が挙げられる。他の成分は、金属化合物由来の金属イオンを不安定化し難いものや、当該金属イオンと錯体を形成し難いものが好ましく、当該金属イオンと錯体を形成しないものがより好ましい。 The processing agent further contains other components as necessary. Other components include, for example, a softener that improves the texture of the article to be treated, a dye fixing agent, an antistatic agent, and a water repellent. The other components are preferably those that do not easily destabilize the metal ions derived from the metal compound or those that do not easily form complexes with the metal ions, and more preferably those that do not form complexes with the metal ions.
[加工物品]
 本開示に係る加工物品は、被処理品と、被処理品に付着する有機塩および金属化合物と、を含む。有機塩および金属化合物は、上記の加工剤に由来する。この加工物品は、高い機能性を示す。この加工物品は、さらに、機能性が低下し難い。加工物品は、繰り返し洗濯される場合であっても、耐久性、言い換えれば洗濯耐久性を有し得る。
[Processed goods]
The processed article according to the present disclosure includes an article to be treated, and an organic salt and a metal compound attached to the article to be treated. Organic salts and metal compounds are derived from the processing agents mentioned above. This processed article exhibits high functionality. Furthermore, this processed article is less likely to lose its functionality. The processed article can be durable, in other words wash-resistant, even when washed repeatedly.
 有機塩および金属化合物の付着量は特に限定されず、金属化合物の形態、加工物品の使用形態等に応じて適宜設定すればよい。 The amount of organic salt and metal compound deposited is not particularly limited, and may be appropriately set depending on the form of the metal compound, the usage form of the processed article, etc.
・金属塩を使用する場合
 機能性が発揮され易い点で、有機塩および金属塩の合計の付着量(質量)は、被処理品の質量の0.01%以上であってよく、0.025%以上であってよく、0.04%以上であってよい。コスト等の観点から、有機塩および金属塩の合計の付着量は、被処理品の質量の8%以下であってよく、5%以下であってよく、2%以下であってよい。有機塩および金属塩の合計の好ましい付着量は、被処理品の質量の0.01%以上8%以下である。
・When using metal salts In order to facilitate the performance, the total adhesion amount (mass) of the organic salt and metal salt may be 0.01% or more of the mass of the product to be treated, and 0.025 % or more, and may be 0.04% or more. From the viewpoint of cost and the like, the total amount of organic salt and metal salt deposited may be 8% or less, 5% or less, or 2% or less of the mass of the article to be treated. A preferable total amount of the organic salt and metal salt deposited is 0.01% or more and 8% or less of the mass of the article to be treated.
・金属含有マトリックスを使用する場合
 機能性が発揮され易い点で、有機塩および金属含有マトリックスの合計の付着量(質量)は、被処理品の質量の3.0%以上であってよく、1.5%以上であってよく、0.65%以上であってよい。コスト等の観点から、有機塩および金属含有マトリックスの合計の付着量は、被処理品の質量の2.0%以下であってよく、1.5%以下であってよく、1.2%以下であってよい。有機塩および金属含有マトリックスの合計の好ましい付着量は、被処理品の質量の1.0%以上2.0%以下である。
- When using a metal-containing matrix In order to facilitate the performance, the total amount (mass) of the organic salt and the metal-containing matrix may be 3.0% or more of the mass of the product to be treated, and 1. It may be .5% or more, and it may be .65% or more. From the viewpoint of cost etc., the total amount of the organic salt and the metal-containing matrix deposited may be 2.0% or less, 1.5% or less, 1.2% or less of the mass of the product to be treated. It may be. A preferable total amount of the organic salt and metal-containing matrix deposited is 1.0% or more and 2.0% or less of the mass of the article to be treated.
 有機塩および金属化合物は、バインダー樹脂を介して、被処理品に付着(固着)していてよい。 The organic salt and the metal compound may be attached (fixed) to the article to be treated via a binder resin.
(被処理品)
 被処理品は、天然繊維、再生繊維、半合成繊維および合成繊維よりなる群から選択される少なくとも1種を含んでいてよい。本開示に係る加工剤は、特に繊維との間で化学的結合を形成し易い。本開示に係る加工剤は、繊維の抗ウイルス加工に適している。
(Product to be processed)
The article to be treated may contain at least one selected from the group consisting of natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers. The processing agent according to the present disclosure particularly tends to form chemical bonds with fibers. The processing agent according to the present disclosure is suitable for antiviral processing of fibers.
 天然繊維は、植物繊維および動物繊維に大別される。植物繊維としては、例えば、コットン(木綿)、麻、パルプが挙げられる。動物繊維としては、例えば、羽毛、シルク(絹)、獣毛(ウール(羊毛)、アンゴラ、カシミヤ、モヘヤ、らくだ)が挙げられる。再生繊維としては、例えば、レーヨン、ポリノジック、キュプラ、溶剤紡糸セルロース繊維等の再生セルロース繊維が挙げられる。半合成繊維としては、例えば、アセテート、トリアセテートが挙げられる。合成繊維としては、例えば、ポリエステル、ポリオレフィン、ポリアミド、ポリウレタン、アクリルが挙げられる。 Natural fibers are broadly classified into vegetable fibers and animal fibers. Examples of plant fibers include cotton, linen, and pulp. Examples of animal fibers include feathers, silk, and animal hair (wool, angora, cashmere, mohair, and camel). Examples of regenerated fibers include regenerated cellulose fibers such as rayon, polynosic, cupro, and solvent-spun cellulose fibers. Examples of semi-synthetic fibers include acetate and triacetate. Examples of synthetic fibers include polyester, polyolefin, polyamide, polyurethane, and acrylic.
 被処理品は、表面に水酸基を有する繊維を含んでいてよい。表面に水酸基を有する繊維としては、例えば、上記の植物繊維および再生セルロース繊維などのセルロース繊維が挙げられる。繊維表面の水酸基と塩基性アシルアミノ酸類の塩基性官能基とが共有結合し得るため、耐久性がより向上する。 The article to be treated may include fibers having hydroxyl groups on the surface. Examples of the fibers having hydroxyl groups on the surface include cellulose fibers such as the above-mentioned vegetable fibers and regenerated cellulose fibers. Since the hydroxyl groups on the fiber surface and the basic functional groups of the basic acylamino acids can be covalently bonded, durability is further improved.
 被処理品は、上記繊維そのものであってよく、上記繊維の少なくとも1種を撚って得られる糸であってよく、上記繊維または糸により形成される繊維構造体であってよい。被処理品は、種々の方法で前処理されていてもよい。 The article to be treated may be the above-mentioned fibers themselves, may be threads obtained by twisting at least one of the above-mentioned fibers, or may be a fibrous structure formed from the above-mentioned fibers or threads. The article to be treated may be pretreated in various ways.
 糸は、モノフィラメント糸であってよく、マルチフィラメント糸であってよく、紡績糸であってよい。繊維または糸の繊度や長さは特に限定されず、用途等に応じて適宜設定される。 The yarn may be a monofilament yarn, a multifilament yarn, or a spun yarn. The fineness and length of the fibers or threads are not particularly limited, and are appropriately set depending on the purpose and the like.
