JP4099546B2 - Method for producing bactericidal fiber material - Google Patents

Method for producing bactericidal fiber material Download PDF

Info

Publication number
JP4099546B2
JP4099546B2 JP2002301512A JP2002301512A JP4099546B2 JP 4099546 B2 JP4099546 B2 JP 4099546B2 JP 2002301512 A JP2002301512 A JP 2002301512A JP 2002301512 A JP2002301512 A JP 2002301512A JP 4099546 B2 JP4099546 B2 JP 4099546B2
Authority
JP
Japan
Prior art keywords
silver
bactericidal
fiber material
fiber
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002301512A
Other languages
Japanese (ja)
Other versions
JP2004137615A (en
JP2004137615A5 (en
Inventor
幸道 中尾
三男 鈴木
力 室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002301512A priority Critical patent/JP4099546B2/en
Publication of JP2004137615A publication Critical patent/JP2004137615A/en
Publication of JP2004137615A5 publication Critical patent/JP2004137615A5/ja
Application granted granted Critical
Publication of JP4099546B2 publication Critical patent/JP4099546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、銀コロイドを用いた新規な殺菌性繊維材料製造方法に関するものである。
【0002】
【従来の技術】
これまで、銀系抗菌剤又は殺菌剤を用いた抗菌性又は殺菌性繊維材料としては、リン酸ジルコニウム銀、リン酸カルシウム銀又は銀コーティング酸化チタンを含有させた抗菌性ポリエステル短繊維(特許文献1参照)、リン酸ジルコニウム銀のような銀系抗菌剤と合成ピレスロイド系防ダニ剤を含有するポリオレフィンからなる不織布(特許文献2参照)、芯部がポリアルキレンテレフタレート、さや部がテレフタル酸成分、脂肪族ラクトン成分、エチレングリコール成分及び1,4‐ブタンジオール成分からなる共重合ポリエステルで構成された複合繊維のさや部に、リン酸ジルコニウム銀のような銀系抗菌剤を含有させた抗菌性複合繊維(特許文献3)、表面にイミド水素を有する環状化合物を吸着した銀系抗菌剤を含有するポリエステル繊維布帛(特許文献4参照)など、繊維素材として合成繊維を用いたものが知られている。
【0003】
そのほか、再生セルロースを素材として用いたものとして、第三アミンN‐オキシドに溶解したパルプに、銀系抗菌剤例えば銀ゼオライト、リン酸ジルコニウム銀、リン酸カルシウム銀、銀溶解性ガラスを加え、紡糸した抗菌性セルロース繊維(特許文献5参照)が提案されている。
【0004】
しかしながら、これらの繊維は、リン酸ジルコニウム銀のような特殊な抗菌剤を用いているため、コスト高になるのを免れないし、また使用できる繊維素材が制限される上、長期間使用すると、殺菌力、抗菌力が次第に低下するという欠点があるため、実用化が困難であった。
【0005】
【特許文献1】
特開平10−237720号公報(特許請求の範囲等)
【特許文献2】
特開平8−325915号公報(特許請求の範囲等)
【特許文献3】
特開平11−158734号公報(特許請求の範囲等)
【特許文献4】
特開平11−335970号公報(特許請求の範囲等)
【特許文献5】
特開平11−107033号公報(特許請求の範囲等)
【0006】
【発明が解決しようとする課題】
本発明は、このような事情に鑑み、長期間にわたって変質することなく、優れた殺菌力を示す殺菌性繊維材料を提供することを目的としてなされたものである。
【0007】
【課題を解決するための手段】
これまで、コロイド状銀は、例えば銀塩水溶液に還元炎を吹き付ける方法、硝酸銀の希薄溶液を還元炎で還元する方法、酸化銀をタンニンの希薄溶液で処理する方法、酸化銀を水素ガスで還元する方法などにより製造されているが、これらの方法で得られるコロイド状銀は、いずれも粒径50nm以上の比較的大きいコロイド粒子を形成するため、有効表面積が小さく、長時間にわたって使用している間に殺菌力が低下するのを免れない。
