WO2023190833A1 - Surface-treated copper foil, copper-clad laminate plate, and printed wiring board - Google Patents

Surface-treated copper foil, copper-clad laminate plate, and printed wiring board Download PDF

Info

Publication number
WO2023190833A1
WO2023190833A1 PCT/JP2023/013104 JP2023013104W WO2023190833A1 WO 2023190833 A1 WO2023190833 A1 WO 2023190833A1 JP 2023013104 W JP2023013104 W JP 2023013104W WO 2023190833 A1 WO2023190833 A1 WO 2023190833A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
treated copper
treated
treatment
contact angle
Prior art date
Application number
PCT/JP2023/013104
Other languages
French (fr)
Japanese (ja)
Inventor
周介 片平
淳 篠崎
正靖 笠原
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2023563936A priority Critical patent/JPWO2023190833A1/ja
Publication of WO2023190833A1 publication Critical patent/WO2023190833A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern

Definitions

  • the present invention relates to a surface-treated copper foil that can be suitably used for manufacturing printed wiring boards and the like, as well as a copper-clad laminate and a printed wiring board using the surface-treated copper foil.
  • the etching factor determined from the bottom width, top width, and height of the circuit has been widely used as an index to express circuit processability, but in addition to this, the angle of the tangent at the bottom edge of the circuit is also important. I've come to understand.
  • the angle of the tangent at the bottom edge of the circuit is small (i.e., the bottom width is larger than the top width of the circuit, and the cross section of the circuit is When viewed from a microscopic perspective, migration may occur, which is expected to be caused by poor etching at the interface at the edge of the circuit, resulting in a widened shape, and the angle of the tangent at the bottom edge of the circuit may occur. The smaller the value, the more likely migration was to occur.
  • An object of the present invention is to provide a surface-treated copper foil, a copper-clad laminate, and a printed wiring board that have excellent circuit workability and are less likely to generate transmission loss or foreign matter.
  • a surface-treated copper foil according to one embodiment of the present invention is a surface-treated copper foil having a copper foil base and a surface treatment layer formed on at least one surface of the copper foil base, wherein the surface treatment layer is rough. Consisting of one or both of a chemical treatment layer and a rust prevention treatment layer, when the optical roughness of the surface of the surface treatment layer is measured in accordance with the method specified in ISO 25178, the arithmetic mean roughness Sa is 0.04 ⁇ m or more 0.30 ⁇ m or less, and after laminating the resin member on the surface treatment layer of the surface-treated copper foil, the surface-treated copper foil is removed by etching, and the surface-treated copper foil of the remaining resin member is pasted.
  • the contact angle ⁇ 1 of distilled water was measured in accordance with the sessile drop method specified in JIS R3257:1999 on the transfer surface, which is a surface treated with surface treated copper foil.
  • the contact angle ⁇ 0 of distilled water is measured according to the sessile drop method on the non-transfer surface to which the foil is later bonded, the difference between the contact angle ⁇ 0 and the contact angle ⁇ 1 is ⁇ 0 - ⁇
  • the gist is that 1 is between 5° and 35°.
  • a copper-clad laminate according to another aspect of the present invention includes the surface-treated copper foil according to the above-mentioned one aspect and a resin base material laminated on the surface-treated layer of the surface-treated copper foil. do.
  • a printed wiring board according to yet another aspect of the present invention includes the surface-treated copper foil according to the other aspect.
  • the circuit processability is excellent, and transmission loss and foreign matter are less likely to occur.
  • FIG. 1 is a cross-sectional view illustrating the configuration of a surface-treated copper foil according to an embodiment of the present invention. It is a figure explaining the wettability of the transfer surface of a resin base material.
  • FIG. 1 is a diagram illustrating a method for manufacturing a copper-clad laminate and a printed wiring board according to an embodiment of the present invention.
  • the surface-treated copper foil 30 and the resin base material 40 are bonded together to produce the copper-clad laminate 50 (see (b) in FIG. 3), and There is an etching process (see FIG. 3C) in which unnecessary portions of the surface-treated copper foil 30 of the stretched laminate 50 other than the portions that will become the circuits 31 are removed by etching using an etching solution.
  • the resin base material 40 is bonded onto the surface-treated layer 20 of the surface-treated copper foil 30 (see (a) in FIG. 3).
  • the surface to which the surface-treated copper foil 30 was bonded has the shape of the surface 20a of the surface-treated layer 20 of the surface-treated copper foil 30 that had been bonded. is transcribed. That is, the surface of the resin base material 40 to which the surface-treated copper foil 30 was bonded serves as a transfer surface (replica) 40a of the surface of the surface-treated copper foil 30 that was bonded.
  • the surface roughness of the surface-treated copper foil 30 decreases, the surface roughness of the transfer surface 40a of the resin base material 40 also decreases, and the wettability of the transfer surface 40a decreases. It became clear that this would happen. If the wettability of the surface of the resin base material 40 is low, the ends of the circuits 31 (surface-treated copper foil 30 remaining after etching) on the resin base material 40 during etching (the ends of the circuits 31 in the wiring width direction) Since it becomes difficult for the etching solution to reach all the areas, it is thought that circuit workability deteriorates. Whether the etching solution reaches the end of the circuit 31 depends particularly on the workability of the bottom end 31b of the circuit 31 (the part of the end of the circuit 31 adjacent to the resin base material 40 (see FIG. 2)). It is an important element for
  • the present inventors have revealed that when the surface wettability of the resin base material 40 is low, foreign matter 100 is likely to be formed on the printed wiring board 60.
  • the foreign matter 100 includes deposits that had adhered to the surface-treated copper foil 30 or the resin base material 40 before bonding, solidified salts contained in the etching solution, and the like.
  • the present inventors have found that the wettability of the transfer surface 40a of the resin base material 40 after the etching process is a very important factor in manufacturing the printed wiring board 60.
  • the present invention also shows that the wettability of the transfer surface 40a of the resin base material 40 after the etching process can be evaluated by the contact angle of distilled water measured in accordance with the sessile drop method specified in JIS R3257:1999. They found out.
  • the surface-treated copper foil 30 is a surface-treated copper foil 30 having a copper foil base 10 and a surface treatment layer 20 formed on at least one surface of the copper foil base 10,
  • the surface treatment layer 20 consists of one or both of a roughening treatment layer 21 and a rust prevention treatment layer 22 (see FIG. 1).
  • the surface treatment layer 20 is formed only on one side of the copper foil base 10, and the surface treatment layer 20 is a surface treated copper consisting of both the roughening treatment layer 21 and the rust prevention treatment layer 22.
  • An example of foil 30 is shown.
  • the arithmetic mean roughness Sa is 0.04 ⁇ m or more and 0.30 ⁇ m or less. be.
  • a resin base material 40 (a "resin member” which is a component of the present invention) used when manufacturing the copper clad laminate 50 or the printed wiring board 60 is added. After bonding the surface-treated copper foil 30 (corresponding to The contact angle of distilled water on the transfer surface (also referred to as ⁇ 1 ) is measured.
  • the transfer surface 40a of the resin base material 40 is the surface of the resin base material 40 to which the surface-treated copper foil 30 was bonded.
  • the contact angle of distilled water ⁇ 0 (hereinafter referred to as "contact angle of distilled water on the non-transfer surface before bonding the copper foil ⁇ 0 ”) is measured.
  • the non-transfer surface of the resin substrate 40 is the surface of the resin substrate 40 before being bonded to the surface-treated copper foil 30, to which the surface-treated copper foil 30 will be bonded later.
  • the contact angles ⁇ 0 and ⁇ 1 of distilled water are measured according to the sessile drop method specified in JIS R3257:1999.
  • the difference ⁇ 0 ⁇ 1 between the contact angle ⁇ 0 and the contact angle ⁇ 1 is 5° or more and 35° or less.
  • the difference ⁇ 0 ⁇ 1 between the contact angle ⁇ 0 and the contact angle ⁇ 1 is a measure of how much the wettability of the surface of the resin has changed due to bonding with the copper foil.
  • the transfer surface 40a of the resin base material 40 used for manufacturing the copper-clad laminate 50 or printed wiring board 60 will be wettability increases. Therefore, the obtained copper-clad laminate 50 and printed wiring board 60 have excellent circuit processability in addition to being less likely to cause transmission loss. 40 and another resin base material 41 laminated later for manufacturing the printed wiring board 60, foreign matter is less likely to occur.
  • the contact angle difference ⁇ 0 ⁇ 1 within the above numerical range, the wettability of the surface of the resin base material 40 is maintained well, so that the circuit 31 on the resin base material 40 during etching is
  • the etching liquid easily spreads to the bottom end 31b of the resin base material 40, and the cleaning liquid easily spreads over the entire surface of the resin base material 40 in the cleaning process after the etching process.
  • the surface-treated copper foil 30 according to this embodiment can be suitably used for manufacturing copper-clad laminates, printed wiring boards, and the like. That is, the copper-clad laminate 50 according to the present embodiment includes the surface-treated copper foil 30 according to the present embodiment and the resin base material 40 bonded on the surface-treated layer 20 of the surface-treated copper foil 30. Be prepared. Moreover, the printed wiring board 60 according to this embodiment includes the copper-clad laminate 50 according to this embodiment.
  • the surface-treated copper foil 30, the copper-clad laminate 50, and the printed wiring board 60 according to this embodiment will be explained in more detail.
  • the copper foil base 10, which is the raw material for the surface-treated copper foil 30 according to the present embodiment has two surfaces with ten points before being subjected to a treatment such as roughening treatment on the surface. It is preferable that the average roughness Rzjis is 2 ⁇ m or less in all cases. This ten-point average roughness Rzjis can be measured using a contact surface roughness measuring machine according to the method specified in JIS B0601:2001.
  • the thickness of the copper foil base 10 before performing a treatment such as roughening treatment is 5 ⁇ m or more and 40 ⁇ m or less, although it depends on the target value of the thickness of the copper foil base 10 after the roughening treatment. It is preferable.
  • the surface treatment one or both of a roughening treatment to roughen the surface and a rust prevention treatment are performed. That is, the surface treatment layer 20 consists of one or both of a roughening treatment layer 21 formed by a roughening treatment and a rust prevention treatment layer 22 formed by a rust prevention treatment.
  • the surface treatment layer 20 consists of both the roughening treatment layer 21 and the rust prevention treatment layer 22, the roughening treatment layer 21 is formed on the surface of the copper foil base 10, and the rust prevention treatment layer 22 is formed on it.
  • a chemical adhesive treatment using a chemical adhesive such as a silane coupling agent is performed to form a chemical adhesive layer such as a silane coupling agent layer on the rust prevention treatment layer 22. It's okay.
  • At least one surface of the copper foil base 10 is treated before or after the general roughening treatment for the purpose of improving the above-mentioned wettability. Perform unevenness forming treatment. Then, a roughened layer 21 is formed by these general roughening treatments and unevenness forming treatments.
  • This unevenness forming process is a process of forming minute unevenness on the surface of the copper foil base 10 to the extent that it does not affect transmission loss. Examples of this unevenness forming treatment include capsule plating treatment and etching unevenness treatment.
  • Capsule plating treatment is performed before general roughening treatment. Fine unevenness is formed on the surface of the copper foil base 10 by applying smooth copper plating (capsule plating) to the surface of the copper foil base 10 using a mesh cathode shielding plate. By using a mesh cathode shielding plate, it is possible to form an uneven shape with uniform variations on the surface of the copper foil base 10.
  • the plating conditions such as the aperture ratio of the mesh-like cathode shielding plate, current density, and current application time
  • a fine uneven shape that does not affect transmission loss is created on the surface of the copper foil substrate 10.
  • the wettability of the transfer surface 40a of the resin base material 40 can be well controlled.
  • the material for forming the cathode shielding plate is preferably a material having chemical resistance and insulation properties, such as resins such as vinyl chloride, polyethylene, and polybutylene terephthalate.
  • the opening area of the mesh portion is preferably 1 ⁇ m 2 or more and 100 ⁇ m 2 or less, more preferably 10 ⁇ m 2 or more and 100 ⁇ m 2 or less. Further, the aperture ratio of the mesh portion is preferably 5% or more and 15% or less.
  • the aperture area and aperture ratio are within the above numerical ranges, it is possible to form a fine uneven shape on the surface of the copper foil base 10 that does not affect transmission loss, and the transfer surface of the resin base 40 can be formed on the surface of the copper foil base 10.
  • the wettability of 40a is improved.
  • the etching unevenness treatment is performed after the general roughening treatment and before the rust prevention treatment.
  • chemically resistant rust-preventing metals such as nickel (Ni) and cobalt (Co) are electrodeposited under conditions of high current density and extremely short time, and then immersed in an etching solution for a short time.
  • etching fine irregularities are formed on the surface of the copper foil base 10.
  • a general electrolytic bath containing nickel sulfate, nickel sulfamate, etc. can be used for electrodeposition of nickel.
  • the current density can be, for example, 1.0 A/dm 2 or more
  • the current application time can be, for example, 0.5 seconds or more and 2.0 seconds or less.
  • the rust preventive metal is electrodeposited only on the tops of the roughened particles formed by general roughening treatment. Therefore, a region of the surface of the copper foil base 10 other than the tops of the roughened particles is etched, and a fine uneven shape is formed in a region of the surface of the copper foil base 10 other than the tops of the roughened particles. Furthermore, by controlling conditions such as the immersion time in the etching solution, it is possible to form a fine uneven shape on the surface of the copper foil base 10 that does not affect transmission loss. As a result, the wettability of the transfer surface 40a of the resin base material 40 can be well controlled.
  • etching solution for example, a common copper etching solution such as a mixture of sulfuric acid and hydrogen peroxide or hydrochloric acid can be used.
  • the immersion time in the etching solution can be, for example, 2 seconds or more and 10 seconds or less. If the immersion time in the etching solution is within the above numerical range, it is possible to form a fine uneven shape on the surface of the copper foil substrate 10 that does not affect transmission loss, and transfer the resin substrate 40.
  • the surface of the copper foil substrate 10 can be uniformly treated in the subsequent rust prevention treatment and chemical adhesive treatment process, resulting in good adhesion and Can provide corrosion resistance.
  • a copper foil base 10 having a surface that improves the wettability of the transfer surface 40a of the bonded resin base material 40 can be obtained.
  • the wettability of the transfer surface 40a of the resin base material 40 can be evaluated by the contact angle of distilled water measured according to the sessile drop method.
  • the difference ⁇ 0 ⁇ 1 between the distilled water contact angle ⁇ 0 and the distilled water contact angle ⁇ 1 of the transfer surface 40a after copper foil etching must be 5° or more and 35° or less.
  • the arithmetic mean roughness Sa is 0.020 ⁇ m or more and 0.070 ⁇ m or less
  • the volume of the space in the core portion Vvc is It is preferably 0.030 mL/m 2 or more and 0.110 mL/m 2 or less.
  • the arithmetic mean roughness Sa of the transfer surface 40a and the volume Vvc of the space in the core portion are within the above numerical ranges, even if the surface roughness of the surface treatment layer 20 of the surface treated copper foil 30 is small, the transfer surface 40a will not become wet. In addition to better properties, the processed shape of the circuit can be maintained even better. The reason for this is not clear, but it is thought that it is because the amount of etching at the resin-copper foil interface can be well controlled.
  • the arithmetic mean roughness Sa is 0.020 ⁇ m or more and 0.051 ⁇ m or less
  • the volume of the space in the core portion Vvc is More preferably, it is 0.030 mL/m 2 or more and 0.071 mL/m 2 or less. If the arithmetic mean roughness Sa of the transfer surface 40a and the volume Vvc of the space in the core portion are within the above numerical ranges, the generation of foreign matter can be further suppressed. Although the reason for this is not clear, it is thought that it is possible to limit the gap into which foreign matter can enter.
  • the surface-treated copper according to the present embodiment is A foil 30 is obtained.
  • the surface roughness of the surface treated layer 20 of the obtained surface treated copper foil 30 needs to be as follows. That is, when the optical roughness of the surface 20a of the surface treatment layer 20 is measured according to the method specified in ISO25178, the arithmetic mean roughness Sa needs to be 0.04 ⁇ m or more and 0.30 ⁇ m or less.
  • the arithmetic mean roughness Sa of the surface 20a of the surface treatment layer 20 is preferably 0.04 ⁇ m or more and 0.20 ⁇ m or less, and 0.04 ⁇ m or more and 0.150 ⁇ m or less. is more preferable.
  • the surface-treated copper foil 30 according to the present embodiment can be manufactured by performing the following steps (1) to (5) in the order described.
  • an unevenness forming process is performed for the purpose of improving wettability, but there are two specific examples: an example using a capsule plating process and an example using an etching unevenness process as an uneven forming process. Let me explain with an example.
  • the smooth and shiny surface is the shiny surface (S surface).
  • the smooth and glossy surfaces are both the shiny side and the matte side (M side), but the smoother and glossier side is the matte side.
  • Capsule plating treatment is performed for the purpose of improving wettability, and a fine uneven shape is formed on at least one surface of the copper foil base 10.
  • the contents of the capsule plating process are as described above, but by using a mesh cathode shielding plate, the surface of the copper foil base 10 can be partially plated with copper (capsule plating). Specific examples of the composition of the plating solution and plating conditions are shown below.
  • smooth copper plating (capsule plating) is applied only to the openings of the mesh portion. As a result, fine irregularities can be formed without changing the surface roughness of the entire surface of the copper foil.
  • the roughening treatment it is preferable to perform, for example, a two-step plating treatment as shown below. Note that, if necessary, the second-stage fixed plating process may not be performed.
  • the first step of the roughening plating process is a process of forming roughening particles on the surface of the copper foil base 10 that has been subjected to the capsule plating process.
  • the first step of roughening plating treatment can be performed, for example, by plating treatment using a copper sulfate bath. Specific examples of the composition of the plating solution and plating conditions are shown below.
  • the copper sulfate bath contains molybdenum (Mo), arsenic (As), antimony (Sb), bismuth (Bi), selenium (Se), tellurium ( Additives containing Te), tungsten (W), etc. may be added, and it is particularly preferable to add additives containing molybdenum.
  • composition of plating solution Concentration of copper sulfate pentahydrate...5 to 15 g/L in terms of copper (atoms) Concentration of sulfuric acid...120-250g/L Concentration of ammonium molybdate...500 to 1000 mg/L in terms of molybdenum (atoms)
  • the second-stage fixed plating process is a process in which smooth cover plating is performed on the copper foil base 10 that has been subjected to the first-stage roughening plating process. As a result, a roughened layer 21 is formed on the surface of the copper foil base 10.
  • the second-stage fixed plating treatment can be performed, for example, by plating treatment using a copper sulfate bath. Specific examples of the composition of the plating solution and plating conditions are shown below.
  • this fixed plating treatment is performed to prevent the roughening particles from falling off, that is, to fix the roughening particles.
  • this fixed plating treatment is applied to the roughened surface. , it is possible to prevent the roughening particles from falling off.
  • a silane coupling agent layer may be further formed on the roughening treatment layer 21 directly or via an intermediate layer.
  • the intermediate layer include a base layer containing nickel, a heat-resistant treated layer containing zinc (Zn), and an anti-corrosion treated layer 22 containing chromium (Cr). Note that since the intermediate layer and the silane coupling agent layer are very thin, they do not affect the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil 30.
  • the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil 30 is substantially determined by the particle shape of the roughened particles on the surface of the roughened layer 21 corresponding to the roughened surface.
  • the base layer is preferably formed of at least one selected from nickel, nickel-phosphorus (P), nickel-zinc, and nickel-molybdenum.
  • the heat-resistant treatment layer is preferably formed when it is necessary to improve the heat resistance of the surface-treated copper foil 30.
  • the heat-resistant treatment layer is preferably formed of, for example, zinc or an alloy containing zinc.
  • alloys containing zinc include zinc-tin (Sn) alloy, zinc-nickel alloy, zinc-cobalt alloy, zinc-copper alloy, zinc-molybdenum alloy, zinc-chromium alloy, and zinc-vanadium (V) alloy. It will be done.
  • the anticorrosion treatment layer 22 it is preferable to form the anticorrosion treatment layer 22 when it is necessary to further improve corrosion resistance.
  • the antirust layer 22 include a chromium layer formed by chromium plating and a chromate layer formed by chromate treatment. When forming all three layers, the base layer, the heat-resistant treatment layer, and the rust prevention treatment layer 22, it is preferable to form them on the roughening treatment layer 21 in this order. Further, depending on the use and desired characteristics, only one or two of the base layer, heat-resistant treatment layer, and rust-prevention treatment layer 22 may be formed.
  • silane coupling agent layer As a method for forming the silane coupling agent layer, for example, silane coupling is performed on the uneven surface of the roughening treatment layer 21 of the surface-treated copper foil 30 directly or through an intermediate layer. After applying a solution of the agent, air drying (natural drying) or heating drying may be used. When the water in the applied coupling agent solution evaporates, a silane coupling agent layer is formed. Drying by heating at a temperature of 50 to 180°C is preferable because the reaction between the silane coupling agent and the copper foil is accelerated.
  • the silane coupling agent layer includes an epoxy silane coupling agent, an amino silane coupling agent, a vinyl silane coupling agent, a methacrylic silane coupling agent, an acrylic silane coupling agent, an azole silane coupling agent, and a styryl silane coupling agent. It is preferable to contain at least one of a silane coupling agent, a ureide silane coupling agent, a mercapto silane coupling agent, a sulfide silane coupling agent, and an isocyanate silane coupling agent.
  • Example using etching unevenness treatment (1) Manufacture of copper foil substrate This is the same as in the case of using capsule plating treatment. (2) Formation of roughening treatment layer This is the same as in the case of using capsule plating treatment.
  • Etching unevenness treatment For the purpose of improving wettability, etching unevenness treatment is performed to form fine unevenness on the surface of the copper foil base 10.
  • the contents of the etching unevenness treatment are as described above, but the treatment conditions and the like will be explained in more detail.
  • Electrodeposition was carried out using an electrolytic bath containing nickel sulfate and having a nickel concentration of 30 to 150 g/L, with a current density of 1.0 to 4.0 A/dm 2 and a current application time of 0.5 to 2.0 seconds. By performing etching by immersing it in an etching solution for a short time and then etching it, it is possible to form a fine uneven shape on the surface of the copper foil base 10 that does not affect transmission loss.
  • etching unevenness process forms unevenness on the surface of the roughened particles formed by the roughening process
  • other etching methods include etching in a solution containing an inorganic acid such as hydrochloric acid, sulfuric acid, or phosphoric acid.
  • An example is immersion treatment.
  • an aqueous inorganic acid solution of a predetermined concentration for about several seconds to several tens of seconds, fine irregularities are formed on the surface of the roughened particles.
  • hydrochloric acid fine irregularities are formed on the surface of the roughened particles by immersing them in hydrochloric acid with a concentration of 5 to 20% by volume for 2 seconds or more.
  • etching methods include, in addition to the above-mentioned immersion treatment in a solution containing an inorganic acid, immersion treatment in a solution containing an organic acid such as acetic acid or formic acid, or a solution containing iron chloride or copper chloride. It is also possible to use immersion treatment and electrolytic etching treatment using anodic oxidation. These methods may be used in combination of two or more.
  • the wettability of the transfer surface 40a of the resin base material 40 bonded to the surface-treated copper foil 30 when manufacturing the copper-clad laminate 50 or the printed wiring board 60 is based on the sessile drop method specified in JIS R3257:1999. It can be evaluated by the contact angle of distilled water measured as follows.
  • the contact angle ⁇ 0 of distilled water is measured on the surface to which the surface-treated copper foil 30 is bonded later based on the sessile drop method described above. do.
  • the surface on which the distilled water contact angle ⁇ 0 of the non-transfer surface before the copper foil bonding was measured is the non-transfer surface to which the shape of the surface of the surface-treated copper foil 30 has not been transferred.
  • the surface-treated copper foil 30 is removed by etching, and the surface-treated part of the surface of the remaining resin base material 40 is Regarding the surface to which the copper foil 30 was bonded, the contact angle ⁇ 1 of distilled water is measured according to the sessile drop method described above.
  • the surface on which the distilled water contact angle ⁇ 1 of the transfer surface after copper foil etching was measured is the transfer surface 40a to which the shape of the surface of the bonded surface-treated copper foil 30 is transferred.
  • the wettability of the transfer surface 40a of the resin base material 40 is evaluated based on the difference ⁇ 0 ⁇ 1 between the contact angle ⁇ 0 and the contact angle ⁇ 1 . If the difference ⁇ 0 ⁇ 1 between the contact angle ⁇ 0 and the contact angle ⁇ 1 is 5° or more and 35° or less, the wettability of the transfer surface 40a is good.
  • the resin member used when measuring the contact angle ⁇ 0 and the contact angle ⁇ 1 is of the same type as the resin base material 40 used when manufacturing the copper-clad laminate 50 and the printed wiring board 60, as described above. However, different ones may be used to measure the contact angle ⁇ 0 and the contact angle ⁇ 1 . That is, a member having a different resin type, shape, size, etc. from the resin base material 40 used when manufacturing the copper-clad laminate 50 or the printed wiring board 60 may be used as the resin member.
  • the type of resin forming the resin member used when measuring the contact angle ⁇ 0 and the contact angle ⁇ 1 may be a curable resin such as a thermosetting resin, or a thermoplastic resin.
  • the contact angle ⁇ 0 and the contact angle ⁇ 1 are measured after the resin member is cured. That is, in the case of a contact angle ⁇ 1 , the uncured resin member is bonded onto the surface treated layer 20 of the surface treated copper foil 30, and after the resin member is cured, the surface treated copper foil 30 is removed by etching. do. Then, the contact angle ⁇ 1 of distilled water is measured on the transfer surface of the resin member according to the sessile drop method described above.
  • the structure of the copper-clad laminate 50 according to the present embodiment is not particularly limited, but includes a surface-treated copper foil 30 and a resin base material 40.
  • the resin base material 40 is bonded onto the surface treated layer 20 of the surface treated copper foil 30.
  • This copper-clad laminate 50 can be used, for example, to manufacture a printed wiring board 60.
  • examples of the resin forming the resin base material 40 include epoxy resin, polyphenylene ether, phenol resin, bis(phenoxyphenoxy)benzene, polyimide, liquid crystal polymer, and fluororesin (eg, polytetrafluoroethylene).
  • the configuration of the printed wiring board 60 according to the present embodiment is not particularly limited, it includes the copper-clad laminate 50 according to the present embodiment.
  • the printed wiring board 60 can be obtained by bonding another resin base material 41 to cover the circuit 31. (See Figure 3(d)).
  • the resin base material 41 bonded together to cover the circuit 31 may be of the same type as the resin base material 40 of the copper-clad laminate 50, or may be of a different type.
  • the present invention will be explained in more detail by showing Examples and Comparative Examples below.
  • the surface-treated copper foil of Comparative Example 7 was manufactured by the manufacturing method described in Patent Document 1.
  • the surface-treated copper foil of Comparative Example 8 was manufactured by the manufacturing method described in Patent Document 2
  • the surface-treated copper foil of Comparative Example 9 was manufactured by the manufacturing method described in Patent Document 3.
  • the surface-treated copper foil of Comparative Example 10 was manufactured by the manufacturing method described in Patent Document 4, and the surface-treated copper foil of Comparative Example 11 was manufactured by the manufacturing method described in Patent Document 5. It is something.
  • Examples 1 to 23 and Comparative Examples 1 to 6 and 12 to 14 were manufactured by the procedure described below.
  • the cathode used to produce the electrolytic copper foil was a titanium rotating drum whose surface roughness was adjusted by buffing to #1000 to #2000, and the anode was a dimensionally stable anode DSA (registered trademark).
  • DSA registered trademark
  • the copper foil substrate produced as described above was subjected to the general roughening treatment described above and an unevenness forming treatment for the purpose of improving wettability.
  • the copper foil substrate was subjected to capsule plating treatment, which is an unevenness forming treatment for the purpose of improving wettability.
  • a roughening treatment was applied.
  • the copper foil substrate was subjected to a general roughening treatment, and then subjected to an etching unevenness treatment, which is an unevenness forming treatment for the purpose of improving wettability. did.
  • General roughening treatment, capsule plating treatment, and etching unevenness treatment will be explained below.
  • ⁇ Composition of the plating solution for the first stage electroplating process Concentration of copper sulfate pentahydrate...10g/L in terms of copper (atoms) Concentration of sulfuric acid...150g/L Concentration of ammonium molybdate...600mg/L in terms of molybdenum (atoms) ⁇ Conditions for first stage electroplating treatment> Processing speed: 15 m/min Current density: 15 to 55 A/dm 2 Bath temperature...15°C Energization time...4 to 6 seconds
  • Capsule plating treatment which is an unevenness forming treatment, was performed on the copper foil substrate using a roll-to-roll method.
  • Tables 1 and 2 copper foil substrates having different surface irregularities were obtained by changing the aperture ratio of the cathode shielding plate, the current density of electroplating, and the current application time.
  • Etching unevenness treatment which is an unevenness forming process, was performed on the roughened surface of the copper foil substrate that had been subjected to the roughening treatment.
  • the etching unevenness process is a process in which nickel is electrodeposited and then immersed in an etching solution for etching.
  • the composition of the electrolytic solution used for electrodeposition, conditions for electrodeposition, and conditions for etching are shown below. As shown in Tables 1 and 2, copper foil substrates having different surface irregularities were obtained by changing the current density and current application time of electrodeposition, and the processing time of etching.
  • the rust prevention treatment is a treatment in which nickel plating, zinc plating, and chrome plating are applied in this order. Conditions for nickel plating, zinc plating, and chrome plating are shown.
  • silane coupling agent treatment was performed to form a silane coupling agent layer on the outermost chromium plating layer of the rust prevention treatment layer.
  • the silane coupling agent layer was formed by applying a 3-aminopropyltrimethoxysilane aqueous solution having a concentration of 0.2% by mass and drying at 100°C.
  • Example 21 and Comparative Example 12 ThunderClad 3+ manufactured by Taiwan Union Corporation was used, and for Example 22 and Comparative Example 13, Espanex (registered trademark) manufactured by Nippon Steel Chemical & Materials Co., Ltd. was used.
  • Example 23 and Comparative Example 14 liquid crystal polymer film Vector (registered trademark) manufactured by Kuraray Co., Ltd. was used. Note that the surface-treated copper foil and the resin member were bonded together under conditions that conformed to the process guidelines for each resin.
  • This copper-clad laminate was etched using a mixed solution of cupric chloride and hydrochloric acid as an etching solution to remove all the surface-treated copper foil. After thoroughly washing the remaining resin member with water, the contact angle ⁇ 1 of distilled water was measured using the sessile drop method specified in JIS R3257:1999 on the surface of the resin member to which the surface-treated copper foil was bonded (transfer surface). Measured according to.
  • a resin member of the same type as the resin member bonded on the surface treatment layer of the surface-treated copper foil is separately prepared, and the surface-treated copper foil is not bonded to the other resin member.
  • An operation similar to the above procedure for producing a stretched laminate was performed, and the contact angle ⁇ 0 of distilled water on the surface (non-transfer surface) was measured according to the sessile drop method described above. Then, the difference ⁇ 0 ⁇ 1 between the contact angle ⁇ 0 and the contact angle ⁇ 1 was calculated.
  • the arithmetic mean roughness Sa and core space volume Vvc were measured using confocal laser microscopes VK-X1050 and VK-X1000 manufactured by Keyence Corporation in accordance with ISO25178.
  • the magnification of the objective lens of the confocal laser microscope is 100 times, the scan mode is laser confocal, the measurement size is 2048 x 1536, the measurement quality is High Precision, and the pitch is 0.08 ⁇ m. Further, calculations of the arithmetic mean roughness Sa and the volume Vvc of the space in the core portion were performed under the filter processing and calculation conditions shown below.
  • ⁇ Circuit processability> A resist pattern with an L&S of 50/50 ⁇ m was placed on a surface-treated copper foil of a copper-clad laminate similar to the one prepared to measure the distilled water contact angle ⁇ 1 of the transfer surface after copper foil etching using the subtractive method. It was formed by The surface-treated copper foil was then etched to form a circuit having a wiring pattern. A dry resist film was used as the resist, and a mixed solution containing copper chloride and hydrochloric acid was used as the etching solution.
  • the etching factor (Ef) of the obtained circuit was measured.
  • the copper-clad laminate on which the circuit was formed was cut to obtain a cross section perpendicular to the surface of the resin member, and the cross section of the circuit was observed using a scanning electron microscope.
  • angles X and Y on the cross section shown in FIG. 2 were measured.
  • the angle X is the angle between the straight line connecting the top end 31a and bottom end 31b of the circuit 31 and the surface of the resin member.
  • the angle Y is the angle between the tangent to the bottom end 31b of the circuit 31 and the surface of the resin member.
  • the tangent to the bottom end 31b of the circuit 31 will be defined in more detail. Draw a straight line parallel to the surface of the resin member at a height of 1.5 ⁇ m from the bottom surface of the resin member, and connect the intersection 31c of the straight line with the side surface of the circuit 31 to the bottom end 31b. A straight line is defined as "a tangent to the bottom end 31b of the circuit 31", and an angle between this tangent and the surface of the resin member is defined as an angle Y.
  • a printed wiring board with a strip line formed thereon was fabricated using a copper-clad laminate similar to the one fabricated to measure the distilled water contact angle ⁇ 1 on the transfer surface after copper foil etching, and the transmission characteristics were evaluated. .
  • the circuit width of the strip line formed on this printed wiring board was 140 ⁇ m, and the circuit length was 76 mm.
  • a copper-clad laminate similar to the one prepared to measure the distilled water contact angle ⁇ 1 of the transfer surface after copper foil etching was etched using a mixture of cupric chloride and hydrochloric acid as the etching solution. All treated copper foil was removed. After thoroughly washing the remaining resin member with water, apply a resin member of the same type as that used to make the above-mentioned copper-clad laminate to the surface of the resin member to which the surface-treated copper foil was bonded (transfer surface). and the surface-treated copper foil were laminated in this order and then etched in the same manner as above to remove all the surface-treated copper foil. As a result, a resin sample made of two resin members bonded together was obtained.
  • the obtained resin sample was cut into a square shape of 5 cm on each side. Then, the cut resin sample was observed with a microscope at a magnification of 35 times, and the number of black spots with a diameter of 1 mm or more was measured. These black spots are caused by foreign matter generated between the two resin members bonded together. Observation using a microscope was performed by viewing the transfer surface of the resin member that originally constituted the copper-clad laminate from the side of the resin member that was later bonded. The results are shown in Tables 1 and 2. In Tables 1 and 2, if the number of black dots per cut resin sample is 2 or less, it is marked "A”, if it is 3 or more and 5 or less, it is marked "B", and if it is more than 5, it is marked "B". is indicated as "C”.
  • the arithmetic mean roughness Sa of the surface of the surface treatment layer was controlled within a range of 0.04 ⁇ m to 0.30 ⁇ m. Regardless, the difference ⁇ 0 - ⁇ 1 between the contact angle ⁇ 0 and the contact angle ⁇ 1 , which represents the wettability of the transfer surface of the resin base material, is well controlled, resulting in excellent circuit processability and low transmission loss and Foreign matter was less likely to occur.
  • the surface-treated copper foils of Examples 1 to 4, 10 to 14, 17, 18, and 21 to 23 have the arithmetic mean roughness Sa of the transfer surface of the resin base material and the volume of the space in the core part Vvc. Since it was well controlled, the circuit processability was even better and the generation of foreign matter was further reduced.
  • the surface-treated copper foils of Comparative Examples 1 to 14 have low wettability on the transfer surface of the resin base material, and therefore have poor circuit processability, transmission loss, and generation of foreign matter. That was enough.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Provided is a surface-treated copper foil in which circuit workability is excellent and transmission loss and generation of foreign matter are less likely to occur. When the optical roughness of the surface (20a) of a surface treatment layer (20) of the surface-treated copper foil (30) is measured according to the method stipulated in ISO25178, the arithmetic mean roughness Sa is 0.04-0.30 μm inclusive. A resin member (40) is affixed onto the surface treatment layer (20) of the surface-treated copper foil (30) and then the surface-treated copper foil (30) is removed by etching, and a measurement of the distilled water contact angle θ1 is carried out according to the sessile drop method stipulated in JIS R3257:1999 on a transfer surface (40a) of the remaining resin member (40), which is the surface to which the surface-treated copper foil (30) was affixed. A measurement of the distilled water contact angle θ0 is carried out on a non-transfer surface of the resin member (40) yet to be affixed onto the surface-treated copper foil (30), the non-transfer surface being the surface onto which the surface-treated copper foil (30) is to be subsequently affixed. The difference θ0-θ1 between the contact angles θ0 and θ1 is 5-35° inclusive.

