WO2023190543A1 - エチレン系重合体組成物およびその用途 - Google Patents

エチレン系重合体組成物およびその用途 Download PDF

Info

Publication number
WO2023190543A1
WO2023190543A1 PCT/JP2023/012569 JP2023012569W WO2023190543A1 WO 2023190543 A1 WO2023190543 A1 WO 2023190543A1 JP 2023012569 W JP2023012569 W JP 2023012569W WO 2023190543 A1 WO2023190543 A1 WO 2023190543A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene polymer
mass
ethylene
component
molecular weight
Prior art date
Application number
PCT/JP2023/012569
Other languages
English (en)
French (fr)
Inventor
千紘 小松
充 藤澤
洋平 宝谷
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020247029216A priority Critical patent/KR20240137691A/ko
Publication of WO2023190543A1 publication Critical patent/WO2023190543A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to an ethylene polymer composition and its uses.
  • Patent Document 1 discloses a high-density polyethylene resin composition containing a high-density polyethylene resin and a layered silicate, and an injection molded product of this composition.
  • Patent Document 2 discloses a resin composition comprising a polyolefin resin (polyethylene resin, polypropylene resin, etc.), multi-walled carbon nanotubes, and an inorganic filler, and a molded article of this composition.
  • Patent Document 3 discloses an ethylene polymer containing ultra-high molecular weight polyethylene and low molecular weight to high molecular weight polyethylene, and an ethylene polymer composition containing carbon nanotubes, and this resin composition , low surface resistivity and volume resistivity, and good thermal conductivity; a molded article obtained from the ethylene polymer composition has good sliding properties; It is described that it has rigidity.
  • an object of the present invention is to provide an ethylene polymer composition and a molded product thereof, which can provide a molded product having excellent moldability, rigidity, electrical conductivity, wear resistance, and heat resistance. .
  • ethylene polymer component (A) having an intrinsic viscosity [ ⁇ ] of 1.5 to 10 dl/g and a density of 930 to 980 kg/m 3 as measured in a decalin solvent at 135°C; and containing 1 to 100 parts by mass of carbon fiber (B),
  • the ethylene polymer component (A) is an ethylene polymer containing an ultra-high molecular weight ethylene polymer (a1) having an intrinsic viscosity [ ⁇ ] of 10 to 40 dl/g as measured in a decalin solvent at 135°C. Composition.
  • the ethylene polymer component (A) is a low molecular weight to high molecular weight ethylene polymer (a2) having an intrinsic viscosity [ ⁇ ] of 0.1 to 9 dl/g as measured in a decalin solvent at 135°C.
  • the ethylene polymer component (A) contains 10 to 90% by mass of the ethylene polymer component (AI) and 90 to 10% by mass of the ethylene polymer component (AII) (components (AI) and The total amount of component (AII) is 100% by mass.)
  • a multistage polymer comprising a system polymer (a2) (the total amount of polymer (a1) and polymer (a2) is 100% by mass), Item [2], wherein the ethylene polymer component (AII) contains an ethylene polymer (a3) having an intrinsic viscosity [ ⁇ ] of 0.1 to 2.9 dl/g as measured in a decalin solvent at 135°C.
  • AII ethylene polymer component
  • the ethylene polymer component (AI) includes a step of producing the ultra-high molecular weight ethylene polymer (a1) and a step of producing the low molecular weight to high molecular weight ethylene polymer (a2).
  • the content of the carbon fiber (B) is 20 to 60 parts by mass with respect to 100 parts by mass of the ethylene polymer component (A). Ethylene polymer composition.
  • a molded article comprising the ethylene polymer composition according to any one of items [1] to [10].
  • [12] The molded body according to item [11], wherein the proportion of carbon fibers having an acicular ratio of 1.5 or more among the carbon fibers (B) contained in the molded body is 30% or more.
  • an ethylene polymer composition and a molded product thereof which can yield a molded product having excellent moldability, rigidity, electrical conductivity, wear resistance, and heat resistance.
  • FIG. 1 is a schematic diagram illustrating the location where an observation sample for evaluating orientation in Examples is taken from an ASTM D671 Type A test piece (molded body) and the observation surface of the observation sample.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower limit and upper limit.
  • composition of the present invention has an intrinsic viscosity [ ⁇ ] of 1.5 to 10 dl/g and a density of 930 to 980 kg/m. 3 , and 1 to 100 parts by mass of carbon fiber (B), and the ethylene polymer component (A) has an intrinsic viscosity [ ⁇ ] of 10 to 100 parts by mass. It is characterized by containing an ultra-high molecular weight ethylene polymer (a1) of 40 dl/g.
  • the intrinsic viscosity [ ⁇ ] is the intrinsic viscosity [ ⁇ ] measured in a decalin solvent at 135° C. unless otherwise specified.
  • the ethylene polymer component (A) is an ethylene homopolymer or a copolymer of ethylene and ⁇ -olefin, and is generally a high-pressure low-density polyethylene (HP-LDPE) or a linear low-density polyethylene (LLDPE). ), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), ultra-high molecular weight ethylene polymer, etc., and is a polymer mainly composed of ethylene.
  • HP-LDPE high-pressure low-density polyethylene
  • LLDPE linear low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • ultra-high molecular weight ethylene polymer etc.
  • the ethylene polymer component (A) when the ethylene polymer component (A) is a copolymer, it may be a random copolymer or a block copolymer.
  • the ⁇ -olefin copolymerized with ethylene is preferably an ⁇ -olefin having 3 to 20 carbon atoms, and specifically, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1- Heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicosene, Examples include 9-methyl-1-decene, 11-methyl-1-dodecene and 12-ethyl-1-tetradecene. These ⁇ -olefins may be used alone or in combination of two or more.
  • the ethylene polymer component (A) may be a single type of polymer or a composition (mixture) of two or more types of ethylene polymers.
  • the intrinsic viscosity [ ⁇ ] of the ethylene polymer component (A) is 1.5 to 10 dl/g, preferably 2.0 to 8.0 dl/g, more preferably 2.5 to 7.0 dl/g. It is. Since the ethylene polymer component (A) has an intrinsic viscosity [ ⁇ ] within the above range, the composition of the present invention can improve wear resistance, self-lubricity, impact strength, chemical resistance, appearance and A molded article with excellent balance of properties such as moldability can be obtained.
  • the density of the ethylene polymer component (A) is 930 to 980 kg/m 3 , preferably 940 to 970 kg/m 3 .
  • a molded article having excellent wear resistance and flexibility can be obtained.
  • the ethylene polymer component (A) contains an ultra-high molecular weight ethylene polymer (a1) (hereinafter also referred to as "polymer (a1)”) having an intrinsic viscosity [ ⁇ ] of 10 to 40 dl/g. I'm here. Since the ethylene polymer component (A) contains the polymer (a1), the composition of the present invention can produce a molded article with excellent wear resistance, self-lubricity, impact strength, chemical resistance, etc. can get.
  • the intrinsic viscosity [ ⁇ ] of the polymer (a1) is preferably 15 to 35 dl/g, more preferably 20 to 35 dl/g.
  • the ethylene polymer component (A) is a low molecular weight to high molecular weight ethylene polymer (a2) (hereinafter also referred to as "polymer (a2)") having an intrinsic viscosity [ ⁇ ] of 0.1 to 9 dl/g. .) may be included.
  • the polymer (a2) may be a wax.
  • the intrinsic viscosity [ ⁇ ] of the polymer (a2) is preferably 0.1 to 5 dl/g, more preferably 0.5 to 3.0 dl/g, and even more preferably 1.0 to 2.5 dl/g. be.
  • the composition of the present invention preferably includes, as the ethylene polymer component (A), More than 35% by mass and not more than 90% by mass of the ultra-high molecular weight ethylene polymer (a1), A multistage polymer comprising 10% by mass or more and less than 65% by mass of the low molecular weight to high molecular weight ethylene polymer (a2) (the total amount of polymer (a1) and polymer (a2) is 100% by mass). 10 to 90% by mass of an ethylene polymer component (AI) which is a coalescence, and 90 to 10% by mass of an ethylene polymer component (AII) having an intrinsic viscosity [ ⁇ ] of 0.1 to 2.9 dl/g. (The total amount of component (AI) and component (AII) is 100% by mass.) Contains.
  • the ethylene polymer component (AI) preferably includes a step of producing the ultra-high molecular weight ethylene polymer (a1) and a step of producing the low molecular weight to high molecular weight ethylene polymer (a2). It can be obtained by a multistage polymerization method.
  • the polymer (a1) is usually produced in the first step, and then the polymer (a2) is produced in the second step.
  • the proportion of the ethylene polymer component (AI) is preferably 15 to 90% by mass, more preferably 20 to 80 mass%, even more preferably 26.7 to 49% by mass, and the proportion of the ethylene polymer component (AI ) is preferably 85 to 10% by mass, more preferably 80 to 20% by mass, and even more preferably 73.3 to 51% by mass (the total amount of component (AI) and component (AII) is 100% by mass). ).
  • the ultra-high molecular weight ethylene polymer (a1) constituting the ethylene polymer component (AI) is usually obtained in the first stage of polymerization in a multi-stage polymerization method.
  • the low molecular weight to high molecular weight ethylene polymer (a2) constituting the ethylene polymer component (AI) is usually produced in the second stage of polymerization after the polymerization of the polymer (a1) in a multi-stage polymerization method. can get.
  • the ethylene polymer component (AI) can be produced by polymerizing ethylene and, if desired, an ⁇ -olefin in multiple stages in the presence of a catalyst. It can be carried out by a method similar to the polymerization method described in Japanese Patent No. 289636.
  • the ethylene polymer component (AI) can be made to have a compatibility with the ethylene polymer component (AII).
  • AII ethylene polymer component
  • the ultra-high molecular weight ethylene polymer (a1) is uniformly dispersed in the composition of the present invention, and the ultra-high molecular weight ethylene polymer (a1) is bonded to the ethylene polymer component (AII). do. That is, the interfacial strength between the polymer (a1) and the ethylene polymer component (AII) increases.
  • the composition of the present invention has a balance of properties such as wear resistance, self-lubricating property, impact strength, chemical resistance, appearance, and moldability. Excellent, especially wear resistance, excellent balance between appearance and moldability.
  • the ethylene polymer component (AI) contains the ultra-high molecular weight ethylene polymer (a1), preferably more than 35% by mass and 90% by mass or less, more preferably more than 40% by mass and not more than 80% by mass, and further It preferably contains the low molecular weight to high molecular weight ethylene polymer (a2) in an amount of 41 to 75% by mass, preferably 10% by mass or more and less than 65% by mass, more preferably 20% by mass or more and less than 60% by mass. , more preferably in an amount of 25 to 59% by mass.
  • the ratio of polymer (a1) and polymer (a2) within the above range, the compatibility between component (AI) and component (AII) is improved, and the composition of the present invention has particularly high resistance to Excellent wear resistance, appearance and moldability.
  • the ethylene polymer component (AI) substantially contains only an ultra-high molecular weight ethylene polymer (polymer (a1)) and a low to high molecular weight ethylene polymer (polymer (a2)). .
  • the component (AI) includes additives added to ordinary polyolefins (for example, stabilizers such as heat-resistant stabilizers and weather-resistant stabilizers, crosslinking agents, crosslinking aids, antistatic agents, slip agents, antiblocking agents, Antifogging agents, lubricants, dyes, mineral oil softeners, petroleum resins, waxes, etc.) may be added, and the composition of the present invention may contain the above-mentioned components (AI) to the extent that the effects of the present invention are not impaired. It may also contain additives added to.
  • additives added to ordinary polyolefins for example, stabilizers such as heat-resistant stabilizers and weather-resistant stabilizers, crosslinking agents, crosslinking aids, antistatic agents, slip agents, antiblocking agents, Antifogging agents, lubricants, dyes, mineral oil softeners, petroleum resins, waxes, etc.
  • additives added to ordinary polyolefins for example, stabilizers such as heat-
  • the density of the ethylene polymer component (AI) (measured according to ASTM D1505) is usually 930 to 980 kg/m 3 , preferably 940 to 970 kg/m 3 .
  • the intrinsic viscosity [ ⁇ ] of the ethylene polymer component (AI) is usually 3.0 to 10.0 dl/g, preferably 3.0 to 8.0 dl/g, and more preferably 3.0 to 7.0 dl. /g.
  • the ethylene polymer component (AI) has the density as described above, the coefficient of dynamic friction of the molded product is reduced, so that a molded product with excellent self-lubricating properties can be obtained. Furthermore, since the ethylene polymer component (AI) has an intrinsic viscosity [ ⁇ ] within the above range, the dispersion state of the ethylene polymer component (AI) and the ethylene polymer component (AII) is becomes better.
  • the polymer (a2) contained in the ethylene polymer component (AI) and the ethylene polymer component (AII) melt-blended in an extruder etc. are finely dispersed into each other, so that the dispersion state is maintained.