【0008】
しかも、これらのコロイド状銀を有機質繊維に担持させようとしても、単に物理的な吸着によって結合するだけなので、他の器物との接触や、洗濯により簡単に脱落し、長期間にわたって殺菌力を維持することはできない。
【0009】
しかるに、本発明者らは、水性媒質中、陽イオン性界面活性剤の存在下で、水溶性銀化合物を金属複合水素化物により還元して得られる銀コロイドは、粒径20nm以下の非常に微細な粒子を形成するため、強力な殺菌力を示す上に、タンパク質系繊維と接触させると強固に結合し、長期間にわたってその殺菌力を維持することを見出し、この知見に基づいて本発明をなすに至った。
【0010】
すなわち、本発明は、水溶性銀化合物水溶液に陽イオン性界面活性剤及び複合金属水素化物を加えて調製した粒径20nm以下のコロイドを含む淡黄色ないし黄色の銀ヒドロゾルに、タンパク質系繊維を上記銀ヒドロゾルが脱色するまで浸漬したのち、取り出し、乾燥することを特徴とする殺菌性繊維材料の製造方法を提供するものである。
【0011】
【発明の実施の形態】
本発明方法により得られる殺菌性繊維材料は、基材となる親水性有機質繊維に銀コロイドが強固に結合したものであるが、このように強固な結合が形成されるのは、併用する陽イオン性界面活性剤が大きな影響を与えているものと思われる。すなわち、陽イオン性界面活性剤を用いない場合や、陽イオン性界面活性剤の代りに陰イオン性界面活性剤を用いた場合には、このような強固な結合は形成されない。
【0012】
そして、この際基材としては、タンパク質系繊維が用いられるが、このタンパク質系繊維としては、例えば絹や羊毛を挙げることができる。これらの繊維の形状としては、単繊維、撚糸、織布、不織布、編布など任意のものでよく、特に制限はない。
絹としては、通常のカイコから採取される絹のみではなく、安価に入手し得るヤママユガ科の柞蚕を用いることもできるし、羊毛としては、製織時に生じる羊毛屑を用いることもできる。
【0013】
また、これらのタンパク質系繊維に殺菌性を付与するために結合させる銀コロイド、粒径20nm以下の微粒状のものであり、この銀コロイドは、タンパク質系繊維の質量に基づき0.01〜10.0質量%、好ましくは0.05〜5.0質量%の割合で含ませる。この量が0.01質量%未満では、殺菌力が不十分になるし、また10.0質量%よりも多くすれば、結合力が低下して脱落を生じる。
【0014】
また、銀コロイド粒子と併用されるカチオン性界面活性剤としては、長鎖アルキルアミン塩、例えばステアリルアミン塩化水素塩、オレイルアミン塩化水素塩、長鎖カルボン酸とアミンとの縮合物、例えばヤシ油脂肪酸とジエタノールアミンとの縮合物、長鎖アルキル第四級アンモニウム塩、例えばセチルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミドなどがある。この場合、長鎖アルキル第四級アンモニウム塩を用いると殺菌力が向上するので有利である。
このカチオン性界面活性剤は、銀100質量部当り、50〜2000質量部、好ましくは100〜1500質量部の範囲で用いられるが、殺菌力を強化するために、さらに増量することもできる。
【0015】
本発明の殺菌性繊維材料には、所望に応じさらに殺菌力を強化するために、他の殺菌成分、例えば亜鉛、スズ、銅などの金属又はイオンを含ませることができる。これらの含有量は、タンパク質系繊維100質量部当り1質量部以下にするのが好ましい。
【0016】
本発明方法によれば、水溶性銀化合物水溶液に、陽イオン性界面活性剤及び複合金属水素化物を加えて還元反応させ、粒径20nm以下のコロイド粒子を含む銀ヒドロゾルを調製する。次いで、これにタンパク質系繊維も浸漬してヒドロゾルが脱色するまで接触させる。
【0017】
この際用いる水溶性銀化合物としては、例えば硝酸銀AgNO3、亜硝酸銀AgNO2、塩素酸銀AgClO3、過塩素酸銀AgClO4、酢酸銀Ag(CH3CO2)、硫酸銀Ag2SO4などを挙げることができる。そのほか[Ag(NH32]Clのような錯塩も用いることができる。
これらの水溶性銀化合物は、0.05〜5mM、好ましくは0.1〜2mMの範囲の濃度で水に溶かし、水溶液として用いられる。
【0018】
次に、この水溶性銀化合物の水溶液に添加される複合金属水素化物としては、例えば水素化ホウ素ナトリウムNaBH4、水素化ホウ素カリウムKBH4、水素化アルミニウムリチウムLiAlH4など、各種反応において還元剤として慣用されているものを用いることができる。
これらは、水溶性銀化合物に基づき、2〜50倍モル量の範囲で用いられる。これよりも少ない量では、銀の還元が不十分になるし、またこれよりも多い量では後処理が厄介である。
【0019】
