JP3792984B2 - Antibacterial and antifungal processing methods for fibers - Google Patents

Antibacterial and antifungal processing methods for fibers Download PDF

Info

Publication number
JP3792984B2
JP3792984B2 JP2000103227A JP2000103227A JP3792984B2 JP 3792984 B2 JP3792984 B2 JP 3792984B2 JP 2000103227 A JP2000103227 A JP 2000103227A JP 2000103227 A JP2000103227 A JP 2000103227A JP 3792984 B2 JP3792984 B2 JP 3792984B2
Authority
JP
Japan
Prior art keywords
dispersion
pyrithione
zinc
fibers
pyrithione zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000103227A
Other languages
Japanese (ja)
Other versions
JP2001288015A (en
Inventor
公雄 鈴木
修 合志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kasei Co Ltd
Original Assignee
Osaka Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kasei Co Ltd filed Critical Osaka Kasei Co Ltd
Priority to JP2000103227A priority Critical patent/JP3792984B2/en
Publication of JP2001288015A publication Critical patent/JP2001288015A/en
Application granted granted Critical
Publication of JP3792984B2 publication Critical patent/JP3792984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル繊維、アクリル繊維及びナイロン繊維等の合成繊維類並びにアセテート繊維等の半合成繊維類、更には、天然繊維、もしくは合成繊維、半合成繊維類と天然繊維類との混合繊維からなる繊維製品に抗菌性、抗カビ性を付与するピリチオン亜鉛含有分散液及び該分散液を用いた繊維類の抗菌・抗カビ加工方法に関する。
【0002】
特に、これらの繊維製品に黄色ブドウ球菌、メチシリン耐性黄色ブドウ球菌(MRSA)、肺炎桿菌、大腸菌、病原性大腸菌O157、更に緑膿菌等に対する抗菌性を付与する分散液及び該分散液を用いた加工処理方法に関する。また、分散液としての安定性、取り扱い性に優れ、極めて高い耐洗濯性を備えた抗菌抗カビ性を繊維類に付与することのできる分散液及び該分散液を用いた加工方法に関する。
【0003】
【従来の技術】
衣料用繊維製品をはじめ布団カバー、カーテン、タオル、壁布(壁紙)等の身のまわりの繊維製品の衛生指向の高まりと共に、各種繊維製品に対する抗菌・抗カビ加工の開発が盛んである。
加えて、近年医療現場における所謂、院内感染の問題が大きくクローズアップされ、その対策としての手術衣をはじめシーツ、布団カバー、間仕切り、力ーテン、白衣、寝間着等などの医療施設内の繊維製品の抗菌・抗カビ加工技術の研究が急がれている。
【0004】
合成繊維等からなる製品の抗菌・抗カビ加工技術には、合成繊維においては、その紡糸原液に抗菌剤や抗カビ剤などの薬剤を練り込み、紡糸して抗菌、抗カビ特性を有する繊維を製造し、それを必要に応じて他の繊維類と混合して編織して製品を得る方法や普通に紡糸された合成、半合成繊維やそれを必要に応じて他の繊維類と混合して得た布、更にはそれを縫製して得た製品に抗菌剤や抗カビ剤を付着(含浸)させる方法がある。
【0005】
抗菌剤や抗カビ剤などを繊維に付着させる方法としては、繊維や繊維製品を抗菌剤や抗カビ剤を含む溶液に浸漬し加圧下に保持する方法、繊維や繊維製品に抗菌剤や抗カビ剤を含む溶液を含浸させ次いで加熱する方法、更には、バインダー樹脂等の接着成分を用いて抗菌剤や抗カビ剤を繊維や繊維製品に付着させ乾燥固定する方法等がある。
【0006】
【発明が解決しようとする課題】
しかし、これらいずれの方法により抗菌・抗カビ加工された製品も、次々に出現する新しい耐性菌によりその効果は弱められ、また医療施設内で使われた繊維製品は感染防止の安全上の理由から強力に洗濯するため、より強力な耐洗濯性を備えた抗菌・抗カビ特性の付与が要求されるようになっている。
【0007】
メチシリン耐性ブドウ球菌、所謂MRSAや最近ではバンコマイシン耐性腸球菌(VRE)といったより耐性の強い菌の出現、そして、一方繊維製品新機能評価協議会(JAFETと略称されている)で規定する特定制菌加工、更には病院リネンサプライといった過酷な工業洗濯にも耐える新しい抗菌・抗カビ加工技術の開発が待たれている。
【0008】
本発明者等は、先にポリエステル繊維製品に抗菌防カビ性能を付与する方法について広範な研究を行い、極めて有効な方法を開発した(特公平5−12475号公報参照)が、その後引続き研究を重ね、この成果を基に更に発展させる研究の中で、極めて有効な方法を見出したのである。
本発明は、主に、合成繊維類を主体とする繊維類に対し、MRSA、黄色ブドウ球菌、大腸菌、病原性大腸菌O157:H7及び緑膿菌等に対して強い抗菌性を付与することのできる新しいピリチオン亜鉛含有分散液及び該分散液を用いた耐洗濯性を備えた繊維類の加工方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の要旨は、ピリチオン亜鉛を界面活性剤及び水の存在下、懸濁状態で粉砕することにより得た抗菌・抗カビ加工用ピリチオン亜鉛含有分散液であって、分散液は、粉砕中又は粉砕後にpHが4〜10の間に調整されたものであることを特徴とする抗菌・抗カビ加工用ピリチオン亜鉛含有分散液を要旨とし、分散液中のピリチオン亜鉛濃度が4〜80重量%であることを特徴とする上記に記載の抗菌・抗カビ加工用ピリチオン亜鉛含有分散液及び分散液中のピリチオン亜鉛濃度を0.001重量%〜4重量%未満に調製し、pHを4〜10の間に調整した分散液を繊維加工用分散液としたことを特徴とする上記に記載の抗菌・抗カビ加工用ピリチオン亜鉛含有分散液もその態様とする。
【0010】
また、繊維類を上記に記載のピリチオン亜鉛含有分散液もしくはその希釈液に浸漬し、常圧又は加圧下、80〜160℃で浴中で加熱処理するか、または前記繊維類に前記分散液もしくはその希釈液を含浸又は付着させ、次いで110〜230℃で気中で加熱処理することを特徴とする繊維類の抗菌・抗カビ加工方法も要旨の一つである。
【0011】
以下、本発明を詳細に説明する。
【0012】
【発明の実施の形態】
本発明のピリチオン亜鉛含有分散液を用い得る繊維類としては、木綿等の天然繊維、ポリエステル繊維、ナイロン繊維、ポリアクリロニトリル繊維等の合成繊維、アセテート繊維等の半合成繊維類及びこれらを混合した繊維が挙げられる。
【0013】
繊維の形態としては、糸、編物、織物、布、及び各種製品が挙げられ、製品としては例えば衣料品、寝装寝具、敷物、カーテン、屋内壁布等、特に病院等医療施設で使用される手術衣、看護衣、シーツ・カバー等の寝装寝具、間仕切りカーテン、包帯、タオル、ふきん等の製品が挙げられる。
本発明で使用する抗菌・抗カビ剤としては、ピリチオン亜鉛が用いられる。ピリチオン亜鉛とは下記[1]式で示される化合物である。
【0014】
【化1】