 繊維構造体としては、例えば、織物、編物、不織布、繊維を粒状に集合させた粒綿(玉状綿または粒状綿等ともいう)、および、繊維が絡まりあってできる塊(中綿ともいう)が挙げられる。繊維構造体は、例えば、布団カバー、ベッドシーツおよび枕カバー等の寝装用品;寝間着(パジャマ)、肌着およびカッターシャツ等の一般衣料;ダウン、コート、布団、クッション等の詰め物;カーテンおよびテーブルクロス等の室内装飾用品;ハンドタオル、バスタオルおよび足ふきマット等の浴室用品;工業フィルターおよびテント等の産業資材;感染防止用マスク、マスクフィルター、ガーゼおよび包帯等の衛生材料として用いられる。 Examples of fiber structures include woven fabrics, knitted fabrics, non-woven fabrics, granular cotton (also referred to as beaded cotton or granular cotton, etc.) in which fibers are aggregated in granular form, and lumps formed by entangled fibers (also referred to as batting). Can be mentioned. Fiber structures can be used, for example, in bedding products such as duvet covers, bed sheets, and pillowcases; general clothing such as nightwear (pajamas), underwear, and cut shirts; stuffing for down, coats, futons, cushions, etc.; curtains and tablecloths. Bathroom supplies such as hand towels, bath towels and foot mats; Industrial materials such as industrial filters and tents; Sanitary materials such as infection prevention masks, mask filters, gauze and bandages.
 本開示に係る加工剤は、被処理品から脱落し難く、耐久性に優れる。そのため、被処理品は、繰り返し使用されるものや、繰り返し洗濯されるものであってよい。 The processing agent according to the present disclosure is difficult to fall off from the processed product and has excellent durability. Therefore, the article to be treated may be used repeatedly or washed repeatedly.
[加工物品の製造方法]
 本開示に係る加工物品は、例えば、上記の加工剤と上記の被処理品とを接触させる工程を備える方法により製造される。
[Method for manufacturing processed articles]
The processed article according to the present disclosure is manufactured, for example, by a method including a step of bringing the above-mentioned processing agent into contact with the above-mentioned object to be processed.
 被処理品が繊維または糸である場合、接触工程の後、この繊維または糸を用いて繊維構造体が形成されてもよい。被処理品は、裁断前の繊維構造体であってよく、裁断および縫製後の繊維構造体であってよい。 When the article to be treated is a fiber or thread, the fiber or thread may be used to form a fibrous structure after the contact step. The article to be processed may be a fibrous structure before being cut, or may be a fibrous structure after being cut and sewn.
(接触工程)
 上記の加工剤と上記の被処理品とを接触させる方法は特に限定されない。接触方法としては、例えば、浸漬法、噴霧法(例えば、スプレー法、インクジェット法)が挙げられる。浸漬法は、繊維、糸および繊維構造体(縫製前であっても縫製後であってもよい)のいずれに対しても好ましく用いられる。浸漬の形態は、連続処理であってよく、バッチ処理であってよい。浸漬の後、加熱によって、繊維または糸の内部にまで加工剤を浸透させてよい。噴霧法は、縫製後の繊維構造体に対して特に好ましく用いられる。
(Contact process)
The method of bringing the processing agent and the article to be processed into contact is not particularly limited. Examples of the contact method include a dipping method and a spraying method (eg, a spray method and an inkjet method). The dipping method is preferably used for fibers, threads, and fiber structures (which may be before or after sewing). The mode of dipping may be continuous or batch processing. After soaking, the processing agent may penetrate into the interior of the fiber or thread by heating. The spraying method is particularly preferably used for textile structures after sewing.
 接触方法としては、また、コーティング法が挙げられる。コーティング法は、縫製前(さらには裁断前)の繊維構造体に対して特に好ましく用いられる。コーティング法は特に限定されず、例えば、ダイコーティング法、ナイフコーティング法、ロールコーティング法(例えば、グラビアコーティング法、フレキソコーティング法)、ロータリープリント法、フラットプリント法が挙げられる。コーティング法では、バインダー樹脂を含む加工剤を用いてもよい。 The contact method also includes a coating method. The coating method is particularly preferably used for the fibrous structure before sewing (and even before cutting). The coating method is not particularly limited, and includes, for example, a die coating method, a knife coating method, a roll coating method (for example, a gravure coating method, a flexo coating method), a rotary printing method, and a flat printing method. In the coating method, a processing agent containing a binder resin may be used.
 加工剤は、有機塩および金属化合物の合計の付着量が上記の範囲になるように、被処理品に接触される。接触工程の条件(温度、湿度、荷重の有無、被処理品の加工速度等)は特に限定されず、被処理品の形状および種類、加工剤の粘度等に応じて、適宜設定される。 The processing agent is brought into contact with the article to be processed so that the total amount of organic salt and metal compound deposited falls within the above range. The conditions of the contact step (temperature, humidity, presence or absence of load, processing speed of the workpiece, etc.) are not particularly limited, and are appropriately set according to the shape and type of the workpiece, the viscosity of the processing agent, etc.
 以下の実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited thereto. In the examples, "parts" and "%" are based on mass unless otherwise specified.
[実施例1]
(1)加工剤の調製
 表1に示す通り、水性溶媒に、有機塩および金属化合物を溶解させて、加工剤を調製した。
[Example 1]
(1) Preparation of processing agent As shown in Table 1, a processing agent was prepared by dissolving an organic salt and a metal compound in an aqueous solvent.
(2)加工物品の作製
 被処理品として、コットン100質量%の糸(30番手)からなる天竺編物を準備した。
 天竺編物を常温の加工剤に通過させた後、マングルで絞った(ピックアップ率100%)。次いで、150℃で2分間乾燥して、加工物品を得た。
(2) Preparation of processed article A jersey knitted fabric made of 100% by mass cotton yarn (number 30) was prepared as a processed article.
After passing the jersey knitted fabric through a processing agent at room temperature, it was squeezed with a mangle (pickup rate 100%). Then, it was dried at 150° C. for 2 minutes to obtain a processed article.
[実施例2-8、比較例1-3]
 各成分を表1に示す通りに混合して、各加工剤を調製した。各加工剤を用いて、実施例1と同様にして加工物品を作製した。ピックアップ率が100%になるように、含浸の条件を調整した。
[Example 2-8, Comparative Example 1-3]
Each component was mixed as shown in Table 1 to prepare each processing agent. Processed articles were produced in the same manner as in Example 1 using each processing agent. Impregnation conditions were adjusted so that the pickup rate was 100%.
