WO2023190385A1 - N2o分解触媒 - Google Patents

N2o分解触媒 Download PDF

Info

Publication number
WO2023190385A1
WO2023190385A1 PCT/JP2023/012289 JP2023012289W WO2023190385A1 WO 2023190385 A1 WO2023190385 A1 WO 2023190385A1 JP 2023012289 W JP2023012289 W JP 2023012289W WO 2023190385 A1 WO2023190385 A1 WO 2023190385A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nitrous oxide
gas
oxide
decomposition reaction
Prior art date
Application number
PCT/JP2023/012289
Other languages
English (en)
French (fr)
Inventor
具承 増田
啓一郎 甲斐
慎平 兼田
将直 米村
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023190385A1 publication Critical patent/WO2023190385A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper

Definitions

  • the present invention relates to a catalyst configured to promote the decomposition reaction of nitrous oxide or the decomposition reaction of nitrous oxide and nitric oxide (hereinafter sometimes referred to as a N2O decomposition catalyst). More specifically, exhaust gas from coal-fired fluidized bed boilers, exhaust gas from ammonia-fueled marine engines, exhaust gas from ammonia-fueled gas turbines, and nitrification processes in water treatment, which may contain large amounts of water and/or sulfur oxides.
  • a decomposition reaction of nitrous oxide that can be suitably used in the purification treatment of exhaust gas from a denitrification process, preferably in the purification treatment of combustion exhaust gas of ammonia fuel, and has excellent water resistance and/or sulfur oxide resistance.
  • the present invention relates to a method for reducing nitrous oxide or nitrous oxide and nitric oxide from a gas containing nitrous oxide and nitrous oxide.
  • N 2 O Nitrous oxide
  • NO generated by combustion 3NO ⁇ NO 2 + N 2 O
  • oxidation reaction of ammonia 2NH 3 + 2O 2 ⁇ N 2 O + 3H 2 O
  • the chemical reaction that generates N 2 O is temperature dependent, and the lower the temperature, the more likely N 2 O is generated. Therefore, for example, in a furnace that burns at a low temperature of about 800 to 900° C., such as a fluidized bed boiler, a large amount of N 2 O is emitted.
  • Engines and gas turbines that use ammonia fuel produce not only nitrogen oxides (NO, NO 2 ) originating from nitrogen in the air, but also nitrogen oxides (NO, NO 2 , N 2 O) originating from ammonia fuel. may be emitted.
  • Nitrous oxide is said to have a greenhouse effect about 300 times stronger than CO2 .
  • Nitrous oxide that remains in the atmosphere is broken down by ultraviolet light to produce nitric oxide, which is said to have the effect of destroying the ozone layer. Therefore, various techniques have been proposed to decompose nitrous oxide in exhaust gas and render it harmless.
  • Patent Document 1 discloses a method for removing nitrous oxide from exhaust gas, in which ammonia is mixed with nitrous oxide-containing exhaust gas, and the mixture is brought into contact with a catalyst in which iron is supported on ⁇ -zeolite at a temperature range of 350 to 500°C. Disclosed is a method for removing nitrous oxide in exhaust gas, which is characterized by reducing and removing nitrous oxide in exhaust gas.
  • Patent Document 2 discloses a sulfur-rich exhaust gas characterized in that iron is supported as an active metal on a silica and alumina carrier, and the proportion of strong acid is larger than the total amount of strong acid and weak acid. of exhaust gas using a nitrous oxide treatment catalyst characterized in that the nitrous oxide treatment catalyst is used to decompose nitrous oxide, and the nitrous oxide treatment catalyst is brought into contact with exhaust gas containing nitrous oxide to decompose nitrous oxide. Discloses purification methods.
  • Patent Document 3 discloses (A) a step of pretreating zeolite with moisture at a high temperature, and (B) a zeolite that has been pretreated in the step (A), or a zeolite that has not undergone the step (A) and has not been pretreated. (C) filtering and drying the zeolite particles loaded with iron ions in step (B); (D) C) repeating steps (B) and (C) to increase the iron content of the powder dried in step C); and (E) calcining the catalyst produced in step (D) in air. and (F) treating the catalyst obtained from the zeolite that has not undergone the step (A) with water at a high temperature using an ammonia reducing agent.
  • Disclosed is a method for reducing nitrous oxide or nitrous oxide and nitric oxide using a characterized ammonia reducing agent.
  • US Pat. No. 5,001,000 discloses small pore molecular sieve particles impregnated with a promoter metal having a pore structure and a maximum ring size of 8 tetrahedral atoms, and within the small pore molecular sieve particles and with a maximum ring size of 8 tetrahedral atoms.
  • selective contacting comprising metal oxide particles dispersed outside the pore structure of the molecular sieve particles comprising one or more oxides of transition metals or lanthanides from Groups 3 or 4 of the Periodic Table;
  • a catalyst composition suitable for use as a reduction catalyst is disclosed.
  • US Pat. No. 5,500,302 discloses catalysts for the conversion of NOx and N2O that include iron chabazite and iron beta zeolite.
  • Patent Document 6 discloses a catalyst that catalytically reduces and removes nitrogen oxides at a reaction temperature of 500 to 700° C. by adding ammonia gas to exhaust gas containing nitrogen oxides, and in which 3 moles of SiO 2 /Al 2 O
  • the present invention discloses a denitrification catalyst for high-temperature exhaust gas, which is characterized in that 0.5 to 5 wt% iron (calculated as Fe 2 O 3 ) is supported on high-silica zeolite having a ratio of 20 or more.
  • Patent Document 7 discloses a metal-containing zeolite beta that does not contain organic components and has a silica to alumina molar ratio (SAR) in the range of 5 to 20. discloses a metal-containing zeolite beta, characterized in that said metal comprises iron and/or copper in an amount of at least 1.0% by weight. Reference 7 also includes at least partially contacting the exhaust gas with an article comprising an organic-free metal-containing zeolite beta, wherein the metals include iron and iron in an amount of at least 0.5% by weight. Disclosed is a method for the selective catalytic reduction of nitrogen oxides ( NOx ) in exhaust gas, characterized in that it contains copper.
  • NOx nitrogen oxides
  • Patent Document 8 discloses an organic template-free zeolite material having a BEA skeleton structure, which contains at least one alkali metal M, and at least a part of the atoms M of the alkali metal are substituted with Fe and/or Cu. ing.
  • US Pat. No. 6,001,200 describes organic template-free zeolite materials as catalysts and/or catalyst supports in selective catalytic reduction ( SCR ) processes for selective reduction of nitrogen oxides NOx; oxidation of NH3. , in particular for the oxidation of NH3 slip in diesel systems; for the decomposition of N2O .
  • the subject of the present invention is the exhaust gas of catalytic coal-fired fluidized bed boilers, the exhaust gas of ammonia-fueled marine engines, the exhaust gas of ammonia-fueled gas turbines, which may contain large amounts of water and/or sulfur oxides, and nitrification in water treatment.
  • a method for decomposing nitrous oxide that can be suitably used in the purification treatment of exhaust gas from a process or denitrification process, preferably in the purification treatment of combustion exhaust gas of ammonia fuel, and has excellent water resistance and/or sulfur oxide resistance.
  • An object of the present invention is to provide a method for reducing nitrous oxide or nitrous oxide and nitric oxide from a gas containing oxides, nitrous oxide, and nitric oxide.
  • [1] Contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported thereon, and in the TPD spectrum, the total amount of pyridine desorbed within the range of 150°C or more and less than 450°C is catalytic.
  • a catalyst configured to promote a decomposition reaction of nitrous oxide or a decomposition reaction of nitrous oxide and nitric oxide in an amount of 100 ⁇ mol or more per 1 g.
  • the ratio of the amount of pyridine eliminated at the maximum peak top within the range of 150°C to 800°C to the amount of pyridine eliminated at the maximum peak top within the range of 150°C to 800°C is larger than 1, the catalyst according to [1].
  • the ratio of the total amount of pyridine desorbed within a range of 150° C. or more and less than 450° C. to the total amount of pyridine desorbed within a range of 450° C. or more and 800° C. or less is 0.9 or more; The catalyst according to [1] or [2].
  • [4] The catalyst according to [1], [2] or [3], wherein the temperature at the top of the maximum peak within the range of 450°C or more and 800°C or less in the TPD spectrum is 490°C or more and 650°C or less.
  • [5] The catalyst according to [1], [2], [3] or [4], wherein the saturated adsorption amount of pyridine is 100 ⁇ mol or more per 1 g of catalyst.
  • [6] The catalyst according to [1], [2], [3], [4] or [5], which has a crystallite size of 20 nm or more.
  • [7] Contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported thereon, and in the TPD spectrum, pyridine desorption at the top of the maximum peak within the range of 450°C to 800°C. Promote the decomposition reaction of nitrous oxide or the decomposition reaction of nitrous oxide and nitric oxide, where the ratio of the amount of pyridine desorbed at the top of the maximum peak within the range of 150°C or more and less than 450°C to the amount desorbed is greater than 1.
  • a catalyst configured to allow
  • the ratio of the total amount of pyridine desorbed within the range of 150° C. or more and less than 450° C. to the total amount of pyridine desorbed within the range of 450° C. or more and 800° C. or less is 0.9 or more;
  • the catalyst according to [7], [8], [9] or [10] which has a crystallite size of 20 nm or more.
  • [12] Contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported thereon, and in the TPD spectrum, 150% of the total amount of pyridine desorbed within the range of 450°C or more and 800°C or less
  • the ratio of the total amount of pyridine desorbed within a range of 0.9 °C or more and less than 450 °C is 0.9 or more, so that the decomposition reaction of nitrous oxide or the decomposition reaction of nitrous oxide and nitric oxide can be promoted.
  • [16] Contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported thereon, and in the TPD spectrum, the temperature at the top of the maximum peak within the range of 450°C or more and 800°C or less
  • a catalyst configured to promote a decomposition reaction of nitrous oxide or a decomposition reaction of nitrous oxide and nitric oxide at a temperature of 490° C. or higher and 650° C. or lower.
  • Nitrous oxide decomposition reaction which contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported thereon, and in which the saturated adsorption amount of pyridine is 100 ⁇ mol or more per 1 g of catalyst or a catalyst configured to promote the decomposition reaction of nitrous oxide and nitric oxide.
  • the catalyst according to [19] which has a crystallite size of 20 nm or more.
  • [21] Contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported thereon, and has a crystallite size of 20 nm or more.
  • a catalyst configured to promote the decomposition reaction of nitrogen oxide.
  • [22] Contains OSDA-free zeolite and an iron element supported thereon, and is configured to be able to promote the decomposition reaction of nitrous oxide or the decomposition reaction of nitrous oxide and nitric oxide. catalyst.
  • the NO 2 decomposition rate is 60% or more and the NO decomposition rate is 90% or more at 450°C. , [1] to [22].
  • a catalyst element comprising a base material and the catalyst according to any one of [1] to [23], which coats the base material.
  • the catalyst according to any one of [1] to [23] or the catalyst element according to [24] is charged with a gas containing nitrous oxide and at least one selected from water and sulfur oxides.
  • a gas containing at least one selected from water and sulfur oxides, nitrous oxide, and nitric oxide is brought into contact with a reducing agent to decompose nitrous oxide or nitrous oxide and nitric oxide.
  • a method for reducing nitrous oxide and nitric oxide is a method for reducing nitrous oxide and nitric oxide.
  • a gas containing at least one selected from water and sulfur oxides and nitrous oxide, or a gas containing at least one selected from water and sulfur oxides, nitrous oxide and nitrogen monoxide The method according to [25] or [26], which is a combustion exhaust gas of ammonia fuel. [28] The method according to any one of [25] to [27], wherein the gas has a water content of 10% or more and a sulfur oxide content of 15 ppm or more.
  • the gas to be treated contains at least one selected from water and sulfur oxides and nitrous oxide, or the gas contains at least one selected from water and sulfur oxides, nitrous oxide and nitrogen monoxide. is, Exhaust gas treatment equipment.
  • the device according to [29], wherein the gas to be treated is exhaust gas from a coal-fired fluidized bed boiler, exhaust gas from an ammonia-fueled engine, or exhaust gas from an ammonia-fueled gas turbine.
  • the exhaust gas treatment device according to [29] or [30], wherein the gas to be treated has a water content of 10% or more and a sulfur oxide content of 15 ppm or more.
  • the N2O decomposition catalyst of the present invention can perform the decomposition reaction of nitrous oxide or the decomposition reaction of nitrous oxide and nitrogen monoxide in the presence of ammonia even if the gas to be treated contains a large amount of water and/or sulfur oxides. It can be effectively promoted at the bottom.
  • the method of the present invention can effectively reduce nitrous oxide from gases containing water and/or sulfur oxides and nitrous oxide.
  • the method of the present invention can effectively reduce nitrous oxide and nitric oxide from a gas containing water and/or sulfur oxides and nitrous oxide and nitric oxide.
  • the present invention is applicable to exhaust gases from catalytic coal-fired fluidized bed boilers, exhaust gases from ammonia-fueled marine engines, exhaust gases from ammonia-fueled gas turbines, which may contain large amounts of water and/or sulfur oxides, nitrification processes in water treatment, or It can be suitably used in the purification treatment of exhaust gas etc. from the denitrification process.
  • FIG. 2 is a diagram showing an example of an ammonia co-combustion engine incorporating an exhaust gas treatment system.
  • 1 is a diagram showing an example of an ammonia co-combustion engine incorporating an exhaust gas treatment system.
  • FIG. 3 is a diagram showing TPD spectra of catalysts A to F.
  • FIG. 3 is a diagram showing the N 2 O decomposition rate versus temperature for catalysts A to F.
  • FIG. 3 is a diagram showing the NO decomposition rate versus temperature for catalysts A to F. 150-450° C.
  • FIG. 3 is a diagram showing TPD spectra of catalysts G, H, and J to JN.
  • FIG. 3 is a diagram showing the N 2 O decomposition rate versus temperature for catalysts G, H, and J to N.
  • FIG. 3 is a diagram showing the NO decomposition rate versus temperature for catalysts G, H, and J to JN.
  • FIG. 3 is a diagram showing the N 2 O decomposition rate versus temperature for catalysts J2 and G2.
  • FIG. 3 is a diagram showing the NO decomposition rate versus temperature for catalysts J2 and G2.
  • FIG. 3 is a diagram showing the N 2 O decomposition rate versus temperature for catalysts J, J H , K, K H , G , and GH.