  • the composition of the present invention can be molded with excellent wear resistance, self-lubricity, impact strength, chemical resistance, appearance, and moldability. You get a body.
  • the ethylene polymer component (AII) preferably contains an ethylene polymer (a3) having an intrinsic viscosity [ ⁇ ] of 0.1 to 2.9 dl/g.
  • the ethylene polymer (a3) includes high-pressure polyethylene (HP-LDPE), linear low-density polyethylene (LLDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), and ethylene/ ⁇ -olefin copolymer. Coalescence, ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate copolymer, saponified ethylene/vinyl acetate copolymer, ethylene/(meth)acrylic acid copolymer, ethylene/ ⁇ -olefin/diene (triene, polyene) ) terpolymer, etc.
  • HP-LDPE high-pressure polyethylene
  • LLDPE linear low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • ethylene/ ⁇ -olefin copolymer Coalescence, ethylene/vinyl alcohol copolymer, ethylene/vinyl acetate copolymer,
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 4-methyl-1-pentene, and Examples include 3-methyl-1-pentene.
  • diene toner, polyene
  • examples of the diene (triene, polyene) include 5-ethylidene-2-norbornene, vinylnorbornene, etc., including conjugated or non-conjugated dienes, trienes, and polyenes.
  • the ethylene polymer component (AII) may be a single type of ethylene polymer (a3) or a composition of two or more types of ethylene polymers (a3). It may be a composition of polymer (a3) and polyolefin (polypropylene, polybutene, etc.). Further, the ethylene polymer component (AII) may be a wax.
  • ethylene polymer (a3) among those mentioned above, high density polyethylene (HDPE) and low density polyethylene (LDPE) are preferable, and high density polyethylene (HDPE) is more preferable.
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • the density of the ethylene polymer (a3) (measured according to ASTM D1505) is usually 820 to 980 kg/m 3 , preferably 930 to 980 kg/m 3 , and more preferably 950 to 980 kg/m 3 .
  • the intrinsic viscosity [ ⁇ ] of the ethylene polymer (a3) is usually 0.1 to 2.9 dl/g, preferably 0.3 to 2.8 dl/g, more preferably 0.5 to 2.5 dl/g. g, more preferably 1.0 to 2.5 dl/g.
  • the ethylene polymer component (AII) contains the ethylene polymer (a3), it is well dispersed when mixed with the ethylene polymer component (AI). That is, during melt blending in an extruder or the like, the ethylene polymer component (AII) and the low molecular weight to high molecular weight ethylene polymer (a2) contained in the ethylene polymer component (AI) are finely blended into each other. By dispersing, the dispersion state becomes uniform. Therefore, by using an ethylene polymer component (AI) and an ethylene polymer component (AII) as the ethylene polymer component (A), it is possible to improve wear resistance, self-lubricity, impact strength, and chemical resistance. A molded article with excellent appearance, flexibility, moldability, etc. can be obtained.
  • the component (AII) includes additives added to ordinary polyolefins (for example, stabilizers such as heat-resistant stabilizers and weather-resistant stabilizers, crosslinking agents, crosslinking aids, antistatic agents, slip agents, antiblocking agents, Antifogging agents, lubricants, dyes, mineral oil softeners, petroleum resins, waxes, etc.) may be added, and the composition of the present invention may contain the aforementioned components (AII) to the extent that the effects of the present invention are not impaired. ) may also contain additives added to it.
  • additives added to ordinary polyolefins for example, stabilizers such as heat-resistant stabilizers and weather-resistant stabilizers, crosslinking agents, crosslinking aids, antistatic agents, slip agents, antiblocking agents, Antifogging agents, lubricants, dyes, mineral oil softeners, petroleum resins, waxes, etc.
  • additives added to ordinary polyolefins for example, stabilizers such as heat
  • the carbon fiber (B) is not particularly limited, and various known carbon fibers can be used, such as polyacrylonitrile, rayon, pitch, polyvinyl alcohol, regenerated cellulose, and mesophase. Examples include pitch-based carbon fibers manufactured from pitch. These may be used alone or in combination of two or more.
  • the carbon fiber (B) may be a general-purpose fiber or a high-strength fiber. Further, the carbon fiber (B) may be a long fiber, a short fiber, a chopped fiber, or a recycled fiber.
  • the carbon fiber (B) is preferably a surface-treated carbon fiber.
  • a method for surface treatment of carbon fibers commonly used known methods may be used. For example, electrolytic surface treatment is performed on carbon fibers with an acid or alkaline aqueous solution to impart functional groups to the carbon fiber surfaces.
  • method, and a method of treatment using a sizing agent are preferred.
  • the average length of the carbon fibers (B), that is, the average fiber length, is preferably 0.1 mm or more and 15.0 mm or less, more preferably 0.3 mm or more and 13.0 mm or less, and even more preferably 0.5 mm or more and 13.0 mm or less. It is as follows. When the average fiber length is at least the above-mentioned lower limit, the effect of reinforcing mechanical properties by the carbon fibers tends to be sufficiently exhibited. When the average fiber length is less than or equal to the above upper limit, the appearance of the molded article tends to be improved due to the dispersion of the carbon fibers in the ethylene polymer composition.
  • the average fiber length of the carbon fibers (B) extracted from the composition of the present invention is preferably 100 ⁇ m or more and 400 ⁇ m or less, more preferably 120 ⁇ m or more and 380 ⁇ m or less, and even more preferably 150 ⁇ m or more and 360 ⁇ m or less.
  • the average fiber length of the carbon fibers (B) extracted from the composition of the present invention is within the above range, the processability during production of the molded article becomes good.
  • the average fiber length is outside the above range, it will be difficult to uniformly knead the carbon fibers and the resin during molding, which may cause deterioration in the physical properties of the composition and molded product.
  • the proportion of carbon fibers having a fiber length of 100 ⁇ m or more and 300 ⁇ m or less is preferably 30% or more, more preferably 35 to 99%, and Preferably it is 40-98%.
  • the proportion of carbon fibers having a fiber length of 100 ⁇ m or more and 300 ⁇ m or less is within the above range, it becomes possible to increase mechanical strength and obtain a molded article with excellent wear resistance.
  • the fiber length and average fiber length of the carbon fiber (B) extracted from the composition of the present invention can be determined, for example, by the method described in the Examples below.
  • the average diameter of the carbon fibers (B) is preferably 0.5 ⁇ m or more and 30 ⁇ m or less, more preferably 1 ⁇ m or more and 21 ⁇ m or less, and even more preferably 1 ⁇ m or more and 19 ⁇ m or less.
  • the average diameter of the carbon fibers is equal to or greater than the lower limit, the carbon fibers are less likely to be damaged during molding, and the resulting molded product tends to have high impact strength.
  • the average diameter of the carbon fibers is below the above upper limit, the appearance of the molded product is good, the aspect ratio of the carbon fibers does not decrease, and the molded product has sufficient mechanical properties such as rigidity and heat resistance. It tends to have a reinforcing effect.
  • the content of the carbon fiber (B) is 1 to 100 parts by mass, preferably 4 to 70 parts by mass, when the content of the ethylene polymer component (A) is 100 parts by mass. , more preferably 7 to 65 parts by weight, still more preferably 10 to 60 parts by weight, particularly preferably 20 to 60 parts by weight.
  • the composition of the present invention has excellent moldability, and the composition of the present invention can be formed into a molded article having excellent rigidity, conductivity, abrasion resistance, and heat resistance. can be obtained.
  • Carbon fibers (B) include, for example, Teijin Tenax Co., Ltd. (HT P802 (polyolefin polymer sizing), HT C605 (nylon polymer sizing), HT C503 (urethane polymer sizing)), Toray Industries, Inc. Examples include Torayka Cut Fiber T008-006 (epoxy polymer sizing) manufactured by Nippon Polymer Sangyo Co., Ltd. and EX-1LC (epoxy polymer sizing) manufactured by Nippon Polymer Sangyo Co., Ltd.
  • the composition of the present invention may contain a modified olefin polymer (C).
  • the modified olefin polymer (C) is used, for example, as a compatibilizer to improve the compatibility between the ethylene polymer component (A) and the carbon fiber (B).
  • the modified olefin polymer (C) is not particularly limited, but examples include acid-modified homopolymers or copolymers of ethylene and ⁇ -olefins having 3 to 12 carbon atoms (for example, acid-modified products modified with maleic anhydride). ), air oxides, or styrene-modified products.
  • ethylene polymers ethylene homopolymers and copolymers of ethylene and at least one ⁇ -olefin selected from ⁇ -olefins having 3 to 12 carbon atoms
  • propylene polymers propylene homopolymers
  • Polymers and copolymers of propylene and at least one ⁇ -olefin selected from ⁇ -olefins having 4 to 12 carbon atoms) are preferred.
  • examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4 -Methyl-1-pentene and 1-octene.
  • the modified olefin polymer (C) is preferably a modified ethylene polymer.
  • the modified olefin polymer (C) is more preferably a modified ethylene polymer (c11) in which the following ethylene polymer (c1) is graft-modified with an unsaturated carboxylic acid or a derivative thereof.
  • the ethylene polymer (c1) has a density of 930 to 975 kg/m 3 and a melt flow rate (MFR) of 0.1 to 10 g/10 at 190° C. and a load of 2.16 kg, measured based on ASTM D1238. It is preferable that the melt flow rate (MFR) at 190° C. and a load of 10 kg is 0.1 to 20 g/10 minutes, as measured in accordance with ASTM D1238.
  • the density of the ethylene polymer (c1) is preferably 940 to 970 kg/m 3 .
  • the compatibility between the ethylene polymer component (A) and the carbon fiber (B) is high.
  • the melt flow rate of the ethylene polymer (c1) (according to ASTM D1238, 190°C, 2.16 kg load) is preferably 0.2 to 8 g/10 minutes, more preferably 0.5 to 6 g/10 minutes, More preferably, it is 0.5 to 3 g/10 minutes.
  • the melt flow rate (according to ASTM D1238, 190°C, 10 kg load) of the ethylene polymer (c1) is preferably 0.1 to 15 g/10 minutes, more preferably 0.1 to 10 kg/10 minutes, and Preferably it is 0.1 to 8 g/10 minutes. When the melt flow rate is within the above range, the compatibility between the ethylene polymer component (A) and the carbon fiber (B) is high.
  • the amount of grafting of the unsaturated carboxylic acid or its derivative in the modified ethylene polymer (c11) is usually 0.01 to 10% by mass, preferably 0.02 to 10% by mass. When the amount of grafting is within the above range, the compatibility between the ethylene polymer component (A) and the carbon fiber (B) is high.
  • Examples of the unsaturated carboxylic acids or derivatives thereof include (meth)acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, nadic acid (endocys-bicyclo[2. 2.1] hept-5-ene-dicarboxylic acid), and derivatives thereof, such as acid halides, amidimides, anhydrides, and esters.
  • the derivatives include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, methyl (meth)acrylate, ethyl (meth)acrylate, and (meth)acrylate. )
  • Esters and half esters such as glycidyl acrylate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, monomethyl itaconate, and diethyl itaconate.
  • unsaturated dicarboxylic acids and their acid anhydrides are preferred, and maleic acid, nadic acid, and their acid anhydrides are more preferred.
  • the modified ethylene polymer (c11) can be produced by various known methods. For example, an ethylene polymer is dissolved in an organic solvent, and then an unsaturated carboxylic acid or a derivative thereof and, if necessary, a radical initiator such as an organic peroxide are added to the resulting solution, and the temperature is usually 60 to 350°C. An ethylene polymer and an unsaturated carboxyl group are reacted at a temperature of preferably 80 to 190°C for 0.5 to 15 hours, preferably 1 to 10 hours, or without a solvent using an extruder or the like.
  • a method can be adopted in which an acid or a derivative thereof and, if necessary, a radical initiator such as an organic peroxide are added, and the reaction is carried out at a temperature higher than the melting point of the ethylene polymer, preferably at 160 to 350°C, for 0.5 to 10 minutes. .
  • the ethylene polymer before modification can be produced by a known method, such as a high-pressure method or a low-pressure method using a Ziegler-type Ti-based catalyst, a Co-based catalyst, a metallocene-based catalyst, or the like.
  • the ethylene polymers (c1) may each contain one type of ethylene polymer or two or more types of ethylene polymers. When the ethylene polymer (c1) contains two or more ethylene polymers, each of the two or more ethylene polymers satisfies the density and melt flow rate requirements of the ethylene polymer (c1) above. .
  • the content of the modified olefin polymer (C) in the composition of the present invention is the same as that of the ethylene polymer component (A).
  • the content is 100 parts by weight, it is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 8 parts by weight, and still more preferably 0.5 to 7 parts by weight.
  • the content of the modified olefin polymer (C) is within the above range, the ethylene polymer component (A) and the carbon fiber (B) can be made to be well compatible.