Figure 0003792984
【0015】
ピリチオン亜鉛は亜鉛が人体の必須成分であり、安全性が高いこと、この亜鉛(Zn)の入った化合物は皮膚から吸収されにくいこと等の特徴がある。
【0016】
これらの特性を備えていることからピリチオン亜鉛は、化粧品や洗髪剤の分野において広く使用されている実績がある。
ピリチオン亜鉛は通常粉末状を呈するが、そのままでは、繊維類を抗菌・抗カビ加工用としては用い得ない。
即ち、繊維にピリチオン亜鉛を強力な耐洗濯性を備えた状態で、担持させるためにはピリチオン亜鉛を特殊な状態にする必要が生じる。
【0017】
第1の大きな要件は、分散液のpHである、ピリチオン亜鉛の分散液又はこの分散液を希釈した繊維加工用分散液(以下「加工液」という場合がある)が所定の範囲からアルカリ性側や酸性側にずれると、ピリチオン亜鉛の分解が進み、所望の効力が得られなくなり易いし、経時的に安定な分散液(加工液も含む)とならない。
【0018】
安定状態を長期に渡って保ち、繊維に対するピリチオン亜鉛の固定率を向上させるため、分散液(「加工液も含む」以下同様)は、粉砕中又は粉砕後にpHを4〜10の間、好ましくは5.5〜8.5、より好ましくは6〜8の間に調整される事が望ましい。
pHの調整は、分散液のpHがアルカリ性側にある場合は、酢酸、塩酸、リン酸等の酸を所定量添加し、上記のpHの範囲に調整すれば良いし、酸性側に有る場合には炭酸ナトリウム、苛性ソーダ等のアルカリを所定量添加すればよい。
【0019】
分散液は、通常、pHが4〜10の間に有るように原料段階では調整するが、pHの外乱要因が、ピリチオン亜鉛の粉砕工程や繊維の染色工程、繊維の機能性加工工程等にある。
即ち、本発明では、ピリチオン亜鉛を界面活性剤及び水の存在下、懸濁状態で粉砕することによりピリチオン亜鉛含有分散液を得る。この際、ボールミル、ハンマーミル等の粉砕器を使用することになるが、粉砕に当たっては、ピリチオン亜鉛が粉砕されるのみならず、僅かではあるが、装置側、即ち、ミルのボールやハンマーが削られ、分散液中に混入する。
【0020】
ボールミル等の湿式粉砕装置では、セラミックボール、ガラスボール等からなる粉砕具が用いられるが、これらが微量削られて分散液に混入すると分散液はアルカリ性側に変化してしまう。
分散液がアルカリ性側になるとピリチオン亜鉛の分解が始まり、分散液の安定状態を保てない。
【0021】
粉砕装置の材質によっては分散液が酸性側に変化する場合もあり、この場合にもピリチオン亜鉛の分解が始まり、分散液の安定状態を保てない。
酸性側に変化した場合には、上述した炭酸ナトリウム、苛性ソーダ等のアルカリを添加して、pHが4〜10、好ましくは5.5〜8.5の間に有るように調整すればよい。
【0022】
粉砕装置として、分散液のpHを変化させない、即ち、粉砕の際全くそれ自体が削られず、分散液中に混入することがない材質からなる粉砕装置を用いるか、切削されてもpHを変化させない中性の材質からなる粉砕装置を用いるかすればこのような問題は生じないが、現実的には、効率的に粉砕が可能な装置で、pHを変化させない材質からなる粉砕機は見出していない。
【0023】
このようにして得られたピリチオン亜鉛の分散液は、取り扱い上、保管容量等の点から、通常ピリチオン亜鉛を4〜80重量%含有した分散液とされるが、実際に繊維処理用に用いる分散液はこの濃い分散液を希釈した所謂「加工液」とされて用いられる。
実際に繊維加工に用いる加工液は、用途目的に応じ、そのまま、もしくは適当に希釈して用いるが、通常は加工液中のピリチオン亜鉛濃度を0.001重量%〜4重量%未満に調製して用いる。処理法において具体的に述べると、浴中法では加工液中のピリチオン亜鉛が0.001〜0.2重量%程度の濃度になるように、気中法の場合は加工液中のピリチオン亜鉛が0.05〜4重量%程度好ましくは0.1〜2重量%程度の濃度になるように希釈して用いるのが良い。
【0024】
この繊維処理用に用いる分散液(加工液)はそれ単独で繊維に適用しても良いが、通常は繊維を染色する際や難燃処理する際に併用して用いられることが多い。このような場合、染料や難燃処理剤やそれらの助剤がピリチオン亜鉛分散液(加工液)と混合されることになるので、染料や難燃処理剤やそれらの助剤のpHによってはpHの外乱要因となる。
【0025】
pHが4〜10を外れると、前述もしたが、ピリチオン亜鉛の分解が始まり、分散液(加工液)の安定状態を保てない。また加工性(処理効率)も低下する。このような場合にも、pHの調製が必要になる。
次に、繊維にピリチオン亜鉛を強力な耐洗濯性を備えた状態で、担持させるための要因としてはピリチオン亜鉛の粒径も影響する。しかも、単なる粒径ではなく、懸濁状態で粉砕する際の粒径コントロールが重要な意味を持つ。
【0026】
ピリチオン亜鉛を乾燥状態で微粉砕し、水等の溶媒に分散させて分散液とすることもできるが、このような手段を用いた場合、ピリチオン亜鉛の粉末が一部再凝集したりして粒度分布が乱れ、種々の粒径のピリチオン亜鉛を含有する分散液となってしまう。
このような粒度分布の乱れたピリチオン亜鉛分散液を用いて、繊維類の抗菌・抗カビ加工を行っても、ピリチオン亜鉛が繊維間や繊維分子間に入り込めず加工効率が悪い。また、耐洗濯性の低いものしか得られない。
【0027】
これは、凝集した大粒子が自体が繊維分子間に入り込めないことは勿論、他の細粒が繊維分子間に入り込もうとする(染み込む)のを妨害するためと推測される。
また、細かすぎる粒子は、工業的に不利になるほど相当長時間粉砕を行わなければならないし、再凝集しやすくなることが考えられる。
【0028】
本発明の分散液は、ピリチオン亜鉛を界面活性剤及び水の存在下、懸濁状態で粉砕することにより、再凝集を防止しつつ、繊維分子間に旨く固定される大きさ、即ち、大きすぎも小さすぎもしないピリチオン亜鉛粒子が分散された分散液を得る。
分散液中のピリチオン亜鉛は、平均粒径が0.1〜1μm、好ましくは0.3〜0.7μmであって、2μm以上の粒径のピリチオン亜鉛が全ピリチオン亜鉛に対し5重量%以下、好ましくは3重量%以下、更に好ましくは1重量%以下、となるように粉砕するのが良い。
【0029】
ピリチオン亜鉛を界面活性剤と水との存在下、このような粒径範囲とすることにより、繊維類に適用すると、ピリチオン亜鉛が繊維間や繊維分子間に入り込み、しかも脱落することなく固定されやすい状態の分散液となる。
しかも、この分散液は、分散液中のピリチオン亜鉛濃度を4〜80重量%とすることにより、粒径と濃度のバランスから、粉砕された粒子が再び凝集することが少なく、また、比較的長期に渡って安定した分散液状態を保つ。
【0030】
分散液中のピリチオン亜鉛の粒径は、JIS R1629に準拠してレーザー回折粒度分布測定装置を用いて測定したものであり、平均粒径とは累積50%に相当するメジアン径を意味する。
次に、分散液の着色を防ぎ、更に分散液の安定状態を保ち、繊維に対するピリチオン亜鉛の固定率を向上させるための処方として、分散液(濃度4〜80重量%の分散液)中の鉄及び銅の含有率をピリチオン亜鉛に対して0.1重量%以下、好ましくは0.01重量%以下、更に好ましくは0.001重量%以下とするのも有効である。
【0031】
分散液に鉄や銅が混入すると、ピリチオン亜鉛の一部がピリチオン鉄やピリチオン銅に変化してしまう。
このピリチオン鉄やピリチオン銅の量が増加すると、即ち、鉄及び銅の含有率がピリチオン亜鉛に対して0.1重量%を越えると、分散液に発色を生じ、繊維加工の際着色という問題を生じるし、分散液の安定性や繊維の加工性(処理効率)にも問題を生じる。
【0032】
なお、上述したように、繊維加工用に用いる分散液(加工液)はピリチオン亜鉛濃度が4〜80重量%の分散液を希釈して用いるがこの場合には、ピリチオン亜鉛に対する鉄や銅の量が希釈前の分散液中の濃度より高濃度になっても着色が分散媒によって希釈されて使用可能となる場合もある。
場合によっては加工液中の鉄及び銅の含有率はピリチオン亜鉛に対して20重量%程度まで、通常は2重量%程度まで許容される場合がある。
【0033】
原料段階では鉄、銅等の2価の金属はピリチオン亜鉛の亜鉛以外入らないように調整するが、外乱要因が、粉砕工程や原料系にある。
即ち、本発明では、ピリチオン亜鉛を界面活性剤及び水の存在下、懸濁状態で粉砕することによりピリチオン亜鉛含有分散液を得る。この際、ボールミル、ハンマーミル等の粉砕器を使用することになるが、粉砕に当たっては、ピリチオン亜鉛が粉砕されるのみならず、僅かではあるが、装置側、即ち、ミルのボールやハンマーが削られ、分散液中に混入する。
【0034】
ボールミル等の粉砕装置として金属製のボール等を用いた場合は上述したpHの外乱要因と同じように、粉砕具が微量削られて分散液に混入する原因となる。
前述したが、分散液に鉄や銅が混入すると、ピリチオン亜鉛の一部がピリチオン鉄やピリチオン銅に変化し、分散液に発色を生じ、繊維加工の際着色という問題を生じるし、分散液の安定性や繊維の加工性にも問題を生じる。
【0035】
また、分散液や加工液の分散媒として用いる水に由来する鉄、銅の混入も考えられ、分散媒として用いる水は活性炭、イオン交換樹脂等で処理して、鉄や銅等の2価の金属を取り除いた水を用いるのが望ましい。
ピリチオン亜鉛の粉砕の際、水と共に用いる界面活性剤としては、脂肪酸せっけん、アルキルベンゼンスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリアクリル酸ナトリウム、リグニンスルフォン酸ナトリウム等の陰イオン界面活性剤、アルキルベンジルアンモニウム塩、アルキルアンモニウム塩等の陽イオン界面活性剤、長鎖アルキルアミノ酸、アルキルベタイン等の両性界面活性剤、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレン硬化ヒマシ油等の非イオン界面活性剤が用途に応じ適宜用い得る。
【0036】
界面活性剤の使用量としては、通常、分散液中0.5〜10重量%程度である。
ピリチオン亜鉛含有分散液はピリチオン亜鉛を界面活性剤及び水の存在下、懸濁状態で粉砕することにより得るが、水性懸濁液形の原液を調製する際に、ナフタレンスルホン酸塩やリグニンスルホン酸塩等のアニオン系分散剤、スチレン化フェノール、ポリオキシエチレン・硬化ヒマシ油等の非イオン系分散剤、第4級アンモニウム塩系のカチオン系分散剤又はこれらの混合物からなる分散剤を用いても良い。
【0037】
更に、必要に応じて増粘剤、凍結防止剤及び消泡剤等を加えても良い。
ピリチオン亜鉛を用いて繊維類を処理する方法としては、繊維類を上記1に記載のピリチオン亜鉛含有分散液もしくはその希釈液に浸漬し、常圧又は加圧下、80〜160℃で浴中で加熱処理(浴中法)するか、または前記繊維類に前記分散液もしくはその希釈液を含浸又は付着させ、次いで110〜230℃で気中で加熱処理(気中法)することにより行われる。
【0038】
上記のピリチオン亜鉛含有分散液は取り扱いの安定性等から濃度を4〜80重量%としてあるが、実際に繊維加工に用いる場合は、用途目的に応じ、そのまま、もしくは適当に希釈して用いる。
前述したが、通常は浴中法では加工液中のピリチオン亜鉛が0.001〜0.2重量%程度の濃度になるように、気中法の場合は加工液中のピリチオン亜鉛が0.05〜4重量%程度の濃度になるように希釈して用いるのが良い。
【0039】
ピリチオン亜鉛含有分散液は繊維加工に用いる場合、通常、水性乳化液あるいは水性懸濁液の形で適用される。
本発明による繊維類の抗菌・抗カビ加工は以下の様な方法により行われる。
まず、抗菌・抗カビ加工を加圧下に行う場合こは耐圧密閉容器中に、被加工繊維重量に対し0.001〜20重量%程度になるようにピリチオン亜鉛を入れ、これに繊維類を浸し(浴中法)、0〜620KPa程度の圧力下80〜160℃で加熱処理する。
【0040】
気中下に行う場合には開放容器中でピリチオン亜鉛含有分散液錯体を用い、被加工繊維重量に対し0.001〜20重量%程度になるようにピリチオン亜鉛を入れ、これに繊維類を浸すか、噴霧等により付着させ、これを気中に取り出し、乾燥の要領で乾熱もしくは場合により湿熱を用い110〜230℃で気中で加熱処理する。
【0041】
繊維類の抗菌・抗カビ加工は繊維の種類によって条件が多少変わるが、ポリエステル繊維の場合は加圧下、100〜140℃程度の温度で、ナイロン、アセテート又はアクリル繊維の場合は常圧下、80〜100℃程度の温度で処理することが望ましい。
いずれの場合も処理時間は30秒から2時間程度でよい。
【0042】
このようにすることにより本発明のピリチオン亜鉛は良好に繊維類の繊維分子間に入り込み、旨く固定される。
繊維が加熱されることにより、繊維の分子間が開いた状態となり、分散液中の溶解状態にあるピリチオン亜鉛がこの分子間に入り込み、かつ脱落しないように固定されるものと考えられる。
【0043】
【実施例】
次に、実施例により、本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、実施例中の、洗濯法や各種試験方法は、次の方法に従った。
1.洗濯法
1)JIS L0217−103(40℃の家庭洗濯)JIS L1042−F2(60℃のエ業洗濯)
2)JAFET特定制菌加工の洗濯法(JAFET標準配合洗剤を使用して、80℃で50回の洗濯を繰り返す。なお、本実施例では100回の洗濯も実施した。
【0044】
2.抗菌性試験
1)抗細菌性試験
黄色ブドウ球菌2種(Staphylococcus aureus FDA209P及びメチシリン耐性黄色ブドウ球菌:MRSA)、肺炎桿菌(Klebsiella pneumoniae IFO13277),大腸菌2種(Escherichia coli IF03301及びE.coli O157:H7)及び緑膿菌(Pseudomonas aeruginosa IFO3755)について、JAFETの統一試験法により、無加工布及び加工布の生菌数を測定した。
【0045】
抗菌評価の判定は、各試験布の回収菌数が接種菌数未満の場合を有効(○)、以上の場合を無効(×)とした。
なお、表中、黄色ブドウ球菌はS、メチシリン耐性黄色ブドウ球菌はM、大腸菌はE、病原性大腸菌O157:H7はEO、肺炎桿菌はK及び緑膿菌はPとそれぞれ略記した。
【0046】
2)抗かび性試験
JIS Z2911の繊維製品のカビ抵抗性試験法に従って以下の判定に従って評価した。
・試料又は試験片の接種した部分に菌糸の発育が認められない。・・・3
・試料又は試験片の接種した部分に認められる菌糸の発育部分の面積は、全面積の1/3を超えない。・・・2
・試料又は試験片の接種した部分に認められる菌糸の発育部分の面積は、全面積の1/3を超える。・・・1
3.測定法
1)粒径測定
分散液中のピリチオン亜鉛の粒径は、JIS R1629に準拠してレーザー回折粒度分布測定装置を用いて測定した。
【0047】
平均粒径とは累積50%に相当するメジアン径を意味する。
2)処理効率
分散液を用いて繊維類を処理後繊維に吸着されたピリチオン亜鉛量(残った加工液中のピリチオン亜鉛量から逆算)の元の加工液中のピリチオン亜鉛量に対する比率(%)
実施例1
ピリチオン亜鉛(アーチ・ケミカルズ社製粉末状態、粒径ほぼ0.025mm)を20重量部、ポリオキシエチレン硬化ヒマシ油(分散剤)を3重量部、ポリアクリル酸ソーダ(増粘剤)を0.5重量部、グリセリン(凍結防止剤)を2重量部、水を74.5重量部用意し、ボールミル(ガラス製ボール使用)に仕込み、粉砕を行った。
【0048】
粉砕開始時点の溶液のpHは6.5であったが、12時間粉砕した後のpHは10.5となった。この時点で、pHを調節するため酢酸を添加し、pHを8.0に調節した。
得られた分散液中のピリチオン亜鉛濃度は20重量%であり、均一な分散状態を示した。この分散液の一部を1リットルの容器に移し、24時間放置したが、極端な分離は認められなかった。
【0049】
粉砕後のピリチオン亜鉛の平均粒径は0.5μmで、2μm以上の粒径のピリチオン亜鉛は全ピリチオン亜鉛に対して0.5重量%であった。
分散液中の鉄及び銅の含有率は全ピリチオン亜鉛に対して0.001重量%であった。この鉄分は使用した水に由来するものと考えられる。
ポリエステル織布(表中、Tと略記する)、ポリエステル・綿85/15混織布(表中、T/Cと略記する)、トリアセテート織布(表中、Aと略記する)、ナイロン織布(表中、NYと略記する)及びアクリル織布(表中、ACと略記する)それぞれに対して上記で得られた分散液を用い、抗菌・抗カビ加工を施した。
【0050】
加工液はピリチオン亜鉛が加工液中0.04重量%、浴比(繊維重量:加工液重量)が1:10となるように水で希釈して用いた。
加工条件は、ポリエステル及びポリエステル綿混は135℃、60分とした。また、トリアセテート、ナイロン及びアクリルは90℃、60分とした。
加工後、水洗、還元洗浄(ポリエステルのみ)、水洗を施し、130℃、2分間乾燥した。なお、ポリエステル織布とポリエステル・綿85/15混織布については、190℃、30秒間のヒートセットを行った後に工業洗濯を100回を行った。トリアセテート織布、ナイロン織布及びアクリル織布については家庭洗濯を100回行った。
【0051】
得られた織布それぞれに抗菌性試験を行った。
抗菌性評価は抗菌・抗カビ加工した全ての織布において(○)であった。
ブランクとして、抗菌・抗カビ加工しなかった全ての種類の織布についての抗菌性評価を調べたが全て(×)であり、またカビ抵抗性は全て(1)であった。
表1に評価結果を纏めた。
【0052】
【表1】
Figure 0003792984
【0053】
表1の記載から明らかなように、本発明の分散液は処理効率が極めて高い事、安定性に極めて優れることが分かる。
また、本発明の方法に従って加工処理の施された各織布は過酷な条件下の洗濯後も十分な抗菌性を発揮していることが分る。
実施例2
実施例1のpH調製時、酢酸の添加量を変えpHを9.5に調製した。
【0054】