  • FIG. 3 is a diagram showing the NO decomposition rate versus temperature for catalysts J, J H , K, K H , G , and GH.
  • FIG. 2 is a diagram showing the N 2 O decomposition rate versus temperature for catalysts O, P, Q, R, and S.
  • FIG. 3 is a diagram showing the NO decomposition rate versus temperature for catalysts O, P, Q, R, and S.
  • the N2O decomposition catalyst of the present invention contains a carrier containing SiO 2 and Al 2 O 3 and an iron element supported on the carrier.
  • SiO 2 and Al 2 O 3 may be contained as a mixture or as a composite.
  • An example of a composite of SiO 2 and Al 2 O 3 is aluminosilicate (xM 2 O.yAl 2 O 3.zSiO 2.nH 2 O).
  • aluminosilicates include mullite (3Al 2 O 3 .2SiO 2 - 2Al 2 O 3 .SiO 2 ); kaolinite (Al 4 Si 4 O 10 (OH) 8 ); illite ((K,H 3 O ) (Al, Mg, Fe) 2 (Si, Al) 4 O 10 [(OH) 2 , (H 2 O)]); Zeolite; Feldspar ((Na , K, Ca, Ba)Al(Al,Si) Si2O8 ).
  • Zeolites include, for example, amiciite, analcime, barrerite, bellbergite, bikitaite, boggsite, brewsterite, and strontium.
  • Brewsterite-Sr heavy earth Brewsterite-Ba, chabazite, chabazite-Ca, chabazite-Na, chabazite-Na K), chiavennite, clinoptilolite, potash clinoptilolite-K, clinoptilolite-Na, clinoptilolite-Ca, cowlesite ), dachiardite, dachiardite-Ca, dachiardite-Na, edingtonite, epistilbite, erionite, erionite -Na), erionite-K, erionite-Ca, faujasite, faujasite-Na, faujasite-Ca, magnesium faujasite-Mg,
  • Natural zeolites A type (LTA type) zeolite, X type (FAU type) zeolite, LSX type (FAU type) zeolite, Beta type (BEA type) zeolite, ZSM-5 type (MFI type) zeolite, Ferrierite type (FER type) zeolite, mordenite type (MOR type) zeolite, L type (LTL type) zeolite, Y type (FAU type) zeolite, MCM-22 type (MWW type) zeolite, offretite/erionite type (O/E type) Zeolite, AEI type zeolite, AEL type zeolite, AFT type zeolite, AFX type zeolite, CHA type zeolite, EAB type zeolite, ERI type zeolite, KFI type zeolite, LEV type zeolite, LTN type zeolite, MSO type zeolite, RHO type zeolite
  • the ratio of SiO 2 to Al 2 O 3 is preferably 1 or more, more preferably 5 or more, still more preferably 10 or more, even more preferably 20 or more.
  • the higher the proportion of SiO 2 the higher the durability of the catalyst tends to be, so the upper limit of the SiO 2 /Al 2 O 3 molar ratio is not particularly limited as long as it can be manufactured, but is preferably 100, for example. More preferably 60, still more preferably 55.
  • Synthetic zeolite is produced by, for example, mixing a silica source, an alumina source, an alkali source, a solvent, an organic structure-directing agent (OSDA), a surfactant, etc. to obtain a starting reaction mixture, which is then heated in an autoclave. It can be obtained through a hydrothermal reaction at high temperature and pressure.
  • the synthetic zeolite obtained by this method contains organic components derived from OSDA. However, it appears that the organic content can be removed by subsequent firing.
  • Certain synthetic zeolites can be obtained by hydrothermal reaction without the use of OSDA. Furthermore, certain synthetic zeolites can be obtained without the use of OSDA using mechanochemical processing and steam synthesis methods.
  • Synthetic zeolite obtained without using OSDA (hereinafter sometimes referred to as OSDA-free zeolite) does not contain organic components derived from OSDA.
  • OSDA-free zeolite can be preferably used.
  • the SiO 2 /Al 2 O 3 molar ratio in the OSDA free zeolite is preferably 1 or more, more preferably 5 or more, and still more preferably 8 or more.
  • the upper limit of the SiO 2 /Al 2 O 3 molar ratio in the OSDA free zeolite is, for example, preferably 50, more preferably 45, and even more preferably 40.
  • the iron element is supported on the carrier in the form of Fe, Fe(III), Fe(II), Fe(II, III), or the like.
  • Fe(III), Fe(II), and Fe(II, III) may be in the form of iron oxide, iron oxyhydroxide, iron hydroxide, or the like.
  • the support may be in the form of iron fine particles or iron compound (e.g., iron oxide) fine particles attached to the carrier, or in the form in which the cations of the elements constituting the carrier are exchanged with iron cations ( ion exchange).
  • the supported iron element may be in the form of high valence iron such as Fe(IV), Fe(V), Fe(VI).
  • the supported amount of iron element is preferably 0.1% by weight or more, more preferably 1% by weight or more, more preferably 2% by weight or more, even more preferably 3% by weight, based on Fe 2 O 3 equivalent. That's all.
  • the upper limit of the supported amount of iron element is not particularly limited as long as it can be supported, but for example, in terms of Fe 2 O 3 , it is preferably 10% by weight, more preferably 7% by weight based on the carrier. .
  • Supporting is not particularly limited by the method, and can be carried out, for example, by impregnating a carrier with an aqueous solution or suspension of an iron compound, and then drying/calcining.
  • the N2O decomposition catalyst of the present invention may have other metal elements supported on the carrier, and/or may further include other metal elements supported on another carrier, if necessary. Good too.
  • Other metal elements include copper group elements (Cu, Ag, Au) that can be expected to have a function of promoting the decomposition reaction of N 2 O or the decomposition reaction of N 2 O and the decomposition reaction of NO. , platinum group elements (Pt, Rh, Pd, Ru, etc.), transition metal elements (Co, Ni, etc., excluding Fe), base metal elements (V, Mo, W, etc.), and the like.
  • carriers on which other metal elements are supported include, for example, carriers containing SiO 2 , Al 2 O 3 , SiO 2 -Al 2 O 3 , ZrO 2 , TiO 2 , TiO 2 -SiO 2 , SiC, etc. can be mentioned.
  • the N2O decomposition catalyst of the present invention has acid sites derived from OH groups and the like.
  • the properties of acid sites can generally be observed by a method known as the pyridine-TPD method.
  • a flame ionization detector FID
  • Pyridine is adsorbed at the acid site. Pyridine can be adsorbed to acid sites on the outer surface of the pores and acid sites on the inner surface of the pores of the catalyst. It is generally understood that the higher the temperature at which adsorbed pyridine is desorbed, the stronger the acid strength of the acid site.
  • the pyridine that is desorbed at high temperatures comes from acid sites that are affected by diffusion, that is, acid sites located on the inner surface of the pores (Nakano et al. Acid Property Measurement” Toyo Soda Research Report Vol. 29 No. 1 (1985), pp3-11).
  • the effective molecular diameter of pyridine is said to be 5.8 ⁇ (see Anderson et al. J. Catal., 58, 114 (1979)).
  • the total amount of acid sites can be determined based on the saturated adsorption amount of pyridine.
  • pyridine adsorption can be carried out at room temperature to 150°C, preferably at 150°C.
  • the ratio of the total amount of pyridine desorbed within the range of 150°C or more and less than 450°C to the total amount of pyridine desorbed within the range of 450°C or more and 800°C or less is preferably is 0.9 or more, more preferably 0.98 or more, still more preferably 1 or more, even more preferably 1.1 or more.
  • the upper limit of the ratio of the total amount of pyridine desorbed within the range of 150° C. or more and less than 450° C. to the total amount of pyridine desorbed within the range of 450° C. or more and 800° C. or less is not particularly limited as long as it can be manufactured.
  • the total amount of pyridine desorbed within the range of 150°C or more and less than 450°C is preferably 100 ⁇ mol or more, more preferably 200 ⁇ mol or more, and even more preferably The amount is 250 ⁇ mol or more, more preferably 300 ⁇ mol or more.
  • the upper limit of the total amount of pyridine that is eliminated within the range of 150° C. or more and less than 450° C. is not particularly limited as long as it can be produced.
  • the total amount of pyridine desorbed within the range of 450°C to 800°C is preferably 1000 ⁇ mol or less, more preferably 800 ⁇ mol or less, and even more preferably 800 ⁇ mol or less per 1 g of catalyst. It is 500 ⁇ mol or less.
  • the lower limit of the total amount of pyridine that is eliminated within the range of 450° C. or higher and 800° C. or lower is not particularly limited as long as it can be produced.
  • the value of the L peak (the amount of pyridine eliminated at the top of the maximum peak within the range of 150°C or more and less than 450°C) is lower than the value of the H peak (the amount of pyridine desorbed at the top of the maximum peak in the range of 150°C or more and less than 450°C).
  • the amount of pyridine eliminated at the maximum peak top within the following range That is, the ratio of the L peak value to the H peak value is preferably more than 1, more preferably 1.12 or more, even more preferably 1.2 or more, even more preferably 1.4 or more, and most preferably 1. It is 6 or more.
  • the upper limit of the ratio of the L peak value to the H peak value is not particularly limited as long as it can be manufactured.
  • the lower limit of the temperature at which the H peak appears is preferably 490°C, more preferably 510°C. °C, more preferably 530 °C, and the upper limit is 650 °C, more preferably 620 °C, still more preferably 600 °C, even more preferably 580 °C.
  • the N2O decomposition catalyst of the present invention preferably has a large amount of saturated adsorption of pyridine.
  • the saturated adsorption amount of pyridine in the N2O decomposition catalyst of the present invention is preferably 100 ⁇ mol or more, more preferably 200 ⁇ mol or more, still more preferably 500 ⁇ mol or more, even more preferably 700 ⁇ mol or more, per 1 g of catalyst.
  • the upper limit of the saturated adsorption amount of pyridine in the N2O decomposition catalyst of the present invention is not particularly limited as long as it can be produced, and is, for example, preferably 2000 ⁇ mol, more preferably 1500 ⁇ mol, per 1 g of catalyst.
  • the saturated adsorption amount of pyridine can be measured at 150°C.
  • the N2O decomposition catalyst of the present invention preferably has a large crystallite size.
  • the crystallite size in the N2O decomposition catalyst of the present invention is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 20 nm or more, even more preferably 30 nm or more.
  • the upper limit of the crystallite size of the N2O decomposition catalyst of the present invention is not particularly limited as long as it can be manufactured, and is, for example, preferably 100 nm, more preferably 80 nm.
  • the crystallite size can be measured by an X-ray diffraction method (see, for example, JIS H 7805 or JIS R 7651).
  • the N2O decomposition catalyst of the present invention preferably has a high NO2 decomposition rate and a high NO decomposition rate even after being exposed to a gas at 530°C containing 20% H2O and 20ppm SO2 for 70 hours.
  • the N2O decomposition catalyst of the present invention has a NO2 decomposition rate of 60% or more and a NO decomposition rate of 60% or more at 450°C even after being exposed to a gas at 530°C containing 20% H2O and 20ppm SO2 for 70 hours.
  • it is 90% or more.
  • the catalyst of the present invention having such pyridine adsorption properties has excellent water resistance and/or sulfur oxide resistance, and has an excellent function of promoting the decomposition reaction of N 2 O or the decomposition reaction of N 2 O and NO.
  • the N2O decomposition catalyst of the present invention alone can promote not only the reduction reaction of N2O contained in gas but also the reduction reaction of NO and NO2 .
  • the N2O decomposition catalyst of the present invention can be used in combination or in combination with a known catalyst (denitrification catalyst) configured to reduce NO and NO2 .
  • a known catalyst denitrification catalyst
  • nitrogen oxides (NO, NO2 , N2O ) contained in exhaust gas can be more effectively reduced.
  • An example of the reduction reaction of NO or NO 2 with ammonia is represented by the following formula.
  • the N2O decomposition catalyst of the present invention can be formed into shapes such as spheres, Raschig rings, Berl saddles, pole rings; honeycombs, plates, corrugates, etc. by known shaping methods.
  • the catalyst element may include a base material of a desired shape and the N2O decomposition catalyst of the present invention covering the base material.
  • the base material include a honeycomb base material, a corrugate base material, and a lath base material (expanded metal, punched metal, wire net, etc.).
  • the exhaust gas treatment device of the present invention includes a reactor containing the N2O decomposition catalyst or catalyst element of the present invention, a first supply line configured to flow the gas to be treated into the reactor, and a reducing agent introduced into the reactor. A second supply line configured to admit gas and a discharge line configured to exit gas from the reactor.
  • the N2O decomposition catalyst or catalytic element of the present invention can be housed in a reactor to form a fixed bed, a fluidized bed, or a moving bed.
  • the gas to be treated is a gas containing at least one selected from water and sulfur oxides and nitrous oxide, or a gas containing at least one selected from water and sulfur oxides and nitrous oxide. It is a gas containing nitrogen monoxide.
  • the gas to be treated preferably has a water content of 10% or more and/or a sulfur oxide content of 15 ppm or more.
  • Examples of the gas to be treated that can be used in the present invention include exhaust gas from a coal-fired fluidized bed boiler, exhaust gas from an ammonia-fueled marine engine, and exhaust gas from an ammonia-fueled gas turbine.
  • the gases to be treated used in the present invention include nitrogen dioxide, carbon monoxide, carbon dioxide, and hydrogen. , hydrocarbons, oxygen, nitrogen, etc. may be further included.
  • FIG. 1 is a diagram showing an example of an ammonia fuel engine having an exhaust gas treatment device of the present invention.
  • a reducing agent for example, ammonia or urea
  • a gas mixture of exhaust gas and reducing agent flows into a catalytic reactor 2 having a fixed bed 8 loaded with the N2O decomposition catalyst of the invention.
  • Mainly N 2 O and NOx are decomposed and chemically changed into N 2 and H 2 O in the fixed bed 8 loaded with the N 2 O decomposition catalyst.
  • Gas discharged from the catalytic reactor rotates a turbine 12 in the turbocharger, flows out from the turbocharger, and is discharged to the outside of the system through an exhaust pipe 15.
  • the rotation of turbine 12 rotates compressor 13, which is installed on the same shaft as turbine 12, within the turbocharger.
  • the compressor 13 compresses the intake air 3.
  • Compressed air is supplied to the cylinder 1 through the intake manifold 14 of the ammonia co-combustion engine.
  • Burn fuel 4 in the cylinder Note that in FIG. 1, the fuel is mixed with compressed air and then supplied to the cylinder, but in the case of a diesel engine, the fuel can be injected within the cylinder.
  • FIG. 2 is a diagram showing another example of an ammonia fuel engine having the exhaust gas treatment device of the present invention.
  • Gas discharged from the cylinder 1 of the ammonia co-combustion engine (ammonia fuel engine) via the exhaust manifold 5 turns the turbine 12 in the turbocharger.
  • the rotation of turbine 12 rotates compressor 13, which is installed on the same shaft as turbine 12, within the turbocharger.
  • the compressor 13 compresses the intake air 3.
  • Compressed air is supplied to the cylinder 1 through the intake manifold 14 of the ammonia co-combustion engine.
  • Burn fuel 4 in the cylinder Note that in FIG. 2, the fuel is mixed with compressed air and then supplied to the cylinder, but in the case of a diesel engine, the fuel can be injected within the cylinder.
  • a reducing agent (eg, ammonia or urea) 6 is added to the gas exiting the turbocharger, along with dilution air (not shown) and the like.
  • a gas mixture of exhaust gas and reducing agent flows into a catalytic reactor 2 having a fixed bed 8 loaded with the N2O decomposition catalyst of the invention. Mainly N 2 O and NOx are decomposed and chemically changed into N 2 and H 2 O in the fixed bed 8 loaded with the N 2 O decomposition catalyst. Gas discharged from the catalytic reactor is discharged to the outside of the system through an exhaust pipe 15.
  • the method of the present invention is for reducing nitrous oxide or nitrous oxide and nitric oxide from a gas to be treated.
  • the method of the present invention includes contacting the catalyst or catalytic element of the present invention with a gas to be treated and a reducing agent to decompose nitrous oxide or nitrous oxide and nitric oxide.
  • the content of water in the gas to be treated is preferably as low as possible from the viewpoint of catalyst life, and more preferably less than 30%.
  • the method of the present invention is sufficient for gases with a high water content, such as gases with a water content of 1% or more, and gases with a water content of 10% or more. It has a great effect.
  • the content of sulfur oxides (SOx) in the gas to be treated is preferably as low as possible from the viewpoint of catalyst life, more preferably 300 ppm or less, and even more preferably 250 ppm or less.
  • the method of the present invention can also be applied to gases with a high SOx content, such as gases with an SOx content of 1 ppm or more, gases with an SOx content of 5 ppm or more, and gases with an SOx content of 15 ppm or more. It has sufficient effects even on gases to be treated.
  • the content of nitrous oxide in the gas to be treated is not particularly limited, but is preferably 1 ppm or more and 1000 ppm or less, more preferably 10 ppm or more and 500 ppm or less.
  • the content of nitrogen monoxide in the gas to be treated is not particularly limited, but is preferably 1 ppm or more and 1000 ppm or less, more preferably 5 ppm or more and 500 ppm or less.
  • the gas to be treated preferably has a water content and/or a sulfur oxide content of 15 ppm or more.
  • contact between the gas to be treated and the reducing agent and the N2O decomposition catalyst or catalyst element can be carried out by a known method.
  • the reaction can be carried out using a fixed bed reactor, a fluidized bed reactor, a moving bed reactor, a simulated moving bed reactor, or the like.
  • the temperature during contact is preferably 200 to 950°C, more preferably 300 to 700°C, even more preferably 400 to 500°C.
  • the pressure at the time of contact may be the same as atmospheric pressure or may be higher than atmospheric pressure. If the pressure is increased, it can be expected that the frequency with which nitrous oxide, nitric oxide, and the reducing agent come into contact with the catalyst (adsorption rate) will increase.
  • Examples of the reducing agent used in the present invention include nitrogen-based reducing agents such as ammonia and urea; hydrocarbon-based reducing agents such as methane, ethane, propane, propylene, methanol, and dimethyl ether; hydrogen; carbon monoxide, etc. .
  • nitrogen-based reducing agents are preferred, and ammonia or urea are more preferred.
  • the amount of the reducing agent is not particularly limited as long as it is sufficient to decompose nitrous oxide contained in the gas or nitrous oxide and nitric oxide.
  • the amount of the reducing agent is preferably 0.67 to 1.2 mol per 1 mol of the total amount of nitrous oxide and nitric oxide.
  • the reducing agent can be added to and mixed with the gas to be treated using a known vaporizer, ejector, or the like.
  • the amount of ammonia remaining in the combustion exhaust gas can also be set by adjusting the combustion rate of the ammonia fuel.
  • the adsorption tube was filled with a predetermined amount (12.5 mg) of catalyst.
  • helium was passed through the reactor at a rate of 30 cc/min, and the catalyst layer temperature was maintained at 450° C. for 1 hour.
  • the catalyst layer temperature was lowered to below 100°C.
  • pyridine was injected into the catalyst layer inlet side of the adsorption tube while helium was passed through at 10 cc/min to maintain the catalyst layer temperature at 150°C.
  • Pyridine was quantified by GC-FID on the catalyst bed outlet side. When the amount of pyridine stopped changing (considering saturated adsorption at 150° C.), the injection of pyridine was stopped.
  • Fe-supported zeolite catalyst A was poured into pure water and then stirred to obtain a catalyst slurry.
  • the catalyst slurry was applied to the honeycomb substrate at a coating amount of 70 g/m 2 . This was dried at 120°C for 2 hours and then calcined at 500°C for 2 hours to obtain honeycomb catalyst A.
  • the fired product was ground in a planetary ball mill to obtain a powder.
  • This powder was added to 2000 ml of an aqueous solution containing 13.2 g of iron(III) nitrate nonahydrate (Fe 2 (NO 3 ) 3.9H 2 O), and the above operation was repeated two more times (3 ion exchange steps in total). ) to obtain powdered Fe-supported zeolite catalyst D.
  • the TPD spectrum and the amount of pyridine eliminated of Fe-supported zeolite catalyst D are shown in FIG. 3 and Table 1.
  • Honeycomb catalyst D was obtained in the same manner as in Catalyst Production Example 1 except that Fe-supported zeolite catalyst A was replaced with Fe-supported zeolite catalyst D.
  • Test example 1 Each of the honeycomb catalysts A to F described above was attached to a reaction tube.
  • the N 2 O decomposition rate and NO decomposition rate were measured at each temperature.
  • the results are shown in FIGS. 4 and 5.
  • catalysts A and B had high N 2 O decomposition rates and NO decomposition rates at 400 to 500°C.
  • Test example 2 Various types of powdered Fe - supported zeolite catalysts and A honeycomb catalyst was obtained. The amount of pyridine desorbed within the range of 150°C or more and less than 450°C was measured by the pyridine-TPD method. The N 2 O decomposition rate was measured in the same manner as Test Example 1. Based on the measurement results, the catalytic reaction rate was calculated assuming that the N 2 O decomposition rate at 500°C is a first-order reaction. The results are shown in FIG. It can be seen that the catalytic reaction rate (Nm/hr) tends to be higher as the amount of pyridine eliminated within the range of 150° C. or more and less than 450° C.
  • the calcined product was pulverized using a planetary ball mill to obtain a powdered Fe-supported zeolite catalyst G.
  • the TPD spectrum, amount of pyridine eliminated, crystallite size, etc. of Fe-supported zeolite catalyst G are shown in FIG. 7 and Table 3.
  • the Fe-supported zeolite catalyst G was poured into pure water and then stirred to obtain a catalyst slurry.
  • the catalyst slurry was applied to the honeycomb substrate at a coating amount of 70 g/m 2 . This was dried at 120°C for 2 hours and then calcined at 500°C for 2 hours to obtain honeycomb catalyst G.
  • Catalyst production example 8 9.1 g of iron (II) sulfate heptahydrate (FeSO 4.7H 2 O) was changed to 13.2 g of iron (III) nitrate nonahydrate (Fe 2 (NO 3 ) 3.9H 2 O) and calcined.
  • Powdered Fe-supported zeolite catalyst H was obtained in the same manner as in Catalyst Production Example 7 except that the temperature was changed from 500°C to 600°C.
  • the TPD spectrum, amount of pyridine eliminated, crystallite size, etc. of Fe-supported zeolite catalyst H are shown in FIG. 7 and Table 3.
  • Honeycomb catalyst H was obtained in the same manner as in Catalyst Production Example 7, except that Fe-supported zeolite catalyst G was replaced with Fe-supported zeolite catalyst H.
  • Catalyst production example 9 Iron (III) nitrate nonahydrate (Fe 2 (NO 3 ) 3.9H 2 O) prepared by heating 60 g of BEA type zeolite with a large crystallite size (SiO 2 /Al 2 O 3 ratio 10) to 80°C.
  • the slurry was poured into 2000 ml of an aqueous solution containing 26.4 g, and then stirred for 3 hours while maintaining the temperature at 80° C. to obtain a slurry.
  • the slurry was dehydrated using a suction funnel equipped with filter paper (No. 5C). A predetermined amount of pure water was poured onto the cake on the filter paper to wash it.
  • the washed cake was dried at 110°C for 12 hours and baked at 600°C for 5 hours.
  • the calcined product was pulverized using a planetary ball mill to obtain a powdered Fe-supported zeolite catalyst J.
  • the TPD spectrum, amount of pyridine eliminated, crystallite size, etc. of Fe-supported zeolite catalyst J are shown in FIG. 7 and Table 3.
  • Fe-supported zeolite catalyst J was poured into pure water and then stirred to obtain a catalyst slurry.
  • the catalyst slurry was applied to the honeycomb substrate at a coating amount of 70 g/m 2 . This was dried at 120°C for 2 hours and then calcined at 500°C for 2 hours to obtain honeycomb catalyst J.
  • Catalyst production example 11 26.4 g of iron (III) nitrate nonahydrate (Fe 2 (NO 3 ) 3.9H 2 O) was replaced with 18.2 g of iron (II) sulfate heptahydrate (FeSO 4.7H 2 O) and fired.
  • Powdered Fe-supported zeolite catalyst L was obtained in the same manner as in Catalyst Production Example 9 except that the temperature at that time was changed from 600°C to 500°C.
  • the TPD spectrum, amount of pyridine eliminated, crystallite size, etc. of Fe-supported zeolite catalyst L are shown in FIG. 7 and Table 3.
  • Honeycomb catalyst L was obtained in the same manner as in Catalyst Production Example 9, except that Fe-supported zeolite catalyst J was replaced with Fe-supported zeolite catalyst L.
  • Catalyst production example 12 Except that 26.4 g of iron (III) nitrate nonahydrate (Fe 2 (NO 3 ) 3.9H 2 O) was replaced with 18.2 g of iron (II) sulfate heptahydrate (FeSO 4.7H 2 O).
  • a powdered Fe-supported zeolite catalyst M and a honeycomb catalyst M were obtained in the same manner as in Catalyst Production Example 9.
  • the TPD spectrum, amount of pyridine eliminated, crystallite size, etc. of Fe-supported zeolite catalyst M are shown in FIG. 7 and Table 3.
  • Catalyst production example 13 Powdered Fe-supported zeolite catalyst N was obtained in the same manner as in Catalyst Production Example 9, except that the firing temperature was changed from 600°C to 500°C.
  • the TPD spectrum, amount of pyridine eliminated, crystallite size, etc. of Fe-supported zeolite catalyst N are shown in FIG. 7 and Table 3.
  • Honeycomb catalyst N was obtained in the same manner as in Catalyst Production Example 9, except that Fe-supported zeolite catalyst J was replaced with Fe-supported zeolite catalyst N.
  • Catalyst production example 15 Honeycomb catalyst J2 was obtained in the same manner as in Catalyst Production Example 9, except that the coating amount was changed from 70 g/m 2 to 140 g/m 2 .
  • Catalyst production example 16 Honeycomb catalysts G, J and K were subjected to hydrothermal treatment for 70 hours under the conditions shown in Table 5 to obtain honeycomb catalysts G H , J H and K H, respectively.
  • Test example 5 Evaluation of water resistance/SOx resistance
  • Each of honeycomb catalysts G, J, K, G H , J H and K H was attached to a reaction tube.
  • the N 2 O decomposition rate and NO decomposition rate were measured at each temperature. The results are shown in FIGS. 12 and 13.
  • the honeycomb catalyst of the present invention has a property that even after hydrothermal treatment, the N 2 O decomposition rate and NO decomposition rate do not decrease significantly and maintain 60% or more and 90% or more, that is, water resistance and sulfur oxide resistance. It can be seen that it is excellent in
  • the fired product was placed in pure water using a planetary ball mill, and then stirred to obtain a catalyst slurry.
  • the catalyst slurry was applied to the honeycomb substrate at a coating amount of 70 g/m 2 . This was dried at 120°C for 2 hours and then calcined at 500°C for 2 hours to obtain honeycomb catalyst O.
  • the same test as Test Example 3 was conducted on the honeycomb catalyst O. The results are shown in FIGS. 14 and 15.
  • the slurry was poured into 2,000 ml of an aqueous solution containing the following ingredients, and then stirred for 3 hours while maintaining the temperature at 80°C to obtain a slurry.
  • the slurry was dehydrated using a suction funnel equipped with filter paper (No. 5C). A predetermined amount of pure water was poured onto the cake on the filter paper to wash it.
  • the washed cake was dried at 110°C for 12 hours and baked at 600°C for 5 hours.
  • the fired product was placed in pure water using a planetary ball mill, and then stirred to obtain a catalyst slurry.
  • the catalyst slurry was applied to the honeycomb substrate at a coating amount of 70 g/m 2 . This was dried at 120°C for 2 hours and then calcined at 500°C for 2 hours to obtain honeycomb catalyst P.
  • the same test as Test Example 3 was conducted on the honeycomb catalyst P. The results are shown in FIGS. 14 and 15.
  • Catalyst production example 19 Powdered Fe-supported zeolite catalyst Q was obtained in the same manner as in Catalyst Production Example 18, except that the firing temperature was changed from 600°C to 500°C.
  • Honeycomb catalyst Q was obtained in the same manner as in Catalyst Production Example 18, except that Fe-supported zeolite catalyst P was replaced with Fe-supported zeolite catalyst Q. The same test as Test Example 3 was conducted on the honeycomb catalyst Q. The results are shown in FIGS. 14 and 15.
  • Catalyst production example 21 Except that 26.4 g of iron (III) nitrate nonahydrate (Fe 2 (NO 3 ) 3.9H 2 O) was replaced with 18.2 g of iron (II) sulfate heptahydrate (FeSO 4.7H 2 O). Powdered Fe-supported zeolite catalyst S and honeycomb catalyst S were obtained in the same manner as in Catalyst Production Example 18. The same test as Test Example 3 was conducted on the honeycomb catalyst S. The results are shown in FIGS. 14 and 15.
  • Catalyst production example 22 A honeycomb catalyst P2 was obtained in the same manner as in Catalyst Production Example 18, except that the coating amount was changed from 70 g/m 2 to 140 g/m 2 . The same test as Test Example 4 was conducted on the honeycomb catalyst P2.
  • honeycomb catalyst P was subjected to hydrothermal treatment for 70 hours under the conditions shown in Table 5 to obtain honeycomb catalyst P H.
  • the same test as Test Example 5 was conducted on the honeycomb catalyst P H.
  • the N 2 O decomposition rate and the NO decomposition rate did not decrease significantly, and maintained at 60% or more and 90% or more. That is, it had excellent water resistance and sulfur oxide resistance.
  • Engine cylinder 2 Catalytic reactor 3: Air 4: Fuel 5: Exhaust manifold 6: Reducing agent 7: Temperature controller 8: N2O decomposition catalyst fixed bed 12: Turbine 13: Compressor 14: Intake manifold 15: Exhaust pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つTPDスペクトルにおいて、150℃以上450℃未満の範囲内で脱離するピリジンの総量が触媒1gに対して100μmol以上である、亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒、ならびに該触媒に、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスと、還元剤とを接触させて、亜酸化窒素と一酸化窒素とを分解することを含む、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスから亜酸化窒素と一酸化窒素とを減らすための方法。

Description

N2O分解触媒
 本発明は、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された触媒(以下、N2O分解触媒ということがある。)に関する。より詳細に、水および/または硫黄酸化物が多量に含まれていることがある、石炭焚き流動層ボイラの排ガス、アンモニア燃料舶用エンジンの排ガス、アンモニア燃料焚きガスタービンの排ガス、水処理における硝化過程または脱窒過程からの排ガスなどの浄化処理において、好ましくはアンモニア燃料の燃焼排ガスの浄化処理において、好適に用いることができ、耐水性および/または耐硫黄酸化物性に優れる、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された触媒、ならびに水および/または硫黄酸化物と亜酸化窒素とを含有するガスからまたは水および/または硫黄酸化物と亜酸化窒素と一酸化窒素とを含有するガスから亜酸化窒素をまたは亜酸化窒素および一酸化窒素を減らすための方法に関する。
 亜酸化窒素(NO)は、燃焼によって生じたNOの反応(3NO → NO + NO)、アンモニアの酸化反応(2NH + 2O → NO + 3HO)などによって生成する。窒素分を多く含む化石燃料を使用するとNOが発生しやすくなると言われている。NOの生成する化学反応は温度依存性があり、NOは低温になるほど発生しやすい。そのため、例えば、流動層ボイラのような、800~900℃程度の低温で燃焼する炉においては、NOの排出が多くなる。また、NOはNOx除去用触媒とNOx(=NO、NO)との接触によっても発生することがある。アンモニア燃料を用いたエンジンやガスタービンは、空気中窒素を起源とする窒素酸化物(NO、NO)に加えて、アンモニア燃料を起源とする窒素酸化物(NO、NO、NO)を排出することがある。亜酸化窒素は、COの約300倍の強い温室効果を有するといわれている。大気に滞留する亜酸化窒素は、紫外線によって分解されて一酸化窒素を生成し、オゾン層を破壊する作用があると言われている。そのため、排ガス中の亜酸化窒素を分解し無害化する技術が種々提案されている。
 例えば、特許文献1は、排ガス中の亜酸化窒素の除去方法において、亜酸化窒素含有排ガスにアンモニアを混合し、β型ゼオライトに鉄を担持した触媒と350~500℃の温度域で接触させて排ガス中の亜酸化窒素を還元除去することを特徴とする排ガス中の亜酸化窒素の除去方法を開示している。
 特許文献2は、シリカおよびアルミナ担体に、鉄を活性金属として担持してなると共に、強酸の割合が、強酸と弱酸との合計量に対して多いことを特徴とする、硫黄分が多い排ガス中の亜酸化窒素を分解するための亜酸化窒素処理触媒を用い、亜酸化窒素を含む排ガスと接触させて、亜酸化窒素を分解処理することを特徴とする亜酸化窒素処理触媒を用いた排ガスの浄化方法を開示している。
 特許文献3は、(A)ゼオライトを水分により高温で前処理する段階と、(B)前記(A)段階で前処理されたゼオライト、又は、前記(A)段階を経ておらず前処理されていないゼオライトに鉄イオンの前駆体物質溶液によって鉄イオンを担持する段階と、(C)前記(B)段階で鉄イオンが担持されたゼオライト粒子を濾過し、乾燥させる段階と、(D)前記(C)段階で乾燥された粉末の鉄含有量を増加させるために(B)段階および(C)段階を繰り返す段階と、(E)前記(D)段階で製造された触媒を空気中で焼成する段階と、(F)前記(A)段階を経ていないゼオライトから前記(E)段階までを経て得られた触媒を水分により高温で処理する段階と、を含むことを特徴とするアンモニア還元剤により亜酸化窒素単独或いは亜酸化窒素および一酸化窒素を同時に低減するための鉄イオンが担持されたゼオライト触媒の製造方法、および亜酸化窒素単独或いは亜酸化窒素および一酸化窒素を同時に供給し、前記製造方法によって製造され活性化された鉄イオンが担持されたゼオライト触媒と接触反応させ、アンモニア還元剤により亜酸化窒素単独或いは亜酸化窒素および一酸化窒素を同時に低温の触媒反応温度で還元させ低減することを特徴とするアンモニア還元剤により亜酸化窒素或いは亜酸化窒素および一酸化窒素を低減する方法を開示している。
 特許文献4は、細孔構造および8個の四面体原子の最大環サイズを有する、促進剤金属で含浸された小細孔モレキュラーシーブ粒子と、小細孔モレキュラーシーブ粒子内で、かつ小細孔モレキュラーシーブ粒子の細孔構造の外側で分散された、周期律表の第3族または第4族の遷移金属またはランタニドの1種以上の酸化物を含む金属酸化物粒子とを含む、選択的接触還元触媒として使用するために適した触媒組成物を開示している。
 特許文献5は、鉄チャバザイトおよび鉄ベータゼオライトを含むNOおよびNOの変換のための触媒を開示している。
 特許文献6は、窒素酸化物を含有する排ガスにアンモニアガスを添加し反応温度500~700℃の範囲において接触的に窒素酸化物を還元除去する触媒であって、SiO/Alモル比が20以上である高シリカ型ゼオライトに、Fe換算で鉄を0.5~5wt%担持してなることを特徴とする高温排ガス用脱硝触媒を開示している。
 また、排ガス中の窒素酸化物を分解し無害化する技術として、特許文献7は、シリカ対アルミナモル比(SAR)が5~20の範囲である、有機分を含まない金属含有ゼオライトベータであって、前記金属が、少なくとも1.0重量%の量の鉄および/または銅を含むことを特徴とする、金属含有ゼオライトベータを開示している。また、引用文献7は、前記排気ガスを、有機分を含まない金属含有ゼオライトベータを含む物品と少なくとも部分的に接触させるステップを含み、前記金属が、少なくとも0.5重量%の量の鉄および/または銅を含むことを特徴とする、排気ガス中の窒素酸化物(NO)の選択的接触還元の方法を開示している。
 特許文献8は、少なくとも1つのアルカリ金属Mを含み、該アルカリ金属の原子Mの少なくとも一部がFe及び/又はCuで置換されている、BEA骨格構造を有する有機テンプレート非含有ゼオライト材料を開示している。また、特許文献8は、有機テンプレート非含有ゼオライト材料を、窒素酸化物NOの選択的な還元のための選択的接触還元(SCR)プロセスにおける触媒および/または触媒支持体として; NHの酸化、特に、ディーゼルシステムにおけるNHスリップの酸化のために; NOの分解のために、使用することを開示している。
特開平8-57262号公報 特開2014-176808号公報 特表2012-521288号公報 特表2019-502550号公報 特表2020-527453号公報 特開平3-296436号公報 特開2013-526406号公報 特開2013-49624号公報
 本発明の課題は、水および/または硫黄酸化物が多量に含まれることがある、触媒石炭焚き流動層ボイラの排ガス、アンモニア燃料舶用エンジンの排ガス、アンモニア燃料焚きガスタービンの排ガス、水処理における硝化過程または脱窒過程からの排ガスなどの浄化処理において、好ましくはアンモニア燃料の燃焼排ガスの浄化処理において、好適に用いることができ、耐水性および/または耐硫黄酸化物性に優れる、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された触媒、ならびに水および/または硫黄酸化物と亜酸化窒素とを含有するガスからまたは水および/または硫黄酸化物と亜酸化窒素と一酸化窒素とを含有するガスから亜酸化窒素をまたは亜酸化窒素および一酸化窒素を減らすための方法を提供することである。
 上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。
〔1〕 SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ TPDスペクトルにおいて、150℃以上450℃未満の範囲内で脱離するピリジンの総量が触媒1gに対して100μmol以上である、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔2〕 TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおけるピリジン脱離量に対する150℃以上450℃未満の範囲内に在る最大ピークトップにおけるピリジン脱離量の比が1より大きい、〔1〕に記載の触媒。
〔3〕 TPDスペクトルにおいて、450℃以上800℃以下の範囲内で脱離するピリジンの総量に対する150℃以上450℃未満の範囲内で脱離するピリジンの総量の比が0.9以上である、〔1〕または〔2〕に記載の触媒。
〔4〕 TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおける温度が490℃以上650℃以下である、〔1〕、〔2〕または〔3〕に記載の触媒。
〔5〕 ピリジンの飽和吸着量が触媒1gに対して100μmol以上である、〔1〕、〔2〕、〔3〕または〔4〕に記載の触媒。
〔6〕 結晶子サイズが20nm以上である、〔1〕、〔2〕、〔3〕、〔4〕または〔5〕に記載の触媒。
〔7〕 SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおけるピリジン脱離量に対する150℃以上450℃未満の範囲内に在る最大ピークトップにおけるピリジン脱離量の比が1より大きい、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔8〕 TPDスペクトルにおいて、450℃以上800℃以下の範囲内で脱離するピリジンの総量に対する150℃以上450℃未満の範囲内で脱離するピリジンの総量の比が0.9以上である、〔7〕に記載の触媒。
〔9〕 TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおける温度が490℃以上650℃以下である、〔7〕または〔8〕に記載の触媒。
〔10〕 ピリジンの飽和吸着量が触媒1gに対して100μmol以上である、〔7〕、〔8〕または〔9〕に記載の触媒。
〔11〕 結晶子サイズが20nm以上である、〔7〕、〔8〕、〔9〕または〔10〕に記載の触媒。
〔12〕 SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ TPDスペクトルにおいて、450℃以上800℃以下の範囲内で脱離するピリジンの総量に対する150℃以上450℃未満の範囲内で脱離するピリジンの総量の比が0.9以上である、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔13〕 TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおける温度が490℃以上650℃以下である、〔12〕に記載の触媒。
〔14〕 ピリジンの飽和吸着量が触媒1gに対して100μmol以上である、〔12〕または〔13〕に記載の触媒。
〔15〕 結晶子サイズが20nm以上である、〔12〕、〔13〕または〔14〕に記載の触媒。
〔16〕 SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおける温度が490℃以上650℃以下である、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔17〕 ピリジンの飽和吸着量が触媒1gに対して100μmol以上である、〔16〕に記載の触媒。
〔18〕 結晶子サイズが20nm以上である、〔16〕または〔17〕に記載の触媒。
〔19〕 SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ ピリジンの飽和吸着量が触媒1gに対して100μmol以上である、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔20〕 結晶子サイズが20nm以上である、〔19〕に記載の触媒。
〔21〕 SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ 結晶子サイズが20nm以上である、亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔22〕 OSDAフリーゼオライトと、それに担持してなる鉄元素とを含有する、 亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
〔23〕 HO20%およびSO20ppmを含有する530℃のガスに70時間曝した後も、450℃の条件において、NO分解率が60%以上およびNO分解率が90%以上である、〔1〕~〔22〕に記載の触媒。
〔24〕 基材と、該基材を被覆する〔1〕~〔23〕のいずれかひとつに記載の触媒とを含有する、触媒エレメント。
〔25〕 〔1〕~〔23〕のいずれかひとつに記載の触媒若しくは〔24〕に記載の触媒エレメントに、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスと、還元剤とを接触させて、亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを分解することを含む、
水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスから亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを減らすための方法。
〔26〕 還元剤が、アンモニアまたは尿素である、〔25〕に記載の方法。
〔27〕 水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスが、アンモニア燃料の燃焼排ガスである、〔25〕または〔26〕に記載の方法。
〔28〕 ガスは、水の含有量が10%以上、硫黄酸化物の含有量が15ppm以上である、〔25〕~〔27〕のいずれかひとつに記載の方法。
〔29〕 〔1〕~〔23〕のいずれかひとつに記載の触媒若しくは〔23〕に記載の触媒エレメントを収容してなる反応器、
 被処理ガスを反応器に流入させるように構成された第一供給ライン、
 還元剤を反応器に流入させるように構成された第二供給ライン、および
 反応器からガスを流出させるように構成された排出ライン
を具有し、
 被処理ガスが、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスである、
排ガス処理装置。
〔30〕 被処理ガスが、石炭焚き流動層ボイラの排ガス、アンモニア燃料エンジンの排ガス、アンモニア燃料焚きガスタービンの排ガスである、〔29〕に記載の装置。
〔31〕 被処理ガスは、水の含有量が10%以上、硫黄酸化物の含有量が15ppm以上である、〔29〕または〔30〕に記載の排ガス処理装置。
〔32〕 〔29〕、〔30〕または〔31〕に記載の装置を有する、アンモニア燃料エンジン。
 本発明のN2O分解触媒は、被処理ガスに水および/または硫黄酸化物が多量に含まれていても、亜酸化窒素の分解反応を若しくは亜酸化窒素と一酸化窒素との分解反応をアンモニア存在下などにおいて効果的に促進させることができる。本発明の方法は、水および/または硫黄酸化物と亜酸化窒素とを含有するガスから亜酸化窒素を効果的に減らすことができる。本発明の方法は、水および/または硫黄酸化物と亜酸化窒素と一酸化窒素とを含有するガスから亜酸化窒素と一酸化窒素とを効果的に減らすことができる。本発明は、水および/または硫黄酸化物が多量に含まれることがある、触媒石炭焚き流動層ボイラの排ガス、アンモニア燃料舶用エンジンの排ガス、アンモニア燃料焚きガスタービンの排ガス、水処理における硝化過程または脱窒過程からの排ガスなどの浄化処理において好適に用いることができる。
排ガス処理システムを組み込んだアンモニア混焼エンジンの一例を示す図である 排ガス処理システムを組み込んだアンモニア混焼エンジンの一例を示す図である。 触媒A~FのTPDスペクトルを示す図である。 触媒A~Fについての温度に対するNO分解率を示す図である。 触媒A~Fについての温度に対するNO分解率を示す図である。 150-450℃ピリジン脱離量wに対するNOの触媒反応速度を示す図である。 触媒G、HおよびJ~NのTPDスペクトルを示す図である。 触媒G、HおよびJ~Nについての温度に対するNO分解率を示す図である。 触媒G、HおよびJ~Nについての温度に対するNO分解率を示す図である。 触媒J2およびG2についての温度に対するNO分解率を示す図である。 触媒J2およびG2についての温度に対するNO分解率を示す図である。 触媒J、J、K、K、G、およびGについての温度に対するNO分解率を示す図である。 触媒J、J、K、K、G、およびGについての温度に対するNO分解率を示す図である。 触媒O、P、Q、RおよびSについての温度に対するNO分解率を示す図である。 触媒O、P、Q、RおよびSについての温度に対するNO分解率を示す図である。
 本発明のN2O分解触媒は、SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有するものである。
 担体において、SiOおよびAlは、混合物として含まれていてもよいし、複合されたものとして含まれていてもよい。
 SiOとAlとが複合されたものとして、例えば、アルミノシリケート(xMO・yAl・zSiO・nHO)などを挙げることができる。
 アルミノシリケートの具体例としては、ムライト(3Al・2SiO~2Al・SiO);カオリナイト(AlSi10(OH));イライト((K,HO)(Al,Mg,Fe)(Si,Al)10[(OH),(HO)]);ゼオライト;アルミノケイ酸ナトリウム、アルミノケイ酸カリウム、アルミノケイ酸カルシウムなどの長石((Na,K,Ca,Ba)Al(Al,Si)Si)などを挙げることができる。
 ゼオライトとしては、例えば、アミチ沸石(amicite)、方沸石(analcime)、バレル沸石(barrerite)、ベルベルヒ沸石(bellbergite)、ビキタ沸石(bikitaite)、ボッグス沸石(boggsite)、ブリュースター沸石(brewsterite)、ストロンチウムブリュースター沸石(brewsterite-Sr)、重土ブリュースター沸石(brewsterite-Ba)、菱沸石(chabazite)、灰菱沸石(chabazite-Ca)、ソーダ菱沸石(chabazite-Na)、カリ菱沸石(chabazite-K)、キアヴェンナ石(chiavennite)、斜プチロル沸石 (clinoptilolite)、カリ斜プチロル沸石(clinoptilolite-K)、ソーダ斜プチロル沸石(clinoptilolite-Na)、灰斜プチロル沸石(clinoptilolite-Ca)、コウルス沸石(cowlesite)、ダキアルディ沸石(dachiardite)、灰ダキアルディ沸石(dachiardite-Ca)、ソーダダキアルディ沸石 (dachiardite-Na)、エディントン沸石(edingtonite)、剥沸石 (epistilbite)、エリオン沸石(erionite)、ソーダエリオン沸石(erionite-Na)、カリエリオン沸石(erionite-K)、灰エリオン沸石(erionite-Ca)、フォージャス沸石(faujasite)、曹達フォージャス沸石(faujasite-Na)、灰フォージャス沸石(faujasite-Ca)、苦土フォージャス沸石(faujasite-Mg)、フェリエ沸石(ferrierite)、苦土フェリエ沸石(ferrierite-Mg)、カリフェリエ沸石(ferrierite-K)、ソーダフェリエ沸石(ferrierite-Na)、ガロン沸石(garronite)、ゴールト石(gaultite)、ギスモンド沸石(gismondine)、グメリン沸石(gmelinite)、ソーダグメリン沸石 (gmelinite-Na)、灰グメリン沸石(gmelinite-Ca)、カリグメリン沸石(gmelinite-K)、ゴビンス沸石(gobbinsite)、ゴナルド沸石(gonnardite)、グーズクリーク沸石(goosecreekite)、ゴタルディ沸石(gottardiite)、重土十字沸石(harmotome)、輝沸石(heulandite)、灰輝沸石(heulandite-Ca)、ストロンチウム輝沸石(heulandite-Sr)、ソーダ輝沸石(heulandite-Na)、カリ輝沸石(heulandite-K)、シャンファ石(hsianghualite)、カリボルサイト(kalborsite)、濁沸石(laumontite)、レビ沸石(levyne)、灰レビ沸石(levyne-Ca)、ソーダレビ沸石(levyne-Na)、ロヴダル石(lovdarite)、マリコパ石(maricopaite)、マッシィ沸石(mazzite)、メルリーノ沸石(merlinoite)、中沸石(mesolite)、モンテソンマ沸石(montesommaite)、モルデン沸石(mordenite)、ムティーナ沸石(mutinaite)、ソーダ沸石(natrolite)、オフレ沸石(offretite)、パハサパ石(pahasapaite)、パルテ沸石(partheite)、ポーリン沸石(paulingite)、曹達ポーリング沸石(paulingite-Na)、カリポーリング沸石(paulingite-K)、カルシウムポーリング沸石(paulingite-Ca)、パーリアル沸石(perlialite)、十字沸石(phillipsite)、ソーダ十字沸石(phillipsite-Na)、カリ十字沸石(phillipsite-K)、灰十字沸石(phillipsite-Ca)、ポルクス石(pollucite)、ロッジァン石(roggianite)、スコレス沸石(scolecite)、ステラ沸石(stellerite)、束沸石(stilbite)、灰束沸石(stilbite-Ca)、ソーダ束沸石(stilbite-Na)、テラノヴァ沸石(terranovaite)、トムソン沸石(thomsonite)、ツァーニック沸石(tschernichite)、ツョルトナー沸石(tschortnerite)、ワイラケ沸石(wairakite)、ヴァイネベーネ石(weinebeneite)、ウィルヘンダーソン沸石(willhendersonite)、湯河原沸石(yugawaralite)などの天然ゼオライト; A型(LTA型)ゼオライト、X型(FAU型)ゼオライト、LSX型(FAU型)ゼオライト、ベータ型(BEA型)ゼオライト、ZSM-5型(MFI型)ゼオライト、フェリエライト型(FER型)ゼオライト、モルデナイト型(MOR型)ゼオライト、L型(LTL型)ゼオライト、Y型(FAU型)ゼオライト、MCM-22型(MWW型)ゼオライト、オフレタイト/エリオナイト型(O/E型)ゼオライト、AEI型ゼオライト、AEL型ゼオライト、AFT型ゼオライト、AFX型ゼオライト、CHA型ゼオライト、EAB型ゼオライト、ERI型ゼオライト、KFI型ゼオライト、LEV型ゼオライト、LTN型ゼオライト、MSO型ゼオライト、RHO型ゼオライト、SAS型ゼオライト、SAT型ゼオライト、SAV型ゼオライト、SFW型ゼオライト、TON型ゼオライト、TSC型ゼオライトなどの合成ゼオライトを挙げることができる。
 これらのうち、本発明に用いられる担体は、ゼオライトが好ましく、合成ゼオライトがより好ましく、BEA型ゼオライトがさらに好ましい。
 Alに対するSiOの割合(SiO/Alモル比)は、好ましくは1以上、より好ましくは5以上、さらに好ましくは10以上、よりさらに好ましくは20以上である。SiOの割合が多いほど、触媒の耐久性が高くなる傾向があるので、SiO/Alモル比の上限は、製造でき得る限りで、特に制限されないが、例えば、好ましくは100、より好ましくは60、さらに好ましくは55である。
 合成ゼオライトは、例えば、シリカ源、アルミナ源、アルカリ源、溶媒、有機構造規定剤(organic structure-directing agent;OSDA)、界面活性剤などを混合して出発反応混合物を得、これをオートクレーブ内で高温・高圧下で水熱反応させて得ることができる。この方法で得られる合成ゼオライトは、OSDAに由来する有機分を含む。ただ、その後の焼成によって有機分の除去ができるようである。
 ある種の合成ゼオライトは、OSDAを使用せずに、水熱反応させて得ることができる。さらに、ある種の合成ゼオライトは、OSDAを使用せずに、メカノケミカル処理および蒸気合成法を駆使して得ることができる。OSDAを使用せずに得られる合成ゼオライト(以下、OSDAフリーゼオライトということがある。)は、OSDAに由来する有機分を含まない。本発明においては、OSDAフリーゼオライトを好ましく用いることができる。OSDAフリーゼオライトにおけるSiO/Alモル比は、好ましくは1以上、より好ましくは5以上、さらに好ましくは8以上である。OSDAフリーゼオライトにおけるSiO/Alモル比の上限は、例えば、好ましくは50、より好ましくは45、さらに好ましくは40である。
 鉄元素は、担体に、Fe、Fe(III)、Fe(II)、Fe(II, III)などの形態にて担持されている。Fe(III)、Fe(II)、Fe(II, III)は、酸化鉄、オキシ水酸化鉄、水酸化鉄などの形態になっていてもよい。担持は、担体に鉄微粒子または鉄化合物(例えば、酸化鉄など)微粒子が付着した形態であってもよいし、担体を構成していた元素の陽イオンが鉄の陽イオンに交換された形態(イオン交換)であってもよい。NOの分解反応中に、担持された鉄元素がFe(IV)、Fe(V)、Fe(VI)などの高原子価鉄の形態になっていてもよい。
 鉄元素の担持量は、Fe換算にて、担体に対して、好ましくは0.1重量%以上、より好ましくは1重量%以上、より好ましくは2重量%以上、よりさらに好ましくは3以上である。鉄元素の担持量の上限は、担持可能な量であれば特に制限されないが、例えば、Fe換算にて、担体に対して、好ましくは10重量%、より好ましくは7重量%である。担持は、その方法によって特に限定されず、例えば、鉄化合物の水溶液若しくは懸濁液を担体に含浸させ、次いで乾燥/焼成することによって、行うことができる。
 本発明のN2O分解触媒は、必要に応じて、他の金属元素が前記担体に担持されていてもよいし、および/または別の担体に他の金属元素が担持されたものをさらに含んでいてもよい。
 他の金属元素としては、NOの分解反応を促進する機能若しくはNOの分解反応とNOの分解反応とを促進する機能が期待できる、例えば、銅族元素(Cu、Ag、Au)、白金族元素(Pt,Rh、Pd、Ruなど)、遷移金属元素(Co、Niなど、Feを除く)、卑金属元素(V、Mo、Wなど)などを挙げることができる。他の金属元素が担持される別の担体としては、例えば、SiO、Al、SiO-Al、ZrO、TiO、TiO-SiO、SiCなどを含む担体を挙げることができる。
 本発明のN2O分解触媒は、OH基などに由来する酸点を有する。酸点の性質は、一般に、ピリジン-TPD法として知られる方法で、観測することができる。ピリジン-TPD法においては、例えば、検出器として水素炎イオン化検出器(FID)を用いることができる。酸点にピリジンが吸着する。ピリジンは、触媒の細孔外表面の酸点と細孔内表面の酸点とに吸着し得る。吸着したピリジンの脱離する温度が高いほど、酸点の酸強度が強いと一般に理解されている。なお、高温度において脱離するピリジンは、拡散の影響を受ける酸点すなわち細孔内表面に在る酸点からのものであるとも言われている(中野ら「昇温脱離法によるゼオライトの酸性質測定」東洋曹達研究報告第29巻第1号(1985)、pp3-11)。ピリジンの有効分子直径は5.8Åと言われている(Anderson et al. J. Catal., 58, 114 (1979)参照)。そして、ピリジンの飽和吸着量によって酸点の総量を把握できる。ピリジンを吸着させ、次いで一定速度(20℃/分)で昇温させたときに各温度で脱離するピリジンの量の分布(この分布をTPDスペクトルと言うことがある。)によって酸点の酸強度分布を把握できる。なお、本発明においては、ピリジンの吸着を室温~150℃で、好ましくは150℃で行うことができる。
 本発明のN2O分解触媒は、TPDスペクトルにおいて、450℃以上800℃以下の範囲内で脱離するピリジンの総量に対する150℃以上450℃未満の範囲内で脱離するピリジンの総量の比が、好ましくは0.9以上、より好ましくは0.98以上、さらに好ましくは1以上、よりさらに好ましくは1.1以上である。450℃以上800℃以下の範囲内で脱離するピリジンの総量に対する150℃以上450℃未満の範囲内で脱離するピリジンの総量の比の上限は、製造でき得る限りで、特に制限されない。
 本発明のN2O分解触媒は、TPDスペクトルにおいて、150℃以上450℃未満の範囲内で脱離するピリジンの総量が、触媒1gに対して、好ましくは100μmol以上、より好ましくは200μmol以上、さらに好ましくは250μmol以上、よりさらに好ましくは300μmol以上である。150℃以上450℃未満の範囲内で脱離するピリジンの総量の上限は、製造でき得る限りで、特に制限されない。
 本発明のN2O分解触媒は、TPDスペクトルにおいて、450℃以上800℃以下の範囲内で脱離するピリジンの総量が、触媒1gに対して、好ましくは1000μmol以下、より好ましくは800μmol以下、さらに好ましくは500μmol以下である。450℃以上800℃以下の範囲内で脱離するピリジンの総量の下限は、製造でき得る限りで、特に制限されない。
 本発明のN2O分解触媒は、TPDスペクトルにおいて、Lピークの値(150℃以上450℃未満の範囲内に在る最大ピークトップにおけるピリジン脱離量)が、Hピークの値(450℃以上800℃以下の範囲内に在る最大ピークトップにおけるピリジン脱離量)よりも大きい。すなわち、Hピークの値に対するLピークの値の比は、好ましくは1超過、より好ましくは1.12以上、さらに好ましくは1.2以上、よりさらに好ましくは1.4以上、最も好ましくは1.6以上である。Hピークの値に対するLピークの値の比の上限は、製造でき得る限りで、特に制限されない。
 本発明のN2O分解触媒は、TPDスペクトルにおいて、Hピークが出現する温度(450℃以上800℃以下の範囲内に在る最大ピークトップにおける温度)の下限が、好ましくは490℃、より好ましくは510℃、さらに好ましくは530℃であり、上限が650℃、より好ましくは620℃、さらに好ましくは600℃、よりさらに好ましくは580℃である。
 本発明のN2O分解触媒は、ピリジンの飽和吸着量の多いものが好ましい。本発明のN2O分解触媒におけるピリジンの飽和吸着量は、触媒1gに対して、好ましくは100μmol以上、より好ましくは200μmol以上、さらに好ましくは500μmol以上、よりさらに好ましくは700μmol以上である。本発明のN2O分解触媒におけるピリジンの飽和吸着量の上限は、製造でき得る限りで、特に制限されず、例えば、触媒1gに対して、好ましくは2000μmol、より好ましくは1500μmolである。ピリジンの飽和吸着量は150℃において測定することができる。
 本発明のN2O分解触媒は、結晶子サイズの大きいものが好ましい。本発明のN2O分解触媒における結晶子サイズは、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは20nm以上、よりさらに好ましくは30nm以上である。本発明のN2O分解触媒の結晶子サイズの上限は、製造でき得る限りで、特に制限されず、例えば、好ましくは100nm、より好ましくは80nmである。結晶子サイズはX線回折法で測定することができる(例えばJIS H 7805またはJIS R 7651参照)。
 本発明のN2O分解触媒は、HO20%およびSO20ppmを含有する530℃のガスに70時間曝した後も、NO分解率およびNO分解率が高いものであることが好ましい。本発明のN2O分解触媒は、HO20%およびSO20ppmを含有する530℃のガスに70時間曝した後も、450℃の条件において、NO分解率が60%以上およびNO分解率が90%以上であるものが好ましい。
 このようなピリジン吸着特性を有する本発明の触媒は、耐水性および/または耐硫黄酸化物性に優れ、NOの分解反応がまたはNOおよびNOの分解反応を促進させる機能に優れる。
 本発明のN2O分解触媒は、単独で、ガスに含まれるNOの還元反応だけでなくNOやNOの還元反応も促進させることができる。本発明のN2O分解触媒は、NOやNOを減らすことができるように構成された公知の触媒(脱硝触媒)と併用若しくは混用することができる。本発明のN2O分解触媒と脱硝触媒との併用若しくは混用によって、排ガスに含まれる窒素酸化物(NO、NO、NO)をより効果的に減らすことができる。
 NOやNOのアンモニアによる還元反応の例として、下式で表されるものを挙げることができる。
 4NO + 4NH + O → 4N + 6H
 NO + NO + 2NH → 2N + 3H
 6NO + 8NH → 7N + 12H
 亜酸化窒素のアンモニアによる還元反応の例として、下式で表されるものを挙げることができる。
 3NO + 2NH → 4N + 3H
 本発明のN2O分解触媒は、公知の成形法によって、球、ラシヒリング、ベルルサドル、ポールリング; ハニカム、板、コルゲートなどの形状にすることができる。また、所望形状の基材と、該基材を被覆する本発明のN2O分解触媒とを含有する触媒エレメントとしてもよい。基材としては、ハニカム基材、コルゲート基材、ラス基材(エキスパンドメタル、パンチングメタル、ワイヤネットなど)などを挙げることができる。
 本発明の排ガス処理装置は、本発明のN2O分解触媒若しくは触媒エレメントを収容してなる反応器、被処理ガスを反応器に流入させるように構成された第一供給ライン、還元剤を反応器に流入させるように構成された第二供給ライン、および 反応器からガスを流出させるように構成された排出ラインを具有する。本発明のN2O分解触媒若しくは触媒エレメントは、反応器の中に、固定層、流動層、または移動層を形成するように収容することができる。本発明の排ガス処理装置における、被処理ガスは、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスである。被処理ガスは、水の含有量が10%以上および/または硫黄酸化物の含有量が15ppm以上であることが好ましい。
 本発明に用いられる被処理ガスとしては、例えば、石炭焚き流動層ボイラの排ガス、アンモニア燃料舶用エンジンの排ガス、アンモニア燃料焚きガスタービンの排ガスなどを挙げることができる。本発明に用いられる被処理ガスには、硫黄酸化物(SOx)および/または水(HO)ならびに亜酸化窒素および/または一酸化窒素以外に、二酸化窒素、一酸化炭素、二酸化炭素、水素、炭化水素、酸素、窒素などがさらに含まれていてもよい。
 図1は、本発明の排ガス処理装置を有するアンモニア燃料エンジンの一例を示す図である。アンモニア混焼エンジン(アンモニア燃料エンジン)のシリンダ1からエキゾーストマニホールド5を経て排出されるガスに還元剤(例えば、アンモニア若しくは尿素)6を希釈空気(図示せず)などと共に添加する。排出ガスと還元剤との混合ガスが、本発明のN2O分解触媒を装填した固定層8を有する触媒反応器2に流入する。N2O分解触媒を装填した固定層8において主にNOおよびNOxが分解されNとHOに化学変化する。触媒反応器から排出されたガスは、ターボチャージャ内のタービン12を回し、ターボチャージャから流出し、排気管15を経て系外に排出する。タービン12の回転は、ターボチャージャ内で、タービン12と同じシャフトに設置されたコンプレッサ13を回転させる。コンプレッサ13は吸入した空気3を圧縮する。圧縮空気はアンモニア混焼エンジンのインテークマニホールド14を経てシリンダ1に供給される。シリンダ内で燃料4を燃焼させる。なお、図1においては燃料を圧縮空気に混ぜた後でシリンダに供給しているが、ディーゼルエンジンの場合は燃料をシリンダ内で噴射することができる。
 図2は、本発明の排ガス処理装置を有するアンモニア燃料エンジンの別の一例を示す図である。アンモニア混焼エンジン(アンモニア燃料エンジン)のシリンダ1からエキゾーストマニホールド5を経て排出されるガスは、ターボチャージャ内のタービン12を回す。タービン12の回転は、ターボチャージャ内で、タービン12と同じシャフトに設置されたコンプレッサ13を回転させる。コンプレッサ13は吸入した空気3を圧縮する。圧縮空気はアンモニア混焼エンジンのインテークマニホールド14を経てシリンダ1に供給される。シリンダ内で燃料4を燃焼させる。なお、図2においては燃料を圧縮空気に混ぜた後でシリンダに供給しているが、ディーゼルエンジンの場合は燃料をシリンダ内で噴射することができる。ターボチャージャから流出されたガスに還元剤(例えば、アンモニア若しくは尿素)6を希釈空気(図示せず)などと共に添加する。排出ガスと還元剤との混合ガスが、本発明のN2O分解触媒を装填した固定層8を有する触媒反応器2に流入する。N2O分解触媒を装填した固定層8において主にNOおよびNOxが分解されNとHOに化学変化する。触媒反応器から排出されたガスは、排気管15を経て系外に排出する。
 本発明の方法は、被処理ガスから亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを減らすためのものである。本発明の方法は、本発明の触媒若しくは触媒エレメントに、被処理ガスと、還元剤とを接触させて、亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを分解することを含む。被処理ガス中の水の含有量は、触媒寿命の観点で少ない方が好ましく、30%未満がより好ましい。本発明の方法は、水の含有量の多い被処理ガスに対しても、例えば、水の含有量1%以上の被処理ガス、水の含有量10%以上の被処理ガスに対しても十分な効果を奏する。被処理ガス中の硫黄酸化物(SOx)の含有量は、触媒寿命の観点で少ない方が好ましく、300ppm以下がより好ましく、250ppm以下がさらに好ましい。本発明の方法は、SOxの含有量の多い被処理ガスに対しても、例えば、SOxの含有量1ppm以上の被処理ガス、SOxの含有量5ppm以上の被処理ガス、SOxの含有量15ppm以上の被処理ガスに対しても十分な効果を奏する。
 被処理ガス中の亜酸化窒素の含有量は、特に制限されないが、好ましくは1ppm以上1000ppm以下、より好ましくは10ppm以上500ppm以下である。被処理ガス中の一酸化窒素の含有量は、特に制限されないが、好ましくは1ppm以上1000ppm以下、より好ましくは5ppm以上500ppm以下である。被処理ガスは、水の含有量がおよび/または硫黄酸化物の含有量が15ppm以上であることが好ましい。
 二酸化硫黄(SO)は下式に挙げるような副反応を起こしやすいが、本発明のN2O分解触媒によると、この副反応の進行を抑制できる(この性質を本願では耐硫黄酸化物性と呼んでいる。)。
 2SO + O → 2SO
 水(HO)は、窒素酸化物の還元反応によっても生成する。系中に水が多量に在ると担体の脱アルミニウムが進行しやすいが、本発明のN2O分解触媒によると脱アルミニウムの進行を抑制できる(この性質を本願では耐水性と呼んでいる。)。
 本発明の方法における、被処理ガスおよび還元剤と、N2O分解触媒若しくは触媒エレメントとの接触は、公知の方法で行うことができる。例えば、固定層反応器、流動層反応器、移動層反応器、疑似移動層反応器などを用いて行うことができる。
 接触時の温度は、好ましくは200~950℃、より好ましくは300~700℃、さらに好ましくは400~500℃である。接触時の圧力は、大気圧と同じであってもよいし、大気圧よりも高くてもよい。高い圧力にすると触媒に亜酸化窒素、一酸化窒素および還元剤が接触する頻度(吸着率)の増加が期待できる。
 本発明に用いられる還元剤としては、アンモニア、尿素などの窒素系還元剤; メタン、エタン、プロパン、プロピレン、メタノール、ジメチルエーテルなどの炭化水素系還元剤; 水素; 一酸化炭素などを挙げることができる。これらのうち、窒素系還元剤が好ましく、アンモニアまたは尿素がより好ましい。還元剤の量は、ガスに含まれる亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを分解させるのに十分な量であれば、特に制限されない。還元剤の量は、例えば、アンモニアの場合、亜酸化窒素および一酸化窒素の合計量1モルに対して、好ましくは0.67~1.2モルである。還元剤は、公知の気化器、エジェクターなどで、被処理ガスに添加し、混合することができる。アンモニア燃料の燃焼排ガスにおいては、アンモニア燃料の燃焼率を調節することによって、燃焼排ガス中に残るアンモニア量を設定することもできる。
 以下に、本発明をより具体的に例示する。なお、これらの例示は本発明の一例にすぎず、本発明の範囲をこれらに限定するものでない。
触媒製造例1
(担持工程〈イオン交換〉)
 BEA型ゼオライト(SiO/Al比=25)60gを80℃に加温した硝酸鉄(III)九水和物(Fe(NO・9HO)13.2gを含む水溶液2000mlに投入し、次いで温度80℃に保持した状態で3時間攪拌し、スラリーを得た。濾紙(No.5C)を取り付けた吸引漏斗にて前記スラリーに脱水処理を施した。濾紙上のケーキに所定量の純水を注ぎ、洗浄した。洗浄済みケーキを110℃で12時間乾燥させ、500℃で5時間焼成した。焼成物を遊星ボールミルで粉砕して粉末状のFe担持ゼオライト触媒Aを得た。
(ピリジン-TPD法)
 吸着管に所定量(12.5mg)の触媒を充填した。前処理としてヘリウムを30cc/分で通気させ触媒層温度450℃で1時間保持した。触媒層温度を100℃以下まで下げた。次いで、ヘリウムを10cc/分で通気させ触媒層温度150℃に維持された状態の吸着管の触媒層入口側にピリジンを注入した。触媒層出口側においてピリジンをGC-FIDで定量した。ピリジン量が変動しなくなったとき(150℃での飽和吸着と見做して)ピリジンの注入を止めた。ピリジンの注入を止めてから30分間経過したときに触媒層温度を20℃/分で上昇させた。150℃から800℃までの間に触媒層出口側においてピリジンをGC-FIDで定量し、TPDスペクトルを記録した。Fe担持ゼオライト触媒AのTPDスペクトルおよびピリジン脱離量などを図3および表1に示す。Fe担持ゼオライト触媒Aの結晶子サイズは14.8nmであった。
(コート工程)
 Fe担持ゼオライト触媒Aを純水に投入し、次いで攪拌して触媒スラリーを得た。ハニカム基材に触媒スラリーを被覆量70g/mにて塗布した。これを120℃で2時間乾燥させ、次いで500℃で2時間焼成して、ハニカム触媒Aを得た。
触媒製造例2
 BEA型ゼオライト(SiO/Al比=25)をBEA型ゼオライト(SiO/Al比=28)に替えた以外は触媒製造例1と同じ方法で粉末状のFe担持ゼオライト触媒Bおよびハニカム触媒Bを得た。Fe担持ゼオライト触媒BのTPDスペクトルおよびピリジン脱離量などを図3および表1に示す。
触媒製造例3
 BEA型ゼオライト(SiO/Al比=25)をBEA型ゼオライト(SiO/Al比=7.5)に替えた以外は触媒製造例1と同じ方法で粉末状のFe担持ゼオライト触媒Cおよびハニカム触媒Cを得た。Fe担持ゼオライト触媒CのTPDスペクトルおよびピリジン脱離量などを図3および表1に示す。
触媒製造例4
 CHA型ゼオライト(SiO/Al比=24)60gを80℃に加温した硝酸鉄(III)九水和物(Fe(NO・9HO)13.2gを含む水溶液2000mlに投入し、次いで温度80℃に保持した状態で3時間攪拌し、スラリーを得た。濾紙(No.5C)を取り付けた吸引漏斗にて前記のスラリーを濾過した。濾紙上のケーキに所定量の純水を注ぎ、洗浄した。洗浄済みケーキを110℃で12時間乾燥させ、500℃で5時間焼成した。焼成物を遊星ボールミルで粉砕して粉末を得た。
 この粉末を硝酸鉄(III)九水和物(Fe(NO・9HO)13.2gを含む水溶液2000mlに投入し、上記操作をさらに2回(トータル3回のイオン交換工程を)行って、粉末状のFe担持ゼオライト触媒Dを得た。Fe担持ゼオライト触媒DのTPDスペクトルおよびピリジン脱離量などを図3および表1に示す。
 Fe担持ゼオライト触媒AをFe担持ゼオライト触媒Dに替えた以外は触媒製造例1と同じ方法でハニカム触媒Dを得た。
触媒製造例5
 BEA型ゼオライト(SiO/Al比=25)をMFI型ゼオライト(SiO/Al比=30)に替えた以外は触媒製造例1と同じ方法で粉末状のFe担持ゼオライト触媒Eおよびハニカム触媒Eを得た。Fe担持ゼオライト触媒EのTPDスペクトルおよびピリジン脱離量などを図3および表1に示す。
触媒製造例6
 BEA型ゼオライト(SiO/Al比=25)をBEA型ゼオライト(SiO/Al比=24)に替えた以外は触媒製造例1と同じ方法で粉末状のFe担持ゼオライト触媒Fおよびハニカム触媒Fを得た。Fe担持ゼオライト触媒FのTPDスペクトルおよびピリジン脱離量などを図3および表1に示す。
Figure JPOXMLDOC01-appb-T000001
試験例1
 前記のハニカム触媒A~Fのそれぞれを反応管に取り付けた。これらに表2に示す組成比の模擬ガスをAV=ガス量/触媒の幾何学表面積=25Nm/hrで流し、反応管を400℃、450℃および500℃に設定した。それぞれの温度における、NO分解率およびNO分解率を計測した。結果を図4および図5に示す。特に触媒AおよびBは400~500℃においてNO分解率およびNO分解率がともに高かった。
Figure JPOXMLDOC01-appb-T000002
試験例2
 担体種、担持量、焼成温度、焼成時間、触媒助剤添加、SiO/Al比などを変更した以外は触媒製造例1と同じ方法で多種類の粉末状のFe担持ゼオライト触媒およびハニカム触媒を得た。前記ピリジン-TPD法によって150℃以上450℃未満の範囲内で脱離するピリジンの量を計測した。試験例1と同じ方法でNO分解率を計測した。計測結果に基づき、500℃におけるNO分解速度が一次反応であると仮定した場合の触媒反応速度を算出した。結果を図6に示す。150℃以上450℃未満の範囲内で脱離するピリジンの量が多いほど触媒反応速度(Nm/hr)が高い傾向があることがわかる。
触媒製造例7
 BEA型ゼオライト(SiO/Al比=25)60gを80℃に加温した硫酸鉄(II)七水和物(FeSO・7HO)9.1gを含む水溶液2000mlに投入し、次いで温度80℃に保持した状態で3時間攪拌し、スラリーを得た。濾紙(No.5C)を取り付けた吸引漏斗にて前記スラリーに脱水処理を施した。濾紙上のケーキに所定量の純水を注ぎ、洗浄した。洗浄済みケーキを110℃で12時間乾燥させ、500℃で5時間焼成した。焼成物を遊星ボールミルで粉砕して粉末状のFe担持ゼオライト触媒Gを得た。Fe担持ゼオライト触媒GのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
 Fe担持ゼオライト触媒Gを純水に投入し、次いで攪拌して触媒スラリーを得た。ハニカム基材に触媒スラリーを被覆量70g/mにて塗布した。これを120℃で2時間乾燥させ、次いで500℃で2時間焼成して、ハニカム触媒Gを得た。
触媒製造例8
 硫酸鉄(II)七水和物(FeSO・7HO)9.1gを硝酸鉄(III)九水和物(Fe(NO・9HO)13.2gに変え、焼成時の温度500℃を600℃に変えた以外は、触媒製造例7と同じ方法で、粉末状のFe担持ゼオライト触媒Hを得た。Fe担持ゼオライト触媒HのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
 Fe担持ゼオライト触媒GをFe担持ゼオライト触媒Hに替えた以外は、触媒製造例7と同じ方法で、ハニカム触媒Hを得た。
触媒製造例9
 大きい結晶子サイズのBEA型ゼオライト(SiO/Al比=10)60gを80℃に加温した硝酸鉄(III)九水和物(Fe(NO・9HO)26.4gを含む水溶液2000mlに投入し、次いで温度80℃に保持した状態で3時間攪拌し、スラリーを得た。濾紙(No.5C)を取り付けた吸引漏斗にて前記スラリーに脱水処理を施した。濾紙上のケーキに所定量の純水を注ぎ、洗浄した。洗浄済みケーキを110℃で12時間乾燥させ、600℃で5時間焼成した。焼成物を遊星ボールミルで粉砕して粉末状のFe担持ゼオライト触媒Jを得た。Fe担持ゼオライト触媒JのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
 Fe担持ゼオライト触媒Jを純水に投入し、次いで攪拌して触媒スラリーを得た。ハニカム基材に触媒スラリーを被覆量70g/mにて塗布した。これを120℃で2時間乾燥させ、次いで500℃で2時間焼成して、ハニカム触媒Jを得た。
触媒製造例10
 BEA型ゼオライト(SiO/Al比=10)を大きい結晶子サイズのBEA型ゼオライト(SiO/Al比=12)に替えた以外は、触媒製造例9と同じ方法で、粉末状のFe担持ゼオライト触媒Kおよびハニカム触媒Kを得た。Fe担持ゼオライト触媒KのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
触媒製造例11
 硝酸鉄(III)九水和物(Fe(NO・9HO)26.4gを硫酸鉄(II)七水和物(FeSO・7HO)18.2gに変え、焼成時の温度600℃を500℃に変えた以外は、触媒製造例9と同じ方法で、粉末状のFe担持ゼオライト触媒Lを得た。Fe担持ゼオライト触媒LのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
 Fe担持ゼオライト触媒JをFe担持ゼオライト触媒Lに替えた以外は、触媒製造例9と同じ方法で、ハニカム触媒Lを得た。
触媒製造例12
 硝酸鉄(III)九水和物(Fe(NO・9HO)26.4gを硫酸鉄(II)七水和物(FeSO・7HO)18.2gに変えた以外は、触媒製造例9と同じ方法で、粉末状のFe担持ゼオライト触媒Mおよびハニカム触媒Mを得た。Fe担持ゼオライト触媒MのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
触媒製造例13
 焼成時の温度600℃を500℃に変えた以外は、触媒製造例9と同じ方法で、粉末状のFe担持ゼオライト触媒Nを得た。Fe担持ゼオライト触媒NのTPDスペクトル、ピリジン脱離量、結晶子サイズなどを図7および表3に示す。
 Fe担持ゼオライト触媒JをFe担持ゼオライト触媒Nに替えた以外は、触媒製造例9と同じ方法で、ハニカム触媒Nを得た。
Figure JPOXMLDOC01-appb-T000003
試験例3
 前記のハニカム触媒G、HおよびJ~Nのそれぞれを反応管に取り付けた。これらに表4に示す組成比の模擬ガスをAV=ガス量/触媒の幾何学表面積=25Nm/hr(SV=ガス量/触媒量=20000hr-1)で流し、反応管を350℃、400℃および450℃に設定した。それぞれの温度における、NO分解率およびNO分解率を計測した。結果を図8および図9に示す。結晶子サイズが大きく且つ脱離量wが多い、ハニカム触媒J~Nは、ハニカム触媒GおよびHに比較して、NO分解率およびNO分解率がともに高かった。
Figure JPOXMLDOC01-appb-T000004
触媒製造例14
 被覆量70g/mを被覆量140g/mに変えた以外は、触媒製造例7と同じ方法で、ハニカム触媒G2を得た。
触媒製造例15
 被覆量70g/mを被覆量140g/mに変えた以外は、触媒製造例9と同じ方法で、ハニカム触媒J2を得た。
試験例4
 前記のハニカム触媒G2およびJ2のそれぞれを反応管に取り付けた。これらに表4に示す組成比の模擬ガスをAV=25Nm/hrおよび8.3Nm/hrで流し、反応管を350℃、400℃および450℃に設定した。それぞれの温度及び流量における、NO分解率およびNO分解率を計測した。結果を図10および図11に示す。AV=25Nm/hrにおけるハニカム触媒J2のNO分解率が、AV=8.3Nm/hrにおけるハニカム触媒G2のNO分解率と同程度であった。このことは、ハニカム触媒J2のNO分解速度定数が、ハニカム触媒G2のNO分解速度定数に比較して、約3倍高いと、解釈できる。
触媒製造例16
 ハニカム触媒G、JおよびKに表5に示す条件で水熱処理を70時間施して、ハニカム触媒GH、JHおよびKHをそれぞれ得た。
試験例5(耐水性/耐SOx性の評価)
 ハニカム触媒G、J、K、GH、JHおよびKHのそれぞれを反応管に取り付けた。これらに表4に示す組成比の模擬ガスをAV=25Nm/hrで流し、反応管を350℃、400℃および450℃に設定した。それぞれの温度における、NO分解率およびNO分解率を計測した。結果を図12および図13に示す。本発明のハニカム触媒は、水熱処理後においても、NO分解率およびNO分解率がさほど低下せず、60%以上および90%以上を維持していること、すなわち耐水性および耐硫黄酸化物性に優れることがわかる。
Figure JPOXMLDOC01-appb-T000005
触媒製造例17
 OSDAフリーBEA型ゼオライト(SiO/Al比=10)60gを80℃に加温した硫酸鉄(II)七水和物(FeSO・7HO)18.2gを含む水溶液2000mlに投入し、次いで温度80℃に保持した状態で3時間攪拌し、スラリーを得た。濾紙(No.5C)を取り付けた吸引漏斗にて前記スラリーに脱水処理を施した。濾紙上のケーキに所定量の純水を注ぎ、洗浄した。洗浄済みケーキを110℃で12時間乾燥させ、500℃で5時間焼成した。焼成物を遊星ボールミルを純水に投入し、次いで攪拌して触媒スラリーを得た。ハニカム基材に触媒スラリーを被覆量70g/mにて塗布した。これを120℃で2時間乾燥させ、次いで500℃で2時間焼成して、ハニカム触媒Oを得た。ハニカム触媒Oについて試験例3と同じ試験を行った。結果を図14および図15に示す。
触媒製造例18
 OSDAフリーBEA型ゼオライト(SiO/Al比=10)60gを80℃に加温した硝酸鉄(III)九水和物(Fe(NO・9HO)26.4gを含む水溶液2000mlに投入し、次いで温度80℃に保持した状態で3時間攪拌し、スラリーを得た。濾紙(No.5C)を取り付けた吸引漏斗にて前記スラリーに脱水処理を施した。濾紙上のケーキに所定量の純水を注ぎ、洗浄した。洗浄済みケーキを110℃で12時間乾燥させ、600℃で5時間焼成した。焼成物を遊星ボールミルを純水に投入し、次いで攪拌して触媒スラリーを得た。ハニカム基材に触媒スラリーを被覆量70g/mにて塗布した。これを120℃で2時間乾燥させ、次いで500℃で2時間焼成して、ハニカム触媒Pを得た。ハニカム触媒Pについて試験例3と同じ試験を行った。結果を図14および図15に示す。
触媒製造例19
 焼成時の温度600℃を500℃に変えた以外は、触媒製造例18と同じ方法で、粉末状のFe担持ゼオライト触媒Qを得た。Fe担持ゼオライト触媒PをFe担持ゼオライト触媒Qに替えた以外は、触媒製造例18と同じ方法で、ハニカム触媒Qを得た。ハニカム触媒Qについて試験例3と同じ試験を行った。結果を図14および図15に示す。
触媒製造例20
 OSDAフリーBEA型ゼオライト(SiO/Al比=10)をBEA型ゼオライト(SiO/Al比=12)に替えた以外は、触媒製造例18と同じ方法で、粉末状のFe担持ゼオライト触媒Rおよびハニカム触媒Rを得た。ハニカム触媒Rについて試験例3と同じ試験を行った。結果を図14および図15に示す。
触媒製造例21
 硝酸鉄(III)九水和物(Fe(NO・9HO)26.4gを硫酸鉄(II)七水和物(FeSO・7HO)18.2gに変えた以外は、触媒製造例18と同じ方法で、粉末状のFe担持ゼオライト触媒Sおよびハニカム触媒Sを得た。ハニカム触媒Sについて試験例3と同じ試験を行った。結果を図14および図15に示す。
触媒製造例22
 被覆量70g/mを被覆量140g/mに変えた以外は、触媒製造例18と同じ方法で、ハニカム触媒P2を得た。ハニカム触媒P2について試験例4と同じ試験を行った。AV=25Nm/hrにおけるハニカム触媒P2のNO分解率が、AV=8.3Nm/hrにおけるハニカム触媒G2のNO分解率と同程度であった。このことは、ハニカム触媒P2のNO分解速度定数が、ハニカム触媒G2のNO分解速度定数に比較して、約3倍高いと、解釈できる。
触媒製造例23
 ハニカム触媒Pに表5に示す条件で水熱処理を70時間施して、ハニカム触媒PHを得た。ハニカム触媒PHについて試験例5と同じ試験を行った。ハニカム触媒Pは、水熱処理後(ハニカム触媒PH)においても、NO分解率およびNO分解率がさほど低下せず、60%以上および90%以上を維持していた。すなわち、耐水性および耐硫黄酸化物性に優れていた。
 1:エンジンシリンダ
 2:触媒反応器
 3:空気
 4:燃料
 5:エキゾーストマニホールド
 6:還元剤
 7:温度調節器
 8:N2O分解触媒固定層
 12:タービン
 13:コンプレッサ
 14:インテークマニホールド
 15:排気管

Claims (14)

  1.  SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ
     TPDスペクトルにおいて、150℃以上450℃未満の範囲内で脱離するピリジンの総量が触媒1gに対して100μmol以上である、
    亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  2.  SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ
     TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおけるピリジン脱離量に対する150℃以上450℃未満の範囲内に在る最大ピークトップにおけるピリジン脱離量の比が1より大きい、
    亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  3.  SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ
     TPDスペクトルにおいて、450℃以上800℃以下の範囲内で脱離するピリジンの総量に対する150℃以上450℃未満の範囲内で脱離するピリジンの総量の比が0.9以上である、
    亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  4.  SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ TPDスペクトルにおいて、450℃以上800℃以下の範囲内に在る最大ピークトップにおける温度が490℃以上650℃以下である、
    亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  5.  SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ
     ピリジンの飽和吸着量が触媒1gに対して100μmol以上である、
    亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  6.  SiOおよびAlを含む担体と、それに担持してなる鉄元素とを含有し、且つ
     結晶子サイズが20nm以上である、
     亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  7.  有機構造規定剤(OSDA)フリーゼオライトと、それに担持してなる鉄元素とを含有する、
     亜酸化窒素の分解反応をまたは亜酸化窒素および一酸化窒素の分解反応を促進させることができるように構成された、触媒。
  8.  HO20%およびSO20ppmを含有する530℃のガスに70時間曝した後も、450℃の条件において、NO分解率が60%以上およびNO分解率が90%以上である、請求項1~7のいずれかひとつに記載の触媒。
  9.  基材と、該基材を被覆する請求項1~8のいずれかひとつに記載の触媒とを含有する、触媒エレメント。
  10.  請求項1~8のいずれかひとつに記載の触媒若しくは請求項9に記載の触媒エレメントに、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスと、還元剤とを接触させて、亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを分解することを含む、
    水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスから亜酸化窒素を若しくは亜酸化窒素と一酸化窒素とを減らすための方法。
  11.  ガスは、水の含有量が10%以上であり、硫黄酸化物の含有量が15ppm以上である、請求項10に記載の方法。
  12.  請求項1~8に記載の触媒若しくは請求項9に記載の触媒エレメントを収容してなる反応器、
     被処理ガスを反応器に流入させるように構成された第一供給ライン、
     還元剤を反応器に流入させるように構成された第二供給ライン、および
     反応器からガスを流出させるように構成された排出ライン
    を具有し、
     被処理ガスが、水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素とを含有するガス若しくは水および硫黄酸化物から選ばれる少なくもひとつと亜酸化窒素と一酸化窒素とを含有するガスである、
    排ガス処理装置。
  13.  被処理ガスは、水の含有量が10%以上であり、硫黄酸化物の含有量が15ppm以上である、請求項12に記載の排ガス処理装置。
  14.  請求項12または13に記載の排ガス処理装置を有する、アンモニア燃料エンジン。
PCT/JP2023/012289 2022-03-29 2023-03-27 N2o分解触媒 WO2023190385A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054675 2022-03-29
JP2022054675 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190385A1 true WO2023190385A1 (ja) 2023-10-05

Family

ID=88202322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012289 WO2023190385A1 (ja) 2022-03-29 2023-03-27 N2o分解触媒

Country Status (2)

Country Link
TW (1) TW202402393A (ja)
WO (1) WO2023190385A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058807A1 (ja) * 2008-11-19 2010-05-27 日立造船株式会社 アンモニアエンジンシステム
JP2014176808A (ja) * 2013-03-14 2014-09-25 Mitsubishi Heavy Ind Ltd 亜酸化窒素処理触媒及び亜酸化窒素処理触媒を用いた排ガスの浄化方法
WO2021177020A1 (ja) * 2020-03-06 2021-09-10 三菱重工業株式会社 アンモニアエンジン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058807A1 (ja) * 2008-11-19 2010-05-27 日立造船株式会社 アンモニアエンジンシステム
JP2014176808A (ja) * 2013-03-14 2014-09-25 Mitsubishi Heavy Ind Ltd 亜酸化窒素処理触媒及び亜酸化窒素処理触媒を用いた排ガスの浄化方法
WO2021177020A1 (ja) * 2020-03-06 2021-09-10 三菱重工業株式会社 アンモニアエンジン

Also Published As

Publication number Publication date
TW202402393A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5261189B2 (ja) Nox選択的触媒還元効率の改善されたゼオライト触媒
US9597671B2 (en) Catalyst for treating exhaust gas
EP2517773B2 (en) Copper/LEV-zeolite SCR catalyst
EP3388392B1 (en) Copper-containing zeolites having a low alkali metal content, method of making thereof, and their use as scr catalysts
JP6951343B2 (ja) 鉄含有aeiゼオライト触媒の直接合成のための方法
JP7000328B2 (ja) アルカリ金属を本質的に含まないFe-AEIゼオライト材料を含む触媒の存在下でのオフガスからの亜酸化窒素の除去方法
JP6943861B2 (ja) 水熱安定性鉄含有aeiゼオライトscr触媒
US5552129A (en) Catalytic system for the reduction of nitrogen oxides
JP6987766B2 (ja) アルカリ金属を本質的に含まないfe−aeiゼオライト材料を含むscr触媒の存在下での選択触媒還元による排気ガスからの窒素酸化物の除去方法
JP6100381B2 (ja) 排ガスの浄化および酸化触媒の再生のための方法
WO2023190385A1 (ja) N2o分解触媒
WO2024048467A1 (ja) アンモニア分解触媒および排ガス処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780394

Country of ref document: EP

Kind code of ref document: A1