  • the ethylene polymer composition of the present invention contains, in addition to the above-mentioned ethylene polymer component (A), carbon fiber (B), and modified olefin polymer (C), if necessary, carbon fiber (B).
  • the amount thereof is not particularly limited, but is, for example, in the range of 0.01 to 30% by mass.
  • wax is preferable.
  • wax include polyethylene wax (excluding those corresponding to the ethylene polymer component (AII)) and polypropylene wax.
  • the ethylene polymer composition of the present invention contains wax, the agglomeration of carbon fibers (B) in the ethylene polymer component (A) is suppressed, making kneading easier. It is considered that the carbon fibers (B) are easily dispersed in (A).
  • the amount thereof is preferably in the range of 0.01 to 10% by mass based on the total amount of the composition.
  • the MFR of the ethylene polymer composition of the present invention measured at 190°C under a load of 10 kg according to JIS K 7210-1:2014 is preferably 0.01 to 20 g/10 min, more preferably 0. 01-10g/10 minutes.
  • the ethylene polymer composition of the present invention comprises the ethylene polymer component (A), the carbon fiber (B), optionally the modified olefin polymer (C), and optionally the optional component, which is known from the prior art. It can be obtained by mixing, for example, dry blending each component, followed by melt-kneading in a single- or twin-screw extruder, extruding into strands and granulating into pellets.
  • the carbon fiber (B) may be mixed in advance with a polymer component such as the ethylene polymer component (A) and used in the form of a masterbatch.
  • the molded article of the present invention contains the ethylene polymer composition.
  • the method for manufacturing the molded article includes conventionally known polyolefin molding methods, such as extrusion molding, injection molding, film molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, Known thermoforming methods include press molding, vacuum molding, powder slush molding, calendar molding, and foam molding.
  • the molded body may be a molded body formed from the ethylene polymer composition, or may be a molded body having a portion, such as a surface layer, formed from the ethylene polymer composition. good.
  • the proportion of carbon fibers having an acicular ratio of 1.5 or more is preferably 30% or more, more preferably 30 to 70%, even more preferably 31 to 65%, particularly preferably 32 to 60%.
  • the proportion of carbon fibers having an acicular ratio of 1.5 or more can be determined by the method described in the Examples below.
  • the shrinkage percentage of the molded article of the present invention in both the length direction and the width direction is preferably 2.0% or less, more preferably 1.5% or less, and 0.05 to 1.0%. It is particularly preferable that The shrinkage rate can be determined by the method described in Examples below.
  • the flexural modulus of the molded article of the present invention is preferably 5,000 MPa or more, more preferably 6,000 to 20,000 MPa, and still more preferably 7,000 to 15,000 MPa.
  • the bending elastic modulus can be determined by the method described in Examples described later.
  • the number of repetitions when the displacement amount reaches 8 mm in the vibration fatigue test (35 MPa) of the molded article of the present invention is preferably 1500 times or more, more preferably 2000 times or more, and still more preferably 5000 times or more.
  • the upper limit of the number of repetitions is not particularly limited as the higher the number, the better, but it is preferably 10 million times, more preferably 1 million times, still more preferably 500,000 times.
  • the number of repetitions can be determined by the method described in Examples described later.
  • Molded objects are used in a wide range of applications, including household goods such as daily necessities and recreational use, general industrial use, and industrial goods.
  • Specific examples of molded bodies include home appliance material parts, communication equipment parts, electrical parts, electronic parts, automobile parts, other vehicle parts, ships, aircraft materials, mechanical mechanism parts, building material-related parts, civil engineering parts, agricultural materials, Examples include power tool parts, food containers, films, sheets, and textiles.
  • the molded product of the present invention can be widely used in conventionally known polyethylene applications, but it has an excellent balance of properties such as wear resistance, rigidity, self-lubricity, impact strength, and thin-walled molding, which are particularly required.
  • Applications include, for example, metal coatings (laminates) for steel pipes, electric wires, automobile sliding door rails, etc.; various rubber coatings such as pressure-resistant rubber hoses, automobile door gaskets, clean room door gaskets, automobile glass run channels, automobile weather strips, etc. (Laminated): Used for linings of hoppers, chutes, etc., sliding materials such as gears, bearings, rollers, tape reels, various guide rails and elevator rail guides, and various protective liner materials.
  • the molded article of the present invention also has excellent conductivity, it is possible to suppress the charging properties of various mechanical parts and sliding members, and it can be suitably used in applications that require conductivity and antistatic properties.
  • the density of the ethylene polymer component (A) was measured by a density gradient method in accordance with ASTM D1505.
  • the density of the compositions obtained in Examples and Comparative Examples was measured in water at 23°C by a submerged weighing method in accordance with JIS Z8807:2012.
  • the produced observation sample was observed using a "Scanning Electron Microscope S-3700N" manufactured by Hitachi High-Technology Co., Ltd. at an acceleration voltage of 10 kV and a backscattered electron image at a magnification of 150 times.
  • the observation direction of the observation sample is such that the polished surface of the part cut out from the molded body is the front as shown in Figure 1, and the observation surface seen from this observation direction and the long side on the imaging screen are The photo was taken so that the two were parallel.
  • the photographed image was centered at a depth of 0.7 to 0.8 mm from the surface (top surface) of the molded body.
  • Heat resistance heat distortion temperature HDT
  • ISO-75-1 2
  • the shape of the test piece was set to the shape described in JIS K7162 1A, and the heat distortion temperature was determined.
  • the heat distortion temperature was measured when the bending stress was 0.45 MPa (HDT 0.45 MPa) and when the bending stress was 1.80 MPa (HDT 1.80 MPa).
  • the molding shrinkage rate in the length direction was defined as the shrinkage rate MD
  • the molding shrinkage rate in the width direction was defined as the shrinkage rate TD.
  • Test piece was shaped as described in JIS K7162 1A, and the tensile strength and elongation at break were determined at a tensile speed of 50 mm/min. Further, in accordance with ISO 527-1, 2, the tensile modulus was determined using a test piece shape as described in JIS K7162 1A and a tensile speed of 1 mm/min.
  • ethylene polymer component (AI-2) ⁇ Production of ethylene polymer component (AI-2) ⁇
  • an ultra-high molecular weight ethylene polymer (polymer (a1)) having an intrinsic viscosity [ ⁇ ] of 30 dl/g was prepared in the first stage of polymerization, and then an ultra-high molecular weight ethylene polymer (polymer (a1)) with an intrinsic viscosity [ ⁇ ] of 30 dl/g was prepared in the second stage of polymerization.
  • a low molecular weight ethylene polymer (polymer (a2)) with 1.5 dl/g was subjected to two-stage polymerization at a mass ratio (polymer (a1)/polymer (a2)) of 75/25.
  • an ethylene polymer component (AI-2) having an intrinsic viscosity [ ⁇ ] of 6.9 dl/g was obtained.
  • Ethylene polymer component (AII) The following ethylene polymer components were used.
  • Ethylene polymer component (AII-1) High-density, low-molecular-weight polyethylene with an intrinsic viscosity [ ⁇ ] of 1.1 dl/g and a density of 965 kg/m 3 (“Hi-ZEX 1700J” manufactured by Prime Polymer Co., Ltd.)
  • (Ethylene polymer component (A)) ⁇ Production of ethylene polymer component (A-1)>> Blending the ethylene polymer component (AI-1) and the ethylene polymer component (AII-1) at a mass ratio ((AI-1)/(AII-1)) of 49/51, Melt blending was performed using a PCM twin-screw extruder made by Ikegai Iron Works to obtain a pellet-like ethylene polymer component (A-1) with an intrinsic viscosity [ ⁇ ] of 3.0 dl/g and a density of 968 kg/cm 3 . Ta. The content of the ultra-high molecular weight ethylene polymer (polymer (a1)) in the ethylene polymer component (A-1) was 20% by mass.
  • ethylene polymer component (A-2) ⁇ Production of ethylene polymer component (A-2)>> The ethylene polymer component (AI-2) and the ethylene polymer component (AII-1) are blended in a ratio such that the mass ratio ((AI-2)/(AII-1)) is 33/67, Melt blending was performed using a PCM twin-screw extruder made by Ikegai Iron Works to obtain a pellet-like ethylene polymer component (A-2) with an intrinsic viscosity [ ⁇ ] of 5.8 dl/g and a density of 966 kg/cm 3 . Ta. The content of the ultra-high molecular weight ethylene polymer (polymer (a1)) in the ethylene polymer component (A-2) was 25% by mass.
  • Carbon fiber (B) Carbon fiber (B) The following carbon fibers were used. Carbon fiber (B-1): “Tenax HT P802” manufactured by Teijin Ltd. (polyolefin polymer sizing treatment, fiber length: 3 mm, diameter: 7 ⁇ m, carbon fiber content ratio: 98% by mass) Carbon fiber (B-2): “Tenax HT C605" manufactured by Teijin Ltd. (nylon polymer sizing treatment, fiber length: 6 mm, diameter: 7 ⁇ m, carbon fiber content ratio: 95.5% by mass) Carbon fiber (B-3): Toray Industries, Inc. "TORAYCA T008-006” (epoxy polymer sizing treatment, fiber length: 6 mm, diameter: 7 ⁇ m, carbon fiber content: 99% by mass)
  • Carbon nanotube "NC7000” manufactured by Nanosil (average diameter: 9.5 nm, average length: 1.5 ⁇ m)
  • a carbon nanotube-containing masterbatch was prepared by mixing 15% by mass of the carbon nanotubes, 75% by mass of the ethylene polymer component (A-1), and 10% by mass of wax (polyethylene wax) using an existing method.
  • Modified olefin polymer (C) The following modified olefin polymers were used as compatibilizers.
  • Modified olefin polymer (C-1) Maleic acid-modified polymer produced based on the method for producing ethylene polymer PE-0 described in International Publication No.
  • Ethylene polymer (density: 965 kg/cm 3 , MFR (190°C, 2.16 kg load): 5 g/10 min, degree of modification: 2.4)
  • Modified olefin polymer (C-2): Maleic acid-modified ethylene polymer (density 967 kg/ cm 3 , intrinsic viscosity [ ⁇ ] 5 dl/g [ ⁇ ], MFR (190°C, 10 kgf): 6.2, degree of modification: 0.8)
  • Example 1 After dry blending 78% by mass of ethylene polymer component (A-1), 20% by mass of carbon fiber (B-1), and 2% by mass of modified olefin polymer (C-1), Parker Co., Ltd. A composition was obtained by melt extrusion using a twin-screw kneading extruder "HK-25D” manufactured by Corporation under the conditions of a cylinder temperature of 260° C., a screw rotation speed of 200 rpm, and a discharge rate of 12 kg/h. Table 1 shows the blending amount of each component in the obtained composition (the total amount of the ethylene polymer is 100 parts by mass). In addition, the physical properties of the obtained composition were measured by the method described above. The results are shown in Table 1.
  • Example 2 Example 1 except that the amounts of the ethylene polymer component (A-1), carbon fiber (B-1), and modified olefin polymer (C-1) were adjusted to the amounts shown in Table 1. A composition was produced in the same manner as above, and its physical properties were measured. The results are shown in Table 1.
  • Example 3 Using a modified olefin polymer (C-2) instead of the modified olefin polymer (C-1), ethylene polymer component (A-1), carbon fiber (B-1), modified olefin polymer A composition was produced in the same manner as in Example 1, except that the amount of (C-2) was adjusted to be as shown in Table 1, and its physical properties were measured. The results are shown in Table 1.
  • Example 4 Using ethylene polymer component (A-2) instead of ethylene polymer component (A-1), ethylene polymer component (A-2), carbon fiber (B-1), modified olefin polymer A composition was produced in the same manner as in Example 1, except that the amount of (C-1) was adjusted to be as shown in Table 1, and its physical properties were measured. The results are shown in Table 1.
  • Example 5 Using carbon fiber (B-2) instead of carbon fiber (B-1), ethylene polymer component (A-1), carbon fiber (B-2), modified olefin polymer (C-1) A composition was produced in the same manner as in Example 1, except that the amounts were adjusted to be as shown in Table 1, and its physical properties were measured. The results are shown in Table 1.
  • Example 6 Using carbon fiber (B-3) instead of carbon fiber (B-1), ethylene polymer component (A-1), carbon fiber (B-3), modified olefin polymer (C-1) A composition was produced in the same manner as in Example 1, except that the amounts were adjusted to be as shown in Table 1, and its physical properties were measured. The results are shown in Table 1.
  • composition was prepared in the same manner as in Example 1 except that only the ethylene polymer component (A-1) was used without using the carbon fiber (B-1) and the modified olefin polymer (C-1). It was manufactured and its physical properties were measured. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