この方法を好適に行うには、先ず前記の水溶性銀化合物の水溶液にカチオン性界面活性剤及び複合金属水素化物を加えて反応させることにより、銀ヒドロゾルを生成させる。この反応は室温下、例えば20℃で十分に進行するが、所望ならば30〜60℃に加熱して反応を促進することもできる。反応時間は、使用する各成分の種類や反応条件により変わるが、通常は5〜30分の範囲である。反応が完了すると粒径10nm以下の銀コロイド粒子を含む淡黄色ないし暗褐色の銀ヒドロゾルが得られる。
【0020】
次に、この銀ヒドロゾルにタンパク質系繊維を浸漬し、5〜30分間かきまぜると、銀コロイド粒子がこれに結合し、液は無色になると同時にタンパク質系繊維は黄色に着色する。そして、銀コロイド粒子が完全にタンパク質系繊維に結合したか否かは、例えば処理液中のAgの原子吸光スペクトルを測定することによって確認することができる。
【0021】
このようにして得られる殺菌性繊維材料は、黄色ブドウ球菌(Staphylococcus aureus)、大腸菌(Escherichia coli)、枯草菌(Bacillus subtillis)、肺炎桿菌(Klebsiella pneumoniae)、緑膿菌(Pseudomonas aeruginosa)などに対して強力な殺菌効果を示す。
【0022】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらによってなんら限定されるものではない。なお、各例における制菌活性値、殺菌活性値は以下に示す統一試験法により測定したものである。
【0023】
統一試験法:
(1)接種菌数:1±0.3×105個/mlの菌液0.2mlを使用
(2)試験布の滅菌:オートクレーブ中121℃で15分間
(3)試験布(浴比):18cm2、0.4g(2:1)
(4)試験培養:バイアルびん中37±1℃で18時間
(5)菌の洗い出し液:(生理食塩水+0.2%Tween80)20ml
(6)計測培養条件:ニュートリエント寒天培地中37±1℃で18時間
このようにして試験培養したものついて次の式により制菌活性値及び殺菌活性値を求める。
制菌活性値=logB−logC
殺菌活性値=logA−logC
ただし、Aは無加工布の接種直後に回収した菌数、Bは無加工布の18時間培養後に回収した菌数、Cは加工布の18時間培養後に回収した菌数。
抗菌防臭基準においては、制菌活性値が2.2以上のものを合格としている。
【0024】
実施例1
20mM−硝酸銀水溶液100mlを脱イオン水460mlで希釈したのち、室温下、1質量%濃度のステアリルトリメチルアンモニウムクロリド水溶液40ml及び40mM−ナトリウムホウ素水素化物水溶液200mlをかきまぜながら順々に加え、10分間反応させることにより、黄色透明な銀コロイド含有液800mlを調製した。
次いで、わた状絹(中国産柞蚕糸)38gを脱イオン水800mlに5分間浸漬し、これに前記の銀コロイド含有液800mlを加えて10分間にわたって搾液−含浸を繰り返した。この間に銀コロイド含有液は、ごく淡い黄色に変化した。
次に、わた状絹を取り出し、2回水洗後、3日間風乾することにより、銀コロイドを担持した黄褐色のわた状絹からなる殺菌性繊維材料40gを得た。このものの銀コロイド担持量は約0.5質量%であった。
【0025】
参考例1
大腸菌(Escherichia coli)又は黄色ブドウ球菌(Staphylococcus aureus)の生菌を含む液体培地4mlに、実施例1で得た殺菌性繊維材料を、5g、2.5g、1.25g又は0.625g加え、室温において30分間接触させ、それぞれの10分後及び30分後の生菌数を調べた。その結果を表1に示す。
【0026】
【表1】

Figure 0004099546
【0027】
この表から分るように、殺菌性繊維材料の量が2.5gの場合、黄色ブドウ球菌の生菌数は10分から30分の間に1/10から1/100の範囲で低下する。
【0028】
【0029】
実施例
実施例1と同様にして調製した銀コロイド含有液108mlにカイコから採取した絹布(300×300mm)を室温で5時間浸漬したのち、水洗し、風乾することにより黄色の銀コロイド担持絹布からなる殺菌性繊維材料を得た。このものの銀コロイド担持量は約0.05質量%であった。
【0030】
【0031】
参考例2
実施例で得た殺菌性繊維材料について繊維製品新機能評価協議会の統一試験法に従い、黄色ブドウ球菌(Staphylococcus aureusATCC6538P)を用いた抗菌性試験を行った。
また、洗濯度を調べるために、JIS L0217 103号に従い、JAFET標準洗剤を用いて10回洗濯した後の試料について同様の抗菌性試験を行った。
このようにして得た結果を表2に示す。
【0032】
【表2】
Figure 0004099546
【0033】
表中の制菌活性値及び殺菌活性値は次のようにして求められた数値である。
制菌活性値=logB−logC
殺菌活性値=logA−logC
ただし、Aは最初の生菌数、Bは18時間後の生菌数、Cは加工布の18時間後の生菌数。
【0034】
【発明の効果】