 実施例1-4および比較例2では、N-ヤシ油脂肪酸アシル-L-アルギニンエチル・DL-ピロリドンカルボン酸塩として、味の素株式会社製の製品名CAEを用いた。
 実施例5および比較例3では、N-ヤシ油脂肪酸アシル-L-アルギニンエチル・DL-ピロリドンカルボン酸塩とジアルキルジメチルアンモニウム塩等との混合物である、株式会社サービステックジャパン製の製品名スーパーアミアートFを用いた。ジアルキルジメチルアンモニウム塩のアルキル基は、炭素数が8~18の複数種のアルキル基を含んでいる。ジアルキルジメチルアンモニウム塩のカウンターアニオンは、塩化物イオンである。
 実施例6では金属塩として硫酸亜鉛を使用した。
In Examples 1-4 and Comparative Example 2, the product name CAE manufactured by Ajinomoto Co., Inc. was used as the N-coconut oil fatty acyl-L-arginine ethyl DL-pyrrolidone carboxylate.
In Example 5 and Comparative Example 3, Super Amide, a product name manufactured by Service Tech Japan Co., Ltd., which is a mixture of N-coconut oil fatty acid acyl-L-arginine ethyl DL-pyrrolidone carboxylate and dialkyldimethylammonium salt, was used. Art F was used. The alkyl group of the dialkyldimethylammonium salt contains multiple types of alkyl groups having 8 to 18 carbon atoms. The counteranion of the dialkyldimethylammonium salt is the chloride ion.
In Example 6, zinc sulfate was used as the metal salt.
 実施例7では金属含有マトリックス1として、市販されている銀系リン酸塩系ガラスを用いた。金属含有マトリックス1は、Pを55モル%、Bを15モル%、MgOを20モル%、酸化アルミニウム(Al)を10モル%含む組成を有する。金属含有マトリックス1の100質量%に対し、酸化銀(AgO)は2.0質量%含まれている。
 実施例8では金属含有マトリックス2として、市販されている銀系リン酸塩系ガラス(AgO・3(P・CaO)m・9(B)n、m=10~15、n=1~2)を用いた。金属含有マトリックス2の100質量%に対し、酸化銀(AgO)は2.9質量%含まれている。
In Example 7, a commercially available silver-based phosphate glass was used as the metal-containing matrix 1. The metal-containing matrix 1 has a composition containing 55 mol% of P2O5 , 15 mol% of B2O3 , 20 mol% of MgO , and 10 mol% of aluminum oxide ( Al2O3 ) . Silver oxide (Ag 2 O) is contained in an amount of 2.0% by mass based on 100% by mass of the metal-containing matrix 1 .
In Example 8, as the metal-containing matrix 2, commercially available silver-based phosphate glass (Ag 2 O.3(P 2 O 5.CaO )m.9(B 2 O 3 )n, m=10~ 15, n=1-2) was used. Silver oxide (Ag 2 O) is contained in an amount of 2.9% by mass based on 100% by mass of the metal-containing matrix 2 .
[評価]
(1)抗ウイルス性およびその耐久性
 ISO18184(Textiles - Determination of antiviral activity of textile products)に基づき、以下の条件および手順により抗ウイルス試験を行った。検体として、実施例および比較例で得られた洗濯前の加工物品(L0)、および、実施例で得られた加工物品(L0)をJIS L 1930 C4M法に準じて10回洗濯した後の加工物品(L10)を用いた。
[evaluation]
(1) Antiviral property and its durability Based on ISO18184 (Textiles - Determination of antiviral activity of textile products), an antiviral test was conducted under the following conditions and procedures. As specimens, processed articles (L0) obtained in Examples and Comparative Examples before washing, and processed articles (L0) obtained in Examples after washing 10 times according to the JIS L 1930 C4M method. Article (L10) was used.
(試験条件)
 ・試験ウイルス:ヒトインフルエンザウイルス(H3N2)
 ・宿主細胞:MDCK細胞(イヌ腎臓由来細胞)
 ・洗い出し液:SCDLP培地
 ・作用条件:25℃、2時間
 ・感染価測定法:プラーク測定法
(Test condition)
・Test virus: Human influenza virus (H3N2)
・Host cell: MDCK cell (canine kidney-derived cell)
・Washing solution: SCDLP medium ・Action conditions: 25°C, 2 hours ・Infectious titer measurement method: Plaque measurement method
(試験手順)
 まず、宿主細胞に試験ウイルスを感染させて、37℃で所定時間培養した。その後、4℃、1000×gで15分間遠心分離して、上清液(ウイルス懸濁液)を得た。得られたウイルス懸濁液を、滅菌蒸留水を用いて10倍に希釈して、1×10~5×10PFU/mLに調製し、試験ウイルス懸濁液Cを得た。
 次いで、検体0.4gに、試験ウイルス懸濁液Cを0.2mL接種した。25℃、2時間作用させた後、洗い出し液20mLを加え、ボルテックスミキサーで攪拌し、検体からウイルスを洗い出した。洗い出した液を段階希釈して、プラーク測定法にてウイルス感染価を測定した。最後に、次式により抗ウイルス活性値を算出した。
  Mv=lg(Va)-lg(Vb)
  Mv:抗ウイルス活性値
  lg(Va):接種直後の標準布のウイルス感染価(PFU/標準布)の常用対数
  lg(Vb):2時間静置後の検体のウイルス感染価(PFU/検体)の常用対数
(Procedure of test)
First, host cells were infected with the test virus and cultured at 37°C for a predetermined period of time. Thereafter, centrifugation was performed at 4° C. and 1000×g for 15 minutes to obtain a supernatant (virus suspension). The obtained virus suspension was diluted 10 times with sterile distilled water to prepare a concentration of 1×10 7 to 5×10 7 PFU/mL to obtain test virus suspension C.
Next, 0.2 mL of test virus suspension C was inoculated to 0.4 g of the specimen. After acting at 25° C. for 2 hours, 20 mL of washout solution was added and stirred with a vortex mixer to wash out the virus from the sample. The washed out solution was serially diluted and the virus infectivity titer was measured by plaque assay. Finally, the antiviral activity value was calculated using the following formula.
Mv=lg(Va)-lg(Vb)
Mv: Antiviral activity value lg (Va): Common logarithm of the virus infectivity of the standard cloth (PFU/standard cloth) immediately after inoculation lg (Vb): Virus infectivity of the specimen after standing for 2 hours (PFU/sample) common logarithm of
 抗ウイルス活性値は、以下のように評価した。
      抗ウイルス活性値≧3.0:十分な効果あり
  3.0>抗ウイルス活性値≧2.0:効果あり
The antiviral activity value was evaluated as follows.
Antiviral activity value≧3.0: Sufficient effect 3.0>Antiviral activity value≧2.0: Effective
(2-1)黄色ブドウ球菌に対する抗菌性
 JIS L 1902:2015「繊維製品の抗菌性試験方法及び抗菌効果」を準用して、菌液吸収法により抗菌試験を行った。黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)を用いて、以下の式で示される抗菌活性値を算出して、抗菌性を評価した。検体として、上記の加工物品(L0)を用いた。
(2-1) Antibacterial properties against Staphylococcus aureus An antibacterial test was carried out by the bacterial liquid absorption method according to JIS L 1902:2015 "Antibacterial test method and antibacterial effect of textile products". Using Staphylococcus aureus NBRC 12732, the antibacterial activity value expressed by the following formula was calculated to evaluate antibacterial properties. The above processed article (L0) was used as a specimen.