Description

表面処理銅箔、銅張積層板、及びプリント配線板Surface-treated copper foil, copper-clad laminates, and printed wiring boards
 本発明は、プリント配線板等の製造に好適に使用可能な表面処理銅箔、並びに、該表面処理銅箔を用いた銅張積層板及びプリント配線板に関する。 The present invention relates to a surface-treated copper foil that can be suitably used for manufacturing printed wiring boards and the like, as well as a copper-clad laminate and a printed wiring board using the surface-treated copper foil.
 近年、信号の高周波化が進み、電子機器に搭載されるプリント配線板には、高周波信号が伝送されることが増えている。そのため、プリント配線板の材料として用いられる表面処理銅箔については、高周波信号の伝送損失を低減するために、表面を低粗度とすることが検討されている(例えば特許文献1を参照)。
 また、プリント配線板の高密度実装化、多機能化に伴い、回路の微細配線化も進んでいる。微細配線を形成するために回路加工性が良好な表面処理銅箔が求められており、回路加工性を向上させるために、表面を低粗度とすることが検討されている(例えば特許文献2を参照)。また、その他にも、銅箔を表面処理する金属の工夫(例えば特許文献3を参照)や、樹脂の表面へ転写した凹凸の形状の工夫(例えば特許文献4、5を参照)などの要因が検討されている。
In recent years, signals have become increasingly high-frequency, and high-frequency signals are increasingly being transmitted to printed wiring boards mounted on electronic devices. Therefore, with regard to surface-treated copper foil used as a material for printed wiring boards, in order to reduce the transmission loss of high-frequency signals, it is being considered to reduce the roughness of the surface (see, for example, Patent Document 1).
Furthermore, as printed wiring boards become more densely packaged and multifunctional, circuits are becoming increasingly finely wired. A surface-treated copper foil with good circuit workability is required for forming fine wiring, and in order to improve circuit workability, it is being considered to reduce the roughness of the surface (for example, Patent Document 2) ). In addition, there are other factors such as improvements in the metal surface treatment of copper foil (see, for example, Patent Document 3) and improvements in the shape of the unevenness transferred to the resin surface (see, for example, Patent Documents 4 and 5). It is being considered.
日本国特許公開公報 2019年第210521号Japanese Patent Publication No. 210521, 2019 日本国特許公開公報 2017年第20117号Japanese Patent Publication No. 20117, 2017 日本国特許公開公報 2019年第81913号Japanese Patent Publication No. 81913, 2019 日本国特許公報 第6945523号Japanese Patent Publication No. 6945523 国際公開第2020/105289号International Publication No. 2020/105289
 しかしながら、表面処理銅箔の表面粗さを低減しても、目的とする微細配線が得られない場合があった。従来、回路加工性を表す指標として、回路のボトム幅とトップ幅と高さから求められるエッチングファクターが広く用いられてきたが、それに加えて回路のボトム端部の接線の角度も重要であることが分かってきた。すなわち、エッチングファクターが従来は良好と評価される数値であったとしても、回路のボトム端部の接線の角度が小さい(すなわち、回路のトップ幅よりもボトム幅が大きく、回路の断面が裾の広がったような形状となる)と、ミクロな視点で見た際の回路の端部の界面のエッチング不良が原因と予想されるマイグレーションが発生する場合があり、回路のボトム端部の接線の角度が小さいほどマイグレーションが発生しやすい傾向があった。 However, even if the surface roughness of the surface-treated copper foil is reduced, the desired fine wiring may not be obtained in some cases. Traditionally, the etching factor determined from the bottom width, top width, and height of the circuit has been widely used as an index to express circuit processability, but in addition to this, the angle of the tangent at the bottom edge of the circuit is also important. I've come to understand. In other words, even if the etching factor is a value conventionally evaluated as good, the angle of the tangent at the bottom edge of the circuit is small (i.e., the bottom width is larger than the top width of the circuit, and the cross section of the circuit is When viewed from a microscopic perspective, migration may occur, which is expected to be caused by poor etching at the interface at the edge of the circuit, resulting in a widened shape, and the angle of the tangent at the bottom edge of the circuit may occur. The smaller the value, the more likely migration was to occur.
 さらに、本発明者らの検討において表面処理銅箔の表面粗さを低減していったところ、銅張積層板の表面処理銅箔をエッチングし除去した後に樹脂製基材を積層してプリント配線板を製造する工程において、銅張積層板を構成する樹脂製基材と後に積層した樹脂製基材との間に異物が発生しやすくなるという新たな課題が明らかになった。
 本発明は、回路加工性に優れるとともに伝送損失及び異物の発生が生じにくい表面処理銅箔、銅張積層板、及びプリント配線板を提供することを課題とする。
Furthermore, in our study, we reduced the surface roughness of the surface-treated copper foil, and after etching and removing the surface-treated copper foil of the copper-clad laminate, we laminated a resin base material and printed wiring. In the process of manufacturing the board, a new problem has become clear: foreign matter is likely to occur between the resin base material that makes up the copper-clad laminate and the resin base material that is later laminated.
An object of the present invention is to provide a surface-treated copper foil, a copper-clad laminate, and a printed wiring board that have excellent circuit workability and are less likely to generate transmission loss or foreign matter.
 本発明の一態様に係る表面処理銅箔は、銅箔基体と、銅箔基体の少なくとも一方の面に形成された表面処理層と、を有する表面処理銅箔であって、表面処理層が粗化処理層及び防錆処理層の一方又は両方からなり、表面処理層の表面の光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.04μm以上0.30μm以下であり、表面処理銅箔の表面処理層上に樹脂製部材を貼り合わせた後に、表面処理銅箔をエッチングにより除去し、残った樹脂製部材の表面処理銅箔が貼り合わされていた表面である転写表面について、蒸留水の接触角θ1をJIS R3257:1999に規定の静滴法に準拠して測定するとともに、表面処理銅箔に貼り合わせる前の樹脂製部材の表面処理銅箔が後に貼り合わされる表面である非転写表面について、蒸留水の接触角θ0を静滴法に準拠して測定した場合に、接触角θ0と接触角θ1との差θ0-θ1が5°以上35°以下であることを要旨とする。 A surface-treated copper foil according to one embodiment of the present invention is a surface-treated copper foil having a copper foil base and a surface treatment layer formed on at least one surface of the copper foil base, wherein the surface treatment layer is rough. Consisting of one or both of a chemical treatment layer and a rust prevention treatment layer, when the optical roughness of the surface of the surface treatment layer is measured in accordance with the method specified in ISO 25178, the arithmetic mean roughness Sa is 0.04 μm or more 0.30 μm or less, and after laminating the resin member on the surface treatment layer of the surface-treated copper foil, the surface-treated copper foil is removed by etching, and the surface-treated copper foil of the remaining resin member is pasted. The contact angle θ 1 of distilled water was measured in accordance with the sessile drop method specified in JIS R3257:1999 on the transfer surface, which is a surface treated with surface treated copper foil. When the contact angle θ 0 of distilled water is measured according to the sessile drop method on the non-transfer surface to which the foil is later bonded, the difference between the contact angle θ 0 and the contact angle θ 1 is θ 0 - θ The gist is that 1 is between 5° and 35°.
 本発明の別の態様に係る銅張積層板は、上記一態様に係る表面処理銅箔と、表面処理銅箔の表面処理層上に貼り合わされた樹脂製基材と、を備えることを要旨とする。
 本発明のさらに別の態様に係るプリント配線板は、上記別の態様に係る表面処理銅箔を備えることを要旨とする。
The gist is that a copper-clad laminate according to another aspect of the present invention includes the surface-treated copper foil according to the above-mentioned one aspect and a resin base material laminated on the surface-treated layer of the surface-treated copper foil. do.
A printed wiring board according to yet another aspect of the present invention includes the surface-treated copper foil according to the other aspect.
 本発明によれば、回路加工性に優れるとともに伝送損失及び異物の発生が生じにくい。 According to the present invention, the circuit processability is excellent, and transmission loss and foreign matter are less likely to occur.
本発明の一実施形態に係る表面処理銅箔の構成を説明する断面図である。1 is a cross-sectional view illustrating the configuration of a surface-treated copper foil according to an embodiment of the present invention. 樹脂製基材の転写表面の濡れ性について説明する図である。It is a figure explaining the wettability of the transfer surface of a resin base material. 本発明の一実施形態に係る銅張積層板及びプリント配線板の製造方法を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram illustrating a method for manufacturing a copper-clad laminate and a printed wiring board according to an embodiment of the present invention.
 本発明の一実施形態について説明する。なお、以下に説明する実施形態は、本発明の一例を示したものである。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 上記課題を解決するため、本発明者らは、銅張積層板やプリント配線板を製造する際に使用する樹脂製基材の表面の濡れ性に着目し、鋭意研究を行った。図1、2、3を参照しながら、以下に詳細に説明する。
An embodiment of the present invention will be described. Note that the embodiment described below shows an example of the present invention. Further, various changes or improvements can be made to this embodiment, and forms with such changes or improvements can also be included in the present invention.
In order to solve the above problems, the present inventors focused on the wettability of the surface of a resin base material used in manufacturing copper-clad laminates and printed wiring boards, and conducted extensive research. This will be explained in detail below with reference to FIGS. 1, 2 and 3.
 プリント配線板60の製造工程中には、表面処理銅箔30と樹脂製基材40を貼り合わせて銅張積層板50を製造する貼り合わせ工程(図3の(b)を参照)と、銅張積層板50の表面処理銅箔30のうち回路31となる部分以外の不要部分を、エッチング液を用いたエッチングによって除去するエッチング工程(図3の(c)を参照)とがある。貼り合わせ工程において、樹脂製基材40は、表面処理銅箔30の表面処理層20上に貼り合わされる(図3の(a)を参照)。 During the manufacturing process of the printed wiring board 60, there is a bonding process in which the surface-treated copper foil 30 and the resin base material 40 are bonded together to produce the copper-clad laminate 50 (see (b) in FIG. 3), and There is an etching process (see FIG. 3C) in which unnecessary portions of the surface-treated copper foil 30 of the stretched laminate 50 other than the portions that will become the circuits 31 are removed by etching using an etching solution. In the bonding step, the resin base material 40 is bonded onto the surface-treated layer 20 of the surface-treated copper foil 30 (see (a) in FIG. 3).
 このとき、エッチング後に残った樹脂製基材40の表面のうち、表面処理銅箔30が貼り合わされていた表面には、貼り合わされていた表面処理銅箔30の表面処理層20の表面20aの形状が転写されている。すなわち、樹脂製基材40の表面処理銅箔30が貼り合わされていた表面は、貼り合わされていた表面処理銅箔30の表面の転写表面(レプリカ)40aとなっている。 At this time, among the surfaces of the resin base material 40 remaining after etching, the surface to which the surface-treated copper foil 30 was bonded has the shape of the surface 20a of the surface-treated layer 20 of the surface-treated copper foil 30 that had been bonded. is transcribed. That is, the surface of the resin base material 40 to which the surface-treated copper foil 30 was bonded serves as a transfer surface (replica) 40a of the surface of the surface-treated copper foil 30 that was bonded.
 本発明者らの検討によれば、表面処理銅箔30の表面粗さが低くなるに従って、樹脂製基材40の転写表面40aの表面粗さも低くなっていき、転写表面40aの濡れ性が低くなることが明らかとなった。樹脂製基材40の表面の濡れ性が低いと、エッチング中に樹脂製基材40上の回路31(エッチングにより残る表面処理銅箔30)の端部(回路31の配線幅方向の端部)にまでエッチング液が行き渡りにくくなるため、回路加工性が低下すると考えられる。回路31の端部にまでエッチング液が行き渡るかどうかは、特に回路31のボトム端部31b(回路31の端部のうち樹脂製基材40に隣接する部分(図2を参照))の加工性に対して重要な要素となる。 According to studies by the present inventors, as the surface roughness of the surface-treated copper foil 30 decreases, the surface roughness of the transfer surface 40a of the resin base material 40 also decreases, and the wettability of the transfer surface 40a decreases. It became clear that this would happen. If the wettability of the surface of the resin base material 40 is low, the ends of the circuits 31 (surface-treated copper foil 30 remaining after etching) on the resin base material 40 during etching (the ends of the circuits 31 in the wiring width direction) Since it becomes difficult for the etching solution to reach all the areas, it is thought that circuit workability deteriorates. Whether the etching solution reaches the end of the circuit 31 depends particularly on the workability of the bottom end 31b of the circuit 31 (the part of the end of the circuit 31 adjacent to the resin base material 40 (see FIG. 2)). It is an important element for
 また、プリント配線板60の製造工程中には、エッチング工程の後に、回路31を有する樹脂製基材40を洗浄液で洗浄する洗浄工程があるが、樹脂製基材40の表面の濡れ性が低いと、樹脂製基材40の表面の全面に洗浄液が行き渡りにくいので、樹脂製基材40や回路31の上に存在する異物100を洗浄液で十分に洗浄できないおそれがある(図3の(c)を参照)。そして、洗浄工程の後に、回路31を有する樹脂製基材40の回路31が形成されている面に別の樹脂製基材41を貼り合わせてプリント配線板60を製造するが、洗浄工程において異物100の洗浄が不十分であると、貼り合わせた2つの樹脂製基材40、41の間に異物100が残存することとなる(図3の(d)を参照)。 Further, during the manufacturing process of the printed wiring board 60, after the etching process, there is a cleaning process in which the resin base material 40 having the circuit 31 is cleaned with a cleaning liquid, but the surface wettability of the resin base material 40 is low. Since it is difficult for the cleaning liquid to spread over the entire surface of the resin base material 40, there is a possibility that the foreign matter 100 present on the resin base material 40 and the circuit 31 cannot be sufficiently cleaned with the cleaning liquid ((c) in FIG. 3). ). After the cleaning process, another resin base material 41 is bonded to the surface of the resin base material 40 having the circuit 31 on which the circuit 31 is formed to manufacture the printed wiring board 60. If cleaning of the resin substrate 100 is insufficient, the foreign matter 100 will remain between the two bonded resin base materials 40 and 41 (see (d) in FIG. 3).
 すなわち、樹脂製基材40の表面の濡れ性が低いと、プリント配線板60に異物100が生じやすいことが、本発明者らの検討によって明らかとなった。なお、異物100としては、貼り合わせ前に表面処理銅箔30や樹脂製基材40に付着していた付着物、エッチング液中に含有されていた塩の凝固物などがある。 That is, studies by the present inventors have revealed that when the surface wettability of the resin base material 40 is low, foreign matter 100 is likely to be formed on the printed wiring board 60. Note that the foreign matter 100 includes deposits that had adhered to the surface-treated copper foil 30 or the resin base material 40 before bonding, solidified salts contained in the etching solution, and the like.
 以上のように、エッチング工程の後の樹脂製基材40の転写表面40aの濡れ性は、プリント配線板60の製造において非常に重要な要素であることを、本発明者らは見出した。また、エッチング工程の後の樹脂製基材40の転写表面40aの濡れ性は、JIS R3257:1999に規定の静滴法に準拠して測定される蒸留水の接触角によって評価できることを、本発明者らは見出した。 As described above, the present inventors have found that the wettability of the transfer surface 40a of the resin base material 40 after the etching process is a very important factor in manufacturing the printed wiring board 60. The present invention also shows that the wettability of the transfer surface 40a of the resin base material 40 after the etching process can be evaluated by the contact angle of distilled water measured in accordance with the sessile drop method specified in JIS R3257:1999. They found out.
 すなわち、本実施形態に係る表面処理銅箔30は、銅箔基体10と、銅箔基体10の少なくとも一方の面に形成された表面処理層20と、を有する表面処理銅箔30であって、表面処理層20が粗化処理層21及び防錆処理層22の一方又は両方からなる(図1を参照)。なお、図1には、銅箔基体10の一方の面のみに表面処理層20が形成され、且つ、表面処理層20が粗化処理層21及び防錆処理層22の両方からなる表面処理銅箔30の例を示してある。
 そして、表面処理銅箔30の表面処理層20の表面20aの光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaは0.04μm以上0.30μm以下である。
That is, the surface-treated copper foil 30 according to the present embodiment is a surface-treated copper foil 30 having a copper foil base 10 and a surface treatment layer 20 formed on at least one surface of the copper foil base 10, The surface treatment layer 20 consists of one or both of a roughening treatment layer 21 and a rust prevention treatment layer 22 (see FIG. 1). In addition, in FIG. 1, the surface treatment layer 20 is formed only on one side of the copper foil base 10, and the surface treatment layer 20 is a surface treated copper consisting of both the roughening treatment layer 21 and the rust prevention treatment layer 22. An example of foil 30 is shown.
When the optical roughness of the surface 20a of the surface treatment layer 20 of the surface treated copper foil 30 is measured in accordance with the method specified in ISO25178, the arithmetic mean roughness Sa is 0.04 μm or more and 0.30 μm or less. be.
 また、表面処理銅箔30の表面処理層20上に、銅張積層板50やプリント配線板60を製造する際に使用する樹脂製基材40(本発明の構成要件である「樹脂製部材」に相当する)を貼り合わせた後に、表面処理銅箔30をエッチングにより除去し、残った樹脂製基材40の転写表面40aについて、蒸留水の接触角θ1(以下、「銅箔エッチング後の転写表面の蒸留水接触角θ1」と記すこともある)を測定する。樹脂製基材40の転写表面40aは、樹脂製基材40の表面のうち表面処理銅箔30が貼り合わされていた表面である。 Further, on the surface treatment layer 20 of the surface treated copper foil 30, a resin base material 40 (a "resin member" which is a component of the present invention) used when manufacturing the copper clad laminate 50 or the printed wiring board 60 is added. After bonding the surface-treated copper foil 30 (corresponding to The contact angle of distilled water on the transfer surface (also referred to as θ 1 ) is measured. The transfer surface 40a of the resin base material 40 is the surface of the resin base material 40 to which the surface-treated copper foil 30 was bonded.