本発明方法により得られる殺菌性繊維材料は、優れた殺菌性を有し、長期間経過後においてもその効力を維持し得るので、衛生衣、病人用シーツ及びカバー、衛生マスク、除菌用濾過剤などとして広く利用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to novel process for producing bactericidal fiber material using a silver colloid.
[0002]
[Prior art]
Until now, as an antibacterial or bactericidal fiber material using a silver-based antibacterial agent or bactericidal agent, an antibacterial polyester short fiber containing silver zirconium phosphate, calcium phosphate silver or silver-coated titanium oxide (see Patent Document 1) Non-woven fabric made of polyolefin containing silver antibacterial agent such as silver zirconium phosphate and synthetic pyrethroid acaricide (see Patent Document 2), core is polyalkylene terephthalate, sheath is terephthalic acid component, aliphatic lactone An antibacterial composite fiber (patented) containing a silver antibacterial agent such as silver zirconium phosphate in the sheath of a composite fiber composed of a copolyester composed of components, ethylene glycol component and 1,4-butanediol component Reference 3) Polyester containing silver antibacterial agent adsorbing cyclic compound with imide hydrogen on the surface Such as fiber fabric (see Patent Document 4), those using synthetic fiber as a fiber material are known.
[0003]
In addition, as a raw material using regenerated cellulose, silver antibacterial agent such as silver zeolite, silver zirconium phosphate, silver calcium phosphate, silver soluble glass is added to the pulp dissolved in tertiary amine N-oxide and spun antibacterial. Cellulose fibers (see Patent Document 5) have been proposed.
[0004]
However, since these fibers use a special antibacterial agent such as silver zirconium phosphate, it is inevitable that the cost is high, and the fiber materials that can be used are limited. Due to the drawback that the strength and antibacterial power gradually decrease, it was difficult to put it to practical use.
[0005]
[Patent Document 1]
JP-A-10-237720 (claims, etc.)
[Patent Document 2]
JP-A-8-325915 (claims, etc.)
[Patent Document 3]
Japanese Patent Laid-Open No. 11-158734 (claims, etc.)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 11-335970 (Claims etc.)
[Patent Document 5]
JP-A-11-107033 (Claims etc.)