実施例1と同様の試験を行ったところ、全ての織布について実施例1と同程度の抗菌性、抗カビ性を示した。
実施例3
実施例1のpH調製時、酢酸の添加量を変えpHを4.5に調製した。
実施例1と同様の試験を行ったところ、全ての織布について実施例1と同程度の抗菌性、抗カビ性を示した。
比較例1
実施例1において、pHの調節を行わなかった以外は実施例1と同様にして分散液を得た。
【0055】
粉砕後のピリチオン亜鉛の濃度は19.5重量%であり、平均粒径は0.5μmで、2μm以上の粒径のピリチオン亜鉛は全ピリチオン亜鉛に対し0.5重量%であったがpHは10.5であった。
この分散液の一部を1リットルの容器に移し、40℃で放置したところ、ピリチオン亜鉛は分解し、10日後には1重量%に減少した。また、分散液は着色し綿状の凝集物が観察された。
【0056】
上記で得られた分散液(40℃放置品)を用い、ポリエステル織布に抗菌・抗カビ加工を施した。
加工液は、ピリチオン亜鉛が加工液中0.002重量%(浴比1:10)となるようにに水で希釈して用いた。
加工条件は、135℃、60分とした。
【0057】
加工後、ポリエステル織布に水洗、還元洗浄、水洗を施し、130℃、2分間乾燥した。
得られた織布それぞれに抗菌性試験を行ったが、抗菌性は認められたが(抗菌性評価いずれも○)、処理効率が大変悪く、カビ抵抗性も「1」であった。
【0058】
【発明の効果】
本発明によれば、抗菌・抗カビ処理用の分散液として処理効率が極めて高く、安定性に極めて優れる分散液が提供される。また、ポリエステル、アクリル、ナイロン、アセテートといった人造繊維製品及びこれらと天然繊維との混合繊維製品に対してMRSAはじめ黄色ブドウ球菌、大腸菌、緑膿菌等の菌及びかびに対して抗菌抗かび性を発揮する加工処理を施すことができ、付与された抗菌・抗かび性は、過酷な洗濯にも十分耐える。[0001]
BACKGROUND OF THE INVENTION
The present invention includes synthetic fibers such as polyester fibers, acrylic fibers and nylon fibers, and semi-synthetic fibers such as acetate fibers, and further, natural fibers, or synthetic fibers, mixed fibers of semi-synthetic fibers and natural fibers. The present invention relates to a pyrithione zinc-containing dispersion that imparts antibacterial and antifungal properties to the resulting fiber product, and a method for antibacterial and antifungal processing of fibers using the dispersion.
[0002]
In particular, a dispersion for imparting antibacterial properties against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Escherichia coli, pathogenic Escherichia coli O157, and Pseudomonas aeruginosa and the like were used for these textile products. The present invention relates to a processing method. The present invention also relates to a dispersion that is excellent in stability and handleability as a dispersion, and can impart antibacterial and antifungal properties with extremely high washing resistance to fibers, and a processing method using the dispersion.
[0003]
[Prior art]
Along with the growing hygiene-oriented nature of textile products such as clothing, futon covers, curtains, towels, wall cloth (wallpaper), etc., the development of antibacterial and antifungal treatments for various textile products is thriving.
In addition, the so-called nosocomial infection problem in the medical field has been greatly highlighted in recent years, and as a countermeasure, surgical clothing, sheets, duvet covers, partitions, force-tens, white robes, nightclothes, etc. Research on antibacterial and antifungal processing technologies is urgently needed.
[0004]
In antibacterial and antifungal processing technology for products made of synthetic fibers, etc., synthetic fibers are kneaded with antibacterial and antifungal agents in the spinning stock solution, and then spun to produce fibers with antibacterial and antifungal properties. Manufacture and mix it with other fibers as necessary to obtain a product, or synthetically-spun or semi-synthetic fibers that are spun normally or mixed with other fibers as necessary There is a method in which an antibacterial agent or an antifungal agent is adhered (impregnated) to the obtained cloth or a product obtained by sewing it.
[0005]
The antibacterial agent or antifungal agent can be attached to the fiber by immersing the fiber or fiber product in a solution containing the antibacterial agent or antifungal agent and holding it under pressure. There are a method of impregnating a solution containing an agent and then heating, and a method of adhering an antibacterial agent or an antifungal agent to a fiber or a fiber product using an adhesive component such as a binder resin and drying and fixing.
[0006]
[Problems to be solved by the invention]
However, the effect of antibacterial and antifungal processed products by any of these methods is weakened by new resistant bacteria that appear one after another, and the textile products used in medical facilities are for safety reasons for preventing infection. In order to wash strongly, it is required to provide antibacterial and antifungal properties with stronger washing resistance.
[0007]
Methicillin-resistant staphylococci, the so-called MRSA and recently the emergence of more resistant bacteria such as vancomycin-resistant enterococci (VRE); Development of new antibacterial and antifungal processing technology that can withstand severe industrial washing such as processing and hospital linen supply is awaited.
[0008]
The present inventors previously conducted extensive research on methods for imparting antibacterial and antifungal properties to polyester fiber products, and developed extremely effective methods (see Japanese Patent Publication No. 5-12475). After all, in research to further develop based on this result, I found a very effective method.
The present invention can impart strong antibacterial properties to fibers mainly composed of synthetic fibers against MRSA, Staphylococcus aureus, Escherichia coli, pathogenic Escherichia coli O157: H7, Pseudomonas aeruginosa and the like. It is an object of the present invention to provide a new pyrithione zinc-containing dispersion and a method for processing fibers having wash resistance using the dispersion.
[0009]
[Means for Solving the Problems]
The gist of the present invention is a pyrithione zinc-containing dispersion for antibacterial and antifungal processing obtained by grinding pyrithione zinc in a suspended state in the presence of a surfactant and water, and the dispersion is either during grinding or The main point is a pyrithione zinc-containing dispersion for antibacterial and antifungal processing, characterized in that the pH is adjusted between 4 and 10 after pulverization, and the concentration of pyrithione zinc in the dispersion is 4 to 80% by weight. A pyrithione zinc-containing dispersion for antibacterial and antifungal processing as described above, and a concentration of pyrithione zinc in the dispersion is adjusted to 0.001 wt% to less than 4 wt%, and the pH is 4 to 10 The above-described dispersion containing pyrithione zinc for antibacterial and antifungal processing, characterized in that the dispersion prepared in the meantime is used as a dispersion for fiber processing.
[0010]
Further, the fibers are immersed in the above-described pyrithione zinc-containing dispersion or a diluted solution thereof, and heat-treated in a bath at 80 to 160 ° C. under normal pressure or pressure, or the fibers are subjected to the dispersion or Another aspect of the gist is an antibacterial / antifungal processing method for fibers, which comprises impregnating or adhering the diluted solution and then heat-treating in the air at 110 to 230 ° C.
[0011]
Hereinafter, the present invention will be described in detail.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The fibers that can use the pyrithione zinc-containing dispersion of the present invention include natural fibers such as cotton, polyester fibers, nylon fibers, synthetic fibers such as polyacrylonitrile fibers, semi-synthetic fibers such as acetate fibers, and mixed fibers Is mentioned.
[0013]
Examples of fiber forms include yarns, knitted fabrics, woven fabrics, cloths, and various products. Examples of products include clothing, bedding, rugs, curtains, indoor wall cloths, and the like, particularly in medical facilities such as hospitals. Products such as surgical clothes, nursing clothes, bedding such as sheets and covers, partition curtains, bandages, towels, and towels.
As the antibacterial / antifungal agent used in the present invention, pyrithione zinc is used. The pyrithione zinc is a compound represented by the following formula [1].
[0014]
[Chemical 1]
Figure 0003792984
[0015]
Pyrithione zinc has the characteristics that zinc is an essential component of the human body and has high safety, and the compound containing zinc (Zn) is hardly absorbed from the skin.