 抗菌活性値=(Mb-Ma)-(Mc-Mo)
  Ma:標準布の試験菌液接種直後の生菌数またはATP量の常用対数値の平均値
  Mb:標準布の18時間培養後の生菌数またはATP量の常用対数値の平均値
  Mo:検体の試験菌液接種直後の生菌数またはATP量の常用対数値の平均値
  Mc:検体の18時間培養後の生菌数またはATP量の常用対数値の平均値
Antibacterial activity value = (Mb-Ma)-(Mc-Mo)
Ma: The average value of the number of viable bacteria or the common logarithm of the ATP amount on the standard cloth immediately after inoculation with the test bacterial solution Mb: The average value of the number of viable bacteria or the common logarithm of the ATP amount after 18-hour incubation of the standard cloth Mo: Specimen The average value of the number of viable bacteria or the common logarithm of the amount of ATP immediately after inoculation of the test bacterial solution Mc: The average value of the number of viable bacteria or the common logarithm of the amount of ATP after culturing the specimen for 18 hours
(2-2)肺炎桿菌に対する抗菌性
 JIS L 1902:2015「繊維製品の抗菌性試験方法及び抗菌効果」を準用して、菌液吸収法により抗菌試験を行った。肺炎桿菌(Klebsiella pneumoniae NBRC 13277)を用いて、上記の式で示される抗菌活性値を算出して、抗菌性を評価した。検体として、上記の加工物品(L0)を用いた。
(2-2) Antibacterial properties against Klebsiella pneumoniae An antibacterial test was carried out by the bacterial liquid absorption method according to JIS L 1902:2015 "Antibacterial test method and antibacterial effect of textile products". Antibacterial activity was evaluated using Klebsiella pneumoniae NBRC 13277 by calculating the antibacterial activity value shown by the above formula. The above processed article (L0) was used as a specimen.
(3)消臭性およびその耐久性
 SEKマーク繊維製品認証基準(制定者:一般社団法人繊維評価技術協議会 製品認証部、改訂日:2022年4月1日)に記載の「21.消臭性試験(検知管法、ガスクロマトグラフ法)」を準拠した方法により評価した。試料として、上記の加工物品(L0)および(L10)を用いた。
(3) Deodorizing property and its durability "21. Deodorizing" described in the SEK Mark Textile Product Certification Standards (established by: Textile Evaluation Technology Council, Product Certification Department, revised date: April 1, 2022) Evaluation was made using a method compliant with the "Sensitivity Test (Detector Tube Method, Gas Chromatography Method)". The above processed articles (L0) and (L10) were used as samples.
(臭気成分ガス初発濃度)
 消臭性を評価する際に用いた、臭気成分ガスの初発濃度は以下の濃度となるように調整した。
  アンモニア 100ppm
  酢酸 30ppm
  イソ吉草酸 38ppm
(試料)
 加工物品(L0)および(L10)から、以下の大きさの試料を切り出した。
  検知管法で用いる試料:100cm2(縦10cm×横10cm)
  ガスクロマトグラフ法で用いる試料:50cm2(縦5cm×横10cm)
(Initial concentration of odor component gas)
The initial concentration of the odor component gas used in evaluating the deodorizing properties was adjusted to the following concentration.
Ammonia 100ppm
Acetic acid 30ppm
Isovaleric acid 38ppm
(sample)
Samples of the following sizes were cut out from the processed articles (L0) and (L10).
Sample used in the detector tube method: 100cm 2 (10cm long x 10cm wide)
Sample used in gas chromatography: 50cm 2 (5cm long x 10cm wide)
 検知管法およびガスクロマトグラフ法による試験方法は、以下の通りである。
 (検知管法)
 5Lのテドラーバックに、シリンジを用いて規定の初発濃度になるように臭気成分ガス3Lを注入し、密閉した。臭気成分ガスをテドラーバックに注入してから2時間後に、テドラーバック中に存在する臭気成分ガスの濃度を検知管により測定した(空試験)。この濃度を、空試験濃度とし、平均値をSbとした。
Test methods using the detector tube method and gas chromatography method are as follows.
(detector tube method)
3 L of odor component gas was injected into a 5 L Tedlar bag using a syringe to reach a specified initial concentration, and the bag was sealed. Two hours after the odor gas was injected into the Tedlar bag, the concentration of the odor gas present in the Tedlar bag was measured using a detection tube (blank test). This concentration was taken as the blank test concentration, and the average value was taken as Sb.
 次に、上記の試料を5Lのテドラーバックに入れた。続いて、シリンジを用いて規定の初発濃度になるように臭気成分ガス3Lを上記のテドラーバッグに注入し、密閉した。空試験と同様、臭気成分ガスをテドラーバックに注入してから2時間後の臭気成分ガスの濃度を検知管により測定し、測定した濃度の平均値をSnとした。 Next, the above sample was placed in a 5L Tedlar bag. Subsequently, 3 L of odor component gas was injected into the above Tedlar bag using a syringe to reach a specified initial concentration, and the bag was sealed. As in the blank test, the concentration of the odor gas was measured using a detection tube 2 hours after the odor gas was injected into the Tedlar bag, and the average value of the measured concentrations was taken as Sn.
 (ガスクロマトグラフ法(GC法))
 最初に臭気成分ガスを発生させる原臭溶液の調製を行った。アンモニアの原臭溶液は、アンモニア水(アンモニア濃度:28%)7.2mlを蒸留水100mlにて希釈して調製した。酢酸の原臭溶液は、酢酸試薬(酢酸純度:99.7%)0.5mlを蒸留水100mlで希釈して調製した。イソ吉草酸の原臭溶液は、イソ吉草酸試薬(イソ吉草酸純度:98%)1mlを蒸留水100mlで希釈し、そのイソ吉草酸希釈液0.5mlを蒸留水100mlでさらに希釈して調製した。
(Gas chromatography method (GC method))
First, a raw odor solution for generating odor component gas was prepared. An ammonia raw odor solution was prepared by diluting 7.2 ml of ammonia water (ammonia concentration: 28%) with 100 ml of distilled water. The raw odor solution of acetic acid was prepared by diluting 0.5 ml of acetic acid reagent (acetic acid purity: 99.7%) with 100 ml of distilled water. The original odor solution of isovaleric acid is prepared by diluting 1 ml of isovaleric acid reagent (isovaleric acid purity: 98%) with 100 ml of distilled water, and further diluting 0.5 ml of the isovaleric acid diluted solution with 100 ml of distilled water. did.
 次に、各臭気について空試験を行った。500mlの三角フラスコにマグネチィックスターラーバーを入れ、各臭気の原臭溶液5μlをマイクロピペットにて注入し、密栓した。三角フラスコ中のマグネチィックスターラーバーをマグネットスターラーで攪拌し、2時間後、三角フラスコ内の残存ガスをシリンジによりサンプリングし、サンプリングした残存ガスの濃度をガスクロマトグラフ分析装置で測定した。この測定値のピーク面積の平均値を空試験の数値Sbとした。 Next, a blank test was conducted for each odor. A magnetic stirrer bar was placed in a 500 ml Erlenmeyer flask, 5 μl of the original odor solution of each odor was injected with a micropipette, and the flask was tightly stoppered. The magnetic stir bar in the Erlenmeyer flask was stirred with a magnetic stirrer, and after 2 hours, the residual gas in the Erlenmeyer flask was sampled with a syringe, and the concentration of the sampled residual gas was measured with a gas chromatograph analyzer. The average value of the peak areas of these measured values was taken as the numerical value Sb of the blank test.