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present invention has been made for the purpose of providing a bactericidal fiber material exhibiting excellent bactericidal power without deteriorating over a long period of time.
[0007]
[Means for Solving the Problems]
Until now, colloidal silver, for example, a method of spraying a reducing flame onto an aqueous silver salt solution, a method of reducing a dilute silver nitrate solution with a reducing flame, a method of treating silver oxide with a dilute solution of tannin, reducing silver oxide with hydrogen gas The colloidal silver obtained by these methods forms relatively large colloidal particles having a particle size of 50 nm or more, and therefore has a small effective surface area and has been used for a long time. It is inevitable that the sterilizing power will decline in the meantime.
[0008]
Moreover, even if these colloidal silvers are to be supported on organic fibers, they are simply bonded by physical adsorption, so they can be easily removed by contact with other objects or by washing, maintaining sterilizing power for a long period of time. I can't do it.
[0009]
However, the present inventors have found that a silver colloid obtained by reducing a water-soluble silver compound with a metal complex hydride in an aqueous medium in the presence of a cationic surfactant has a very fine particle diameter of 20 nm or less. In addition to showing strong bactericidal power in order to form fine particles, it has been found that when it comes into contact with protein fibers, it binds firmly and maintains its bactericidal power over a long period of time. It came to.
[0010]
That is, the present invention provides a protein fiber to a light yellow to yellow silver hydrosol containing a silver colloid having a particle size of 20 nm or less prepared by adding a cationic surfactant and a composite metal hydride to a water-soluble silver compound aqueous solution. The present invention provides a method for producing a bactericidal fiber material, wherein the silver hydrosol is immersed until it is decolored, then taken out and dried .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The bactericidal fiber material obtained by the method of the present invention is a material in which silver colloid is firmly bonded to the hydrophilic organic fiber serving as a base material. The surface active agent seems to have a great influence. That is, such a strong bond is not formed when a cationic surfactant is not used or when an anionic surfactant is used instead of a cationic surfactant.
[0012]
In this case, a protein fiber is used as the base material, and examples of the protein fiber include silk and wool. The shape of these fibers may be any shape such as single fiber, twisted yarn, woven fabric, non-woven fabric, knitted fabric, and is not particularly limited.
As silk, not only silks collected from ordinary silkworms, but also silkworms of the scorpion family that can be obtained at low cost can be used, and wool wastes generated during weaving can also be used.
[0013]
In addition, the silver colloid to be bound to impart bactericidal properties to these protein fibers is a fine particle having a particle size of 20 nm or less . The silver colloid is 0.01 to 10 based on the mass of the protein fibers. 0.0% by mass, preferably 0.05 to 5.0% by mass. If this amount is less than 0.01% by mass, the sterilizing power becomes insufficient, and if it exceeds 10.0% by mass, the binding force decreases and drops off.
[0014]
Examples of the cationic surfactant used in combination with silver colloidal particles include long-chain alkylamine salts such as stearylamine hydrochloride, oleylamine hydrochloride, condensates of long-chain carboxylic acids and amines such as coconut oil fatty acid. And long-chain alkyl quaternary ammonium salts such as cetyltrimethylammonium chloride and stearyltrimethylammonium bromide. In this case, it is advantageous to use a long-chain alkyl quaternary ammonium salt because the bactericidal power is improved.
The cationic surfactant is used in the range of 50 to 2000 parts by mass, preferably 100 to 1500 parts by mass per 100 parts by mass of silver, but can be further increased in order to enhance the bactericidal activity.
[0015]
The bactericidal fiber material of the present invention may contain other bactericidal components, for example, metals such as zinc, tin, copper, or ions in order to further enhance the bactericidal power as desired. These contents are preferably 1 part by mass or less per 100 parts by mass of protein fiber.
[0016]
According to the method of the present invention , a cationic surfactant and a composite metal hydride are added to a water-soluble silver compound aqueous solution and subjected to a reduction reaction to prepare a silver hydrosol containing colloidal particles having a particle size of 20 nm or less. This is then dipped in protein fiber and contacted until the hydrosol is decolorized.