[0016]
Due to these characteristics, pyrithione zinc has a track record of being widely used in the field of cosmetics and hair washing agents.
Although pyrithione zinc is usually in a powder form, the fibers cannot be used for antibacterial / antifungal processing as they are.
That is, it is necessary to make the pyrithione zinc in a special state in order to carry the pyrithione zinc on the fiber in a state having strong washing resistance.
[0017]
The first major requirement is that the dispersion of the pyrithione zinc or the fiber processing dispersion diluted with this dispersion (hereinafter sometimes referred to as “processing fluid”), which is the pH of the dispersion, from the predetermined range to the alkaline side or If it shifts to the acidic side, the decomposition of pyrithione zinc proceeds and the desired efficacy tends not to be obtained, and a stable dispersion (including processing liquid) is not obtained over time.
[0018]
In order to maintain a stable state for a long period of time and to improve the fixing rate of pyrithione zinc to the fiber, the dispersion (including “processing liquid”) is preferably between 4 and 10, preferably during the pulverization or after pulverization. It is desirable to adjust between 5.5 and 8.5, more preferably between 6 and 8.
When the pH of the dispersion is on the alkaline side, the pH can be adjusted by adding a predetermined amount of an acid such as acetic acid, hydrochloric acid, phosphoric acid, etc., and adjusting to the above pH range. May be added with a predetermined amount of alkali such as sodium carbonate or caustic soda.
[0019]
The dispersion is usually adjusted at the raw material stage so that the pH is between 4 and 10, but the pH disturbance factors are in the pyrithione zinc grinding process, fiber dyeing process, fiber functional processing process, etc. .
That is, in the present invention, pyrithione zinc-containing dispersion is obtained by grinding pyrithione zinc in a suspended state in the presence of a surfactant and water. At this time, a pulverizer such as a ball mill or a hammer mill is used. In the pulverization, not only the pyrithione zinc is pulverized but also the apparatus side, that is, the mill ball or hammer is ground slightly. Mixed in the dispersion.
[0020]
In a wet pulverization apparatus such as a ball mill, a pulverizing tool made of ceramic balls, glass balls, or the like is used. However, if these are slightly cut and mixed into the dispersion, the dispersion changes to the alkaline side.
When the dispersion is on the alkaline side, the decomposition of pyrithione zinc begins and the dispersion cannot be kept stable.
[0021]
Depending on the material of the pulverizer, the dispersion may change to the acidic side, and in this case as well, decomposition of pyrithione zinc starts and the dispersion cannot be kept stable.
In the case of changing to the acidic side, an alkali such as sodium carbonate or caustic soda may be added to adjust the pH to be between 4 and 10, and preferably between 5.5 and 8.5.
[0022]
As the pulverizer, the pH of the dispersion is not changed, that is, the pulverizer is made of a material that is not cut at the time of pulverization and is not mixed in the dispersion, or the pH is not changed even when it is cut. If a pulverizer made of a neutral material is used, such a problem does not occur. However, in reality, there is no pulverizer made of a material that can efficiently pulverize and does not change pH.
[0023]
The pyrithione zinc dispersion thus obtained is usually a dispersion containing 4 to 80% by weight of pyrithione zinc in terms of handling and storage capacity. However, the dispersion is actually used for fiber treatment. The liquid is used as a so-called “processing liquid” obtained by diluting this thick dispersion.
The working fluid actually used for fiber processing is used as it is or appropriately diluted depending on the purpose of use. Usually, the concentration of pyrithione zinc in the working fluid is adjusted to 0.001 wt% to less than 4 wt%. Use. Specifically, in the treatment method, in the bath method, the pyrithione zinc in the processing liquid is about 0.001 to 0.2% by weight so that the concentration of pyrithione zinc in the processing liquid is about 0.001 to 0.2% by weight. It is good to dilute and use it at a concentration of about 0.05 to 4% by weight, preferably about 0.1 to 2% by weight.
[0024]
The dispersion liquid (processing liquid) used for fiber treatment may be applied to the fiber alone, but is usually often used in combination when dyeing the fiber or flame-treating. In such a case, since the dye, the flame retardant agent and their auxiliary agent are mixed with the pyrithione zinc dispersion (processing liquid), depending on the pH of the dye, the flame retardant agent and their auxiliary agent, the pH It becomes a disturbance factor.
[0025]
When the pH deviates from 4 to 10, as described above, the decomposition of pyrithione zinc starts and the stable state of the dispersion (processing liquid) cannot be maintained. In addition, workability (processing efficiency) also decreases. Even in such a case, it is necessary to adjust the pH.
Next, the particle diameter of pyrithione zinc also affects as a factor for supporting the pyrithione zinc in the fiber with strong washing resistance. Moreover, it is important to control the particle size when pulverizing in a suspended state, not just the particle size.
[0026]
Although pyrithione zinc can be finely pulverized in a dry state and dispersed in a solvent such as water to form a dispersion, when such means is used, the powder of pyrithione zinc may partially reagglomerate and The distribution is disturbed, resulting in a dispersion containing pyrithione zinc having various particle sizes.
Even when antibacterial and antifungal processing of fibers is performed using such a pyrithione zinc dispersion having a disturbed particle size distribution, the processing efficiency is poor because pyrithione zinc cannot enter between fibers or fiber molecules. Also, only those with low washing resistance can be obtained.
[0027]
This is presumed to be because the aggregated large particles cannot permeate themselves between the fiber molecules and of course prevent other fine particles from entering (infiltrating) between the fiber molecules.
In addition, too fine particles must be pulverized for a considerable time so as to be industrially disadvantageous, and may easily re-aggregate.
[0028]
The dispersion of the present invention has a size that is fixed between fiber molecules in a fine manner while preventing re-aggregation by pulverizing pyrithione zinc in the presence of a surfactant and water, in a suspended state. A dispersion in which pyrithione zinc particles that are neither too small nor too small is dispersed is obtained.
The pyrithione zinc in the dispersion has an average particle size of 0.1 to 1 μm, preferably 0.3 to 0.7 μm, and the pyrithione zinc having a particle size of 2 μm or more is 5% by weight or less based on the total pyrithione zinc, It is preferable to grind so that it is preferably 3% by weight or less, more preferably 1% by weight or less.
[0029]
By applying pyrithione zinc in such a particle size range in the presence of a surfactant and water, when applied to fibers, pyrithione zinc enters between fibers and between fiber molecules and is easily fixed without falling off. It becomes a dispersion of the state.
Moreover, this dispersion has a pyrithione zinc concentration in the dispersion of 4 to 80% by weight, whereby the pulverized particles are less likely to agglomerate again from the balance between the particle size and the concentration. A stable dispersion state is maintained throughout.
[0030]