 次に、上記の試料を500mlの三角フラスコへ入れたこと以外は、空試験同様に操作して、2時間後、容器内の残存ガスを、空試験と同じ操作でサンプリングした。サンプリングした残存ガスの濃度をガスクロマトグラフ分析装置で測定し、この測定値のピーク面積の平均値を、試料を用いた試験の数値Snとした。 Next, the operation was carried out in the same manner as the blank test except that the above sample was placed in a 500 ml Erlenmeyer flask, and after 2 hours, the residual gas in the container was sampled in the same manner as in the blank test. The concentration of the sampled residual gas was measured using a gas chromatograph analyzer, and the average value of the peak areas of the measured values was taken as the numerical value Sn of the test using the sample.
 (臭気減少率)
 検知管法またはガスクロマトグラフ法にて測定した、空試験におけるガス濃度の平均値(Sb)、および試料を用いた場合におけるガス濃度の平均値(Sn)から、下記式により臭気成分ガスの減少率を求めた。
  臭気減少率(%)=[(Sb-Sn)/Sb]×100
   Sb:空試験におけるガス濃度の平均値
   Sn:試料を用いた試験におけるガス測定値の平均値
(Odor reduction rate)
From the average value of gas concentration in a blank test (Sb) and the average value of gas concentration in the case of using a sample (Sn), measured by the detector tube method or gas chromatography method, the reduction rate of odor component gas is determined by the following formula. I asked for
Odor reduction rate (%) = [(Sb-Sn)/Sb] x 100
Sb: Average value of gas concentration in blank test Sn: Average value of gas measurement values in test using sample
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1-8の加工剤を使用した加工物品(L0)は、抗ウイルス活性値がいずれも2.0以上であり、抗ウイルス性を有していた。実施例1-4,6-8の加工剤を使用した加工物品(L10)もまた、抗ウイルス活性値がいずれも2.0以上であり、抗ウイルス性の耐久性を有していた。この結果から、実施例5の加工剤を使用した加工物品(L10)もまた、高い抗ウイルス性の耐久性を有していると予想される。 The processed articles (L0) using the processing agents of Examples 1-8 all had antiviral activity values of 2.0 or more and had antiviral properties. The processed articles (L10) using the processing agents of Examples 1-4 and 6-8 also had antiviral activity values of 2.0 or more, and had antiviral durability. From this result, it is expected that the processed article (L10) using the processing agent of Example 5 also has high antiviral durability.
 実施例1-2,6の加工剤を使用した加工物品(L0)は、黄色ブドウ球菌に対する抗菌性がいずれも3.0以上であり、肺炎桿菌に対する抗菌性も3.0以上であり、優れた抗菌性を有していた。上記した機能性を発揮するメカニズムを考慮すると、実施例3-5,7-8の加工剤を使用した加工物品(L0)もまた、高い抗菌性を有していると予想される。さらに、上記の通り、加工物品(L10)が高い抗ウイルス性の耐久性を有していることを考慮すると、加工物品(L10)はまた、高い抗菌性の耐久性を有していると予想される。 The processed articles (L0) using the processing agents of Examples 1-2 and 6 both have antibacterial properties against Staphylococcus aureus of 3.0 or higher, and antibacterial properties against Klebsiella pneumoniae of 3.0 or higher, making them excellent. It had antibacterial properties. Considering the mechanism by which the above functionality is exhibited, it is expected that the processed articles (L0) using the processing agents of Examples 3-5 and 7-8 also have high antibacterial properties. Furthermore, as mentioned above, considering that the processed article (L10) has high antiviral durability, it is expected that the processed article (L10) also has high antibacterial durability. be done.
 実施例1-2,6の加工剤を使用した加工物品(L0)は、アンモニア、酢酸およびイソ吉草酸のすべてに対する消臭性に優れていた。さらに、実施例1-2,6の加工剤を使用した加工物品(L10)は、アンモニアおよび酢酸に対する消臭性の耐久性に優れていた。上記した機能性を発揮するメカニズムを考慮すると、実施例1-2,6の加工剤を使用した加工物品(L10)は、イソ吉草酸に対する消臭性の耐久性にも優れていると予想される。同様に、実施例3-5,7-8の加工剤を使用した加工物品(L0)および加工物品(L10)もまた、いずれのガスに対しても高い消臭性およびその耐久性を有していると予想される。 The processed articles (L0) using the processing agents of Examples 1-2 and 6 had excellent deodorizing properties against ammonia, acetic acid, and isovaleric acid. Furthermore, the processed articles (L10) using the processing agents of Examples 1-2 and 6 had excellent deodorizing durability against ammonia and acetic acid. Considering the mechanism for exhibiting the functionality described above, it is expected that the processed articles (L10) using the processing agents of Examples 1-2 and 6 will also have excellent durability in deodorizing properties against isovaleric acid. Ru. Similarly, processed articles (L0) and processed articles (L10) using the processing agents of Examples 3-5 and 7-8 also have high deodorizing properties and durability against any gas. It is expected that
 一方、アミノ酸金属塩を使用した比較例1の加工物品(L0)は、抗ウイルス性が発現しなかった。これは、ピロリドンカルボン酸の金属塩が繊維と共有結合できず、繊維上に定着しなかったためと考えられる。比較例1の加工物品(L0)はまた、抗菌性および消臭性を発揮しないと予想される。 On the other hand, the processed article of Comparative Example 1 (L0) using the amino acid metal salt did not exhibit antiviral properties. This is considered to be because the metal salt of pyrrolidone carboxylic acid could not covalently bond to the fiber and was not fixed on the fiber. The processed article of Comparative Example 1 (L0) is also not expected to exhibit antibacterial and deodorizing properties.
 金属化合物を使用しなかった比較例2および3の加工物品(L0)もまた、抗ウイルスを発現しなかった。これは、有機塩は繊維に共有結合したものの、金属イオンが含まれていないため、ウイルスを十分に失活させることができなかったものと考えられる。比較例2および3の加工物品(L0)はまた、抗菌性および消臭性を発揮しないと予想される。 The processed articles of Comparative Examples 2 and 3 (L0) in which no metal compound was used also did not exhibit antiviral activity. This is thought to be due to the fact that although the organic salt was covalently bonded to the fiber, it did not contain metal ions and was unable to sufficiently inactivate the virus. The processed articles (L0) of Comparative Examples 2 and 3 are also not expected to exhibit antibacterial and deodorizing properties.
