WO2023190100A1 - 内燃機関用潤滑油組成物 - Google Patents

内燃機関用潤滑油組成物 Download PDF

Info

Publication number
WO2023190100A1
WO2023190100A1 PCT/JP2023/011688 JP2023011688W WO2023190100A1 WO 2023190100 A1 WO2023190100 A1 WO 2023190100A1 JP 2023011688 W JP2023011688 W JP 2023011688W WO 2023190100 A1 WO2023190100 A1 WO 2023190100A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
internal combustion
combustion engine
engine according
Prior art date
Application number
PCT/JP2023/011688
Other languages
English (en)
French (fr)
Inventor
翔瑚 江龍
穰 兼子
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023190100A1 publication Critical patent/WO2023190100A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/24Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals

Definitions

  • the present invention relates to a lubricating oil composition for internal combustion engines.
  • At least one viscosity index improver selected from a calcium-based detergent, a magnesium-based detergent, a styrene-diene copolymer and an ethylene- ⁇ -olefin copolymer,
  • a lubricating oil composition containing a nitrogen-containing dispersant and the like has been proposed (Patent Document 1).
  • Patent Document 1 A lubricating oil composition containing a nitrogen-containing dispersant and the like has been proposed.
  • the problem to be solved by the present invention is to provide a lubricating oil composition for internal combustion engines that is excellent in fuel efficiency.
  • the present inventor conducted intensive studies and found that it is possible to provide a lubricating oil composition for internal combustion engines that maintains LSPI prevention performance and cleanliness performance and is excellent in fuel efficiency. Ta.
  • the present invention was made based on this knowledge and consists of the following.
  • A Lubricating base oil
  • B a molybdenum-based friction modifier containing molybdenum in an amount of 50 mass ppm or more and 2000 mass ppm or less based on the total amount of the composition
  • C As an ashless friction modifier, R 1 -NH-(CH 2 ) n1 -NH 2 (1)
  • R 1 is an aliphatic hydrocarbon group having 4 to 24 carbon atoms which may have a substituent, or an alicyclic carbonized group having 6 to 15 carbon atoms which may have a substituent
  • n1 represents 2 to 5
  • D A lubricating oil composition for an internal combustion engine, which contains magnesium carbonate sulfonate as a metal-based detergent.
  • ⁇ 2> The lubricating oil composition for an internal combustion engine according to ⁇ 1>, wherein the lubricating base oil (A) has a kinematic viscosity at 100° C. of 2.0 mm 2 /s or more and 8.0 mm 2 /s or less.
  • ⁇ 4> (B) The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 3>, wherein the molybdenum-based friction modifier is molybdenum dithiocarbamate (MoDTC).
  • MoDTC molybdenum dithiocarbamate
  • ⁇ 5> (C) The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 4>, wherein the ashless friction modifier is N-oleylpropanediamine.
  • ⁇ 6> (C) The lubricating oil composition for an internal combustion engine according to ⁇ 5>, further containing N-oleyl-N'-acylpropanediamine as an ashless friction modifier.
  • ⁇ 10> E) The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 9>, further containing polymethacrylate (PMA) as a viscosity index improver.
  • PMA polymethacrylate
  • ⁇ 11> F
  • the internal combustion engine according to any one of ⁇ 1> to ⁇ 10> further containing an amine antioxidant as an antioxidant in a range equal to or higher than the mass fraction of the phenolic antioxidant.
  • Lubricating oil composition ⁇ 12>
  • G The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 11>, further containing zinc dialkyldithiophosphate (ZnDTP) as an anti-wear agent.
  • ZnDTP zinc dialkyldithiophosphate
  • ⁇ 13> The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 12>, which has a kinematic viscosity at 100° C. of 4.0 mm 2 /s or more and 12.5 mm 2 /s or less.
  • ⁇ 14> Used in engines equipped with gasoline particulate filters (GPF), The lubricating oil composition for internal combustion engines according to any one of ⁇ 1> to ⁇ 13>.
  • ⁇ 15> The lubricating oil composition for an internal combustion engine according to any one of ⁇ 1> to ⁇ 12>, which is used in a hybrid vehicle equipped with an electric motor.
  • the lubricating oil composition of the present invention has the extraordinary effect of significantly improving fuel efficiency in internal combustion engines.
  • the lubricating oil composition for internal combustion engines of the present invention includes a lubricating oil base oil, a molybdenum-based friction modifier containing a molybdenum amount of 50 mass ppm or more and 2000 mass ppm or less, based on the total amount of the composition.
  • R 1 -NH-(CH 2 ) n1 -NH 2 As an ashless friction modifier, R 1 -NH-(CH 2 ) n1 -NH 2 (1) (In formula (1), R 1 is an aliphatic hydrocarbon group having 4 to 24 carbon atoms which may have a substituent, or an alicyclic carbonized group having 6 to 15 carbon atoms which may have a substituent) represents a hydrogen group or an aromatic hydrocarbon group having 6 to 15 carbon atoms which may have a substituent, and n1 represents 2 to 5); Contains magnesium carbonate sulfonate as a metal detergent.
  • the base oil of the present invention either mineral base oil or synthetic base oil can be used.
  • the kinematic viscosity at 100° C. of the lubricating base oil of the present invention is 2.0 mm 2 /s or more and 8.0 mm 2 /s or less, preferably 3.0 mm 2 /s or more and 6.0 mm 2 /s or less, and more. Preferably it is 3.0 mm 2 /s or more and 4.5 mm 2 /s or less, most preferably 3.0 mm 2 /s or more and 4.2 mm 2 /s or less.
  • the kinematic viscosity at 100°C means the kinematic viscosity at 100°C measured in accordance with ASTM D-445.
  • the viscosity index of the lubricating base oil of the present invention is preferably 80 or more, more preferably 100 or more. When the viscosity index is within the above numerical range, it is possible to improve the viscosity-temperature characteristics of the lubricating oil composition. Note that in this specification, the viscosity index means a viscosity index measured in accordance with ASTM D-2270.
  • Mineral base oils include base oil fractions obtained by distilling crude oil under normal pressure or further distilling it under reduced pressure and refining distillate oil through various refining processes.
  • the refining process includes hydrorefining, solvent extraction, solvent dewaxing, hydrodewaxing, sulfuric acid washing, clay treatment, etc., and the base oil of the present invention can be obtained by combining these in an appropriate order.
  • Also useful is a mixture of a plurality of refined oils with different properties obtained from different crude oils or distillate oils by different process combinations and sequences. Either method can be used preferably by adjusting the properties of the base oil obtained so that it satisfies the above-mentioned physical properties.
  • a base material with excellent hydrolytic stability such as polyolefins such as poly- ⁇ -olefins, polybutenes, and copolymers of two or more various olefins, diesters, polyol esters, etc.
  • polyolefins such as poly- ⁇ -olefins, polybutenes, and copolymers of two or more various olefins, diesters, polyol esters, etc.
  • ester-based synthetic oils such as alkyldiphenyl and polypropylene glycol, polyalkylene glycols, alkylbenzenes, and alkylnaphthalenes.
  • poly- ⁇ -olefin is preferred in terms of oxidation stability and low-temperature fluidity.
  • the exemplified synthetic base oils can be used alone or in combination of two or more. Furthermore, it can also be used in combination with the mineral base oil.
  • the individual base oils before mixing must be outside the range of physical properties. can also be used. Therefore, each synthetic base oil does not necessarily have to satisfy the above-mentioned physical properties, but preferably falls within the range of the above-mentioned physical properties.
  • the content of the lubricating base oil of the present invention is 80% by mass or more and 95% by mass or less, preferably 85% by mass or more, based on the total amount of the lubricating oil composition. It is 91% by mass or less.
  • the content of the base oil is within the above numerical range, appropriate lubricity can be ensured, and the additives can be easily maintained in an appropriately dissolved or dispersed state in the lubricating oil composition.
  • the molybdenum friction modifier of the present invention is preferably molybdenum dithiocarbamate (MoDTC).
  • MoDTC molybdenum dithiocarbamate
  • Addition of MoDTC provides the effect of reducing friction in the boundary lubrication region in the lubricating oil composition.
  • the low friction caused by MoDTC is thought to be because MoDTC decomposes due to frictional energy and generates low-friction MoS2 as a tribofilm.
  • MoDTC a compound represented by the following formula (2) can be used.
  • R 3 to R 6 may be the same or different, and each is an alkyl group having 2 to 24 carbon atoms or an (alkyl)aryl group having 6 to 24 carbon atoms, preferably 4 to 24 carbon atoms. 13 alkyl group or an (alkyl)aryl group having 10 to 15 carbon atoms.
  • the alkyl group may be a primary alkyl group, a secondary alkyl group, or a tertiary alkyl group, and may be linear or branched.
  • “(alkyl)aryl group” means "aryl group or alkylaryl group.” In the alkylaryl group, the substitution position of the alkyl group on the aromatic ring is arbitrary.
  • Y 1 to Y 4 are each independently a sulfur atom or an oxygen atom, and at least one of Y 1 to Y 4 is a sulfur atom.
  • Molybdenum-containing compounds other than MoDTC include, for example, molybdenum dithiophosphate; molybdenum compounds (for example, molybdenum oxides such as molybdenum dioxide and molybdenum trioxide; molybdic acids such as orthomolybdic acid, paramolybdic acid, and (poly) molybdic acid sulfide; Molybdate salts such as metal salts and ammonium salts of molybdic acid, molybdenum sulfides such as molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, and molybdenum polysulfide, molybdic acid sulfides, metal salts or amine salts of molybdic sulfide, and chlorides.
  • molybdenum dithiophosphate molybdenum compounds (for example, molybdenum oxides such as molybdenum dioxide
  • halogenated molybdenum such as molybdenum
  • sulfur-containing organic compounds e.g., alkyl(thio)xanthates, thiadiazole, mercaptothiadiazole, thiocarbonates, tetrahydrocarbyl thiuram disulfide, bis(di(thio)hydrocarbyl dithiophosphonates) ) disulfides, organic (poly)sulfides, sulfurized esters, etc.
  • complexes of sulfur-containing molybdenum compounds such as molybdenum sulfide and molybdic acid sulfide with alkenyl succinimides, etc.
  • molybdenum-containing compounds containing sulfur Mention may be made of molybdenum-containing compounds containing sulfur.
  • the molybdenum-containing compound may be a mononuclear molybdenum compound or a polynuclear molybdenum compound such as a dinuclear molybdenum compound or a trinuclear molybdenum compound.
  • molybdenum-containing compound other than MoDTC it is also possible to use a molybdenum-containing compound that does not contain sulfur as a constituent element.
  • molybdenum-containing compounds that do not contain sulfur as a constituent element include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, and molybdenum salts of alcohols. Complexes, molybdenum salts of organic acids and molybdenum salts of alcohols are preferred.
  • the amount of molybdenum in the molybdenum friction modifier based on the total amount of the composition is preferably 300 mass ppm or more and 1000 mass ppm or less, more preferably 300 mass ppm or more and 900 mass ppm or less, and even more preferably 600 mass ppm or more and 900 mass ppm or less. It is not more than 750 ppm by mass and most preferably not more than 750 ppm by mass and not more than 850 ppm by mass. When the amount of molybdenum is 300 mass ppm or more, the friction reduction effect can be improved and the LSPI suppression ability can be further improved.
  • the storage stability of the lubricating oil composition can be improved.
  • the content of calcium, magnesium, zinc, phosphorus, boron, and molybdenum elements in oil was measured using inductively coupled plasma optical emission spectroscopy (intensity ratio method) in accordance with JPI-5S-62. It shall be measured by internal standard method)).
  • the ashless friction modifier of the present invention is represented by the following formula (1).
  • R 1 is an aliphatic hydrocarbon group having 4 to 24 carbon atoms which may have a substituent, or an alicyclic carbonized group having 6 to 15 carbon atoms which may have a substituent
  • n1 is more preferably 14 to 20, and n2 is more preferably 3. It is preferable to further contain oleic acid. More preferably, it contains N-oleylpropanediamine, oleic acid and N-oleyl-N'-acylpropanediamine.
  • Oleic acid, N-oleylpropanediamine, and N-oleyl-N'-acylpropanediamine contain structures in which the alkyl group is myristyl, palmityl, palmitoleyl, stearyl, linoleyl, or eicosyl in addition to oleyl as a subcomponent. sell. This is to improve fuel efficiency without excessively impairing cleanliness.
  • the amount of nitrogen derived from the relevant component of the ashless friction modifier is preferably 10 ppm or more, more preferably 120 ppm or more. This is because if the amount is less than 10 ppm, fuel saving performance may be impaired, but excessive addition may have an adverse effect on cleanliness maintenance performance and material compatibility. Further, the nitrogen content in the oil shall be measured by chemiluminescence method in accordance with JIS K2609.
  • Metallic detergent (D) As the metal detergent, magnesium sulfonates are preferred, and magnesium carbonate sulfonates overbased with carbonates (magnesium carbonate) are preferred. Further, they can be used alone or in combination of two or more.
  • magnesium sulfonates include magnesium salts of alkyl aromatic sulfonic acids obtained by sulfonating an alkyl aromatic compound. It is also possible to use its basic or overbased salts.
  • the molecular weight distribution of the alkyl aromatic compound is preferably 300 or more and 1500 or less, more preferably 400 or more and 1300 or less.
  • alkyl aromatic sulfonic acids examples include so-called petroleum sulfonic acids and synthetic sulfonic acids.
  • Examples of the petroleum sulfonic acid mentioned here include those obtained by sulfonating an alkyl aromatic compound of a lubricating oil fraction of mineral oil, and so-called mahogany acid, which is a by-product during the production of white oil.
  • Examples of synthetic sulfonic acids include straight-chain or branched alkyls obtained by recovering by-products in alkylbenzene manufacturing plants that are raw materials for detergents, or by alkylating benzene with polyolefins. Examples include sulfonated alkylbenzenes having groups.
  • synthetic sulfonic acids include sulfonated alkylnaphthalenes such as dinonylnaphthalene.
  • the sulfonating agent for sulfonating these alkyl aromatic compounds is not particularly limited, and for example, fuming sulfuric acid or sulfuric anhydride can be used.
  • magnesium sulfonate for example, a compound represented by the following formula (3) can be exemplified.
  • R 2 each independently represents an alkyl group or alkenyl group having 14 to 30 carbon atoms, and n represents 1 or 2.
  • the magnesium sulfonate may be overbased with carbonate or borate, but is preferably not overbased.
  • the lower limit of the amount of magnesium derived from magnesium sulfonate contained in the lubricating oil composition of the present invention is preferably 200 mass ppm or more, more preferably 300 mass ppm or more, based on the total amount of the lubricating oil composition.
  • the upper limit is preferably 1200 mass ppm or less, more preferably 1000 mass ppm or less.
  • the specific range is preferably 200 mass ppm or more and 1200 mass ppm or less, more preferably 300 mass ppm or more and 1000 mass ppm or less.
  • the lower limit of the base number of the magnesium sulfonate contained in the lubricating oil composition of the present invention is preferably 200 mgKOH/g or more, more preferably 250 mgKOH/g or more, and still more preferably 300 mgKOH/g or more.
  • the upper limit is preferably 600 mgKOH/g or less, more preferably 500 mgKOH/g or less, and still more preferably 450 mgKOH/g.
  • the specific range is preferably 200 mgKOH/g or more and 600 mgKOH/g or less, more preferably 250 mgKOH/g or more and 500 mgKOH/g or less, and even more preferably 300 mgKOH/g or more and 450 mgKOH/g or less.
  • the base number means the base number measured by the perchloric acid method in accordance with JIS K2501:2003-9.
  • metal detergents are generally obtained by reaction in a diluent such as a solvent or a lubricating base oil. Therefore, metal-based detergents are commercially distributed in a diluted state with a diluent such as a lubricant base oil.
  • the base number of a metal-based detergent means the base number in a state including a diluent.
  • calcium borate salicylate Furthermore, it is preferable to contain calcium borate salicylate.
  • a salicylate-based detergent is preferred, and may be overbased with a carbonate (calcium carbonate) or a borate (calcium borate). Further, they can be used alone or in combination of two or more.
  • the lower limit of the amount of calcium derived from calcium salicylate is preferably 100 mass ppm or more, more preferably 300 mass ppm or more, based on the total amount of the lubricating oil composition. Preferably it is 400 mass ppm or more, particularly preferably 500 mass ppm or more.
  • the upper limit is preferably 2200 mass ppm or less, more preferably 2000 mass ppm or less, still more preferably 1800 mass ppm or less, particularly preferably 1550 ppm or less.
  • the specific range is preferably 100 mass ppm or more and 2200 mass ppm or less, more preferably 300 mass ppm or more and 2000 mass ppm or less, even more preferably 400 mass ppm or more and 1800 mass ppm or less, and particularly preferably 500 mass ppm or more and 1550 mass ppm or less.
  • the mass is less than ppm.
  • the lower limit of the base number of the calcium salicylate contained in the lubricating oil composition of the present invention is preferably 140 mgKOH/g or more, more preferably 170 mgKOH/g or more, and still more preferably 200 mgKOH/g or more.
  • the upper limit is preferably 500 mgKOH/g or less, more preferably 400 mgKOH/g or less, still more preferably 300 mgKOH/g or less.
  • the specific range is preferably 140 mgKOH/g or more and 500 mgKOH/g or less, more preferably 170 mgKOH/g or more and 400 mgKOH/g or less, and still more preferably 200 mgKOH/g or more and 300 mgKOH/g or less.
  • the lower limit of the total amount of calcium derived from the metal detergent is preferably 400 mass ppm or more, more preferably 700 mass ppm or more, still more preferably 850 mass ppm or more, and particularly preferably It is 1000 mass ppm or more.
  • the upper limit is preferably 2200 mass ppm or less, more preferably 2000 mass ppm or less, still more preferably 1800 ppm or less, particularly preferably 1550 ppm or less.
  • the specific range is preferably 400 mass ppm or more and 2000 mass ppm or less, more preferably 700 mass ppm or more and 2000 mass ppm or less, even more preferably 850 mass ppm or more and 1800 mass ppm or less, and particularly preferably 1000 mass ppm or more and 1550 mass ppm or less.
  • the mass is less than ppm.
  • PB polybutene
  • PIB polyisobutene
  • EPC
  • the lower limit of the weight average molecular weight (Mw) of the viscosity index improver is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more, and even more preferably 200,000 or more. ,000 or more, and the upper limit is preferably 1,000,000 or less, more preferably 700,000 or less, and even more preferably 500,000 or less. If the weight average molecular weight of the viscosity index improver is within the above numerical range, a sufficient viscosity index improvement effect can be obtained, excellent fuel efficiency, moderate viscosity increase effect, shear stability and lubricant base oil It has excellent solubility and storage stability.
  • weight average molecular weight and number average molecular weight of a polymer mean the weight average molecular weight and number average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the lower limit of the content of the viscosity index improver in terms of resin content is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and even more preferably is 1.0% by mass or more, and the upper limit is preferably 10.0% by mass or less, more preferably 5.0% by mass or less, still more preferably 3.0% by mass or less. If the content of the viscosity index improver is within the above numerical range, it is possible to further improve coking resistance while maintaining excellent viscosity-temperature characteristics.
  • antioxidant As the antioxidant, amine antioxidants and phenolic antioxidants are preferred.
  • amine antioxidant for example, known amine antioxidants such as alkylated diphenylamine, alkylated phenyl- ⁇ -naphthylamine, phenyl- ⁇ -naphthylamine, and phenyl- ⁇ -naphthylamine can be used.
  • phenolic antioxidants include known phenolic antioxidants such as 2,6-di-tert-butyl-4-methylphenol (DBPC) and 4,4'-methylenebis(2,6-di-tert-butylphenol). Antioxidants can be used.
  • An amine antioxidant is contained as an antioxidant in a range that is equal to or higher than the mass fraction of the phenolic antioxidant.
  • the content of the amine antioxidant relative to the content of the phenolic antioxidant is preferably 1.0 or more, more preferably 2.0 or more, and even more preferably 2.4 on a mass fraction basis. Above, the most preferred value is 5.0. Within the above numerical range, it is economically rational to reduce the total content of antioxidants while maintaining high-temperature antioxidant performance.
  • ZincDTP zinc dialkyldithiophosphate
  • examples of zinc dialkyldithiophosphate include compounds represented by the following formula (4).
  • R 8 to R 11 in the above formula (4) are each independently a linear or branched alkyl group having 1 to 24 carbon atoms.
  • This alkyl group may be primary, secondary, or tertiary.
  • zinc dialkyldithiophosphate zinc dithiophosphate having a primary alkyl group (primary ZnDTP) or zinc dithiophosphate having a secondary alkyl group (secondary ZnDTP) is preferable.
  • a material containing zinc dithiophosphate as a main component is preferable because it improves wear resistance.
  • these zinc dialkyldithiophosphates may be used alone or in combination of two or more.
  • the lubricating oil composition of the present invention contains zinc dialkyldithiophosphate
  • its content is 0.01% by mass or more and 20% by mass or less, preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the composition. , more preferably 0.2% by mass or more and 5% by mass or less, still more preferably 0.5% by mass or more and 2% by mass or less.
  • the amount of phosphorus derived from zinc dialkyldithiophosphate contained in the lubricating oil composition of the present invention is from 10 mass ppm to 2000 mass ppm, preferably from 550 mass ppm to 850 mass ppm, more preferably from 550 mass ppm to 850 mass ppm, based on the total amount of the composition. It is 700 mass ppm or more and 850 mass ppm or less.
  • a succinimide-based dispersant is preferred. It is preferred as a compound that effectively disperses and solubilizes insoluble matter derived from lubricating oil compositions or fuels produced in internal combustion engines.
  • the lubricating oil composition of the present invention contains a dispersant, its content is preferably 0.1% by mass or more and 10% by mass or less, more preferably 0.3% by mass or more and 8% by mass or less, based on the total amount of the composition. It is. When it is at least the lower limit, cleanliness and dispersibility are favorable, and when it is at most the upper limit, the viscosity properties are good, which is preferable from the viewpoint of fuel efficiency performance.
  • the composition may further contain other components commonly used in lubricating oil compositions, such as a rust preventive, a pour point depressant, a demulsifier, a metal deactivator, and an antifoaming agent.
  • rust preventives examples include petroleum sulfonates, alkylbenzene sulfonates, dinonylnaphthalene sulfonates, alkenyl succinates, and polyhydric alcohol esters.
  • the content of the rust inhibitor is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 10% by mass or less, based on the total amount of the lubricating oil composition. More preferably, it is 5% by mass or less.
  • the pour point depressant for example, a polymethacrylate polymer that is compatible with the lubricating base oil used can be used.
  • the content of the pour point depressant is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and preferably 10% by mass or less, based on the total amount of the lubricating oil composition. , more preferably 5% by mass or less.
  • demulsifier known demulsifiers such as polyalkylene glycol nonionic surfactants can be used.
  • the lubricating oil composition contains a demulsifier, its content may be, for example, 0.005 to 5% by weight, based on the total amount of the composition.
  • metal deactivators examples include imidazoline, pyrimidine derivatives, alkylthiadiazole, mercaptobenzothiazole, benzotriazole or its derivatives, tolyltriazole or its derivatives, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl -2,5-bisdialkyldithiocarbamate, 2-(alkyldithio)benzimidazole, ⁇ -(o-carboxybenzylthio)propionitrile and the like.
  • the content of the metal deactivator is based on the total amount of the lubricating oil composition, and the lower limit is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and the upper limit is preferably is 10% by mass or less, more preferably 5% by mass or less.
  • antifoaming agents examples include silicone oil with a kinematic viscosity of 1,000 to 100,000 mm 2 /s at 25°C, alkenylsuccinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long-chain fatty acids, and methyl salicylate. , and o-hydroxybenzyl alcohol.
  • the lower limit of the content of the antifoaming agent is preferably 0.0001% by mass or more, more preferably 0.0005% by mass or more, and the upper limit is preferably 1% by mass or more, based on the total amount of the lubricating oil composition. It is not more than 0.5% by mass, more preferably not more than 0.5% by mass.
  • the lubricating oil composition of the present invention preferably has a kinematic viscosity at 100°C of 4.0 mm 2 /s or more and 12.5 mm 2 /s or less, more preferably 5.0 mm 2 / s or more and 7.9 mm 2 /s. It is as follows. If the kinematic viscosity at 100°C is below the above upper limit, sufficient fuel efficiency can be obtained, and when it is above the above lower limit, an oil film will be formed at the lubricated location, resulting in excellent lubricity. Note that in this specification, the kinematic viscosity at 100°C means the kinematic viscosity at 100°C measured in accordance with ASTM D-445.
  • the lubricating oil composition of the present invention preferably has a kinematic viscosity at 40°C of 15 mm 2 /s or more and 70 mm 2 /s or less, more preferably 20 mm 2 / s or more and 30 mm 2 /s or less. If the kinematic viscosity at 40°C is below the above upper limit, sufficient fuel efficiency can be obtained, and if it is above the above lower limit, an oil film will be formed at the lubricated location, resulting in excellent lubricity and low evaporation loss. can do. Note that in this specification, the kinematic viscosity at 40°C means the kinematic viscosity at 40°C measured in accordance with ASTM D-445.
  • the viscosity index of the lubricating oil composition is preferably 120 or more and 400 or less, more preferably 130 or more and 300 or less. If the viscosity index of the lubricating oil composition is within the above numerical range, fuel efficiency can be improved while maintaining the HTHS viscosity at 150°C.
  • the lower limit of the HTHS viscosity at 150° C. of the lubricating oil composition is preferably 1.7 mPa s or more, more preferably 1.8 mPa s or more, and still more preferably 1.9 mPa s or more, Still more preferably 2.0 mPa ⁇ s or more, and the upper limit is preferably 3.5 mPa ⁇ s or less, more preferably 3.2 mPa ⁇ s or less, still more preferably 2.9 mPa ⁇ s or less and even more preferably 2.6 mPa ⁇ s or less.
  • the HTHS viscosity at 150° C. of the lubricating oil composition is 3.5 mPa ⁇ s or less, even better fuel efficiency can be obtained.
  • HTHS viscosity at 150°C means high-temperature high-shear viscosity at 150°C measured in accordance with ASTM D-4683.
  • Cleanliness was measured in accordance with JPI-5S-55-99.
  • the test conditions were a sample amount of 10 mg, a test temperature of 280° C., and a test time of 16 hours.
  • Lubricating oils with a rating of 2.0 or higher were rated as having good cleanliness.
  • the friction coefficient was measured using a high-speed reciprocating friction tester (TE77 manufactured by Phoenix Tribology).
  • TE77 manufactured by Phoenix Tribology
  • As test pieces a flat plate test piece SKS3 with a shape of 58 mm in length x 38 mm in width x 4 mm in thickness and a cylinder test piece EN1A with a shape of 6 mm in diameter x 16 mm in length were used.
  • the load was 10 N or 100 N
  • the sliding amplitude was 15 mm
  • the sliding frequency was 5 Hz
  • the test time was 10 minutes
  • the test temperature was 70°C or 100°C.
  • the average value of the test time of 5 to 10 minutes was adopted.
  • the lower limit of the nitrogen content in the lubricating oil composition is 700 mass ppm or more, preferably 800 mass ppm or more, and more preferably 900 mass ppm or more, based on the total amount of the lubricating oil composition. More preferably, it is 1000 mass ppm or more, and the upper limit is preferably 3000 mass ppm or less, more preferably 2500 mass ppm or less, and even more preferably 2000 mass ppm or less. If the nitrogen content in the lubricating oil composition is within the above numerical range, fuel efficiency can be improved while maintaining coking resistance.
  • the lubricating oil composition of the present invention Since the lubricating oil composition of the present invention has LSPI prevention properties, friction reduction properties, cleanliness, and fuel efficiency, it can be used in engines equipped with GPF, hybrid vehicle engines equipped with electric motors, engines equipped with superchargers, etc. It can also be used for lubrication.
  • a lubricating oil composition was obtained by blending the lubricating base oil and additives at the blending ratios shown in Table 1.
  • the blending amount of the additive is based on the total amount of the lubricating oil composition.
  • the following evaluation tests were conducted on the obtained lubricating oil composition. The results are shown in Table 1.
  • Base oil A Group III base oil 100°C kinematic viscosity 4.2 mm 2 /s, 40°C kinematic viscosity 19.4 mm 2 /s
  • Base oil B Group II base oil 100°C kinematic viscosity 3.0 mm 2 /s, 40°C kinematic viscosity 12.6 mm 2 /s
  • Base oil C Group IV base oil, 100°C kinematic viscosity 4.1 mm 2 /s, 40°C kinematic viscosity 19.0 mm 2 /s
  • Base oil D Group V base oil, 100°C kinematic viscosity 3.1 mm 2 /s, 40°C kinematic viscosity 10.9 mm 2 /s
  • Ashless friction modifier Ashless friction modifier A: N-oleylpropanediamine, N 9.1% by mass Ashless friction modifier B: Oleic acid Ashless friction modifier C: N-oleyl-N'-acylpropanediamine, N 4.8% by mass Ashless friction modifier D: oleylamide, N 5.0% by mass Ashless friction modifier E: oleylamine, N 5.5% by mass
  • Example 1 was able to reduce the friction coefficient by containing the ashless friction modifier.
  • FM is an abbreviation for Friction Modifier.
  • Comparative Example 2 and Comparative Example 3 are common in that they contain nitrogen, but are examples in which a nitrogen-containing FM having a structure different from that of Example 1 was used. Therefore, it was found that the friction coefficient reduction effect was inferior to that of the FM of Example 1, and the cleanliness was also inferior.
  • Comparative Example 4 is an example in which the Ca concentration was not increased from the viewpoint of LSPI prevention, and Mg was not contained. Although a certain friction reduction effect could be confirmed, the cleanliness was poor, and as a result, Example 1 shows the usefulness of containing Mg.
  • Example 2 is an example in which the amount of friction modifier was changed from Example 1.
  • the optimum concentration value differs depending on the conditions for measuring the friction coefficient, and can be suitably adjusted depending on the operating conditions of the actual machine to which the lubricating oil composition is applied.
  • Example 3 is an example in which the type of anion of the Ca detergent, which is a detergent contained in addition to the Mg detergent in the present invention, is changed. Good results are obtained with carbonic acid, but even better results can be obtained with boric acid.
  • Examples 4 and 5 are examples in which the antioxidant was adjusted. If the overall mass fraction is not changed, no significant deterioration occurs when it is increased, and it can be suitably adjusted.
  • Examples 6 and 7 are examples in which the viscosity grade specified by SAE J300 was changed
  • Examples 8, 9, and 10 are examples in which the base oil was changed from Group III alone. It can be suitably adjusted according to the required values of cleanliness and friction reduction performance.
  • Example 11 is an example in which the type of dispersant was changed. It can be seen that from the viewpoint of friction reduction performance, it is preferable to use a non-boric acid modified dispersant.
  • Example 1 was able to reduce the friction coefficient by containing a molybdenum-based friction modifier.
  • Examples 1, 12, and 13 are examples in which the amount of the molybdenum friction modifier was changed. It was found that no significant change in physical properties was observed with these addition amounts.
  • the lubricating oil composition of the present invention has excellent fuel efficiency as a friction modifier, it can also be used to lubricate engines equipped with GPF, hybrid vehicle engines equipped with electric motors, engines equipped with superchargers, etc. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

(A)潤滑油基油と、(B)組成物全量基準でモリブデン量を50質量ppm以上2000質量ppm以下含有するモリブデン系摩擦調整剤と、(C)無灰摩擦調整剤として、 R-NH-(CH)n-NH (式中、Rは置換基を有していてもよい炭素数4~24の脂肪族炭化水素基、置換基を有していてもよい炭素数6~15の脂環式炭化水素基、又は置換基を有していてもよい炭素数6~15の芳香族炭化水素基を表し、n1は2~5を示す。)と、(D)金属系清浄剤として、炭酸マグネシウムスルホネートとを含有する、内燃機関用潤滑油組成物。

Description

内燃機関用潤滑油組成物
 本発明は、内燃機関用潤滑油組成物に関する。
 近年、自動車用内燃機関には、省燃費性を目的とした内燃機関用潤滑油組成物が検討されている。特に、自動車用内燃機関の燃費低減を目的として、従来の自然吸気ガソリンエンジンを、過給機を備えたより排気量の低いエンジン(過給ダウンサイジングエンジン)で置き換えた、ダウンサイジングターボ等の技術導入に対応するために、エンジンオイルにLSPI防止性能が求められ、また更なる省燃費性能に繋がる摩擦低減性能や、長寿命性に繋がる清浄性の向上が求められている。
 上記過給ダウンサイジングエンジンにおいては、低回転域でトルクを高めていくと、予定されたタイミングよりも早くシリンダ内で着火が起きる現象(LSPI:LowSpeed Pre-Ignition(低速プレイグニッション))が起きる場合がある。LSPIが起きるとエネルギー損失が増え、燃費改善および低速トルク向上の制約となるだけでなく、エンジンの損傷にもつながる。
 そこで、清浄性を向上させるために、カルシウム系清浄剤と、マグネシウム系清浄剤と、スチレン-ジエン共重合体およびエチレン-α-オレフィン共重合体から選択される少なくとも一種の粘度指数向上剤と、窒素含有分散剤等を含有する潤滑油組成物が提案されている(特許文献1)。
 しかしながら、清浄剤におけるCaおよびMgを配合することで省燃費性能が悪化するという問題点があった。
 また、MoDTC濃度を増加すれば省燃費性能を向上できることは公知であるものの、GPFやDPFを備えるエンジンにおいては、エンジンオイル中の金属分濃度を上げないことが好ましいため、従来品よりMoDTCなどの金属分を含む摩擦調整剤を増加することは好ましくない。
 本発明者は、鋭意検討した結果、特定の処方系を有する摩擦調整剤を併用することで、MoDTC濃度を増加することなく、エンジンオイルの燃費性が格段に向上することを見出した。
特開2020-76004号公報
 本発明が解決しようとする課題は、省燃費性に優れる内燃機関用潤滑油組成物を提供することにある。
 本発明者は、上記課題を解決するために、鋭意検討を行った結果、LSPI防止性能および清浄性能を維持しながら省燃費性に優れる内燃機関用潤滑油組成物を提供することができることを見出した。
 本発明は、かかる知見に基づきなされたもので、次のものからなる。
<1>
 (A)潤滑油基油と、
 (B)組成物全量基準でモリブデン量を50質量ppm以上2000質量ppm以下含有するモリブデン系摩擦調整剤と、
 (C)無灰摩擦調整剤として、
 R-NH-(CHn1-NH   (1)
(式(1)中、Rは置換基を有していてもよい炭素数4~24の脂肪族炭化水素基、置換基を有していてもよい炭素数6~15の脂環式炭化水素基、又は置換基を有していてもよい炭素数6~15の芳香族炭化水素基を表し、n1は2~5を示す。)と、
 (D)金属系清浄剤として、炭酸マグネシウムスルホネートとを含有する、内燃機関用潤滑油組成物。
<2>
 (A)潤滑油基油が、100℃における動粘度が2.0mm/s以上8.0mm/s以下である、<1>に記載の内燃機関用潤滑油組成物。
<3>
 (B)モリブデン系摩擦調整剤が、組成物全量基準でモリブデン量300質量ppm以上1000質量ppm以下である、<1>または<2>に記載の内燃機関用潤滑油組成物。
<4>
 (B)モリブデン系摩擦調整剤が、モリブデンジチオカーバメート(MoDTC)である、<1>~<3>のいずれか1項に記載の内燃機関用潤滑油組成物。
<5>
 (C)無灰摩擦調整剤として、前記式(1)が、N-オレイルプロパンジアミンである、<1>~<4>のいずれか1項に記載の内燃機関用潤滑油組成物。
<6>
 (C)無灰摩擦調整剤として、さらにN-オレイル-N’-アシルプロパンジアミンを含有する、<5>に記載の内燃機関用潤滑油組成物。
<7>
 (C)無灰摩擦調整剤として、さらにオレイン酸を含有する、<6>に記載の内燃機関用潤滑油組成物。
<8>
 (C)無灰摩擦調整剤として、前記式(1)の成分由来の窒素量が、10質量ppm以上である、<1>~<7>のいずれか1項に記載の内燃機関用潤滑油組成物。
<9>
 (D)金属系清浄剤として、さらにホウ酸カルシウムサリシレートを含有する、<1>~<8>のいずれか1項に記載の内燃機関用潤滑油組成物。
<10>
 (E)粘度指数向上剤として、さらにポリメタクリレート(PMA)を含有する、<1>~<9>のいずれか1項に記載の内燃機関用潤滑油組成物。
<11>
 (F)酸化防止剤として、さらにアミン系酸化防止剤をフェノール系酸化防止剤の質量分率以上となる範囲で含有する、<1>~<10>のいずれか1項に記載の内燃機関用潤滑油組成物。
<12>
 (G)摩耗防止剤として、さらにジアルキルジチオリン酸亜鉛(ZnDTP)を含有する、<1>~<11>のいずれか1項に記載の内燃機関用潤滑油組成物。
<13>
 100℃における動粘度が4.0mm/s以上12.5mm/s以下である、<1>~<12>のいずれか1項に記載の内燃機関用潤滑油組成物。
<14>
 ガソリン・パティキュレート・フィルター(GPF)を備えるエンジンに用いられる、
<1>~<13>のいずれか1項に記載の内燃機関用潤滑油組成物。
<15>
 電動機を備えたハイブリッド車に用いられる、<1>~<12>のいずれか1項に記載の内燃機関用潤滑油組成物。
 本発明の潤滑油組成物は、内燃機関において、省燃費性を極めて向上させるという格別の効果を奏するものである。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 本発明の内燃機関用潤滑油組成物は、潤滑油基油と、組成物全量基準でモリブデン量を50質量ppm以上2000質量ppm以下含有するモリブデン系摩擦調整剤と、
 無灰摩擦調整剤として、
 R-NH-(CHn1-NH   (1)
(式(1)中、Rは置換基を有していてもよい炭素数4~24の脂肪族炭化水素基、置換基を有していてもよい炭素数6~15の脂環式炭化水素基、又は置換基を有していてもよい炭素数6~15の芳香族炭化水素基を表し、n1は2~5を示す。)と、
 金属系清浄剤として、炭酸マグネシウムスルホネートとを含む。
〔潤滑油基油(A)〕
 本発明の基油としては、鉱油系基油または合成系基油のいずれも用いることができる。本発明の潤滑油基油の100℃における動粘度は、2.0mm/s以上8.0mm/s以下であり、好ましくは3.0mm/s以上6.0mm/s以下、より好ましくは3.0mm/s以上4.5mm/s以下、最も好ましくは3.0mm/s以上4.2mm/s以下である。100℃における動粘度が8.0mm/s以下であることにより、十分な省燃費性が得られる。また、100℃における動粘度が2.0mm/s以上であることにより、潤滑箇所において油膜形成を確保でき、潤滑性に優れる。
 なお、本明細書において、100℃における動粘度は、ASTM D-445に準拠して測定された、100℃での動粘度を意味する。
 本発明の潤滑油基油の粘度指数は、好ましくは80以上、より好ましくは100以上である。粘度指数が上記数値範囲内であれば、潤滑油組成物の粘度-温度特性を向上することが可能となる。
 なお、本明細書において、粘度指数は、ASTM D-2270に準拠して測定された粘度指数を意味する。
 鉱油系基油としては、原油を常圧蒸留し、あるいはそれをさらに減圧蒸留して得られる留出油を、各種の精製プロセスで精製した基油留分が挙げられる。精製プロセスは、水素化精製、溶剤抽出、溶剤脱ろう、水素化脱ろう、硫酸洗浄、白土処理などであり、これらを適宜の順序で組み合わせて処理して本発明の基油を得ることができる。異なる原油あるいは留出油を、異なるプロセスの組合せ、順序により得られた性状の異なる複数の精製油の混合物も有用である。いずれの方法によっても、得られる基油の性状が、前述した物性を満足するように調整することによって好ましく使用することができる。
 合成系基油としては、加水分解安定性に優れる基材を用いることが好ましく、例えばポリ-α-オレフィン、ポリブテンや2種以上の各種オレフィンの共重合体などのポリオレフィン、ジエステル、ポリオールエステルなどのエステル系合成油、アルキルジフェニル、ポリプロピレングリコールなどのエーテル系合成油、ポリアルキレングリコール、アルキルベンゼン、アルキルナフタレンなどが挙げられる。中でも、ポリ-α-オレフィンが酸化安定性、および低温流動性の面で好ましい。
 潤滑油基油は、例示した合成系基油を単独で、あるいは2種以上を混合して用いることができる。さらに、前記鉱油系基油と混合しても使用することもできる。
 合成系基油を含めて、複数の基油の混合物を使用する場合、該基油混合物が上記物性を満足するものであれば、混合前の個々の基油がかかる物性の範囲を外れていても使用することができる。したがって、個々の合成油系基油は、上記物性を必ずしも満足する必要はないが、上記物性の範囲内であることが好ましい。
 本発明の潤滑油基油の含有量は、潤滑油組成物がマルチグレード油である場合には、潤滑油組成物全量基準で80質量%以上95質量%以下であり、好ましくは85質量%以上91質量%以下である。基油の含有量が上記数値範囲内であることにより、適切な潤滑性を確保でき、添加剤が潤滑油組成物中で適切に溶解あるいは分散した状態に保持されやすくなる。
〔モリブテン系摩擦調整剤(B)〕
 本発明のモリブテン系摩擦調整剤は、モリブデンジチオカーバメート(MoDTC)であることが好ましい。MoDTCを添加すると、潤滑油組成物中における境界潤滑領域での摩擦低減の効果が得られる。MoDTCによる低摩擦発現は、MoDTCが摩擦エネルギーにより分解し、トライボフィルムとして低摩擦のMoS2が生成するためであると考えられている。
 MoDTCとしては、下記式(2)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 上記式(2)中、R~Rは、それぞれ同一でも異なっていてもよく、炭素数2~24のアルキル基または炭素数6~24の(アルキル)アリール基、好ましくは炭素数4~13のアルキル基または炭素数10~15の(アルキル)アリール基である。アルキル基は第1級アルキル基、第2級アルキル基、第3級アルキル基のいずれでもよく、また直鎖でも分枝状でもよい。なお「(アルキル)アリール基」は「アリール基若しくはアルキルアリール基」を意味する。アルキルアリール基において、芳香環におけるアルキル基の置換位置は任意である。Y~Yはそれぞれ独立に硫黄原子または酸素原子であり、Y~Yのうち少なくとも1つは硫黄原子である。
 MoDTC以外のモリブデン含有化合物としては、例えば、モリブデンジチオホスフェート;モリブデン化合物(例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン、オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸、これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン、硫化モリブデン酸、硫化モリブデン酸の金属塩またはアミン塩、塩化モリブデン等のハロゲン化モリブデン等。)と、硫黄含有有機化合物(例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステル等。)またはその他の有機化合物との錯体等;および、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体等の、硫黄を含むモリブデン含有化合物を挙げることができる。なお、モリブデン含有化合物は、単核モリブデン化合物であってもよく、二核モリブデン化合物や三核モリブデン化合物等の多核モリブデン化合物であってもよい。
 また、MoDTC以外のモリブデン含有化合物として、構成元素として硫黄を含まないモリブデン含有化合物を用いることも可能である。構成元素として硫黄を含まないモリブデン含有化合物としては、具体的には、モリブデン-アミン錯体、モリブデン-コハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩などが挙げられ、中でも、モリブデン-アミン錯体、有機酸のモリブデン塩およびアルコールのモリブデン塩が好ましい。
 モリブデン系摩擦調整剤を組成物全量基準でモリブデン量は、好ましくは300質量ppm以上1000質量ppm以下であり、より好ましくは300質量ppm以上900質量ppm以下であり、さらに好ましくは600質量ppm以上900質量ppm以下であり、最も好ましくは750質量ppm以上850質量ppm以下である。モリブテン量が300質量ppm以上であることにより、摩擦低減効果を向上させ、LSPI抑制能をさらに向上させることができる。また、モリブンデン量が1000質量ppm以下であることにより、潤滑油組成物の貯蔵安定性を高めることができる。別途指定のない限り、油中のカルシウム、マグネシウム、亜鉛、リン、ホウ素、およびモリブデンの各元素の含有量は、JPI-5S-62に準拠して誘導結合プラズマ発光分光分析法(強度比法(内標準法))により測定されるものとする。
〔無灰摩擦調整剤(C)〕
 本発明の無灰摩擦調整剤は、下記式(1)で表される。
 R-NH-(CHn1-NH   (1)
(式(1)中、Rは置換基を有していてもよい炭素数4~24の脂肪族炭化水素基、置換基を有していてもよい炭素数6~15の脂環式炭化水素基、又は置換基を有していてもよい炭素数6~15の芳香族炭化水素基を表し、n1は2~5を示す。)
 式中、n1は14~20、n2は3がより好ましい。
 さらにオレイン酸を含有することが好ましい。
 より好ましくは、N-オレイルプロパンジアミン、オレイン酸およびN-オレイル-N’-アシルプロパンジアミンを含有することである。
 オレイン酸、N-オレイルプロパンジアミンおよびN-オレイル-N’-アシルプロパンジアミンは副成分として、アルキル基がオレイルの他に、ミリスチル、パルミチル、パルミトレイル、ステアリル、リノレイル、エイコシルである構造を含有しうる。清浄性を過度に損なわずに省燃費性能を向上させるためである。
 無灰摩擦調整剤の該当成分由来の窒素量は好ましくは10ppm以上、より好ましくは120ppm以上である。10ppmより少ないと、省燃費性能を発現させ、過度な添加により清浄維持性や材料適合性に悪影響を生じる可能性が有るためである。また油中の窒素含有量は、JIS K2609に準拠して化学発光法により測定されるものとする。
〔金属系清浄剤(D)〕
 金属系清浄剤としては、マグネシウム系スルホネートが好ましく、炭酸塩(炭酸マグネシウム)で過塩基化されている、炭酸マグネシウムスルホネートが好ましい。また、単独でまたは2種以上を組み合わせて用いることができる。
 マグネシウムスルホネートのその他の好ましい例としては、アルキル芳香族化合物をスルホン化することによって得られるアルキル芳香族スルホン酸のマグネシウム塩が挙げられる。また、その塩基性塩または過塩基性塩も使用可能である。アルキル芳香族化合物の分子量分布は、好ましくは300以上1500以下であり、より好ましくは400以上1300以下である。
 アルキル芳香族スルホン酸としては、例えば、いわゆる石油スルホン酸および合成スルホン酸が挙げられる。ここでいう石油スルホン酸としては、鉱油の潤滑油留分のアルキル芳香族化合物をスルホン化したものおよびホワイトオイル製造時に副生するいわゆるマホガニー酸等が挙げられる。また、合成スルホン酸の一例としては、洗剤の原料となるアルキルベンゼン製造プラントにおける副生成物を回収すること、または、ベンゼンをポリオレフィンでアルキル化することにより得られる、直鎖状または分枝状のアルキル基を有するアルキルベンゼンをスルホン化したものを挙げることができる。合成スルホン酸の他の一例としては、ジノニルナフタレン等のアルキルナフタレンをスルホン化したものを挙げることができる。また、これらアルキル芳香族化合物をスルホン化する際のスルホン化剤としては、特に制限はなく、例えば発煙硫酸や無水硫酸を用いることができる。
 マグネシウムスルホネートとしては、例えば、下記式(3)で表される化合物を例示できる。
Figure JPOXMLDOC01-appb-C000002
 上記式(3)中、Rはそれぞれ独立に炭素数14~30のアルキル基またはアルケニル基を表し、nは1または2を表す。Mgはマグネシウムを表す。nとしては1が好ましい。なおn=2であるとき、Rは異なる基の組み合わせであってもよい。マグネシウムスルホネートは、炭酸塩で過塩基化されていてもよく、ホウ酸塩で過塩基化されていてもよいが、過塩基化されていないことが好ましい。
 本発明の潤滑油組成物に含まれるマグネシウムスルホネート由来のマグネシウムの量は、潤滑油組成物全量基準で、下限は、好ましくは200質量ppm以上、より好ましくは300質量ppm以上である。上限は、好ましくは1200質量ppm以下、より好ましくは1000質量ppm以下である。具体的な範囲としては、好ましくは200質量ppm以上1200質量ppm以下、より好ましくは300質量ppm以上1000質量ppm以下である。下限値以上にすることにより、清浄性が良好となる。また、上限以下とすることで、灰分が過剰にならずGPF適合性の観点や省燃費性能の観点で良好となる。
(塩基価)
 本発明の潤滑油組成物に含まれるマグネシウムスルホネートの塩基価は、下限は、好ましくは200mgKOH/g以上、より好ましくは250mgKOH/g以上、さらに好ましくは300mgKOH/g以上である。上限は、好ましくは600mgKOH/g以下、より好ましくは500mgKOH/g以下、さらに好ましくは450mgKOH/g以下である。具体的な範囲としては、好ましくは200mgKOH/g以上600mgKOH/g以下、より好ましくは250mgKOH/g以上500mgKOH/g以下、さらに好ましくは300mgKOH/g以上450mgKOH/g以下である。下限値以上の場合、清浄性が良好になる。また、上限値以下の場合、溶存状態の安定性が良好になる。
 本明細書において塩基価とは、JIS K2501:2003の9に準拠して過塩素酸法により測定される塩基価を意味する。また金属系清浄剤は一般に、溶剤や潤滑油基油等の希釈剤中での反応により得られる。そのため金属系清浄剤は、潤滑油基油等の希釈剤によって希釈された状態で商業的に流通している。本明細書において、金属系清浄剤の塩基価は、希釈剤を含む状態での塩基価を意味するものとする。
〔ホウ酸カルシウムサリシレート〕
 さらに、ホウ酸カルシウムサリシレートを含有することが好ましい。カルシウム系清浄剤としては、サリシレート系清浄剤が好ましく、炭酸塩(炭酸カルシウム)で過塩基化されていてもよく、ホウ酸塩(ホウ酸カルシウム)で過塩基化されていてもよい。また、単独でまたは2種以上を組み合わせて用いることができる。
 本発明の潤滑油組成物がカルシウムサリシレートを含む場合、カルシウムサリシレート由来のカルシウムの量は、潤滑油組成物全量基準で、下限は、好ましくは100質量ppm以上、より好ましくは300質量ppm以上、さらに好ましくは400質量ppm以上、特に好ましくは500質量ppm以上である。上限は、好ましくは2200質量ppm以下、より好ましくは2000質量ppm以下、さらに好ましくは1800質量ppm以下、特に好ましくは1550ppm以下である。具体的な範囲としては、好ましくは100質量ppm以上2200質量ppm以下、より好ましくは300質量ppm以上2000質量ppm以下、さらに好ましくは400質量ppm以上1800質量ppm以下、特に好ましくは500質量ppm以上1550質量ppm以下である。
(塩基価)
 本発明の潤滑油組成物に含まれるカルシウムサリシレートの塩基価は、下限は、好ましくは140mgKOH/g以上、より好ましくは170mgKOH/g以上、さらに好ましくは200mgKOH/g以上である。上限は、好ましくは500mgKOH/g以下、より好ましくは400mgKOH/g以下、さらに好ましくは300mgKOH/g以下である。具体的な範囲としては、好ましくは140mgKOH/g以上500mgKOH/g以下、より好ましくは170mgKOH/g以上400mgKOH/g以下、さらに好ましくは200mgKOH/g以上300mgKOH/g以下である。
 本発明の潤滑油組成物において、金属系清浄剤由来のカルシウム量の合計は、下限は、好ましくは400質量ppm以上、より好ましくは700質量ppm以上、さらに好ましくは850質量ppm以上、特に好ましくは1000質量ppm以上である。上限は、好ましくは2200質量ppm以下、より好ましくは2000質量ppm以下、さらに好ましくは1800ppm以下、特に好ましくは1550ppm以下である。具体的な範囲としては、好ましくは400質量ppm以上2000質量ppm以下、より好ましくは700質量ppm以上2000質量ppm以下、さらに好ましくは850質量ppm以上1800質量ppm以下、特に好ましくは1000質量ppm以上1550質量ppm以下である。上記数値範囲内にすることで、低油温時および高油温時における省燃費性能を改善することができる。
〔粘度指数向上剤(E)〕
 粘度指数向上剤として、本発明の効果が得られる限り、潤滑油組成物の分野で使用されている粘度指数向上剤を際限なく用いることができる。使用可能な粘度指数向上剤としては、ポリブテン(PB)、ポリイソブテン(PIB)、エチレン-プロピレンコポリマー(EPC)、オレフィンコポリマー(OCP)、ポリ(メタ)アクリレート(PMA)、スチレン-ジエンコポリマー(SDC)等を挙げることができる。ポリ(メタ)アクリレート(PMA)が好ましく、櫛型ポリ(メタ)アクリレートがより好ましい。
 これらの粘度指数向上剤は単独でまたは2種以上を組み合わせて用いることができる。これらの粘度指数向上剤を用いることで、省燃費性および高温清浄性を保ちながら、耐コーキング性を向上させることができる。
 粘度指数向上剤の重量平均分子量(Mw)は、下限は、好ましくは10,000以上であり、より好ましくは50,000以上であり、さらに好ましくは100,000以上であり、さらにより好ましくは200,000以上であり、また、上限は、好ましくは1,000,000以下であり、より好ましくは700,000以下であり、さらに好ましくは500,000以下である。
 粘度指数向上剤の重量平均分子量が上記数値範囲内であれば、十分な粘度指数向上効果が得られ、省燃費性に優れ、また、適度な粘度増加効果や、せん断安定性や潤滑油基油への溶解性、貯蔵安定性に優れるものとなる。
 本明細書においてポリマーの「重量平均分子量」及び「数平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)により測定される標準ポリスチレン換算での重量平均分子量および数平均分子量を意味する。GPCの測定条件は次の通りである。
 粘度指数向上剤の樹脂分換算での含有量は、潤滑油組成物全量基準で、下限は、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上であり、さらに好ましくは1.0質量%以上であり、また、上限は、好ましくは10.0質量%以下であり、より好ましくは5.0質量%以下であり、さらに好ましくは3.0質量%以下である。粘度指数向上剤の含有量が上記数値範囲内であれば、粘度-温度特性に優れながら、耐コーキング性をさらに向上させることができる。
〔酸化防止剤(F)〕
 酸化防止剤として、アミン系酸化防止剤、フェノール系酸化防止剤が好ましい。
 アミン系酸化防止剤としては、例えば、アルキル化ジフェニルアミン、アルキル化フェニル-α-ナフチルアミン、フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン等の公知のアミン系酸化防止剤を用いることができる。フェノール系酸化防止剤としては例えば、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、4,4'-メチレンビス(2,6-ジ-tert-ブチルフェノール)等の公知のフェノール系酸化防止剤を用いることができる。
 酸化防止剤としてアミン系酸化防止剤をフェノール系酸化防止剤の質量分率以上となる範囲で含有する。酸化防止剤としてフェノール系酸化防止剤の含有量に対するアミン系酸化防止剤の含有量は、質量分率基準で、好ましくは1.0以上、より好ましくは2.0以上、さらに好ましくは2.4以上、最も好ましくは5.0である。上記数値範囲内であれば、高温酸化防止性能を保ちながら、酸化防止剤の合計含有量を下げる経済合理性に優れる。
〔摩耗防止剤(G)〕
 摩耗防止剤としては、ジアルキルジチオリン酸亜鉛(ZnDTP)を添加することが好ましい。例えば、ジアルキルジチオリン酸亜鉛としては、次の下記式(4)に示す化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 上記式(4)中のR~R11は、それぞれ独立に、炭素数1~24の直鎖状もしくは分枝状のアルキル基である。このアルキル基は、第1級でも、第2級でも、第3級であってもよい。ジアルキルジチオリン酸亜鉛としては、第1級アルキル基を有するジチオリン酸亜鉛(プライマリーZnDTP)または第2級アルキル基を含有するジチオリン酸亜鉛(セカンダリーZnDTP)が好ましく、特には、第2級のアルキル基のジチオリン酸亜鉛を主成分とするものが、耐摩耗性を高めるため好ましい。
 本発明においては、これらのジアルキルジチオリン酸亜鉛は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 本発明の潤滑油組成物がジアルキルジチオリン酸亜鉛を含む場合、その含有量は、組成物全量基準で、0.01質量%以上20質量%以下、好ましくは0.1質量%以上10質量%以下、より好ましくは0.2質量%以上5質量%以下、さらに好ましくは0.5質量%以上2質量%以下である。
 本発明の潤滑油組成物に含まれるジアルキルジチオリン酸亜鉛由来のリンの量は、組成物全量基準で、10質量ppm以上2000質量ppm以下、好ましくは550質量ppm以上850質量ppm以下、さらに好ましくは700質量ppm以上850質量ppm以下である。
〔分散剤(H)〕
 分散剤としては、コハク酸イミド系分散剤が好ましい。内燃機関内で生成する潤滑油組成物あるいは燃料由来の不溶解分を効果的に分散可溶化させる化合物として好ましい。
 本発明の潤滑油組成物が分散剤を含む場合、その含有量は、組成物全量基準で好ましくは0.1質量%以上10質量%以下、より好ましくは0.3質量%以上8質量%以下である。下限値以上であることにより清浄性および分散性が好ましく、上限値以下であることにより粘度特性が良好となり省燃費性能の観点で好ましい。
〔その他の添加物〕
 MoDTCを含有する潤滑油組成物における省燃費性能の向上の観点から、ホウ酸変性された分散剤を含有せず、ホウ酸変性されていない分散剤を含有することが好ましい。
 上記以外にも、潤滑油組成物に通常使用される、防錆剤、流動点降下剤、抗乳化剤、金属不活性化剤、消泡剤等の他の成分をさらに含んでもよい。
 防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、および多価アルコールエステル等が挙げられる。防錆剤の含有量は、潤滑油組成物全量基準で、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは5質量%以下である。
 流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタクリレート系のポリマー等が使用できる。流動点降下剤の含有量は、潤滑油組成物全量基準で、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、また、好ましくは10質量%以下であり、より好ましくは5質量%以下である。
 抗乳化剤としては、例えばポリアルキレングリコール系非イオン系界面活性剤等の公知の抗乳化剤を使用可能である。潤滑油組成物が抗乳化剤を含有する場合、その含有量は、組成物全量基準で、例えば0.005~5質量%であり得る。
 金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾールまたはその誘導体、トリルトリアゾールまたはその誘導体、1,3,4-チアジアゾールポリスルフィド、1,3,4-チアジアゾリル-2,5-ビスジアルキルジチオカーバメート、2-(アルキルジチオ)ベンゾイミダゾール、β-(o-カルボキシベンジルチオ)プロピオンニトリル等が挙げられる。金属不活性化剤の含有量は、潤滑油組成物全量基準で、下限は、好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上であり、また、上限は、好ましくは10質量%以下であり、より好ましくは5質量%以下である。
 消泡剤としては、例えば、25℃における動粘度が1,000~100,000mm/sのシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸とのエステル、メチルサリチレート、および、o-ヒドロキシベンジルアルコール等が挙げられる。消泡剤の含有量は、潤滑油組成物全量基準で、下限は、好ましくは0.0001質量%以上であり、より好ましくは0.0005質量%以上であり、また、上限は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。
〔潤滑油組成物〕
 本発明の潤滑油組成物は、100℃における動粘度が好ましくは4.0mm/s以上12.5mm/s以下であり、より好ましくは5.0mm/s以上7.9mm/s以下である。100℃における動粘度が上記上限値以下であれば、十分な省燃費性が得られ、上記下限値以上であれば、潤滑箇所において油膜形成が行われ、潤滑性に優れる。
 なお、本明細書において、100℃における動粘度は、ASTM D-445に準拠して測定された100℃での動粘度を意味する。
 本発明の潤滑油組成物は、40℃における動粘度が好ましくは15mm/s以上70mm/s以下であり、より好ましくは20mm/s以上30mm/s以下である。40℃における動粘度が上記上限値以下であれば、十分な省燃費性が得られ、上記下限値以上であれば、潤滑箇所において油膜形成が行われ、潤滑性に優れるとともに、蒸発損失も小さくすることができる。
 なお、本明細書において、40℃における動粘度は、ASTM D-445に準拠して測定された40℃での動粘度を意味する。
 潤滑油組成物の粘度指数は、好ましくは120以上400以下、より好ましくは130以上300以下である。潤滑油組成物の粘度指数が上記数値範囲内であれば、150℃におけるHTHS粘度を維持しながら省燃費性を向上させることができる。
 潤滑油組成物の150℃におけるHTHS粘度は、下限は、好ましくは1.7mPa・s以上であり、より好ましくは1.8mPa・s以上であり、さらに好ましくは1.9mPa・s以上であり、さらにより好ましくは2.0mPa・s以上であり、また、上限は、好ましくは3.5mPa・s以下であり、より好ましくは3.2mPa・s以下であり、さらに好ましくは2.9mPa・s以下であり、さらにより好ましくは2.6mPa・s以下である。潤滑油組成物の150℃におけるHTHS粘度が3.5mPa・s以下であることにより、さらに良好な省燃費性能を得ることができる。1.7mPa・sを下回ると、潤滑性不足となる可能性がある。なお、本明細書において「150℃におけるHTHS粘度」とは、ASTM D-4683に準拠して測定された150℃での高温高せん断粘度を意味する。
<HTT試験>
 清浄性はJPI-5S-55-99に準拠して測定した。試験条件は、サンプル量10mg、試験温度280℃、試験時間16時間である。2.0以上の評点を有する潤滑油を、良好な清浄性を有すると評価した。
<TE77>
 摩擦係数の測定は、高速往復摩擦試験機(Phoenix Tribology社製 TE77)を使用した。試験片として平板試験片SKS3、形状は長さ58mm×幅38mm×厚さ4mmおよびシリンダ試験片EN1A、形状は直径6mm×長さ16mmを用いた。荷重10Nまたは100N、摺動振幅15mm、摺動振動数5Hz、試験時間10分間、試験温度70℃または100℃である。各々の摩擦係数は、試験時間5~10分の平均値を採用した。
 潤滑油組成物中の窒素分の含有量は、潤滑油組成物全量基準で、下限は、700質量ppm以上であり、好ましくは800質量ppm以上であり、より好ましくは900質量ppm以上であり、さらに好ましくは1000質量ppm以上であり、また、上限は、好ましくは3000質量ppm以下であり、より好ましくは2500質量ppm以下であり、さらに好ましくは2000質量ppm以下である。潤滑油組成物中の窒素分の含有量が上記数値範囲内であれば、耐コーキング性を保ちながら、省燃費性を向上させることができる。
〔潤滑油組成物の用途〕
 本発明の潤滑油組成物は、LSPI防止性、摩擦低減性、清浄性、および省燃費性を有するため、GPFを備えるエンジン、電動機を備えたハイブリッド車のエンジン、過給機を備えるエンジン等の潤滑にも用いることができる。
 本発明の一実施態様である実施例を用いて、以下に本発明を説明するが、本発明は、以下の実施態様に限定されるものではない。特に説明のない限り、%は質量%を示す。
<潤滑油組成物の配合>
 各実施例および各比較例について、表1に示す配合割合で、潤滑油基油および添加剤を配合することにより、潤滑油組成物を得た。添加剤の配合量は、潤滑油組成物全量基準である。
 得られた潤滑油組成物に対して、次に示す評価試験を行った。その結果を表1に示す。
(A)潤滑油基油
 基油A:グループIII基油 100℃動粘度4.2mm/s、40℃動粘度19.4mm/s
 基油B:グループII基油 100℃動粘度3.0mm/s、40℃動粘度12.6mm/s
 基油C:グループIV基油、100℃動粘度4.1mm/s、40℃動粘度19.0mm/s
 基油D:グループV基油、100℃動粘度3.1mm/s、40℃動粘度10.9mm/s
(B)モリブテン系摩擦調整剤
 MoDTC:Mo 10質量%、N 1.5質量%
(C)無灰摩擦調整剤
 無灰摩擦調整剤A:N-オレイルプロパンジアミン、N 9.1質量%
 無灰摩擦調整剤B:オレイン酸
 無灰摩擦調整剤C:N-オレイル-N’-アシルプロパンジアミン、N 4.8質量%
 無灰摩擦調整剤D:オレイルアミド、N 5.0質量%
 無灰摩擦調整剤E:オレイルアミン、N 5.5質量%
(D)金属系清浄剤
 炭酸Caサリシレート:Ca 8.0質量%、塩基価 230
 ホウ酸Caサリシレート:Ca 6.8質量%、塩基価 190
 炭酸Mgスルホネート:Mg 9.1質量%、塩基価 400
(E)粘度指数向上剤
 櫛型PMA:Mw=490000、Mw/Mn=4.0
(F)酸化防止剤
 アミン系無灰酸化防止剤:ビス(ノナン-1-イルフェニル)アミン、N:3.6質量%
 フェノール系無灰酸化防止剤:ベンゼンプロパン酸,3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-,C7-C9側鎖アルキルエステル
(G)摩耗防止剤
 sec-ZnDTP:P 8.5質量%,Zn 10.4質量%,S 17.8質量%
 pri-ZnDTP:P 7.0質量%,Zn 8.6質量%,S 14.8質量%
(H)分散剤
 コハク酸イミド系分散剤A:B 0.50質量%,N 1.50質量%
 コハク酸イミド系分散剤B:B 0質量%,N 1.50質量%
Figure JPOXMLDOC01-appb-T000004
〔評価結果〕
 実施例1は、比較例1に対し、無灰摩擦調整剤を含有することで摩擦係数を低減することができた。FMは摩擦調整剤(Friction Modifier)の略である。
 比較例2および比較例3は窒素を含有している点では共通であるが、実施例1とは異なる構造の窒素を含有したFMを使用した例である。このため、実施例1のFMより摩擦係数の低減効果が劣るとともに、清浄性についても劣ることがわかった。
 比較例4はLSPI防止性の観点からCa濃度を増やさない一方で、Mgを含有しない例である。一定の摩擦低減効果が確認できるもの、清浄性に劣り、その結果、実施例1でMgを含有することの有用性を示している。
 実施例2は実施例1に対し、摩擦調整剤の量を変更した例である。摩擦係数の測定条件により濃度の最適値は異なり、潤滑油組成物を適用する実機の稼働条件に応じて好適に調整し得る。
 実施例3は本願発明でMg清浄剤の他に含まれる清浄剤である、Ca清浄剤のアニオン種類を変更した例である。炭酸でも良好な結果が得られるが、さらに良好な結果がホウ酸で取得できる。
 実施例4および5は酸化防止剤を調整した例である。全体の質量分率を変更しない場合、増加する場合に著しい悪化は生じず、好適に調整可能である。
 実施例6および実施例7はSAE J300で規定される粘度グレードを変更した例であり、実施例8、実施例9、及び実施例10は基油をグループIII単体から変更した例である。清浄性と摩擦低減性能の必要値に応じて好適に調整可能である。
 実施例11は分散剤の種類を変更した例である。摩擦低減性能の観点からは非ホウ酸変性分散剤の使用が好ましいことがわかる。
 実施例1は比較例5に対し、モリブテン系摩擦調整剤を含有することで摩擦係数を低減することができた。
 実施例1、実施例12、実施例13はモリブテン系摩擦調整剤の量を変更した例である。これらの添加量であれば、物性に著しい変化は見られないことが分かった。
 本発明の潤滑油組成物は、摩擦調整剤系の省燃費性に優れるため、GPFを備えるエンジン、電動機を備えたハイブリッド車のエンジン、過給機を備えるエンジン等の潤滑にも用いることができる。

Claims (15)

  1.  (A)潤滑油基油と、
     (B)組成物全量基準でモリブデン量を50質量ppm以上2000質量ppm以下含有するモリブデン系摩擦調整剤と、
     (C)無灰摩擦調整剤として、
     R-NH-(CHn1-NH   (1)
    (式(1)中、Rは置換基を有していてもよい炭素数4~24の脂肪族炭化水素基、置換基を有していてもよい炭素数6~15の脂環式炭化水素基、又は置換基を有していてもよい炭素数6~15の芳香族炭化水素基を表し、n1は2~5を示す。)と、
     (D)金属系清浄剤として、炭酸マグネシウムスルホネートとを含有する、内燃機関用潤滑油組成物。
  2.  (A)潤滑油基油が、100℃における動粘度が2.0mm/s以上8.0mm/s以下である、請求項1に記載の内燃機関用潤滑油組成物。
  3.  (B)モリブデン系摩擦調整剤が、組成物全量基準でモリブデン量300質量ppm以上1000質量ppm以下である、請求項1または2に記載の内燃機関用潤滑油組成物。
  4.  (B)モリブデン系摩擦調整剤が、モリブデンジチオカーバメート(MoDTC)である、請求項3に記載の内燃機関用潤滑油組成物。
  5.  (C)無灰摩擦調整剤として、前記式(1)が、N-オレイルプロパンジアミンである、請求項1または2に記載の内燃機関用潤滑油組成物。
  6.  (C)無灰摩擦調整剤として、さらにN-オレイル-N’-アシルプロパンジアミンを含有する、請求項5に記載の内燃機関用潤滑油組成物。
  7.  (C)無灰摩擦調整剤として、さらにオレイン酸を含有する、請求項6に記載の内燃機関用潤滑油組成物。
  8.  (C)無灰摩擦調整剤として、前記式(1)の成分由来の窒素量が、10ppm以上である、請求項1または2に記載の内燃機関用潤滑油組成物。
  9.  (D)金属系清浄剤として、さらにホウ酸カルシウムサリシレートを含有する、請求項1または2に記載の内燃機関用潤滑油組成物。
  10.  (E)粘度指数向上剤として、さらにポリメタクリレート(PMA)を含有する、請求項1または2に記載の内燃機関用潤滑油組成物。
  11.  (F)酸化防止剤として、さらにアミン系酸化防止剤をフェノール系酸化防止剤の質量分率以上となる範囲で含有する、請求項1または2に記載の内燃機関用潤滑油組成物。
  12.  (G)摩耗防止剤として、さらにジアルキルジチオリン酸亜鉛(ZnDTP)を含有する、請求項1または2に記載の内燃機関用潤滑油組成物。
  13.  100℃における動粘度が4.0mm/s以上12.5mm/s以下である、請求項1または2に記載の内燃機関用潤滑油組成物。
  14.  ガソリン・パティキュレート・フィルター(GPF)を備えるエンジンに用いられる、請求項1または2に記載の内燃機関用潤滑油組成物。
  15.  電動機を備えたハイブリッド車に用いられる、請求項1または2に記載の内燃機関用潤滑油組成物。
PCT/JP2023/011688 2022-03-29 2023-03-24 内燃機関用潤滑油組成物 WO2023190100A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054265 2022-03-29
JP2022054265 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190100A1 true WO2023190100A1 (ja) 2023-10-05

Family

ID=88202182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011688 WO2023190100A1 (ja) 2022-03-29 2023-03-24 内燃機関用潤滑油組成物

Country Status (1)

Country Link
WO (1) WO2023190100A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238980A (ja) * 2002-02-08 2003-08-27 Ethyl Corp モリブデン含有潤滑添加剤組成物およびその製造方法および使用
JP2008106199A (ja) * 2006-10-27 2008-05-08 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2008127563A (ja) * 2006-11-22 2008-06-05 Afton Chemical Corp 潤滑油組成物
WO2019046252A1 (en) * 2017-08-29 2019-03-07 Basf Se LUBRICATING TRANSMISSION COMPOSITION
JP2020076004A (ja) * 2018-11-07 2020-05-21 Jxtgエネルギー株式会社 潤滑油組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238980A (ja) * 2002-02-08 2003-08-27 Ethyl Corp モリブデン含有潤滑添加剤組成物およびその製造方法および使用
JP2008106199A (ja) * 2006-10-27 2008-05-08 Idemitsu Kosan Co Ltd 潤滑油組成物
JP2008127563A (ja) * 2006-11-22 2008-06-05 Afton Chemical Corp 潤滑油組成物
WO2019046252A1 (en) * 2017-08-29 2019-03-07 Basf Se LUBRICATING TRANSMISSION COMPOSITION
JP2020076004A (ja) * 2018-11-07 2020-05-21 Jxtgエネルギー株式会社 潤滑油組成物

Similar Documents

Publication Publication Date Title
CN101012407B (zh) 含钛润滑油组合物
EP3626805B1 (en) Internal combustion engine lubricating oil composition
WO2017099052A1 (ja) 内燃機関用潤滑油組成物
US20170369808A1 (en) Lubricating oil composition for internal combustion engine
US10829712B2 (en) Lubricating oil compositions
CN112888769B (zh) 润滑油组合物
WO2014156307A1 (ja) 自動変速機用潤滑油組成物
US11649413B2 (en) Lubricating oil composition for internal combustion engine
EP3388500A1 (en) Lubricant composition
EP3636730B1 (en) Internal combustion engine lubricating oil composition
WO2018021559A1 (ja) 潤滑油組成物
JP2023168649A (ja) 潤滑油組成物
WO2023190100A1 (ja) 内燃機関用潤滑油組成物
WO2023190101A1 (ja) 内燃機関用潤滑油組成物
WO2014156325A1 (ja) 潤滑油組成物
WO2022250017A1 (ja) 内燃機関用潤滑油組成物
JP2023004313A (ja) 内燃機関用潤滑油組成物
WO2022250018A1 (ja) 内燃機関用潤滑油組成物
WO2022201845A1 (ja) 内燃機関用潤滑油組成物
JP2023004310A (ja) 内燃機関用潤滑油組成物
WO2019221295A1 (ja) 内燃機関用潤滑油組成物
CN115537256A (zh) 内燃机用润滑油组合物
JP2023004316A (ja) 内燃機関用潤滑油組成物
JP2023553329A (ja) 潤滑油組成物
JP2017125214A (ja) 潤滑油組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024512311

Country of ref document: JP