本発明のエチレン系重合体組成物は、135℃のデカリン溶媒中で測定した極限粘度[η]が1.5~10dl/gであり、密度が930~980kg/m3であるエチレン系重合体成分(A)100質量部、および、炭素繊維(B)1~100質量部を含有し、前記エチレン系重合体成分(A)は、135℃のデカリン溶媒中で測定した極限粘度[η]が10~40dl/gである超高分子量エチレン系重合体(a1)を含む。

Description

エチレン系重合体組成物およびその用途
 本発明はエチレン系重合体組成物およびその用途に関する。
 ポリエチレン樹脂は、成形が容易であり、各種物性に優れ、かつ経済的であることから成形材料として広く利用されている。たとえば、特許文献1には、高密度ポリエチレン樹脂と層状ケイ酸塩とを含む高密度ポリエチレン樹脂組成物、およびこの組成物の射出成形品などが開示されている。また、特許文献2には、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂など)、多層カーボンナノチューブおよび無機フィラーからなる樹脂組成物、ならびにこの組成物の成形品が開示されている。
 一方、特許文献3には、超高分子量ポリエチレンと、低分子量ないし高分子量ポリエチレンとを含むエチレン系重合体、および、カーボンナノチューブを含有するエチレン系重合体組成物が開示され、この樹脂組成物は、表面抵抗率及び体積抵抗率が低く、また、良好な熱伝導性を有していること、当該エチレン系重合体組成物から得られる成形体は、良好な摺動性を有し、また、剛性を有していることが記載されている。
特開2014-19733号公報 特開2010-196012号公報 国際公開第2022/038941号
 しかしながら、無機フィラーやカーボンナノチューブを含む従来のエチレン系重合体組成物は、成形性が必ずしも十分ではなく、また、剛性、導電性、耐摩耗性および耐熱性に優れた成形体を得るという観点から、さらなる改善の余地があった。
 そこで本発明は、成形性に優れるとともに、剛性、導電性、耐摩耗性および耐熱性に優れた成形体を得ることのできるエチレン系重合体組成物およびその成形体を提供することを目的とする。
 本発明の例を以下に示す。
 [1] 135℃のデカリン溶媒中で測定した極限粘度[η]が1.5~10dl/gであり、密度が930~980kg/m3であるエチレン系重合体成分(A)100質量部、および、炭素繊維(B)1~100質量部を含有し、
 前記エチレン系重合体成分(A)は、135℃のデカリン溶媒中で測定した極限粘度[η]が10~40dl/gである超高分子量エチレン系重合体(a1)を含む、エチレン系重合体組成物。
 [2] 前記エチレン系重合体成分(A)は、135℃のデカリン溶媒中で測定した極限粘度[η]が0.1~9dl/gである低分子量ないし高分子量エチレン系重合体(a2)を含む、項[1]に記載のエチレン系重合体組成物。
 [3] 前記エチレン系重合体成分(A)が、エチレン系重合体成分(AI)を10~90質量%、およびエチレン系重合体成分(AII)を90~10質量%(成分(AI)および成分(AII)の合計量を100質量%とする。)含み、
 前記エチレン系重合体成分(AI)が、35質量%を超え90質量%以下の前記超高分子量エチレン系重合体(a1)と、10質量%以上65質量%未満の前記低分子量ないし高分子量エチレン系重合体(a2)(重合体(a1)および重合体(a2)の合計量を100質量%とする。)とを含んでなる多段重合体であり、
 前記エチレン系重合体成分(AII)が、135℃のデカリン溶媒中で測定した極限粘度[η]が0.1~2.9dl/gであるエチレン系重合体(a3)を含む、項[2]に記載のエチレン系重合体組成物。
 [4] 前記エチレン系重合体成分(AI)が、前記超高分子量エチレン系重合体(a1)を生成させる工程と、前記低分子量ないし高分子量エチレン系重合体(a2)を生成させる工程とを含む多段重合法により得られる、項[3]に記載のエチレン系重合体組成物。
 [5] 前記炭素繊維(B)が、表面処理された炭素繊維である、項[1]~[4]のいずれか1項に記載のエチレン系重合体組成物。
 [6] 前記炭素繊維(B)の表面処理が、オレフィン系ポリマー、ウレタン系ポリマー、ナイロン系ポリマー、またはエポキシ系ポリマーを用いたサイジング処理である、項[5]に記載のエチレン系重合体組成物。
 [7] 前記エチレン系重合体組成物から抽出される前記炭素繊維(B)の平均繊維長が100μm以上400μm以下である、項[1]~[6]のいずれか1項に記載のエチレン系重合体組成物。
 [8] 前記エチレン系重合体組成物から抽出される前記炭素繊維(B)のうち、繊維長が100μm以上300μm以下である炭素繊維の割合が30%以上である、項[1]~[7]のいずれか1項に記載のエチレン系重合体組成物。
 [9] 変性オレフィン系重合体(C)を含む、項[1]~[8]のいずれか1項に記載のエチレン系重合体組成物。
 [10] 前記エチレン系重合体成分(A)100質量部に対する前記炭素繊維(B)の含有量が20~60質量部である、項[1]~[9]のいずれか1項に記載のエチレン系重合体組成物。
 [11] 項[1]~[10]のいずれか1項に記載のエチレン系重合体組成物を含む成形体。
 [12] 前記成形体に含まれる前記炭素繊維(B)のうち、針状比が1.5以上である炭素繊維の割合が30%以上である、項[11]に記載の成形体。
 [13] 前記成形体の長さ方向および幅方向の収縮率が、いずれも2.0%以下である、項[11]または[12]に記載の成形体。
 [14] 前記成形体の曲げ弾性率が、5000MPa以上である、項[11]~[13]のいずれか1項に記載の成形体。
 [15] 前記成形体の振動疲労試験(35MPa)における変位量が8mmに達した際の繰り返し回数が、1500回以上である、項[11]~[14]のいずれか1項に記載の成形体。
 [16] 射出成形体である、項[11]~[15]のいずれか1項に記載の成形体。
 [17] 被覆材または摺動材である、項[11]~[16]のいずれか1項に記載の成形体。
 本発明によれば、成形性に優れるとともに、剛性、導電性、耐摩耗性および耐熱性に優れた成形体を得ることのできるエチレン系重合体組成物およびその成形体を提供することができる。
図1は、実施例における配向を評価する際の観察用サンプルを、ASTM D671 TypeA型試験片(成形体)から採取する箇所および観察用サンプルの観察面を説明するための概略図である。
 以下、本発明について詳細に説明する。なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明に係るエチレン系重合体組成物(以下、単に「本発明の組成物」ともいう。)は、極限粘度[η]が1.5~10dl/gであり、密度が930~980kg/m3であるエチレン系重合体成分(A)100質量部、および、炭素繊維(B)1~100質量部を含有し、前記エチレン系重合体成分(A)は、極限粘度[η]が10~40dl/gである超高分子量エチレン系重合体(a1)を含むことを特徴としている。
 なお、本発明において極限粘度[η]とは、特に断りのない限り、135℃のデカリン溶媒中で測定した極限粘度[η]である。
 <エチレン系重合体成分(A)>
 前記エチレン系重合体成分(A)は、エチレンの単独重合体、またはエチレンとα-オレフィンとの共重合体であり、一般に高圧法低密度ポリエチレン(HP-LDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、超高分子量エチレン系重合体などと呼称されている、エチレンを主体とする重合体である。
 前記エチレン系重合体成分(A)は、共重合体である場合は、ランダム共重合体であってもブロック共重合体であってもよい。
 エチレンと共重合されるα-オレフィンは、好ましくは炭素数3~20のα-オレフィンであり、具体的には、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-ノナデセン、1-エイコセン、9-メチル-1-デセン、11-メチル-1-ドデセンおよび12-エチル-1-テトラデセンなどが挙げられる。これらα-オレフィンは、1種単独で、または2種以上組み合わせて用いられる。
 前記エチレン系重合体成分(A)は、1種単独の重合体であっても2種以上のエチレン系重合体の組成物(混合物)であってもよい。
 前記エチレン系重合体成分(A)の極限粘度[η]は、1.5~10dl/g、好ましくは、2.0~8.0dl/g、より好ましくは2.5~7.0dl/gである。前記エチレン系重合体成分(A)が、前記の範囲内の極限粘度[η]を有することにより、本発明の組成物から、耐摩耗性、自己潤滑性、衝撃強度、耐薬品性、外観および成形性などの特性のバランスに優れた成形体を得ることができる。
 前記エチレン系重合体成分(A)の密度(ASTM D1505に準拠して測定)は、930~980kg/m3、好ましくは940~970kg/m3である。前記エチレン系重合体成分(A)が、前記の範囲内の密度を有することにより、耐摩耗性と柔軟性に優れる成形体が得られる。
 前記エチレン系重合体成分(A)は、極限粘度[η]が10~40dl/gの超高分子量エチレン系重合体(a1)(以下「重合体(a1)」とも記載する。」)を含んでいる。前記エチレン系重合体成分(A)が前記重合体(a1)を含んでいるため、本発明の組成物から、耐摩耗性、自己潤滑性、衝撃強度、耐薬品性などに優れた成形体が得られる。
 前記重合体(a1)の極限粘度[η]は、好ましくは15~35dl/g、より好ましくは20~35dl/gである。
 前記エチレン系重合体成分(A)は、極限粘度[η]が0.1~9dl/gの低分子量ないし高分子量のエチレン系重合体(a2)(以下「重合体(a2)」とも記載する。)を含んでいてもよい。前記重合体(a2)は、ワックスであってもよい。
 前記重合体(a2)の極限粘度[η]は、好ましくは0.1~5dl/g、より好ましくは0.5~3.0dl/g、さらに好ましくは1.0~2.5dl/gである。
 本発明の組成物は、好ましくは、前記エチレン系重合体成分(A)として、
 35質量%を超え90質量%以下の前記超高分子量エチレン系重合体(a1)と、
 10質量%以上65質量%未満の前記低分子量ないし高分子量エチレン系重合体(a2)(重合体(a1)および重合体(a2)の合計量を100質量%とする。)とを含む多段重合体であるエチレン系重合体成分(AI)を10~90質量%、および
 極限粘度[η]が0.1~2.9dl/gであるエチレン系重合体成分(AII)を90~10質量%(成分(AI)および成分(AII)の合計量を100質量%とする。)含有する。
 前記エチレン系重合体成分(AI)は、好ましくは前記超高分子量エチレン系重合体(a1)を生成させる工程と、前記低分子量ないし高分子量エチレン系重合体(a2)を生成させる工程とを含む多段重合法により得ることができる。
 前記多段重合法において、通常、1段階目で前記重合体(a1)を生成させ、次いで2段階目で前記重合体(a2)を生成させる。
 前記エチレン系重合体成分(AI)の割合は、好ましくは15~90質量%、より好ましくは20~80質量、さらに好ましくは26.7~49質量%であり、前記エチレン系重合体成分(AII)の割合は、好ましくは85~10質量%、より好ましくは80~20質量%、さらに好ましくは73.3~51質量%(成分(AI)および成分(AII)の全量を100質量%とする。)である。
 《エチレン系重合体成分(AI)》
 前記エチレン系重合体成分(AI)を構成する前記超高分子量エチレン系重合体(a1)は、通常、多段重合法における第1段階の重合にて得られる。
 前記エチレン系重合体成分(AI)を構成する前記低分子量ないし高分子量エチレン系重合体(a2)は、通常、多段重合法において前記重合体(a1)の重合後、第2段階の重合にて得られる。
 前記エチレン系重合体成分(AI)は、触媒の存在下に、エチレンおよび所望に応じてα-オレフィンを多段階で重合させることにより製造することができ、多段階の重合は、特開平2-289636号公報に記載の重合方法と同様な方法で行うことができる。
 また、前記重合体(a1)を重合し、次いで前記重合体(a2)を後重合することにより、前記エチレン系重合体成分(AI)は、前記エチレン系重合体成分(AII)との相溶性に優れる。その結果、本発明の組成物には前記超高分子量エチレン系重合体(a1)が均一に分散し、前記超高分子量エチレン系重合体(a1)は前記エチレン系重合体成分(AII)と結合する。すなわち前記重合体(a1)と前記エチレン系重合体成分(AII)との間の界面強度が高くなる。このため本発明の組成物は、前記成分(AI)および前記成分(AII)を含むことで、耐摩耗性、自己潤滑性、衝撃強度、耐薬品性、外観および成形性などの特性のバランスに優れ、とりわけ耐摩耗性、外観と成形性のバランスに優れる。
 前記エチレン系重合体成分(AI)は、前記超高分子量エチレン系重合体(a1)を、好ましくは35質量%を超え90質量%以下、より好ましくは40質量%を超え80質量%以下、さらに好ましくは41~75質量%の量で含有し、前記低分子量ないし高分子量エチレン系重合体(a2)を、好ましくは10質量%以上65質量%未満、より好ましくは20質量%以上60質量%未満、さらに好ましくは25~59質量%の量で含有する。
 重合体(a1)と重合体(a2)との割合を前記の範囲内にすることにより、成分(AI)と成分(AII)との相溶性が向上し、本発明の組成物は、特に耐摩耗性や外観と成形性に優れる。
 前記エチレン系重合体成分(AI)は、実質的に超高分子量エチレン系重合体(重合体(a1))および低分子量ないし高分子量エチレン系重合体(重合体(a2))のみを含んでなる。
 前記成分(AI)には、通常のポリオレフィンに添加される添加剤(例えば、耐熱安定剤、耐候安定剤などの安定剤、架橋剤、架橋助剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、鉱物油系軟化剤、石油樹脂、ワックスなど)が添加されていてもよく、本発明の組成物は、本発明の効果を損なわない範囲で、前記成分(AI)に添加された添加剤を含んでいてもよい。
 前記エチレン系重合体成分(AI)の密度(ASTM D1505に準拠して測定)は、通常930~980kg/m3、好ましくは940~970kg/m3である。
 前記エチレン系重合体成分(AI)の極限粘度[η]は、通常3.0~10.0dl/g、好ましくは3.0~8.0dl/g、より好ましくは3.0~7.0dl/gである。
 前記エチレン系重合体成分(AI)が、上記のような密度を有することにより、成形体の動摩擦係数が小さくなるので自己潤滑性に優れた成形体が得られる。
 また、前記エチレン系重合体成分(AI)が、上記の範囲内の極限粘度[η]を有することにより、前記エチレン系重合体成分(AI)とエチレン系重合体成分(AII)との分散状態が良好になる。
 すなわち、前記エチレン系重合体成分(AI)に含まれる前記重合体(a2)と、押出機などでメルトブレンドするエチレン系重合体成分(AII)とが相互に微細に分散することにより分散状態が均一になるので、前記エチレン系重合体成分(AI)を用いることにより、本発明の組成物から、耐摩耗性、自己潤滑性、衝撃強度、耐薬品性、外観および成形性などに優れた成形体が得られる。
 《エチレン系重合体成分(AII)》
 前記エチレン系重合体成分(AII)は、極限粘度[η]が0.1~2.9dl/gであるエチレン系重合体(a3)を含むことが好ましい。
 前記エチレン系重合体(a3)としては、高圧法ポリエチレン(HP-LDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、エチレン・α-オレフィン共重合体、エチレン・ビニルアルコール共重合体、エチレン・酢酸ビニル共重合体、エチレン・酢酸ビニル共重合体ケン化物、エチレン・(メタ)アクリル酸共重合体、エチレン・α-オレフィン・ジエン(トリエン、ポリエン)三元共重合体などが挙げられる。ここでα-オレフィンとしては、炭素数が3~20であるプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、4-メチル-1-ペンテンおよび3-メチル-1-ペンテンなどが例示できる。またジエン(トリエン、ポリエン)としては、共役もしくは非共役ジエン、トリエン、ポリエンを含む、5-エチリデン-2-ノルボルネン、ビニルノルボルネンなどを例示できる。
 前記エチレン系重合体成分(AII)は、1種単独のエチレン系重合体(a3)であっても、あるいは2種以上のエチレン系重合体(a3)の組成物であってもよく、エチレン系重合体(a3)とポリオレフィン(ポリプロピレン、ポリブテンなど)との組成物であってもよい。また、前記エチレン系重合体成分(AII)は、ワックスであってもよい。