(4)金属付着量
 実施例2で得られた加工物品(LO)および加工物品(L10)に存在する金属(Ag)含有量を、誘導結合プラズマ質量分析(icp-ms)を用いて、測定した。
(4) Metal adhesion amount The metal (Ag) content present in the processed article (LO) and processed article (L10) obtained in Example 2 was measured using inductively coupled plasma mass spectrometry (ICP-MS). did.
 その結果、加工物品(LO)1g当たりのAg含有量は6.8μg/gであり、加工物品(L10)1g当たりのAg含有量は3.7μg/gであった。このことから、本開示に係る加工物品は、洗濯後にも十分な量のAgを保持していることが確認された。なお、未加工の被処理品から、Agイオンは検出されなかった。 As a result, the Ag content per 1 g of processed article (LO) was 6.8 μg/g, and the Ag content per 1 g of processed article (L10) was 3.7 μg/g. From this, it was confirmed that the processed article according to the present disclosure retained a sufficient amount of Ag even after washing. Note that no Ag ions were detected in the unprocessed product.
 本開示は以下の態様を含む。
(態様1)
 第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、
 金属化合物、および、
 水性溶媒、を含み、
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
 前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
 前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工剤。
(態様2)
 前記第1アミノ酸類を形成するアミノ酸は、炭素数4~8の脂肪族炭化水素基を有する、態様1の加工剤。
(態様3)
 前記第1アミノ酸類を形成するアミノ酸は、アルギニンである、態様1または2の加工剤。
(態様4)
 前記第1アミノ酸類に含まれる脂肪酸アシル基は、炭素数8~22の飽和あるいは不飽和脂肪酸に由来する、態様1~3いずれかの加工剤。
(態様5)
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸の炭素数1~4のアルキルエステルを含む、態様1~4いずれかの加工剤。
(態様6)
 前記第2アミノ酸の前記アニオン性基は、α-炭素に結合するカルボキシ基である、態様1~5いずれかの加工剤。
(態様7)
 前記第2アミノ酸類のα-アミノ基は、第二級アミノ基である、態様1~6いずれかの加工剤。
(態様8)
 前記第2アミノ酸類は、窒素含有複素環を有する、態様1~7いずれかの加工剤。
(態様9)
 前記第2アミノ酸類は、ピロリドンカルボン酸である、態様1~8いずれかの加工剤。
(態様10)
 前記金属化合物は、
 鉄、コバルト、ニッケル、銅、亜鉛、白金、銀および金よりなる群から選択される少なくとも1種の金属のイオンと、
 塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン、硫酸イオン、水酸化物イオン、硝酸イオンおよび酢酸イオンよりなる群から選択される少なくとも1種のアニオンと、から形成される金属塩である、態様1~9いずれかの加工剤。
(態様11)
 前記金属塩は、硫酸銅、硫酸亜鉛、酢酸銅、および硝酸銀の少なくとも1種を含む、態様10の加工剤。
(態様12)
 前記有機塩の質量Wと前記金属塩の質量Wとの比率(W/W)は、500/1~1/2である、態様10または11の加工剤。
(態様13)
 前記金属化合物は、酸化銀、酸化亜鉛および酸化銅よりなる群から選択される少なくとも1種の金属酸化物であり、
 前記金属酸化物は、リン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方の中に含有されている、態様1~9いずれかの加工剤。
(態様14)
 前記金属酸化物は、前記リン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方と前記金属酸化物との合計100質量%に対し、0.2質量%以上10質量%以下含有されている、態様13の加工剤。
(態様15)
 前記リン酸塩系ガラスは、
 五酸化二リンを35~65モル%、
 三酸化二ホウ素を5~25モル%、
 第2族元素の酸化物を5~55モル%、および、
 酸化ナトリウム、酸化カリウム、酸化ケイ素および酸化アルミニウムよりなる群から選択される少なくとも1種を0~20モル%含む、態様13または14の加工剤。
(態様16)
 前記有機塩の質量Wと、前記金属酸化物を含有するリン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方の質量Wとの比率(W/W)は、1/10~15/7である、態様13~15いずれかの加工剤。
(態様17)
 被処理品と、
 前記被処理品に付着する、第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、および、金属化合物、を備え、
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
 前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
 前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工物品。
(態様18)
 前記被処理品は、天然繊維、再生繊維、半合成繊維、および、合成繊維よりなる群から選択される少なくとも1種を含む、態様17の加工物品。
(態様19)
 加工剤と被処理品とを接触させる工程を備え、
 前記加工剤は、
 第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、
 金属化合物、および、
 水性溶媒、を含み、
 前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
 前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
 前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工物品の製造方法。
The present disclosure includes the following aspects.
(Aspect 1)
an organic salt of a first amino acid and a second amino acid different from the first amino acid;
metal compounds, and
an aqueous solvent,
The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
The second amino acids are at least one of α-amino acids and derivatives thereof,
The organic salt is a processing agent formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
(Aspect 2)
The processing agent according to aspect 1, wherein the amino acid forming the first amino acids has an aliphatic hydrocarbon group having 4 to 8 carbon atoms.
(Aspect 3)
The processing agent according to aspect 1 or 2, wherein the amino acid forming the first amino acids is arginine.
(Aspect 4)
The processing agent according to any one of aspects 1 to 3, wherein the fatty acid acyl group contained in the first amino acids is derived from a saturated or unsaturated fatty acid having 8 to 22 carbon atoms.
(Aspect 5)
The processing agent according to any one of aspects 1 to 4, wherein the first amino acid contains an alkyl ester of a fatty acylamino acid having 1 to 4 carbon atoms and having a basic functional group in its side chain.
(Aspect 6)
The processing agent according to any one of aspects 1 to 5, wherein the anionic group of the second amino acid is a carboxy group bonded to the α-carbon.
(Aspect 7)
The processing agent according to any one of aspects 1 to 6, wherein the α-amino group of the second amino acid is a secondary amino group.
(Aspect 8)
The processing agent according to any one of aspects 1 to 7, wherein the second amino acid has a nitrogen-containing heterocycle.
(Aspect 9)
The processing agent according to any one of aspects 1 to 8, wherein the second amino acid is pyrrolidone carboxylic acid.
(Aspect 10)
The metal compound is
ions of at least one metal selected from the group consisting of iron, cobalt, nickel, copper, zinc, platinum, silver and gold;
A metal salt formed from at least one anion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion. , the processing agent according to any one of aspects 1 to 9.
(Aspect 11)
The processing agent according to aspect 10, wherein the metal salt includes at least one of copper sulfate, zinc sulfate, copper acetate, and silver nitrate.
(Aspect 12)
The processing agent according to aspect 10 or 11, wherein the ratio of the mass W O of the organic salt to the mass W M of the metal salt (W O /W M ) is 500/1 to 1/2.
(Aspect 13)
The metal compound is at least one metal oxide selected from the group consisting of silver oxide, zinc oxide, and copper oxide,
The processing agent according to any one of aspects 1 to 9, wherein the metal oxide is contained in at least one of a phosphate glass and an inorganic phosphate compound.
(Aspect 14)
The metal oxide is contained in an amount of 0.2% by mass or more and 10% by mass or less with respect to a total of 100% by mass of the metal oxide and at least one of the phosphate glass and the inorganic phosphate compound. , the processing agent of aspect 13.