 さらに、表面処理銅箔30に貼り合わせる前の樹脂製基材40の非転写表面について、蒸留水の接触角θ0(以下、「銅箔貼り合わせ前の非転写表面の蒸留水接触角θ0」と記すこともある)を測定する。樹脂製基材40の非転写表面は、表面処理銅箔30に貼り合わせる前の樹脂製基材40の表面のうち、表面処理銅箔30が後に貼り合わされる表面である。 Furthermore, the contact angle of distilled water θ 0 (hereinafter referred to as "contact angle of distilled water on the non-transfer surface before bonding the copper foil θ 0 ”) is measured. The non-transfer surface of the resin substrate 40 is the surface of the resin substrate 40 before being bonded to the surface-treated copper foil 30, to which the surface-treated copper foil 30 will be bonded later.
 蒸留水の接触角θ0及びθ1は、JIS R3257:1999に規定の静滴法に準拠して測定する。この場合に、本実施形態に係る表面処理銅箔30においては、接触角θ0と接触角θ1との差θ0-θ1が5°以上35°以下となる。接触角θ0と接触角θ1との差θ0-θ1とはすなわち、銅箔と貼り合わせることによって、樹脂の表面の濡れ性がどれだけ変化したかを示す尺度である。 The contact angles θ 0 and θ 1 of distilled water are measured according to the sessile drop method specified in JIS R3257:1999. In this case, in the surface-treated copper foil 30 according to the present embodiment, the difference θ 0 −θ 1 between the contact angle θ 0 and the contact angle θ 1 is 5° or more and 35° or less. The difference θ 0 −θ 1 between the contact angle θ 0 and the contact angle θ 1 is a measure of how much the wettability of the surface of the resin has changed due to bonding with the copper foil.
 このような表面処理銅箔30を用いて銅張積層板50やプリント配線板60を製造すれば、銅張積層板50やプリント配線板60の製造に使用する樹脂製基材40の転写表面40aの濡れ性が高くなる。そのため、得られた銅張積層板50やプリント配線板60は、伝送損失が発生しにくいことに加えて、回路加工性に優れており、さらに、銅張積層板50を構成する樹脂製基材40と、プリント配線板60の製造のために後に積層した別の樹脂製基材41との間に異物が生じにくい。 If a copper-clad laminate 50 or a printed wiring board 60 is manufactured using such surface-treated copper foil 30, the transfer surface 40a of the resin base material 40 used for manufacturing the copper-clad laminate 50 or printed wiring board 60 will be wettability increases. Therefore, the obtained copper-clad laminate 50 and printed wiring board 60 have excellent circuit processability in addition to being less likely to cause transmission loss. 40 and another resin base material 41 laminated later for manufacturing the printed wiring board 60, foreign matter is less likely to occur.
 すなわち、接触角の差θ0-θ1を上記数値範囲内とすることによって樹脂製基材40の表面の濡れ性が良好に保たれるので、エッチング中に樹脂製基材40上の回路31のボトム端部31bにまでエッチング液が行き渡りやすく、また、エッチング工程の後の洗浄工程において樹脂製基材40の表面の全面に洗浄液が行き渡りやすい。その結果、優れた回路加工性と異物抑制を両立しつつ、伝送損失が生じにくい銅張積層板50やプリント配線板60を製造することができる。 That is, by setting the contact angle difference θ 0 −θ 1 within the above numerical range, the wettability of the surface of the resin base material 40 is maintained well, so that the circuit 31 on the resin base material 40 during etching is The etching liquid easily spreads to the bottom end 31b of the resin base material 40, and the cleaning liquid easily spreads over the entire surface of the resin base material 40 in the cleaning process after the etching process. As a result, it is possible to manufacture a copper-clad laminate 50 and a printed wiring board 60 that have both excellent circuit workability and suppression of foreign matter, and are less likely to cause transmission loss.
 上記のように、本実施形態に係る表面処理銅箔30は、銅張積層板、プリント配線板等の製造に対して好適に使用することができる。すなわち、本実施形態に係る銅張積層板50は、本実施形態に係る表面処理銅箔30と、該表面処理銅箔30の表面処理層20上に貼り合わされた樹脂製基材40と、を備える。また、本実施形態に係るプリント配線板60は、本実施形態に係る銅張積層板50を備える。 As described above, the surface-treated copper foil 30 according to this embodiment can be suitably used for manufacturing copper-clad laminates, printed wiring boards, and the like. That is, the copper-clad laminate 50 according to the present embodiment includes the surface-treated copper foil 30 according to the present embodiment and the resin base material 40 bonded on the surface-treated layer 20 of the surface-treated copper foil 30. Be prepared. Moreover, the printed wiring board 60 according to this embodiment includes the copper-clad laminate 50 according to this embodiment.
 以下に、本実施形態に係る表面処理銅箔30、銅張積層板50、プリント配線板60について、さらに詳細に説明する。
(A)表面処理銅箔について
 本実施形態に係る表面処理銅箔30の原料である銅箔基体10は、粗化処理等の処理を表面に対して施す前の時点において、2面の十点平均粗さRzjisがいずれも2μm以下であることが好ましい。この十点平均粗さRzjisは、JIS B0601:2001に規定された方法に従って、接触式表面粗さ測定機を用いて測定することができる。表面の十点平均粗さRzjisが2μm以下であれば、樹脂製基材40との密着力が良好となりやすい。
 また、粗化処理等の処理を施す前の時点での銅箔基体10の厚さは、粗化処理後の銅箔基体10の厚さの目標値次第ではあるが、5μm以上40μm以下であることが好ましい。
Below, the surface-treated copper foil 30, the copper-clad laminate 50, and the printed wiring board 60 according to this embodiment will be explained in more detail.
(A) About the surface-treated copper foil The copper foil base 10, which is the raw material for the surface-treated copper foil 30 according to the present embodiment, has two surfaces with ten points before being subjected to a treatment such as roughening treatment on the surface. It is preferable that the average roughness Rzjis is 2 μm or less in all cases. This ten-point average roughness Rzjis can be measured using a contact surface roughness measuring machine according to the method specified in JIS B0601:2001. If the ten-point average roughness Rzjis of the surface is 2 μm or less, the adhesion to the resin base material 40 tends to be good.
Further, the thickness of the copper foil base 10 before performing a treatment such as roughening treatment is 5 μm or more and 40 μm or less, although it depends on the target value of the thickness of the copper foil base 10 after the roughening treatment. It is preferable.
 原料である銅箔基体10の少なくとも一方の面に対して、表面処理を施して表面処理層20を形成し、本実施形態に係る表面処理銅箔30を製造する。表面処理としては、表面を粗化する粗化処理と防錆処理との一方又は両方を行う。すなわち、表面処理層20は、粗化処理により形成された粗化処理層21と防錆処理により形成された防錆処理層22との一方又は両方からなる。表面処理層20が粗化処理層21及び防錆処理層22の両方からなる場合は、銅箔基体10の面の上に粗化処理層21を形成し、その上に防錆処理層22を形成する。さらに、防錆処理の後に、シランカップリング剤等の化学密着剤を用いた化学密着剤処理を施して、防錆処理層22の上にシランカップリング剤層等の化学密着剤層を形成してもよい。これら表面処理については、後に詳述する。 At least one surface of the copper foil base 10, which is a raw material, is subjected to surface treatment to form the surface treatment layer 20, and the surface treated copper foil 30 according to the present embodiment is manufactured. As the surface treatment, one or both of a roughening treatment to roughen the surface and a rust prevention treatment are performed. That is, the surface treatment layer 20 consists of one or both of a roughening treatment layer 21 formed by a roughening treatment and a rust prevention treatment layer 22 formed by a rust prevention treatment. When the surface treatment layer 20 consists of both the roughening treatment layer 21 and the rust prevention treatment layer 22, the roughening treatment layer 21 is formed on the surface of the copper foil base 10, and the rust prevention treatment layer 22 is formed on it. Form. Furthermore, after the rust prevention treatment, a chemical adhesive treatment using a chemical adhesive such as a silane coupling agent is performed to form a chemical adhesive layer such as a silane coupling agent layer on the rust prevention treatment layer 22. It's okay. These surface treatments will be detailed later.
 本実施形態に係る表面処理銅箔30を製造する際には、前述の濡れ性の向上を目的として、一般的な粗化処理の前又は後に、銅箔基体10の少なくとも一方の面に対して凹凸形成処理を施す。そして、これら一般的な粗化処理と凹凸形成処理によって粗化処理層21形成する。この凹凸形成処理は、伝送損失に影響を与えない程度の微細な凹凸形状を銅箔基体10の表面に形成する処理である。この凹凸形成処理の例としては、カプセルめっき処理とエッチング凹凸処理が挙げられる。 When manufacturing the surface-treated copper foil 30 according to the present embodiment, at least one surface of the copper foil base 10 is treated before or after the general roughening treatment for the purpose of improving the above-mentioned wettability. Perform unevenness forming treatment. Then, a roughened layer 21 is formed by these general roughening treatments and unevenness forming treatments. This unevenness forming process is a process of forming minute unevenness on the surface of the copper foil base 10 to the extent that it does not affect transmission loss. Examples of this unevenness forming treatment include capsule plating treatment and etching unevenness treatment.
 まず、カプセルめっき処理の一例を説明する。カプセルめっき処理は、一般的な粗化処理の前に施す。メッシュ状のカソード遮蔽板を用いて、銅箔基体10の表面に平滑な銅めっき(カプセルめっき)を施すことにより、銅箔基体10の表面に微細な凹凸形状を形成する。メッシュ状のカソード遮蔽板を用いることにより、銅箔基体10の表面に均一なバラつきを持った凹凸形状を形成することができる。 First, an example of capsule plating processing will be explained. Capsule plating treatment is performed before general roughening treatment. Fine unevenness is formed on the surface of the copper foil base 10 by applying smooth copper plating (capsule plating) to the surface of the copper foil base 10 using a mesh cathode shielding plate. By using a mesh cathode shielding plate, it is possible to form an uneven shape with uniform variations on the surface of the copper foil base 10.
 この時、メッシュ状のカソード遮蔽板の開口率や、電流密度、通電時間等のめっき条件を制御することによって、伝送損失に影響を与えない程度の微細な凹凸形状を銅箔基体10の表面に形成することができる。その結果、樹脂製基材40の転写表面40aの濡れ性を良好にコントロールすることができる。 At this time, by controlling the plating conditions such as the aperture ratio of the mesh-like cathode shielding plate, current density, and current application time, a fine uneven shape that does not affect transmission loss is created on the surface of the copper foil substrate 10. can be formed. As a result, the wettability of the transfer surface 40a of the resin base material 40 can be well controlled.
 めっき液には、一般的に使用される硫酸銅のめっき液を使用することができる。カソード遮蔽板を形成する素材としては、耐薬品性及び絶縁性を有する材料が望ましく、例えば、塩化ビニル、ポリエチレン、ポリブチレンテレフタレート等の樹脂が好ましい。メッシュ部分の開口面積は、1μm2以上100μm2以下であることが好ましく、10μm2以上100μm2以下であることがより好ましい。また、メッシュ部分の開口率は5%以上15%以下であることが好ましい。開口面積及び開口率が上記の数値範囲内であれば、銅箔基体10の表面に伝送損失に影響を与えない程度の微細な凹凸形状を形成することができ、樹脂製基材40の転写表面40aの濡れ性が良好となる。 As the plating solution, a commonly used copper sulfate plating solution can be used. The material for forming the cathode shielding plate is preferably a material having chemical resistance and insulation properties, such as resins such as vinyl chloride, polyethylene, and polybutylene terephthalate. The opening area of the mesh portion is preferably 1 μm 2 or more and 100 μm 2 or less, more preferably 10 μm 2 or more and 100 μm 2 or less. Further, the aperture ratio of the mesh portion is preferably 5% or more and 15% or less. If the aperture area and aperture ratio are within the above numerical ranges, it is possible to form a fine uneven shape on the surface of the copper foil base 10 that does not affect transmission loss, and the transfer surface of the resin base 40 can be formed on the surface of the copper foil base 10. The wettability of 40a is improved.
 次に、エッチング凹凸処理の一例を説明する。エッチング凹凸処理は、一般的な粗化処理の後、且つ、防錆処理の前に施す。粗化処理の後に、ニッケル(Ni)、コバルト(Co)等の耐薬品性を有する防錆金属を高電流密度且つ極短時間という条件で電析し、その後にエッチング液に短時間浸漬してエッチングすることにより、銅箔基体10の表面に微細な凹凸形状を形成する。
 ニッケルの電析には、硫酸ニッケル、スルファミン酸ニッケル等を含有する一般的な電解浴を用いることができる。また、電流密度は例えば1.0A/dm2以上、通電時間は例えば0.5秒以上2.0秒以下とすることができる。
Next, an example of etching unevenness treatment will be explained. The etching unevenness treatment is performed after the general roughening treatment and before the rust prevention treatment. After the roughening treatment, chemically resistant rust-preventing metals such as nickel (Ni) and cobalt (Co) are electrodeposited under conditions of high current density and extremely short time, and then immersed in an etching solution for a short time. By etching, fine irregularities are formed on the surface of the copper foil base 10.
For electrodeposition of nickel, a general electrolytic bath containing nickel sulfate, nickel sulfamate, etc. can be used. Further, the current density can be, for example, 1.0 A/dm 2 or more, and the current application time can be, for example, 0.5 seconds or more and 2.0 seconds or less.
 高電流密度且つ短時間で防錆金属を電析することにより、一般的な粗化処理によって形成した粗化粒子の頭頂部にのみ防錆金属が電析される。そのため、銅箔基体10の表面のうち粗化粒子の頭頂部以外の領域がエッチングされ、銅箔基体10の表面のうち粗化粒子の頭頂部以外の領域に微細な凹凸形状が形成される。
 また、エッチング液への浸漬時間等の条件を制御することによって、伝送損失に影響を与えない程度の微細な凹凸形状を銅箔基体10の表面に形成することができる。その結果、樹脂製基材40の転写表面40aの濡れ性を良好にコントロールすることができる。
By electrodepositing the rust preventive metal at high current density and in a short time, the rust preventive metal is electrodeposited only on the tops of the roughened particles formed by general roughening treatment. Therefore, a region of the surface of the copper foil base 10 other than the tops of the roughened particles is etched, and a fine uneven shape is formed in a region of the surface of the copper foil base 10 other than the tops of the roughened particles.
Furthermore, by controlling conditions such as the immersion time in the etching solution, it is possible to form a fine uneven shape on the surface of the copper foil base 10 that does not affect transmission loss. As a result, the wettability of the transfer surface 40a of the resin base material 40 can be well controlled.
 エッチング液としては、例えば、硫酸-過酸化水素水の混合液や塩酸などの一般的な銅のエッチング液を使用することができる。エッチング液への浸漬時間は、例えば2秒以上10秒以下とすることができる。エッチング液への浸漬時間が上記の数値範囲内であれば、銅箔基体10の表面に伝送損失に影響を与えない程度の微細な凹凸形状を形成することができ、樹脂製基材40の転写表面40aの濡れ性が良好となることに加えて、この後の防錆処理や化学密着剤処理の工程において、銅箔基体10の表面に均一な処理を施すことができ、良好な密着性や耐食性を付与することができる。 As the etching solution, for example, a common copper etching solution such as a mixture of sulfuric acid and hydrogen peroxide or hydrochloric acid can be used. The immersion time in the etching solution can be, for example, 2 seconds or more and 10 seconds or less. If the immersion time in the etching solution is within the above numerical range, it is possible to form a fine uneven shape on the surface of the copper foil substrate 10 that does not affect transmission loss, and transfer the resin substrate 40. In addition to improving the wettability of the surface 40a, the surface of the copper foil substrate 10 can be uniformly treated in the subsequent rust prevention treatment and chemical adhesive treatment process, resulting in good adhesion and Can provide corrosion resistance.
 上記のような凹凸形成処理により、貼り合わされた樹脂製基材40の転写表面40aの濡れ性が良好となるような表面を有する銅箔基体10が得られる。樹脂製基材40の転写表面40aの濡れ性は、前述のように、静滴法に準拠して測定した蒸留水の接触角によって評価することができ、銅箔貼り合わせ前の非転写表面の蒸留水接触角θ0と銅箔エッチング後の転写表面40aの蒸留水接触角θ1との差θ0-θ1が5°以上35°以下である必要がある。 By the above-described unevenness forming process, a copper foil base 10 having a surface that improves the wettability of the transfer surface 40a of the bonded resin base material 40 can be obtained. As mentioned above, the wettability of the transfer surface 40a of the resin base material 40 can be evaluated by the contact angle of distilled water measured according to the sessile drop method. The difference θ 0 −θ 1 between the distilled water contact angle θ 0 and the distilled water contact angle θ 1 of the transfer surface 40a after copper foil etching must be 5° or more and 35° or less.
 ただし、転写表面40aの光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.020μm以上0.070μm以下であり、コア部の空間の容積Vvcが0.030mL/m2以上0.110mL/m2以下であることが好ましい。転写表面40aの算術平均粗さSa及びコア部の空間の容積Vvcが上記の数値範囲内であれば、表面処理銅箔30の表面処理層20の表面粗さが小さくても転写表面40aの濡れ性がより良好となることに加えて、回路の加工形状をさらに良好に保つことができる。この理由は明らかではないが、樹脂-銅箔界面部分のエッチング量を良好にコントロールすることができるためであると考えられる。 However, when the optical roughness of the transfer surface 40a is measured according to the method specified in ISO25178, the arithmetic mean roughness Sa is 0.020 μm or more and 0.070 μm or less, and the volume of the space in the core portion Vvc is It is preferably 0.030 mL/m 2 or more and 0.110 mL/m 2 or less. As long as the arithmetic mean roughness Sa of the transfer surface 40a and the volume Vvc of the space in the core portion are within the above numerical ranges, even if the surface roughness of the surface treatment layer 20 of the surface treated copper foil 30 is small, the transfer surface 40a will not become wet. In addition to better properties, the processed shape of the circuit can be maintained even better. The reason for this is not clear, but it is thought that it is because the amount of etching at the resin-copper foil interface can be well controlled.
 さらに、転写表面40aの光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.020μm以上0.051μm以下であり、コア部の空間の容積Vvcが0.030mL/m2以上0.071mL/m2以下であることがより好ましい。転写表面40aの算術平均粗さSa及びコア部の空間の容積Vvcが上記の数値範囲内であれば、異物の発生をさらに抑制することができる。この理由は明らかではないが、異物の入り込む隙間を制限できるためであると考えられる。 Furthermore, when the optical roughness of the transfer surface 40a is measured according to the method specified in ISO25178, the arithmetic mean roughness Sa is 0.020 μm or more and 0.051 μm or less, and the volume of the space in the core portion Vvc is More preferably, it is 0.030 mL/m 2 or more and 0.071 mL/m 2 or less. If the arithmetic mean roughness Sa of the transfer surface 40a and the volume Vvc of the space in the core portion are within the above numerical ranges, the generation of foreign matter can be further suppressed. Although the reason for this is not clear, it is thought that it is possible to limit the gap into which foreign matter can enter.