 前記エチレン系重合体(a3)としては、上述したものの中でも、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)が好ましく、高密度ポリエチレン(HDPE)がより好ましい。
 前記エチレン系重合体(a3)の密度(ASTM D1505に準拠して測定)は、通常820~980kg/m3、好ましくは930~980kg/m3、より好ましくは950~980kg/m3である。
 前記エチレン系重合体(a3)の極限粘度[η]は、通常0.1~2.9dl/g、好ましくは0.3~2.8dl/g、より好ましくは0.5~2.5dl/g、さらに好ましくは1.0~2.5dl/gである。
 前記エチレン系重合体成分(AII)は、前記エチレン系重合体(a3)を含むため、前記エチレン系重合体成分(AI)と混合した際に良好に分散する。すなわち、押出機などでのメルトブレンド時に、エチレン系重合体成分(AII)と、エチレン系重合体成分(AI)に含まれる低分子量ないし高分子量エチレン系重合体(a2)とが相互に微細に分散することにより分散状態が均一になる。このため、エチレン系重合体成分(A)として、エチレン系重合体成分(AI)とエチレン系重合体成分(AII)とを用いることにより、耐摩耗性、自己潤滑性、衝撃強度、耐薬品性、外観、柔軟性および成形性などに優れた成形体が得られる。
 前記成分(AII)には、通常のポリオレフィンに添加される添加剤(例えば、耐熱安定剤、耐候安定剤などの安定剤、架橋剤、架橋助剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、染料、鉱物油系軟化剤、石油樹脂、ワックスなど)、が添加されていてもよく、本発明の組成物は、本発明の効果を損なわない範囲で、前記成分(AII)に添加された添加剤を含んでいてもよい。
 <炭素繊維(B)>
 前記炭素繊維(B)としては、特に限定されず、公知の種々の炭素繊維を使用することができ、例えば、ポリアクリルニトリル系、レーヨン系、ピッチ系、ポリビニルアルコール系、再生セルロース系、メゾフェーズピッチから製造されたピッチ系等の炭素繊維が挙げられる。これらは、1種単独で用いても2種以上を併用してもよい。
 前記炭素繊維(B)は、汎用繊維でもよく、高強度繊維でもよい。また、前記炭素繊維(B)は、長繊維、短繊維、チョップドファイバー、リサイクル繊維であってもよい。
 前記炭素繊維(B)は、表面処理された炭素繊維が好ましい。炭素繊維の表面処理の方法としては、一般的によく用いられる公知の方法を用いればよく、例えば、炭素繊維に酸またはアルカリ性の水溶液で電解表面処理を行って炭素繊維表面に官能基を付与する方法、ならびにサイジング剤を用いて処理する方法などが挙げられる。このうち、オレフィン系ポリマー、エポキシ系ポリマー、ナイロン系ポリマーおよびウレタン系ポリマーなどを用いたサイジング処理が好ましく挙げられる。
 前記炭素繊維(B)の平均長さ、すなわち平均繊維長は、好ましくは0.1mm以上15.0mm以下、より好ましくは0.3mm以上13.0mm以下、さらに好ましくは0.5mm以上13.0mm以下である。平均繊維長が前記下限以上である場合には、炭素繊維による機械物性の補強効果が充分発現される傾向にある。平均繊維長が前記上限以下である場合には、エチレン系重合体組成物中の炭素繊維が分散することによって成形体の外観が良好となる傾向にある。
 本発明の組成物から抽出される前記炭素繊維(B)の平均繊維長は、好ましくは100μ以上400μm以下、より好ましくは120μm以上380μm以下、さらに好ましくは150μm以上360μm以下である。本発明の組成物から抽出される前記炭素繊維(B)の平均繊維長が前記範囲であることにより、成形体作製時の加工性が良好になる。一方で、平均繊維長が前記範囲外にあると、成形時に炭素繊維と樹脂とが均一に混練されにくくなり、組成物および成形体の物性低下の要因となる場合がある。
 また、本発明の組成物から抽出される前記炭素繊維(B)のうち、繊維長が100μm以上300μm以下である炭素繊維の割合は、好ましくは30%以上、より好ましくは35~99%、さらに好ましくは40~98%である。繊維長が100μm以上300μm以下である炭素繊維の割合が前記範囲であることにより、機械的強度を高めることが可能となり、耐摩耗性に優れる成形体を得ることができる。
 本発明の組成物から抽出される前記炭素繊維(B)の繊維長および平均繊維長は、例えば、後述する実施例に記載の方法により求めることができる。
 前記炭素繊維(B)の平均直径は、好ましくは0.5μm以上30μm以下、より好ましくは1μm以上21μm以下であり、さらに好ましくは1μm以上19μm以下である。炭素繊維の平均直径が前記下限以上である場合には、成形時に炭素繊維が破損し難くなり、また、得られる成形体の衝撃強度が高くなる傾向にある。炭素繊維の平均直径が前記上限以下である場合には、成形体の外観が良好となり、また、炭素繊維のアスペクト比が低下せず、成形体の剛性、耐熱性などの機械的物性に十分な補強効果が得られる傾向にある。
 本発明の組成物において、前記炭素繊維(B)の含有量は、前記エチレン系重合体成分(A)の含有量を100質量部とすると、1~100質量部、好ましくは4~70質量部、より好ましくは7~65質量部、さらに好ましくは10~60質量部、特に好ましくは20~60質量部である。前記炭素繊維(B)の含有量が前記範囲にあると、本発明の組成物の成形性に優れるとともに、本発明の組成物から剛性、導電性、耐摩耗性、耐熱性に優れた成形体を得ることができる。
 炭素繊維(B)の市販品としては、例えば、株式会社帝人製テナックス(HT P802(ポリオレフィン系ポリマーサイジング)、HT C605(ナイロン系ポリマーサイジング)、HT C503(ウレタン系ポリマーサイジング))、東レ株式会社製トレカカットファイバー T008-006(エポキシ系ポリマーサイジング)、日本ポリマー産業株式会社 EX―1LC(エポキシ系ポリマーサイジング)などが挙げられる。
 <変性オレフィン系重合体(C)>
 本発明の組成物は、変性オレフィン系重合体(C)を含んでいてもよい。
 前記変性オレフィン系重合体(C)は、たとえば、前記エチレン系重合体成分(A)と前記炭素繊維(B)との相容性を高めるための相容化剤として用いられる。
 前記変性オレフィン系重合体(C)としては、特に限定されないが、たとえば、エチレンおよび炭素原子数3~12のα-オレフィンの単独重合体または共重合体の酸変性物(例えば、無水マレイン酸変性物)、空気酸化物、またはスチレン変性物が挙げられる。これらの中でも、エチレン系重合体(エチレン単独重合体およびエチレンと炭素原子数3~12のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとの共重合体)およびプロピレン系重合体(プロピレン単独重合体およびプロピレンと炭素原子数4~12のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとの共重合体)からなる群から選ばれる重合体の変性体が好ましい。
 ここで、前記α-オレフィン(炭素原子数3~12のα-オレフィンまたは炭素原子数4~12のα-オレフィン)の例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテンが挙げられる。
 前記変性オレフィン系重合体(C)は、好ましくは変性エチレン系重合体である。
 前記変性オレフィン系重合体(C)は、より好ましくは下記のエチレン系重合体(c1)が不飽和カルボン酸またはその誘導体でグラフト変性されている、変性エチレン系重合体(c11)である。
 前記エチレン系重合体(c1)は、密度が930~975kg/m3であり、ASTM D1238に基づき測定した、190℃、2.16kg荷重におけるメルトフローレート(MFR)が0.1~10g/10分であるか、ASTM D1238に基づき測定した、190℃、10kg荷重におけるメルトフローレート(MFR)が0.1~20g/10分であることが好ましい。
 エチレン系重合体(c1)の密度は、好ましくは940~970kg/m3である。密度が前記範囲にあると、エチレン系重合体成分(A)と炭素繊維(B)との相容性が高い。
 エチレン系重合体(c1)のメルトフローレート(ASTM D1238に準拠、190℃、2.16kg荷重)は、好ましくは0.2~8g/10分、より好ましくは0.5~6g/10分、さらに好ましくは0.5~3g/10分である。エチレン系重合体(c1)のメルトフローレート(ASTM D1238に準拠、190℃、10kg荷重)は、好ましくは0.1~15g/10分、より好ましくは、0.1~10kg/10分、さらに好ましくは0.1~8g/10分である。メルトフローレートが前記範囲にあると、エチレン系重合体成分(A)と炭素繊維(B)との相容性が高い。
 変性エチレン系重合体(c11)における不飽和カルボン酸またはその誘導体のグラフト量は、通常0.01~10質量%、好ましくは0.02~10質量%である。グラフト量が前記範囲にあると、エチレン系重合体成分(A)と炭素繊維(B)との相容性が高い。
 前記不飽和カルボン酸またはその誘導体としては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸(エンドシス-ビシクロ[2.2.1]ヘプト-5-エン-ジカルボン酸)等の不飽和カルボン酸、およびその誘導体、例えば、酸ハライド、アミドイミド、無水物、エステル等が挙げられる。前記誘導体の具体例としては、例えば塩化マレイル、マレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエート、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸グリシジル、マレイン酸モノエチルエステル、マレイン酸ジエチルエステル、フマル酸モノメチルエステル、フマル酸ジメチルエステル、イタコン酸モノメチルエステル、イタコン酸ジエチルエステル等のエステルおよびハーフエステル等が挙げられる。これらの中では、不飽和ジカルボン酸およびその酸無水物が好ましく、マレイン酸、ナジック酸およびこれらの酸無水物がより好ましい。
 前記変性エチレン系重合体(c11)は、種々公知の方法で製造することができる。例えば、エチレン系重合体を有機溶媒に溶解し、次いで得られた溶液に不飽和カルボン酸またはその誘導体及び必要に応じて有機過酸化物などのラジカル開始剤を加え、通常、60~350℃、好ましくは80~190℃の温度で、0.5~15時間、好ましくは1~10時間反応させる方法、あるいは、押出機などを使用して、無溶媒で、エチレン系重合体と、不飽和カルボン酸もしくはその誘導体及び必要に応じて有機過酸化物などのラジカル開始剤を加え、通常、エチレン系重合体の融点以上、好ましくは160~350℃、0.5~10分間反応させる方法を採り得る。
 変性前のエチレン系重合体は、公知の方法、例えば高圧法あるいはチーグラー型のTi系触媒、Co系触媒、あるいはメタロセン系触媒等を用いる低圧法によって製造することができる。
 エチレン系重合体(c1)は、それぞれ、1種単独のエチレン系重合体を含んでいてもよく、2種以上のエチレン系重合体を含んでいてもよい。
 エチレン系重合体(c1)が2種以上のエチレン系重合体を含む場合、その2種以上のエチレン系重合体はそれぞれ、上記エチレン系重合体(c1)の密度およびメルトフローレートの要件を満たす。
 本発明の組成物が前記変性オレフィン系重合体(C)を含む場合、前記本発明の組成物における前記変性オレフィン系重合体(C)の含有量は、前記エチレン系重合体成分(A)の含有量を100質量部とすると、好ましくは0.1~10質量部、より好ましくは0.3~8質量部、さらに好ましくは0.5~7質量部である。前記変性オレフィン系重合体(C)の含有量が前記範囲にあると、前記エチレン系重合体成分(A)および前記炭素繊維(B)を良好に相容化させることができる。
 <任意成分>
 本発明のエチレン系重合体組成物は、上述したエチレン系重合体成分(A)、炭素繊維(B)、および変性オレフィン系重合体(C)に加え、必要に応じて、炭素繊維(B)以外の無機フィラー、耐熱安定剤、耐候安定剤、紫外線吸収剤、光安定剤、ワックス、滑剤、スリップ剤、核剤、ブロッキング防止剤、帯電防止剤、防曇剤、染料、分散剤、難燃剤、難燃助剤、可塑剤、相容化剤等の通常ポリオレフィンに用いる各種添加剤、あるいはエラストマーなどの衝撃強度改質剤、ポリアミドなどの重合体を、本発明の効果を損なわない範囲で含んでいてもよい。
 本発明のエチレン系重合体組成物が前記添加剤あるいは重合体を含む場合は、その量は特に限定されないが、たとえば、0.01~30質量%の範囲である。
 前記添加剤としては、ワックスが好ましい。ワックスの例としては、ポリエチレン系ワックス(前記エチレン系重合体成分(AII)に相当するものを除く。)、ポリプロピレン系ワックスが挙げられる。
 本発明のエチレン系重合体組成物がワックスを含むとエチレン系重合体成分(A)中での炭素繊維(B)の凝集が抑制されるので混練するのが容易になり、エチレン系重合体成分(A)中に炭素繊維(B)が分散しやすいと考えられる。
 本発明のエチレン系重合体組成物がワックスを含む場合は、その量は、組成物全体の量に対して、好ましくは0.01~10質量%の範囲である。
 本発明のエチレン系重合体組成物の、JIS K 7210-1:2014に準拠し、190℃で10kgの荷重で測定したMFRは、好ましくは0.01~20g/10分、より好ましくは0.01~10g/10分である。
 <エチレン系重合体組成物の製造方法>
 本発明のエチレン系重合体組成物は、前記エチレン系重合体成分(A)、前記炭素繊維(B)、任意に前記変性オレフィン系重合体(C)、および任意に前記任意成分を、従来公知の方法で混合、たとえば各成分をドライブレンドし、続いて一軸または二軸押出機で溶融混練し、ストランド状に押出しペレットに造粒することにより得ることができる。
 前記炭素繊維(B)は、前記エチレン系重合体成分(A)等の重合体成分と予め混合してマスターバッチの形態で用いてもよい。
 <成形体>
 本発明の成形体は、前記エチレン系重合体組成物を含む。成形体の製造方法(成形方法)としては、具体的には、従来公知のポリオレフィンの成形方法、例えば、押出成形、射出成形、フィルム成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成形、パウダースラッシュ成形、カレンダー成形、発泡成形等の公知の熱成形方法が挙げられる。好ましくは射出成形によって、前記エチレン系重合体組成物を加工することで、前記エチレン系重合体組成物を含む成形体を得ることが可能である。
 前記成形体は、前記エチレン系重合体組成物から形成された成形体であってもよく、また、前記エチレン系重合体組成物から形成された部分、例えば表層、を有する成形体であってもよい。
 本発明の成形体に含まれる前記炭素繊維(B)のうち、針状比が1.5以上である炭素繊維の割合が、好ましくは30%以上、より好ましくは30~70%、さらに好ましくは31~65%、特に好ましくは32~60%である。炭素繊維の針状比1.5以上である炭素繊維の割合が前記範囲であることにより、成形体の機械的強度を高めることができ、剛性や耐疲労性に優れる成形体が得られる。針状比が1.5以上である炭素繊維の割合は、後述する実施例に記載の方法により求めることができる。
 本発明の成形体の長さ方向および幅方向の収縮率は、いずれも2.0%以下であることが好ましく、1.5%以下であることがより好ましく、0.05~1.0%であることが特に好ましい。前記収縮率は、後述する実施例に記載の方法により求めることができる。
 本発明の成形体の曲げ弾性率は、好ましくは5000MPa以上、より好ましくは6000~20000MPa、さらに好ましくは7000~15000MPaである。前記曲げ弾性率は、後述する実施例に記載の方法により求めることができる。
 本発明の成形体の振動疲労試験(35MPa)における変位量が8mmに達した際の繰り返し回数は、好ましくは1500回以上、より好ましくは2000回以上、さらに好ましくは5000回以上である。前記繰り返し回数の上限は、多いほどよいため特に限定されないが、好ましくは1000万回であり、より好ましくは100万回、さらに好ましくは50万回である。前記繰り返し回数は、後述する実施例に記載の方法により求めることができる。
 成形体は、たとえば日用品やレクリエーション用途などの家庭用品、一般産業用途、工業用品に至る広い用途で用いられる。成形体の具体例としては、家電材料部品、通信機器部品、電気部品、電子部品、自動車部品、その他の車両の部品、船舶、航空機材料、機械機構部品、建材関連部材、土木部材、農業資材、電動工具部品、食品容器、フィルム、シート、繊維が挙げられる。