[0017]
Examples of the water-soluble silver compound used in this case include silver nitrate AgNO 3 , silver nitrite AgNO 2 , silver chlorate AgClO 3 , silver perchlorate AgClO 4 , silver acetate Ag (CH 3 CO 2 ), silver sulfate Ag 2 SO 4 and the like. Can be mentioned. In addition, complex salts such as [Ag (NH 3 ) 2 ] Cl can also be used.
These water-soluble silver compounds are dissolved in water at a concentration in the range of 0.05 to 5 mM, preferably 0.1 to 2 mM, and used as an aqueous solution.
[0018]
Next, as the composite metal hydride added to the aqueous solution of the water-soluble silver compound, for example, sodium borohydride NaBH 4 , potassium borohydride KBH 4 , lithium aluminum hydride LiAlH 4 and the like as a reducing agent in various reactions. A commonly used one can be used.
These are used in a range of 2 to 50 times the molar amount based on the water-soluble silver compound. Smaller amounts result in insufficient silver reduction, and higher amounts are cumbersome to work up.
[0019]
In order to suitably perform this method, a silver hydrosol is first formed by adding a cationic surfactant and a double metal hydride to the aqueous solution of the water-soluble silver compound and reacting them. This reaction proceeds satisfactorily at room temperature, for example, 20 ° C., but if desired, the reaction can be accelerated by heating to 30-60 ° C. The reaction time varies depending on the type of each component used and the reaction conditions, but is usually in the range of 5 to 30 minutes. When the reaction is completed, a light yellow to dark brown silver hydrosol containing silver colloid particles having a particle size of 10 nm or less is obtained.
[0020]
Next, when protein fibers are immersed in the silver hydrosol and stirred for 5 to 30 minutes, the silver colloid particles are bonded thereto, and the liquid becomes colorless and the protein fibers are colored yellow. Then, whether or not the silver colloid particles are completely bound to the protein fiber can be confirmed, for example, by measuring an atomic absorption spectrum of Ag in the treatment liquid.
[0021]
Bactericidal fiber materials thus obtained include Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas, Pseudomonas Show strong bactericidal effect.
[0022]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these. In addition, the antibacterial activity value and the bactericidal activity value in each example are measured by the unified test method shown below.
[0023]
Unified testing method:
(1) Number of inoculated bacteria: Use 0.2 ml of bacterial solution of 1 ± 0.3 × 10 5 cells / ml (2) Sterilization of test cloth: 15 minutes at 121 ° C. in autoclave (3) Test cloth (bath ratio) : 18 cm 2 , 0.4 g (2: 1)
(4) Test culture: 18 hours at 37 ± 1 ° C. in a vial (5) Bacterial washout solution: (Saline + 0.2% Tween 80) 20 ml
(6) Measurement culture conditions: The antibacterial activity value and bactericidal activity value are determined by the following formulas for the test cultured for 18 hours at 37 ± 1 ° C. in a nutrient agar medium.
Antibacterial activity value = log B-log C
Bactericidal activity value = log A−log C
However, A is the number of bacteria collected immediately after inoculation of the untreated cloth, B is the number of bacteria collected after 18 hours of culturing the untreated cloth, and C is the number of bacteria collected after 18 hours of culturing of the treated cloth.
In antibacterial and deodorant standards, those having an antibacterial activity value of 2.2 or more are acceptable.
[0024]
Example 1
After diluting 100 ml of 20 mM-silver nitrate aqueous solution with 460 ml of deionized water, 40 ml of 1% strength by weight stearyltrimethylammonium chloride aqueous solution and 200 ml of 40 mM-sodium borohydride aqueous solution are sequentially added at room temperature with stirring and allowed to react for 10 minutes. As a result, 800 ml of a yellow transparent silver colloid-containing liquid was prepared.
Next, 38 g of cotton-like silk (Chinese silk thread) was immersed in 800 ml of deionized water for 5 minutes, 800 ml of the silver colloid-containing solution was added thereto, and squeezing-impregnation was repeated for 10 minutes. During this time, the silver colloid-containing liquid changed to a very pale yellow.