The particle diameter of pyrithione zinc in the dispersion is measured using a laser diffraction particle size distribution measuring device in accordance with JIS R1629, and the average particle diameter means a median diameter corresponding to a cumulative 50%.
Next, iron in the dispersion (dispersion with a concentration of 4 to 80% by weight) is used as a prescription for preventing coloring of the dispersion, further maintaining the dispersion in a stable state, and improving the fixation ratio of pyrithione zinc to the fiber. It is also effective to adjust the copper content to 0.1% by weight or less, preferably 0.01% by weight or less, more preferably 0.001% by weight or less with respect to zinc pyrithione.
[0031]
When iron or copper is mixed into the dispersion, part of pyrithione zinc is changed to pyrithione iron or pyrithione copper.
When the amount of pyrithione iron or pyrithione copper increases, that is, when the content of iron and copper exceeds 0.1% by weight with respect to pyrithione zinc, a color develops in the dispersion, which causes a problem of coloring during fiber processing. This also causes problems in the stability of the dispersion and the processability (processing efficiency) of the fibers.
[0032]
As described above, the dispersion (processing liquid) used for fiber processing is diluted with a dispersion having a pyrithione zinc concentration of 4 to 80% by weight. In this case, the amount of iron or copper with respect to the pyrithione zinc is used. In some cases, the coloring becomes diluted with a dispersion medium and can be used even when the concentration becomes higher than the concentration in the dispersion before dilution.
In some cases, the content of iron and copper in the working fluid may be allowed up to about 20% by weight, usually up to about 2% by weight with respect to pyrithione zinc.
[0033]
In the raw material stage, adjustment is made so that divalent metals such as iron and copper do not enter other than zinc of pyrithione zinc, but there are disturbance factors in the grinding process and raw material system.
That is, in the present invention, pyrithione zinc-containing dispersion is obtained by grinding pyrithione zinc in a suspended state in the presence of a surfactant and water. At this time, a pulverizer such as a ball mill or a hammer mill is used. In the pulverization, not only the pyrithione zinc is pulverized but also the apparatus side, that is, the mill ball or hammer is ground slightly. Mixed in the dispersion.
[0034]
When a metal ball or the like is used as a pulverizing apparatus such as a ball mill, the pulverizing tool is scraped in a small amount and mixed into the dispersion liquid as in the case of the above-described pH disturbance factor.
As described above, when iron or copper is mixed into the dispersion, part of pyrithione zinc is changed to pyrithione iron or pyrithione copper, causing coloration in the dispersion and causing a problem of coloring during fiber processing. Problems also arise in stability and processability of the fibers.
[0035]
In addition, iron and copper derived from water used as a dispersion medium for the dispersion liquid and processing liquid may be mixed. The water used as the dispersion medium is treated with activated carbon, an ion exchange resin, or the like, and divalent such as iron or copper. It is desirable to use water from which metal has been removed.
Surfactants used together with water when grinding pyrithione zinc include fatty acid soap, alkylbenzene sulfonate, naphthalene sulfonate formalin condensate, anionic surfactants such as sodium polyacrylate and sodium lignin sulfonate, alkylbenzyl Cationic surfactants such as ammonium salts and alkylammonium salts, amphoteric surfactants such as long-chain alkyl amino acids and alkylbetaines, nonionic surfactants such as polyoxyethylene nonylphenyl ether and polyoxyethylene hydrogenated castor oil Can be used as appropriate.
[0036]
The amount of the surfactant used is usually about 0.5 to 10% by weight in the dispersion.
A dispersion containing zinc pyrithione is obtained by pulverizing zinc pyrithione in the presence of a surfactant and water in a suspended state, but when preparing an aqueous suspension-type stock solution, naphthalene sulfonate or lignin sulfonic acid is used. An anionic dispersant such as a salt, a nonionic dispersant such as styrenated phenol, polyoxyethylene / hardened castor oil, a quaternary ammonium salt cationic dispersant or a mixture thereof may be used. good.
[0037]
Furthermore, you may add a thickener, an antifreezing agent, an antifoamer, etc. as needed.
As a method of treating fibers using zinc pyrithione, the fibers are immersed in the pyrithione zinc-containing dispersion described in 1 above or a diluted solution thereof and heated in a bath at 80 to 160 ° C. under normal pressure or pressure. It is carried out by treatment (in-bath method), or by impregnating or adhering the dispersion or a diluted solution thereof to the fibers and then heat-treating in the air at 110 to 230 ° C. (in-air method).
[0038]
The above-mentioned pyrithione zinc-containing dispersion has a concentration of 4 to 80% by weight from the viewpoint of handling stability and the like, but when actually used for fiber processing, it is used as it is or after being appropriately diluted depending on the purpose of use.
As described above, usually, in the bath method, the concentration of pyrithione zinc in the processing liquid is about 0.001 to 0.2% by weight. It is preferable to dilute and use it to a concentration of about 4% by weight.
[0039]
When the pyrithione zinc-containing dispersion is used for fiber processing, it is usually applied in the form of an aqueous emulsion or aqueous suspension.
The antibacterial and antifungal processing of fibers according to the present invention is performed by the following method.
First, when antibacterial / antifungal processing is performed under pressure, put pyrithione zinc in a pressure-resistant airtight container so as to be about 0.001 to 20% by weight with respect to the processed fiber weight, and immerse the fibers in this. (In-bath method), heat treatment is performed at 80 to 160 ° C. under a pressure of about 0 to 620 KPa.
[0040]
When performing in the air, use a pyrithione-zinc-containing dispersion complex in an open container, and add pyrithione zinc to about 0.001 to 20% by weight with respect to the processed fiber weight, and immerse the fibers in this. It is attached by spraying or the like, taken out in the air, and heated in the air at 110 to 230 ° C. using dry heat or, in some cases, wet heat in the manner of drying.
[0041]
The conditions for the antibacterial and antifungal processing of fibers vary somewhat depending on the type of fiber, but in the case of polyester fiber, under pressure, at a temperature of about 100-140 ° C., in the case of nylon, acetate or acrylic fiber, under normal pressure, 80- It is desirable to process at a temperature of about 100 ° C.
In either case, the processing time may be about 30 seconds to 2 hours.
[0042]
By doing in this way, the pyrithione zinc of this invention penetrate | invades well between the fiber molecules of fibers, and is fixed well.
When the fiber is heated, the intermolecular state of the fiber is opened, and it is considered that pyrithione zinc in a dissolved state in the dispersion liquid enters the intermolecular state and is fixed so as not to fall off.
[0043]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
In addition, the washing | cleaning method and various test methods in an Example followed the following method.
1. Laundry method 1) JIS L0217-103 (40 ° C household laundry) JIS L1042-F2 (60 ° C industrial laundry)
2) Washing method of JAFET specific antibacterial processing (JAFET standard combination detergent was used and washing was repeated 50 times at 80 ° C. In this example, washing was performed 100 times.