 本発明の成形体は、従来公知のポリエチレン用途に広く使用できるが、特に耐摩耗性、剛性、自己潤滑性、衝撃強度、薄肉成形などの特性のバランスに優れているので、これらが要求される用途として、例えば、鋼管、電線、自動車スライドドアレールなどの金属の被覆材(積層);耐圧ゴムホース、自動車ドア用ガスケット、クリーンルームドア用ガスケット、自動車グラスランチャンネル、自動車ウエザストリップなどの各種ゴムの被覆材(積層);ホッパー、シュートなどのライニング用、ギアー、軸受、ローラー、テープリール、各種ガイドレールやエレベーターレールガイド、各種保護ライナー材などの摺動材などに使用される。
 本発明の成形体は、導電性にも優れるため、各種機械部品や摺動部材の帯電性を抑制することが可能であり、導電性・帯電防止を要求される用途に好適に使用できる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
 [測定方法]
 実施例等で用いた重合体、実施例等で得られた組成物、および該組成物を用いて作製された成形体の物性の測定方法は以下のとおりである。
 〔極限粘度[η]〕
 135℃、デカリン中で測定した。
 〔密度〕
 エチレン系重合体成分(A)の密度は、ASTM D1505に準拠して、密度勾配法で測定した。
 実施例または比較例で得られた組成物の密度は、JIS Z8807:2012に準拠し、液中秤量法により23℃、水中にて測定した。
 〔エチレン系重合体組成物から抽出される炭素繊維(B)の繊維解析〕
 <前処理>
 実施例または比較例で得られたペレット状の組成物を、大気雰囲気下、500℃の電気炉内で30分加熱した。
 <炭素繊維(B)の画像解析>
 前処理で得られた灰分の一部をスライドグラスに取り出し、オイルで展開後、カバーガラスで覆ったプレパラートを観察サンプルとした。オリンパス(株)製「実体顕微鏡 SZX16」を用い、反射明視野像をレンズ倍率4倍で前記サンプルを観察した。観察視野から100μm以上の繊維を含む視野を選定し、画像を取得後、画像解析ソフト(MITANI Corporation製「Win ROOF 2018」)により解析を行い、炭素繊維(B)の繊維長と繊維数を求めた。
 <炭素繊維(B)の平均繊維長>
 上記画像解析で得られた結果を基に、組成物に含まれる炭素繊維の平均繊維長を算出した。
 <繊維長100~300μmである炭素繊維(B)の割合>
 上記画像解析で得られた結果を基に、解析した全繊維のうち、繊維長が100~300μmの繊維の割合を算出した。
 〔配向〕
 <ASTM D671 TypeA型試験片の作製>
 実施例または比較例で得られた組成物を、芝浦機械(株)製「EC-75SXIII型成形機」のホッパー部に投入し、230℃で溶融させ、金型に射出成形することにより、図1に示すような外形を有する、板状のASTM D671 TypeA型試験片(成形体)を作製した。射出成形時における金型の温度を30~50℃、射出圧を90~110MPa、保圧を55~65MPaとした。
 <観察用サンプルの作製>
 図1に概略図を示したASTM D671 TypeA型試験片(成形体)を、まずは射出成形時の流れ方向(射出成形方向)と同方向、すなわち図1のA-A線の方向に切り出すとともに、試料採取領域の部位を切り出した。次いで、切り出した試料採取領域の部位を樹脂包理した後、A-A線方向の切断面を研磨し、さらにミクロトームで所望の厚さに切り出し、最後にカーボン蒸着を行うことにより、観察用サンプルを作製した。
 <観察および解析>
 作製した観察用サンプルを(株)日立ハイテク製「走査型電子顕微鏡S-3700N」を用い、加速電圧10kV、反射電子像を倍率150倍で観察した。観察用サンプルの観察方向は、図1に示したように成形体から切り出した部位の研磨された面を正面とする方向とし、この観察方向から見た観察面と、撮像画面上の長辺とが平行になるように撮影した。撮影した画像は、成形体の表面(上面)から0.7~0.8mmの深さを画像の中心とした。
 画像を取得後、画像解析ソフト(MITANI Corporation製「Win ROOF 2018」)により解析を行った。画像から炭素繊維(CF)を二値化抽出し、抽出されたすべてのCFの針状比を算出し、その平均値を求めた。針状比は、観察した楕円形状のCFの絶対最大長と、絶対最大長と垂直の対角幅の比(絶対最大長/対角幅)から算出した。
 〔導電性(表面抵抗率、体積抵抗率)〕
 <長さ120mm×幅130mm×厚さ3mmの試験片の作製>
 実施例または比較例で得られた組成物を、芝浦機械(株)製「EC-75SXIII型成形機」のホッパー部に投入し、230℃で溶融させ、金型に射出成形することにより、長さ120mm×幅130mm×厚さ3mmの試験片を作製した。金型の温度を50~70℃、射出圧を90~110MPa、保圧を40~70MPaとした。
 <表面抵抗率、体積抵抗率の測定>
 長さ120mm×幅130mm×厚さ3mmの試験片を用いて、(株)エーディーシー製「デジタル超高抵抗/微粒電流計8340A」で、2重リング法により23℃、湿度:50%、印加電圧:500V、印加時間:60秒の条件で、表面抵抗率および体積抵抗率を測定した。
 なお、上記測定における表面抵抗率が1.0×107以下の水準については、JIS K7194:1994に準拠し、(株)日東精工アナリテック社製「ロレスタ-GX-MCP-T700低抵抗 抵抗率計」を用いて、印加電流:1mA、印加時間:10秒、温度:23℃、湿度:50%の条件で測定した。
 〔耐熱性(熱変形温度HDT)〕
 ISO-75-1,2に準拠して、試験片形状をJIS K7162 1Aに記載の形状とし、熱変形温度を求めた。ここで、熱変形温度の測定は、曲げ応力を0.45MPaとした場合(HDT 0.45MPa)と、1.80MPaとした場合(HDT 1.80MPa)のそれぞれについて行った。
 〔成形性(成形収縮率)〕
 前記と同様の方法で、射出成形により長さ120mm×幅130mm×厚さ3mmの試験片を作製し、金型のサイズ(長さ方向および幅方向の長さ)に対する成形3日後の試験片のサイズ(長さ方向および幅方向の長さ)の寸法変化を算出して成形性の評価とした。具体的には、射出成形後の成形体(試験片)を金型から外して室温で3日静置した後、試験片の長さ方向および幅方向の各辺の長さと、射出金型の長さ方向および幅方向の各辺の長さとの差を4辺について測定した。当該4辺につき、金型の辺の長さに対する差の割合の百分率をそれぞれ求め、これらの百分率の平均値を成形収縮率とした。長さ方向の成形収縮率を収縮率MDとし、幅方向の成形収縮率を収縮率TDとした。
 〔摺動性(動摩擦係数)および耐摩耗性(比摩耗量)〕
 前記と同様の方法で作製した長さ120mm×幅130mm×厚さ3mmの試験片を打ち抜き、長さ30mm×幅30mm×厚さ3mmの試験片を作製した。この試験片を用いて、JIS K7218「プラスチックの滑り摩耗試験A法」に準拠して、松原式摩擦摩耗試験機を使用して動摩擦係数および比摩耗量を測定した。
 試験条件は、相手材:S45C、速度:50cm/秒、距離:3km、荷重:15kg、測定環境温度:23℃とした。
 〔引張破断強度、引張破断伸びおよび引張弾性率〕
 ISO 527-1,2に準拠し、試験片形状をJIS K7162 1Aに記載の形状とし、引張速度50mm/分として、引張破断強度、引張破断伸びを求めた。また、ISO 527-1,2に準拠し、試験片形状をJIS K7162 1Aに記載の形状とし、引張速度1mm/分として、引張弾性率を求めた。
 〔曲げ強度、曲げ弾性率〕
 <JIS K7162 1A試験片の作製>
 実施例または比較例で得られた組成物を、芝浦機械(株)製「EC-75SXIII型成形機」のホッパー部に投入し、230℃で溶融させ、金型に射出成形することにより、JIS K7162 1A試験片を作製した。金型の温度を50~70℃、射出圧を80~120MPa、保圧を60~90MPaとした。ただし、比較例1で得られた組成物の場合のみ、射出圧を70~90MPa、保圧を25~45MPaに変更した。
 <曲げ強度、曲げ弾性率の測定>
 JIS K7162 1A試験片を用いて、ISO 178に準拠し、上記試験片形状を80mm(長さ)、10mm(幅)、4mm(厚さ)でスパン間距離64mm、試験速度2mm/分として、曲げ強度および曲げ弾性率を求めた。
 〔曲げ疲労試験〕
 <ASTM D671 TypeA型試験片の作製>
 実施例または比較例で得られた組成物を、芝浦機械(株)製「EC-75SXIII型成形機」のホッパー部に投入し、230℃で溶融させ、金型に射出成形することにより、ASTM D671 TypeA型試験片を作製した。金型の温度を30~50℃、射出圧を90~110MPa、保圧を55~65MPaとした。
 <振動疲労回数の測定>
 ASTM D671 TypeA型試験片を、東洋精機製作所社製「B70型 繰り返し振動疲労試験機」にセットし、室温、周波数30Hz、圧力35MPaの条件で振動疲労試験を行った。変位量が8mmに達した際の繰り返し回数を、耐疲労性(回)として求めた。
 [原料]
 実施例または比較例で用いられた原料は以下のとおりである。
 (エチレン系重合体成分(AI))
 《エチレン系重合体成分(AI-1)の製造》
 常法により、第1段階での重合で極限粘度[η]が30dl/gの超高分子量エチレン系重合体(重合体(a1))を、次いで第2段階での重合で極限粘度[η]が1.5dl/gの低分子量エチレン系重合体(重合体(a2))を、質量比(重合体(a1)/重合体(a2))が41/59となる割合で2段重合にて生成させて、極限粘度[η]4.4dl/gのエチレン系重合体成分(AI-1)を得た。
 《エチレン系重合体成分(AI-2)の製造》
 常法により、第1段階での重合で極限粘度[η]が30dl/gの超高分子量エチレン系重合体(重合体(a1))を、次いで第2段階での重合で極限粘度[η]が1.5dl/gの低分子量エチレン系重合体(重合体(a2))を、質量比(重合体(a1)/重合体(a2))が75/25となる割合で2段重合にて生成させて、極限粘度[η]が6.9dl/gのエチレン系重合体成分(AI-2)を得た。
 (エチレン系重合体成分(AII))
 以下のエチレン系重合体成分を使用した。
 エチレン系重合体成分(AII-1):極限粘度[η]が1.1dl/g、密度965kg/m3の高密度低分子量ポリエチレン((株)プライムポリマー社製「ハイゼックス1700J」)
 (エチレン系重合体成分(A))
 《エチレン系重合体成分(A-1)の製造》
 エチレン系重合体成分(AI-1)とエチレン系重合体成分(AII-1)とを、質量比((AI-1)/(AII-1))が49/51となる割合で配合し、池貝鉄工製・PCM二軸押出機を用いてメルトブレンドし、ペレット状の極限粘度[η]が3.0dl/g、密度が968kg/cm3のエチレン系重合体成分(A-1)を得た。エチレン系重合体成分(A-1)中の超高分子量エチレン系重合体(重合体(a1))含量は20質量%であった。
 《エチレン系重合体成分(A-2)の製造》
 エチレン系重合体成分(AI-2)とエチレン系重合体成分(AII-1)とを、質量比((AI-2)/(AII-1))が33/67となる割合で配合し、池貝鉄工製・PCM二軸押出機を用いてメルトブレンドし、ペレット状の極限粘度[η]が5.8dl/g、密度が966kg/cm3のエチレン系重合体成分(A-2)を得た。エチレン系重合体成分(A-2)中の超高分子量エチレン系重合体(重合体(a1))含量は25質量%であった。
 (炭素繊維(B))
 以下の炭素繊維を使用した。
 炭素繊維(B-1):帝人株式会社製「テナックス HT P802」(ポリオレフィン系ポリマーサイジング処理、繊維長:3mm、直径:7μm、炭素繊維分の割合:98質量%)
 炭素繊維(B-2):帝人株式会社製「テナックス HT C605」(ナイロン系ポリマーサイジング処理、繊維長:6mm、直径:7μm、炭素繊維分の割合:95.5質量%)
 炭素繊維(B-3):東レ株式会社「TORAYCA T008-006」(エポキシ系ポリマーサイジング処理、繊維長:6mm、直径:7μm、炭素繊維分の割合:99質量%)
 (他の炭素系フィラー)
 以下のカーボンナノチューブを使用した。
 カーボンナノチューブ:ナノシル社製「NC7000」(平均直径:9.5nm、平均長さ:1.5μm)
 《カーボンナノチューブマスターバッチの作製》
 前記カーボンナノチューブ15質量%、エチレン系重合体成分(A-1)75質量%、およびワックス(ポリエチレン系ワックス)10質量%を既存の手法により混合し、カーボンナノチューブ含有マスターバッチを作製した。
 (変性オレフィン系重合体(C))
 以下の変性オレフィン系重合体を相容化剤として使用した。
 変性オレフィン系重合体(C-1):国際公開第2019/208169号、段落[0042]~[0043]に記載されたエチレン系重合体PE-0の製造方法に基づいて製造した、マレイン酸変性エチレン系重合体(密度:965kg/cm3、MFR(190℃、2.16kg荷重):5g/10分、変性度:2.4)
 変性オレフィン系重合体(C-2):特開2019-218568号公報の段落[0083]に記載された変性ポリオレフィン組成物の製造方法に基づいて製造したマレイン酸変性エチレン系重合体(密度967kg/cm3、極限粘度[η]5dl/g[η]、MFR(190℃、10kgf):6.2、変性度:0.8)
 [実施例1]
 エチレン系重合体成分(A-1)78質量%、炭素繊維(B-1)20質量%、および変性オレフィン系重合体(C-1)2質量%の割合でドライブレンドした後、株式会社パーカーコーポレーション社製二軸混練押出機「HK-25D」を用いて、シリンダー温度260℃、スクリュー回転数200rpm、および吐出量12kg/hの条件で溶融押出を行って組成物を得た。得られた組成物中の各成分の配合量(エチレン系重合体の総量を100質量部とする。)を表1に示す。また、得られた組成物の物性を上記の方法で測定した。結果を表1に示す。
 [実施例2]
 エチレン系重合体成分(A-1)、炭素繊維(B-1)、変性オレフィン系重合体(C-1)の量を表1に示す配合量になるように調製したこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [実施例3]
 変性オレフィン系重合体(C-1)の代わりに変性オレフィン系重合体(C-2)を用い、エチレン系重合体成分(A-1)、炭素繊維(B-1)、変性オレフィン系重合体(C-2)の量を表1に示す配合量になるように調製したこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [実施例4]
 エチレン系重合体成分(A-1)の代わりにエチレン系重合体成分(A-2)を用い、エチレン系重合体成分(A-2)、炭素繊維(B-1)、変性オレフィン系重合体(C-1)の量を表1に示す配合量になるように調製したこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [実施例5]
 炭素繊維(B-1)の代わりに炭素繊維(B-2)を用い、エチレン系重合体成分(A-1)、炭素繊維(B-2)、変性オレフィン系重合体(C-1)の量を表1に示す配合量になるように調製したこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [実施例6]
 炭素繊維(B-1)の代わりに炭素繊維(B-3)を用い、エチレン系重合体成分(A-1)、炭素繊維(B-3)、変性オレフィン系重合体(C-1)の量を表1に示す配合量になるように調製したこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [比較例1]
 エチレン系重合体成分(A-1)の代わりにエチレン系重合体成分(AII-1)を用い、エチレン系重合体成分(AII-1)、炭素繊維(B-1)、変性オレフィン系重合体(C-1)の量を表1に示す配合量になるように調製したこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [比較例2]
 炭素繊維(B-1)および変性オレフィン系重合体(C-1)を用いずに、エチレン系重合体成分(A-1)のみを用いたこと以外は実施例1と同様にして組成物を製造し、その物性を測定した。結果を表1に示す。
 [比較例3]
 エチレン系重合体成分(A-2)40質量%およびカーボンナノチューブマスターバッチ60質量%の割合でドライブレンドした後、株式会社パーカーコーポレーション社製二軸混練押出機「HK-25D」を用いて、シリンダー温度260℃、スクリュー回転数200rpm、および吐出量12kg/hの条件で溶融押出を行って組成物を得た。組成物中の各成分の配合量(エチレン系重合体の総量を100質量部とする。)を表1に示す。また、得られた組成物の物性を上記の方法で測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (17)