(Aspect 15)
The phosphate glass is
35 to 65 mol% of diphosphorus pentoxide,
5 to 25 mol% diboron trioxide,
5 to 55 mol% of an oxide of a Group 2 element, and
The processing agent according to aspect 13 or 14, which contains 0 to 20 mol% of at least one selected from the group consisting of sodium oxide, potassium oxide, silicon oxide, and aluminum oxide.
(Aspect 16)
The ratio of the mass W O of the organic salt to the mass W P of at least one of the phosphate glass containing the metal oxide and the inorganic phosphate compound (W O /W P ) is 1/10. The processing agent according to any one of aspects 13 to 15, which is 15/7.
(Aspect 17)
The product to be processed,
comprising an organic salt of a first amino acid and a second amino acid different from the first amino acid, which adheres to the article to be treated, and a metal compound;
The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
The second amino acids are at least one of α-amino acids and derivatives thereof,
The organic salt is a processed article formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
(Aspect 18)
The processed article according to aspect 17, wherein the article to be treated includes at least one selected from the group consisting of natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers.
(Aspect 19)
Equipped with a process of bringing the processing agent into contact with the workpiece,
The processing agent is
an organic salt of a first amino acid and a second amino acid different from the first amino acid;
metal compounds, and
an aqueous solvent,
The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
The second amino acids are at least one of α-amino acids and derivatives thereof,
The organic salt is formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
 本発明の加工剤は、優れた抗ウイルス性、抗菌性および消臭性を有するため、種々の用途に好適である。 The processing agent of the present invention has excellent antiviral, antibacterial, and deodorizing properties, and is therefore suitable for various uses.
 本願は、2022年3月31日付けで日本国にて出願された特願2022-060418に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2022-060418 filed in Japan on March 31, 2022, and the entire content thereof is incorporated herein by reference.

Claims (19)

  1.  第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、
     金属化合物、および、
     水性溶媒、を含み、
     前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
     前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
     前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工剤。
    an organic salt of a first amino acid and a second amino acid different from the first amino acid;
    metal compounds, and
    an aqueous solvent,
    The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
    The second amino acids are at least one of α-amino acids and derivatives thereof,
    The organic salt is a processing agent formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  2.  前記第1アミノ酸類を形成するアミノ酸は、炭素数4~8の脂肪族炭化水素基を有する、請求項1に記載の加工剤。 The processing agent according to claim 1, wherein the amino acid forming the first amino acids has an aliphatic hydrocarbon group having 4 to 8 carbon atoms.
  3.  前記第1アミノ酸類を形成するアミノ酸は、アルギニンである、請求項1または2に記載の加工剤。 The processing agent according to claim 1 or 2, wherein the amino acid forming the first amino acids is arginine.
  4.  前記第1アミノ酸類に含まれる脂肪酸アシル基は、炭素数8~22の飽和あるいは不飽和脂肪酸に由来する、請求項1~3のいずれか一項に記載の加工剤。 The processing agent according to any one of claims 1 to 3, wherein the fatty acid acyl group contained in the first amino acids is derived from a saturated or unsaturated fatty acid having 8 to 22 carbon atoms.
  5.  前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸の炭素数1~4のアルキルエステルを含む、請求項1~4のいずれか一項に記載の加工剤。 The processing agent according to any one of claims 1 to 4, wherein the first amino acids include an alkyl ester having 1 to 4 carbon atoms of a fatty acylamino acid having a basic functional group in its side chain.
  6.  前記第2アミノ酸の前記アニオン性基は、α-炭素に結合するカルボキシ基である、請求項1~5のいずれか一項に記載の加工剤。 The processing agent according to any one of claims 1 to 5, wherein the anionic group of the second amino acid is a carboxy group bonded to the α-carbon.
  7.  前記第2アミノ酸類のα-アミノ基は、第二級アミノ基である、請求項1~6のいずれか一項に記載の加工剤。 The processing agent according to any one of claims 1 to 6, wherein the α-amino group of the second amino acid is a secondary amino group.
  8.  前記第2アミノ酸類は、窒素含有複素環を有する、請求項1~7のいずれか一項に記載の加工剤。 The processing agent according to any one of claims 1 to 7, wherein the second amino acid has a nitrogen-containing heterocycle.
  9.  前記第2アミノ酸類は、ピロリドンカルボン酸である、請求項1~8のいずれか一項に記載の加工剤。 The processing agent according to any one of claims 1 to 8, wherein the second amino acid is pyrrolidone carboxylic acid.
  10.  前記金属化合物は、
     鉄、コバルト、ニッケル、銅、亜鉛、白金、銀および金よりなる群から選択される少なくとも1種の金属のイオンと、
     塩化物イオン、臭化物イオン、フッ化物イオン、ヨウ化物イオン、硫酸イオン、水酸化物イオン、硝酸イオンおよび酢酸イオンよりなる群から選択される少なくとも1種のアニオンと、から形成される金属塩である、請求項1~9のいずれか一項に記載の加工剤。
    The metal compound is
    ions of at least one metal selected from the group consisting of iron, cobalt, nickel, copper, zinc, platinum, silver and gold;
    A metal salt formed from at least one anion selected from the group consisting of chloride ion, bromide ion, fluoride ion, iodide ion, sulfate ion, hydroxide ion, nitrate ion, and acetate ion. , the processing agent according to any one of claims 1 to 9.
  11.  前記金属塩は、硫酸銅、硫酸亜鉛、酢酸銅、および硝酸銀の少なくとも1種を含む、請求項10に記載の加工剤。 The processing agent according to claim 10, wherein the metal salt includes at least one of copper sulfate, zinc sulfate, copper acetate, and silver nitrate.
  12.  前記有機塩の質量Wと前記金属塩の質量Wとの比率(W/W)は、500/1~1/2である、請求項10または11に記載の加工剤。 The processing agent according to claim 10 or 11, wherein a ratio (W O /W M ) between the mass W O of the organic salt and the mass W M of the metal salt is 500/1 to 1/2.
  13.  前記金属化合物は、酸化銀、酸化亜鉛および酸化銅よりなる群から選択される少なくとも1種の金属酸化物であり、
     前記金属酸化物は、リン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方の中に含有されている、請求項1~9のいずれか一項に記載の加工剤。
    The metal compound is at least one metal oxide selected from the group consisting of silver oxide, zinc oxide, and copper oxide,
    The processing agent according to any one of claims 1 to 9, wherein the metal oxide is contained in at least one of a phosphate glass and an inorganic phosphate compound.
  14.  前記金属酸化物は、前記リン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方と前記金属酸化物との合計100質量%に対し、0.2質量%以上10質量%以下含有されている、請求項13に記載の加工剤。 The metal oxide is contained in an amount of 0.2% by mass or more and 10% by mass or less with respect to a total of 100% by mass of the metal oxide and at least one of the phosphate glass and the inorganic phosphate compound. , the processing agent according to claim 13.