[0044]
2. Antibacterial test 1) Antibacterial test 2 Staphylococcus aureus FDA209P and methicillin-resistant Staphylococcus aureus: MRSA, Klebsiella pneumoniae IFO 13277, E. coli 7 ) And Pseudomonas aeruginosa IFO3755, the number of viable bacteria in the unprocessed cloth and the processed cloth was measured by the unified test method of JAFET.
[0045]
The determination of antibacterial evaluation was valid (◯) when the number of recovered bacteria on each test cloth was less than the number of inoculated bacteria, and invalid (×) when the number was above.
In the table, S. aureus is abbreviated as S, methicillin-resistant Staphylococcus aureus is abbreviated as M, E. coli is abbreviated as E, pathogenic E. coli O157: H7 is abbreviated as EO, K. pneumoniae is abbreviated as K, and P. aeruginosa is abbreviated as P.
[0046]
2) Antifungal property test According to the following judgment according to the fungus resistance test method of the textile product of JIS Z2911.
・ No hyphal growth is observed in the inoculated part of the sample or test piece. ... 3
-The area of the growing part of the mycelium observed in the inoculated part of the sample or test piece does not exceed 1/3 of the total area. ... 2
-The area of the growth part of the mycelium recognized in the inoculated part of the sample or the test piece exceeds 1/3 of the total area. ... 1
3. Measurement Method 1) Particle Size Measurement The particle size of pyrithione zinc in the dispersion was measured using a laser diffraction particle size distribution measuring device in accordance with JIS R1629.
[0047]
The average particle diameter means a median diameter corresponding to 50% cumulative.
2) The ratio (%) of the amount of pyrithione zinc adsorbed on the fibers after treating the fibers with the treatment efficiency dispersion (counting backward from the amount of remaining pyrithione zinc in the processing fluid) to the amount of pyrithione zinc in the original processing fluid
Example 1
20 parts by weight of pyrithione zinc (powdered by Arch Chemicals, particle size of approximately 0.025 mm), 3 parts by weight of polyoxyethylene hydrogenated castor oil (dispersing agent), and sodium polyacrylate (thickening agent) of 0. 5 parts by weight, 2 parts by weight of glycerin (freezing agent) and 74.5 parts by weight of water were prepared, charged in a ball mill (using glass balls), and pulverized.
[0048]
The pH of the solution at the start of pulverization was 6.5, but the pH after pulverization for 12 hours was 10.5. At this point, acetic acid was added to adjust the pH and the pH was adjusted to 8.0.
The concentration of zinc pyrithione in the obtained dispersion was 20% by weight, indicating a uniform dispersion state. A portion of this dispersion was transferred to a 1 liter container and allowed to stand for 24 hours, but no extreme separation was observed.
[0049]
The average particle diameter of the pyrithione zinc after pulverization was 0.5 μm, and the pyrithione zinc having a particle diameter of 2 μm or more was 0.5% by weight based on the total pyrithione zinc.
The content of iron and copper in the dispersion was 0.001% by weight with respect to the total pyrithione zinc. This iron is thought to be derived from the water used.
Polyester woven fabric (abbreviated as T in the table), polyester / cotton 85/15 mixed woven fabric (abbreviated as T / C in the table), triacetate woven fabric (abbreviated as A in the table), nylon woven fabric Antibacterial and antifungal treatments were applied to the acrylic woven fabric (abbreviated as AC in the table) and the dispersion obtained as described above for each (abbreviated as NY in the table).
[0050]
The working fluid was diluted with water so that zinc pyrithione was 0.04 wt% in the working fluid and the bath ratio (fiber weight: working fluid weight) was 1:10.
The processing conditions were such that polyester and polyester cotton blends were 135 ° C. for 60 minutes. Triacetate, nylon and acrylic were set at 90 ° C. for 60 minutes.
After the processing, washing with water, reduction washing (polyester only) and washing with water were performed, followed by drying at 130 ° C for 2 minutes. In addition, about the polyester woven fabric and the polyester / cotton 85/15 mixed woven fabric, industrial washing was performed 100 times after heat setting at 190 ° C. for 30 seconds. Triacetate woven fabric, nylon woven fabric and acrylic woven fabric were washed 100 times at home.
[0051]
Each obtained woven fabric was subjected to an antibacterial test.
The antibacterial evaluation was (◯) for all woven fabrics processed with antibacterial and antifungal treatment.
As a blank, the antibacterial evaluation of all types of woven fabrics which were not subjected to antibacterial / antifungal processing was examined, all were (×), and all the mold resistance was (1).
Table 1 summarizes the evaluation results.
[0052]
[Table 1]
Figure 0003792984
[0053]
As is apparent from the description in Table 1, it can be seen that the dispersion of the present invention has a very high processing efficiency and an extremely excellent stability.
It can also be seen that each woven fabric processed according to the method of the present invention exhibits sufficient antibacterial properties even after washing under severe conditions.
Example 2
During the pH adjustment in Example 1, the pH was adjusted to 9.5 by changing the amount of acetic acid added.
[0054]
When the same test as in Example 1 was performed, all the woven fabrics exhibited antibacterial and antifungal properties comparable to those in Example 1.
Example 3
During the pH adjustment in Example 1, the pH was adjusted to 4.5 by changing the amount of acetic acid added.
When the same test as in Example 1 was performed, all the woven fabrics exhibited antibacterial and antifungal properties comparable to those in Example 1.
Comparative Example 1
In Example 1, a dispersion was obtained in the same manner as Example 1 except that the pH was not adjusted.
[0055]
The concentration of pyrithione zinc after pulverization was 19.5% by weight, the average particle size was 0.5 μm, and pyrithione zinc having a particle size of 2 μm or more was 0.5% by weight based on the total pyrithione zinc, but the pH was 10.5.
When a part of this dispersion was transferred to a 1 liter container and left at 40 ° C., the pyrithione zinc was decomposed and decreased to 1% by weight after 10 days. The dispersion was colored and cotton-like aggregates were observed.
[0056]
The polyester woven fabric was subjected to antibacterial / antifungal treatment using the dispersion liquid obtained above (stored at 40 ° C.).
The working liquid was used after diluting with water so that zinc pyrithione was 0.002% by weight (bath ratio 1:10) in the working liquid.
The processing conditions were 135 ° C. and 60 minutes.
[0057]
After processing, the polyester woven fabric was washed with water, reduced and washed, and dried at 130 ° C. for 2 minutes.
An antibacterial test was carried out on each of the obtained woven fabrics. Although antibacterial properties were observed (both antibacterial properties were evaluated), the treatment efficiency was very poor and the mold resistance was “1”.
[0058]
【The invention's effect】
According to the present invention, a dispersion having extremely high processing efficiency and extremely excellent stability as a dispersion for antibacterial / antifungal treatment is provided. In addition, it has antifungal and antifungal properties against man-made fiber products such as polyester, acrylic, nylon, acetate and mixed fiber products of these and natural fibers against fungi such as MRSA, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa Processing can be performed, and the antibacterial and antifungal properties imparted can withstand harsh washing.