Next, the cotton-like silk was taken out, washed twice with water, and air-dried for 3 days to obtain 40 g of a bactericidal fiber material made of yellow-brown cotton-like silk carrying a silver colloid. The amount of colloidal silver supported was about 0.5% by mass.
[0025]
Reference example 1
5 g, 2.5 g, 1.25 g, or 0.625 g of the bactericidal fiber material obtained in Example 1 is added to 4 ml of a liquid medium containing viable bacteria of Escherichia coli or Staphylococcus aureus, The cells were contacted at room temperature for 30 minutes, and the number of viable bacteria after 10 minutes and 30 minutes after each was examined. The results are shown in Table 1.
[0026]
[Table 1]
Figure 0004099546
[0027]
As can be seen from this table, when the amount of the bactericidal fiber material is 2.5 g, the viable count of Staphylococcus aureus decreases in the range of 1/10 to 1/100 between 10 minutes and 30 minutes.
[0028]
[0029]
Example 2
A silk cloth (300 × 300 mm) collected from silkworms was immersed in 108 ml of a silver colloid-containing solution prepared in the same manner as in Example 1 at room temperature for 5 hours, then washed with water and air-dried to sterilize a yellow silver colloid-carrying silk cloth. Fiber material was obtained. The amount of colloidal silver supported was about 0.05% by mass.
[0030]
[0031]
Reference example 2
The antibacterial fiber material obtained in Example 2 was subjected to an antibacterial test using Staphylococcus aureus ATCC 6538P according to the unified test method of the fiber product new function evaluation council.
Moreover, in order to investigate a washing degree, the same antibacterial property test was done about the sample after washing 10 times using JAFET standard detergent according to JISL0217103.
The results thus obtained are shown in Table 2.
[0032]
[Table 2]
Figure 0004099546
[0033]
The antibacterial activity value and bactericidal activity value in the table are numerical values obtained as follows.
Antibacterial activity value = log B-log C
Bactericidal activity value = log A−log C
However, A is the first viable count, B is the viable count after 18 hours, and C is the viable count after 18 hours of the processed cloth.
[0034]
【The invention's effect】
The bactericidal fiber material obtained by the method of the present invention has excellent bactericidal properties and can maintain its effectiveness even after a long period of time. It can be widely used as an agent.

Claims (3)

水溶性銀化合物水溶液に陽イオン性界面活性剤及び複合金属水素化物を加えて調製した粒径20nm以下のコロイドを含む淡黄色ないし黄色の銀ヒドロゾルに、タンパク質系繊維を上記銀ヒドロゾルが脱色するまで浸漬したのち、取り出し、乾燥することを特徴とする殺菌性繊維材料の製造方法 The silver hydrosol decolorizes protein fibers in a light yellow to yellow silver hydrosol containing a silver colloid having a particle size of 20 nm or less prepared by adding a cationic surfactant and a composite metal hydride to an aqueous solution of a water-soluble silver compound. A method for producing a bactericidal fiber material , wherein the material is taken out and then dried . タンパク質系繊維が絹及び羊毛の中から選ばれた少なくとも1種である請求項1記載の殺菌性繊維材料の製造方法The method for producing a bactericidal fiber material according to claim 1, wherein the protein fiber is at least one selected from silk and wool. 陽イオン性界面活性剤が高級アルキルアミン塩類及び高級アルキル基をもつ第四級アンモニウム塩の中から選ばれた少なくとも1種である請求項1又は2記載の殺菌性繊維材料の製造方法。 The method for producing a bactericidal fiber material according to claim 1 or 2, wherein the cationic surfactant is at least one selected from higher alkylamine salts and quaternary ammonium salts having higher alkyl groups .