  1.  135℃のデカリン溶媒中で測定した極限粘度[η]が1.5~10dl/gであり、密度が930~980kg/m3であるエチレン系重合体成分(A)100質量部、および、炭素繊維(B)1~100質量部を含有し、
     前記エチレン系重合体成分(A)は、135℃のデカリン溶媒中で測定した極限粘度[η]が10~40dl/gである超高分子量エチレン系重合体(a1)を含む、エチレン系重合体組成物。
  2.  前記エチレン系重合体成分(A)は、135℃のデカリン溶媒中で測定した極限粘度[η]が0.1~9dl/gである低分子量ないし高分子量エチレン系重合体(a2)を含む、請求項1に記載のエチレン系重合体組成物。
  3.  前記エチレン系重合体成分(A)が、エチレン系重合体成分(AI)を10~90質量%、およびエチレン系重合体成分(AII)を90~10質量%(成分(AI)および成分(AII)の合計量を100質量%とする。)含み、
     前記エチレン系重合体成分(AI)が、35質量%を超え90質量%以下の前記超高分子量エチレン系重合体(a1)と、10質量%以上65質量%未満の前記低分子量ないし高分子量エチレン系重合体(a2)(重合体(a1)および重合体(a2)の合計量を100質量%とする。)とを含んでなる多段重合体であり、
     前記エチレン系重合体成分(AII)が、135℃のデカリン溶媒中で測定した極限粘度[η]が0.1~2.9dl/gであるエチレン系重合体(a3)を含む、請求項2に記載のエチレン系重合体組成物。
  4.  前記エチレン系重合体成分(AI)が、前記超高分子量エチレン系重合体(a1)を生成させる工程と、前記低分子量ないし高分子量エチレン系重合体(a2)を生成させる工程とを含む多段重合法により得られる、請求項3に記載のエチレン系重合体組成物。
  5.  前記炭素繊維(B)が、表面処理された炭素繊維である、請求項1~4のいずれか1項に記載のエチレン系重合体組成物。
  6.  前記炭素繊維(B)の表面処理が、オレフィン系ポリマー、ウレタン系ポリマー、ナイロン系ポリマー、またはエポキシ系ポリマーを用いたサイジング処理である、請求項5に記載のエチレン系重合体組成物。
  7.  前記エチレン系重合体組成物から抽出される前記炭素繊維(B)の平均繊維長が100μm以上400μm以下である、請求項1~6のいずれか1項に記載のエチレン系重合体組成物。
  8.  前記エチレン系重合体組成物から抽出される前記炭素繊維(B)のうち、繊維長が100μm以上300μm以下である炭素繊維の割合が30%以上である、請求項1~7のいずれか1項に記載のエチレン系重合体組成物。
  9.  変性オレフィン系重合体(C)を含む、請求項1~8のいずれか1項に記載のエチレン系重合体組成物。
  10.  前記エチレン系重合体成分(A)100質量部に対する前記炭素繊維(B)の含有量が20~60質量部である、請求項1~9のいずれか1項に記載のエチレン系重合体組成物。
  11.  請求項1~10のいずれか1項に記載のエチレン系重合体組成物を含む成形体。
  12.  前記成形体に含まれる前記炭素繊維(B)のうち、針状比が1.5以上である炭素繊維の割合が30%以上である、請求項11に記載の成形体。
  13.  前記成形体の長さ方向および幅方向の収縮率が、いずれも2.0%以下である、請求項11または12に記載の成形体。
  14.  前記成形体の曲げ弾性率が、5000MPa以上である、請求項11~13のいずれか1項に記載の成形体。
  15.  前記成形体の振動疲労試験(35MPa)における変位量が8mmに達した際の繰り返し回数が、1500回以上である、請求項11~14のいずれか1項に記載の成形体。
  16.  射出成形体である、請求項11~15のいずれか1項に記載の成形体。
  17.  被覆材または摺動材である、請求項11~16のいずれか1項に記載の成形体。
PCT/JP2023/012569 2022-03-31 2023-03-28 エチレン系重合体組成物およびその用途 WO2023190543A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247029216A KR20240137691A (ko) 2022-03-31 2023-03-28 에틸렌계 중합체 조성물 및 그의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-059750 2022-03-31
JP2022059750 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190543A1 true WO2023190543A1 (ja) 2023-10-05