 以上のように、銅箔基体10の少なくとも一方の面に対して、濡れ性の向上を目的とした凹凸形成処理と一般的な粗化処理とを施すことにより、本実施形態に係る表面処理銅箔30が得られる。得られた表面処理銅箔30の表面処理層20の表面粗さは、以下のとおりである必要がある。すなわち、表面処理層20の表面20aの光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.04μm以上0.30μm以下である必要がある。伝送損失をより低減するためには、表面処理層20の表面20aの算術平均粗さSaは、0.04μm以上0.20μm以下であることが好ましく、0.04μm以上0.150μm以下であることがより好ましい。 As described above, by subjecting at least one surface of the copper foil substrate 10 to an unevenness forming process and a general roughening process for the purpose of improving wettability, the surface-treated copper according to the present embodiment is A foil 30 is obtained. The surface roughness of the surface treated layer 20 of the obtained surface treated copper foil 30 needs to be as follows. That is, when the optical roughness of the surface 20a of the surface treatment layer 20 is measured according to the method specified in ISO25178, the arithmetic mean roughness Sa needs to be 0.04 μm or more and 0.30 μm or less. In order to further reduce transmission loss, the arithmetic mean roughness Sa of the surface 20a of the surface treatment layer 20 is preferably 0.04 μm or more and 0.20 μm or less, and 0.04 μm or more and 0.150 μm or less. is more preferable.
 次に、本実施形態に係る表面処理銅箔30の製造方法について説明する。本実施形態に係る表面処理銅箔30は、下記の(1)~(5)の工程を該記載順序で行うことによって製造することができる。表面処理銅箔30を製造する際には、濡れ性の向上を目的とした凹凸形成処理を行うが、凹凸形成処理としてカプセルめっき処理を用いた例とエッチング凹凸処理を用いた例の2つの具体例を挙げて説明する。 Next, a method for manufacturing the surface-treated copper foil 30 according to the present embodiment will be described. The surface-treated copper foil 30 according to the present embodiment can be manufactured by performing the following steps (1) to (5) in the order described. When manufacturing the surface-treated copper foil 30, an unevenness forming process is performed for the purpose of improving wettability, but there are two specific examples: an example using a capsule plating process and an example using an etching unevenness process as an uneven forming process. Let me explain with an example.
〔カプセルめっき処理を用いた例〕
(1)銅箔基体の製造
 本実施形態に係る表面処理銅箔30の製造においては、粗大な凹凸が存在しない平滑で光沢のある表面を有する電解銅箔や圧延銅箔を、銅箔基体10として用いることが好ましい。中でも、生産性やコストの観点で電解銅箔を用いることが好ましく、特に、「両面光沢箔」と一般的に呼称されている両面が平滑な電解銅箔を用いることがより好ましい。
[Example using capsule plating process]
(1) Manufacture of copper foil base In manufacturing the surface-treated copper foil 30 according to the present embodiment, electrolytic copper foil or rolled copper foil having a smooth and glossy surface without coarse irregularities is used as the copper foil base 10. It is preferable to use it as Among these, it is preferable to use an electrolytic copper foil from the viewpoint of productivity and cost, and it is particularly preferable to use an electrolytic copper foil that is smooth on both sides and is commonly referred to as a "double-sided glossy foil."
 通常の電解銅箔においては、平滑で光沢のある表面はシャイニー面(S面)である。両面光沢箔においては、平滑で光沢のある表面はシャイニー面及びマット面(M面)の両面であるが、より平滑で光沢のある面はマット面である。本実施形態においては、いずれの電解銅箔を用いる場合も、より平滑で光沢のある面に後述する粗化処理を施すことが好ましい。 In ordinary electrolytic copper foil, the smooth and shiny surface is the shiny surface (S surface). In double-sided glossy foils, the smooth and glossy surfaces are both the shiny side and the matte side (M side), but the smoother and glossier side is the matte side. In this embodiment, when any electrolytic copper foil is used, it is preferable to perform the roughening treatment described below on the smoother and more glossy surface.
(2)カプセルめっき処理
 濡れ性の向上を目的としてカプセルめっき処理を行い、銅箔基体10の少なくとも一方の表面に微細な凹凸形状を形成する。カプセルめっき処理の内容は前述のとおりであるが、メッシュ状のカソード遮蔽板を用いることにより、銅箔基体10の表面に部分的に銅めっき(カプセルめっき)を施すことができる。
 めっき液の組成やめっき条件の具体例を下記に示す。電流密度を適切に設定することにより、メッシュ部分の開口部のみに平滑な銅めっき(カプセルめっき)が施される。その結果、銅箔の表面全体の表面粗さを変えることなく微細な凹凸を形成することができる。
(2) Capsule plating treatment Capsule plating treatment is performed for the purpose of improving wettability, and a fine uneven shape is formed on at least one surface of the copper foil base 10. The contents of the capsule plating process are as described above, but by using a mesh cathode shielding plate, the surface of the copper foil base 10 can be partially plated with copper (capsule plating).
Specific examples of the composition of the plating solution and plating conditions are shown below. By appropriately setting the current density, smooth copper plating (capsule plating) is applied only to the openings of the mesh portion. As a result, fine irregularities can be formed without changing the surface roughness of the entire surface of the copper foil.
<めっき液の組成>
  硫酸銅五水和物の濃度・・・銅(原子)換算で50~65g/L
  硫酸の濃度・・・80~170g/L
<めっき処理の条件>
  処理速度・・・5~18m/分
  電流密度・・・1~5A/dm2
<Composition of plating solution>
Concentration of copper sulfate pentahydrate...50 to 65 g/L in terms of copper (atoms)
Concentration of sulfuric acid...80-170g/L
<Conditions for plating treatment>
Processing speed: 5 to 18 m/min Current density: 1 to 5 A/dm 2
(3)粗化処理層の形成
 粗化処理として、例えば下記に示すような二段階のめっき処理を行うことが好ましい。なお、必要に応じて、二段階目の固定めっき処理は行わなくてもよい。
 一段階目の粗化めっき処理は、銅箔基体10のカプセルめっき処理を施した表面上に粗化粒子を形成する処理である。一段階目の粗化めっき処理は、例えば硫酸銅浴を用いるめっき処理によって行うことができる。めっき液の組成やめっき条件の具体例を下記に示す。
(3) Formation of Roughening Treatment Layer As the roughening treatment, it is preferable to perform, for example, a two-step plating treatment as shown below. Note that, if necessary, the second-stage fixed plating process may not be performed.
The first step of the roughening plating process is a process of forming roughening particles on the surface of the copper foil base 10 that has been subjected to the capsule plating process. The first step of roughening plating treatment can be performed, for example, by plating treatment using a copper sulfate bath. Specific examples of the composition of the plating solution and plating conditions are shown below.
 硫酸銅浴には、粗化粒子の脱落、すなわち「粉落ち」の防止を目的として、モリブデン(Mo)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)、セレン(Se)、テルル(Te)、タングステン(W)等を含有する添加剤を添加してもよく、モリブデンを含有する添加剤を添加することが特に好ましい。 The copper sulfate bath contains molybdenum (Mo), arsenic (As), antimony (Sb), bismuth (Bi), selenium (Se), tellurium ( Additives containing Te), tungsten (W), etc. may be added, and it is particularly preferable to add additives containing molybdenum.
<めっき液の組成>
  硫酸銅五水和物の濃度・・・銅(原子)換算で5~15g/L
  硫酸の濃度・・・120~250g/L
  モリブデン酸アンモニウムの濃度・・・モリブデン(原子)換算で500~1000mg/L
<Composition of plating solution>
Concentration of copper sulfate pentahydrate...5 to 15 g/L in terms of copper (atoms)
Concentration of sulfuric acid...120-250g/L
Concentration of ammonium molybdate...500 to 1000 mg/L in terms of molybdenum (atoms)
<めっき処理の条件>
  処理速度・・・8~22m/分
  電流密度・・・15~55A/dm2
  処理時間・・・0.5~5.0秒
  浴温・・・8~20℃
<Conditions for plating treatment>
Processing speed: 8 to 22 m/min Current density: 15 to 55 A/dm 2
Processing time...0.5-5.0 seconds Bath temperature...8-20℃
 二段階目の固定めっき処理は、一段階目の粗化めっき処理を施した銅箔基体10に、平滑なかぶせめっきを行う処理である。これにより、銅箔基体10の表面に粗化処理層21が形成される。二段階目の固定めっき処理は、例えば硫酸銅浴を用いるめっき処理によって行うことができる。めっき液の組成やめっき条件の具体例を下記に示す。 The second-stage fixed plating process is a process in which smooth cover plating is performed on the copper foil base 10 that has been subjected to the first-stage roughening plating process. As a result, a roughened layer 21 is formed on the surface of the copper foil base 10. The second-stage fixed plating treatment can be performed, for example, by plating treatment using a copper sulfate bath. Specific examples of the composition of the plating solution and plating conditions are shown below.
 通常、この固定めっき処理は、粗化粒子の脱落を防止するため、すなわち粗化粒子を固定化するために行われる。例えば、銅張積層板の製造において、ポリイミド樹脂等の硬い樹脂を用いたフレキシブル基板と本実施形態に係る表面処理銅箔30とを組み合わせる場合などでは、粗化面に固定めっき処理を施すことによって、粗化粒子の脱落を防ぐことができる。 Usually, this fixed plating treatment is performed to prevent the roughening particles from falling off, that is, to fix the roughening particles. For example, in the production of copper-clad laminates, when combining a flexible substrate made of hard resin such as polyimide resin with the surface-treated copper foil 30 according to the present embodiment, fixed plating treatment is applied to the roughened surface. , it is possible to prevent the roughening particles from falling off.
<めっき液の組成>
  硫酸銅五水和物の濃度・・・銅(原子)換算で50~65g/L
  硫酸の濃度・・・90~160g/L
<めっき処理の条件>
  処理速度・・・5~20m/分
  電流密度・・・1~7A/dm2
<Composition of plating solution>
Concentration of copper sulfate pentahydrate...50 to 65 g/L in terms of copper (atoms)
Concentration of sulfuric acid...90-160g/L
<Conditions for plating treatment>
Processing speed: 5-20 m/min Current density: 1-7 A/dm 2
(4)防錆処理層の形成
 粗化処理層21の上に、直接又は中間層を介してシランカップリング剤層をさらに形成してもよい。中間層としては、ニッケルを含有する下地層、亜鉛(Zn)を含有する耐熱処理層、及びクロム(Cr)を含有する防錆処理層22等が挙げられる。なお、中間層及びシランカップリング剤層はその厚さが非常に薄いため、表面処理銅箔30の粗化面における粗化粒子の粒子形状に影響を与えるものではない。表面処理銅箔30の粗化面における粗化粒子の粒子形状は、粗化面に対応する粗化処理層21の表面における粗化粒子の粒子形状で実質的に決定される。
(4) Formation of Rust Prevention Treatment Layer A silane coupling agent layer may be further formed on the roughening treatment layer 21 directly or via an intermediate layer. Examples of the intermediate layer include a base layer containing nickel, a heat-resistant treated layer containing zinc (Zn), and an anti-corrosion treated layer 22 containing chromium (Cr). Note that since the intermediate layer and the silane coupling agent layer are very thin, they do not affect the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil 30. The particle shape of the roughened particles on the roughened surface of the surface-treated copper foil 30 is substantially determined by the particle shape of the roughened particles on the surface of the roughened layer 21 corresponding to the roughened surface.
 下地層は、例えば、銅箔基体10や粗化処理層21中の銅(Cu)が樹脂製基材40側に拡散し銅害が発生して密着性が低下することがある場合には、粗化処理層21とシランカップリング剤層との間に形成することが好ましい。下地層は、ニッケル、ニッケル-リン(P)、ニッケル-亜鉛、ニッケル-モリブデンの中から選択される少なくとも1種で形成することが好ましい。 For example, in the case where copper (Cu) in the copper foil base 10 or the roughening treatment layer 21 diffuses to the resin base material 40 side, causing copper damage and reducing adhesion, It is preferable to form it between the roughening treatment layer 21 and the silane coupling agent layer. The base layer is preferably formed of at least one selected from nickel, nickel-phosphorus (P), nickel-zinc, and nickel-molybdenum.
 耐熱処理層は、表面処理銅箔30の耐熱性を向上させる必要がある場合に形成することが好ましい。耐熱処理層は、例えば、亜鉛又は亜鉛を含有する合金で形成することが好ましい。亜鉛を含有する合金としては、亜鉛-錫(Sn)合金、亜鉛-ニッケル合金、亜鉛-コバルト合金、亜鉛-銅合金、亜鉛-モリブデン合金、亜鉛-クロム合金、亜鉛-バナジウム(V)合金が挙げられる。 The heat-resistant treatment layer is preferably formed when it is necessary to improve the heat resistance of the surface-treated copper foil 30. The heat-resistant treatment layer is preferably formed of, for example, zinc or an alloy containing zinc. Examples of alloys containing zinc include zinc-tin (Sn) alloy, zinc-nickel alloy, zinc-cobalt alloy, zinc-copper alloy, zinc-molybdenum alloy, zinc-chromium alloy, and zinc-vanadium (V) alloy. It will be done.
 防錆処理層22は、耐食性をさらに向上させる必要がある場合に形成することが好ましい。防錆処理層22としては、例えば、クロムめっきにより形成されるクロム層、クロメート処理により形成されるクロメート層が挙げられる。
 下地層、耐熱処理層、及び防錆処理層22の三層を全て形成する場合には、この順序で粗化処理層21上に形成することが好ましい。また、用途や目的とする特性に応じて、下地層、耐熱処理層、及び防錆処理層22のうちいずれか一層又は二層のみを形成してもよい。
It is preferable to form the anticorrosion treatment layer 22 when it is necessary to further improve corrosion resistance. Examples of the antirust layer 22 include a chromium layer formed by chromium plating and a chromate layer formed by chromate treatment.
When forming all three layers, the base layer, the heat-resistant treatment layer, and the rust prevention treatment layer 22, it is preferable to form them on the roughening treatment layer 21 in this order. Further, depending on the use and desired characteristics, only one or two of the base layer, heat-resistant treatment layer, and rust-prevention treatment layer 22 may be formed.
(5)シランカップリング剤層の形成
 シランカップリング剤層の形成方法としては、例えば、表面処理銅箔30の粗化処理層21の凹凸表面上に、直接又は中間層を介してシランカップリング剤溶液を塗布した後に、風乾(自然乾燥)又は加熱乾燥して形成する方法が挙げられる。塗布されたカップリング剤溶液中の水が蒸発すれば、シランカップリング剤層が形成される。50~180℃の温度で加熱乾燥すると、シランカップリング剤と銅箔の反応が促進されるため好適である。
(5) Formation of silane coupling agent layer As a method for forming the silane coupling agent layer, for example, silane coupling is performed on the uneven surface of the roughening treatment layer 21 of the surface-treated copper foil 30 directly or through an intermediate layer. After applying a solution of the agent, air drying (natural drying) or heating drying may be used. When the water in the applied coupling agent solution evaporates, a silane coupling agent layer is formed. Drying by heating at a temperature of 50 to 180°C is preferable because the reaction between the silane coupling agent and the copper foil is accelerated.
 シランカップリング剤層は、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、ビニル系シランカップリング剤、メタクリル系シランカップリング剤、アクリル系シランカップリング剤、アゾール系シランカップリング剤、スチリル系シランカップリング剤、ウレイド系シランカップリング剤、メルカプト系シランカップリング剤、スルフィド系シランカップリング剤、イソシアネート系シランカップリング剤のいずれか1種以上を含有することが好ましい。 The silane coupling agent layer includes an epoxy silane coupling agent, an amino silane coupling agent, a vinyl silane coupling agent, a methacrylic silane coupling agent, an acrylic silane coupling agent, an azole silane coupling agent, and a styryl silane coupling agent. It is preferable to contain at least one of a silane coupling agent, a ureide silane coupling agent, a mercapto silane coupling agent, a sulfide silane coupling agent, and an isocyanate silane coupling agent.
〔エッチング凹凸処理を用いた例〕
(1)銅箔基体の製造
 カプセルめっき処理を用いた例の場合と同様である。
(2)粗化処理層の形成
 カプセルめっき処理を用いた例の場合と同様である。
[Example using etching unevenness treatment]
(1) Manufacture of copper foil substrate This is the same as in the case of using capsule plating treatment.
(2) Formation of roughening treatment layer This is the same as in the case of using capsule plating treatment.
(3)エッチング凹凸処理
 濡れ性の向上を目的としてエッチング凹凸処理を行い、銅箔基体10の表面に微細な凹凸形状を形成する。エッチング凹凸処理の内容は前述のとおりであるが、処理条件等についてさらに詳細に説明する。硫酸ニッケルを含有し且つニッケル濃度が30~150g/Lである電解浴を用い、電流密度を1.0~4.0A/dm2、通電時間を0.5~2.0秒として電析を行い、その後にエッチング液に短時間浸漬してエッチングすることにより、伝送損失に影響を与えない程度の微細な凹凸形状を銅箔基体10の表面に形成することができる。
(3) Etching unevenness treatment For the purpose of improving wettability, etching unevenness treatment is performed to form fine unevenness on the surface of the copper foil base 10. The contents of the etching unevenness treatment are as described above, but the treatment conditions and the like will be explained in more detail. Electrodeposition was carried out using an electrolytic bath containing nickel sulfate and having a nickel concentration of 30 to 150 g/L, with a current density of 1.0 to 4.0 A/dm 2 and a current application time of 0.5 to 2.0 seconds. By performing etching by immersing it in an etching solution for a short time and then etching it, it is possible to form a fine uneven shape on the surface of the copper foil base 10 that does not affect transmission loss.
 このエッチング凹凸処理によって、粗化処理によって形成された粗化粒子の表面に凹凸が形成されるが、エッチングの他の方法としては、塩酸、硫酸、リン酸等の無機酸を含有する溶液への浸漬処理が挙げられる。銅箔基体10を所定の濃度の無機酸水溶液へ数秒から数十秒程度浸漬することにより、粗化粒子の表面に微細な凹凸が形成される。例えば塩酸を用いた場合であれば、濃度5~20体積%の塩酸の中に2秒以上浸漬することにより、粗化粒子の表面に微細な凹凸が形成される。 This etching unevenness process forms unevenness on the surface of the roughened particles formed by the roughening process, but other etching methods include etching in a solution containing an inorganic acid such as hydrochloric acid, sulfuric acid, or phosphoric acid. An example is immersion treatment. By immersing the copper foil substrate 10 in an aqueous inorganic acid solution of a predetermined concentration for about several seconds to several tens of seconds, fine irregularities are formed on the surface of the roughened particles. For example, in the case of using hydrochloric acid, fine irregularities are formed on the surface of the roughened particles by immersing them in hydrochloric acid with a concentration of 5 to 20% by volume for 2 seconds or more.