Claims (3)

ピリチオン亜鉛を界面活性剤及び水の存在下、懸濁状態で粉砕して、粉砕中又は粉砕後にpHを5.5〜8.5の間に規制したピリチオン亜鉛含有分散液を作成し、このピリチオン亜鉛含有分散液を希釈して、pHを5.5〜8.5の間に規制したピリチオン亜鉛含有繊維加工用分散液を作成し、このピリチオン亜鉛含有繊維加工用分散液に、繊維類を浸漬し、常圧又は加圧下、80〜160℃で浴中で加熱処理するか、又は上記ピリチオン亜鉛含有繊維加工用分散液を繊維類に含浸又は付着させ、次いで110〜230℃で気中で加熱処理することを特徴とする繊維類の抗菌・抗カビ加工方法。  The pyrithione zinc is pulverized in a suspended state in the presence of a surfactant and water, and a zinc-containing pyrithione-containing dispersion whose pH is regulated between 5.5 and 8.5 during or after the pulverization is prepared. Dilute the zinc-containing dispersion and create a dispersion for pyrithione zinc-containing fiber processing whose pH is regulated between 5.5 and 8.5, and immerse the fibers in this dispersion for fiber processing containing pyrithione zinc Heat treatment in a bath at 80 to 160 ° C. under normal pressure or under pressure, or impregnate or attach the above-mentioned dispersion for pyrithione-containing fiber processing to fibers, and then heat in air at 110 to 230 ° C. An antibacterial / antifungal processing method for fibers characterized by processing. 上記ピリチオン亜鉛含有繊維加工用分散液のピリチオン亜鉛濃度が、0.001〜4重量%であり、ピリチオン亜鉛含有繊維加工用分散液中のピリチオン亜鉛の平均粒径が0.3〜0.7μmであって、2μm以上の粒径のピリチオン亜鉛が全ピリチオン亜鉛に対し5重量%以下であることを特徴とする請求項1に記載の繊維類の抗菌・抗カビ加工方法。  The pyrithione zinc concentration of the above-mentioned pyrithione zinc-containing fiber processing dispersion is 0.001 to 4% by weight, and the average particle size of the pyrithione zinc in the pyrithione zinc-containing fiber processing dispersion is 0.3 to 0.7 μm. The antibacterial / antifungal processing method for fibers according to claim 1, wherein pyrithione zinc having a particle size of 2 µm or more is 5 wt% or less based on total pyrithione zinc. 上記ピリチオン亜鉛含有分散液中のピリチオン亜鉛濃度が、4〜80重量%であることを特徴とする請求項に記載の繊維類の抗菌・抗カビ加工方法。 It said zinc pyrithione-containing zinc pyrithione concentration in the dispersion is, antifungal processing method fibers according to claim 1, characterized in that a 4 to 80 wt%.
JP2000103227A 2000-04-05 2000-04-05 Antibacterial and antifungal processing methods for fibers Expired - Lifetime JP3792984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000103227A JP3792984B2 (en) 2000-04-05 2000-04-05 Antibacterial and antifungal processing methods for fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103227A JP3792984B2 (en) 2000-04-05 2000-04-05 Antibacterial and antifungal processing methods for fibers