Family

ID=88201799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012569 WO2023190543A1 (ja) 2022-03-31 2023-03-28 エチレン系重合体組成物およびその用途

Country Status (3)

Country Link
KR (1) KR20240137691A (ja)
TW (1) TW202402926A (ja)
WO (1) WO2023190543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203987A1 (ja) * 2023-03-31 2024-10-03 三井化学株式会社 エチレン系樹脂組成物および成形体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161035A (ja) * 1987-12-17 1989-06-23 Mitsui Petrochem Ind Ltd ポリオレフィン製軸受
JPH02289636A (ja) 1989-02-14 1990-11-29 Mitsui Petrochem Ind Ltd 熱可塑性樹脂組成物
JPH07329263A (ja) * 1994-06-10 1995-12-19 Nippon Petrochem Co Ltd 強化積層体
JP2006036988A (ja) * 2004-07-29 2006-02-09 Mitsui Chemicals Inc ポリエチレン樹脂組成物および成形体
JP2010196012A (ja) 2009-02-27 2010-09-09 Toyo Ink Mfg Co Ltd 樹脂組成物
JP2012025904A (ja) * 2010-07-27 2012-02-09 Mitsui Chemicals Inc ポリエチレン樹脂組成物
JP2014019733A (ja) 2012-07-12 2014-02-03 Asahi Kasei Chemicals Corp 高密度ポリエチレン樹脂組成物、及びその製造方法
WO2019208169A1 (ja) 2018-04-25 2019-10-31 三井化学株式会社 接着性樹脂組成物および積層体
JP2019218568A (ja) 2019-09-27 2019-12-26 三井化学株式会社 樹脂組成物及びその成形体
WO2022038941A1 (ja) 2020-08-18 2022-02-24 三井化学株式会社 エチレン系重合体組成物およびその用途

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161035A (ja) * 1987-12-17 1989-06-23 Mitsui Petrochem Ind Ltd ポリオレフィン製軸受
JPH02289636A (ja) 1989-02-14 1990-11-29 Mitsui Petrochem Ind Ltd 熱可塑性樹脂組成物
JPH07329263A (ja) * 1994-06-10 1995-12-19 Nippon Petrochem Co Ltd 強化積層体
JP2006036988A (ja) * 2004-07-29 2006-02-09 Mitsui Chemicals Inc ポリエチレン樹脂組成物および成形体
JP2010196012A (ja) 2009-02-27 2010-09-09 Toyo Ink Mfg Co Ltd 樹脂組成物
JP2012025904A (ja) * 2010-07-27 2012-02-09 Mitsui Chemicals Inc ポリエチレン樹脂組成物
JP2014019733A (ja) 2012-07-12 2014-02-03 Asahi Kasei Chemicals Corp 高密度ポリエチレン樹脂組成物、及びその製造方法
WO2019208169A1 (ja) 2018-04-25 2019-10-31 三井化学株式会社 接着性樹脂組成物および積層体
JP2019218568A (ja) 2019-09-27 2019-12-26 三井化学株式会社 樹脂組成物及びその成形体
WO2022038941A1 (ja) 2020-08-18 2022-02-24 三井化学株式会社 エチレン系重合体組成物およびその用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024203987A1 (ja) * 2023-03-31 2024-10-03 三井化学株式会社 エチレン系樹脂組成物および成形体

Also Published As

Publication number Publication date
KR20240137691A (ko) 2024-09-20
TW202402926A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
Yang et al. Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites
EP2918624A1 (en) Semiaromatic polyamide, semiaromatic polyamide resin composition, and molded article
JPWO2003022920A1 (ja) ポリエチレン樹脂組成物
JP7341353B2 (ja) エチレン系重合体組成物およびその用途
WO2023190543A1 (ja) エチレン系重合体組成物およびその用途
Ali et al. Formulation and characterization of new ternary stable composites: Polyvinyl chloride-wood flour-calcium carbonate of promising physicochemical properties
JP5351108B2 (ja) ポリエチレン樹脂組成物
KR102440697B1 (ko) 실릴화 마이크로 피브릴 셀룰로오스를 포함하는 폴리프로필렌 복합수지 조성물 및 이를 이용한 자동차 필러트림
KR20120028537A (ko) 표면손상 방지를 위한 내스크래치성이 우수한 폴리올레핀 수지 조성물
JP2017061595A (ja) 繊維強化ポリプロピレン系樹脂組成物
US6765052B2 (en) Olefin type thermoplastic elastomer
JP2006161045A (ja) エチレン−ビニルアルコールコポリマー及び反応性基を有する架橋性ゴムの混合物、並びに、良好なバリア特性を有する成形品の製造のためのその使用
JPWO2019065465A1 (ja) 耐ダスト摺動性部材用樹脂組成物、耐ダスト摺動性部材及びその製造方法、ウィンドウレギュレータ用キャリアプレート、耐ダスト摺動性の発現方法
JP5131910B2 (ja) ポリプロピレン樹脂組成物及びその製造方法
KR101580957B1 (ko) 내충격성 및 내스크래치성이 우수한 폴리프로필렌 수지 조성물
JP2011157519A (ja) 自動車内装部品用樹脂組成物及びその用途
JP7456793B2 (ja) 樹脂組成物および積層体
JP7398989B2 (ja) 樹脂組成物および積層体の製造方法
KR20120093004A (ko) 폴리유산-폴리프로필렌계 수지 조성물
JP2023098233A (ja) エチレン系重合体組成物およびその用途
JP2022098911A (ja) オレフィン系重合体組成物およびその用途
WO2023120464A1 (ja) ガラス繊維強化プロピレン系樹脂組成物
JPH02178339A (ja) 耐熱性ポリオレフィン樹脂組成物および樹脂成形物
KR102394764B1 (ko) Lft용 친환경 열가소성 복합수지 조성물
JPH07329263A (ja) 強化積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247029216

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2024512581

Country of ref document: JP

Kind code of ref document: A