 また、エッチングの他の方法として、上記の無機酸を含有する溶液への浸漬処理の他に、酢酸、ギ酸等の有機酸を含有する溶液への浸漬処理、塩化鉄、塩化銅を含有する溶液への浸漬処理、陽極酸化による電解エッチング処理も用いることができる。これらの方法は、2種以上を組み合わせて行ってもよい。 Other etching methods include, in addition to the above-mentioned immersion treatment in a solution containing an inorganic acid, immersion treatment in a solution containing an organic acid such as acetic acid or formic acid, or a solution containing iron chloride or copper chloride. It is also possible to use immersion treatment and electrolytic etching treatment using anodic oxidation. These methods may be used in combination of two or more.
(4)防錆処理層の形成
 カプセルめっき処理を用いた例の場合と同様である。
(5)シランカップリング剤層の形成
 カプセルめっき処理を用いた例の場合と同様である。
(4) Formation of antirust treatment layer This is the same as in the case of using capsule plating treatment.
(5) Formation of silane coupling agent layer This is the same as in the case of using capsule plating treatment.
(B)転写表面の濡れ性について
 次に、転写表面40aの濡れ性の評価方法について説明する。銅張積層板50やプリント配線板60を製造する際に表面処理銅箔30に貼り合わせた樹脂製基材40の転写表面40aの濡れ性は、JIS R3257:1999に規定の静滴法に準拠して測定した蒸留水の接触角によって評価することができる。
(B) Regarding the wettability of the transfer surface Next, a method for evaluating the wettability of the transfer surface 40a will be described. The wettability of the transfer surface 40a of the resin base material 40 bonded to the surface-treated copper foil 30 when manufacturing the copper-clad laminate 50 or the printed wiring board 60 is based on the sessile drop method specified in JIS R3257:1999. It can be evaluated by the contact angle of distilled water measured as follows.
 表面処理銅箔30に貼り合わせる前の樹脂製基材40の表面のうち、後に表面処理銅箔30が貼り合わされる表面について、蒸留水の接触角θ0を上記静滴法に準拠して測定する。銅箔貼り合わせ前の非転写表面の蒸留水接触角θ0を測定した表面は、表面処理銅箔30の表面の形状が転写されていない非転写表面である。 Among the surfaces of the resin base material 40 before being bonded to the surface-treated copper foil 30, the contact angle θ 0 of distilled water is measured on the surface to which the surface-treated copper foil 30 is bonded later based on the sessile drop method described above. do. The surface on which the distilled water contact angle θ 0 of the non-transfer surface before the copper foil bonding was measured is the non-transfer surface to which the shape of the surface of the surface-treated copper foil 30 has not been transferred.
 また、表面処理銅箔30の表面処理層20上に樹脂製基材40を貼り合わせた後に、表面処理銅箔30をエッチングにより除去し、残った樹脂製基材40の表面のうち、表面処理銅箔30が貼り合わされていた表面である表面について、蒸留水の接触角θ1を上記静滴法に準拠して測定する。銅箔エッチング後の転写表面の蒸留水接触角θ1を測定した表面は、貼り合わされていた表面処理銅箔30の表面の形状が転写されている転写表面40aである。
 そして、接触角θ0と接触角θ1との差θ0-θ1によって、樹脂製基材40の転写表面40aの濡れ性を評価する。接触角θ0と接触角θ1との差θ0-θ1が5°以上35°以下であれば、転写表面40aの濡れ性は良好である。
Further, after bonding the resin base material 40 on the surface treatment layer 20 of the surface-treated copper foil 30, the surface-treated copper foil 30 is removed by etching, and the surface-treated part of the surface of the remaining resin base material 40 is Regarding the surface to which the copper foil 30 was bonded, the contact angle θ 1 of distilled water is measured according to the sessile drop method described above. The surface on which the distilled water contact angle θ 1 of the transfer surface after copper foil etching was measured is the transfer surface 40a to which the shape of the surface of the bonded surface-treated copper foil 30 is transferred.
Then, the wettability of the transfer surface 40a of the resin base material 40 is evaluated based on the difference θ 0 −θ 1 between the contact angle θ 0 and the contact angle θ 1 . If the difference θ 0 −θ 1 between the contact angle θ 0 and the contact angle θ 1 is 5° or more and 35° or less, the wettability of the transfer surface 40a is good.
 接触角θ0、接触角θ1を測定する際に使用する樹脂製部材は、上記のように、銅張積層板50やプリント配線板60を製造する際に使用する樹脂製基材40と同種のものでもよいが、異なるものを使用して接触角θ0、接触角θ1を測定してもよい。すなわち、銅張積層板50やプリント配線板60を製造する際に使用する樹脂製基材40とは、樹脂の種類や形状、寸法等が異なる部材を、樹脂製部材として用いてもよい。 The resin member used when measuring the contact angle θ 0 and the contact angle θ 1 is of the same type as the resin base material 40 used when manufacturing the copper-clad laminate 50 and the printed wiring board 60, as described above. However, different ones may be used to measure the contact angle θ 0 and the contact angle θ 1 . That is, a member having a different resin type, shape, size, etc. from the resin base material 40 used when manufacturing the copper-clad laminate 50 or the printed wiring board 60 may be used as the resin member.
 接触角θ0、接触角θ1を測定する際に使用する樹脂製部材を形成する樹脂の種類は、熱硬化性樹脂等の硬化性樹脂でもよいし、熱可塑性樹脂でもよい。硬化性樹脂である場合は、樹脂製部材を硬化させた後に接触角θ0と接触角θ1を測定する。すなわち、接触角θ1の場合は、硬化前の樹脂製部材を表面処理銅箔30の表面処理層20上に貼り合わせ、樹脂製部材を硬化させた後に、表面処理銅箔30をエッチングにより除去する。そして、樹脂製部材の表面のうち転写表面について、蒸留水の接触角θ1を上記静滴法に準拠して測定する。 The type of resin forming the resin member used when measuring the contact angle θ 0 and the contact angle θ 1 may be a curable resin such as a thermosetting resin, or a thermoplastic resin. In the case of a curable resin, the contact angle θ 0 and the contact angle θ 1 are measured after the resin member is cured. That is, in the case of a contact angle θ 1 , the uncured resin member is bonded onto the surface treated layer 20 of the surface treated copper foil 30, and after the resin member is cured, the surface treated copper foil 30 is removed by etching. do. Then, the contact angle θ 1 of distilled water is measured on the transfer surface of the resin member according to the sessile drop method described above.
(C)銅張積層板について
 本実施形態に係る銅張積層板50の構成は特に限定されるものではないが、表面処理銅箔30と樹脂製基材40とを備えている。そして、樹脂製基材40は、表面処理銅箔30の表面処理層20上に貼り合わされている。この銅張積層板50は、例えばプリント配線板60の製造に使用することができる。
 なお、樹脂製基材40を形成する樹脂としては、例えば、エポキシ樹脂、ポリフェニレンエーテル、フェノール樹脂、ビス(フェノキシフェノキシ)ベンゼン、ポリイミド、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン)が挙げられる。
(C) Regarding the copper-clad laminate The structure of the copper-clad laminate 50 according to the present embodiment is not particularly limited, but includes a surface-treated copper foil 30 and a resin base material 40. The resin base material 40 is bonded onto the surface treated layer 20 of the surface treated copper foil 30. This copper-clad laminate 50 can be used, for example, to manufacture a printed wiring board 60.
Note that examples of the resin forming the resin base material 40 include epoxy resin, polyphenylene ether, phenol resin, bis(phenoxyphenoxy)benzene, polyimide, liquid crystal polymer, and fluororesin (eg, polytetrafluoroethylene).
(D)プリント配線板について
 本実施形態に係るプリント配線板60の構成は特に限定されるものではないが、本実施形態に係る銅張積層板50を備えている。例えば、銅張積層板50の表面処理銅箔30をエッチングして回路31を形成した後に、回路31を覆うように別の樹脂製基材41を貼り合わせれば、プリント配線板60を得ることができる(図3の(d)を参照)。回路31を覆うように貼り合わる樹脂製基材41は、銅張積層板50の樹脂製基材40と同種のものでもよいし、異種のものでもよい。
(D) About the printed wiring board Although the configuration of the printed wiring board 60 according to the present embodiment is not particularly limited, it includes the copper-clad laminate 50 according to the present embodiment. For example, after etching the surface-treated copper foil 30 of the copper-clad laminate 50 to form the circuit 31, the printed wiring board 60 can be obtained by bonding another resin base material 41 to cover the circuit 31. (See Figure 3(d)). The resin base material 41 bonded together to cover the circuit 31 may be of the same type as the resin base material 40 of the copper-clad laminate 50, or may be of a different type.
〔実施例〕
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。まず、比較例7の表面処理銅箔は、特許文献1に記載の製造方法によって製造したものである。以下同様に、比較例8の表面処理銅箔は、特許文献2に記載の製造方法によって製造したものであり、比較例9の表面処理銅箔は、特許文献3に記載の製造方法によって製造したものであり、比較例10の表面処理銅箔は、特許文献4に記載の製造方法によって製造したものであり、比較例11の表面処理銅箔は、特許文献5に記載の製造方法によって製造したものである。
〔Example〕
The present invention will be explained in more detail by showing Examples and Comparative Examples below. First, the surface-treated copper foil of Comparative Example 7 was manufactured by the manufacturing method described in Patent Document 1. Similarly, the surface-treated copper foil of Comparative Example 8 was manufactured by the manufacturing method described in Patent Document 2, and the surface-treated copper foil of Comparative Example 9 was manufactured by the manufacturing method described in Patent Document 3. The surface-treated copper foil of Comparative Example 10 was manufactured by the manufacturing method described in Patent Document 4, and the surface-treated copper foil of Comparative Example 11 was manufactured by the manufacturing method described in Patent Document 5. It is something.
 次に、実施例1~23及び比較例1~6、12~14の表面処理銅箔は、以下に説明する手順によって製造したものである。
(ア)銅箔基体
 実施例1~23及び比較例1~6、12~14の表面処理銅箔を製造するための原料である銅箔基体として、厚さ18μmのロール状の電解銅箔(両面光沢箔)を作製した。電解銅箔の作製に用いたカソードは、#1000~#2000のバフ研磨により表面粗さを調整されたチタン製の回転ドラムであり、アノードは寸法安定性陽極DSA(登録商標)である。電解液の組成、電解条件を下記に示す。
Next, the surface-treated copper foils of Examples 1 to 23 and Comparative Examples 1 to 6 and 12 to 14 were manufactured by the procedure described below.
(A) Copper foil substrate A roll-shaped electrolytic copper foil (18 μm thick A double-sided glossy foil) was produced. The cathode used to produce the electrolytic copper foil was a titanium rotating drum whose surface roughness was adjusted by buffing to #1000 to #2000, and the anode was a dimensionally stable anode DSA (registered trademark). The composition of the electrolytic solution and electrolytic conditions are shown below.
<電解液の組成>
  銅 :75g/L
  硫酸:65g/L
  塩素:20mg/L
  3-メルカプト-1-プロパンスルホン酸ナトリウム:2mg/L
  ヒドロキシエチルセルロース           :10mg/L
  低分子量膠(分子量3000)          :50mg/L
<電解条件>
  浴温  :50℃
  電流密度:45A/dm2
<Composition of electrolyte>
Copper: 75g/L
Sulfuric acid: 65g/L
Chlorine: 20mg/L
Sodium 3-mercapto-1-propanesulfonate: 2mg/L
Hydroxyethylcellulose: 10mg/L
Low molecular weight glue (molecular weight 3000): 50mg/L
<Electrolysis conditions>
Bath temperature: 50℃
Current density: 45A/dm 2
 次に、上記のようにして作製した銅箔基体に対して、前述した一般的な粗化処理と、濡れ性の向上を目的とした凹凸形成処理を施した。実施例1~8、17~23及び比較例2、3、6については、銅箔基体に対して、濡れ性の向上を目的とした凹凸形成処理であるカプセルめっき処理を施した後に、一般的な粗化処理を施した。実施例9~16及び比較例4、5については、銅箔基体に対して、一般的な粗化処理を施した後に、濡れ性の向上を目的とした凹凸形成処理であるエッチング凹凸処理を施した。一般的な粗化処理、カプセルめっき処理、エッチング凹凸処理について、以下に説明する。 Next, the copper foil substrate produced as described above was subjected to the general roughening treatment described above and an unevenness forming treatment for the purpose of improving wettability. In Examples 1 to 8, 17 to 23 and Comparative Examples 2, 3, and 6, the copper foil substrate was subjected to capsule plating treatment, which is an unevenness forming treatment for the purpose of improving wettability. A roughening treatment was applied. For Examples 9 to 16 and Comparative Examples 4 and 5, the copper foil substrate was subjected to a general roughening treatment, and then subjected to an etching unevenness treatment, which is an unevenness forming treatment for the purpose of improving wettability. did. General roughening treatment, capsule plating treatment, and etching unevenness treatment will be explained below.
(イ)一般的な粗化処理
 銅箔基体のマット面に対して、ロール・ツー・ロール方式で粗化処理を施した。この粗化処理は、二段階の電気めっき処理である。一段階目の電気めっき処理のめっき液の組成とめっき条件を下記に示す。また、二段階の電気めっき処理(固定めっき処理)のめっき液の組成とめっき条件を下記に示す。表1、2に示すように、一段階目の電気めっき処理の電流密度と通電時間を変更することによって、異なる高さ、形状を有する粗化粒子を銅箔の表面上に形成した。
(B) General roughening treatment The matte surface of the copper foil substrate was roughened using a roll-to-roll method. This roughening process is a two-step electroplating process. The composition of the plating solution and plating conditions for the first-stage electroplating process are shown below. In addition, the composition of the plating solution and plating conditions for the two-stage electroplating process (fixed plating process) are shown below. As shown in Tables 1 and 2, roughening particles having different heights and shapes were formed on the surface of the copper foil by changing the current density and energization time of the first-stage electroplating process.
<一段階目の電気めっき処理のめっき液の組成>
  硫酸銅五水和物の濃度・・・銅(原子)換算で10g/L
  硫酸の濃度・・・150g/L
  モリブデン酸アンモニウムの濃度・・・モリブデン(原子)換算で600mg/L
<一段階目の電気めっき処理の条件>
  処理速度・・・15m/分
  電流密度・・・15~55A/dm2
  浴温・・・15℃
  通電時間・・・4~6秒
<Composition of the plating solution for the first stage electroplating process>
Concentration of copper sulfate pentahydrate...10g/L in terms of copper (atoms)
Concentration of sulfuric acid...150g/L
Concentration of ammonium molybdate...600mg/L in terms of molybdenum (atoms)
<Conditions for first stage electroplating treatment>
Processing speed: 15 m/min Current density: 15 to 55 A/dm 2
Bath temperature...15℃
Energization time...4 to 6 seconds
<二段階目の電気めっき処理のめっき液の組成>
  硫酸銅五水和物の濃度・・・銅(原子)換算で55g/L
  硫酸の濃度・・・120g/L
<二段階目の電気めっき処理の条件>
  処理速度・・・15m/分
  電流密度・・・2A/dm2
  通電時間・・・3秒
<Composition of plating solution for second stage electroplating process>
Concentration of copper sulfate pentahydrate...55g/L in terms of copper (atoms)
Concentration of sulfuric acid...120g/L
<Conditions for second-stage electroplating treatment>
Processing speed: 15m/min Current density: 2A/dm 2
Energization time: 3 seconds
(ウ)カプセルめっき処理
 銅箔基体に対して、ロール・ツー・ロール方式で、凹凸形成処理であるカプセルめっき処理を施した。開口面積が50μm2、開口率が5~15%のメッシュ状カソード遮蔽板を電解浴内の銅箔基体の近傍に設置し、下記組成のめっき液を用いて下記めっき条件で電気めっき処理を行った。表1、2に示すように、カソード遮蔽板の開口率、電気めっきの電流密度と通電時間を変更することによって、異なる表面凹凸を有する銅箔基体とした。
(c) Capsule plating treatment Capsule plating treatment, which is an unevenness forming treatment, was performed on the copper foil substrate using a roll-to-roll method. A mesh cathode shielding plate with an opening area of 50 μm 2 and an opening ratio of 5 to 15% was installed near the copper foil substrate in an electrolytic bath, and electroplating was performed under the following plating conditions using a plating solution with the following composition. Ta. As shown in Tables 1 and 2, copper foil substrates having different surface irregularities were obtained by changing the aperture ratio of the cathode shielding plate, the current density of electroplating, and the current application time.
<めっき液の組成>
  硫酸銅五水和物の濃度・・・銅(原子)換算で60g/L
  硫酸の濃度・・・150g/L
<めっき処理の条件>
  処理速度・・・18m/分
<Composition of plating solution>
Concentration of copper sulfate pentahydrate...60g/L in terms of copper (atoms)
Concentration of sulfuric acid...150g/L
<Conditions for plating treatment>
Processing speed...18m/min
(エ)エッチング凹凸処理
 粗化処理を施した銅箔基体の粗化処理を施した面に対して、凹凸形成処理であるエッチング凹凸処理を施した。エッチング凹凸処理は、ニッケルを電析した後にエッチング液に浸漬してエッチングするという処理であるが、電析に用いた電解液の組成、電析の条件、エッチングの条件を下記に示す。表1、2に示すように、電析の電流密度と通電時間、及び、エッチングの処理時間を変更することによって、異なる表面凹凸を有する銅箔基体とした。
(d) Etching unevenness treatment Etching unevenness treatment, which is an unevenness forming process, was performed on the roughened surface of the copper foil substrate that had been subjected to the roughening treatment. The etching unevenness process is a process in which nickel is electrodeposited and then immersed in an etching solution for etching.The composition of the electrolytic solution used for electrodeposition, conditions for electrodeposition, and conditions for etching are shown below. As shown in Tables 1 and 2, copper foil substrates having different surface irregularities were obtained by changing the current density and current application time of electrodeposition, and the processing time of etching.
<電解液の組成>
  ニッケルの濃度・・・60g/L
  ホウ酸(H3BO3)の濃度・・・15g/L
  浴温・・・20℃
  pH・・・3.5
<Composition of electrolyte>
Nickel concentration...60g/L
Concentration of boric acid (H 3 BO 3 )...15g/L
Bath temperature...20℃
pH...3.5
<電析の条件>
  電流密度・・・1~2.5A/dm2
  通電時間・・・1~3秒
<エッチングの条件>
  エッチング液・・・濃度10体積%の塩酸
  浴温・・・30℃
  処理時間・・・0.5~2秒
<Conditions for electrodeposition>
Current density...1-2.5A/dm 2
Current application time: 1 to 3 seconds <Etching conditions>
Etching solution: Hydrochloric acid with a concentration of 10% by volume Bath temperature: 30°C
Processing time...0.5-2 seconds
(オ)防錆処理
 続いて、上記のように粗化処理及び凹凸形成処理を施した銅箔基体の該処理を施した表面に、防錆処理を施して防錆処理層を形成した。防錆処理は、ニッケルめっき、亜鉛めっき、クロムめっきを該順序で施す処理である。ニッケルめっき、亜鉛めっき、クロムめっきの条件を示す。
(E) Rust prevention treatment Subsequently, the surface of the copper foil substrate that had been subjected to the roughening treatment and unevenness forming treatment as described above was subjected to rust prevention treatment to form a rust prevention treatment layer. The rust prevention treatment is a treatment in which nickel plating, zinc plating, and chrome plating are applied in this order. Conditions for nickel plating, zinc plating, and chrome plating are shown.
<ニッケルめっき液の組成>
  ニッケルの濃度・・・45g/L
  ホウ酸の濃度・・・20g/L
  浴温・・・20℃
  pH・・・3.5
<ニッケルめっきの条件>
  電流密度:0.4A/dm2
  処理時間:8秒
<Composition of nickel plating solution>
Nickel concentration...45g/L
Concentration of boric acid...20g/L
Bath temperature...20℃
pH...3.5
<Nickel plating conditions>
Current density: 0.4A/dm 2
Processing time: 8 seconds
<亜鉛めっき液の組成>
  亜鉛の濃度・・・2.5g/L
  水酸化ナトリウム(NaOH)の濃度・・・25g/L
  浴温・・・20℃
<亜鉛めっきの条件>
  電流密度:0.7A/dm2
  処理時間:4秒
<Composition of zinc plating solution>
Zinc concentration...2.5g/L
Concentration of sodium hydroxide (NaOH)...25g/L
Bath temperature...20℃
<Conditions for zinc plating>
Current density: 0.7A/dm 2
Processing time: 4 seconds
<クロムめっき液の組成>
  クロムの濃度・・・8g/L
  浴温・・・30℃
  pH・・・2.4
<クロムめっきの条件>
  電流密度:5A/dm2
  処理時間:4秒
<Composition of chrome plating solution>
Chromium concentration...8g/L
Bath temperature...30℃
pH...2.4
<Chrome plating conditions>
Current density: 5A/ dm2
Processing time: 4 seconds
(カ)シランカップリング剤処理
 最後に、シランカップリング剤処理を施し、防錆処理層の最表面のクロムめっき層の上に、シランカップリング剤層を形成した。シランカップリング剤層の形成は、濃度0.2質量%の3-アミノプロピルトリメトキシシラン水溶液を塗布し、100℃で乾燥させることにより行った。
(f) Silane coupling agent treatment Finally, silane coupling agent treatment was performed to form a silane coupling agent layer on the outermost chromium plating layer of the rust prevention treatment layer. The silane coupling agent layer was formed by applying a 3-aminopropyltrimethoxysilane aqueous solution having a concentration of 0.2% by mass and drying at 100°C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記のようにして得られた実施例1~23及び比較例1~14の表面処理銅箔について、各種評価を行った。評価項目及び評価方法を以下に説明する。また、評価結果は表1、2に示す。
<蒸留水の接触角>
 表面処理銅箔の表面処理層(すなわちシランカップリング剤層)上に樹脂製部材を貼り合わせて銅張積層板とした。樹脂製部材としては、下記の物を用いた。すなわち、実施例1~20及び比較例1~11については、樹脂製部材として、低誘電ポリフェニレンエーテル系樹脂基材フィルム(パナソニック株式会社製の超低伝送損失・高耐熱多層基板材料MEGTRON7N、厚さ60μm)を2枚重ねて貼り合わせたものを用いた。
Various evaluations were performed on the surface-treated copper foils of Examples 1 to 23 and Comparative Examples 1 to 14 obtained as described above. The evaluation items and evaluation method are explained below. Moreover, the evaluation results are shown in Tables 1 and 2.
<Contact angle of distilled water>
A resin member was laminated onto the surface treatment layer (ie, silane coupling agent layer) of the surface-treated copper foil to obtain a copper-clad laminate. The following resin members were used. That is, for Examples 1 to 20 and Comparative Examples 1 to 11, a low dielectric polyphenylene ether resin base film (MEGTRON7N, an ultra-low transmission loss and high heat-resistant multilayer board material manufactured by Panasonic Corporation, thickness 60 μm) was used.
 また、実施例21と比較例12については、Taiwan Union Corporation社製のThunderClad3+を用い、実施例22と比較例13については、日鉄ケミカル&マテリアル株式会社製のエスパネックス(登録商標)を用い、実施例23と比較例14については、株式会社クラレ製の液晶ポリマーフィルム ベクスター(登録商標)を用いた。
 なお、表面処理銅箔と樹脂製部材の貼り合わせは、それぞれの樹脂毎のプロセスガイドラインに則った条件で行った。
Further, for Example 21 and Comparative Example 12, ThunderClad 3+ manufactured by Taiwan Union Corporation was used, and for Example 22 and Comparative Example 13, Espanex (registered trademark) manufactured by Nippon Steel Chemical & Materials Co., Ltd. was used. For Example 23 and Comparative Example 14, liquid crystal polymer film Vector (registered trademark) manufactured by Kuraray Co., Ltd. was used.
Note that the surface-treated copper foil and the resin member were bonded together under conditions that conformed to the process guidelines for each resin.
 この銅張積層板を、塩化第二銅と塩酸の混合液をエッチング液として用いてエッチングし、表面処理銅箔を全て除去した。残った樹脂製部材を十分に水洗した後、樹脂製部材の表面処理銅箔が貼り合わされていた表面(転写表面)について、蒸留水の接触角θ1をJIS R3257:1999に規定の静滴法に準拠して測定した。 This copper-clad laminate was etched using a mixed solution of cupric chloride and hydrochloric acid as an etching solution to remove all the surface-treated copper foil. After thoroughly washing the remaining resin member with water, the contact angle θ 1 of distilled water was measured using the sessile drop method specified in JIS R3257:1999 on the surface of the resin member to which the surface-treated copper foil was bonded (transfer surface). Measured according to.
 一方、表面処理銅箔の表面処理層上に貼り合わせた樹脂製部材と同種の樹脂製部材を別途用意し、この別の樹脂製部材に対して、表面処理銅箔を貼り合わせることなく、銅張積層板を作製する場合の上記手順と同様の操作を行い、その表面(非転写表面)について蒸留水の接触角θ0を上記静滴法に準拠して測定した。そして、接触角θ0と接触角θ1との差θ0-θ1を算出した。 On the other hand, a resin member of the same type as the resin member bonded on the surface treatment layer of the surface-treated copper foil is separately prepared, and the surface-treated copper foil is not bonded to the other resin member. An operation similar to the above procedure for producing a stretched laminate was performed, and the contact angle θ 0 of distilled water on the surface (non-transfer surface) was measured according to the sessile drop method described above. Then, the difference θ 0 −θ 1 between the contact angle θ 0 and the contact angle θ 1 was calculated.
<表面処理銅箔の算術平均粗さSa及び樹脂製部材の算術平均粗さSa、コア部の空間の容積Vvc>
 表面処理銅箔の表面処理層(すなわちシランカップリング剤層)の表面の算術平均粗さSa、及び、銅箔エッチング後の転写表面の蒸留水接触角θ1を測定した樹脂製部材の転写表面の算術平均粗さSa、コア部の空間の容積Vvcを、株式会社キーエンス製の共焦点レーザー顕微鏡VK-X1050及びVK-X1000を用いて、ISO25178に従って測定した。
<Arithmetic mean roughness Sa of the surface-treated copper foil, arithmetic mean roughness Sa of the resin member, volume Vvc of the space in the core part>
Transfer surface of a resin member where the arithmetic mean roughness Sa of the surface treatment layer (i.e. silane coupling agent layer) of the surface treated copper foil and the distilled water contact angle θ 1 of the transfer surface after copper foil etching were measured. The arithmetic mean roughness Sa and core space volume Vvc were measured using confocal laser microscopes VK-X1050 and VK-X1000 manufactured by Keyence Corporation in accordance with ISO25178.
 なお、共焦点レーザー顕微鏡の対物レンズの倍率は100倍、スキャンモードはレーザーコンフォーカル、測定サイズは2048×1536、測定品質はHigh Precision、ピッチは0.08μmである。
 また、算術平均粗さSa、コア部の空間の容積Vvcの演算は、以下に示すフィルター処理及び演算条件で行った。
The magnification of the objective lens of the confocal laser microscope is 100 times, the scan mode is laser confocal, the measurement size is 2048 x 1536, the measurement quality is High Precision, and the pitch is 0.08 μm.
Further, calculations of the arithmetic mean roughness Sa and the volume Vvc of the space in the core portion were performed under the filter processing and calculation conditions shown below.
  画像処理:平滑化処理、3×3、メディアン
  Sフィルター:無し
  F-operation:平面傾き補正
  Lフィルター:0.025μm
  演算対象面積:100μm×100μm
  負荷曲線における負荷面積率:10%及び90%
Image processing: Smoothing processing, 3×3, median S filter: None F-operation: Plane tilt correction L filter: 0.025 μm
Area to be calculated: 100μm x 100μm
Load area ratio in load curve: 10% and 90%
<回路加工性>
 銅箔エッチング後の転写表面の蒸留水接触角θ1を測定するために作製したものと同様の銅張積層板の表面処理銅箔上に、L&Sが50/50μmのレジストパターンを、サブトラクティブ工法により形成した。そして、表面処理銅箔のエッチングを行って、配線パターンを有する回路を形成した。レジストとしてはドライレジストフィルムを使用し、エッチング液としては塩化銅と塩酸を含有する混合液を使用した。
<Circuit processability>
A resist pattern with an L&S of 50/50 μm was placed on a surface-treated copper foil of a copper-clad laminate similar to the one prepared to measure the distilled water contact angle θ 1 of the transfer surface after copper foil etching using the subtractive method. It was formed by The surface-treated copper foil was then etched to form a circuit having a wiring pattern. A dry resist film was used as the resist, and a mixed solution containing copper chloride and hydrochloric acid was used as the etching solution.
 そして、得られた回路のエッチングファクター(Ef)を測定した。エッチングファクターとは、銅箔の厚さをH、形成された回路のボトム幅をB、形成された回路のトップ幅をTとするときに、式Ef=2H/(B-T)で示される値である。
 回路を形成した銅張積層板を切断して、樹脂製部材の表面に直交する断面を出し、走査型電子顕微鏡で回路の断面を観察した。そして、図2に示す断面上の角度Xと角度Yを測定した。角度Xは、回路31のトップ端部31aとボトム端部31bを結ぶ直線と樹脂製部材の表面とがなす角度である。角度Yは、回路31のボトム端部31bの接線と樹脂製部材の表面とがなす角度である。
Then, the etching factor (Ef) of the obtained circuit was measured. The etching factor is expressed by the formula Ef=2H/(B-T), where H is the thickness of the copper foil, B is the bottom width of the formed circuit, and T is the top width of the formed circuit. It is a value.
The copper-clad laminate on which the circuit was formed was cut to obtain a cross section perpendicular to the surface of the resin member, and the cross section of the circuit was observed using a scanning electron microscope. Then, angles X and Y on the cross section shown in FIG. 2 were measured. The angle X is the angle between the straight line connecting the top end 31a and bottom end 31b of the circuit 31 and the surface of the resin member. The angle Y is the angle between the tangent to the bottom end 31b of the circuit 31 and the surface of the resin member.
 回路31のボトム端部31bの接線を、より詳細に定義する。樹脂製部材のボトム側の表面から高さ1.5μmの位置に、樹脂製部材の表面と平行な直線を引き、その直線と回路31の側面との交点31cと、ボトム端部31bとを結ぶ直線を「回路31のボトム端部31bの接線」と定義し、この接線と樹脂製部材の表面とがなす角度を角度Yと定義する。 The tangent to the bottom end 31b of the circuit 31 will be defined in more detail. Draw a straight line parallel to the surface of the resin member at a height of 1.5 μm from the bottom surface of the resin member, and connect the intersection 31c of the straight line with the side surface of the circuit 31 to the bottom end 31b. A straight line is defined as "a tangent to the bottom end 31b of the circuit 31", and an angle between this tangent and the surface of the resin member is defined as an angle Y.
 1つの回路につき任意の5つの断面を観察し、それぞれ角度Xと角度Yを測定した。そして、角度X、角度Yともに、5つの測定値の平均値を算出した。結果を表1、2に示す。表1、2においては、Efが2.5以上であり且つ角度Yが角度Xよりも大きいものは「A」と表示し、Efが2.0以上2.5未満であり且つ角度Yが角度Xよりも大きいものは「B」と表示し、それ以外のものは「C」と表示した。なお、図2の(a)は、角度Yが角度Xよりも小さい回路31の例を示す図であり、図2の(b)は、角度Yが角度Xよりも大きい回路31の例を示す図である。 Five arbitrary cross sections were observed for one circuit, and angles X and Y were measured for each. Then, for both the angle X and the angle Y, the average value of the five measured values was calculated. The results are shown in Tables 1 and 2. In Tables 1 and 2, when Ef is 2.5 or more and the angle Y is larger than the angle Those larger than X were labeled as "B", and the others were labeled as "C". Note that (a) in FIG. 2 is a diagram showing an example of a circuit 31 in which the angle Y is smaller than the angle X, and (b) in FIG. 2 is a diagram showing an example of the circuit 31 in which the angle Y is larger than the angle X. It is a diagram.
<伝送損失>
 銅箔エッチング後の転写表面の蒸留水接触角θ1を測定するために作製したものと同様の銅張積層板を用いて、ストリップ線路を形成したプリント配線板を作製し、伝送特性を評価した。このプリント配線板に形成されているストリップ線路の回路幅は140μm、回路長は76mmとした。
<Transmission loss>
A printed wiring board with a strip line formed thereon was fabricated using a copper-clad laminate similar to the one fabricated to measure the distilled water contact angle θ 1 on the transfer surface after copper foil etching, and the transmission characteristics were evaluated. . The circuit width of the strip line formed on this printed wiring board was 140 μm, and the circuit length was 76 mm.
 このプリント配線板に形成されている回路に、Keysight Technologies社製のネットワークアナライザN5291Aを用いて高周波信号を伝送し、伝送損失を測定した。特性インピーダンスは50Ωとした。伝送損失の測定値は、絶対値が小さいほど伝送損失が少ない(すなわち、高周波信号が良好に伝送できる)ことを意味する。結果を表1、2に示す。表1、2においては、40GHzにおける伝送損失の絶対値が3.0dB/76mm未満である場合は「A」、3.0dB/76mm以上3.6dB/76mm未満である場合は「B」、3.6dB/76mm以上である場合は「C」と示してある。 A high frequency signal was transmitted to the circuit formed on this printed wiring board using a network analyzer N5291A manufactured by Keysight Technologies, and the transmission loss was measured. The characteristic impedance was 50Ω. The smaller the absolute value of the measured value of transmission loss, the lower the transmission loss (that is, the higher the frequency signal can be transmitted). The results are shown in Tables 1 and 2. In Tables 1 and 2, if the absolute value of transmission loss at 40 GHz is less than 3.0 dB/76 mm, it is "A", if it is 3.0 dB/76 mm or more and less than 3.6 dB/76 mm, it is "B", and 3 If it is .6dB/76mm or more, it is indicated as "C".
<異物の発生>
 銅箔エッチング後の転写表面の蒸留水接触角θ1を測定するために作製したものと同様の銅張積層板を、塩化第二銅と塩酸の混合液をエッチング液として用いてエッチングし、表面処理銅箔を全て除去した。残った樹脂製部材を十分に水洗した後、樹脂製部材の表面処理銅箔が貼り合わされていた表面(転写表面)に、上記の銅張積層板の作製に用いたものと同種の樹脂製部材と表面処理銅箔とをこの順に重ねて張り合わせ、さらに上記と同様の手順でエッチングして表面処理銅箔を全て除去した。これにより、2つの樹脂製部材が貼り合わされてなる樹脂製試料を得た。
<Occurrence of foreign matter>
A copper-clad laminate similar to the one prepared to measure the distilled water contact angle θ 1 of the transfer surface after copper foil etching was etched using a mixture of cupric chloride and hydrochloric acid as the etching solution. All treated copper foil was removed. After thoroughly washing the remaining resin member with water, apply a resin member of the same type as that used to make the above-mentioned copper-clad laminate to the surface of the resin member to which the surface-treated copper foil was bonded (transfer surface). and the surface-treated copper foil were laminated in this order and then etched in the same manner as above to remove all the surface-treated copper foil. As a result, a resin sample made of two resin members bonded together was obtained.
 次に、得られた樹脂製試料を裁断し、一辺5cmの正方形状とした。そして、裁断した樹脂製試料をマイクロスコープにより35倍に拡大して観察し、直径1mm以上の黒点の数を測定した。この黒点は、貼り合わされた2つの樹脂製部材の間に生じた異物に起因するものである。マイクロスコープによる観察は、当初銅張積層板を構成していた樹脂製部材の転写表面を、後から貼り合わせた樹脂製部材の側から見る形で行った。結果を表1、2に示す。表1、2においては、裁断した樹脂製試料1個あたり黒点の個数が2個以下である場合は「A」、3個以上5個以下である場合は「B」、5個超過である場合は「C」と示してある。 Next, the obtained resin sample was cut into a square shape of 5 cm on each side. Then, the cut resin sample was observed with a microscope at a magnification of 35 times, and the number of black spots with a diameter of 1 mm or more was measured. These black spots are caused by foreign matter generated between the two resin members bonded together. Observation using a microscope was performed by viewing the transfer surface of the resin member that originally constituted the copper-clad laminate from the side of the resin member that was later bonded. The results are shown in Tables 1 and 2. In Tables 1 and 2, if the number of black dots per cut resin sample is 2 or less, it is marked "A", if it is 3 or more and 5 or less, it is marked "B", and if it is more than 5, it is marked "B". is indicated as "C".
 表1、2から分かるように、実施例1~23の表面処理銅箔は、表面処理層の表面の算術平均粗さSaが0.04μm以上0.30μm以下の間で制御されているにも関わらず、樹脂製基材の転写表面の濡れ性を表す接触角θ0と接触角θ1との差θ0-θ1が良好に制御されているため、回路加工性に優れるとともに伝送損失及び異物の発生が生じにくかった。 As can be seen from Tables 1 and 2, in the surface-treated copper foils of Examples 1 to 23, the arithmetic mean roughness Sa of the surface of the surface treatment layer was controlled within a range of 0.04 μm to 0.30 μm. Regardless, the difference θ 0 - θ 1 between the contact angle θ 0 and the contact angle θ 1 , which represents the wettability of the transfer surface of the resin base material, is well controlled, resulting in excellent circuit processability and low transmission loss and Foreign matter was less likely to occur.
 また、これらの中でも実施例1~4、10~14、17、18、21~23の表面処理銅箔は、樹脂製基材の転写表面の算術平均粗さSaとコア部の空間の容積Vvcが良好に制御されているため、回路加工性がさらに優れるとともに異物の発生がさらに生じにくかった。
 これに対して、比較例1~14の表面処理銅箔は、樹脂製基材の転写表面の濡れ性が低いため、回路加工性、伝送損失、及び異物の発生のうちいずれかの特性が不十分であった。
Moreover, among these, the surface-treated copper foils of Examples 1 to 4, 10 to 14, 17, 18, and 21 to 23 have the arithmetic mean roughness Sa of the transfer surface of the resin base material and the volume of the space in the core part Vvc. Since it was well controlled, the circuit processability was even better and the generation of foreign matter was further reduced.
On the other hand, the surface-treated copper foils of Comparative Examples 1 to 14 have low wettability on the transfer surface of the resin base material, and therefore have poor circuit processability, transmission loss, and generation of foreign matter. That was enough.
   10・・・銅箔基体
   20・・・表面処理層
   20a・・・表面処理層の表面
   21・・・粗化処理層
   22・・・防錆処理層
   30・・・表面処理銅箔
   31・・・回路
   31a・・・トップ端部
   31b・・・ボトム端部
   40・・・樹脂製基材(樹脂製部材)
   40a・・・転写表面
   41・・・樹脂製基材
   50・・・銅張積層板
   60・・・プリント配線板
  100・・・異物
DESCRIPTION OF SYMBOLS 10... Copper foil base 20... Surface treatment layer 20a... Surface of surface treatment layer 21... Roughening treatment layer 22... Rust prevention treatment layer 30... Surface treatment copper foil 31... -Circuit 31a...Top end 31b...Bottom end 40...Resin base material (resin member)
40a... Transfer surface 41... Resin base material 50... Copper clad laminate 60... Printed wiring board 100... Foreign matter

Claims (5)

  1.  銅箔基体と、前記銅箔基体の少なくとも一方の面に形成された表面処理層と、を有する表面処理銅箔であって、
     前記表面処理層が粗化処理層及び防錆処理層の一方又は両方からなり、
     前記表面処理層の表面の光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.04μm以上0.30μm以下であり、
     前記表面処理銅箔の前記表面処理層上に樹脂製部材を貼り合わせた後に、前記表面処理銅箔をエッチングにより除去し、残った前記樹脂製部材の前記表面処理銅箔が貼り合わされていた表面である転写表面について、蒸留水の接触角θ1をJIS R3257:1999に規定の静滴法に準拠して測定するとともに、前記表面処理銅箔に貼り合わせる前の前記樹脂製部材の前記表面処理銅箔が後に貼り合わされる表面である非転写表面について、蒸留水の接触角θ0を前記静滴法に準拠して測定した場合に、前記接触角θ0と前記接触角θ1との差θ0-θ1が5°以上35°以下である表面処理銅箔。
    A surface-treated copper foil comprising a copper foil base and a surface treatment layer formed on at least one surface of the copper foil base,
    The surface treatment layer consists of one or both of a roughening treatment layer and a rust prevention treatment layer,
    When the optical roughness of the surface of the surface treatment layer is measured according to the method specified in ISO 25178, the arithmetic mean roughness Sa is 0.04 μm or more and 0.30 μm or less,
    After laminating a resin member on the surface-treated layer of the surface-treated copper foil, the surface-treated copper foil is removed by etching, and the surface of the remaining resin member to which the surface-treated copper foil was laminated. For the transfer surface, the contact angle θ 1 of distilled water was measured according to the sessile drop method specified in JIS R3257:1999, and the surface treatment of the resin member before bonding to the surface-treated copper foil was measured. The difference between the contact angle θ 0 and the contact angle θ 1 when the contact angle θ 0 of distilled water is measured according to the sessile drop method on the non-transfer surface to which the copper foil is later bonded. A surface-treated copper foil in which θ 0 - θ 1 is 5° or more and 35° or less.
  2.  前記転写表面の光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.020μm以上0.070μm以下であり、コア部の空間の容積Vvcが0.030mL/m2以上0.110mL/m2以下である請求項1に記載の表面処理銅箔。 When the optical roughness of the transfer surface is measured according to the method specified in ISO 25178, the arithmetic mean roughness Sa is 0.020 μm or more and 0.070 μm or less, and the volume Vvc of the space in the core portion is 0.020 μm or more and 0.070 μm or less. The surface-treated copper foil according to claim 1, wherein the surface-treated copper foil has a concentration of 0.030 mL/m 2 or more and 0.110 mL/m 2 or less.
  3.  前記転写表面の光学式粗さをISO25178に規定の方法に準拠して測定した場合に、算術平均粗さSaが0.020μm以上0.051μm以下であり、コア部の空間の容積Vvcが0.030mL/m2以上0.071mL/m2以下である請求項1に記載の表面処理銅箔。 When the optical roughness of the transfer surface is measured according to the method specified in ISO 25178, the arithmetic mean roughness Sa is 0.020 μm or more and 0.051 μm or less, and the volume Vvc of the space in the core portion is 0.020 μm or more and 0.051 μm or less. The surface-treated copper foil according to claim 1, wherein the surface-treated copper foil has a concentration of 0.030 mL/m 2 or more and 0.071 mL/m 2 or less.
  4.  請求項1~3のいずれか一項に記載の表面処理銅箔と、前記表面処理銅箔の前記表面処理層上に貼り合わされた樹脂製基材と、を備える銅張積層板。 A copper-clad laminate comprising the surface-treated copper foil according to any one of claims 1 to 3 and a resin base material laminated on the surface-treated layer of the surface-treated copper foil.
  5.  請求項4に記載の銅張積層板を備えるプリント配線板。 A printed wiring board comprising the copper-clad laminate according to claim 4.
PCT/JP2023/013104 2022-03-30 2023-03-30 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board WO2023190833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023563936A JPWO2023190833A1 (en) 2022-03-30 2023-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056853 2022-03-30
JP2022-056853 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190833A1 true WO2023190833A1 (en) 2023-10-05

Family

ID=88202766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013104 WO2023190833A1 (en) 2022-03-30 2023-03-30 Surface-treated copper foil, copper-clad laminate plate, and printed wiring board

Country Status (3)

Country Link
JP (1) JPWO2023190833A1 (en)
TW (1) TW202407162A (en)
WO (1) WO2023190833A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542495A (en) * 2005-05-30 2008-11-27 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Method for surface modification of polyimide film using ethyleneimine coupling agent, method for producing copper foil laminated film using the same, and copper foil laminated film having a two-layer structure produced by the method
WO2011019055A1 (en) * 2009-08-14 2011-02-17 古河電気工業株式会社 Heat-resistant copper foil and method for producing same, circuit board, and copper-clad laminate board and method for manufacturing same
WO2016104420A1 (en) * 2014-12-25 2016-06-30 住友電気工業株式会社 Substrate for printed wiring board and method for manufacturing same, printed wiring board and method for manufacturing same, and resin base material
WO2018110579A1 (en) * 2016-12-14 2018-06-21 古河電気工業株式会社 Surface treated copper foil and copper-clad laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542495A (en) * 2005-05-30 2008-11-27 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Method for surface modification of polyimide film using ethyleneimine coupling agent, method for producing copper foil laminated film using the same, and copper foil laminated film having a two-layer structure produced by the method
WO2011019055A1 (en) * 2009-08-14 2011-02-17 古河電気工業株式会社 Heat-resistant copper foil and method for producing same, circuit board, and copper-clad laminate board and method for manufacturing same
WO2016104420A1 (en) * 2014-12-25 2016-06-30 住友電気工業株式会社 Substrate for printed wiring board and method for manufacturing same, printed wiring board and method for manufacturing same, and resin base material
WO2018110579A1 (en) * 2016-12-14 2018-06-21 古河電気工業株式会社 Surface treated copper foil and copper-clad laminate

Also Published As

Publication number Publication date
JPWO2023190833A1 (en) 2023-10-05
TW202407162A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US9955583B2 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
US7223481B2 (en) Method of producing ultra-thin copper foil with carrier, ultra-thin copper foil with carrier produced by the same, printed circuit board, multilayer printed circuit board and chip on film circuit board
US20050158574A1 (en) Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
US10257938B2 (en) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper clad laminate and method for producing printed wiring board
US7049007B2 (en) Composite foil and its manufacturing process
US7344785B2 (en) Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same
TWI716210B (en) Surface treatment copper foil, copper clad laminate and printed wiring board
US20080107865A1 (en) Electrodeposited Copper Foil with Carrier Foil with a Primer Resin Layer and Manufacturing Method Thereof
US11639557B2 (en) Composite copper foil and method of fabricating the same
TW201800242A (en) Surface-treated copper foil and copper-clad laminate produced using same
JP6529684B2 (en) Surface-treated copper foil and copper-clad laminate using the same
KR100435298B1 (en) Electrolytic copper foil
US5447619A (en) Copper foil for the manufacture of printed circuit boards and method of producing the same
JPH1018075A (en) Electrolytic copper foil
KR101992507B1 (en) Electrolysis copper alloy foil and electrolysis copper alloy foil with carrier foil
WO2023190833A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
EP2590487A1 (en) Process to manufacture fine grain surface copper foil with high peeling strength and environmental protection for printed circuit boards
WO2022113806A1 (en) Roughened copper foil, copper-clad laminate, and printed wiring board
US9115441B2 (en) Process to manufacture surface fine grain copper foil with high peeling strength and environmental protection for printed circuit boards
KR20180039633A (en) Surface-treated copper foil and copper-clad laminate or printed circuit board produced using same
TW202134482A (en) Roughened copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
KR102504286B1 (en) Surface treated copper foil and Method for producing the same
CN111757607A (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP4083927B2 (en) Copper foil surface treatment method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023563936

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780841

Country of ref document: EP

Kind code of ref document: A1