  15.  前記リン酸塩系ガラスは、
     五酸化二リンを35~65モル%、
     三酸化二ホウ素を5~25モル%、
     第2族元素の酸化物を5~55モル%、および、
     酸化ナトリウム、酸化カリウム、酸化ケイ素および酸化アルミニウムよりなる群から選択される少なくとも1種を0~20モル%含む、請求項13または14に記載の加工剤。
    The phosphate glass is
    35 to 65 mol% of diphosphorus pentoxide,
    5 to 25 mol% diboron trioxide,
    5 to 55 mol% of an oxide of a Group 2 element, and
    The processing agent according to claim 13 or 14, which contains 0 to 20 mol% of at least one selected from the group consisting of sodium oxide, potassium oxide, silicon oxide, and aluminum oxide.
  16.  前記有機塩の質量Wと、前記金属酸化物を含有するリン酸塩系ガラスおよび無機リン酸塩系化合物の少なくとも一方の質量Wとの比率(W/W)は、1/10~15/7である、請求項13~15のいずれか一項に記載の加工剤。 The ratio of the mass W O of the organic salt to the mass W P of at least one of the phosphate glass containing the metal oxide and the inorganic phosphate compound (W O /W P ) is 1/10. The processing agent according to any one of claims 13 to 15, which is ˜15/7.
  17.  被処理品と、
     前記被処理品に付着する、第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、および、金属化合物、を備え、
     前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
     前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
     前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工物品。
    The product to be processed,
    comprising an organic salt of a first amino acid and a second amino acid different from the first amino acid, which adheres to the article to be treated, and a metal compound;
    The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
    The second amino acids are at least one of α-amino acids and derivatives thereof,
    The organic salt is a processed article formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
  18.  前記被処理品は、天然繊維、再生繊維、半合成繊維、および、合成繊維よりなる群から選択される少なくとも1種を含む、請求項17に記載の加工物品。 The processed article according to claim 17, wherein the article to be treated includes at least one selected from the group consisting of natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers.
  19.  加工剤と被処理品とを接触させる工程を備え、
     前記加工剤は、
     第1アミノ酸類と前記第1アミノ酸類とは異なる第2アミノ酸類との有機塩、
     金属化合物、および、
     水性溶媒、を含み、
     前記第1アミノ酸類は、側鎖に塩基性官能基を有する脂肪酸アシルアミノ酸およびその誘導体の少なくとも一方であり、
     前記第2アミノ酸類は、α-アミノ酸およびその誘導体の少なくとも一方であり、
     前記有機塩は、前記第1アミノ酸の前記塩基性官能基由来のカチオンと、前記第2アミノ酸のアニオン性基由来のアニオンとにより形成される、加工物品の製造方法。
    Equipped with a process of bringing the processing agent into contact with the workpiece,
    The processing agent is
    an organic salt of a first amino acid and a second amino acid different from the first amino acid;
    metal compounds, and
    an aqueous solvent,
    The first amino acids are at least one of a fatty acylamino acid and a derivative thereof having a basic functional group in its side chain,
    The second amino acids are at least one of α-amino acids and derivatives thereof,
    The organic salt is formed by a cation derived from the basic functional group of the first amino acid and an anion derived from the anionic group of the second amino acid.
PCT/JP2023/013238 2022-03-31 2023-03-30 Processing agent, processed article, and production method for processed article WO2023190895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060418 2022-03-31
JP2022060418 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190895A1 true WO2023190895A1 (en) 2023-10-05

Family

ID=88202781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013238 WO2023190895A1 (en) 2022-03-31 2023-03-30 Processing agent, processed article, and production method for processed article

Country Status (1)

Country Link
WO (1) WO2023190895A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143808A (en) * 1987-11-28 1989-06-06 Kanebo Ltd Germicidal liquid composition for wet tissue
JPH08175843A (en) * 1994-12-20 1996-07-09 Ishizuka Glass Co Ltd Antimicrobial agent having durability
JP2010018893A (en) * 2008-07-08 2010-01-28 Tamaki:Kk Application method of fiber treatment agent, fiber material and textile product
JP2010155783A (en) * 2008-12-26 2010-07-15 Cosmetics Roorando Kk Hair dye
JP2013184906A (en) * 2012-03-06 2013-09-19 Idemitsu Technofine Co Ltd Antibacterial/anti-mold/anti-algae composition, molded article, treating agent and fiber including the same, and treating method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143808A (en) * 1987-11-28 1989-06-06 Kanebo Ltd Germicidal liquid composition for wet tissue
JPH08175843A (en) * 1994-12-20 1996-07-09 Ishizuka Glass Co Ltd Antimicrobial agent having durability
JP2010018893A (en) * 2008-07-08 2010-01-28 Tamaki:Kk Application method of fiber treatment agent, fiber material and textile product
JP2010155783A (en) * 2008-12-26 2010-07-15 Cosmetics Roorando Kk Hair dye
JP2013184906A (en) * 2012-03-06 2013-09-19 Idemitsu Technofine Co Ltd Antibacterial/anti-mold/anti-algae composition, molded article, treating agent and fiber including the same, and treating method using the same

Similar Documents

Publication Publication Date Title
CA1336952C (en) Method of making antimicrobially active surfaces
KR20070005658A (en) Antiviral fiber, process for producing the fiber, and textile product comprising the fiber
EP1157158B1 (en) Process for making substrates with biocidal properties
JP4915530B2 (en) Antibacterial fiber, production method thereof, antibacterial fiber product containing antibacterial fiber, production method thereof and regeneration method
WO2009129244A1 (en) Method for imparting antimicrobial characteristics to hydrophilic fabrics
JP2011052338A (en) Antibacterial textile product and manufacturing method thereof
Ibrahim et al. An eco-friendly multifunctional nano-finishing of cellulose/wool blends
JP2014525481A5 (en)
JP6689613B2 (en) Antibacterial and antiviral composition for textiles and textile products
CN111235658A (en) Antimicrobial fabric, preparation method thereof and prepared product
JP2017193793A (en) Composition for processing fiber products, fiber product and method for producing the same
KR20220145779A (en) Wash-resistant bioactive cellulose fibre having antibacterial and antiviral properties
JPH0610126B2 (en) Antibacterial agent
JP4099546B2 (en) Method for producing bactericidal fiber material
JP2009155732A (en) Anti-microbial fiber product and method for producing the same
WO2023190895A1 (en) Processing agent, processed article, and production method for processed article
JP6801954B2 (en) Antibacterial and antiviral processing agents and processed products using them
JPH0913279A (en) Antimicrobial fiber product and its production
JP2008514827A (en) Silver-containing antibacterial fabric
JP3779124B2 (en) Antibacterial and antifungal processing methods for fibers
JP3792984B2 (en) Antibacterial and antifungal processing methods for fibers
JP4125293B2 (en) Method for producing antibacterial, antifungal and antiviral fibers
JP6667866B2 (en) Aqueous composition and powder composition
JP7259150B2 (en) Antibacterial and antiviral processing agents and products processed therefrom
JPH07229063A (en) Antimicrobial fiber product and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780903

Country of ref document: EP

Kind code of ref document: A1