Publications (2)

Publication Number Publication Date
JP2001288015A JP2001288015A (en) 2001-10-16
JP3792984B2 true JP3792984B2 (en) 2006-07-05

Family

ID=18616978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103227A Expired - Lifetime JP3792984B2 (en) 2000-04-05 2000-04-05 Antibacterial and antifungal processing methods for fibers

Country Status (1)

Country Link
JP (1) JP3792984B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2223268B1 (en) * 2003-04-10 2006-04-16 Jose Casals Sallent THREAD FOR RADIOLOGICAL CONTROL.
JP4644441B2 (en) * 2004-03-03 2011-03-02 大阪化成株式会社 Method for producing antibacterial, antifungal and antiviral fibers
JP5116295B2 (en) * 2006-11-30 2013-01-09 日本曹達株式会社 Antibacterial / antifungal composition for paint and aqueous antibacterial / antifungal paint
JP2013087082A (en) * 2011-10-18 2013-05-13 Osaka Kasei Kk Agent for imparting antibacterial/antifungal properties, fiber processing agent, and method for producing antibacterial/antifungal fibers
JP5800669B2 (en) 2011-10-18 2015-10-28 大阪化成株式会社 Antibacterial / antifungal agent, fiber processing agent, and method for producing antibacterial / antifungal fiber
US20150368443A1 (en) * 2014-06-20 2015-12-24 The Procter & Gamble Company Stability of Zinc Pyrithione Dispersions

Also Published As

Publication number Publication date
JP2001288015A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
US5405644A (en) Process for producing antimicrobial fiber
EP2094903B1 (en) Method for providing textiles with desensitised silver components
US9481961B2 (en) Antimicrobial finish on fabrics
JP2002504630A (en) Esterified triclosan derivatives as improved textile antimicrobial agents
CN102337669A (en) Method for processing antibacterial wool fiber
JP4698386B2 (en) Antibacterial addition treatment liquid for textiles
JP3792984B2 (en) Antibacterial and antifungal processing methods for fibers
JP3779124B2 (en) Antibacterial and antifungal processing methods for fibers
JP2013185292A (en) Antibacterial processing agent for fiber, method for producing the same and method for producing antibacterial fiber
JP2009155732A (en) Anti-microbial fiber product and method for producing the same
RU2640277C2 (en) Method for production of antimicrobial silver-containing cellulose material
JP2001288017A (en) Zinc pyrithione-containing dispersion for antibacterial and antifungal processing and method for antibacterial and antifungal processing of fibers using the dispersion
JP2842564B2 (en) Antibacterial viscose rayon and method for producing the same
JP2002370911A (en) Antimicrobially finishing agent and antimicrobially finishing method for textile product
WO2012049978A1 (en) Antibacterial fiber treatment agent, manufacturing method thereof, and antibacterial fiber manufacturing method
JP2013112903A (en) Antimicrobial fiber structure and method for producing the same
JP2000119960A (en) Antibacterial and antifungal finishing of fibers
JP2000178870A (en) Antimicrobially processing method for textile product
WO2019188860A1 (en) Antibacterial/antifungal fiber structure
JPH11335202A (en) Antimicrobial treatment agent and production of antimicrobial fiber structure
JP6043624B2 (en) Antibacterial and antifungal fiber products and production method thereof
JP5933424B2 (en) Antibacterial agent for fiber and antibacterial fiber product
WO2002064668A1 (en) Antimicrobial superfinish and method of making
JP3544825B2 (en) Antimicrobial acrylic fiber and method for producing same
JPH07118925A (en) Antifungal polyamide tow for stretch-breaking spinning and production thereof

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3792984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

EXPY Cancellation because of completion of term