JP2002301512A 2002-10-16 2002-10-16 Method for producing bactericidal fiber material Expired - Fee Related JP4099546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301512A JP4099546B2 (en) 2002-10-16 2002-10-16 Method for producing bactericidal fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301512A JP4099546B2 (en) 2002-10-16 2002-10-16 Method for producing bactericidal fiber material

Publications (3)

Publication Number Publication Date
JP2004137615A JP2004137615A (en) 2004-05-13
JP2004137615A5 JP2004137615A5 (en) 2005-12-02
JP4099546B2 true JP4099546B2 (en) 2008-06-11

Family

ID=32449829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301512A Expired - Fee Related JP4099546B2 (en) 2002-10-16 2002-10-16 Method for producing bactericidal fiber material

Country Status (1)

Country Link
JP (1) JP4099546B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605751B1 (en) 1997-11-14 2003-08-12 Acrymed Silver-containing compositions, devices and methods for making
DE60028415T2 (en) 1999-12-30 2007-06-06 Acrymed, Portland METHOD AND COMPOSITIONS FOR IMPROVED DISPENSING SYSTEMS
CN1678277B (en) 2002-07-29 2010-05-05 艾克里麦德公司 Methods and compositions for treatment of dermal conditions
US10251392B2 (en) 2004-07-30 2019-04-09 Avent, Inc. Antimicrobial devices and compositions
US8361553B2 (en) 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
CA2589618C (en) 2004-07-30 2014-05-06 Acrymed, Inc. Antimicrobial silver compositions
US9289378B2 (en) 2004-09-20 2016-03-22 Avent, Inc. Antimicrobial amorphous compositions
US8293965B2 (en) 2006-04-28 2012-10-23 Kimberly-Clark Worldwide, Inc. Antimicrobial site dressings
JP2008056592A (en) * 2006-08-30 2008-03-13 Kyoto Univ Antibacterial product, antibacterial treating liquid and method of antibacterially treatment
RU2447206C1 (en) * 2010-09-30 2012-04-10 Открытое акционерное общество "Институт пластмасс имени Г.С. Петрова" Process of obtaining synthetic fabric with biocidal properties
RU2447204C1 (en) * 2010-09-30 2012-04-10 Открытое акционерное общество "Институт пластмасс имени Г.С. Петрова" Method of producing synthetic fibre with biocidal properties
CN116856089B (en) * 2023-08-11 2023-12-26 广州宝恒纺织科技有限公司 Antibacterial viscose composite yarn and preparation method thereof

Also Published As

Publication number Publication date
JP2004137615A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4099546B2 (en) Method for producing bactericidal fiber material
US5458906A (en) Method of producing antibacterial fibers
AU2014322803B2 (en) Cellulose fibres
KR101234972B1 (en) Method for antimicrobial treatment of fiber, process for production of antimicrobial fiber, and antimicrobial fiber
CN105821654A (en) Durable cotton fabric antifungal finishing method based on click chemistry
JP2008514630A (en) Antibacterial silver halide composition
EP2274470B1 (en) Method of manufacturing natural or synthetic fibres containing silver nano-particles
CN115216957A (en) Washable bioactive cellulose fibers having antibacterial and antiviral properties
EP2756846A1 (en) Antimicrobial cellulose material and process of its production
JPH0913279A (en) Antimicrobial fiber product and its production
JP3548917B2 (en) Antibacterial and UV-blocking textiles and method for producing the same
CN108221371B (en) Method for preparing antibacterial polyester by using halamine compound and silver ions
US20040137076A1 (en) Antibacterial processing of fiber products
JPH08175843A (en) Antimicrobial agent having durability
JPH06200472A (en) Antimicrobial fiber, its production and material made of fiber
JP3280135B2 (en) Manufacturing method of antibacterial fiber products
KR20190095655A (en) Methods of deposition silver nanoparticles having a good antibacterial by using object
KR20020011310A (en) Manugacturing antibiotic products by using sivernitrtate(AgNo3)
JPH07229063A (en) Antimicrobial fiber product and its production
KR100580847B1 (en) A ANTIBACTERIA FIBER PROCESSED WITH nm,PLATINUM COLLOID SOLUTION AND THE PROCESSE METHOD
JPH0984860A (en) Antibacterial working method for fiber
CN109403024A (en) A kind of biocidal property cotton spinning textured fiber
JPH0440469B2 (en)
WO2023190895A1 (en) Processing agent, processed article, and production method for processed article
JP4724882B2 (en) Manufacturing method of deodorant and antibacterial colored fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4099546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees